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Abstract

Intelligent Transportation Systems (ITS) are being developed to improve the effi-
ciency of present transportation systems. Two of the building blocks of ITS are
Advanced Traffic Management Systems (ATMS) and Advanced Traveler Information
Systems (ATIS). Dynamic Traffic Assignment (DTA) models can provide support to
the evaluation and operation of ATMS/ATIS. The objectives of this thesis are (1)
to propose a general modeling framework for the DTA problem, (2) to formulate an
analytical DTA model along with the development and implementation of solution
algorithms based on the proposed framework. The model is expected to overcome
some limitations of known models and algorithms.

The proposed modeling framework contains four major components: users’ be-
havior model, dynamic network loading model, link performance model and paths
generation module. These components are interrelated to find a solution to the DTA
problem. A DTA model is formulated based on this framework. Three types of route
choice behaviors are considered: (1) following fixed route, (2) choosing the route with
minimum perceived travel time, and (3) choosing the route with minimum actual
travel time. These route choice behaviors are formulated as an equivalent variational
inequality. The dynamic network loading model component is formulated as a sys-
tem of equations expressing link dynamics, flow conservations, flow propagations and
boundary constraints. Two link performance models are proposed for uninterrupted
and interrupted traffic, respectively.

Heuristic solution algorithms are developed and implemented for the users’ behav-
ior model, the dynamic network loading model and the DTA model. Computational
efficiency is achieved by using efficient data structures and special methods to reduce
memory usage and running time. Two computational examples demonstrate that the
software system can not only give meaningful results, but also can find a solution
much faster than real time.
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Chapter 1

Introduction

The introduction of the automobile has changed our world. It has stimulated the
economy and increased our independence and mobility. The enormous growth of
road traffic, however, has resulted in heavy congestion in and around urban areas,
causing serious problems for the economy because of increased delays and for the
environment due to increased emissions.

There could be several solutions to resolve congestion problems. One solution,
cn the supply side, would be to expand the roadway system. However, such an
approach is expensive and is not always feasible because of spatial and environmental
limitations, and the very high cost of building new roads, especially in urban areas.

Another solution, on the demand side, would be to reduce car use by changing
land use patterns and encouraging people to travel by foot, bicycle, public transit or
high occupancy vehicles. However, this approach may not be easy to implement and
could achieve results in the long term only.

A new way to alleviate congestion problems is to use the existing transportation
infrastructure more efficiently through providing information to travelers and better
traffic management. For example, travelers can make travel decisions to improve their
traveling benefits by using real-time information, and congestion can be reduced by
using dynamic ramp metering and optimizing traffic signals.

The above approach can be implemented by using a group of technologies known

as Intelligent Transportation Systems (ITS). ITS can help to use the existing trans-
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portation infrastructure more efficiently and improve travel conditions. ITS are com-
posed of a number of technologies, including information processing, communications,

control and electronics. The expected benefits from ITS are:
e to improve travel conditions,
e to increase safety, and
e to reduce energy use and environmental impacts.

Two building blocks of ITS are the Advanced Traffic Management Systems (ATMS)
and the Advanced Traveler Information Systems (ATIS). ATMS is expected to inte-
grate the management of various roadway functions. Real-time data will be collected
and disseminated. Dynamic traffic control systems will respond in real-time to chang-
ing network conditions.

ATIS involves providing information to travelers in their vehicle, in their home,
or at their place of work. Examples of information are: location of incidents, weather
problems, road conditions and optimal routing. Users can make their travel decisions
based on the information provided by ATIS.

In order to support the evaluation and operation of ATMS/ATIS, decision sup-
port systems, in form of computer software tools, are needed. These are computer
implementations of solution algorithms aimed at sclving complex dynamic models of
transportation systems. Models, solution algorithms and computer implementations
constitute the intelligent core of ATMS/ATIS.

Two key requirements for these decision support systems are accuracy and fast
response to changing network conditions. In order to meet these requirements, the
dynamic traffic models in these systems must be accurate in representing relevant
aspects of the transportation system, and the solution algorithms and computer im-
plementations must be able to find a solution in a running time that is faster than

real time.
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1.1 Problem Definition and Research Approach

As has been previously mentioned, ATMS/ATIS are the two building blocks of ITS.
One of the integral parts of ATMS/ATIS is its capability of routing vehicles in re-
sponse to changing traffic conditions. An effective route guidance should be generated
by considering future traffic conditions. Therefore, dynamic traffic models are needed
to provide ATMS/ATIS the capability of traffic prediction.

An example of dynamic traffic models is the Dynamic Traffic Assignment (DTA)
model. A DTA model is aimed to determine the network conditions for given time-
dependent Origin-Destination (O-D) demands, driver’s behaviors and a road network.

Thst two types of approaches to dynamic traffic assignment modeling. One is
based on simulation models. The other is based on analytical models. Simulation
models explicitly consider movement of vehicles. MITSIM[47] and MesoTS[48] are
two examples of such models. Simulation models are then more suitable for detailed
design and evaluation purposes. However, they do not possess analytical properties.

Analytical approaches use flow dynamics equations to represent traffic movements
so they possess some analytical properties. However, as we will see in the remaider
of this thesis, existing DTA models have a number of limitations in modeling users’
behaviors and network performance. Solution algorithms for these models are not
efficient and large problems cannot be solved in real time.

This thesis focuses on a flow-based approach to the DTA problem. Model formu-
lations, algorithms development and computer implementations constitute the core

of this thesis work. The objectives of this thesis are:

e to propose a modeling framework for dynamic traffic modeling problems,

to formulate a DTA model based on the proposed framework to be used within

the context of ATMS/ATIS,
e to develop algorithms to obtain solutions to the proposed models,

to develop computer implementations that can solve realistic DTA problems in

real time, and
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e to evaluate the proposed models, algorithms and computer implementations

using a real application.

