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Abstract 

Alleviating our society’s dependence on petroleum-based chemicals has been highly emphasized due to 

fossil fuel shortages and increasing greenhouse gas emissions. Isopropanol is a molecule of high 

potential to replace some petroleum-based chemicals, which can be produced through biological 

platforms from renewable waste carbon streams such as carbohydrates, fatty acids, or CO2. In this study, 

for the first time, the heterologous expression of engineered isopropanol pathways were evaluated in a 

Cupriavidus necator strain Re2133, which was incapable of producing poly-3-hydroxybutyrate (P(3HB)). 

These synthetic production pathways were rationally designed through codon optimization, gene 

placement, and gene dosage in order to efficiently divert carbon flow from P(3HB) precursors towards 

isopropanol. Among the constructed pathways, Re2133/pEG7c overexpressing native C. necator genes 

encoding a -ketothiolase, a CoA-transferase and codon-optimized Clostridium genes encoding an 

acetoacetate decarboxylase and an alcohol dehydrogenase, produced up to 3.44 g.L
-1

 isopropanol in 

batch culture, from fructose as a sole carbon source, with only 0.82 g.L
-1

 of biomass. The intrinsic 

performance of this strain (maximum specific production rate: 0.093 g.g
-1

.h
-1

; yield: 0.32 Cmole.Cmole
-1

) 

corresponded to more than 60% of the respective theoretical performance. Moreover, the overall 

isopropanol production yield (0.24 Cmole.Cmole
-1

) and the overall specific productivity (0.044 g.g
-1

.h
-1

) 

were higher than the values reported in the literature to date for heterologously engineered isopropanol 

production strains in batch culture. Strain Re2133/pEG7c presents good potential for scale up production 

of isopropanol from various substrates in high cell density cultures.  

 

 

Keywords Cupriavidus necator, Ralstonia eutropha, Isopropanol, Branched-chain alcohols, Biofuel, 

Metabolic engineering 
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Introduction 

With the need to reduce consumption of petroleum-based products, diversified alternative fuels and bulk 

chemicals from renewable carbon sources have to be developed. Current research on fuel substitutes 

has focused largely on ethanol, even though numerous technical problems associated with this biofuel 

are reported.  Ethanol is corrosive towards ferrous metals, has lower energy content than gasoline, and 

degrades elastomers and flexible transfer lines in fuel systems, which makes it challenging to ship via 

traditional pipelines (Bruno et al. 2009). To overcome some of the challenges associated with the use of 

ethanol as a fuel, various higher alcohols were evaluated. Higher alcohol molecules such as isobutanol, 

n-butanol, isopropanol, 1-propanol, 3-methyl-1-butanol, 2-methyl-1-butanol, and isopentenol, can be 

blended with gasoline at various ratios and act as drop-in fuels, thus having high potential to be 

implemented as gasoline replacements (Lee et al. 2008a; Connor and Liao 2009; Bruno et al. 2009). 

Among these higher alcohols, isopropanol has a very high research octane number (129) and is already 

used as a gasoline and diesel additive (Peralta-Yahya and Keasling 2010). Currently, isopropanol is 

mainly used as a solvent in the chemical industry and is blended with many everyday household products 

such as paints and inks (Pharkya et al. 2011). Isopropanol can also be utilized as a chemical intermediate 

and be converted to propylene by dehydration and subsequently to “green” polypropylene (Kibby and Hall 

1973; Araki et al. 1993). Currently isopropanol is chemically produced from propylene or acetone 

(Pharkya et al. 2011), which are petroleum-based products. Isopropanol, bioproduced from renewable 

carbon sources, is a promising alternative as a green chemical target molecule in the chemical, solvent, 

and alternative energy industries. 

Isopropanol can be naturally produced by Clostridium species (Krouwel et al. 1980, Chen and Hiu 1986, 

Survase et al. 2011, Matsumura et al. 1992) with a reported maximum production level at 5 g.L
-1 

(Matsumura et al. 1992; Survase et al. 2011). Nevertheless, production in Clostridium species faces 

several challenges (Connor and Liao 2009), such as complex physiology and narrow genetic engineering 

capabilities, even though some engineered Clostridium strains have reached titre up to 8.8 g.L
-1

 (Collas et 

al. 2012). In addition isopropanol production in Clostridium species is still associated with several by-

products including lactic acid, acetic acid, butyric acid, butanol, acetone and ethanol (Dürre 1998, Collas 
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et al. 2012), which impact the carbon yield and recovery processes. In order to overcome the complexity 

of using Clostridium species, heterologous expression of Clostridium isopropanol pathway in other 

microorganisms has been attempted. For instance, heterologous expression of Clostridium isopropanol 

pathway in Escherichia coli led to a production of up to 4.9 g.L
-1

 of isopropanol in batch culture (Hanai et 

al. 2007) and up to 40 g.L
-1

 using a fed-batch strategy
 
(Jojima et al. 2008, Inokuma et al. 2010). An 

engineered yeast, Candida utilis, was capable of isopropanol production at a titre of 9.5 g.L
-1 

and up to 

27.2 g.L
-1

 in batch and fed-batch strategies respectively (Tamakawa et al. 2013). Lately isopropanol 

production by a cyanobacterium at a titre of 27 mg. L
-1

 in batch was achieved, although not directly from 

CO2 but hypothesized to be from stored glycogen (Kusakabe et al. 2013). 

The facultative chemolithoautotrophic bacterium Cupriavidus necator (also known as Ralstonia eutropha) 

is a metabolically versatile bioproduction platform organism. It is metabolically capable of utilizing many 

simple and complex carbon sources, especially oils (Lee et al. 2008b; Budde et al. 2011), fatty acids 

(Wilde 1962; Johnson and Stanier 1971; Friedrich et al. 1979; Doi et al. 1989) and CO2 (Wilde 1962; 

Repaske and Mayer 1976; Tanaka et al. 1995), which can be derived from agro-industrial waste streams. 

