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Abstract 

By inferring individual passengers’ origins, destinations, and transfers using automatically 

collected transit data, transit providers can obtain and analyze larger volumes of information, 

with more accuracy, and at more frequent intervals than are available through traditional origin-

destination (OD) surveys. Automatic OD inference can be an input into the analysis and 

reporting of agencies’ social goals, such as the provision of equitable service regardless of race, 

national origin, or ethnicity, which is federally required in the USA by Title VI of the Civil 

Rights Act of 1964. The methodology prescribed in the Title VI regulation, however, has not 

adapted to the opportunity to supplement supply metrics with passenger-centric demand metrics 

through the availability of OD data. The goal of this thesis is to demonstrate a preliminary 

methodology to link automatically inferred OD information from regular transit users to the 

demographic data of public transit commuters from the US Census’s American Community 

Survey, and to examine variation in passenger-centric metrics such as journey time and speed. 

This study infers origins and destinations in the context of the Massachusetts Bay Transportation 

Authority (MBTA). From a sample month of these data, an example of a passenger-centric 

analysis is performed by comparing travel times and speeds of trips with origins in areas home to 

predominantly Black or African American transit commuters to travel times and speeds of trips 

with origins in areas home to predominantly White transit commuters. Commuters from 

predominantly Black or African American census tracts are found to have longer travel times and 

slower speeds relative to commuters from tracts where commuters are predominantly White. 

Differences are within agency specified margins, but are significant, in particular for journeys 

involving bus transfers. Short-term solutions such as through-routing of important bus routes and 

increasing reliability of bus departures at terminals and long-term solutions such as faster, more 

frequent Diesel Multiple Unit rail service are proposed and evaluated to mitigate these 

differences. 
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1 Introduction 
With the growing adoption of automatic data collection systems (ADCS), transit providers can 

now collect volumes of data on their operations and their customers’ behavior. The use of 

automated fare collection (AFC) systems, by collecting fares electronically and storing the data 

digitally, permits urban public transit providers to collect fine-resolution data on how their 

customers interact with the network. These data can show, for every transaction a customer 

performs, where and when that transaction occurred. If customers are uniquely identified, it is 

then possible to determine their behavior over one or many days, including the origins and 

destinations (OD) of their trips.  

By using ADCS data to infer origins, destinations, and journeys, transit providers and researchers 

can avoid the need to gather information about usage using costly, time-consuming, and often 

inaccurate surveys (Riegel, 2013). Due to their nature, these surveys are limited in both sample 

size and frequency, whereas (ADCS) data have the potential to provide information at a near 

daily frequency. In the USA an example of the potential use of such information is the federally 

required Title VI and environmental justice (EJ) reporting. Title VI of the Civil Rights Act of 

1964 prevents agencies receiving federal funding from having a disparate impact with regards to 

race, ethnicity, or national origin. In complying with this law, large transit agencies must report 

regularly on how their service is provided to populations with different demographics. There is a 

growing critique of the inaccuracies inherent to the required methodology (Bills, 2013; Karner & 

Golub, 2015; Karner & Niemeier, 2013), based on outdated data collection methods which have 

not kept pace with the availability of large, passenger-level data sets from ADCS.  

A distinction must be made between early implementations of these technologies, which were 

designed with one task in mind such as AFC or automatic vehicle location (AVL) systems 

(hereafter legacy systems), and a second generation of ADCS designed with a holistic view of 

data collection and warehousing. Legacy systems require the synthesis of disparate data sources 

in order to produce useful information such as origins and destination whereas newer systems 

will have such synthesis built into data collection.  

This thesis builds upon recent work in the synthesis of passenger-centric public transit 

information and primarily updates the work of Gordon (2013), to infer origins, destinations, and 

full journeys in London, to a fully open1 transit network: the Massachusetts Bay Transportation 

Authority’s (MBTA) rapid transit and bus network. Additional algorithms were developed to 

prepare bus and train vehicle location data for passenger origin and destination inference, as well 

as arrival time inference on a rail. The inference algorithm was performed on a month’s worth of 

data for April 2014. From this inferred origin–destination (OD) information users’ home 

locations are inferred, and their usage is aggregated to geographic units to demonstrate an 

                                                 
1 An open transit network is one in which fare payment only occurs at the origin of a trip, at boarding or gate entry, 
rather than a closed system which requires fare payment at entry and exit. 
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alternative methodology for Title VI and EJ analysis which betters reflects passenger outcomes.  

The remainder of this chapter provides the motivation for this case study, an overview of the 

state of the art of OD inference, the objectives and methodology for this study, and outlines the 

rest of this thesis. 

1.1 Motivation 
 

1.1.1 State of the Art: Using ADCS to Infer Travel Behaviour 
 

Pelletier, Trépanier, & Morency (2011) review the use of smart card AFC data including OD 

inference methods for tactical and strategic transit planning. Since their review, the state of the 

art has moved in a number of directions discussed in the sections below: from improved 

methodologies, to inferring activities from OD, or using alternative massive passively collected 

data sets to infer travel behaviour.  

Robinson et al (2014) review data collection errors for AFC and AVL systems. They discuss 

how to isolate faulty data collection units through peer comparison and present methods for error 

handling and correction with a particular focus on bus or light rail systems that require fare 

transactions upon both boarding and alighting. 

Activity Inference 
Moving beyond inferring the origin and destination of a trip, researchers have developed 

methodologies to elucidate trip purpose from the user and trip characteristics as well as land use 

characteristics. Lee and Hickman (2014) infer home-based trip purposes (work, university, and 

other) for bus passengers in the Minneapolis/St. Paul Metropolitan Area in Minnesota using an 

OD inferred from AFC and GTFS2 schedules (Nassir, Khani, Lee, Noh, & Hickman, 2011). They 

assume users start their first journey of the day at home and used start time, activity duration and 

location as criteria in activity inference.  

(Devillaine, Munizaga, & Trépanier, 2012) infer activity types (home, work, education, other) 

using simple heuristics based on the type of pass, the trip’s order (e.g., whether it was the last of 

the day), the duration of the activity, and the land use of the location of the activity.   

Alternative Data Sources 
Researchers have developed methodologies to use more ubiquitous data sources to infer travel 

behaviour. Jiang et al.(2013) offer a comprehensive review of the use of passively collected 

mobile phone data including challenges and opportunities for that data source.  

Montero et al (2015) use Bluetooth data to estimate real-time dynamic OD on a transit network. 

Their work extends a framework originally designed to predict traffic on roadways, to using a 

                                                 
2 General Transit Feed Specification: a standard for publishing machine-readable transit schedules 
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historical OD matrix for Vitoria in Spain updated with counts of passengers equipped with 

Bluetooth enabled devices. This methodology was validated with simulated rather than actual 

real-time data. 

1.1.2 ADCS Applications in Boston 
The MBTA’s fare data have been used to analyze the effects of different fare policies. Pincus 

(2014) determined the impacts of the 2012 fare increase through analyzing months of AFC 

records. Kamfonik (2013) estimated the added revenue the MBTA's Corporate Pass program 

provides by analyzing the AFC usage records of Corporate Pass holders. Chow (2014) piloted 

the use of AFC in a survey of a panel of MBTA customers prompting them to recall their trips 

based on their transaction history.  

Researchers have also used ADCS to improve transit operations. Tribone (2013) used 

automatically collected track circuit data to identify reasons for delays on the subway and then 

piloted and evaluated solutions to these. Maltzan (2015) designed real-time control strategies on 

high-frequency bus routes using real-time AVL data and evaluated the benefits of pilot 

interventions. 

1.1.3 Motivation: Using ADCS to Analyze and Improve Transit Outcomes 
Beyond the obvious use of OD matrices for service and network planning, researchers have 

explored how ADCS can inform social policy. In developing countries where censuses are 

conducted sporadically, Smith et al. find that indicators calculated from mobile phone Call Detail 

Records (CDR) correlate well with regional poverty as defined by the Multidimensional Poverty 

Index (Smith, Mashhadi, & Capra, 2013). In a developed country context, Smith et al. use heavy 

rail AFC data from the Oyster system in London to calculate proxy indicators that correlate with 

social indicators derived from census data collected on the order of every 5 years (Smith, 

Quercia, & Capra, 2013). In contexts with robust censuses, these applications are intended to 

supplement censuses by providing intermediate diagnostics in between censuses. This can allow 

for rapid feedback on policy changes without the need for intermediate surveys of target 

populations or to wait for census results.  

In the USA, analysts at New York City Transit (NYCT) have published a number of Title VI and 

EJ analysis methodologies using ADCS. The agency was the first to determine disparate impacts 

using statistical methods rather than heuristic rules (Reddy, Chennadu, & Lu, 2010). Fare-impact 

methodologies were developed to estimate the impacts of the March 2008 and December 2009 

proposed fare change using two methods (Hickey, Lu, & Reddy, 2010). Span adjustments and 

route modifications accompanied the fare increase, and t-tests were performed on load factor and 

travel time distributions to demonstrate no disparate impact (Wang, Lu, & Reddy, 2013). 

The federal reporting process has been generally criticized for missing large segments of target 

populations through analysis of averages aggregated by zones, rather than examining outcomes 

at the level of individual persons. Furthermore, the comparison of averages between populations 
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rather than examining different distributions of individuals masks the existence of winners and 

losers across and within populations (Bills, 2013). This leaves planners without sufficient 

information for localized decision-making to identify interventions to correct disproportionate 

impacts. 

The Massachusetts Bay Transportation Authority (MBTA), the transit provider for the Boston 

Metropolitan Area (Boston), must regularly perform Title VI and environmental justice reporting 

as a condition of Federal funding (most recently conducted by CTPS (2014)). A 2014 study by 

Williams, Pollack, & Billingham used American Community Survey (ACS) data from 2011 to 

examine commute times by race and income for the Boston Metropolitan Area. They found a 

significant commute time penalty for Black commuters versus White ones across all modes 

which was most pronounced on the bus (on average an extra 70 hours per year). In an Ordinary 

Least Squares (OLS) regression, when controlling for income, racial penalties persisted. While 

the data used for their analysis was from individual surveys, it had been geographically 

anonymized to such a degree to render a spatial analysis of impacts impossible. Additionally, 

information about the journey to work was missing important contributors to travel times such as 

journey distances, the number of transfers between vehicles or modes, and whether the journey 

required mandatory stops. 

1.1.4 Summary 
As ADCS have become more prevalent, researchers have explored how these systems can guide 

social policies. The US federal regulation requiring transit agencies to provide equitable service 

benefits regardless of color, race, or national origin is an example of such a social goal that can 

be better informed with these systems. While agencies have begun incorporating these data into 

Title VI and EJ analyses, the current federal reporting requirements have not kept pace with the 

availability of data and the ability to perform finer resolution analysis. This thesis explores how 

inferred OD data can enable finer grained equity analysis.  

1.2 Objectives 
This thesis demonstrates the feasibility of using a month of inferred origins and destinations from 

transit ADCS to perform periodic analysis of the spatial variation of transit service as part of 

ongoing service monitoring and in order to fulfill Federal Title VI reporting requirements. In 

order to accomplish this goal the following objectives must be met. 

Infer boarding and alighting locations and times for bus journey stages in Boston 
AVL data at a stop-level resolution are required for OD inference, however the bus AVL system 

was not designed to specifically record arrival times at stops. An appropriate source of AVL 

must be selected and processed to synthesize the stop-level input for inferring boarding and 

alighting locations.  

Infer alighting locations and times for rail journey stages in Boston 
In a rail system where users’ exit information is not collected, alighting locations and arrival 
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times must be inferred. Rail AVL must be processed to derive stop-level arrival times, and these 

data must be used in an arrival time inference process to determine the time at which each user 

arrived at their rail destination. 

Infer interchanges between journey stages of any AFC-enabled mode 
From the inferred OD, link together stages into journeys as accurately as possible by adapting 

heuristic parameters for the specific MBTA transit context. 

Prepare OD inference process to be run over months 
This analysis requires multiple days of data to analyze travel behaviour and transit performance 

over time. The inference and preprocessing algorithms must be automated to be able to run over 

multiple days. 

Develop methodologies for analyzing spatial variation of transit effectiveness 
Assess current equity analysis methods and their critiques in the literature and from these 

propose new methodologies for analyzing spatial variation of transit effectiveness that better 

reflect passenger outcomes using ADCS.  

Link users to demographic census data 
In order to compare user behaviour and experienced service across different demographics and 

geographies, a link must be made between the fare payment ID and that user’s home location. By 

determining users’ home locations, the demographics of their home neighbourhood can be linked 

to their ID to demonstrate how transit use and experience differs by neighbourhood 

demographics. 

Determine if differences exist in home based journey characteristics across demographics and 
space 
Determine the distance, travel time, speed, and number of transfers for home-based trips for 

different users and compare the distributions by demographics. Map differences in behaviour and 

experience. Identify regions where differences are larger and explore causes of poor transit 

effectiveness. 

Propose and evaluate a set of solutions to differences in transit  
Based on the analysis performed, determine a set of potential solutions; for example: bus route 

modification, increased bus frequencies, fast frequent commuter rail service. Evaluate the 

impacts of these solutions.  

1.3 Thesis Organization 
The thesis is divided into two parts: the work required to process and infer ODs in the Boston 

context (Chapter 2) and the subsequent use of this OD to analyze spatial variation in transit 

effectiveness in Boston (Chapters 3-5). Chapter 3 presents an overview of efforts to quantify 

transportation equity and presents a history of analyses in Boston. Chapter 4 contains the 

methodology used to process the inferred OD from Chapter 2 into metrics used for the analysis 
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of spatial variability in transit outcomes. The results of this analysis are discussed in Chapter 5 

and select solutions to identified differences are proposed and evaluated. The final chapter 

reflects on the study’s findings and presents conclusions and recommendations for future 

research. 
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2 Origin, Destination, and Interchange Inference at the MBTA 
This chapter details the updating required to infer origins and destinations (OD) from automated 

fare collection (AFC) and other automatically collected data sources provided by the MBTA 

using the inference software package developed in Gordon (2012). For a detailed explanation of 

the bus origin-, destination-, and interchange-inference algorithms the reader is invited to refer to 

that thesis. This chapter will present a high-level overview of the data and algorithms required to 

perform OD inference and an explanation of the differences between the data available in the 

MBTA system and in prior work.  