1.2 Thesis Outline

The thesis are organized as follows:

Chapter 2 reviews the relevant literature on analytical DTA models. A common
structure is abstracted from the proposed framework introduced in Chapter 3 and
used as a guide to analyze some representative models. It can be seen from this
chapter that existing models have several limitations and that research towards a
new or improved DTA model is needed.

In Chapter 3, we propose a flow-based modeling framework for the DTA problem
and formulate a DTA model based on the proposed framework to be used within the
context of ATMS/ATIS. The framework has a modularized structure. It has helped us
to understand existing DTA models in the literature and provides better flexibility in
model formulation, algorithm development and computer implementation. The DTA
model based on this framework captures different users’ route choice behaviors. Link
performance is modeled more accurately by using different link travel time models for
uninterrupted and interrupted traffic flows. models for uninterrupted and interrupted
traffic flows.

Chapter 4 develop algorithms to obtain solutions to various models formulated
in Chapter 3. The solution algorithms presented in this chapter includes: (1) two
dynamic network loading algorithms, (2) a route choice algorithm, and (3) a DTA
algorithm. The dynamic network loading algorithms are used to solve the dynamic
network loading model. The route choice algorithm is used to assign O-D flows
among the set of paths based on the users’ route choice behaviors and the current
network conditions. The DTA algorithm is a process to solve the DTA model based
on dynamic network loading and route choice algorithms.

Chapter 5 describe a software system that implements the solution algorithms

presented in Chapter 4. This chapter presents the methods that were developed in
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order to achieve fast execution time.

Chapter 6 uses two examples to (1) to show that the proposed DTA model is
capable of giving reasonable results, (2) understand the behaviors of the solution
algorithms, and (3) to evaluate the computational performance of the computer im-
plementations.

The final chapter summarize the thesis work and suggests directions for future

research.
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Chapter 2

Literature Review

The Dynamic Traffic Assignment (DTA) problem has been studied by a number
of researchers, who recognized dynamic aspects of network flows especially during
peak hours. Various models have been proposed. This review aims to (1) extract a
common structure of the existing models, (2) discuss the modeling assumptions and
the methodology used in those models, (3) understand the advantages and limitations
of the existing models and solution algorithms.

Section 2.1 presents a common structure of the existing DTA models. A number of
representatives models are analyzed in Sections 2.2, 2.3, 2.4, 2.5 and 2.6. A summary

is given in Section 2.7.

2.1 A Common Structure of DTA Models

Most existing DTA models share a common structure. In the literature, this common
structure is often not explicitly stated in model formulation, but it can be extracted
from those models. As will be seen in Chapter 3, this common structure can be
viewed as a high-level abstraction of our proposed modeling framework.

This common structure consists of the following components:
e a demand model

e a supply model
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e a supply/demand interaction mechanism

This structure is depicted in Figure 2-1. The demand model component repre-

Supply/Demand
Interaction

Demand
Model

Supply
Model

Network
Conditions

Figure 2-1: A Common Structure of Existing DTA Models

sents the demand for the transportation system. The demand is usually given by
a set of time-dependent O-D flows and path flows. The set of O-D flows and path
flows generated by the demand model often satisfy certain conditions such as system
optimal and user optimal conditions. It should be noted that these two optimal con-
ditions do not generally coincide. To achieve a system optimum, users must behave
according to the system optimal conditions instead of following their own behaviors
such as departure time choice, mode choice and route choice. On the other hand, if
the demand model represents users’ behaviors, a user optimum is attained.

The supply model represents the network and the flow progression in the net-
work. A network is a directed and connected graph consisting of links and nodes.
A travel cost is associated with each link. The supply model generates the network
performance in response to a given demand.

The supply/demand interaction mechanism represents how the supply model and
demand modzal interact. The interaction produces certain network conditions such as
link or path flows and travel times. The network conditions must satisfy both the
demand model and the supply model.

In the subsequent sections, this common structure is used to review some rep-
resentative DTA models presented in the literature. The criterion for selecting the

representative models is the methodology used to represent the demand, supply and
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supply/demand interaction.

2.2 Merchant and Nemhauser’s Model

The work by Merchant and Nemhauser[31] in 1978 is the first to address the theory
of DTA modeling. They considered a directed network consisting of a set of nodes
and a set of links. Traffic flows move towards a single destination in the network. A
time horizon [0, T'] is divided into K time subintervals of equal length. The O-D flows
are discrete. They are given for each time period and for every origin node.

Merchant and Nemhauser’s (M-N) model is the following constrained optimization

problem:
min Z Z ‘Ya,k(l'a,k)
k a
subject to
ok — Togk-1 = Ugk — wa(xa,k—l)
> Uk — Y WalTak-1) = pixg  Va€N-{q}
a€A(i) a€B(i)
Do tUar— . Wa(Tap-1)+sk = 0
a€A(q) a€B(q)
ua,k 2 0
Zak 2 0
where
N = aset of nodes in the graph
A(i) = the set of incoming links of node i
B(i) = the set of outgoing links of node ¢
q = the single destination node
Tox = number of vehicles in link a at interval k
Ugx = number of incoming vehicles at link a at interval k
we(z,) = exit link function of link a

18



pix = number of vehicles entering the network at node ¢ at interval &
sx = number of vehicles leaving the network from destination ¢
at interval &

Xok(Zak) = cost function for link a at interval &

We analyze the model according to the common structure described before. The
users’ behaviors are not considered. Since the total system cost is minimized, the
resulting network condition is system optimal.

The supply model is formulated as a set of constraints to the minimization prob-
lem. The constraints are link-based. The first group of constraints are state equations
expressing the conservation of vehicles on link a. The second group of constraints are
balance equations of flows at nondestination nodes. The last equation is the balance
of flows at the destination node gq.