C. necator is a model bacterium for the study of PHAs (polyhydroxyalkanoates) biopolymers, in addition 

to H2- and CO2-based chemolithoautrophic metabolism for the past few decades (Schlegel 1990; 

Reinecke and Steinbüchel 2009). C. necator is able to divert a significant amount of carbon into poly-3-

hydroxybutyrate (P(3HB)) under unfavorable growth conditions of nutrient limitation (oxygen, nitrogen, 

phosphorus et al.), with adequate availability of carbon (Koller et al. 2010). This natural ability to store 

excess carbon is very appealing since isopropanol and P(3HB) share the same production pathway 

precursors (Fig. 1), which indicates that few genetic modifications are required to divert P(3HB) 

precursors to the production of isopropanol. As depicted in Fig. 1, expression of two genes encoding for 

an acetoacetate decarboxylase (ADC) and an alcohol dehydrogenase (ADH) is necessary to redirect 

carbon flow to isopropanol. Moreover C. necator can be easily engineered, because its genome has been 

fully sequenced (Schwartz et al. 2003; Pohlmann et al. 2006) and basic genetic tools are available to 

manipulate the microorganism since the end of the 80s (Jendrossek et al. 1988; Peoples and Sinskey 

1989; Park et al. 1995). 



 5 

The key features for engineering a microorganism for industrial metabolite production are the following: 

the selected microorganism must be (i) robust towards industrial process conditions, (ii) able to grow with 

minimal nutrient supplement for cost effective issues, (iii) able to grow on cheap substrates, (iv) accept 

heterologous genes; the expression of multiple genes must be coordinated to channel the carbon flow; 

growth and product formation must be uncoupled especially for toxic molecules such as isopropanol. C. 

necator meets these requirements and was selected for isopropanol production in this study. 

Although C. necator seems to be a good host for isopropanol production, it has never been engineered 

and tested for the production of isopropanol. In this study, we engineered C. necator for isopropanol 

production. A rational design of production pathways was employed and the production of isopropanol by 

each engineered pathway was evaluated in the strains. The pathway gene-coding sequences, codon 

usages, gene copy numbers, distance of specific gene from the promoter, and various promoter systems 

were investigated to optimize the production of isopropanol in terms of titre, yield and specific rate. 

Material and Methods 

Strain 

Cupriavidus necator Re2133 (Budde et al. 2011, Fig. 2) was used as the parent strain for isopropanol 

production since genes encoding for acetoacetyl-CoA reductases (phaB1B2B3) and for the PHA 

synthase (phaC) were deleted (Fig. 1) from the wild type strain C. necator H16 (ATCC17699, Gen
r
). 

Medium and cultivation conditions 

Rich medium used for the precultures consisted of 27.5 g.L
-1

 dextrose-free tryptic soy broth (TSB, Becton 

Dickinson, Sparks, MD, USA) with addition of 10 mg.L
-1

 gentamycin, 200 mg.L
-1

 kanamycin. Minimal 

medium used for the cultures was previously described by Lu et al. 2012b with addition of gentamycin (10 

mg.L
-1

) and kanamycin (100 mg.L
-1

). The amount of kanamycin was reduced compared to the precultures 

to decrease the toxic effect of kanamycin on growth. In the literature, the amount of kanamycin used for 

C. necator is between 50 mg.L
-1

 and 450 mg.L
-1 

(Kusian et al. 2002; Pötter et al. 2002; Aneja et al. 2009; 

Park et al. 2010; Wahl et al. 2012).  
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One glycerol stock was streaked on a rich medium petri dish (rich medium with addition of 20 g.L
-1

 agar 

A). The plate was incubated for 48h at 30°C. One colony was used to inoculate the seed culture, which 

was grown for 24 h in culture tube at 30°C on a roller-drum with 10 mL of rich medium. Then the volume 

of broth needed to inoculate a flask with an initial OD600nm of 0.4 was centrifuged in a 15 mL falcon tube 

(1900xg, 10 min, Centrifuge 5804R Eppendorf AG, Hamburg, Germany). The cell pellet was then 

resuspended in the mineral media used for the flask culture (100 mL in 1 Liter flask). 20 g.L
-1

 of fructose 

and 0.38 g. L
-1

 of NH4Cl were used as carbon and nitrogen sources respectively. The nitrogen amount 

corresponded to the amount necessary to produce about 0.7 g.L
-1

 of biomass cell dry weight (CDW) 

considering the following biomass formula: C1H1.77O0.44N0.25, 4% ashes, MW=25.35 g.Cmole
-1

 (Aragao 

1996). The baffled flasks were continuously shaken in a 30°C incubator at 200 RPM to ensure proper 

oxygen transfer. Culture samples were taken regularly for analysis as described below. 

Plasmid and strain constructions 

DNA sequence amplification was achieved using Phusion High-Fidelity PCR Master Mix with GC Buffer 

(New England Biolabs, Ipswich, MA, USA). QIAQuick Gel Extraction Kit (QIAGEN, Valencia, CA, USA) 

was used for gel purification of all DNA products. Plasmid extractions were carried out using the QIAprep 

Spin Miniprep Kit (QIAGEN, Valencia, CA, USA). Restriction enzymes used were from New England 

Biolabs (Ipswich, MA, USA). 

Synthetic ribosome-binding site (RBS) and a nucleotide linker sequence were incorporated between each 

gene as shown in Fig. 2. The RBS and linker sequences used were tested and described by Lu et al. 