This chapter explains the methodology required to generate a month of inferred OD for the 

MBTA. This includes the data pre-processing methodologies required to synthesize inputs to the 

OD inference algorithm from AFC, bus AVL, and heavy rail train-tracking data as well as the 

destination-inference algorithm required for passenger journey stages (equivalent to fare 

transactions) in the rail network.  Additionally, an explanation of modifications made to the 

interchange-inference algorithm is provided. After a discussion of the validation conducted to 

test the new methodology, the chapter ends with an explanation of the method used to automate 

the full inference process so that a month of data could be processed.  

2.1 Origin Destination Inference Explained 

The goals of OD inference is to process data from ADCS to synthesize for every stage, an origin 

(location and time) and destination (location and time). For networks where transfers can occur 

unobserved by the AFC system, multiple segments, each on a line, can make up a stage. Some 

applications have inferred only locations (Zhao, Rahbee, & Wilson, 2007) while others use 

scheduled trip times to determine arrival times (Nassir, Khani, Lee, Noh, & Hickman, 2011).  

The use of boarding and alighting times, as well as the coordinates of origin and destination, are 

important to journey inference. By applying heuristics to the time a user spends between stages, 

as well as the spatial characteristics of these stages, one can link stages together into journeys if 

no trip-generating activity can be inferred to have occurred between stages. In essence, if the 

primary goal of one stage is to reach the origin of a subsequent stage, then that stage should be 

linked to the next to form a complete journey.  

2.1.1 Open, Closed, and Hybrid Automatic Fare Collection Customer Payment Systems 

On the continuum (Figure 2-1) from open to closed AFC payment systems, an open system 

collects the least amount of information about user behavior: collecting a fee and recording a 

timestamp only when users enter the system. Examples of this type of system include transit 

systems in Boston, New York, and Montreal. At the other end of this continuum are closed 

payment systems, typically with distance-based and/or time-based fares. The calculation of each 

customer’s fare requires an exit transaction, thus recording the destination location and time such 

as in Singapore (Robinson, Narayanan, Toh, & Pereira, 2014) or Seoul. Between these two are 

systems that include a combination of open and closed modes, typically an open bus system and 
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a closed rail system such as in London, San Francisco, and Washington, D.C.  

 

Figure 2-1 Open-Closed AFC Payment Continuum 

2.1.2 Generalized Data Flow & Issues 

Figure 2-2 shows the generalized flow of the AFC, AVL, and schedule (stop and station 

coordinates, and stop arrival patterns) data necessary to complete the OD-inference process. The 

diagram includes only the fields useful to this application, while many others are usually 

included in each of the referenced tables. The data from some systems can be more processed by 

design. For example, instead of recording a GPS position and timestamp at given intervals, the 

London Buses AVL system detects stops along the route and records arrival and departure times. 

A more recent version of the London Buses AFC system combines AVL and AFC on board to 

provide an origin location for every transaction, thus bypassing the need for an origin-inference 

process.  

In legacy data collection systems, it is therefore necessary to synthesize automatically collected 

data prior to origin inference. First one must determine the “pattern,” or the sequence of stops 

served in a given route and direction, that is being performed by the vehicle. This is done in 

order to filter the set of stops to which the AVL system GPS records may be matched in order to 

infer the boarding or alighting stops. By also assigning a pattern to customers, one limits the set 

of stop events at which the customer can board or alight. This assumes that customers would not 

stay on a vehicle to travel on its next trip after a terminus. If a set of vehicle-trip start and end 

times exists then records can be matched to trips temporally, though this requires a reliable time 

when a vehicle transitions to a subsequent trip.  
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Figure 2-2 Generalized Data Flow for OD Inference, Bolded Boxes Represent Processes, Others Represent Data Sources 

In the MBTA context, stop arrival and departure times must be synthesized from raw AVL data 

and from the set of scheduled stops and their coordinates. Three different methods, depending on 

available data, are presented in section 2.3.2. With a pattern identified for both vehicle and 

transaction, and stop events generated, it is then possible to infer an origin by matching the 

vehicle location to the user based on the transaction time. 

By examining a user's history of transactions and determining their next origin of the day (or the 

first, presumably home, origin in the case of the last stage of the day), OD-inference algorithms 

find the information necessary to infer destinations. The method assumes that users do not travel 

between transit trips via other modes, therefore the destination of the current transaction is 

assumed to be the nearest stop to the target (often the rider’s next origin, or her first origin of the 

day) (Barry, Freimer, & Slavin, 2009; Gordon, 2012). Alternatively, for complex and circuitous 

networks, the destination can be inferred as the stop that minimizes the user's generalized travel 

cost (Munizaga & Palma, 2012). The arrival time at that alighting location is determined from 

AVL and a reasonable set of feasibility checks can be performed to confirm the reliability of the 

destination. 

For rail systems with gated entry, origin times and locations are already recorded in the AFC 
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transaction. The “pattern” used in the rail destination inference is then the network of stations 

which can be accessed from behind the entry gate. The arrival time can then be inferred from 

observed stop times at the inferred destination or from scheduled travel times. The methodology 

for this step is described in section 2.5.3 below. 

After origin and destination times and locations have been inferred, interchanges (i.e., transfers) 

can be inferred by a number of temporal and spatial filters resulting in single or multiple stage 

journeys being finally inferred. 

2.2 The Massachusetts Bay Transportation Authority (MBTA) 

The MBTA is the transit agency responsible for the operation of bus, light-rail, and heavy-rail 

transit in the Boston metropolitan area, and oversees the operation of contracted commuter rail 

and paratransit (see Figure 2-3). Service in the urban core consists of 191 bus routes including 

four bus rapid transit (BRT) routes, three subway lines, and a light rail line with four branches 

that operates as a subway in the downtown core. The network includes 7,691 bus stops and a 

network of 127 light-rail (LRT), heavy-rail, and BRT stations. The average April 2014 weekday 

has 53,000 stages beginning on LRT, 480,000 on heavy rail, and 341,000 on bus. 

2.3 Pre-processing Methodologies 

The inference of stop-level travel information necessitates greater data accuracy than is typically 

required for route- or station-level analysis. Transactions that report the bus route but not the 

vehicle trip, or that include timestamps with a few minutes of error, can be useful for reporting 

total boardings on a route or in a station during a particular hour. But the origin- and destination-

inference algorithms discussed in the previous section require knowledge of the particular 

vehicle trip, and any temporal error of more than a few seconds can cause the process to choose a 

different origin stop than the one the passenger actually used. Additionally, and more 

problematically, a significant enough mismatch between transaction and trip-start times at 

terminals will infer passengers to be on the wrong vehicle trip, usually travelling in the opposite 

direction, resulting in the impossibility of correctly inferring origins or destinations for those 

passengers. This section describes the processing required of each data stream prior to its use 

within the OD-inference algorithm.  

In order to generalize data processing, and reduce the variety of internal data sources to be used, 

data published in the General Transit Feed Specification (GTFS)3 and provided online by the 

MBTA4 (and many other transit agencies) were used wherever possible. This yielded the 

scheduled stop times for the modes to be processed, as well as spatial coordinates of these 

locations. 

                                                 
3 See https://developers.google.com/transit/gtfs/reference for more information about the specification. Last 
accessed (2014-11-28) 
4 The most recent can be downloaded in a ‘.zip’ file at http://www.mbta.com/uploadedfiles/MBTA_GTFS.zip  

https://developers.google.com/transit/gtfs/reference
http://www.mbta.com/uploadedfiles/MBTA_GTFS.zip
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Figure 2-3 MBTA Subway and Key Bus Routes Schematic 

2.3.1 AFC 

The MBTA’s AFC system collects fares on bus, LRT, and subway. Commuter rail fares are 

currently validated by conductors and are not recorded automatically, however passes exist that 

can be used on both commuter rail and the rapid transit network. The AFC system records 

detailed transaction information for cash, magnetic-stripe paper tickets (Charlie Tickets), and 

RFID-equipped smart cards (Charlie Cards). Since the AFC table does not contain all of the 

necessary fields for OD inference, some pre-processing was required. This includes a farebox 

clock correction algorithm which will be discussed further in the Vehicle Farebox Clock 

Correction section below. Figure 2-5 shows the entity relational diagram for this preprocessing 
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with the output table on the right (see Figure 2-4 for an explanation of the Crow’s Foot notation 

relationships between fields in different table).   

 
Figure 2-4 Entity Relationship Legend 

 

Figure 2-5 AFC Preprocessing Relational Diagram 

The goals of the preprocessing are to: 

 Create unique identifiers for fare payers 

 Assign origins for LRT and other stations 

 Assign a mode to every transaction 

 Assign a vehicle trip to bus transactions 

Unique Identifiers 
Because of the mixing of the three payment media (cash, ticket, card), the AFC serial number is 

not unique across all media and it is therefore necessary to create a compound identifier for users 

in order to for them to be uniquely identified within the OD inference algorithm. Additionally, 
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transfers are allowed for tickets and cards that pay via stored value, which results in transactions 

with the same serial number as the original ticket or card, but a different ticket type. Thus, 

transfer transactions must be linked to the original stored-value ID. 

The compound serial is created according to the rules in Table 2-1. Ticket Stock Type is a 

number which refers to the medium. Ticket User Type refers to the type of discount. Ticket Type 

refers to the type of pass. A cash serial number is started for every day and incremented with 

every transaction, so that each cash transaction has a unique ID.  

Table 2-1 Unique ID Concatenation Rules 

Medium Fields concatenated 

Cash TicketStockType-TicketUserType-Cash serial number  

Ticket (Stored Value or Transfer) TicketStockType-TicketUserType-Serial 

Ticket (Pass) TicketStockType-TicketType-Serial 

Card TicketStockType-TicketUserType-Serial 

Tickets with commuter rail or rapid transit passes are purpose created, so multiple tickets of 

different types could have the same serial, therefore the ticket type is used to create the unique 

composite key.  

Because cards can have both stored value and passes stored simultaneously, the composite key 

includes the discount type (TicketUserType) rather than the TicketType. 

Assigning Origins to Stations and LRT  
By using a look-up table for the deviceid column (the farebox ID) to match to station fare gates, 

the GTFS station codes are assigned to transactions made at stations. At the time of this writing, 

the surface portion of the Green Line LRT did not have accurate stop-level AVL data, so origins 

were inferred at the branch-level on the surface portion of the Green Line. This was done by 

matching the signcode to a signcode lookup table and using the LRT branch as the origin. 

Assign a Mode to Every Transaction 
There are three different modes a transaction can have for the purpose of origin inference. The 

transaction can 

1. be made at a station gate and require its destination to be inferred within the network of 

stations that can be accessed without making another transaction (all subway, and 

subterranean LRT & BRT); 

2. be made on a vehicle and require its origin to be inferred while requiring its destination to 

be inferred within the network of stations that can be accessed without making another 
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transaction (surface LRT and select surface BRT); 

3. be made on a vehicle and require its origin to be inferred and require its destination to be 

inferred along a route (bus and surface BRT). 

These modes are assigned in the AFC preprocessing using the following mutually exclusive 

conditional statements, respectively: 

1. If the transaction’s farebox ID is matched to a station. 

2. If the signcode is a surface LRT or the transaction is assigned to a trip on one of the BRT 

modes that enters the Silver Line Tunnel (Silver Line Shuttle, Silver Line 1 and Silver 

Line 2). 

3. If the transaction’s farebox ID is matched to a bus and that transaction occurred within a 

trip. 

Assign a trip to bus transactions 
In order to limit the set of stops to search for a potential origin or destination for a bus 

transaction, the transaction is assigned to a bus trip. This is done by matching the transaction to a 

trip performed by that bus based on the transaction time and the trip’s start and end time. If the 

transaction happens outside of a trip it is generally assigned to the subsequent trip if it occurred 

within a reasonable time before the start of that trip. 

Vehicle Farebox Clock Correction 
After running destination inference, it became apparent that vehicle farebox clocks could run 

slowly, with potentially inaccurate consequences for origin and destination inference. For 

example, Figure 2-6 compares inferred boardings and alightings to those observed by the 

automated passenger counter (APC) system on a bus route that ends at a rail station. The dotted 

vertical line indicates the temporal boundary between two vehicle trips, and shows that APC 

system recorded the greatest number of boardings near the beginning of the latter trip. The 

uncorrected AFC-inferred data show the largest number of boardings suspiciously occurring 

toward the end of the previous trip. 

Further investigation found that clocks are recalibrated when vehicles are in the garage when the 

farebox communicates with a central server during refueling or cash extraction. In normal 

operations the clocks will drift, a thorough analysis of all fareboxes revealing that most have 

clocks drifting by roughly seven seconds per day (Gordon, 2014). Such an error is insignificant 

for most purposes, but if uncorrected the clock error can lead to inaccuracies in origin and 

destination inference. This is especially true for transactions occurring at the beginning of a 

vehicle trip, since, due to clock drift, these will be assigned to the previous trip as in Figure 2-6. 
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Figure 2-6 Boarding and Alighting Comparison: Uncorrected AFC timestamps 

To address the issue of clock drift, the timestamps of AFC records are corrected by interpolating 

the temporal error of each farebox between clock calibrations. Data from each farebox log, 

which records the times of clock calibrations and cash removals, are periodically matched to data 

from that bus’ garage server log, which uses a reliable clock and also records cash removals. 

Immediately before clock calibration, the connection between garage server and farebox is 

logged in both databases. Clock correction is performed using the following methodology: 

1. The temporal error between the two systems’ observation of this event is determined to 

be the farebox clock drift since the previous clock calibration.  

2. An automated linear regression analysis is performed for each farebox with clock drift as 

the dependent variable and the independent variable the amount of time since the 

previous calibration.  

3. For each regression, the slope of the regression line, the rate of drift per day, will be used 

to estimate each farebox’s drift for each transaction using that farebox’s rate of drift and 

the time since the previous calibration 

4. If the regression for a given farebox has too small a sample or too low a coefficient of 

determination (r2), the median rate of drift from valid regressions is used.  

5. Finally, the time of each fare transaction is corrected using Equation 2-1, by adding the 

product of the time since the device’s most recent calibration and the estimated drift per 

day.  

