
MIT Open Access Articles

A Self-Tester for Linear Functions over the
Integers with an Elementary Proof of Correctness

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Devadas, Sheela, and Ronitt Rubinfeld. “A Self-Tester for Linear Functions over the
Integers with an Elementary Proof of Correctness.” Theory of Computing Systems 59.1 (2016):
99–111.

As Published: http://dx.doi.org/10.1007/s00224-015-9639-z

Publisher: Springer US

Persistent URL: http://hdl.handle.net/1721.1/103636

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/103636
http://creativecommons.org/licenses/by-nc-sa/4.0/

(will be inserted by the editor)

A Self-Tester for Linear Functions over the Integers with an Elementary

Proof of Correctness

Sheela Devadas and Ronitt Rubinfeld

May 7, 2015

Abstract We present simple, self-contained proofs of correctness for algorithms for linearity testing and
program checking of linear functions on finite subsets of integers represented as n-bit numbers. In addition
we explore a generalization of self-testing to homomorphisms on a multidimensional vector space. We
show that our self-testing algorithm for the univariate case can be directly generalized to vector space
domains. The number of queries made by our algorithms are independent of domain size.

1 Introduction

In this paper, we consider the problem of linearity testing, as in the program checking, self-testing
and property testing frameworks of [6],[5],[14],[8]. A function f is linear if for any x, y in the domain,
f(x) + f(y) = f(x+ y). In the case where the domain and range are both the set of integers, it is easily
shown (by induction) that the linear functions are exactly the functions that multiply by a constant: i.e.,
f(x) = bx for some b. Given a program Pb that computes multiplication by b, our self-tester should pass
Pb if it gives the correct answer for all inputs, and should fail Pb with high probability if it is incorrect
on a large enough fraction of the n-bit integer inputs.

We present efficient algorithms for linearity testing and program checking of functions on integers repre-
sented as n-bit numbers as considered in [5]. Our query complexities are of the same order of magnitude,
though the constants we achieve are not as good as in [2],[10],[11]. However, our proofs are more elemen-
tary; in contrast to previous proofs, our proofs use little “algebraic structure”. We then show that our
techniques can be extended to homomorphisms on a multidimensional vector space.

Previous Work Linearity testing was first considered in [5] and used to give algorithms for self-testing and
program checking programs that compute linear functions. Linearity testing for multivariate functions
over various finite groups has been considered in several works, including [2],[10],[1],[3],[19],[15],[16],[9],[17],[4],[18].
In [5],[13], linearity testing for multivariate functions over finite subsets of infinite groups is considered.
Testers for real-valued multilinear functions defined over finite domains have been studied in [12] . Lin-
earity testing for functions over finite subsets of rational domains is considered in [9],[13].

Several works have considered the problem of testing low-degree polynomials. Specifically relevant to
this work are results on testing polynomials over rational domains, such as [14].

Outline of Paper In Section 2, we give definitions of property testing, self-testing, and checking algorithms
from [6],[5],[14],[8], and give a general overview of the other definitions and techniques necessary for our

Math Dept., MIT, Cambridge MA 02139 E-mail: sheelad@mit.edu

CSAIL, MIT, Cambridge MA 02139 and the Blavatnik School of Computer Science, Tel Aviv University. E-mail:
ronitt@csail.mit.edu. Research supported by NSF grants CCF-1217423, CCF-1065125, CCF-1420692, and ISF grant
1536/14.

2

proofs. In Section 3, we present self-testing and property testing algorithms for the univariate case and
proofs that they catch errors in all programs whose output function differs from any linear function in
a significant fraction of locations. In Section 4, we discuss how to extend the results we have for the
univariate case to linear homomorphisms on a vector space. Finally, in the Appendix we present an
additional checking algorithm for the univariate case.