2012a. The synthesized codon-optimized genes (GenScript USA Inc., Piscataway, NJ, USA) were 

received in pUC57-Kan (sequence of codon-optimized genes in Online Resource 1, NCBI accession 

number: KF975390). The plasmid assemblies were achieved by one-step isothermal DNA assembly 

protocol (Gibson et al. 2009), except when stated otherwise. pBBR1MCS-2-PTAC was constructed by 

replacing the PLAC promoter region (TTTACACTTTATGCTTCCGGCTCGTATGTTG) of the broad-host 

vector pBBR1MCS-2 (Kovach et al. 1995) with the PTAC promoter 

(TTGACAATTAATCATCGGCTCGTATAATG) using primers listed in Online Resource 2. Empty vectors 

digested by ClaI and XhoI were used as backbone DNA for the assembly of all isopropanol production 
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plasmids except for pEG7c. For pEG7c, pBBad (Fukui et al. 2009) was digested with KpnI and XbaI, and 

the fragments containing the isopropanol production pathway genes were purified from pEG7a via KpnI 

and XbaI digestion. The pathway genes were then inserted into pBBad to create pEG7c. For pEG7b, the 

fragment with pathway genes from the digestion of pEG7a with XhoI and ClaI was isolated and purified. 

The fragment was then ligated with the corresponding digested vector. All ligation and one–step 

isothermal assembly products were transformed into high efficiency E. coli Top10 chemical competent 

cells (Invitrogen
TM

, Life technologies). Colonies were screened by diagnostic digestion after plasmid 

extraction. Correct gene insertions on plasmids were confirmed by sequencing. All constructed plasmids 

are described in Fig. 2. Each confirmed plasmid was transformed into E. coli S17-1 (ATCC 47055) by 

electroporation: (Simon et al. 1983). E. coli S17-1 harboring the plasmid was then used to introduce the 

plasmid into C. necator Re2133 by conjugative transfer (Slater et al. 1998). 

Analytical procedures 

Culture supernatants were obtained by filtration (0.2 m PTFE or PES syringe filters, VWR, Radnor, PA, 

USA) of the flask broth samples and used for substrate and products determination. The residual 

substrate and product concentrations were quantified by High Performance Liquid Chromatography 

(HPLC). The HPLC Instrument (Series 1100, Agilent, Santa Clara, CA, USA) was equipped with an ion-

exchange column (Aminex HPX-87H, 300x7.8 mm, Bio-Rad, Hercules, CA, USA) protected with a guard 

column (Cation H+ cartridge, 30x4.6 mm, Bio-Rad, Hercules, CA, USA) and coupled to a RI detector and 

an UV detector ( =210 nm). The column was eluted with 2.5 mM H2SO4 as a mobile phase at 50°C at a 

flow rate of 0.5 ml.min
-1

. 

Biomass growth was monitored by measuring the optical density at 600 nm (OD600nm) using a visible 

spectrophotometer (Spectronic GENESYS 20 Visible Spectrophotometer) with a 1 cm path length 

absorption PS semi-micro cuvette (VWR, Radnor, PA, USA). 

Enzymatic assay 
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Cell pellets after centrifugation of 5 mL culture broth (taken at 24 h of cultures) in a 15 mL Falcon tube 

(1900xg, 10 min, Centrifuge 5804R Eppendorf AG, Hamburg, Germany) were frozen at - 80°C until time 

of enzymatic assays. 

Cell pellets were thawed on ice and resuspended in 0.8 mL of the buffer associated with each assay. 

Then cells were lysed with beads (0.6 g of 0.1 mm zirconia beads (BioSpec Products, Bartlesville, OK, 

USA) in 2 mL screw top plastic vial) at 4°C using FastPrep-24 (MP Biomedicals, Solon, OH, USA) at 6 

m.s
-1

 for 40 s. Three cycles of Fast-Prep with 5 min rest in between were carried out. Cell debris was 

removed by microcentrifugation (16000xg, 10 min, Microcentrifuge 1816, VWR, Radnor, PA, USA). Cell 

lysates were filtrated using 0.45 µm syringe filters (PES, VWR, Radnor, PA, USA) prior to enzyme activity 

assay. 

The protein content of the cell lysates was determined by the standard procedure of the Bio-Rad Protein 

Assay Kit (Bio-Rad, Hercules, CA, USA) with bovine serum albumin (BSA) as a standard. All 

measurements including standards were repeated three times. 

All enzymatic assays were performed at 25°C with the Agilent 8453 spectrophotometer (Agilent 8453 UV-

Visible Kinetic Mode, Agilent, Santa Clara, CA, USA). -ketothiolase (THL) assay was performed 

according to Budde et al. 2010. CoA -Transferase (CTF) assay was conducted according to Cary et al. 

1990 with succinic acid disodium salt 0.15 mole.L
-1

 as the substrate. Acetoacetate decarboxylase (ADC) 

assay was performed by a method adapted from Yu et al. 2011. In brief, the buffer used for cell 

resuspension was 5 mM potassium phosphate buffer (pH 7.3). The assay buffer  was 20 mM acetate 

buffer (pH 4.8) containing 70 µM bromocresol green and 10 mM lithium acetoacetate. The reaction was 

initiated with addition of 50 L of appropriately diluted cell extract and the increase in absorbance at 620 

nm was monitored. Alcohol dehydrogenase (ADH) assay was adapted from Ismaiel et al. 1993, Hanai et 

al. 2007 and Shen et al. 2011. Briefly, crude extracts were prepared in 130 mM of TrisHCl (pH 7.5). ADH 

activities were measured by following the reduction of acetone (200 mM) with NADPH (OD340nm = 6.2 mM
-

1
.cm

-1
). The assay mixture (1 mL) contained 100 mM Tris-Cl buffer (pH 7.5), 5 mM dithiothreitol (DTT), 

and 0.2 mM NADPH. 
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One enzyme unit is defined as 1 mole of product formed per minute. 

Yield calculations 

All yields were expressed as carbon ratio. The theoretical isopropanol yield (
theo

IsopropSY , ) was calculated on 

a carbon basis considering the pathway shown in Fig. 1. One mole of fructose is converted to 2 moles of 

acetyl-CoA and 2 moles of CO2. Then the two molecules of acetyl-CoA ligate into one acetoacetate, 

which is subsequently decarboxylated and reduced to form one mole of isopropanol. A 6-carbon molecule 

leads to a 3-carbon molecule, 

1

, . 5.0 CmoleCmoleY theo

IsopropS . The experimental isopropanol yield 

( IsopropSY , ) was the ratio of isopropanol produced and substrate consumed during a time interval (t2-t1): 

1212, ttttIsopropS SSIsopropIsopropY . 

