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ABSTRACT
In this paper we present WristFlex, an always-available on-
body gestural interface. Using an array of force sensitive re-
sistors (FSRs) worn around the wrist, the interface can distin-
guish subtle finger pinch gestures with high accuracy (>80%)
and speed. The system is trained to classify gestures from
subtle tendon movements on the wrist. We demonstrate that
WristFlex is a complete system that works wirelessly in real-
time. The system is simple and light-weight in terms of power
consumption and computational overhead. WristFlex’s sen-
sor power consumption is 60.7 µW, allowing the prototype
to potentially last more then a week on a small lithium poly-
mer battery. Also, WristFlex is small and non-obtrusive, and
can be integrated into a wristwatch or a bracelet. We perform
user studies to evaluate the accuracy, speed, and repeatability.
We demonstrate that the number of gestures can be extended
with orientation data from an accelerometer. We conclude by
showing example applications.
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INTRODUCTION
We envision a future where users have an ability to seam-
lessly control wearable devices and facilities in the environ-
ment. For that purpose, always-available on-body gestural
interfaces will need to be developed. Such interfaces would
be seamlessly worn on the body and ready to work at any
moment, and in any situation.

To have better usability, the always-available gestural inter-
face needs to satisfy four main criteria: First, such an inter-
face should be subtle. The user should be able to use the
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interface in any scenario, without physical discomfort or em-
barrassment. The device should be small enough to be com-
fortably worn on the body without interfering with natural
hand movements. Second, the interface should be natural.
The gestures should be simple and intuitive, to avoid cogni-
tive interference and fatigue. Third, the interface should be
low-power. Users should not have to worry about constantly
recharging the battery or carrying a large battery. There is a
tradeoff between the power consumption and the complexity
of the system; a low power interface will be light-weight and
simple. Fourth, the interface should be easily accessible. It
should be on-body, so users do not need to pull out a device
from their pocket. The device should have one-hand input, so
it can be used when the other hand can not be accessed.

Figure 1: WristFlex prototype. Left image: device worn on
the wrist, while performing a finger pinch gesture. Right im-
age: the side of the device that contacts the skin, exposing an
array of force sensitive resistors (FSRs).

There is no existing device that can satisfy all the criteria of a
seamless interface. So, the motivation of this paper is to sat-
isfy those criteria. We present a gesture recognition system
that uses pressure distribution around the wrist to discern fin-
ger movements. We find the wrist to be an attractive location
for a future always-available interface. We are used to wear-
ing wrist watches and bracelets, and the wrist is already used
for a number of smart-phone-connected accessories such as
the Galaxy Gear watch and the Fitbit activity monitor. The
wrist is connected to the hand and fingers, therefore it could
be used as a proxy for finger gestures. By putting sensors
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on the wrist, your hand remains completely free for natural
interactions.

The contributions of this paper are the following:

1. We present a novel, simple and low-cost gesture input sys-
tem that can detect individual finger pinches from the pres-
sure distribution around the wrist.

2. Using our wireless and real-time capable prototype, we
perform user studies to assess its performance.

3. We optimize the power consumption of the device, so it
can potentially last for a week on a single battery charge.

4. We explore broader interactions with the addition of an ac-
celerometer and different usage scenarios.

RELATED WORK
In this section we will review the literature on always-
available on-body input methods. On-body machine vision
systems use wearable cameras to detect gestures. For exam-
ple, Digits uses a wrist-worn 3D infrared camera to recognize
finger gestures [10]. Another system used a time-of-flight
camera [16]. Camera-based systems can not satisfy all the
criteria of an always-available gesture system because of fun-
damental limitations. Cameras suffer from line-of-sight oc-
clusions and have large power consumption and heavy com-
putation requirements. Furthermore, privacy concerns might
prevent a vision based approach from being always available.