2 Preliminaries

A checking algorithm, as defined in [6] for a function f , is an algorithm C that gets as input a specific
input x and program P . The goal is to determine whether program P is correct on input x or has a fault.
C may make calls to P on any input. If P = f for all inputs, the checking algorithm C should PASS
with probability at least 2/3; but if P (x) 6= f(x) at the chosen input x, algorithm C returns FAIL with
probability 2/3, where the probability is over the coin tosses of C, and not on any assumption on the
input distribution.1 Note that if P (x) = f(x), but there is a y 6= x such that P (y) 6= f(y), then P may
either output PASS or FAIL.

A self-testing algorithm, as defined in [5] for a function f over a finite domain D, is an algorithm T that
gets as input a program P and a parameter ǫ. The goal is to determine whether program P is correct
on most inputs in D. T may make calls to P on any input. If P = f for all inputs in D, the self-testing
algorithm T returns PASS with probability at least 2/3; but if P (x) 6= f(x) on ≥ ǫ fraction of inputs in
D, algorithm T returns FAIL with probability 2/3. Note that if there exists an x such that P (x) 6= f(x),
but P (x) 6= f(x) on at most ǫ fraction of inputs in D, then T may either output PASS or FAIL.

In general, given a finite domain D, we say that P is ǫ-close to f if the probability that P (x) = f(x)
over x chosen uniformly from D is ≥ 1− ǫ, and that P is ǫ-far from f if it is not ǫ-close. Therefore our
self-testing algorithm returns FAIL with high probability (2/3) if P is ǫ-far from f .

A property testing algorithm for a function family F , as defined in [14] (there described as an ǫ-function-
family-tester), is an algorithm T that gets as input a program P and a parameter ǫ. T may make calls
to P on any input. If for some f ∈ F , P = f on all inputs, the testing algorithm T returns PASS with
probability at least 2/3, but if P is ǫ-far from all f ∈ F , then T returns FAIL with probability 2/3.

For checking, self-testing, and property testing algorithms, the parameters to optimize are the number
of queries to the program P and the additional computation time the algorithm needs to perform, where
we define the additional computation time as the running time of the algorithm not including time spent
by P in answering queries. In this paper we focus on algorithms that make a constant number of queries
to P and incur an additional computation time that is only linear in the input size. Note that for
functions such as integer multiplication, no linear time algorithm is known; the best known algorithm
is O(n log n log log n), in [7]. Thus it is not known how to test multiplication by comparing results with
another known multiplication program using only an additional cost of linear time.

Here we focus on programs P purporting to compute not just some linear function but a specific linear
function f : for these programs, we give a self-testing algorithm. In the univariate case, such a function
must be f(x) = bx for some b. A similar constraint is true for the case of a linear homomorphism on a
multidimensional vector space. We rely on being able to compute f(x) more quickly for inputs x of a
specific form: in particular, b · 2n can be computed in linear time by shifting b by n spaces. Note that
multiplication and division by 2n can be done in time linear in n.

3 Testing Algorithm

We describe an algorithm that tests the correctness of a program Pb that purports to compute a function
fb(x)=̇b · x. Let Pb(x) indicate the program’s output when given the input x. We refer to the domain of
integers represented as n-bit numbers as Dn; the size of Dn is 2n.

Theorem 1 There exists a self-testing algorithm for the linear function fb over the domain Dn with
O(n/ǫ) additional computation time and O(1/ǫ) queries to the program Pb.

1 Note that by repeating C at least 1/ǫ times and outputting the majority answer, error probability ≤ ǫ can be achieved.

3

We will also describe an algorithm that tests the correctness of Pb on a specific input:

Theorem 2 There exists a checking algorithm for the linear function fb over the domain Dn with O(n/ǫ)
additional computation time and O(1/ǫ) queries to the program Pb.

The proof of Theorem 2 is given in the appendix.