Equation 2-1 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑇𝑖𝑚𝑒 =  𝑈𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑇𝑖𝑚𝑒 + (𝑇𝑖𝑚𝑒 𝑆𝑖𝑛𝑐𝑒 𝐿𝑎𝑠𝑡 𝑃𝑟𝑜𝑏𝑖𝑛𝑔 ∗  𝐷𝑟𝑖𝑓𝑡 𝑅𝑎𝑡𝑒) 
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This process was automated to correct all transactions. Figure 2-7 shows the result of this 

correction for the example appearing Figure 2-6. The reader can see that the orange and yellow 

dotted lines, representing the total boardings estimated using APC and AFC respectively, are 

much more closely aligned 

 

Figure 2-7 Boarding and Alighting Comparison: Corrected AFC timestamps 

2.3.2 Bus Stop Events 

Unlike in London, the MBTA’s AVL system was not designed to record arrival or departure time 

at every scheduled stop. Instead the AVL system records timepoints: key stops along a route that 

are used for performance measurement. Timepoints exist for a median of one in 4.25 stops, with 

recorded timestamps for one in 4.5 stops. 

Interpolation between Timepoints 
Using the travel times between stops derived from the GTFS StopTimes schedule it is possible to 

interpolate arrival times for stops between timepoints. A table of distances between stops was 

provided, and distances were measured either by odometer or from maps. It would be possible, 

however, to use GIS to “snap” stops to GTFS shapes and to calculate distances between 

successive stops, as timepoints have a key which references stops in GTFS. 

Interpolation was performed using a custom Java application, which excludes timepoints that are 

not stops (such as pull-out or pull-in locations or toll facilities), and which handles the 6 percent 

of timepoints that do not include temporal observations. The interpolator process loops over the 

timepoint array and searches for timepoint i in the stop array based on stop ID. It then searches 

for the timepoint i + 1 and sums the distance between the two timepoints. Travel time is 

calculated as the difference between the departure time of the current timepoint and the arrival 

time of the next. The time of a given stop event is then linearly interpolated using the average 

speed between its bounding timepoints and the distance travelled from the previous stop. No 

dwell time was assumed at stops since the origin inference algorithm was designed to handle 
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only cases where there is only one time observed at a stop. 

Announcements 
Boston’s buses are equipped with a computer that logs a variety of events with a GPS position, 

an odometer reading, and a timestamp. In order to comply with the Americans with Disabilities 

Act (ADA), buses broadcast audio announcements to provide equal access to real- time 

information for those who are visually impaired. This data set is similar to the AVL in Chicago 

(Zhao et al., 2007); however, GPS coordinates are included for every logged record. 

Internal announcements alert users to upcoming stops and are generally made twice: announcing 

the next stop when the bus passes through a specified geographic boundary (geofence) around 

the stop from which it is departing, and again upon entering a geofence around the stop it is 

announcing. External announcements are triggered by the doors opening and announce the 

information available on the headsign: the route, direction, and destination. 

Internal Announcements 
Using internal tables it was possible to associate the text announced by the AVL system with its 

associated stop. By selecting the last announcement recorded for each stop one could derive a 

rough approximation of the time at which a bus approached a stop. However, due to the large 

number of small cities and towns coexisting in the metropolitan area, it is possible for bus routes 

to have more than one stop with the same name, as stops are not uniquely named for each city. 

Further, data reliability issues led to the disqualification of this data set as a unique source of 

information: geofences around stops, like those around timepoints, could be unreliable, and if a 

bus’s computer was set to the incorrect route (or was suffering other technical difficulties) false 

positives could be obtained. 

External Announcements 
There are fewer situations in which no data are recorded for external announcements, as 

timestamps and GPS positions are still recorded despite some computer errors. Events are 

triggered and logged by door openings even if the audio is silent because the bus is out of 

service. The processing algorithm was written and executed in an open-source relational 

database with a GIS extension, and is executed as follows (see Figure 2-8): 

1. The GTFS stop arrivals table includes the stop pattern for every trip. A subset of this 

table is loaded into a temporary table with the cumulative distance for each scheduled 

stop calculated based on the either internally measured bus stop distances or distances 

calculated using the GIS extension. This table is joined to a PostGIS table of the 

geographic point objects for every bus stop based on stop ID. The locations of bus 

garages, bus garages with special identifiers populating the route and trip fields are added 

to this table in order to identify when buses are closer to a garage than to a stop on their 

route. To improve performance, a spatial index is created and analyzed on the positions 

of the stops. 
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Figure 2-8 Bus Announcement Entity Relationship Diagram for Processing Stop Events 

2. Trip records are used to assign trips to external announcements based on their 

timestamps. The table is preprocessed to use observed arrival and departure values where 

possible, and also record the previous trip’s arrival and subsequent trip’s departure. This 

allows for temporal buffers of 15 minutes on trip start or end times while ensuring that 

these are not also joined to previous or subsequent trips. 

3. The announcement log is joined to the announcement lookup table in order to use only 

external announcements. Geographic point objects are created using each announcement 

record’s latitude and longitude values. To prevent errors caused by invalid position 

values (outside [-90, 90] latitude, and [-180,180] longitude), a generous zone around 

Boston is used as a filter to ensure that GPS records are within the MBTA’s service area. 

The timestamp of each announcement record is compared to the pre-processed trip 

records. 

4. For every external announcement, a k-nearest neighbors (k-NN) search is used to return 

the nearest stop either in the pattern for its assigned trip or the set of bus garages. If the 

bus was closer to a garage than to a stop along the pattern, that record is discarded. In 

order to remove erroneous GPS records or spurious events, those logged further than 

250m (820ft) from the nearest stop were excluded. 
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5. In cases where stops appear out of sequence, odometer values (truncated to 1/10 mile or 

160m) are used to determine whether this is due to an incorrect GPS record. If the 

distance between the snapped stop and the previous stop is greater than 400m (1312ft) the 

distance travelled according to the odometer the record is excluded. Other records that are 

out of order—for example if the bus is short-turned but this is not reflected in the vehicle 

trips table—are conserved. 

6. The results from step 4 are joined to other tables to assign route, direction, stop name, 

stop sequence, and cumulative distance for each record. 

The results for 21 weekdays yielded a median of 190,628 stop events served (standard deviation: 

4,257), representing roughly 44 percent of scheduled service stops. 

Low-Frequency, Regularly Recorded Positions 
The buses also record and wirelessly transmit GPS position data to dispatchers and to published 

real-time feeds every 60 seconds5. Yang et al. (2013) describe a procedure to infer stop arrival 

times from these records using random sampling. This data source is the most reliable in terms of 

coverage of trips since positions are still broadcast and recorded when computer issues result in 

no announcements or timepoints being recorded. 

Selection of Preferred Bus Location Data Source 
Announcement records are clearly preferred over interpolating between timepoints because of 

the better resolution of the data source and the increased temporal accuracy. However, 

announcements records do not necessarily exist for every trip, and due to filtering of inaccurate 

GPS positions, records are excluded. It is possible to supplement these with fixed-interval GPS 

records, which are present in more trips. However there is valuable information in the 

announcement records not absent from the more frequent (every 60sec) records: notably whether 

the bus opened its doors (and therefore whether any passenger could have boarded or alighted). 

Having arrival times for all scheduled stops introduces false positives inferred at locations where 

buses did not actually stop. Therefore it was preferred to have a smaller set of AVL data, and 

therefore lower OD inference rate, with higher confidence in observed behavior. Thus the 

external announcement data set is used in this research.  

2.3.3 Processing Behind-the-Gate Arrival Times 

For modes in which customers have access to a network, rather than a single bus route, of stops 

and stations after paying their fares, a new arrival-time inference process was developed and is 

described in 2.5.2 below. The algorithm was designed to use GTFS stop times, in order to 

maximize portability of the code, to facilitate testing, and to be able to process lines (the Green 

Line LRT) which do not yet have stop-level vehicle tracking. The goal of this “behind-the-gate” 

                                                 
5 See http://www.mbta.com/rider_tools/realtime_bus/ for bus arrival predictions. There is also a feed published in 
the GTFS-realtime format at http://realtime.mbta.com/portal 

http://www.mbta.com/rider_tools/realtime_bus/
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data preprocessing algorithm was therefore to produce an equivalent set of stop times using 

observed data. This was done by combining data for the 3 different modes that can be accessed 

behind the gate as detailed in Table 2-2. 

Table 2-2 Data Sources Used for Underground Arrival Times 

Mode Data Stream Used 

LRT GTFS scheduled stop arrival times 

BRT Processed external announcements (see the External 

Announcements heading of section 2.3.2 above) 

Heavy Rail Track circuit records 

 

Heavy rail data come in the form of track circuit records on the three heavy rail lines, for which 

the processing algorithm is describe in the following paragraphs. Figure 2-9 below shows the 

different tables used in this processing, as well as the output of the processing algorithm. 

 

Figure 2-9 Track Processing Relational Diagram and Output Data 

Each record contains a trip ID, a timestamp, and the location ID of that circuit. By matching 

location IDs to a lookup table, one can match records to their locations, and whether that circuit 

is at a station platform. There is one circuit per platform per direction.  

Because of the use of multiple platforms at terminals, not all circuits are reliably triggered for 

station arrival and exit. A table was prepared of track circuits which are reliably triggered when 

trains enter or exit those terminal platforms. By filtering the circuit records for either being one 

of those terminal track circuits or presence at a station, the resulting set has platform arrival 

times for all stations and departure times at terminals. For arrival times in this set, the algorithm 
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then finds an approximate departure time using the next triggered circuit. Since the goal of this 

processing was to provide data to determine the feasibility of an individual boarding a given train 

and then that train’s arrival time where the individual alighted, rather than determine accurate 

dwell times, this was deemed a satisfactory estimate of platform arrivals and departures. 

On two branches, the trip IDs change to the subsequent ID prior to arriving at the terminal, 

between the penultimate station and the terminal. This is corrected for by using the previous trip 

ID as the trip ID if the previous station is different from the current record’s station. If the 

previous station is the same, then the train has reached a terminal and the trip ID will be different 

from the previous ID. 

For the three heavy rail lines the output is an average of 17,581 stop events per Friday (SD=65) 

and 17,093 stop events per Monday-Thursday weekday (SD = 437) which is 94.4% of the 

scheduled Friday stops service and 96.1% of scheduled Monday-Thursday stops service. 

2.4 Bus OD Inference  

This was performed using the same process as in London (Gordon, 2012), with the Java code 

being updated to accept different input data. Because AFC transactions in Boston are precise to 

the second, origin inference was modified so that the origin of transactions are assigned to the 

stop immediately preceding the transaction time, except for a user-specified buffer before the 

next stop. In London, transactions were truncated to the minute, so transactions were assumed to 

occur on the 30th second, and due to this imprecision in time, origins were assigned to the closest 

stop in time.  

The sensitivity of destination-inference rates to user-specified parameters was compared between 

the two cities. The distance from the candidate alighting location to the user’s target destination 

(the subsequent origin or the first origin of the day) is graphed in Figure 2-10. The parameter was 

originally 750m however a second maximum in the distribution was discovered between 750m 

and 1000m. Increasing the maximum destination inference parameter to 1000m would result in a 

potential increase in destination inference rate of 2.1 percentage points.  

2.5 Underground Destination and Arrival Time Inference 

Unlike London’s closed rail system, which yields the times and locations of passenger origins 

and destinations, Boston’s underground rapid transit network, which allows behind-the-gate 

transfers, is an open fare payment system. Destination locations and times must therefore be 

inferred for Boston’s rapid transit lines (heavy rail, light rail, and bus rapid transit) which offer 

transfers underground. The methodology developed is described below.  
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Figure 2-10 Comparing Sensitivity to Destination Inference Distance for Bus 

2.5.1 Other examples of destination inference in rail networks  

Barry et al. (2009), Munizaga and Palma (2012), and Zhao, Rahbee and Wilson (2007) all infer 

destination for open rail systems in New York City, Santiago de Chile, and Chicago respectively. 

All three methodologies use a nearest-stop assumption: that the user’s destination is closest to 

their subsequent transaction and that at the end of the day the user returns to their first origin.  

To infer alighting times, Barry et al use a schedule-based shortest path algorithm to estimate an 

alighting time based on scheduled travel time. Munizaga and Palma use a shortest path algorithm 

based on AVL to infer alighting times at Metro station. Zhao et al do not infer arrival times. 

2.5.2 Methodology 

Destinations are inferred using the aforementioned nearest-stop assumption with the set of 

feasible destinations being every surface and subway stop and station in the rapid transit network 

(see Figure)6. Arrival times are then inferred using the following methodology. 

2.5.3 Arrival Time Inference Procedure 

The authors prepared a deterministic path matrix for all rail OD pairs which was stored in a 

database as arrays of segments (each segment representing travel between one boarding and 

alighting along a single line) where each row contained: 

{Origin station, destination station, route, direction, alighting station, segment number} 

 

                                                 
6 The Silver Line 4 & 5 and the Mattapan High-Speed Rail Line cannot be accessed behind the faregate 
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The segment number increments from 1 for each segment required to go from origin to 

destination. The following assumptions were made: 

 Customers board the earliest train that stops at their segment alighting location. 

 Crowding does not prevent riders from boarding. 

 Arrival-time data are complete. 

 System wide access, egress, and transfer parameters are static. 

The arrival-time inference algorithm is executed as follows (see Figure 2-11): 

1. Look up the path for an inferred passenger OD pair. 

2. For each segment: 

a. Find the first trip to arrive after the customer’s transaction, for the specified origin 

station, line, and direction. 

b. Find that vehicle’s arrival time at the alighting station. 

c. If there is no arrival time, return to 2.a. 

3. If the segment sequence number is equivalent to the size of the path array then the 

alighting station is the destination and the arrival time is recorded. Otherwise use the 

alighting station as the next boarding station and the alighting station arrival time as the 

new transaction time and repeat from 2.a. 