All data are presented as means±SD from three independent experiments except when stated otherwise. 

Results 

Coding sequence optimization 

First demonstration of isopropanol production in C. necator strain Re2133/pEG2 

In order to redirect the carbon flow from P(3HB) into isopropanol pathway, the strain Re2133 (Budde et 

al. 2011) was used as the parent strain since genes coding for acetoacetyl-CoA reductases (phaB1B2B3) 

and for the PHA synthase (phaC1) were deleted (Fig. 1). The strain Re2133 transformed with the empty 

plasmid pBBR1MCS-2 was used as a reference strain during this study. This strain was cultivated on 

fructose as the sole carbon source, in a mineral medium designed to reach a biomass concentration of 

about 0.7 g.L
-1

 once nitrogen was depleted, as stated in section 2.2. After nitrogen depletion, the carbon 

excess from fructose was directed towards pyruvic acid (up to 2.61 ± 0.19 g.L
-1

, Fig. 3.a and Online 

Resource 3). 

The entire isopropanol production pathway from acetyl-CoA was inserted in the plasmid pBBR1MCS-2 to 

construct the plasmid pEG2. pEG2 plasmid harbored the native C. necator genes phaA (H16_A1438) and 
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ctfAB (H16_A1331 and H16_A1332), respectively coding for a -ketothiolase A (THL) and the two 

subunits of a CoA-Transferase (CTF). Additionnaly, the plasmid also contained the heterologous genes 

from Clostridium species adc (CA_P0165) and adh (AF157307 nt 2351 to 3406), respectively coding for 

an acetoacetate decarboxylase (ADC) and an alcohol dehydrogenase (ADH) (Fig. 1, Fig. 2). The resulting 

strain Re2133/pEG2 produced 0.22 ± 0.07 g.L
-1

 of isopropanol (Fig. 3.a). The titre reached was very low 

and up to 2.44 ± 0.14 g.L
-1

 pyruvic acid by-product was still produced (Online Resource 3), indicating that 

the expression of the isopropanol pathway genes was not significant enough to shunt all the P(3HB) 

precursors towards isopropanol. 

Cell extracts of Re2133/pEG2 were analyzed in terms of enzyme specific activities for the heterologous 

enzymes ADC and ADH. The specific activities of both heterologous enzymes were very low, respectively 

at 0.75 ± 0.84 U.mg
-1

 and 0.05 ± 0.01 U.mg
-1 

, while the specific activities of the native C. necator 

enzymes THL and CTF were 5.47 ± 0.62 U.mg
-1

 and 9.89 ± 1.28 U.mg
-1

 respectively (Table 1). 

The poor expression of the heterologous genes from Clostridium species (adc and adh) necessary for 

isopropanol production in C. necator (Fig. 1) could be explained by differences in genome GC content 

between the Clostridium species (about 30% GC) and C. necator (about 66% GC) as depicted in Online 

Resource 4. The differences in GC content between the two species could impact the transcriptional and 

translational efficiencies since GC content is known to drive codon usage. Codon bias of the host 

organism has been reported as a major limiting factor in the production yield of a desired protein (Behura 

and Severson 2012). A comparative table of the codon usage in C. necator, C. acetobutylicum and C. 

beijerinckii was constructed (Online Resource 5) from the database http://www.kazusa.or.jp/codon/ 

(Nakamura et al. 2000). The codon usage between these three organisms is very different. For example, 

the codon UUA for Leucine, for example, is not used at all by C. necator, whereas it is used 51-53% of 

the time by C. acetobutylicum and C. beijerinckii. Codon-optimization of the heterologous genes appears 

to be necessary to improve protein expression in C. necator. 

Codon-optimization to overcome the poor expression of heterologous genes from Clostridium 

species 
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The plasmid pEG7a was constructed with the codon-optimized version of the adc and adh heterologous 

genes (NCBI accession number: KF975390) of Clostridium species (Fig. 2) and incorporated into 

Re2133. Utilization of codon optimized genes successfully led to an increase in ADC and ADH activities 

in Re2133/pEG7a cell extracts. An activity of 8.89 ± 1.30 U.mg
-1

 and 0.72 ± 0.04 U.mg
-1 

(Table 1) were 

respectively determined for ADC and ADH. As a result, the strain bearing pEG7a produced 1.95 ± 0.18 

g.L
-1

 of isopropanol in 88 h (Fig. 3.a), which corresponded to an 8.9 ± 3.0 fold increase compared to 

Re2133/pEG2. There is a global increase in the carbon conversion (0.17 Cmole.L
-1

, Fig. 4) to products 

(biomass, pyruvic acid, isopropanol and acetone) in Re2133/pEG7a compared to Re2133/pEG2 (0.10 

Cmole.L
-1

, Fig. 4). This indicated that in the strain Re2133/pEG7a more carbon was driven through the 

entire pathway instead of only the conversion of pyruvic acid (produced by the strain Re2133/pEG2) to 

isopropanol. At 88h of the culture time,the peak isopropanol production time, a pyruvic acid concentration 

of 1.52 ± 0.29 g.L
-1

 and an acetone concentration of 0.09 ± 0.09 g.L
-1

 were detected for the strain 

Re2133/pEG7b suggesting that further redirection from pyruvic acid towards the production of 

isopropanol can be achieved. 