To prove Theorem 1, we first define a function RandSplit that is useful in our testing and checking
algorithms and will be redefined in the case of a homomorphism on a vector space. The idea of this
function is to use the distributive property of multiplication: b(a + c) = ba + bc. It should be the case
that Pb(a + c) = Pb(a) + Pb(c), so we will check that this is the case for random a and c. One issue is
that a+ c can be bigger than 2n, though not bigger than 2n+1. We can keep track of which is the case,
and if (a + c) = 2n + x we can check that Pb(a) + Pb(x) + b · 2n = Pb(a + c) instead. We can use this
‘wraparound’ property and our ability to calculate b ·2n easily, via a linear time shift operation, to verify
that Pb satisfies this distributive property.

input : An n-bit number x, an integer b, a program Pb for computing multiplication by b
output: FAIL or PASS

1 x1 ← Rand (0,2n);
2 if x1 < x then δ ← 0 else δ ← 1 x2 ← δ · 2n + x− x1;
3 if Pb(x1) + Pb(x2) 6= b · δ · 2n + Pb(x) then
4 return FAIL;
5 end
6 return PASS;

Algorithm 1: RandSplit

We now use Algorithm 1 to create a testing algorithm. Before running Algorithm 1 at least k2 times, we
test n-bit inputs summing to 2n for the same distributive property k1 times. The combination of these
two tests will allow us to detect errors in Pb. We will show that it suffices for k1+k2 to be set to O(1/ǫ).

input : A program Pb for computing multiplication by b
output: FAIL or PASS

1 for i← 1 to k1 do
2 x← Rand (0,2n);
3 if Pb(x) + Pb(2

n − x) 6= b · 2n then
4 return FAIL;

5 end

6 end
7 for i← 1 to k2 do
8 x← Rand (0,2n);
9 if RandSplit (x, b, Pb)=FAIL then

10 return FAIL;
11 end

12 end
13 return PASS;

Algorithm 2: Test

Lemma 1 (Main Lemma) If Pb is correct on ≤ 1 − ǫ fraction of inputs in Dn, then Algorithm 2
returns FAIL with probability ≥ 3/4.

Proof We first define the discrepancy of an input:

Definition 1 The discrepancy of x is d(x)=̇Pb(x)− x · b.

If Pb(x) is correct, then d(x) = 0. By our assumption, d(x) 6= 0 for at least ǫ fraction of the inputs; we
let ǫ0 be the actual fraction of inputs for which d(x) 6= 0. We see that ǫ is the input to the program and
ǫ0 is the actual error rate of the program. What we wish to show is that when ǫ0 ≥ ǫ, then we return
FAIL with high probability.

4

We now show that if a function is likely to pass the test, the discrepancy function must have a certain
form; the number of inputs with positive discrepancy and the number of inputs with negative discrepancy
must be about the same.

Proposition 1 If less that ǫ0/2−β fraction of the numbers in the domain Dn have discrepancy > 0 (< 0)
then Line 4 will output FAIL with probability at least 2β.

Proof Consider ordered pairs of the form (x, 2n−x). The test in Line 3 pairs the numbers (x, 2n−x) and
detects an error if their discrepancies do not sum to 0. Therefore if no error is detected but x has positive
discrepancy, 2n−x must have discrepancy strictly less than 0. If ≤ ǫ0/2−β fraction of the numbers have
discrepancy strictly less than 0, then since we know that 1− ǫ0 fraction of the numbers have discrepancy
0 (since Pb is correct on those numbers), we see that ≥ ǫ0/2+β of the numbers have positive discrepancy.
When pairing the numbers into (x, 2n − x), we see that an error will be detected if the discrepancies do
not sum to 0. However, by our assumption, there are fewer numbers with discrepancy strictly less than
0; specifically, at least ǫ0/2+ β− (ǫ0/2− β) = 2β fraction of the numbers more have d(x) > 0 than have
d(x) < 0. Therefore 2β of the (x, 2n − x) pairs have d(x) > 0 and d(2n − x) ≥ 0. Therefore one iteration
of the first ‘for loop’ gives an error with probability ≥ 2β because the discrepancies need to sum to 0.
The same proof works for showing that > ǫ0/2−β fraction of the numbers must have discrepancy strictly
greater than 0 or there will be an error with probability 2β. ⊓⊔

This means that we can assume that if the loop in Lines 1-6 in Algorithm 2 passes with probability 2β,
then the fraction of numbers with discrepancy greater than 0 is > ǫ0/2− β but < ǫ0/2 + β. The same is
true for the fraction of numbers with discrepancy strictly less than 0.