Arrival inference was initially tested using GTFS scheduled data, and then a hybrid of track data 

(where available) and schedule data was used. The number of successfully inferred rail 

destinations increased by 4,300 (0.9%) using track circuit data versus simply using schedule data 

because these customers were inferred to arrive in time to board their next bus. Many of these 

passenger trips were then inferred to have been linked to the customer’s previous or subsequent 

bus or rail trips. 
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Figure 2-11 Arrival Time Inference Flow Chart 

2.6 Interchange Inference  

The same process as performed in London was used (Gordon, 2012) with the following 

parameters: 

 Minimum walk speed = 3000 m/hr 

 Maximum transfer distance = 1000 meters 

 Maximum bus wait time = 45 minutes 
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 Minimum transfer time allowance = 5 minutes 

 Circuity factor = 1.7 

 Minimum linked journey distance = 400 meters 

The sensitivity of each parameter was compared between Boston and London.  No significant 

differences in user behavior were observed, so the parameters remained unchanged. See 

Appendix A for this sensitivity testing. Overall 12.6% of weekday stages are linked into multi-

stage journeys. Due to the conservative setting of parameters, the inference rate is likely lower 

than the true rate of journey linking. Inferred transfer rates are below those estimated by the 

Central Transportation Planning Staff from surveys (Vanderwaart, 2015) and testing of the 

inference procedure is ongoing. 

Table 2-3 shows the proportion of stage-pairs that could be linked and that are linked by the 

combination of lines and mode used. The second column indicates the total number of sets of the 

stage-pair in the first column which occurred on weekdays in April 2014 and the table is sorted 

in descending order on the third column: the stage-pairs which were successfully linked into 

journeys. Stages were classified by their originating mode or line, in the case of rail. The 

following were excluded: 

 Stages where the subsequent stage was on the same route, or heavy rail after a heavy rail 

stage, since all heavy rail interchanges would happen behind the gate 

 Stages for customers who only had one stage on a given day, including stages where 

cash was used, since there are no subsequent stages to link the current stage to 

 Final stages of the day, since there are no subsequent stages to link the current stage to 

on that day 

 Stage-pairs that included an origin on the surface portion of the Green Line, since due to 

the lack of origin coordinates and stage travel times, it is impossible to link these 

Examining the absolute numbers of linked journeys, one immediately notices an asymmetry 

between bus and any subway line: overall, fewer journeys are linked where a user transfers from 

bus to rail than the reverse. However, this asymmetry also appears in the number in the second 

column, fewer users travel from bus to rail subsequently than the converse, especially for the 

Orange and Red Lines. Anecdotal evidence suggests this may due to bus drivers waving on users 

with passes where the pass validity is printed on the ticket due to large volumes of users 

boarding from the subway to the bus. This would lead to fewer bus boardings being recorded by 

the AFC system at heavy rail stations, and consequently fewer observed “heavy rail> bus” pairs 

of stages being recorded. The second to last column, which shows the ratio between the rail-to-

bus linked stages versus bus-to-rail shows only a small discrepancy in the link rates for the 

Orange and Red Lines. 
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Table 2-3 Potentially Linked Transfer Pairs of Stages and Transfer Rates 

Stage->Next Stage Potential 

Linked 

Stage-Pairs 

Linked 

Stage-

Pairs 

Link 

Rate 

Destination 

Inference 

Rate 

Arrival 

Time 

Inferenc

e Rate 

Rail-bus 

Ratio 

Ratio of 

Arrival 

Time 

Inference 

bus->bus 2,323,510 515,717 22.2% 73.0% 73.0%   

Bus->Orange Line 722,700 473,103 65.5% 79.9% 79.9%   

bus->Red Line 670,395 361,009 53.9% 74.4% 74.4%   

Red Line->bus 659,817 341,483 51.8% 77.3% 70.0% 96.1% 94.1% 

Orange Line->bus 634,678 383,172 60.4% 80.0% 76.1% 92.2% 95.2% 

bus->Green Line 138,472 67,712 48.9% 75.7% 75.7%   

Green Line->bus 126,393 51,736 40.9% 75.6% 55.1% 83.7% 72.8% 

Bus->Blue Line 119,881 72,608 60.6% 75.7% 75.7% 65.6% 69.2% 

Blue Line->bus 101,992 40,543 39.8% 76.9% 52.4%   

Bus->Silver Line 2,046 50 2.4% 40.9% 40.9%   

 

This column shows a different story for the Green and Blue lines, the difference in linking rates 

is more significant. This appears to be due to an asymmetry in arrival time inference. While 

destinations tend to be inferred at a higher rate on heavy rail, arrival times are not being inferred 

at a rate similar to the Orange and Red Lines on these two rail lines. This is currently being 

investigated and will be improved upon in future versions of ODX.  

2.7 Processing Months of Data 

The goal of the OD inference module is to run the algorithm one day at a time, once all the 

necessary inputs have been assembled. For retrospective analysis, however, it was necessary to 

infer OD for months of data at once. The AFC and AVL preprocessing scripts were programmed 

as PostgreSQL functions which could be queried to run over multiple days. A Bash script was 

developed which prepares the parameter file, calls the Java OD-inference algorithm, and then 

runs a COPY command to upload the results to a database. Performing OD inference for a month 

required approximately 30 minutes for the full MBTA system on a Linux server with a 6 core, 12 

thread CPU at 3.2GHz and 64GB of 1333 MHz RAM. 

2.8 Results and Validation 

Table 2-4 below shows the inference rates by mode for all weekdays in April 2014 and the top 5 

sources of destination inference failure. Because of the lack of AVL on the LRT, origin and 

destination inference is at a branch level on surface LRT branches. The top 2 main contributors 

to destination inference failure are: 

1. Users who only make one transaction per day, and 

2. Users’ target destination being the same location as their current origin 

In either case, there is insufficient information for that day from which a destination can be 

inferred. The latter case is partially due to the ability for users’ to gain entry for multiple people 
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on a single card or ticket using Stored Value. 

Destination inference is higher on the rail modes over the bus modes since rail users tend to use 

rail for the stage (either the subsequent stage, or the first of the day) that determines their target 

destination. For rail stages with the target destination at a rail station, the distance between a 

user’s inferred destination and the target is 0, since the destination will be inferred to be at the 

closest station to the target destination station which are one and the same. It is therefore likely 

that false positive inferences are introduced for these modes, since a user who uses a non-transit 

mode between rail stages can still have their destination inferred, since the destination distance 

and the travel direction tests do not apply to this case. This is less the case on bus, since each 

route is a distinct line, and therefore users using non-transit modes between stages are likely to 

travel more than the maximum destination inference distance of 1000m between bus routes, or 

travel in a manner to make the direction test fail.  

Table 2-4 Inference Rates by Mode 

 Bus  Surface LRT Heavy Rail 

Origin Inference 97.1% 100% 100% 

Destination Inference 56.4% 77.0% 74.8% 

Only One Stage In a Day 8.72% 16.7% 14.9% 

Distance Greater than 1000m 8.80% 2.10% 3.70% 

Target Destination same as Current Origin 7.23% 0% 4.69% 

Cash 5.21% 3.50% 0% 

User Travelling Away from Target Destination 4.77% 0.% 0% 

  

Table 2-5 lists the top 10 routes by destination inference rate for April 2014 weekdays and Table 

2-6 lists the bottom 10 routes by destination inference rate. For comparison the route with the 

highest ridership, the 66, had nearly 11,500 daily riders, and the 32 has the eighth-highest 

ridership. Routes with higher destination inference tend to have more ridership but don’t 

necessarily have higher origin inference. These routes are clustered around the Orange Line in 

the South West or serving the Orange and Red Lines from the North.  

Of the routes with low destination inference, the routes with IDs like 4XX are geographically 

clustered around Lynn or Salem, to the North East of Boston. The 7XX routes are the surface 

portions of the Silver Line BRT, and their low inference is due to the algorithm not yet 

processing destinations within the rapid transit network from surface bus origins.  
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Table 2-5 Bus Routes with the Highest Destination Inference Rates 

Route Origin Inference Rate Destination Inference Rate Average Daily Ridership 

132 98.2% 66.9%            799  

50 97.9% 66.7%         1,108  

352 99.3% 66.6%            272  

428 100.0% 66.1%            127  

87 98.6% 65.9%         3,262  

701 96.5% 65.6%         2,035  

97 99.6% 65.6%            856  

32 97.1% 65.5%         8,468  

106 98.1% 65.1%         2,457  

45 97.9% 64.6%         2,590  

 

Table 2-6 Bus Routes with the Lowest Destination Inference Rate 

Route Origin Inference Rate Destination Inference Rate Average Daily Ridership 

431 40.1% 0.3%               55  

741 87.4% 11.7%            324  

171 93.1% 18.6%               17  

746 92.8% 21.8%            225  

742 98.7% 21.9%         1,100  

465 96.7% 24.8%            310  

451 99.9% 31.1%            130  

429 99.4% 33.7%         1,283  

436 99.4% 34.2%            632  

52 96.3% 34.9%            523  

435 99.9% 35.3%            720  

  

The chart in Figure 2-12 shows the distribution of the number of stages for weekday journeys 

over the month. The mode is the mode of the first stage of the journey. 100% of LRT journeys 

are single stage since there is insufficient information (origin coordinates and time), for 

interchange inference to occur. Nearly 25% of bus journeys involve more than one stage whereas 

fewer than 10% of heavy rail journeys do (this does not include behind the gate transfers). 
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Figure 2-12 Stage Distribution by Mode 

2.8.1 Validation 

The results of bus OD inference was previously validated in London comparing the stage 

distribution to the London Travel Demand Survey (LTDS) (Gordon, 2012). No external data 

source which provided OD flows over the processed time period was available for large-scale 

validation of inference with the MBTA data. Load profiles were created for bus routes for visual 

inspection of results and the inference rate per route was analyzed to determine outlier routes. 

Additional validation is ongoing through the examination of bus loads and comparison with APC 

data. Subsequent to these validation exercises, the existing OD inference procedure may be 

improved in the future. 

2.9 Summary 

The methods originally developed to infer bus origins and destinations and multimodal 

interchanges in the London network (Gordon, 2012) have been updated to infer origins and 

destinations on the fully open multimodal system of the MBTA. Though the results of the OD 

inference algorithm have not been tested at large scale, there is evidence that estimates are 

reasonable. Scripts have been used to infer months of OD from archived data, and this output is 

further processed by a methodology described in Chapter 4 to generate performance metrics for 

the purpose of analyzing the spatial variation of transit travel described in Chapter 5.  
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3 The US Context for Transportation Equity Analyses 

Following an explanation of the methodology to automatically infer origins and destinations, this 

chapter positions this research within the context of transportation and transit equity analysis in 

the USA. First is presented a history of transportation equity regulations in the USA, followed by 

a review of critiques of the current state of equity analyses in transportation. Next comes a 

discussion of recent studies on equity in Boston including an examination of the most recent 

Federal Transit Administration (FTA)-required equity analysis of the MBTA and this procedure 

is critiqued in light of the state of the literature. Opportunities to integrate ADCS, in particular 

the OD inference developed for this research, into the three required forms of equity reporting 

are discussed. From this is developed a framework and methodology applied in subsequent 

chapters to the inferred OD data as a pilot alternative to the FTA-required analysis. 

3.1 History of Transportation Equity Analysis in the USA 

3.1.1 1964 Title VI of the Civil Rights Act  

At the Federal level, equity is first considered to have entered transportation planning with the 

passing of the Civil Rights Act of 1964. Title VI of this act prohibits programs and agencies 

receiving federal funding from discriminating based on race, color, or national origin. Despite 

this, highways were frequently built through minority neighborhoods, giving the largely transit-

dependent populations little benefit while burdening them with noise and pollution (Bullard, 

2004; Sanchez, Stolz, & Ma, 2004).  

In 1970 the U.S. Department of Transportation (USDOT) issued 35 FR 10080, a federal 

regulation requiring its agencies to comply with Title VI. It prohibited using “criteria or methods 

of administration which have the effect of subjecting persons to discrimination because of their 

race, color, or national origin” (49 C.F.R. § 21.5, emphasis added). Thus, transportation 

outcomes can be found to have a discriminatory element, without intent having to be proven. 

Regarding reporting, the requirement stated that funding recipients “should have available [...] 

racial and ethnic data showing the extent to which members of minority groups are beneficiaries 

of programs receiving Federal financial assistance” (49 C.F.R. § 21.9). In 1972 the Urban Mass 

Transportation Administration (UMTA, now FTA) began requiring its funding recipients to 

provide assessments of compliance with Title VI. UMTA’s rule stated that non-compliance 

could be judged based on disparate outcomes, whether the act, or failure to act, was intentional 

or unintentional (Urban Mass Transportation Administration 1975, Circular 1160.1, as quoted by 

Pucher (1982)). Pucher found that capital and operating subsidies had been distributed to modes 

such as commuter rail and subways which were disproportionately used by higher-income and 

non-minority riders.   

In 1988 UMTA’s guidance was updated and included specific requirements on reporting. Census 

tracts or traffic analysis zones (TAZ) whose proportion of minority residents was greater than the 

agency’s service-area proportion had to perform comparisons with non-minority geographic 
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units in that service area. The Level of Service Methodology required an assessment of routes 

based on service standards adopted by the agency (e.g. vehicle load, schedule adherence, transit 

amenities) and a comparison between the average performance of routes serving minority areas 

versus non-minority areas. The Quality of Service Methodology required determining travel 

patterns for a sample of minority and non-minority areas. For the top 3 destinations, metrics such 

as peak travel time and cost should be compared (UMTA C 4702.1). 

3.1.2 ISTEA and the Clinton Environmental Justice Executive Order  

The Intermodal Surface Transportation Efficiency Act (ISTEA), enacted by Congress in 1991 

expanded the roles of metropolitan planning organizations (MPOs) to plan and allocate 

transportation funding by providing direct federal funding to them. This put MPOs under 

requirements to follow Title VI and therefore regional transportation plans could not discriminate 

against Title VI’s categories of protected populations (Karner & Niemeier, 2013).  

In the late 80s and early 90s, a number of studies found that Federal agencies—in particular the 

Environmental Protection Agency—were applying laws in a disparate manner depending on the 

income and the race of affected communities. For example, hazardous waste facilities were being 

disproportionately sited in minority communities, and the EPA was found to regulate Superfund 

sites more strictly in predominantly White areas. Following these accusations the Clinton 

Administration issued Executive Order 12898 (La Londe, 2004). The Order directs agencies to 

identify and address disproportionately high adverse impacts on protected populations, 

expanding protected groups beyond the Title VI definition to include low-income populations 

(Clinton, 1994). This Order was operationalized by the US Department of Transportation 

(USDOT) with Proposed and Final Environmental Justice Orders in 1995 and 1997, respectively 

(USDOT, 1997). DOT guidance included social and economic effects as outcomes to identify 

along with human-health and environmental effects.  