Suitability of alcohol dehydrogenase (ADH) from C. necator for isopropanol production 

An alternative to codon-optimization of heterologous ADH genes was to identify and use a native ADH 

gene from C. necator that is active towards acetone. One native ADH has been previously identified in C. 

necator and tested (Steinbüchel and Schlegel 1984). This ADH was reported to be a very unspecific 

enzyme regarding its substrates. Isopropanol was reported as one of its wide spectrum of substrates 

(Steinbüchel and Schlegel 1984). The sequence of adh has been published (Jendrossek, Steinbuchel et 

al. 1988) and by comparison to the whole genome sequence (Pohlmann, Fricke et al. 2006), locus 

H16_A0757 was identified. In the wild type strain, this native ADH is only expressed under restricted 

supply of oxygen (Steinbüchel and Schlegel 1984). Nevertheless, mutant strains of C. necator  with 

constitutive expression of adh have been isolated (Steinbüchel et al. 1987), indicating that adh expression 

under a constitutive promoter should lead to ADH enzyme activity even under aerobic conditions. Thus 

another plasmid, pEG15 was constructed with the C. necator adh (H16_A0757) instead of the C. 

beijerinckii adh (Fig. 2). The resulting strain Re2133/pEG15 produced a small amount of isopropanol 
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(about 0.8 g.L
-1

, Fig. 3.a) compared to strain Re2133/pEG7a (1.95 ± 0.18 g.L
-1

 isopropanol). Large 

amounts of acetone (~1.31 g.L
-1

) and pyruvic acid (~2.00 g.L
-1

) were detected in the supernatant of 

Re2133/pEG15. Although there was a slight ADH activity toward acetone, the expression of the ADH 

from C. beijerinckii led to 25 times higher isopropanol production. This indicates that ADH from C. necator 

is not specific towards acetone as a substrate, as a result, is not suitable for the production of 

isopropanol. 

Influence of the pathway gene copy number on isopropanol production 

In order to further direct the carbon flow from pyruvic acid to isopropanol, copy numbers of three pathway 

genes (phaA, ctfAB and adh) were investigated, since an increase in gene copy number could result in an 

increase in protein expression level, and thus a higher enzymatic activity (Schendel et al. 1989). For this 

purpose, plasmids pEG8, pEG11, pEG12, pEG13 and pEG14 were constructed, which included various 

copy numbers of phaA (0 - 2), ctfAB (0 - 1), and adh (1 – 2) (Fig. 2 and Fig. 3.a). 

The activity of -ketothiolase , encoded by phaA, in cell extracts increased with the increase in the 

plasmid gene copy number (Fig. 5.a). -ketothiolase activity of 3.2 ± 2.2 U.mg
-1

 in cell extract was found 

in strains with 0 copy of phaA on the plasmid. An addition of about 2.7 U.mg
-1

 was detected with each 

additional copy of phaA on the plasmid. The increase in activity resulting from additional gene copies led 

to an increase in isopropanol production, although only for the addition of one gene copy (Re2133/pEG11 

and Re2133/pEG8 shown on Fig. 3.a). These results indicated that the reaction performed by the -

ketothiolase was no longer the limiting step when one copy of phaA was overexpressed on the plasmid. 

The overexpression of native CoA-transferase (ctfAB) on the plasmid was not necessary since it did not 

improve the isopropanol production (Re2133/pEG11 vs Re2133/pEG7a on Fig. 3.a). Hence, the CoA-

transferase was not a rate controlling step when compared to the other enzymes in the pathway of 

interest. 

The addition of a second copy of the codon-optimized adh gene on the plasmid slightly increased the 

production of isopropanol by 1.11 ± 0.14 fold (Re2133/pEG14 vs Re2133/pEG12) and by 1.20 ± 0.18 fold 

(Re2133/pEG13 vs Re2133/pEG7a), depending on the plasmid construction. An additional copy of adh 
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gene seemed to lead to a smaller increase in isopropanol production with the plasmid pEG14 than with 

the plasmid pEG13 (Fig. 3.a). The difference between these two constructions was the addition of a 

second phaA gene copy on the plasmid pEG14, thus increased the distance between the promoter and 

the second copy of adh from 4.4 to 5.6 kb. A previous study demonstrated that expression was always 

greater for the gene that is closest to the promoter (Lim et al. 2011). To determine if such conclusion 

applied in this case, ADH specific activities obtained in the constructed strains were compared to the 

distance of the furthest adh gene from the promoter (Fig. 5.b). In accordance with the findings of Lim et 

al. 2011, an inverse linear relationship between the distance from the promoter and the activity of the 

associated ADH was demonstrated (Fig. 5.b). The addition of adh gene copies on the same plasmid did 

not seem to be an optimal strategy to increase ADH expression and activity, to improve isopropanol 

production. 

Promoter comparison 

Promoter strength is another important parameter for pathway gene expression. We evaluated several 

promoter systems for isopropanol production, in which two are constitutively expressed promoters (PLAC 

and PTAC) and one of which is an inducible promoter (PBAD). All three promoters were evaluated for the 

production of isopropanol in C. necator. 

Comparison of the two constitutive promoters PLAC and PTAC 

Fukui et al. 2010 evaluated several promoters to regulate gene expression in C. necator. Among the 

constitutive promoters identified (PLAC, PTAC, PphaC, PphaP), PTAC promoter was the strongest and 

demonstrated 1.5-2.0 fold higher read-through expression when compared with PLAC. To test the effect of 

different promoter strength on isopropanol production, the PLAC promoter region 

(TTTACACTTTATGCTTCCGGCTCGTATGTTG) of the broad-host vector pBBR1MCS-2 was exchanged 

with the PTAC promoter region (TTGACAATTAATCATCGGCTCGTATAATG) leading to the plasmid 

pBBR1MCS-2-PTac. Then the synthetic operon with four genes encoding for isopropanol production 

pathway enzymes were digested from pEG7a and inserted into pBBR1MCS-2-PTAC, resulting in plasmid 

pEG7b. 
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Strain Re2133 harboring pEG7b plasmid produced 2.27 ± 0.07 g.L
-1

 isopropanol (Fig. 3.b), corresponding 

to a 1.16 ± 0.12 fold increase compared to the strain Re2133/pEG7a with the PLAC promoter. In terms of 

total carbon titre, 0.19 Cmole.L
-1

 were produced by the strain Re2133/pEG7b compared to the 0.17 

Cmole.L
-1

 produced by the strain Re2133/pEG7a (Fig. 4). Constitutive expression of isopropanol pathway 

led to a growth-associated isopropanol production of 0.98  0.06 g per g of biomass in the strain 

Re2133/pEG7a and 1.14  0.01 g.g
-1

 in the strain Re2133/pEG7b. Consequently, a decrease in the 

maximal growth rate by 2.70 ± 0.07 times (Re2133/pEG7a) and by 3.19 ± 0.16 times (Re2133/pEG7b) 

compared to Re2133/pBBR1MCS-2 (0.17 h
-1

) was observed. Low maximal growth rate of the strains 

harboring pEG7a and pEG7b (between 0.05 and 0.06 h
-1

) is not attractive for an efficient culture strategy. 