We now define a δx function related to the discrepancy function.

Definition 2 δx(x1) = 1 if d(x1) > 0 and d((x− x1) mod 2n) < 0. δx(x1) = 0 otherwise.

Definition 3 The number of opposite-sign matches is
∑

0≤x1≤2n
δx(x1).

Proposition 2 The expected number of opposite-sign matches is ≤ (ǫ0/2)
22n.

Proof We assume that the fraction of inputs with d(x) > 0 is ǫ1, and the fraction of inputs with d(x) < 0
is ǫ2. We note that ǫ1 + ǫ2 = ǫ0. Using the fact that x1 gets matched to any x2 with probability 1/2n,
we see that the probability that x1 has positive discrepancy and x2 has negative disrepancy is just ǫ1ǫ2,
so the expected number of opposite-sign matches is ǫ1ǫ22

n ≤ (ǫ0/2)
22n. ⊓⊔

We let 0 < α < 1 be a parameter that we will set later.

Definition 4 x is good if the number of opposite-sign matches is ≤ 1

α (ǫ0/2)
22n and bad otherwise.

Proposition 3 The probability that a bad x is picked in Line 8 is ≤ α.

Proof Apply Markov’s inequality to the definition of a good x. ⊓⊔

Proposition 4 If a good x is picked in Line 8, then with probability ≥ ǫ0/2 − β − 1

α (ǫ0/2)
2, Line 10

outputs FAIL.

Proof The probability of picking any (x1, x− x1) pair during verification is 1

2n
.

If we have d(x1) > 0 and d(x2) ≥ 0, then d(x1) + d(x − x1) > 0. We see that the probability that
d(x1) > 0 is > ǫ0/2 − β and the number of matches with d(x1) > 0 and d(x − x1) < 0 is ≤ 1

α (ǫ0/2)
2.

Therefore the probability that d(x1) > 0 and d(x − x1) ≥ 0 is ≥ ǫ0/2 − β − 1

α (ǫ0/2)
2. A similar proof

shows that the probability that d(x1) < 0 and d(x− x1) ≤ 0 is also ≥ ǫ0/2− β − 1

α (ǫ0/2)
2.

In the first case we note that d(x1) + d(x − x1) > 0, while in the second case d(x1) + d(x − x1) < 0.
Therefore the probability that d(x1) + d(x− x1) > 0 is ≥ ǫ0/2− β − 1

α (ǫ0/2)
2, as is the probability that

d(x1) + d(x − x1) < 0. Since the test only passes if d(x) = d(x1) + d(x − x1) and d(x) cannot be both
positive and negative, a mistake must be found with probability at least ≥ ǫ0/2− β − 1

α (ǫ0/2)
2. ⊓⊔

5

Since we are given the value of ǫ and that ǫ0 ≥ ǫ, and we know the probability of finding an error in each
part of the algorithm, we need only repeat the parts enough times to catch the error in order to output
FAIL with high probability. ⊓⊔

3.1 Putting It Together

We now consider possible specific values for α, β. Let β = ǫ/4 and α = 2/3.