Inertial based systems use accelerometer and gyro sensors to
discern gestures. Some systems use off-body sensors such as
Nintendo Wii remote [15]. Other systems use on-body sen-
sors such as a glove [12] or rings [3] with accelerometer. Iner-
tial sensors are low-power but have caveats e.g., they have to
be worn on the fingers to sense finger movement. Such com-
plications can reduce dexterity of the hands, therefore limit-
ing physical interactions.

Brain-computer and muscle-computer interfaces detect neu-
ronal electrical potentials and map them to gestures. A num-
ber of research projects explored electromyography (EMG),
where electrodes are placed below the elbow to detect hand
gestures [14]. Recently, a commercial product named Myo
appeared that uses EMG for gesture detection [11]. Myo
might have problems detecting finer finger gestures, because
it uses less sensitive dry electrodes. EMG systems require the
user to wear a bulky array of electrodes below the elbow, so
they cannot be integrated with a wristwatch or a bracelet. Fur-
thermore, EMG requires a high data rate and extensive signal
processing, therefore it has high power consumption.

Bio-acoustic methods include detecting taps on different
places on the skin [8], tapping fingers on surfaces [1], and per-
forming hand motions [4]. Those methods might have prob-
lems with external noise and mapping of intuitive gestures to
specific inputs.

Previous research showed some success with muscle activity
recognition using arm-worn pressure sensors [2]. However,

we are not aware of any projects that explored finger ges-
ture recognition from wrist-worn pressure sensors and devel-
oped a real-time system. Several projects focused on infer-
ring finger and hand gestures from the wrist, and were inspi-
rational for our work. Gesturewrist project looked at sensing
capacitive changes around the wrist to detect gestures [13].
This method can be low power, but it was tested with two
hand gestures, and did not distinguish individual finger move-
ments. Similarly, another study placed photodiodes and in-
frared LEDs around the wrist to infer gestures from infrared
reflectance [5]. This approach worked for classifying 8 hand
gestures, but reflectance can be affected by sweat and dirt,
and might not be energy efficient since it requires pulsing of
high power infrared LEDs.

Figure 2: Sketch of the wrist cross section anatomy during
two gestures. Individual FSRs are shown as green rectangles.
The FSRs with the blue arrows are detecting higher pressures
caused by the movements of tendons during a pinch gesture.

PRINCIPLE OF OPERATION
Pressure Sensing
We used force sensitive resistors (FSRs) for sensing pres-
sure. Specifically, we chose the FSR400 (Interlink Electron-
ics), because of small size and off-the-shelf availability. It is
made from two copper traces that contact a sheet of conduc-
tive polymer. The resistance of the polymer decreases when
pressure is applied, thus changing the resistance between the
two copper traces. When no pressure is applied the polymer
acts as an insulator. We chose to use FSRs because they have
low power consumption, do not need complex interfacing and
signal processing, are inexpensive, and small enough to fit the
wrist.
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Figure 3: Differences in raw FSR readings at the wristband
when pinching ring finger, and later pinky finger.

Gesture Recognition
The muscles that move the fingers and the hand are located
mostly in the forearm. Fingers are connected through tendons

2



to those muscles. As sketched in Figure 2, the movement of
tendons on the wrist slightly changes the shape of the wrist.
Those changes can be detected with an array of pressure sen-
sors. There is a unique pressure signature for each gesture.
For example, Figure 3 shows raw data from three pressure
sensors on the wrist when first pinching thumb and ring fin-
ger, and later thumb and pinky. These pressure distributions
can be learned and used to classify new gestures. We pose
this as a supervised machine learning task.
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Figure 4: System diagram, showing sampling of FSR 1. The
parts in red show the active circuit. This circuit can be sim-
plified into a voltage divider, as shown in the right top corner.
The gray rectangle is the multiplexer, showing 3 of 15 FSRs.

PROTOTYPE DESIGN
Hardware
As shown in Figure 1, we constructed a prototype that can be
worn on the wrist. We made a custom Velcro wrist-strap to
hold pressure sensors in place and to provide a tight contact
between the pressure sensors and the wrist. As shown in Fig-
ure 5, a custom circuit board was made to fit the electronics.