To overcome the poor growth due to the growth-associated isopropanol production, an inducible promoter 

was evaluated.  

Study of an inducible promoter: PBAD 

Fukui et al. 2010 demonstrated that broad-host vector pBBad harboring PBAD with araC regulator gene 

responding to the addition of L-arabinose was functional in C. necator. This system was utilized by 

inserting the synthetic isopropanol production pathway from pEG7a into the pBBad plasmid, which led to 

the plasmid pEG7c. Re2133/pEG7c flask cultures were induced with 0.1% L-arabinose at an OD600nm of 

1.5, corresponding to 75% of the maximum OD600nm reached with the amount of nitrogen supplied. The 

maximal growth rate was 0.17 ± 0.01 h
-1

, which was the same as the strain with the empty plasmid 

pBBR1MCS-2. Isopropanol production by Re2133/pEG7c reached 3.44 ± 0.14 g.L
-1

 (Fig. 3b and Fig. 6), 

which was an increase by 1.76 ± 0.18 fold compared to the strain Re2133/pEG7a. The PBAD promoter 

system with 0.1% L-arabinose induction allowed for a higher production of isopropanol than the two 

constitutive promoter systems tested (PLAC and PTAC with plasmids pEG7a and pEG7b respectively). 

Moreover no extracellular pyruvic acid was detected (Fig. 3b and Fig. 6), indicating that the increase in 

promoter strength was sufficient to pull carbon through the isopropanol production pathway from fructose 

consumption. In Re2133/pEG7c, up to 0.21 mole.L
-1

 of total carbon (biomass with addition of isopropanol 

and acetone) were produced, which corresponded to a significant increase of carbon flow into the 

products formation comparatively to the other engineered strains (Fig. 4). Slight promoter leakiness was 
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detected which resulted in only 0.15 g of isopropanol produced per g of biomass in the absence of 

arabinose induction. 

Discussion 

This study presents the first demonstration of isopropanol production by C. necator. A rational design of 

isopropanol production plasmids and production evaluation in batch culture were performed. 

Codon usage differences between the host C. necator and Clostridium species was proven to be a critical 

design factor. Strain Re2133/pEG7a with codon-optimized version of the Clostridium genes adc and adh 

produced isopropanol that was 8.9 ± 3.0 folds higher (1.95  0.18 g.L
-1

 ) than Re2133/pEG2. Another 

strategy to avoid poor expression of heterologous genes was to directly use host genes coding for ADH. 

Although the expression of a native adh gene from C. necator was not appropriate for isopropanol 

production (Fig. 3.a), an exploration of other potentially suitable ADHs from the C. necator genome could 

be fruitful. No native ADC encoding gene or ADC activity were reported in C. necator to date. However 

acetone excretion was reported by some mutant strains of C. necator partially or completely lacking the 

ability to synthesize P(3HB) (Vollbrecht et al. 1978), indicating that a native decarboxylase gene may 

exist.  Such gene remains to be identified, evaluated, and tested for isopropanol production. 

In order to further direct the carbon flow from pyruvic acid to isopropanol in strain Re2133/pEG7a, gene 

copy number and distance of the gene from the promoter were investigated. The addition of a copy of adh 

gene improved the isopropanol production. Considering that acetone was still detected in the culture 

broth, the alcohol dehydrogenase (ADH) may be the limiting step and may require a fine-tuning of 

expression to further increase isopropanol production. However, in order to enhance enzyme activity via 

an increase in gene dosage, the distance between the added-genes and the promoter should be reduced 

to a minimum (Fig. 5b). 

Increasing the promoter strength further improved the isopropanol production. In accordance with Fukui 

et al. 2010, the use of PTAC promoter instead of PLAC promoter increased the isopropanol concentration 

produced by 1.16 ± 0.12 fold (strain Re2133/pEG7b vs Re2133/pEG7a, Fig. 3.b). These two promoters 

led to a constitutive production (Fukui et al. 2010) of isopropanol. As a consequence, the growth rate is 
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strongly reduced (0.05 h
-1

 to 0.06 h
-1

 instead of 0.17 h
-1

) and such low growth rates were not realistic for 

scaled-up industrial production. The use of an inducible promoter PBAD successfully overcame this 

problem. In addition, the constructed strain Re2133/pEG7c produced up to 3.44 ± 0.14 g.L
-1

 of 

isopropanol (Fig. 3.b and Fig. 6) and no more pyruvic acid after L-arabinose induction(Fig. 4, Fig. 3.b and 

Fig. 6), indicating that the increase in promoter strength was significant enough to increase the 

isopropanol pathway production to the level of the fructose consumption. One disadvantage of the 

inducible system PBAD is the need to add an inducer molecule. It would be ideal to utilize a system that is 

auto-upregulated when a nutrient is depleted as it is for PHA production. Fukui et al. 2010 evaluated a 

vector system with PphaP promoter along with the phaR gene coding for PhaR regulator, which was a 

useful expression vector enabling autoregulation of gene expression linked with P(3HB) biosynthesis. 

However, this system relies on the presence of P(3HB) in the cells (Pötter et al. 2002; York et al. 2002) 

and cannot be used for the production of other targeted molecules from P(3HB) precursors with PHB
-
 

mutants strains such as Re2133. Other inducible systems dependent on nutrient depletion could be used, 

such as two-component signal transduction systems (Ninfa et al. 2007). 