In order to obtain link costs and model flow progression, Merchant and Nemhauser
associated a cost function and an exit function with each link. Both are functions of
traffic volume on a link at the beginning of a time period. The link cost, obtained
through a function for every time interval, is nonnegative, nondecreasing, continuous
and convex. It represents the disutility of the link. The link exit function represents
the amount of traffic flow that exits from the link. In order to adequately model
congestion, this function is assumed to be nondecreasing, continuous and concave.

The supply and demand models interact through the link volumes. However, the
interaction mechanism is not explicitly represented.

We now analyze the properties of the solution algorithm for this model. Since the
model is nonlinear and nonconvex because of the concavity of the link exit function,
the problem may have multiple local optima. Merchant and Nemhauser proposed
a solution algorithm based on piecewise linearization and linear programming. The
piecewise linear version can be solved for a global optimum by using a one-pass simplex
algorithm. Moreover, it has a staircase structure and can be solved by decomposition
techniques or compactification methods for sparse matrices. However, this approach

requires that a certain ordered set property be satisfied. Because of the nonconvexity
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of the problem, this requires a potentially expensive computational scheme. The
authors were able to show that the simplex algorithm will find the optimal objective
function value for their original linear program. However finding the optimal solution
will almost always require an additional computational scheme.

The Merchant and Nemhauser’s model has a number of limitations. First, in the
demand model, the users’ behaviors are not modeled. Second, the supply model con-
siders only one destination and treat congestion indirectly. Third, the supply/demand
interaction mechanism is not explicitly represented. It is implicitly represented in the
solution algorithm. In other words, it relies on a particular algorithm. Therefore, it
does not allow for the flexibility in choosing different supply and demand models, as

well as solution algorithms.

2.3 Carey’s Modified Model

Carey[14] proposed an improved Merchant-Nemhauser’s model to obtain a well-behaved
convex nonlinear program. He also developed extensions of the model which can han-
dle multiple destinations and multiple commodities, although not all of these exten-
sions yield convex programs. This is done by introducing artificial arcs linking the
given destinations to a single artificial destination.

In order to overcome the nonconvexity problem, Carey includes an exit flow vari-
able v, for each link a in the formulation as a decision variable. The exit flows on
links are nonnegative and are bounded from above by the exit link functions w,(z,).
This modification leads to a convex nonlinear programming model with substantial
advantages. For instance, good solution algorithms are available, since a piecewise
linearized version is a standard linear program. This program automatically satis-
fies the ordered set property. Moreover, there exist both necessary and sufficient
conditions to characterize the optimal solution.

However, Carey’s model still shares the limitations mentioned for Merchant-Nemhauser’s
model with respect to the system optimal solution, the simplified traffic propagation

modeling, and implicit supply/demand interaction mechanism. Although this refor-
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mulation solves the problems due to the nonconvexity of the previous model, it brings
the undesirable property known as “FIFO discipline violation”. In [15], Carey formu-
lates four classes of constraints that ensure the FIFO discipline of multicommodity
flows. Each of the four classes of constraints results in a nonconvex constraint set
and nonlinear integer program. Carey suggested an empirical solution as follows:
first, solve dynamic assignment problems without constraints to ensure FIFO disci-
pline, then analyze the degree of overtaking or FIFO violations and introduce FIFO

constraints if necessary.

2.4 Friesz’s Models

Friesz et al[24] reformulated Merchant-Nemhauser’s (M-N) model as a continuous
time optimal control problem, who considered two demand models, one corresponding
to system optimization and the other to a version of user optimization. The system
optimal model does not capture users’ behaviors. This is a limitation of this model.
The user optimal model is reviewed next.

The demand model is formulated as minimizing the summation over all link a, of

the integral of link cost function:

min z(z) = Z/OT f(za(t))dt

The variable ¢t denotes a time instant. The cost function is denoted by f(z,(t)) and
represents the instantaneous cost on link a when it contains z users at time t. The
function is considered to be a continuous, increasing and convex function.

The significant advantage of Friesz’s model over the M-N model is that users’
route choice behavior is modeled. This demand model implies that the users’ behavior

observes a generalized Wardrop’s First Principle which is stated as:

If, at each instant of time, for each origin-destination pair, the unit costs
of flow on utilized paths are identical and equal to the minimum instan-

taneous unit path cost, the corresponding flow pattern is said to be user
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optimal.

The supply model is essentially a continuous time version of that in the M-N
model. Hence, the analysis is not repeated here.

Again, the supply/demand interaction is through the total link flows. The inter-
action mechanism is implicitly implied in a minimization process.

There still exist a number of limitations in Friesz’ model. The demand model
has several drawbacks in considering users’ behavior. First, it implies that routing
decisions are made on the basis of current, not future, information, although such
decisions may be (and are) instantly and continuously altered over time as network
conditions change. Consequently, the users with a common destination and departing
from the same node at the same time can experience different travel cost to their
destination by following different paths. Second, the instantaneous unit path cost is
defined as consisting of a static and a dynamic term. The dynamic term is defined as
the ratio between the time variation (rate of change) of the Lagrange multiplier, and
the derivative of the exit flow function with respect to the link flow state variable.
Both the time variation of the Lagrange multiplier and the derivative of the exit flow
may change from problem to problem, making it more difficult to find a physical
interpretation for them. Third, their analysis is restricted to only one type of users’
behavior, that is, the users are homogeneous.

With respect to the supply model, the model shares all the weaknesses of the M-N
model since it is just a continuous version of the M-N model.

In a later work, Wie et al.[44] extended Friesz's model to multiple destination

networks, overcoming the single destination limitation.

2.5 Ran’s Model

Ran et al.[36] propose a new class of instantaneous user-optimal models. The users’

behavior model is refined to correspond to the following user-optimal condition:

The dynamic traffic flow over the network is in a dynamic user optimal

state if for each O-D pair at each decision node at each instant of time,
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the travel times for all routes that are being used equal the minimum in-

stantaneous route travel time.

This definition is different from the one given in Friesz et al.[24] in that the user
can have route choice not only at the first node but also at the intermediate nodes
and the optimal condition holds for the intermediate nodes as well.