Despite this order to ensure equitable outcomes, Gobillon et al. (2007) found in a review of 

studies published after 1998 that transportation planning and transit access to low-skilled jobs 

(due to lower auto ownership among low-income households (Taylor & Ong, 1995)) still had a 

significant role in maintaining the spatial mismatch hypothesis (Kain, 1968): that inner-city, 

primarily Black and low-skilled workers, were cut off from employment opportunities which had 

migrated to the suburbs.  

The 2001 Supreme Court decision in Alexander v. Sandoval limits the means of redress of 

disparate impacts proscribed under Title VI to administrative action only. The Court held that the 

original framing of Title VI gave the right to legal recourse to cases with demonstrated 

discriminatory intent rather than discriminatory effects (Laufer, 2002). In 2011 the Ninth Circuit 

Court of Appeals used this decision to require proof of discriminatory intent when an alliance of 

minority bus riders and advocates filed suit against the San Francisco Bay Area MPO (the 

Metropolitan Transportation Commission) for disparately subsidizing rail trips instead of bus 
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trips. Unable to successfully prove such intent, the case failed (Golub, Marcantonio, & Sanchez, 

2013). Federal regulation still requires agencies to assess, report, and remedy disparate 

outcomes, however the right for advocates to pursue legal remedy for these outcomes has been 

removed.  

3.1.3 Current FTA Requirements 

The most recent FTA reporting procedure was published in 2007 

(Federal Transit Administration, 2007)  and updated in 2012 (Federal Transit Administration, 

2012a) for clarity. It requires agencies operating 50 or more fixed route vehicles serving 

populations over 200,000 to conduct the analyses outlined in Table 3-1. 
Table 3-1 FTA required reporting 

Analysis Required Frequency 

Disparate Impacts & Disproportionate Burden Fare increase or major service change  

Transit Service Monitoring Every three years  

Demographic and service profile maps and 

charts 

Every three years  

Survey data regarding customer demographic 

and travel patterns 

A minimum of once every 5 years 

 

Service monitoring and demographic analyses are included in agencies’ triennial “Title VI 

Program” which documents efforts to comply with Title VI and EJ regulations submitted to the 

FTA for approval (Federal Transit Administration, 2012a, IV-1). The guidance on survey efforts 

is as follows (Federal Transit Administration, 2012a, IV-8-9): 

Fixed route providers of public transportation that meet the threshold in 

the Introduction section of this chapter shall collect information on the 

race, color, national origin, English proficiency, language spoken at home, 

household income and travel patterns of their riders using customer 

surveys. Transit providers shall use this information to develop a 

demographic profile comparing minority riders and non-minority riders, 

and trips taken by minority riders and non-minority riders. Demographic 

information shall also be collected on fare usage by fare type amongst 

minority users and low-income users, in order to assist with fare equity 

analyses. The demographic information shall be displayed in tabular 

format. […] 

The information required in this subparagraph may be integrated into 

passenger surveys employed by transit providers on a schedule determined 

by the transit provider but no less than every five years and may be 

collected at the time that such surveys are routinely performed, such as 

customer satisfaction surveys and origin and destination surveys used to 

update travel demand models. Transit providers should contact FTA for 

further guidance on survey sample sizes, data expansion procedures, and 
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data collection methods suitable to the transit provider’s specific situation. 

The monitoring requires comparison for each provided mode between minority and non-minority 

routes: defined as routes in “in which at least one-third of the revenue miles are located in a 

Census block, Census block group, or traffic analysis zone where the percentage minority 

population exceeds the percentage minority population in the service area. Transit providers may 

supplement this with ridership data and adjust route designations accordingly.” 

(Federal Transit Administration, 2012a, IV-9) (See section 3.2) This adjustment may be made if 

“ridership does not reflect the characteristics of the census block, block group, or traffic analysis 

zone.” (Federal Transit Administration, 2012a, I-4) After determining the status of routes, 

agencies must evaluate route performance based on service standards. The FTA prescribes the 

indicators but not the standards. Limiting this list to indicators which can be measured using 

ADCS these include but are not limited to: 

 Vehicle load 

 Scheduled headway 

 On-time performance (schedule adherence, or punctuality) 

 Service availability (density of coverage) 

Disparate impacts are found if the service meets agency standards inequitably, using a test 

decided upon by the agency, and approved by the FTA. Typically this is the “4/5ths rule,” where 

disparate impact exists if a protected population experiences less than 80% of benefits (TPCB, 

2011) although a 95% rule (BART, 2013) and 95th percentile confidence t or χ statistical tests 

(Reddy, Chennadu, & Lu, 2010) are also used. If disparate impacts are found, the agency is 

required to “take corrective action to remedy disparities to the greatest extent possible” 

(Federal Transit Administration, 2012a, IV-10). 

3.2 Critiques of the Equity Analysis State of the Practice 

Equity analysis regulation has been influenced by the availability of data and modeling capacity, 

but the state of regulations have not kept pace with advances in modeling, computation, and data 

collection capabilities. They have also been influenced by the idea of “neighborhood effects,” 

that disparate impacts, such as pollution, affect a population uniformly. But the social and 

economic benefits of transportation are linked to the access provided by the broader network at 

any given entry point. Analyses delineating geography between protected and reference 

populations assumes a homogeneity of population within that unit of analysis when the 

heterogeneity of behavior can result in an uneven distribution of transportation benefits within 

(Bills, 2013; Karner & Niemeier, 2013). For example, due to the mismatch in automobile 

ownership and employment, black and white residents in primarily minority tracts can have 
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different commute times and distances (Taylor & Ong, 1995). Ridership of two “Rapid” bus 

routes in Phoenix is disproportionately white compared to their catchment demographics. The 

Title VI analysis for the introduction of these routes was made using census data. Had the 

ridership data been used, a disparate benefit accruing to White customers would have been found 

(Karner & Golub, 2015). There is also an assumption that effects on minorities are equivalent, 

when in many cities Black and African Americans have been disproportionately burdened 

relative to other minorities (Gobillon et al., 2007; Williams, Pollack, & Billingham, 2014) 

For service performance, the unit of analysis is a route. Routes are determined to be minority 

based on the proportion of revenue-miles through minority tracts, when route boardings are not 

likely to be uniform and boardings within a tract do not necessarily reflect the demographics of 

that tract. The labeling of a route as minority based on the actual ridership of that route is up to 

the discretion of the agency. Following the identification of route status, performance is 

aggregated by minority status for each mode, further erasing consideration of ridership. 

Ridership is not evenly distributed amongst routes, and the fraction of routes experiencing sub-

standard performance can be different from the fraction of riders, minority or otherwise, who 

experience sub-standard performance. 

Bills (2013) recommends using metrics estimated at an individual level and then examining the 

distribution of these metrics to identify individuals who are better or worse off. This would also 

make it easier to identify the causes of disparities in order to correct them.  

Absent from the guidance is a requirement for sensitivity analysis: “How do different target 

populations, metrics, and definitions of equity affect the results of the analysis?” (Karner & 

Niemeier, 2013) 

A more comprehensive equity analysis would have individual outcomes as the unit of analysis 

and examine the distributions of these for different race and income categories. Where possible, 

the analysis unit of comparison should reflect actual ridership rather than approximations such as 

routes or route miles or stops or stations.  

3.3 Examples of Transit Equity Analysis from other US Agencies 

A search of the 12 Metros in the USA with subways found publicly available Title VI Service 

Monitoring Reports for only the MBTA and Bay Area Rapid Transit (BART), which confirms 

that FTA triennial Title VI reports are not widely distributed by agencies (Reddy et al., 2010).  

The BART system runs on distance-based fares, resulting in origin, destination and travel time 

being collected for every customer trip. From these data the analysts derive a customer-based on-

time performance metric, based on the difference between actual and scheduled travel time for 

each customer journey. However due to the difficulty in assigning performance to lines when 

many stations share multiple lines, these metrics are not aggregated to each line to be used in 

their Title VI reporting. The analysis also compares the demographics of catchment areas based 
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on the census to the actual demographics of riders boarding at stations and revises the minority 

status of stations based on the ridership survey data, changing 3 stations from minority to non-

minority, and one station from non-minority to minority status.  

3.3.1 Examples using Automatically Collected Data for Equity Analyses 

Despite not making its triennial Title VI Reports to the FTA publicly available, NYC Transit 

(NYCT) has published a number of its methodologies in peer-reviewed literature. As a 

consequence of the 2008 recession, NYCT faced a significant budget shortfall for 2009 and thus 

had to propose fare hikes and service restructuring.  

For both analyses they used thresholds to determine protected Census tracts based on averages 

for the entire city. According to the 2000 Census NYC was 65.02% minority. Only geographic 

units exceeding this threshold were considered to be minority—that is, a geographic unit that 

contained a population with a majority of minority residents might still not be considered a 

minority unit (for example, if the unit was 50 to 65.01 % minority). This threshold was chosen 

over a 50% threshold because with the latter gives rise to “most of the city being classified as 

minority and giving rise to analysis that would not be sensitive to actual disparities between 

heavily-minority areas versus somewhat-minority areas” (Wang, Lu, & Reddy, 2013). Minority 

status was not disaggregated into different race or ethnic categories in order to determine if 

different minorities experience different outcomes. Tracts were considered low-income if 

21.25% or more of residents were below the poverty line. 

The magnitude of the 2009 hike was severe enough that NYCT decided to explore new ways to 

analyze equity in order to challenge assumptions made in previous analyses. They developed a 

method to estimate average fares experienced by individual farecard holders, and assigned 

minority/non-minority and low-income/high-income status to individual farecard holders based 

on the status of the stations or bus routes that they first swiped in at. For each mode, t-tests were 

conducted, and statistically significant disparities were found. Since the fare hike was designed 

to correct previous inequities in fare policy, the proposed hikes were proven to affect non-

minorities, and higher-income individuals more severely (Hickey, Lu, & Reddy, 2010).  

In addition service reductions were proposed such as subway and bus route changes including 

service elimination, span changes, and route modifications (Wang et al., 2013).  

For span changes on bus routes: load factors were computed based on average AFC boardings 

relative to the number of seats on the vehicles used during the time periods to be cut. They 

determined the status of bus routes based on the 1/3 revenue mileage rule: if 1/3 of the revenue 

mileage of a route passed through tracts labelled as minority, then the route was classified as 

minority.  Disparities were determined if the average load factor for routes with protected status 

was significantly different from routes without that status. This did not appear to take into 

account the ridership on the spans to be cut: whether more protected riders were affected by the 
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service cut than high-income non-minority riders. 

For subway and bus route changes travel time was the metric analyzed with each route 

considered individually. Two OD matrixes were developed from the 2000 Census Journey-to-

Work data for minority tracts and non-minority tracts. For each route, the top 5 minority and top 

5 non-minority origin tracts within ¼ mile of the route to be modified were selected, and then the 

top 3 destinations were selected for each. For these 15 OD pairs the shortest path using the route 

is the initial condition. Since the analysts were unable to change the network structure in the 

journey planner, the shortest path without the changed route was the changed condition. Travel 

time and cost are calculated for each and a t-test was conducted to determine if the differences in 

travel time between minority and non-minority OD pairs was equitable. Had an inferred OD 

matrix been available (with inferred home locations as per Section 4.3), the data used would 

have been more current than 9 year old Census data. Moreover, with a more robust way of 

computing shortest-path travel times, the full set of OD pairs using that route could have been 

used, rather than the top 30. With disaggregate OD data, the t-test would have based on 

distributions of individual travel times rather than a limited subset of OD pairs travel times.  

3.4 Previous Analyses in Boston 

Williams et al. (2014) analyzed the transportation equity of the Boston-Cambridge-Newton, MA-

NH metropolitan statistical area (MSA). They used data from the American Community Survey 

(ACS), which is an annual supplement to the census sampling approximately one percent of the 

American population. Data is provided in 1-year, 3-year, or 5-year packages scaled to represent 

the full population. The ACS questionnaire includes questions about a respondent’s race and the 

mode and duration of their journey to work. The researchers used the ACS data in the form of 

Public Use Micro-Samples (PUMS), which are individual responses, weighted to represent the 

full population. To protect the anonymity of responses, these are anonymized to geographies 

encompassing a minimum of 100,000 residents known as Public Use Microdata Areas (PUMAs). 

Their primary finding was that the starkest travel time differential between races after controlling 

for a number of confounding and related factors was between Black and White commuters. The 

difference is greatest between bus users, which is the mode most used by Black public transit 

users. However, due to the spatial resolution of the data used, and the lack of data on distance, it 

is difficult to identify causes and solutions for this disparity beyond calling on greater 

consideration of race in transportation planning.  

3.4.1 MBTA’s Title VI & EJ Reporting 

The triennial equity analysis of the MBTA’s service is performed by the Central Transportation 

Planning Staff, which is directed by the Boston Region MPO. The most recent report was 

published May 2014 (Central Transportation Planning Staff, 2014) and is publicly available 



 

48 

 

online7. The 2010 system-wide survey results show the greatest proportion of minority ridership 

on buses (47%) and a greater tendency for them to use cash on bus (3% to 2%) and to use 7-Day 

passes (Bus: 8% to 4%, Rapid Transit: 7% to 3%). Low-income riders are more likely to use 

cash on bus (3% to 2%) and to use 7-Day passes (Bus: 8% to 3%, Rapid Transit: 9% to 3%) and 

less likely to use Monthly passes (Bus: 49% to 66%, Rapid Transit: 53% to 69%). Minority 

riders are more likely to use transit four or more times a week (Bus: 82% to 73%, Rail 86% to 

77%).  

Minority Classification 
Census tracts are designated as protected if they exceed the average proportion of minority 

residents of 26.2% for the entire MBTA service area, 175 municipalities served by bus, rapid 

transit, boat, or commuter rail within Massachusetts. Prior to the 2010 Census the analysis had 

been performed for 2 different zones: the urban fixed-route service area (65 municipalities) and 

the commuter rail service area (175 municipalities).  

Improving upon the revenue-mile approximation, a bus or rapid transit route is designated as 

minority if 40% of its boardings occur in minority census tracts. Boardings are measured using 

APC on buses, AFC at rapid transit stations, and manual ride checks where the previous data is 

not available, such as the surface light rail,   

Metrics 

A disparate impact was found “if the performance of a service provided to minority areas passed 

the service standard at a rate less than 80 percent of the service provided to nonminority areas.” 