The key features for industrial production of isopropanol are high titre (to reduce recovery process costs), 

high yield (close to the theoretical production yield), high volumetric productivity, and cheap carbon 

source. To fulfil these requirements, the production strains must be selected for high specific productivity 

and high production yields. Titre and volumetric productivity will then depend on the cultivation 

monitoring. To assess the suitability of the best isopropanol production strain (Re2133/pEG7c) 

constructed in this study, the performances of this strain were compared to those of other engineered 

strains cultivated in similar conditions, i.e. batch cultures. The Re2133/pEG7c C. necator strain was able 

to produce up to 3.44 ± 0.14 g.L
-1

 of isopropanol. In batch mode, natural producers from the Clostridium 

family such as C. isopropylicum were able to produce titres up to 4.6 g.L
-1

 with immobilized cells 

(Matsumura et al. 1992). Higher titre were reached with engineered strains: 4.9 g.L
-1

 by E. coli (Hanai et 

al. 2007), 8.8 g.L
-1

 by Clostridium acetobutylicum (Collas et al. 2012), and 9.5 g.L
-1

 by Candida utilis 

(Tamakawa et al. 2013)(Table 2). Nevertheless in this work, the maximum titre of 3.44 ± 0.14 g.L
-1

 of 

isopropanol was reached with only 0.82 ±  0.02 g.L
-1 

 of biomass under conditions of nitrogen depletion. 

Comparatively in E. coli batch culture (Hanai et al. 2007), nitrogen was not limiting which enabled a 
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higher protein synthesis and biomass concentration (Table 2) considering the OD600 nm reported (Dry Cell 

Weights were not estimated in the paper by Hanai et al.). The specific productivity and yields were 

calculated to better compare the performances of the strains. The overall specific productivity of the strain 

Re2133/pEG7c was 0.044 ± 0.006 g.g
-1

.h
-1 

(0.016 ±  0.001 g.L
-1

. OD600nm
-1

.h
-1

, Table 2). The 

instantaneous maximal specific productivity of Re2133/pEG7c after induction by arabinose was 0.093 g.g
-

1
.h

-1
 which corresponded to 62% of the maximum theoretical isopropanol production specific rate (Table 

2). The maximum theoretical specific rate was calculated considering the model developed by Grousseau 

et al. 2013, where the limiting rate of product formation was defined by the NADPH synthesis rate. 

The overall yields of Re2133/pEG7c were respectively 1.3 and 1.8 times higher (Table 2) compared to 

the engineered isopropanol-producting E. coli strain (Hanai et al. 2007) and the engineered isopropanol-

producting C. acetobutylicum strain (Dusséaux et al. 2013). The maximum yield reached by the strain 

Re2133/pEG7c corresponded to 64% of the theoretical yield (0.5 Cmole.Cmole
-1

). 

As reported here, C. necator is an excellent host for isopropanol production: 

(1) after deletion of genes encoding for the P(3HB) synthesis (phaB1B2B3 and phaC), the 

expression of two heterologous genes (adc and adh) and two native genes (phaA and ctfAB). 

was sufficient to divert carbon from P(3HB) precursors to isopropanol 

(2) the intrinsic performances of the strain (specific production rate and yield) corresponded to 

more than 60% of the theoretical performances 

(3) isopropanol concentrations produced were significant (3.44 ± 0.14 g.L
-1

) considering the low 

concentration of C. necator biomass used as catalyst (0.82 ±  0.02 g.L
-1

). 

The strain Re2133/pEG7c will be further evaluated for the scale-up production of isopropanol from 

various carbon sources. High cell density culture associated with a product recovery system with a 

controlled supply of nitrogen or any other limiting elements would be beneficial.  
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Tables 

Table 1: Enzymatic activities of -ketothiolase (THL), acetoacetyl-CoA transferase (CTF), acetoacetate 
decarboxylase (ADC) and alcohol dehydrogenase (ADH) in cell extracts of the strains Re2133/pBBR1MCS-2, 
Re2133/pEG2 and Re2133/pEG7a. Samples were taken at 24h of culture. Each value represents the mean ± 
standard deviation on n=3. 

Strain 

THL activity CTF activity ADC activity ADH activity 

U.mg
-1

 U.mg
-1

 U.mg
-1

 U.mg
-1

 

Re2133/pBBR1MCS-2 2.34 ± 0.73 8.68 ± 0.79 -0.36 ± 0.40 0.03 ± 0.03 

Re2133/pEG2 5.47 ± 0.62 9.89 ± 1.28 0.75 ± 0.84 0.05 ± 0.01 

Re2133/pEG7a 6.54 ± 0.34 23.18 ± 5.05 8.89 ± 1.30 0.72 ± 0.04 
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Table 2: Comparison of this work with other engineered isopropanol production organisms in batch culture 

References: 
Hanai et 
al., 2007 

Collas et 
al. 2012 

Dusséaux 
et al. 2013 

Jang et al. 
2013 

Tamakaw
a et al., 

2013 
This work 

Theoretical 
maximum 

Microorganism E. coli C. acetobutylicum 
Candida 

utilis 
C. necator C. necator 

Isopropanol g.L
-1

 4.9 8.8 5 3.5 9.5 3.44 ± 0.14 nc 

Biomass OD600nm 20 nr nr 20 nr 2.25 ± 0.05 nc 

Biomass g.L
-1

 nr nr 16 nr nr 0.82
a
 ± 0.01 nc 

Time h 30.5 45 20 60 52 96.3   nc 

Overall specific 
productivity 

g.L
-1

.OD600nm
-1

.h
-1

 0.008 nr nr 0.003 nr 0.016 ± 0.001 nc 

Overall specific 
productivity 

g.g
-1

.h
-1

 nr nr 0.016 nr nr 0.044 ± 0.006 nc 

Maximum 
specific 
productivity 

g.g
-1

.h
-1

 nr nr nr nr nr 0.093 ± 0.004 0.15
b
 

Overall yield Cmole.Cmole
-1

 0.18 nr 0.13 0.07 nr 0.24 ± 0.01 nc 

Maximum Yield Cmole.Cmole
-1

 0.22 nr nr nr nr 0.32 ± 0.01 0.50
c
 

By-products  ethanol, 
acetone 

ethanol, 
butanol, 
acetate, 
butyrate, 
acetoïn, 
acetone, 

2,3 
butanediol 

ethanol, 
butanol, 
acetate, 
butyrate, 
acetoïn 

ethanol, 
butanol, 
acetate, 
butyrate 

ethanol, 
acetate 

acetone none 

a
 the CDW was calculated using the relationship: 1 OD600nm =0.363 g.L

-1
 

b
 Calculated with kinetic modeling from Grousseau et al. 2013 considering a null growth rate 

c
 See Material and methods, 2.6. Yield calculation 

nr: not reported, nc: not calculated 
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Figure Captions 