With respect to the supply modeling, Ran et al. add a new constraint called flow
propagation constraint for each link. The flow propagation constraint states that
vehicles on a link using a given route at any time must result either in added vehicles
on a downstream link or the links on a subroute following the arc at a posterior
instant of time, or in added exiting vehicles at the destination. Thus, flows on the
links are forced to remain on the arc for an amount of time consistent with the link’s
travel time. This is an improvement in flow propagation modeling with respect to
the previous models where an exit flow function is used.

The supply/demand interaction mechanism is implicitly represented in the pro-
posed solution algorithm. The solution algorithm is summarized below.

First the continuous model is reformulated as a discrete-time nonlinear program
(NLP). Then, the diagonalization technique and the Frank-Wolfe algorithm are em-
ployed to solve the NLP. In the diagonalization procedure, the estimated link travel
time is updated iteratively. To apply the Frank-Wolfe algorithm, an expended time-
space network is constructed so that each linear program subproblem can be decom-
posed according to O-D pairs and can be viewed as a set of shortest-path problems.
The flow propagation constraints representing the relationship of link flows and travel
times are automatically satisfied in modified minimal-cost route searches so that only
flow conservation constraints for links and nodes remain.

The weaknesses in the demand model are (1) only one type of users’ behavior is
studied; (2) the instantaneous travel times are based on current, not future conditions.
Hence, route flows with the same departure time and the same origin-destination may
actually experience somewhat different route travel times. This is because the route
travel time may subsequently change due to changing network traffic conditions over

time, even though at each decision node the flows select a route that has a minimum
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current travel time.

The limitations in their supply model are:

e Link travel time depends on link inflow rate, outflow rate and link volumes.
This may be incorrect in congestion situations where flow rate is not a function

of travel time only.

e Link exit flows are used as control variables. Queues may not be properly

modeled.

Although Ran et al. claim that the solution algorithm is efficient to solve the
problem for large networks, the expanded time-space network involved is actually
much larger than the original network. For instance, if there are k£ time intervals and
the original network contains a links, n nodes and s destination nodes, the expanded
time-space network will have (3a + s)k links and (n + a)k + 1 nodes. Moreover, the
link costs on the expanded network need updating at each iteration. Therefore, the

algorithm has the disadvantages in memory usage and running time.

2.6 Smith’s Model

Smith[41] proposed a DTA model by using different methods to represent the demand
and supply.

The demand model is formulated as an equivalent variational inequality, an equiv-
alent fixed point problem or an equivalent minimization problem. With the fixed point
formulation and by showing that the route costs are continuous functions of the route
inflows, Smith proved that a dynamic route equilibrium exists.

Smith represent the supply with a macroscopic traffic model. A significant feature
of the model is that it uses a traffic model similar to the CONTRAM|[34] traffic model
to determine the time-varying experienced costs incurred in traversing the various
routes when time-varying route inflows are specified. The model is summarized as
follows:

Vehicles are grouped together as a packet. A packet is regarded as a set of vehicles
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that have certain common characteristics. For example, they all follow the same route.
They are at the same node at a given time. They must also have experienced the
same delays at previous nodes (and so must have all begun their trip at the same
previous epoch). But the packet volume will not usually be an integer. The model is
capacity constrained, meaning that a node restricts the output from that node due to
the exit capacity of the node. In order to exactly fulfill the node exit capacities, it is
also often necessary to split a packet, so part of it proceeds while the remaining part
stays at the node. Splitted packets follow the same route. The splitting of packets
means that different parts of the same original packet will often reach the destination
at different times. Priorities are introduced so as to place packets of traffic queuing
at the same node at the same time in an appropriate order. As time proceeds, packet
priorities are adjusted so as to ensure that, as traffic traverses the network, there is no
overtaking. These priority rules require that the complete history of each packet be
retained. Time is discretized and its unit is defined as the free-flow travel time taken
to traverse each unit link. The packets are moved through the network time-epoch by
time-epoch and the average route costs are computed for each route and departure
time.

This supply model has a number of advantages over other DTA models:

e The link exit capacity and FIFO condition are respected.

e The path travel time is the experienced travel time by a user from origin to
destination, instead of the instantaneous travel time based on current network

conditions.

Again, the supply/demand interaction is through experienced path travel time.
The interaction mechanism is implicitly represented in a solution algorithm which is
based on an optimization formulation of the problem.

Smith’s model also has a number of drawbacks. For the demand model, only one

type of users’ behavior is modeled. For the supply model, the weaknesses are:

e It is storage demanding to record the history of each packet in order to determine

priorities.

25



e Packet splitting will make packet size smaller and the number of packets in
the network larger, which results in increasing memory and computing time

requirements.

o The only delays considered by the model are queuing delays. Link travel times

do not depend on the amount of vehicles traversing the link.

o The uncongested travel times along all links in the model are assumed to be
identical. In order to deal with real networks, long traffic lanes should be
regarded as a contiguous sequence of traffic lanes of a short standard unit length.
This will create a bunch of intermediate artificial nodes which are assigned a
very large exit capacity. This representation increases the number of nodes and

arcs in the network. Hence, the computational effort increases accordingly.

2.7 Summary

Several existing analytical DTA models have been reviewed in this chapter. A com-
mon structure exists in those models, that is, they all have a demand model simu-
lating users’ behaviors, a supply model simulating network performance, and a sup-
ply/demand interaction. Various models use different methods to model the supply,
demand and supply/demand interaction.

Most models, called user-optimal models, consider only one type of users’ behavior,
that is, users choose only minimum-cost paths. The defirition of path cost varies in
whether it is instantaneous (based on current information) or experienced (based or
predictive information).

Most supply models are formulated as a system of equations that express link
dynamics, flow conservation and flow propagation constraints. However, these models
do not respect queues and do not observe link capacities directly. Although Smith’s
model aims to overcome these limitations, it incurs the problem of computational
inefficiency.