(CTPS, 2014, 6-5). 

Bus: 

Vehicle Load: Disparate impact is based on the percentage of routes that pass the standard, 

which is based on the peak passenger load relative to the number of seats. For all 3 types of 

service (Weekday, Saturday, and Sunday) though there is a slightly lower proportion of minority 

routes that meet the standard, this proportion is only below 80% of non-minority service, 

resulting in a finding of disparate impact, on Sundays.  

Schedule Adherence: For bus, 75% of timepoints on route must pass the on-time criteria which 

is either schedule-based for service with a headway greater than 10 minutes or headway-based 

for high-frequency service. All high-frequency minority routes have better headway adherence 

than non-minority routes, although only 65.2% of minority routes pass on Weekdays. Low-

frequency minority routes are disparately affected on the Weekday Schedule Adherence 

                                                 
7<http://www.mbta.com/uploadedfiles/About_the_T/Fare_Proposals_2012/TITLE%20VI%20FINAL_with%20maps.
pdf> Last accessed March 11, 2015. Previous analyses are available at http://ctps.org/Drupal/recent_studies  

http://www.mbta.com/uploadedfiles/About_the_T/Fare_Proposals_2012/TITLE%20VI%20FINAL_with%20maps.pdf
http://www.mbta.com/uploadedfiles/About_the_T/Fare_Proposals_2012/TITLE%20VI%20FINAL_with%20maps.pdf
http://ctps.org/Drupal/recent_studies
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Standard: 22.3% of minority routes pass versus 32.7% non-minority routes.  

Rail: 

All heavy rail lines have over 40% of boardings occurring in minority tracts so no comparison is 

possible. 

Light-rail: 

Vehicle load: All lines pass the vehicle load standard during weekdays.  

Schedule adherence: None of the lines pass the schedule adherence on Weekdays except for the 

Mattapan High-Speed Line. This results in no disparate impact since a greater proportion of 

minority light-rail lines passes the standard (1 of 4) than non-minority (0 of 1), even though the 

number of minority lines failing the standard is greater than the number of non-minority lines 

failing the standard. 

Comparison of Boston Analyses 
The point of this comparison is not to identify inaccuracies in either analysis, but to highlight 

how the use of different metrics and methodologies to estimate them can lead to differing 

conclusions. According to Williams et al. (2014), there are differences in travel time on subway, 

but the supply side equity analysis demonstrates no possibility for comparison because all lines 

are considered minority. This shows a failing of the FTA’s reporting requirements to reflect the 

passenger experience. That travel times are significantly different for different ethnicity 

categories highlights the problem of treating the minority population as a homogeneous group 

rather than investigating different groups individually.  

For bus travel, that no disparate impact is found for high-frequency bus headway adherence 

when bus riders have such disparate travel times shows, in part, the consequence of not 

incorporating ridership into findings of disparate impacts. What proportion of minority riders 

bear the burden of routes that are not on time compared to non-minority bus riders? For both 

these cases behavior and the built environment are likely contributors to these disparate travel 

times. The report analyses a number of supply metrics representing accessibility to the network, 

including stop availability, and on-time performance, which affects out of vehicle waiting time. 

But it does not ask whether the network is configured to adequately supply the needs of all 

riders, when according to the disparate travel times found by Williams et al. (2014), the network 

is not fulfilling these. 

3.5 Using ADCS to Improve Title VI & EJ Reporting 

This section examines how ADCS, and the inferred OD from this research, can improve the FTA 

required analyses:  
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1. surveying demographics and ridership patterns 

2. analyzing fare changes and major service changes 

3. service monitoring 

3.5.1 Surveying Demographics  

It is clear that under the current regulation, the following must be collected by a customer 

survey: “race, color, national origin, English proficiency, language spoken at home, household 

income and travel patterns” (FTA, 2012, IV-6). Since the ACS has questions on all those 

attributes except English proficiency, the combination of matching inferred OD and originating 

neighborhood demographics could satisfy the spirit of the requirements. This would need to be 

arranged between individual agencies and the FTA. 

Maintaining the need to survey, it would be possible to survey ridership system-wide, asking for 

farecard numbers in order to match farecards with the required demographic information, thus 

satisfying the travel pattern reporting requirement. If there was an additional, or subsequent, 

prompted recall segment to the survey, as piloted in Boston by Chow (2014), it would provide an 

opportunity to validate OD estimation and the subsequent home location inference. This survey 

technique would still have to account for uneven demographic distribution of fare media, such as 

the required targeted sampling of users who pay cash in order to collect their travel behavior. 

The ability to link travel behavior to survey results through fare data could reduce the need for 

mass distribution of surveys on a route-by-route basis, increasing the accuracy of information 

about users’ transit trips by eliminating the need for trips to be self-reported and increasing the 

volume of trips captured in the survey by permitting many days of activity to be linked to user 

demographics.  

3.5.2 Analyzing Fare Changes and Major Service Changes 

Fare Changes 
The NYCT method described in Section 3.3.1 on page 46 is exemplary of the potential for 

combining disaggregate fare data with census data. The use of inferred OD and home location 

inference on all modes would better capture variations in demographics by census tract. 

Major Service Changes 
For all service changes, travel time should be the metric used for analysis and disparate impact 

examining distributions of changes in travel times due to proposed modifications as per Bills 

(2013). This requires a network model capable of generating stop-level OD travel times based on 

modified networks. For span reductions, analysis should first examine the potential for customers 

to use alternative service. If alternate service is infeasible, then should be determined whether the 

proportion of affected riders is disproportionate with respect to the population.  
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3.5.3 Service Monitoring 

The use of inferred origins, or APC if inferred OD is not available, and ACS data should be used 

to determine the number of riders with protected status affected by vehicle loads and schedule 

adherence that fail performance standards in order to determine disparate impacts. Vehicle load 

is a good measure of passenger discomfort from failing service, while also providing some 

information about where, when, and whether passengers are left behind.  

Ideally schedule adherence should be replaced with a passenger-centered metric such as excess 

journey time (i.e., the difference between a passenger’s actual and scheduled journey times)  

used by BART (2013) to better measure poor service. Additionally the distribution of passenger 

journey times should be examined to determine whether the network can be better configured to 

serve customer needs.  

3.5.4 Limitations of Inferred OD 
There are three categories of population for which OD information, by its nature, provides 

limited insight for equity analyses: 

1. Individuals who have the ability to switch to modes such as auto to avoid onerous transit 

trips 

2. Individuals who have no available transit 

3. Individuals who access transit by non-walking modes such as driving or biking.  

The consideration of the first two categories of persons begs the question for which population 

must service be equitable: should service be equal to all persons, regardless of whether they 

choose to take transit? The FTA guidance is unclear in answering this question, since it allows 

the use of either ridership or census data to determine the demographics of interest for an equity 

analysis. Yet the use of census demographics has been shown to allow service that 

disproportionately benefits the non-minority residents of minority areas to be deemed equitable 

by the standards(Karner & Golub, 2015). Agencies such as BART will revise classifications of 

minority status if ridership demographics at stations are different than those of the catchment 

area (BART, 2013). The use of trips with inferred origins and destinations as the unit of 

measurement will weigh the analysis towards transit riders who, by choice or necessity, use it 

regularly. Access to an automobile, and the ability to forego an undesirable transit in favor of an 

auto is correlated with race and income and Williams et al. (2014) controlled for this in their 

regression of travel times, adding a zero-auto household dummy variable. This variable was 

significant and positive: the absence of an automobile correlates with an increased commute time 

of one minute. This which would support the auto selection bias, but did not eliminate the 

difference in travel time found by their regression 

The MBTA’s service provision coverage guidelines are explicitly different between areas where 

population density is greater than 5,000 persons per square mile, and areas where it is not. In the 

former, it is assumed that users walk to service, and thus, in areas where there is bus, light rail, 

and/or heavy rail service, residents should be within at most ¼ mile walk of the network for 
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weekday service. This does not apply to areas with densities lesser than 5,000 persons per square 

mile, or those served by commuter rail or commuter boat, since it is assumed that users in those 

areas drive (MBTA, 2010). 

The use of inferred OD assumes equivalent access time, or rather, implicitly excludes it. Due to 

housing availability in the inner city, or low stop density in the suburbs, this may not be true, as 

some users may have to travel greater distances to access transit.   

Inferred OD will only measure trips that users actually make, and as mentioned above, there are 

limits to this information. It is beyond the scope of this thesis to make the judgment about how 

equity ought to be decided, but this does not preclude the use of the methodology proposed to 

inform transit agencies about the variation in usage by the demographics of users’ origins. This 

information could additionally be used by MPOs, which consider all modes, to evaluate the 

effectiveness of regional transportation plans. 

3.6 Proposed Metrics and Methodology 

The remainder of this thesis will provide an example analysis of service monitoring using 

passenger travel time and speed as a performance metric. Travel time an important indicator of 

the temporal burden of using transit to access opportunities, and one for which disparities by race 

have already been identified in the Boston Metro Area (Williams et al., 2014).  

The procedure will demonstrate how inferred OD can be used to monitor service quality, while 

also improving upon previous identification of disparities to examine causes of travel time 

disparities, determining if the following factors apply:  

 the spatial mismatch of housing and jobs resulting in greater travel distance 

 lower vehicle travel speeds 

 or a network improperly configured for the needs of minority commuters.   

After identifying causes, potential solutions can be proposed. This concluding section will first 

update the findings from the 2010 ACS to include distributions of travel time using the most 

recent ACS.  

3.6.1 Most Recent ACS 

The analysis below uses the 5-year estimates for 2013, the most recent year for which data is 

available. ACS data is available in PUMS (see section 3.4 for a description). Any PUMA which 

intersects an MBTA bus or rapid transit route was used (Figure 3-1). Only responses for people 

who commuted by bus, streetcar, and heavy rail commuters were used.
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Figure 3-1 PUMAs which intersect MBTA Rapid Transit or Bus 

Table 3-2 shows the average commute time for users who travelled by public transit (bus, rail, or 

LRT) by different race or ethnicities. Only commuters who identify as White and Other have an 

average commute time below the average population, with the greatest difference being between 
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those who identify as Black or African American, and those who identify as White. The 

proportion of bus riders who are White is 52%, which is comparable to the CTPS 2010 survey 

value of 53%, however there is a difference of 10% between the ACS 63% White Rapid Transit 

riders and the CTPS 73% White proportion. 

Table 3-2 Average Public Transit Commute Time by Race 

Race Average Journey to 

Work Time (min) 

Number of Public 

Transit Commuters 

White alone                              39.3 120,461 

Some Other Race alone                    40.8 10,217 

Two or More Races 41.2 10,475 

Native American 42.7 547 

Asian alone                              43.1 22,828 

Black or African American alone          45.0 33,600 

Average 40.9 198,128 

 

The distribution of these travel times is important, and the distributions for Asian and Black or 

African American commuters are shown in Figure 3-2 and Figure 3-3, with the White Alone 

population as reference. The graphs are smoothed using a kernel density because respondents 

tend to report their travel times in 10 or 15 minute increments. Given the discrete nature of 

responses, and their clustering in 15 minute increments, smoothing was applied to the graphs. 

The Asian distribution is similar to the White Alone one except for a shift to the right, with 

increased proportions of trips taking 45, 60, and 90 minutes. The Black or African American 

distribution shows a slightly greater proportion of commuters with really short travel times, but 

mostly the distribution also shows a substantial proportion of lengthier commutes, in particular 

above 60 and 90 minutes.  
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Figure 3-2 Journey to Work Time Distribution for Asian (Source: ACS 5-year 2013) 

 

Figure 3-3 Journey to Work Time Distribution for Black or African American (Source: ACS 5-year 2013) 

Since the Black-White differential is the highest, it will be the focus of this analysis since causes 

for travel time differences might be more readily apparent, and potential solutions could have a 

greater impact on reducing gaps in travel time. In the absence of survey data directly linking 

ethnicity to farecard data, it is necessary to infer this by other means. Chapter 4 will present a 
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methodology for inferring home locations from observed travel, and how these locations can be 

linked to census demographics by tract. It is important to note that this is only possible within 

regions where public transit usage is spatially heterogeneous across demographic variables of 

interest such as race. If the population were well mixed, it would be impossible to examine how 

demographics play a role in transit provision without directly linking users’ ethnicity with their 

fare data. Error! Reference source not found. compares residential location of public transit 

ommuters who identify as White and those who identify as Black or African American according 

to the American Community Survey (2013). Data is aggregated to census tracts instead of the 

PUMAs used above however “public transit” in this dataset includes commuter rail and 

commuter boat users. The thick black line was drawn around tracts which have a high 

concentration of Black transit users. This area, roughly representing the neighborhoods of 

Roxbury, Dorchester, and Mattapan, is 22.1% White, 58.6% Black and contains 21,504 Black 

public transit commuters. Assuming none of these Black public transit users commute via 

commuter rail, this represents roughly 2/3 of the Black rapid transit commuters in the MBTA’s 

service area. 

3.7 Summary 

This chapter has detailed a history of Federal requirements for equity analysis of transit and 

transportation in the USA. Examples of the state of the practice and criticisms of the state of the 

practice found in the academic literature were presented. The use of inferred origins and 

destinations to generate passenger-centric metrics addresses the critiques of overly aggregate 

supply-derived metrics. These data provide more information than survey data from the Journey 

to Work section of the Census Bureau administered American Community Survey, allowing the 

analyst to identify solutions to mitigate observed differences in travel time. Subsequent chapters 

will present an example of an analysis of the spatial variation of travel time using inferred OD 

data. Chapter 4 discusses the necessary processing to filter a comparable sample of regular 

commuters from AFC, and the inference required to link home locations with public transit 

demographics aggregated by census tract. Chapter 5 presents the results of an analysis of travel 

times of users from areas with predominantly Black or African American public transit 

commuters compared to areas with predominantly White public transit commuters. 
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Figure 3-4 Public Transit Commuters by Race: Black and White
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4 OD Processing for Analysis of Spatial Variability of Transit Effectiveness 
Following the discussion of the selection of indicators in Chapter 3, this chapter describes the data used 

and the processing required to generate the information input to the spatial analysis described in 

Chapter 5. In order to compare transit outcomes by demographics, it is necessary to link farecards to 

demographic data. In the absence of information directly linking a farecard to its owner’s race or 

ethnicity, farecards will be aggregated by tract based on the demographics of that tract. The 

demographics used are the American Community Survey’s data on the racial/ethnic proportions of 

transit commuters. In order to perform this linkage, home locations, an area where a transit user likely 

resides, will be inferred from each user’s usage. Farecards must first be filtered in order to have a 

sample of regular commuters who live near where they first access transit in the day. First the results of 

1 month of OD inference are described. Next will come the steps required to filter farecards in order to 

have a sample of regular commuters.  