An ATmega328 (Atmel) microcontroller was used to sample
pressure sensors. The samples were transmitted to a lap-
top using a Bluetooth module (RN-42 Roving Networks).
To allow real-time feedback to the user, data was sent at a
30 Hz rate. A 110 mAh lithium polymer battery was used
for power. For more functionality, a 3-axis accelerometer
ADXL335 (Analog Devices) was added.

We used 15 FSRs to densely cover as much of the circumfer-
ence of a wrist as possible. As seen in Figure 4, FSR sensors
were selected via a 16 to 1 multiplexer (CD74HC4067, Texas
Instruments). The system is scalable to more or fewer sen-
sors; they are read sequentially, so only one sensor is electri-
cally connected at a time. Once active, the sensor became part
of the voltage divider with a 180 KOhm resistor. Using one
voltage divider for all sensors reduced power consumption by
15 times. The microcontroller’s analog-to-digital converter
(ADC) was connected to the output of the voltage divider.

We found that a 180 kOhm resistor provides enough range to
sense gestures, while minimizing energy consumption. With
a smaller resistors the range is bigger, but energy consump-
tion is higher. An op-amp circuit should be added between
the voltage divider and the ADC if using high sampling rate
and a dynamic adjustment of the sensor’s gain and range.

It was important to avoid mechanical strain and twisting of
FSRs, since that can cause false pressure readings. We used
long and flexible wires for connecting the sensors to provide
strain relief. Also, we used wireless communications and a
battery to avoid external communications and power cables.

Figure 5: Circuit board: front and back. A U.S. Quarter is
added for size comparison.

Machine Learning and Software
A Support Vector Machine (SVM) with a polynomial ker-
nel was used for training and classification. We used Se-
quential Minimal Optimization (SMO) from the WEKA li-
brary [7], which is an optimized version of SVM. Instanta-
neous pressure readings were used as features. To exclude
redundant and irrelevant sensors, correlation feature selection
(CFS) was used. The classifier ran in real-time at 30 Hz. In
this paper, the classifier ran on a laptop, but it can be adapted
to a mobile device such as an Android phone.

As indicated in pilot studies, linear classification algorithms
such as linear SVM and linear regression had low accuracy
(about 30 to 50%) due to nonlinear output of FSRs and the
voltage divider. A non-linear classifier, such as the polyno-
mial SVM used here, was able to fit data better.

EVALUATION OF FINGER PINCH GESTURES
Setup
We recruited 10 participants (4 female, 6 male) to test 5 ges-
tures. Ages ranged from 25 to 30 (mean: 27). As shown in
Figure 6, gestures 1 to 4 involved pinching the thumb and one
of the other fingers. Gesture 5 was hand in a relaxed position.

We picked this gesture set because pinching two fingers is
subtle and involves only minor hand movements, hence the
gesture set does not fatigue the user’s hand. Also, pinch ges-
tures are not socially obtrusive, they can be performed with
hand-at-side, without drawing attention, and the finger pinch
gestures are difficult to distinguish by other techniques such
as EMG and vision-based techniques. We picked five ges-
tures for this experiment, because it becomes difficult for the
user to remember more. In the later section, we show how to
increase the number of gestures.

Initially, each gesture was trained 3 times. To capture some
pressure variations, each gesture was sampled 20 times for
2 sec interval. The training time was about 1 minute. Af-
ter training, the participant was asked to practice gestures for
about 2 minute to familiarize themselves with the system.

For the evaluation, participants were asked to do specific ges-
tures from on-screen instructions. Each gesture was done 12
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times, for a total of 60 gestures. Participants had to do each
gesture for a 5-second period to make sure there was enough
time to read and follow directions. The gestures were pre-
sented in a randomized order. Real-time feedback was pro-
vided for the first 30 gestures; the computer displayed what
gesture it classified. No feedback was given for the last 30
gestures. The evaluation was done on the last 10 pressure
readings in each 5 second period, which equates to an ap-
proximately 300 millisecond window.