Various solution algorithms have been developed. However, implementations of
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the algorithms are not discussed and most numerical examples were done on very

small networks only.
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Chapter 3

Formulation of a Flow-Based

Dynamic Traffic Assignment
Model

As reviewed in Chapter 2, there exist different approaches to the Dynamic Traffic
Assignment (DTA) problem. The objectives of this chapter are (1) to propose a flow-
based modeling framework for the DTA problem, and (2) to formulate a DTA model
based on the proposed framework to be used within the context of ATMS/ATIS.

The modeling framework contains four components: (1) users’' behavior model, (2)
dynamic network loading model (3) link performance model, and (4) path generation
module. Each of these components can be formulated independent of each other. The
interaction between these models is explicitly represented.

The framework has a modularized structure. It has helped us to understand
existing DTA models in the literature (see Chapter 2). In this chapter and in the
following chapters, we will see that this framework also provides better flexibility in
model formulations, algorithms development and computer implementations.

A DTA model is formulated based on this framework. The model aims to overcome
some limitations present in existing models within the context of ATMS/ATIS. The
model captures different users’ route choice behaviors. Link performance is modeled

more accurately by using different link travel time functions for freeway links and
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arterial street links.

This chapter is organized as follows: Section 3.1 presents the overall modeling
framework for the DTA problem. Section 3.2 defines basic notations used in the
formulation. In section 3.3, the formulation of users’ behavior model is presented.
Section 3.4 discusses link travel time models. A dynamic network loading model
is presented in Section 3.5. The existence of a solution to the model is shown in
Subsection 3.3.2. The computation of path travel times from link travel times is

described in Section 3.6. The DTA model is given in Section 3.7.

3.1 A Framework for the Dynamic Traffic Assign-
ment Problem

A modeling framework for the dynamic traffic assignment problem is shown in Figure

3-1. The framework contains the following components:
e a users’ behavior model component,
e a dynamic network loading model component, and
e z link performance model component.

The function of each model and the interaction between these models are described
next.

The users’ behavior model component takes as input the dynamic O-D trips and
a subset of paths between each O-D pair. The dynamic O-D trips are the time-
dependent traffic demand for each O-D pair. In the continuous time horizon, the
dynamic O-D trips are given as departure flow rates at each origin and each time
instant. In discrete time representation, they are given as number of trips during a
time interval. These dynamic O-D trips can be predicted and are treated in the DTA
model as input.

The subset of paths between each O-D pair is assumed to be the set of routes from

which the users choose when they depart from their origins. These subsets of paths
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Figure 3-1: A Framework for Dynamic Traffic Assignment Models
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can be dynamically augmented by using a path generation module based on certain
criteria. The path generation inodule monitors the network conditions and adds new
paths to the subset of paths according to certain criteria. The users’ behavior model
component then assigns the dynamic O-D trips among the subset of paths according
to the users’ route choice behaviors. This results in a set <f time-dependent path
flows.

The network loading model takes the path flows from the users’ behavior model as
input and uses link performance models to generate the resulting link-based network
conditions such as time-dependent link volumes and link travel times. The link-based
network conditions serve two purposes. First, they are used to compute path travel
times. The path travel times are then used by the users’ behavior model to assign
O-D trips. Second, the network conditions are input to the path generation module
to come up with a subset of new paths for each O-D pair.

Clearly, the framework has a modularized structure. The components interrelate
through specified inputs and outputs. The framework provides flexibility in both
model formulations and computer implementations because one model can be changed
without affecting others.

The common structure in existing DTA models presented in Chapter 2 can be
viewed as a high-level abstraction of this framework. The users’ behavior model
corresponds to the demand model in the common structure, the dynamic network
loading model and link performance model together correspond to the supply model.
The interaction between the three model components in the framework represents a
supply/demand interaction mechanism.

In the subsequent sections, a DTA model is formulated based on this framework.
The path generation module is not considered in the current development; thus the

subset of paths between each O-D pair are assumed to be fixed.
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3.2 Notations

The physical traffic network is represented by a conceptual directed network G =
(N, A), where N is the set of nodes and A is the set of directed links. In the following,
the index m denotes a user type, the index r denotes an origin node, the index s
denctes a destination node and the index p denotes a path between O-D pair (r, s).
The subset of paths between O-D pair (r,s) is denoted by K,,. All other notations
are grouped into path variables, link variables and link-path flow variables for each

pair (a,p) and time t.

Path variables:

mp(t) ©  type m departure flow rate on path p from origin r toward

destination s at time ¢

i) = Xn mp(t), the departure flow rate of type m for O-D pair (r, 5)
at time ¢

() = ek, fmp(t), the departure flow rate of type m for O-D pair (r, s)
at time ¢

c,’(t) : the experienced travel time over path p from origin r toward

destination s by the flow departing at time ¢
m°(t) = mingek,,{c;*(t)}, minimum experienced travel time over path p
from origin r toward destination s by the flow departing at time ¢
P7*(t) : the proportion by which type 2 O-D departure flow is assigned
to path p of O-D pair (r, s)

Link variables:

U,(t) total cumulative entrance flow

Va(t) total cumulative exit flow

Xa(t) : load of link a at time ¢

Ta(t) travel time over link a for flows entering link a at time ¢
54(t) exit time from link a for flows entering link a at time ¢
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Link-path flow variables:

ugy(t) : entrance flow rate at time ¢

Upn(2) exit flow rate at time ¢

Uzp(t) : cumulative entrance flow at time ¢

Vi (t) cumulative exit flow at time ¢

Xoplt) cumulative link flow induced by path p flow at time ¢

Time variables:

t : index for continuous time
[0,T4) : O-D traffic demand period
[0,7] : DTA analysis period (the period from the time when flows enter the

network to the time all flows exit the network)

A . minimum free flow link travel time over all links
8 = £, M is a positive integer
k : index for time interval [(k — 1), ké]

3.3 The Users’ Behavior Model

As seen in Chapter 2, existing DTA models either do not model users’ behaviors
or if they do, they assume that all users have homogeneous route choice behavior.
For example, they assume that all users choose the route with minimum cost. This
assumption is not generally realistic since (1) not all users have perfect information,
and (2) even if they do have perfect information, users may not fully comply with
this information. In either case, users may have different route choice behaviors.
Therefore, it is necessary to have a model that takes into account differences in users’
behaviors in order to study the impact of information on network conditions.