Journeys occurring on business days in April 2014 are used, inferred according to the methodology 

presented in Chapter 2.  This chapter first describes general trends in the month of journey data before 

discussing the selection of a sample of regular transit users. For this sample, the process of inferring 

their home locations is described and its validation using the American Community Survey is 

discussed. 

4.1 Data Description and Exploration  
Weekday data for April 2014 represent a sample of 18.3 million stages, and 1.55 million distinct fare 

cards, to be further described below. The term fare card will be used to represent individual RFID cards 

or magnetic strip tickets. The breakdown by medium is shown in Table 4-1 below. The large triplex 

tickets are produced by fare vending machines which can be located in rapid transit stations or at a 

number of participating retailers throughout the metropolitan area. The “old tickets” are printed for the 

corporate pass program, and so are primarily monthly passes. Precut triplex are tickets produced by ** 

The small triplex tickets are produced by fare boxes on vehicles and are equivalent to the remainder 

when a customer pays more than a fare. Smart cards are the plastic RFID equipped cards that users can 

use over multiple months and an individual card can simultaneously contain stored value as well as 

passes of different duration (1 and 7 days or a full-month). 

The single use column tallies the number of users over the month who used that particular card only 

once in the month and that use occurred on a weekday. One can infer tickets are for the most part more 

disposable, less regular media with 30% of tickets being used once, whereas only approximately 8% of 

smart cards are only used once. The fare type for these single uses are overwhelmingly stored value 

transactions: a user using cash on a card or ticket in order to pay a reduced fare for a rare transit trip. 

Stored value is used for 28% of all transaction.  
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Table 4-1 Weekday Usage for April 2014 by Fare Medium 

Fare Medium Cards Stages Stages/day count 

Large triplex roll mag. stripe 687,427 3,257,460 155,117        2,261  

MBTA old tickets 24,583 466,780 22,228        6,920  

Precut triplex w. mag. stripe 24,754 247,301 11,776    229,093  

Small paper roll mag. stripe 21,028 32,018 1,525      90,750  

Smart card mifare 1k 793,372 13,916,061 662,670      15,812  

Cash - 411,545 19,597 411,545 

Total 1,551,164 18,331,165 872,913 756,381 

For users with more than one stage in the month, Figure 4-1 shows the number of days and weekdays 

each card is used, broken down by a combination of medium and whether the fare was paid with stored 

value or a pass. Tickets with stored value tend to be very disposable, used one or two days, and are 

very common, representing 60% of tickets. Smart cards with stored value are used more broadly over 

the month. Passes on tickets tend to be valid for fewer days, 30% of tickets are 7-day passes while only 

6% are monthly passes.  

  

Figure 4-1 Distribution of active weekdays for April 2014 

 

Figure 4-2 shows the distribution of stages per active weekday for the same combination of fare and 

medium as Figure 4-1 for users with more than 1 weekday stage. Since the ratio uses the number of 

weekdays the fare card was used on, the minimum usage rate is 1 and the bin of rate 1 exclusively 
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captures users who only travel one-way for more than 1 weekday. Because they only have one stage 

per day, none of their destinations can be inferred, but these users tend to use stored value rather than 

passes.  

 

Figure 4-2 Histogram of Stages/Weekday by Fare Type 

Figure 4-3 below shows individual destination inference rates as a function of the number of active 

weekdays. The bottom and top lines bracket the 10th and 90th percentiles rates while the middle line 

represents the average. In general, the destination inference rate increases as users are active on more 

days. This implies that the behavior of more active users closely aligns with the assumptions of 

destination inference namely: 

 That users do not travel between transit stages using other modes 

 That users return to their first origin at the end day 

4.2 Defining a Sample 
Since the goal of the analysis is to compare the transit experience of commuters, a subset of users who 

are most likely to be commuters must be extracted from the data described above. The variables used to 

limit this set described in the section below are: 

 The number of days of activity 

 Excessive activity 

 Users whose pass type implies they are not commuters 

 Median start time for the first weekday trip  

In order to link demographics to a user’s fare card, the users should reside within a specified buffer 

around their origins. Thus customers who take other modes such as commuter rail, or car to access 

rapid transit must be excluded. This will be discussed in depth in section 4.3 which describes the 

process of determining home location. 
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Figure 4-3 Destination Inference Rates by Active Weekday 

4.2.1 Number of Active Days 
As mentioned above, the more days a user is active, the more their transit usage follows the 

assumptions of destination inference. When setting a threshold for the number of days there is a 

tradeoff between better information about and having a smaller sample size. The MBTA prices its 7-

day passes to be similar to one quarter the price of a monthly pass in order not to burden 

disproportionately users who have insufficient cash flow to be able to purchase monthly passes 

outright. Of 7-day passholders who use a smart-card, 40% of them use their card over a period of 

greater than 7 days (Figure 4-4). However an overwhelming majority (94%) of these passes are 

purchased as tickets rather than loaded onto smart cards. This means that a threshold of active 

weekdays beyond 5 will exclude a large and distinct population of commuters. Thus a threshold of 4 

days was selected, which excludes 24% of 7-day fare cards. There remain 643 thousand fare cards used 

for 4 or more weekdays. 

4.2.2 Excessive Activity 
There is a small minority of cards that have so much activity over the month, in such a variety of 

stations, that the unique id cannot represent a unique user or fare card. These must be excluded from 

the final sample since destination inference is severely affected but also it is impossible to determine a 

home location since the card clearly represents many users. There are 4 users with more than 300 

transactions in April.  
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Figure 4-4 Distribution of the active period of 7-day passholders by medium (the spread of days over which the farecard is used) 

4.2.3 Students 
Students attending primary and secondary education are eligible for discounted fares. Since they 

represent a different population than adult commuters, these are excluded thanks to a flag in the fare 

type indicating the student discount. There are approximately 35 thousand farecards used for 4 or more 

weekdays that have a student discount. 

4.2.4 Start Time 
Figure 4-5 below shows start time for bus, streetcar, and heavy rail commuters according to the 

American Community Survey 5-year estimates for 2013. Individual responses were used, which are 

expanded to represent a full population of approximately 200 thousand regular commuters. These 

responses are anonymized to geographies encompassing a minimum of 100,000 known as Public Use 

Microdata Areas (PUMAs). Any PUMA which intersects an MBTA bus or rapid transit route was used.  

The discrepancy in start time in the morning peak, approximately 30 minutes, could be partially 

explained by the time required to access transit from a user’s home since the ACS asks when 

respondents left their houses.  The difference between the number of fare cards and the estimated 

number of commuters may be explained by a number of factors: the use of multiple fare cards, the 

presence of regular transit users in the AFC sample who are not considered workers by the ACS (e.g. 

college students, retirees, the unemployed), and commuter rail users who transfer to rapid transit.  

The 95th percentile of ACS commuters was used to exclude late start times, which corresponds to a 

journey to work start time of 15:10. This excludes the evening peak, and thus can prevent the inference 

of the home location at a user’s work place should they commute to work using commuter rail and 

return via rapid transit. Using this median start time excludes 15% of fare cards, leaving 494 thousand 

fare cards. 
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Figure 4-5 Distribution of users' start time for the journey to work (ACS) and first journey of the day (AFC) (NAFC = 581,934, NACS= 5,541 
representing 198,128 commuters) 

However, there is the problem of excluding nocturnal workers: users whose workday starts so late that 

it spans multiple service days. Assuming an 8-hour workday and a 30 minute commute a user would 

leave for work at the earliest at 18:30 to return the following service day. According to the ACS this 

would mean that as many as 4,000 users (2%) would be nocturnal workers. These users would appear 

in the AFC data as having very early first transactions since their first transaction of the service day 

would be the return journey from work, occurring close to 3:00AM. However the proportion of AFC 

users with very early median starts is smaller than that found in the ACS. There is little evidence that 

nocturnal workers are a large group of the regular transit users. Since home location inference uses the 

assumption that the first origin is within walking distance from a users’ home, nocturnal workers 

should be excluded from this inference. An alternative to infer their home locations should be 

developed. 

4.3 Determining Home Locations  
In order to link a customer’s observed activity to the demographics of their neighborhood it is 

necessary to infer their home location, a region where it is probable that that customer resides. In order 

to avoid the population fallacy the following disclaimer must be made: while location inference is 

made at the individual-level, it would be incorrect to assign characteristics of a population to an 

individual. Instead the goal of this location inference process is to aggregate the individual-level 

information about transit usage by zones for which demographic information is known.  

One must first determine which activity can be used to infer the location of users’ home. With the 

assumption that users are at home when the service day begins at 3AM then the user’s first trip of the 

day is made from near their home. It is possible to infer home location from the first origins of a user’s 

day.  
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The current state of the practice for equity analysis by the CTPS is to draw buffers around every stop 

and assign the characteristics of the surrounding areas to stops. This aggregates a lot of variety in 

census tracts around stops. Figure 4-6 below shows the distribution of the number of census tracts 

within a 1 km buffer around stops, and rail stations. It may be possible to infer more precisely the area 

from which users originate through processing their use of transit over time. 

 

Figure 4-6 Distribution of Number of Census Tracts Intersecting 1km Buffers around MBTA Stops and Stations 

With the information available from many days of OD inference, it is also possible to examine user 

behavior in finer detail. Rather than linking together aggregate flows with the demographics 

surrounding stops, the goal of this process is to be able to examine travel patterns at finer spatial 

resolution to determine how the transit system could better serve users. By looking at each user’s 

history, it should be possible to infer the area wherein they probably reside with greater precision. The 

methodology for this is the subject of this section, with carefully selected example users to guide the 

reader through the process. To preserve anonymity the underlying geography has been removed.  

From this filtered set of first origin stops, one could use the most frequented origin, however this would 

ignore information from other stops frequented by the user, and could use multiple stops equally. The 

weighted centroid could be used, but there needs to be a method to exclude outlier stops. Clustering is 

required to group together similar stops and exclude outlier stops, this can be performed by a spatial 

hierarchical clustering algorithm. 

4.3.1 Spatial Clustering of Stops 
In order to group together stops at a similar location, which are within walking distance, hierarchical 

clustering is used. The algorithm groups together stops that are closest to each until a maximum cluster 

diameter is reached. Initially each stop in a user’s collection of first origins is its own cluster. For each 

user’s collection of first origins the algorithm then runs in the following loop: 

1. Find the two closest clusters to each other. 
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2. If the distance between the furthest points in the two clusters is less than the specified 

maximum diameter, then group the two clusters together. 

3. If the distance between the furthest points in the two clusters is greater than the specified 

maximum diameter, then no further clusters can be formed and the algorithm ends 

Assuming that users will not walk further from their homes than the maximum destination inference 

distance of 1000m, the maximum diameter of any cluster is specified as twice a radius of 1000m.  

The hierarchical clustering algorithm was run on weekday ridership for April 2014. Of 494 thousand 

users, 414 thousand had first origins that could be clustered. The rest exclusively used Green Line or 

Mattapan as first origins. Figure 4-7 shows the distribution of the number of clusters per user.  

 

Figure 4-7 Distribution of Number of Clusters per User 

From the clustered groups of stops, the cluster where a user most frequently begins their day is most 

likely the one close to where they live. For users who start their weekdays in 2 or more clusters equally 

(see Figure 4-9), the smallest cluster is selected. Table 4-2 shows the distribution of these clustered 

users by ticket type. 

For users with 2 or more clusters, Figure 4-8 shows the sensitivity of the clustering algorithm to the 

maximum cluster diameter parameter, giving the distance to the nearest stop outside of the primary 

cluster. No user has another first origin within 200m of their primary cluster, and 99% of users do not 

have a first origin within 1000m of their primary cluster, indicating that the 1000m cluster radius is 

adequate. 
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Table 4-2 Distribution of Users by Ticket Type 

Ticket Type Number of 
Cards 

Cumulative Percentage of Regular 
Users 

Monthly RT Pass 136042 32.69% 

SV Adult (SC) 117649 60.97% 

7 Day Link Pass active FVM/TOM/RST 111559 87.78% 

Commuter Rail 19793 92.54% 

ID with SV Senior 10530 95.07% 

TAP & Blind 8382 97.08% 

SV Ticket 5960 98.51% 

Monthly Link T.A.P. 5219 99.77% 

The RIDE ID 453 99.88% 

Commuter Boat Pass 204 99.93% 

ID w/o SV Retiree 197 99.97% 

Public Official Ids w/o SV w Pb 62 99.99% 

Permit Senior/TAP 30 days validity 51 100.00% 

Local Bus Monthly Pass Adult 1 100.00% 

ID without SV Blind 1 yr. Validity 1 100.00% 

 

 

Figure 4-8 Distribution of Distance to Nearest Cluster for Users with >1 Cluster (N = 246,986) 

Figure 4-9 shows the distribution of the importance of the each user’s primary cluster, the cluster from 

which the greatest number of weekdays began. The importance is quantified as the proportion of days 

started in the primary cluster versus the total number of active days. One can see that 97% of users start 

more than 50% of their weekdays within their primary cluster. For the 3% who start more than half 

their weekdays outside of the primary cluster, there may be multiple clusters from which the user 

147235

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2
5

1
2

5

2
2

5

3
2

5

4
2

5

5
2

5

6
2

5

7
2

5

8
2

5

9
2

5

1
0

2
5

1
1

2
5

1
2

2
5

1
3

2
5

1
4

2
5

1
5

2
5

1
6

2
5

1
7

2
5

1
8

2
5

1
9

2
5

2
0

2
5

2
1

2
5

2
2

2
5

2
3

2
5

2
4

2
5

2
5

2
5

2
6

2
5

2
7

2
5

2
8

2
5

2
9

2
5

>3
0

0
0

 m

N
u

m
b

er
 o

f 
U

se
rs

Distance to Nearest Cluster (m)

Number of Users Cumulative Percentage



 

67 

 

started the same number of days. 