What is the runtime of Algorithm 2? Applying the Chernoff bound as given in the Appendix, we see
that if we want to be able to say that ≥ ǫ0/2 − β of the inputs have discrepancy < 0 or > 0 with
probability ≥ 7/8 we need to have k1 = O(1/β) = O(1/ǫ). The probability of detecting an error in Pb

in the loop in Lines 7-12 is ≥ (1 − α)(ǫ0/2 − β − 1

α (ǫ0/2)
2) =

ǫ0/4−3ǫ2
0
/8

3
; we therefore need to run the

loop k2 = O(1

2ǫ−3ǫ2) times in order to expect to see this error with probability 7/8; for sufficiently small
ǫ, this is O(1/ǫ) as well. Therefore k1 + k2 is O(1/ǫ) as desired. If we see errors in both parts of the
algorithm with probability 7/8, by a union bound the probability that we fail to catch an error in Pb in
both parts is 1/4, so we output FAIL with probability 3/4 as desired.

If ǫ = 1/8, then using the specific values for the Chernoff bound given in Theorem 6 in the Appendix,
we see that k1 = 96 and k2 ≈ 709 will give us our desired result: Algorithm 2 will return FAIL with
probability ≥ 3/4.

Proof (Proof of Theorem 1) If Pb is correct on all inputs inDn, then Algorithm 2 will pass. If Pb(x) 6= f(x)
on at least ǫ fraction of the inputs in Dn, then we have shown in Lemma 1 that Algorithm 2 returns
FAIL with probability ≥ 3/4. We have also shown that setting k1 + k2 to be O(1/ǫ) lets Algorithm 2
will return FAIL with probability ≥ 3/4, so the number of queries to Pb will also be O(1/ǫ). The extra
computation done by the algorithm consists only of linear time operations such as the shift allowing us to
compute b · 2n; therefore the additional computation time is O(n(k1 + k2)) = O(n/ǫ). Thus Algorithm 2
is a valid self-testing algorithm for the function fb. ⊓⊔

3.2 General Linear Function

We include a property testing algorithm for the case where we do not know what linear function P claims
to compute; only that it claims to compute a linear function. In this section, the property tester needs
to pass any linear function and fail any function that is not ǫ-close to some linear function.

Theorem 3 There exists a property testing algorithm for linear functions on n-bit inputs with O(n/ǫ)
additional computation time and O(1/ǫ) queries to the program Pb.

The idea of this general linear testing algorithm, or property testing algorithm, is similar to Algorithm 2
above in that we run two tests several times each. The first test here is to check that for various pairs of
inputs x, 2n− x that sum to 2n that P (x) +P (2n− x) is always equal to P (2n), which must be b · 2n for
some integer b. This will allow us to reduce to the case of a specific linear function for the second part
of this test, which is just running Algorithm 1 on various inputs x for the value of b that we found in

6

the first part. In much the same way as above, this will allow us to detect errors in P . We note that this
algorithm essentially learns the value of b.

input : A program P claiming to compute a linear function
output: FAIL or PASS

1 a← P (2n);
2 if 2n ∤ a then
3 return FAIL;

4 end
5 for i← 1 to k1 do
6 x← Rand (0,2n);
7 ai ← P (x) + P (2n − x);
8 if ai 6= a then
9 return FAIL;

10 end

11 end
12 b← a/2n;
13 for i← 1 to k2 do
14 x← Rand (0,2n);
15 if RandSplit (x, b, P)=FAIL then
16 return FAIL;
17 end

18 end
19 return PASS;

Algorithm 3: GeneralLinearTest

Lemma 2 If P is ǫ-far from linear, then Algorithm 3 returns FAIL with probability ≥ 3/4.