One of the objectives of our DTA model is to overcome the limitation of existing
models in modeling users’ behaviors. To achieve this objective, we study three repre-
sentative types of users’ route choice behaviors in the context of ATMS/ATIS. They

are described in the following subsections.
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It should be noted that users’ behaviors are not restricted to route choice. De-
parture time choice and mode choice are two other examples of users’ behaviors.

Modeling these two behaviors is not considered in this thesis.

3.3.1 Classification of Users

The users are classified into the following three representative types based on their

route choice behaviors:
type 1: users who follow fixed routes

This type of users can be described as those who either do not have real-time
traffic information (unguided) and use their habitual routes, or those who disregard
the information and continue to use their habitual routes. Therefore, the departure

flow of each path is known.
type 2: users who follow routes with minimum perceived travel time

This type of users can be used to describe users who receive or have partial traffic
information about the network conditions and determine their routes based on their
“perceived” rather than actual travel times. Thus each users’ perceived travel time

is a random variable with certain distribution.
type 3: users who choose routes with minimum actual travel time

This type of users are those who have access to real-time traffic information, and
fully comply with the route guidance. Therefore, the routes used by this type of users
have minimum actual travel time.

Type 3 users can be seen as a special case of type 2 users. If the travel time
perception error by a type 2 user approaches zero, type 2 users are identical to type 3
users in route choice behavior. Nevertheless, we differentiate them for two purposes:
(1) to cover the general situation where both types of users are present, (2) to improve
computational efficiency, since all type 3 O-D flows are simply assigned to the shortest

paths.
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3.3.2 Dynamic Route Choice Conditions

In this subsection, the three types of users’ route choice behaviors are expressed in

equivalent mathematical forms. These are called dynamic route choice conditions.
Regardless of the network condition, the route choice of type 1 users is fixed

and their path flows are also known. Therefore, their route choice behavior can be

expressed as follows:
fiy (&) = fi5(t) =0, ¥(r, 5),Vp € K5, Vt € [0, T4]. (3.1)

Superscript * denotes the optimum value.
For class 2 users, their route choice behavior is equivalent to the following route

choice condition:

For each O-D pair (r,s) at any time t, the perceived experienced travel
time of a path that is chosen equals the minimum perceived ezperienced

travel time.

The definition of ezperienced path travel time is given in Section 3.6.

A type 2 user’s perceived travel time is a random variable with a certain distri-
bution. The probability that the path is chosen by a type 2 user among the set of
available paths is equal to the probability that path p is perceived as minimum. If we
assume that all type 2 users are homogeneous (i.e., their perceived path travel times
are independent, identically distributed random variables), then for each O-D pair
(r,s), the flow on path p is equal to product of the total O-D flow and the probability
that path p is chosen by a type 2 users, that is,

f35(8) = f3°(t) x probability that path p is chosen.

Therefore, the probability that path p is chosen is equal to the proportion Pre(t)

by which the O-D flow is assigned to path p. This route choice condition can then be

expressed as the following equation:
fo3 (8) = f3°(6)Pye(t) =0, V(r,s),Vp € K, Vt € [0, Ty). (3.2)
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For type 3 users, they all choose the routes that have minimum travel time. There-

fore, their route choice behavior is equivalent to the following condition:

For each O-D pair at each instant of time, the ezperienced travel time

of the used paths by the users departing at the same time are equal and
minimal.
This is the dynamic generalization of the conventicnal static user-optimal condi-

tion with path travel time defined as experienced (actual) travel time. The condition

can be written in mathematical forms as follows:

G (t) -7 (t) > 0, (3.3)
@Ol =) = o (3.4)
@) 20, (3.5)

V(r,s),Vp € K5Vt € [0,Ty].

3.3.3 Formulation of the Users’ Route Choice Behavicr Model

The users’ route choice behavior model is formulated as an equivalent Variational

Inequality (VI) problem, which is stated in the following theorem:

Theorem 3.1 The three types of users’ route choice behaviors can be modeled by the

following equivalent VI problem:

[FF ¥ B 0050 - 570+ 050 - £ O 20, (36)

TS pEK,,
where
rs* . rs* rs rs 60;3(t)
10 = U5 0 - 0ROl
Proof:

We will prove the theorem by showing the necessity and sufficiency of VI (3.6).
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Proof of necessity:

The idea to prove necessity is to establish VI (3.6) from the dynamic route choice

conditions (3.1)-(3.5). From (3.2), it follows that
F;’.(t) =0, Y(r,s),Vp € K,,9t € (0, Ty,

and

> 2 AT OU5®) - f 0 =0, vt € [0, Ty).

TS pEK,,

Integrating the above inequality over t € [0, Ty] gives

[MS S m0URe - 7 @hd=o (3.7)

TS pEKu

The route choice conditions (3.3)—(3.5) for type 3 users imply that

[c;" (t) — 7™ (t)][f3’(t 1;(t)] >0, Y(r,s),VYp € K,5,Vt € [0, Ty). (3.8)

Since if f3°(t) = 0, ¢;* (t) — 7™ (¢) > 0 and f§3(t) > 0, (3.8) holds. On the other
hand, if f33°(t) > 0, ¢j* (t) — 77" (t) = 0 and (3.8) still holds.

Inequality (3.8) can be expanded as follows:

" (O3 (8) = fig Ol - 7" @) f5(8) - f7 (®)] 2 0.