1 - index pinch 2 - middle pinch 3 - ring pinch

4 - pinky pinch 5 - relaxed 6 - spread  
fingers

Figure 6: Gestures 1 to 5 were used in the finger-pinch exper-
iment. Gesture 6 was used as a wake-up gesture.

Results and Discussion
Accuracy: Accuracy is defined as the number of correctly
classified samples divided by the total number of samples.
The accuracy due to chance was 20%. Off-line accuracy
was computed using 10-fold cross-validation of the evalu-
ation data. The mean accuracy across all participants was
96.3% (SD: ±2.7%). Cross-validation represents the upper
bound of accuracy. Also, we computed accuracy using the
initial training data only, which reflects the real-time perfor-
mance of the system. In this case, the accuracy was 80.5%
(SD: ±8.7%). With no feedback accuracy decreased to 69.3%
when using training data, and remained the same with cross-
validation (96.3%). As seen in Figure 8, misclassification oc-
curred most often in the index finger pinch, likely because
tendons connected to the index finger were not fully covered
by the sensors. As shown shown in Figure 7, that area was
covered by the band’s fastening strap. The relaxed hand posi-
tion and pinky pinch was rarely misclassified.

Sensor contributions: Correlation feature selection showed
that the number of relevant FSR sensors varied from 4 to 11
(mean: 7.1). As shown in Figure 7, sensors on top of the
wrist were more relevant than on the bottom; tendons on the
top are near the skin, while tendons on the bottom are bundled
together and are deeper. Also, sensors located near muscles
were relevant, thus likely contributed to high classification
rate of pinky pinch.

Pinch force: The force between fingers during pinch gestures
was measured to be between 20 and 169 grams. The mea-
surement was done by calibrated FSR located between the
two fingertips. We were concerned that wearing the system
can cause discomfort, since FSRs need to be in tight contact
with the skin, but none of the participants reported discomfort
during the short studies. But, sweating under the band could
be uncomfortable during prolonged wear (>2hours).
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Figure 7: Cross section of the wrist. FSRs are shown in their
approximate locations, with heights proportional to the num-
ber of times particular FSR was selected as a feature by CFS.

Speed: An important consideration is how fast gestures can
be performed. In practice gestures could be performed faster
than the allocated 5 seconds. It took a mean of 1.60 sec (SD:
±0.28 sec) to classify a new gesture from the time the com-
mand to do the gesture was given to stable classification of
gesture by the real-time classifier. The main limitation is the
settling time of FSRs, because movements between gestures
create large pressure variations that are picked up by FSRs.

Reproducibility: The user should be able to remove the device
from the wrist and put it back, without the need to retrain the
classifier. We tested reproducibility by removing and putting
the device back 3 times for 3 participants, and performing
finger pinch experiment during each trial. Participant was
provided with immediate feedback. The same initial training
data was used in 3 trials. Mean accuracy decreased as tri-
als progressed: 83.2%, 73.3%, and lastly 67.5%. Our results
show the low end of accuracy as there was no guidance or
calibration mechanisms. Also, applying consistent tightness
using Velco strap was especially problematic. The decrease
of accuracy was mostly due to completely losing 1 or 2 ges-
tures; as the training data was too rigid to account for tight-
ness. With a calibration mechanics and an automated way to
guide sensor placement, no retraining should be needed.

Figure 8: Finger-pinch experiment results. Left: confusion
matrix for accuracies using training data. Right: accuracy
using training data and cross-validation.

ADDITIONAL GESTURES WITH ACCELEROMETER
The same set of gestures could be identified differently by
rotating the hand. In this experiment by using two different
hand orientations, we increase the number of gestures from
5 to 10. The advantage of an accelerometer is low power; it
adds only 72.6µW to the system’s power consumption.
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We created an assembly of three SVM classifiers: one for the
accelerometer and two for the pressure. The accelerometer
classifier used 3 features: accelerations in the X, Y, and Z
axis. The pressure classifier was the same as before. Based
on the orientation (accelerometer) classifier, one of the two
pressure classifiers is activated. We used 3 separate classifiers
to avoid the problem of uneven feature sizes: accelerometer
had only 3 features, while pressure has up to 15 features.