Proof If P passes the test in Line 2 that 2n | P (2n) we can reduce to the case where P = Pb for b = a/2n,
and the testing algorithm is equivalent to the original testing algorithm. Since P is ǫ-far from linear, it
is ǫ-far from the function b ·x, so then by Lemma 1, since Algorithm 2 will return FAIL with probability
≥ 3/4, so will Algorithm 3. ⊓⊔

Proof (Proof of Theorem 3) If P is linear, Algorithm 3 will output PASS with probability 1. From
Lemma 2 it is clear that Algorithm 3 will output FAIL with probability ≥ 3/4 if we set k1+k2 = O(1/ǫ)
as in Algorithm 2. We see that it makes the same number of queries and has extra running time on the
same order as Algorithm 2. Therefore it is a linearity property tester with additional computation time
O(n/ǫ) and queries O(1/ǫ). ⊓⊔

4 Multivariate Linear Functions

In this section we give self-testers for linear homomorphisms on a vector space. For a vector space V of
dimension m, we say f is a linear homomorphism on V if for any x1,x2 ∈ V , f(x1)+f(x2) = f(x1+x2).
An example of a linear homomorphism in two variables is f(x, y) = x+ y.

In an m-dimensional vector space V , we let ei be the vector that has 0 for all coordinates but the
ith, which is 1. Using linear algebra, we see that any linear homomorphism on V is determined by its
values on the ei - in fact, if we let bi = f(ei) for all i, then for any vector 〈x1, . . . , xm〉 we see that
f(〈x1, . . . , xm〉) =

∑m
i=1

bixi.

To test multivariate linear homomorphisms, we make the assumption that we know bi = f(ei) for all i.
Note that this is a generalization of the univariate case, in which we need to assume we know the value
of f(2n) = b · 2n, which means we know b.

Let P be a program that purports to compute f . We can modify the algorithm above to replace b with
the bi and modify the random-split function to split one vector into a random pair of vectors (by using
the usual random-split function component-wise). Instead of calling Algorithm 1 on a number x, integer
b, and program P , we call it on a vector x and program P and verify that for a random vector y we have

7

f(y) + f(x− y) = f(x). Then the proof above still holds if we replace 2n with the number of vectors in
the vector space - which is 2kn if our domain is k dimensional vectors of n-bit numbers. Because there
was no dependence on the size of the domain, the same error bounds hold; therefore we can get the same
bound that if P is correct on ≤ 3/4 of the inputs, the program will return FAIL with high probability.

We therefore have the following theorem given a linear homomorphism f on a k-dimensional vector space
V with the values of bi = f(ei) known. We assume vectors in V have coordinates that are n-bit integers.
Therefore |V | = 2kn.

Theorem 4 There exists a self-testing algorithm for the linear homomorphism f over the domain V
with O(nm/ǫ) additional computation time and O(1/ǫ) queries to the program P .

We redefine the algorithms for this case.

input : An m-dimensional vector of n-bit numbers x = 〈x1, . . . , xm〉 ∈ V , the values
b1, . . . , bm, a program P for computing the function f

output: FAIL or PASS
1 for i← 1 to m do
2 yi ←Rand (0,2n);
3 if yi < xi then δi ← 0 else δi ← 1 zi ← δi · 2

n + xi − yi;

4 end
5 y← 〈y1, . . . , ym〉;
6 z← 〈z1, . . . , zm〉;
7 if P (y) + P (z) 6= δ1 · 2

n · b1 + · · ·+ δm · 2
n · bm + P (x) then

8 return FAIL;
9 end

10 return PASS;
Algorithm 4: RandSplitTwo

We now use Algorithm 4 to create a self-testing algorithm for this linear homomorphism just as we did
with the univariate case. Let a = 〈2n, . . . , 2n〉. Then we know that f(a) = 2n · (b1 + · · ·+ bm).

input : A program P for computing the function f on a domain V and the values b1, . . . , bm
output: FAIL or PASS

1 for i← 1 to k1 do
2 x← Rand (V);
3 if P (x) + P (a− x) 6= 2n · (b1 + · · ·+ bm) then
4 return FAIL;
5 end

6 end
7 for i← 1 to k2 do
8 x← Rand (V);
9 if RandSplitTwo (x, b1, . . . , bm, P)=FAIL then

10 return FAIL;
11 end

12 end
13 return PASS;

Algorithm 5: LinearHomomorphismTest

Lemma 3 If P is correct on ≤ 1 − ǫ fraction of inputs in V , then Algorithm 5 returns FAIL with
probability ≥ 3/4.