Summing both sides of the above inequality over (r, s) and p € K., gives

2 2 gm0 = £ O =32 X {7 Ol - £ O]} 20, vt

rs PGKM rs PEKN

The second term on the left-hand side vanishes because:

> 2 (TR0 - f5 @0} = ZW” t) > 5 (1))

TS pEKy, pGKn

= 2O (t) - (1) =0.
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Integrating the above inequality over ¢ € [0, Ty] gives

L[5S T g oime - £ oh o (3.9)

Ts pe Krs

Combining (3.7) and (3.9) yields VI (3.6). Therefore, the dynamic route choice

conditions imply VI (3.6). The necessity is proved.
Proof of sufficiency:

The sufficiency requires that any solution to VI (3.6) satisfies the dynamic route
choice conditions.

Suppose that {f73"(t)} and {f§3 (t)} are solutions of VI(3.6). We will show by
contradiction that {f33°(¢t)} and {fj;"(t)} must satisfy the route choice conditions for
type 2 and type 3 users, respectively.

First, assume that the route choice condition for type 2 users do not hold at
time ¢,. Because of the continuity of the variables, if the route choice conditions do
not hold at time instant ¢;, it will not hold within a vicinity of ¢,. Therefore, the
assumption implies that there exists a set of routes Spn(t) of O-D pair (m, n) during

time interval t; — d,¢; + 4] such that
s (8) = [ P(t) +e(t) and  €(t) #0, VI E Spa(t),Vt € [ty — 6, b, +6).

Note that for any path p ¢ Spa(t), we can choose f33(t) = f32°(t) so that the
left-hand side of VI (3.6) can be reduced as

/> ;{ S0 = S35 0]+ OU50) — S35 (o))l
TS peKr,

- [ ((t’[ "(6) - FOF(0 - el
lES

Since the above inequality holds for all feasible f5}"(t), we can choose fji"(t) as

follows:

a (t) = [P, Vi€ [ty — 6, ¢, + 6]
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Note that these chosen f3}"(¢) are feasible since e, fir" (t) + Cigspn fa(t) =
7™(t). Consequently,

[ »> >§ﬁ§§i‘<’i’> 5™ (8) — S PP™() — e(t)]
t1+d (t)
- [ E e

It is assumed that the mean experienced route travel time ¢ *(t) is increasing with

path departure flow f73(t) of type 2 users. Hence,
—L2_° >0, V(r,s),Vp € K, Vt € [0, Ty).

It follows that

t1+6 ()
Joe Z e gy <o

I€Smn
This contradicts Vi (3.6). The contradiction implies that the solution of VI (3.6) for
type 2 users must satisfy that route choice conditions for type 2 users.
Next, we prove by contradiction that solution fj3*(t) to the VI satisfies the route
choice condition for type 3 users. Suppose that the route choice condition for type
3 users does not hold. Then there exists a route ! of O-D pair (m,n) during time

interval [t, — 6, ¢, + J] such that
() >0 and  GM(E) — () >0, VEE [ty — 6,8 + 4],

Since ! is not the shortest path, { is not the only path in K,,,. Thus, there must be
a path k(t) # | such that

k(t‘(t) > 0 and CZZ?). (t) - ﬂ.mn’ (t) = 0, Vit € [tl - 5, t + 5]

39



Then the left-hand side of VI (3.6) can be written as

[FF 5 (ErauRe - 50+ ¢ 00 - ol

TS pe€ Ky,

= [ OUEe - O]+ T OO - S 0

Siuce f™" (t) > 0 by assumption, we can shift a small amount of flow from path

! to path k(¢), that is, let

a(t) = fRE) - e(t), Vi€ [ty - 6,11 +4].

fin () = [ty () + (), Vt € [ty — 4,8 + 4],

where ¢(t) > 0.

Consequently, we have

A:izé{crn'(t)[ﬁ?n(t) ()] + 7™ (£) [ 3kt (8) — fiugy ()] }at
= [ U (0 - o) - S O+ 7 O () + () — R (O]
= [ el @) - 7 ot

Since both €(t) > 0 and ¢[* (t) — 7™ (t) > 0 for all t € [t; — 6, ¢, + 6], we have

/h*J (—e(®)[c™ (t) — 7™ (¢)]dt < O.

This contradicts VI (3.6). Therefore, any solution {f{3"(t)} of the VI must satisfy
the route choice condition for type 3 users.
The necessity and sufficiency proofs conclude that VI (3.6) is equivalent to the

dynamic route choice conditions.
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3.4 The Link Performance Models

In DTA models, link performance models are needed in order for the dynamic network
loading model to generate network conditions. Measures of link performance can be
link travel time, out-of-pocket cost, etc. In this thesis, we use link travel time as the
measure of link performance because travel time is an important factor when users
choose a route. In this context, we can call link performance models as link travel
time models. Travel time models are often expressed in certain functional forms called
link travel time functions.

The objective of this section is to present appropriate link travel time models to
be used by the dynamic network loading model. The volume-delay functions used
in static traffic assignment express link travel time as a function of flow rate. This
is not correct in dynamic situation. In this section, We first show the invalidity of
the volume-delay functions in dynamic traffic assignment. With this conclusion, we
will use density instead of flow rate to determine link travel times if the traffic flow
is uninterrupted. In the case that traffic flow is interrupted, we present a queuing
model to determine the link travel times. Finally, we discuss the Fist-In-First-Out

condition and its implication on link travel time functions.

3.4.1 Invalidity of Volume-Delay Functions in Dynamic Traf-

fic Assignment

Figure 3-2 depicts the fundamental relationship between travel speed and flow rate
on a freeway link observed from traffic engineering experience. The figure shows
that there are two domains for the speed-flow rate relationship. The first domain,
indicated by the unshaded area in the figure, describes an uncongested situation.
In this domain, travel speed decreases with increasing flow rate. This relationship
continues until the flow rate reaches a maximum value.