Fig. 1 Engineered isopropanol production pathway in C. necator. Acetate, Fructose, Glucose and CO2 are 
potential carbon sources, which can be used for isopropanol production. Dashed arrows depict steps which 
are missing in C. necator for the production of isopropanol. Carbohydrates are catabolized through Entner-
Doudoroff pathway and lead to glyceraldehyde-3-phosphate (G3P) and pyruvate. CO2 is assimilated through 
the Calvin Cycle and lead to glycerate-3-phosphate (GP). G3P, pyruvate, GP and acetic acid can all lead to 
the production of acetyl-CoA. Acetyl-CoA can be directed toward the tricarboxylic acid (TCA) cycle or toward 
isopropanol or polyhydroxybutyrate (P(3HB)) synthesis. Isopropanol is synthesized by condensation of two 

acetyl-CoA molecules into acetoacetyl-CoA via the -ketothiolase enzyme. Next, acetoacetyl-CoA transferase 
(CTF) transfers the CoA moiety from acetoacetyl-CoA to succinate (provided by the TCA cycle) for the 
formation of acetoacetate. Acetoacetate is then decarboxylated with the aid of acetoacetate decarboxylase 
(ADC) to form acetone, before an alcohol dehydrogenase (ADH) finally reduces acetone to isopropanol. The 
last two steps of P(3HB) synthesis must be removed, by the deletion of phaB and phaC genes (Re2133) 
respectively encoding for the NADPH-dependent acetoacetyl-reductase (performing the reduction of 
acetoacetyl-CoA into R-Hydroxybutyryl-CoA (R-HB-CoA)) and the PHA synthase (performing the 
polymerization) 

Fig. 2 Schematic of isopropanol production pathways constructed and plasmid utilized. Each plasmid was 
incorporated into strain Re2133 (H16 ΔphaB1B2B3C1 (Gen

r
), Budde et al. 2011) 

Fig. 3 Time point in which maximum isopropanol concentration was produced; in addition pyruvic acid 
and acetone concentrations produced at the same time point are depicted. (a) Coding sequence evaluation 
with the plasmid pBBR1MCS-2 incorporated in the strain Re2133. Composition of the plasmid is indicated 
below each plasmid name. n=3, except for strains Re2133/pEG12 and Re2133/pEG14 where n=2 was 
performed, and Re2133/pEG15 where n=1 was performed. (b) Promoter evaluation with the same set of genes 
(phaA (H16_A1438), ctfAB (H16_A1331 H16_1332), codon-optimized adc and adh (NCBI accession number: 
KF975390). The promoter on the plasmid is indicated below each plasmid name. n=3, except for 
Re2133/pEG7c where n=2 was performed 

Fig. 4 Carbon distribution in Cmole.L
-1

 of the products (biomass, pyruvic acid, isopropanol, and acetone) 
for the strains Re2133/pBBR1MCS-2, Re2133/pEG2, Re2133/pEG7a, Re2133/pEG7b and Re2133/pEG7c. 
Cumulative data for the culture time point corresponding to the maximum concentration of total products 

Fig. 5 (a) -ketothiolase (THL) activity vs the copy number of phaA on the plasmid. For 0 copy of phaA, 
average of values from Re2133/pBBR1MCS-2 (n=3) and Re2133/pEG8 (n=3). For 1 copy, average of values get 
for Re2133/pEG2 (n=3), Re2133/pEG7a (n=3), Re2133/pEG11 (n=3), Re2133/pEG13 (n=3). For 2 copies, 
average of values get for Re2133/pEG12 (n=2) and Re2133/pEG14 (n=2). (b) Alcohol dehydrogenase (ADH) 
activity associated to the expression of one adh gene copy, vs the distance between the promoter and the 
adh gene start codon. The activity associated to the second adh gene (for the strains Re2133/pEG13 and 
Re2133/pEG14) was calculated by subtracting the activity of the cell extract measured for Re2133/pEG7a and 
Re2133/pEG13 respectively 

Fig. 6 Evaluation of substrate (fructose) and products (biomass, pyruvic acid, acetone and isopropanol) 
over cultivation time of Re2133/pEG7c 
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Abbr. Name Locus tag Microorganism Enzyme

THL: phaA (H16_A1438) from C. necator, coding for a -ketothiolase

CTF: ctfAB (H16_A1331 and H16_A1332) from C. necator, coding for a succinyl-CoA transferase

ADC: adc (CA_P0165) from C. acetobutylicum, coding for an acetoacetate decarboxylase

ADH: adh (AF157307 nt 2351 to 3406) from C. beijerinckii, coding for an alcohol dehydrogenase

ADH: adh (H16_A0757) from C. necator, coding for an alcohol dehydrogenase
 

 
rbs: Ribosome Binding Site and nucleotide linker sequence: AAAGGAGGACAACC (Lu et al. 2012a) 
 
pBBR1MCS-2: Broad-Host-Range cloning vector (Kan

r
), PLac (Kovach et al. 1995) 

pBBR1MCS-2-PTac: pBBR1MCS-2 with PTac promoter instead of PLac (Kan
r
) 

pBBad: pBBR1MCS-2 derivative with L-Arabinose inducible system PBad (Fukui et al. 2010) 
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