We recruited 3 participants (1 female, 2 males, age 27-30)
for the experiment. A set of 10 gestures was tested. We
used the same pinch gestures as before. One set was per-
formed with palm facing the hip, so the palm is parallel to
the hip. In the second set the hand was rotated 45 degrees,
to be perpendicular to the hip. Each gesture was performed
12 times. Feedback was provided. The accuracy with 10-
fold cross-validation was 94.4% (SD: ± 13.14%), and 73.9%
(SD: ± 17.5%) when using training data only. Accuracy due
to chance was 10 %.

LOW POWER OPERATION
Power consumption is an important parameter for on-body
and always-available devices. Lower power consumption al-
lows for smaller size and longer operation. Because of the
multiplexer, only one FSR is active at any moment. As a re-
sult, the voltage divider consumes 60.4µW in a worst case
scenario, when the FSR resistance is zero. The multiplexer
consumes a maximum of 0.33µW. Therefore, the total power
consumption of analog circuitry and sensors is 60.7µW. In
comparison, in a state-of-the-art wrist-worn camera-based
gesture system [10] the camera itself consumes 60mW, which
is at least 3 orders of magnitude higher.

Increasing microcontroller clock speed greatly increases the
power consumption. We run the clock at a low speed of
1 MHz, which is sufficient here, because the microcontroller
does not need to do any math operations such as filtering. It
is only used to sample and send the data. This shows how a
light-weight sensing system can save energy. At that speed,
microcontroller consumes 2.9mW. The Bluetooth module is
the most energy intensive part, requiring a transmission rate
of 30 Hz for a real-time operation. At that rate, the Blue-
tooth consumes 93.1mW. The total power consumption of
96.0mW, allows for 4 hours of continuous wireless operation.
A lighter-weight radio (e.g., Bluetooth Low Energy) could
reduce the power consumption further.

In a real-world application, the device would be used only oc-
casionally, and should be asleep most of the time. We used a
spread-finger gesture, shown in Figure 6, to wake up the de-
vice. Once awake, the device will operate continuously and
transmit data through the Bluetooth. If no new gestures are
detected the device will go back to sleep. During sleep, the
system wakes up every 2 seconds to check the pressure read-
ings, and decide to continue sleep or to wake up. The classi-
fication of the wake up gesture is done locally on the micro-
controller, so data is not send to a laptop for processing. The
total energy consumption during sleep mode is 185.0µW. If
the device is used for 30 minutes a day, the operation time
could be increased to 7 days.

FALSE POSITIVES
If the interface is worn in everyday life, it will be important to
avoid false positives; accidental recognition of gestures. Be-
sides reducing energy consumption, wake up gesture has a
purpose of unlocking the device; the device would only work
once intentionally unlocked. The wake up gesture has higher
mean FSR value, than all gestures and hand movements we
tested. The wake up gesture was tested during the finger-
pinch experiment, and could be detected with a 100% accu-
racy by thresholding of mean value of all FSRs. Also, as
previously proposed in [4], a possible way to prevent false
positives is to activate gestures only in specific hand orienta-
tion, such as when hand is pointing down.

Figure 9: Example applications. Left: controlling two red-
green-blue (RGB) lamps. Right: controlling bicycle lights.

EXAMPLE APPLICATIONS AND GESTURE SPACE
To illustrate the real-time performance and to understand the
gesture space we developed two applications. The applica-
tions are shown in Figure 9, and in the accompanying video.