Proof We note that this is exactly equivalent to the case of Lemma 1 and Algorithm 2 only with a larger
domain. Since the error bounds did not depend on the size of the domain, we see that by Lemma 1 we
again get that Algorithm 5 returns FAIL with probability ≥ 3/4. ⊓⊔

Now that we have the algorithm we can show that it is our desired self-testing algorithm.

Proof (Proof of Theorem 4) We see easily that if P is correct on all inputs in V that Algorithm 5 always
outputs PASS. Then by Lemma 3, we see that if P is ǫ-far from f that Algorithm 5 outputs FAIL with
probability ≥ 3/4.

8

By the same Chernoff bounds from Section 3.1 we see that we can set k1, k2 so that k1+k2 = O(1/ǫ). The
additional computation time depends on how long it takes to compute f(a) in general. The computation
time necessary is O(m) shifts and additions.

If we assume these shifts and additions take O(nm) time, then the additional computation time is
O(nm/ǫ) as desired. Therefore P is a valid self-testing algorithm for the function f as desired. ⊓⊔

If we let k1 = 96, k2 ≈ 709 as in Section 3.1, then since the error bounds are the same as in that section,
the Chernoff bounds from the appendix will again give us that each of the two parts will return error
with probability 7/8, so we will output FAIL with probability 3/4 as desired.

Acknowledgements The authors would like to greatly thank the referees for their comments.

References

1. László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has two-prover interactive
protocols. Computational Complexity, 1:3–40, 1991.

2. M. Bellare, D. Coppersmith, J. H̊astad, M. Kiwi, and M. Sudan. Linearity testing over characteristic two. IEEE

Transactions on Information Theory, 42(6):1781–1795, 1996.
3. M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically checkable proofs and applications to

approximations. In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, pages 294–304,
1993.

4. E. Ben-Sasson, M. Sudan, S. Vadhan, and A. Wigderson. Randomness-efficient low degree tests and short pcps via
epsilon-biased sets. In Proceedings of the Thirty-Fifth Annual ACM Symposium on the Theory of Computing, pages
612–621, 2003.

5. M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical problems. JCSS, 47:549–
595, 1993.

6. Manuel Blum and Sampath Kannan. Designing programs that check their work. J. ACM, 42(1):269–291, 1995.
7. Martin Fürer. Faster integer multiplication. SIAM J. Comput, 39(3):979=1005, 2009.
8. O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approximation. JACM,

45(4):653–750, 1998.
9. J. Hastad and A. Wigderson. Simple analysis of graph tests for linearity and pcp. Random Structures and Algorithms,

22(2):139–160, 2003.
10. T. Kaufman, S. Litsyn, and N. Xie. Breaking the ǫ-soundness bound of the linearity test over gf(2). Private Commu-

nications, 2006.
11. Marcos Kiwi. Probabilistically Checkable Proofs and the testing of Hadamard-like codes. PhD thesis, Massachusetts

Institute of Technology, 1996.
12. F. Magniez. Multi-linearity self-testing with relative error. Theory Comput. Syst., 38(5):573–591, 2005.
13. R. Rubinfeld and M. Sudan. Self-testing polynomial functions efficiently and over rational domains. In Proceedings of

the Third Annual ACM-SIAM Symposium on Discrete Algorithms, pages 23–32, 1992.
14. R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to program testing. SIAM

Journal on Computing, 25(2):252–271, 1996.
15. A. Samorodnitsky and L. Trevisan. A pcp characterization of np with optimal amortized query complexity. In stoc00,

pages 191–199, 2000.
16. A. Samorodnitsky and L. Trevisan. Gowers uniformity, influence of variables, and pcps. In stoc06, pages 11–20, 2006.
17. A. Shpilka and A. Wigderson. Derandomizing homomorphism testing in general groups. In Proceedings of the Thirty-

Sixth Annual ACM Symposium on the Theory of Computing, pages 427–435, 2004.
18. M. Sudan and L. Trevisan. Probabilistically checkable proofs with low amortized query complexity. In Proceedings of

the 39th Annual Symposium on Foundations of Computer Science, pages 18–, 1998.
19. L. Trevisan. Recycling queries in pcps and in linearity tests. In Proceedings of the Thirtieth Annual ACM Symposium

on the Theory of Computing, pages 299–308, 1998.