The second domain, indicated by the shaded area, describes a congested situation.
In this domain, the flow rate decreases while speed continues to decrease.

With regard to link travel time, Figure 3-3 shows that the curve of true relationship
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between link travel time and flow rate resembles the curve in Figure 3-2. However,
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Figure 3-3: True Travel Time-Flow Rate Relationship and Travel Time-Flow Rate
Function

one flow rate value could correspond to more than one link travel time. This means
travel time is not a function of flow rate. Therefore, volume-delay functions which

use flow rate as explanatory variable are unsuitable for describing both uncongested

and congested traffic conditions.

In the following subsection, we will present a link travel time function which use
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density or link load as explanatory variable.

3.4.2 A Link Travel Time Model for Uninterrupted Traffic

Unlike flow rate, density can be used as an explanatory variable in a function to
determine link travel time in both uncongested and congested situations. Figure
3-4 depicts the relationship between speed and density as well as the relationship

between travel time and density when the traffic is uninterrupted. The figure shows

Speed

Travel Time

Density
-

Figure 3-4: Speed and Travel Time as a Function of Density

that speed decreases as density increases. Consequently, travel time increases as
density increases. Furthermore, one value of density corresponds to only one value
of speed or link travel time. Therefore, speed or travel time can be expressed as a
function of density.

We use a modified Greenshields’ speed-density relationship to determine the travel
time for uninterrupted traffic. An example of uninterrupted flow is the flow on freeway

links with no incident. The speed-density relationship is expressed as follows:

ka(t)
kaj

wa(t) = wi'™ + (W — w1 ~ (552),

where
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wo(t) = speed on link a at time ¢,

ko(t) = density on link a at time ¢,
w™" w™* = minimum and free-flow travel speed,
ksj = jam density, and
o, = model parameters.

A minimum travel speed w™" is imposed in order to prevent flows from stopping
on the link.

After travel speed is determined, the link travel time is given by

La Lﬂ
ra(t) = - , : 3.10
( ) wa(t) w{;mn + (wgnaz - wgun)[]_ —_ (%(fl)a]ﬂ ( )

where L, is the length of the link.
Since density k,(t) can be calculated from link load (number of vehicles on the

link), that is,
Xa(t)
L, '’

ka(t) =
the link travel time can also be expressed as a function of link load X,(t):

L,
Wt + (wper — w1 - (£52)e]8

ala,

Ta(t) = (3.11)
In this expression, L,k,, is the maximum link load (link capacity). The model pa-
rameters « and § need to be calibrated for each link.

Figure 3-5 depicts an example of the link travel time function for « = 1.4 and
B = 3.2. These values are also used for the two case studies presented in Chapter
6. The figure shows that link travel time increases with link load. The travel time
increases more rapidly after the link load reaches about 40% of link capacity. It

approaches a maximum value when the link load is close to the capacity.
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Figure 3-5: An Example of the Link Travel Time Function for Freeway Links

3.4.3 A Link Travel Time Model for Interrupted Traffic

Interrupted traffic due to signal settings or incidents often results in queues on a link.
The queuing delay cannot be determined by using the speed-density relationships
only. Therefore, we present a link travel time model which captures the queuing
delay on a link for interrupted flow.

The travel time for interrupted flow can be decomposed into two components: (1)

moving time, and (2) queuing delay. That is,
Ta(t) = 75"(t) + 74(2)

where 7™(t) denotes the moving time and 7J(t) denotes the queuing delay. To compute
these two travel time components, the link is divided into two parts as show in
Figure 3-6.

To derive the link travel time, we define the following additional notations:
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Figure 3-6: Conceptual Moving Part and Queuing Part on an Arterial Link

XZ2(t) : the number of vehicles in the queuing part when a user enters the link
at time ¢,
Li(t) : the queue length in miles when a user enters the link at time ¢,
k'(t) : density on the moving part when a user enters the link at time ¢, and
Q. : average exit flow rate out of link a.

For the queuing part of the link, assume that vehicles are closely lined up in a
bumper-to-bumper condition where the density is assumed to be equal to the jam

density. Thus, the queuing length is given by:

Xu(t)
LI(t) = 2ol
koj

Then the density on the moving part is

Xa(t) — Xg(t)

Ay S 717y

The density on the moving part is used to determine the moving speed we(t) as

follows:
ka'(¢)

wa(t) - wmin + (wmaz _ wlrlnin)[l _ ( -
aj

a

)4, (3.12)

After knowing this moving speed, the moving time and the queuing delay can be

determined. The queuing delay is given by

74(t) = max{0, [Xa(t) — 77"(t)Qal/Qa}-
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If there is no queuing delay, the moving part is the entire link, the travel time is:

If there is a queuing delay, the moving part is not the entire. Then the travel time is:

To(t) = 70(t) + TI(2)
= 1Mt) + [Xa(t) — M(t)Qa)/Qa
== /Ya(t)/Qa-

In summary, the link travel time 7,(t) is determined as follows:

—L“— ,if){at—'—[‘“— a<0
utz{%m s (3.13)

X.(t)/Qs , otherwise

where w,(t) is computed by using (3.12).

After we compute 7,(t), we can also determine the number of vehicles in queue
when the user entering the link at time ¢ reaches the tail of queue. This value, denoted
by X3(t+ 7*(t)), will be used to compute the travel time for the user who enters the
link at time t + 77%(t).

X3(t +1™(t)) can be determined by solving the following two equations:

Xit+7(1) = Xi(t) -7 (t)Qa (3.14)
T;n(t) La - Xg(fuj-(t’g:‘(t))/ka.? (315)

Therefore, we obtain:

(Xa(t)w (t) — QaLa)kaj'

Xt + 1) = %&%—@

(3.16)
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3.4.4 First-In-First-Out Condition

On a road network, it is necessary to require that the First-In-First-Out (FIFO)
discipline be observed for all links. The link FIFO condition states that if a vehicle
enters a link at time ¢, the other vehicles which enter the l<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>