1. Remote controller application: The 4 pinch gestures can
be used as 4 virtual buttons for interaction with external de-
vices, such as a phone or an appliance. Running on the top
of the classifier, we developed software that translates finger
pinch gestures into button presses. To settle pressure vari-
ability, software outputs a button press only if the classifier
outputs 10 same gestures in a row. We developed an applica-
tion to address and control two RGB lamps. The activation
gesture is used to connect to the lamps. Using the index and
the middle finger pinch gestures, the user cycles and selects
which lamp to modify. The selected lamp provides feedback
by flashing, and final selection is confirmed with the pinky
pinch. Once selected, 3 pinch gestures are used to switch be-
tween red, green or blue colors. Finally, with a pinky pinch,
the function of the buttons changes and pinches adjust the
brightness and turn on/off the lamp.

2. Context awareness app: The system can be trained to de-
tect natural gestures (e.g, hand postures during actions), and
infer context. We developed an application for bicycle riders,
where wearable lights are controlled by the device. Such app
as can enhance safety for riders at night by dynamically con-
trolling the lights. When the rider’s hand engages the break
handle, the stop light turns on. Also, when the user is grip-
ping handlebars, the lights turn on automatically. Finally, left
or right blinkers can be turned on by lifting the middle or
pinky fingers.

2. Continuous gestures: As our explorations indicate, the
device can track the rotations of the hand. This could pro-
vide a 2D input similar to a computer mouse. Also, in the
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pinch gesture, it is possible to discern how hard two fingers
are pressed, therefore adding continuous gestures to pinches.
This could add another dimension to pinch gestures, which
would be useful in, e.g., controlling volume or zoom.

LIMITATIONS AND FUTURE WORK
Gestures: As mentioned above, the rotation of the hand and
pressure variations in pinch gestures could be used as contin-
uous gestures. However, they will cause misclassifications in
the discrete pinch gestures. It is part of our future work to
develop a mechanism to reliably transition between the con-
tinuous and discrete gestures.

Machine learning: We found that each participant needed
unique training data; the classifier can not yet generalize the
pinch gestures. Also, if gestures are trained using one hand
orientation and position, they might not work in a different
hand position. To alleviate those issues the classifier should
take into account the biomechanics of the hand, and use an
inertial measurement unit (IMU) to sense and compensate
for different hand positions. Furthermore, in real-life the de-
vice might rotate during wear, thus the classifier should be
rotation-invariant.

Sensors: We used off-the-shelf FSRs that were not designed
for this wearable application. They are relatively large, re-
quire assembly into an array, and are affected by sweat and
humidity. Using custom-made dense matrix of small pressure
sensors would result in higher accuracies, since it will pick
up finer pressure variations and cover larger area. Currently,
such a matrix can be commercially printed with the FSR ink
(e.g., [6]), but the cost and prototyping time is high. Alterna-
tively, FSR arrays can be prototyped using conductive ink-jet
technology [9] and Velostat as a pressure-sensitive semicon-
ductor. To prevent effects from sweat and humidity FSRs can
be sealed in a waterproof material. Also, a calibration mecha-
nism could be added to compensate for those effects, such as
with a skin conductance or temperature sensors. We plan to
develop custom FSRs for quick and inexpensive prototyping.

CONCLUSION
In this paper we presented WristFlex, a novel gesture recog-
nition device that uses wrist-worn pressure sensors. We show
that the system can detect finger pinch gestures in real-time
with high accuracy (>80%) and speed (1.6 sec). Also, we
demonstrated the addition of an accelerometer to greatly ex-
tend the number of gestures. Furthermore, we explored inter-
action scenarios such as using of the system to control light-
ing and context sensing for bicycle riders. The system is
attractive for always-available one-hand gesture input. The
system has low power consumption; the current prototype
can potentially last for a week on a single charge. The de-
vice is unobtrusive; it can be made into a small wrist-worm
bracelet. Custom pressure sensor arrays can be prototyped
with an off-the-shelf printer and conductive ink or commer-
cially with FSR ink. WristFlex is a viable alternative to EMG
and camera-based approaches.
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