Appendices

A Checking Algorithm

We now describe an algorithm that checks whether the program is correct when multiplying two n-bit numbers a, b, rather
than if the program is correct in general, in order to prove Theorem 2. The function RandSplit is defined as before:

input : An n-bit number a, a program Pb computing multiplication by b
output: FAIL or PASS

1 if Test (Pb) = FAIL then return FAIL;
2 return RandSplit (a, Pb)

Algorithm 6: Checker

9

Theorem 5 Algorithm 6 correctly checks a · b for a ∈ Dn and outputs FAIL if Pb is incorrect on input a with probability

≥ 3/4.

Proof It is clear that if the program always answers correctly on the domain Dn then the checker will output CORRECT.
There are now two cases where Pb(a) is incorrect: the first is Pb is 1/8-far from fb(x) = bx and the second is when it
is 1/8-close. If it is 1/8-far from fb, then we know from Theorem 1 that when we call Algorithm 2 it will return FAIL
with probability ≥ 3/4. If instead Pb is 1/8-close to fb, then the second test - RandSplit on a in Line 2 - will be checking
Pb(x) + Pb(a − x) = Pb(a) for some x. Since Pb is 1/8-close to fb, we see that the probability that Pb(x) 6= fb(x) is
≤ 1/8, and the same for the probability that Pb(a − x) 6= fb(a − x). Therefore by the union bound the probability that
Pb(x)+Pb(a−x) = fb(x)+ fb(a−x) = fb(a) 6= Pb(a) is ≥ 3/4, so the second test will return FAIL with probability ≥ 3/4,
as desired.

We also note that the running time and queries of this algorithm are on the same order as those of Algorithm 2, or O(n/ǫ)
additional computation time and O(1/ǫ) queries. ⊓⊔

B Chernoff Bounds

We use Chernoff bounds often to describe the error probabilities of our algorithms. We use the following bound specifically,
where X1, . . . , Xn are random Bernoulli variables with expectation p and X =

∑
Xi:

Pr[X < (1− δ)np] ≤ e−δ2np/2

where 0 < δ < 1. The theorem we use for our algorithms is the following:

Theorem 6 If the probability that a test correctly detects an error in Pb is p, by running the test 6/p = O(1/p) times we

will detect the error with probability 7/8.

Proof Assume we run the test n times. For the ith time we run the test, we let Xi = 1 if an error is detected and Xi = 0
otherwise. If we run the test n times without detecting error, this means that

∑
Xi = X = 0 < 1. By the Chernoff bound

above, we see that by letting δ = (np− 1)/np that Pr[X < 1] ≤ e−(np−1)2/(2np). The probability that X < 1 is the same

as the probability that we fail to detect an error, which we wish to be ≤ 1/8. Therefore we want e−(np−1)2/(2np) ≤ 1/8.

e−(np−1)2/(2np) ≤ 1/8

−
(np− 1)2

2np
≤ log 1/8

(np− 1)2

np
≥ log 64

If np = 6, then
(np−1)2

np
= 25/6 > log 64, as desired. Therefore by letting n = 6/p, the probability that X < 1 is ≤ 1/8, so

we detect an error with probability 7/8.

⊓⊔

	Introduction
	Preliminaries
	Testing Algorithm
	Multivariate Linear Functions
	Checking Algorithm
	Chernoff Bounds