 

Figure 4-9 Histogram of Importance of Primary Cluster 

4.3.2 Customers who do not Reside near Transit 
Since this analysis requires that users live within walking distance of the stops from which they start 

their day, users for whom there is evidence that they do not live close to these stops should be excluded 

from the analysis. These users access transit stops and stations via modes other than walking, 

principally driving or commuter rail.  

Users who Access Transit via Auto 
Based on surveys of users, the CTPS has determined which stations are accessed primarily via auto or 

similar modes. Any user whose primary cluster exclusively contains these stations likely does not live 

near these stations and should therefore be excluded from the resulting sample. 

Commuter Rail Users 
Users who use both the urban transit network and commuter rail regularly can be identified by the 

ticket types that they use. If these users begin their days accessing urban transit at commuter rail 

stations then they have likely transferred to the transit network from commuter rail. The following are 

rapid transit stations which have commuter rail service: 

 Back Bay 

 Braintree 

 Forest Hills 

 JFK/UMass 

 Kenmore 

 Malden Center 

 North Station 

 Porter Square 

 Quincy Center 

 Ruggles 

 South Station 

Using GTFS data it is also possible to identify bus stops that are located within these stations by 
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joining based on the parent_station column. Of the 20,097 transit users who have a commuter rail pass, 

14,634 start the majority of their days on transit at stops which are located at a commuter rail station. 

Table 4-3 shows the distribution of the commuter rail stations where these commuters most commonly 

access the public transit network. Fractions appear in the totals because 11 users use 2 stations equally 

over the month. There is anecdotal evidence that commuter rail users may board buses at commuter rail 

stations by presenting their passes for visual inspection at peak times rather than having their pass 

validated by the AFC system, explaining the low ridership at Ruggles, a major bus hub.  

Table 4-3 Distribution of the Stations through which Commuter Rail Commuters Access the MBTA's Urban Transit Network 

Station Number of Users 

North Station 5511.5 

South Station 4835 

Back Bay Station 2187 

Porter Square Station 1140 

Ruggles Station 275.5 

Malden Center Station 198 

Forest Hills Station 192 

Braintree Station 107 

JFK/UMass Station 66 

Quincy Center Station 64 

Kenmore Station 58 

The goal of this filtering process is to retain only users who are likely to have walked to their first 

origin observed by the AFC system, therefore all commuter rail users have been excluded.  

4.3.3 The Information in stops that were not used 
Voronoi polygons represent regions of space that are closer to a point than any other. Their boundaries 

represent a line that is equidistant between two points. When a set of Voronoi polygons are generated 

using a set of stops for a given route and direction then an individual Voronoi polygon represents the 

catchment area for a given stop. An individual taking the bus in a particular route and direction at a 

given stop likely started walking towards that stop within the stop’s Voronoi polygon, since the 

represents the region which is closer to that stop than any other for the desired service. Figure 4-10 

provides an example of these polygons for the inbound direction of Route 01. To more accurately 

represent a catchment area, each polygon should be clipped by a buffer of a reasonable walking 

distance around its respective stop.  

Voronoi polygons were generated for every bus pattern, a unique combination of route, direction and 

sequence of stops, and for every rapid transit line.  
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Figure 4-10 Voronoi Polygons Created for the Inbound Direction of Bus Route 01 (Basemap licensed under CC-By-SA from 
OpenStreetMap) 

The home area is the area of the Voronoi polygons of the first origins used by an individual within their 

primary cluster. The centroid, the single point where the user would most likely reside given their 

transit usage, of each user’s stops is calculated, weighted by the number of times each stop is used. A  

Euclidean buffer is drawn around the centroid, the radius of which is 1km or the distance from the 

centroid to the furthest point in that cluster, whichever is greater. This buffer represents the walkshed of 

that user for those stops, around the centroid. The Voronoi polygons, the catchment areas for each stop, 

are then clipped by a buffer around the user’s weighted centroid. The union of these clipped catchment 

areas is the deemed the user’s home region location: the area within which the user likely resides. 

4.3.4 Joining to Census Tracts 
The home areas are intersected geometrically with census tracts, the smallest geographic unit for which 

the demographic breakdown of transit riders is available from the ACS. Tracts where no transit riders 

live, such as parks, are subtracted from home areas. Weights are assigned for the probability of each 

user 𝑗 residing in tract 𝑖 according to Equation 4-1 below 
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Equation 4-1 Weighing a User's Probability of Residing in a Given Tract 

𝑝𝑖𝑗 =
𝐴𝑗 ∩ 𝐴𝑖

𝐴𝑗
   

Where (𝐴𝑗 ∩ 𝐴𝑖) is the area of the intersection of user j’s home area and census tract i 

These weights will be used to aggregate statistics from user journeys in 4.4 and the spatial analysis of 

transit effectiveness in Chapter 5 below.  

4.3.5 Example 
Taking a particular user as an example. This person started their weekdays at 6 distinct bus stops during 

April for a total of 21 active travel days. Figure 4-11 shows these stops mapped with the stop markers 

scaled by the number days the used started at each one.  

 

Figure 4-11 Initial distribution of stops, scaled by number of days started at that stop 

The map also features the bus routes used to make the first trips of the day: the 87 Inbound and the 88 

Inbound. Both these routes serve the stops to the Northwest, which is near Davis Square in Somerville. 

The distance between the furthest stops of this collection of stops is approximately 4.1km.  

The hierarchical clustering algorithm groups together stops which are close together and within 2km of 

each other. Figure 4-12 shows the results of hierarchical clustering for this example user: where the 

stops to the northwest are clustered separately from the stop to the southeast (now blue). Since the user 

started more weekdays in the month from stops in the beige cluster, these are assumed to be the stops 

closest to that user’s home, and within walking distance.  



 

71 

 

 

Figure 4-12 Distribution of stops post clustering, with 1km buffer around new centroid 

The weighted centroid for this cluster is represented by the star. This point is the center of the stops 

near the user’s home, weighted by the frequency with which the user used each stop. A 1 km Euclidean 

buffer is drawn around these stops, representing the first guess at a region in which the user probably 

resides.  

But it should also be possible to use information about what stops the user did not use to better infer 

where there home location may be. The Voronoi polygons for the stops of each route the user boarded 

at represent the catchment area for each. By selecting only the polygons for the stops which were used, 

one excludes the catchment areas for the stops not used from the user’s probable residence. Figure 4-13 

shows the catchment areas for the stops from which the user began their day. Assuming the user is 

equally likely to reside in the area representing the union of these areas, then the percentages represent 

the probability the user lives in any given polygon. This example shows that this will weight termini 

more heavily, since terminal polygons, like the stop on the left, will be much larger than intermediate 

stops.  
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Figure 4-13 Clustered stops and home area in green 

Taking the intersection of the Voronoi polygons with census tracts produces Figure 4-14, where now 

the percentages reveal the probability of the user residing in any given census tract outlined in red. 

Attributes from the user’s observed transit journeys can now be aggregated by census tract using those 

probabilities as weights.  

 
Figure 4-14 Home area intersected with Census Tracts 

4.3.6 Final Sample 
The final sample is of 328 thousand fare cards who have travelled a total 10.6 million weekday stages 

and 4.3 million first weekday journeys in April 2014. 

4.4 Validating with American Community Survey 
This method was validated using data from the U.S. Census bureay’s 2013 5-year estimates of the 

Means of Transportation to Work by Selected Characteristics (S0802), which were available at a 
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Census Tract resolution. Census tracts which had no estimated transit commuters were excluded, since 

these enclosed large urban parks. The number of commuters residing within each tract was estimated 

using Equation 4-2. 

Equation 4-2 Estimating number of commuters per tract 

𝐶𝑖 = ∑ 𝐶𝑖𝑗 = ∑
(𝐴𝑗 ∩ 𝐴𝑖)

∑ (𝐴𝑗 ∩ 𝐴𝑖)
𝐼
𝑖=1

𝐽

𝑗=1

𝐽

𝑗=1

 

Where: 

(𝐴𝑗 ∩ 𝐴𝑖) is the area of the intersection of user j’s home area and census tract i 

∑ (𝐴𝑗 ∩ 𝐴𝑖)𝐼
𝑖=1  is the total area of user j’s home area which is present within census tracts, and therefore 

𝐶𝑖𝑗 represents the probability that user j resides within tract i 

The map in Error! Reference source not found. shows the result of this operation. There is a high 

ensity of users along the heavy rail lines, and very low density in the outer suburbs. 

The map in Error! Reference source not found. shows the comparison between the estimated number 

f commuters from AFC data and the estimates from the ACS. The beige cells represent the AFC 

estimate being within the error range for the ACS estimates. In the suburbs the AFC method tends to 

undercount with respect to ACS, likely due to the ACS including commuter rail users in quantifying 

public transit commuters. The AFC estimates tend to over count the users in the tracts along the heavy 

rail corridors. The AFC estimates will in general tend to be high since there are 328 thousand farecards 

to the ACS’s estimated 240 thousand commuters (which includes commuter rail users).
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Figure 4-15 Map of Commuter Density from AFC Estimate
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Figure 4-16 Map of Ratio of AFC: ACS Estimated Commuters
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4.5 Future Research 

4.5.1 Using Network Distances 
Much of the work in this chapter was performed using an assumption of euclidean geometry: that 

pedestrians are walking about on a flat plane. This approximation of the street network is 

computationally efficient, but not necessarily accurate, in particular over smaller distances 

(Okabe, Satoh, Furuta, Suzuki, & Okano, 2008). The pedestrian street network should be used to 

construct Voronoi polygons and buffers. 

The home location inference process should be validated with survey data where researchers can 

link the transactions used in the process to a home address.  

4.5.2 Other Applications 
The inference of locations of interest from inferred origins and destinations is not limited to 

residences. Other locations of activities, such as work, study, or recreation can be inferred using 

this procedure or its variants. See for example, Goulet-Langlois (2015) identifying user 

typologies based on transit travel and time spent at different activities at TfL. 

4.6 Summary 
This chapter has presented the processing required to generate the inferred journey data to be 

used in the analysis performed in the following chapter. A sample of users who are regular 

commuters and who likely live near their first origins in the day is selected from weekday users 

during April 2014. From this sample home locations were inferred by analyzing the spatial 

distribution of these users’ first origins. Home locations were then intersected with Census 

Tracts, the geographic unit containing the demographic breakdown of transit commuters. From 

the intersection of tract and home location, weights were derived, representing the probability 

that a given user resides in a given tract, in order to aggregate the 4.3 million first weekday 

journeys in April 2014 made by 328 thousand fare cards who are regular commuters by tract. 

This aggregation by tract is necessary to the analysis of  travel time differences between users 

from areas with predominantly Black or African American public transit commuters compared to 

areas with predominantly White public transit commuters discussed in Chapter 5. 
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5 Analysis of Spatial Variation in Transit Travel Times Using OD Data 
This chapter discusses the results of an analysis of the spatial variation of public transit travel 

times and speeds between White and Black commuters using the MBTA in the Boston 

Metropolitan area. This example analysis demonstrates how the use of inferred origin-destination 

data can provide better information about spatial variability of transit effectiveness than the 

federally required equity reporting methodologies discussed in Chapter 3. The use of individual 

passenger observations enables the analysis to reflect the passenger experience better than 

supply-side metrics while also revealing the elements of the public transit system that may be 

responsible for inequities. The purpose of Title VI and EJ analysis is to identify disparate 

outcomes, not to prove discriminatory intent, and the goal of this chapter is to reveal how travel 

time differences may be addressed, not to assign blame for their existence. 

A comparison between Black and White commuters was chosen for this analysis since an 

examination of the individual responses to the American Community Survey’s Journey to Work 

questionnaire reveals the greatest travel time difference between White and Black public transit 

commuters both in the data from 2010 (Williams, Pollack, & Billingham, 2014) and in the more 

recent 2013 data analyzed in Chapter 3. Regular commuters were selected from the AFC data 

using the procedure described in Chapter 4. In the absence of survey data linking the 

demographics of those selected users directly with their farecard, public transit demographic 

proportions from the American Community Survey at the census tract level were linked via the 

use of home locations inferred from travel behavior described in Chapter 4.  

Following a discussion of these data sources, performance metrics for commuting trips made by 

all are presented. Because aggregate ridership demographics are used in this analysis, it is 

necessary to select thresholds for these demographic proportions to determine areas from which 

public transit commuters are predominantly White or predominantly Black. The selection of 

these thresholds is discussed, as well as the sensitivity of the results to the selected thresholds in 

section 5.3.1. Journey performance is analyzed for the selected thresholds, and some solutions 

are proposed. The limitations of the data used are discussed, as well as their likely impacts on the 

results. 

5.1 Data Sources 

5.1.1 American Community Survey 
The U.S. Census Bureau’s 2013 five-year estimates of the Means of Transportation to Work by 

Selected Characteristics (S0802) gives the number of public transit commuters by race, income, 

citizenship status, occupation, and travel time by the 2010 census tracts. Unlike the PUMS data 

used in section 4.2.4, the public transit category includes categories for which there is no AFC 

inferred OD information such as commuter rail and boat. Figure 5-1 shows the proportion of 

public transit riders by different races identified by the ACS for census tracts for which at least 

one user’s home location was inferred. 
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Figure 5-1 Proportion of Public Transit Riders by Race (ACS 2013) 

Figure 5-2 shows the spatial distribution of the proportion of public transit commuters who 

identify as White, and not-Hispanic/Latino. The proportion of White riders is higher near Heavy 

Rail lines, in select neighbourhoods and towns in the inner core such as South Boston, 

Charlestown, the Back Bay, and Cambridge, or out in the suburbs. Minority ridership tends to 

concentrate in the Urban Core in the space between Heavy Rail lines or in a few suburban towns 

such as Randolph and Lynn. 

However the map below doesn’t reflect absolute numbers of commuters. The dot map in Figure 

5-3 below represent 10 commuters by one dot randomly placed within the census tract boundary. 

Thus intensity can be shown by the concentration of the dot color, while avoiding the issue of 

larger tracts on the periphery being more noticeable due to their size rather than their intensity. 

The geographic separation of Black and White commuters is still noticeable, in particular south 

west of downtown Boston and the drop in the number of commuters outside of the core served 

by rapid transit is now noticeable. 
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Figure 5-2 Proportion of Public Transit Users who are White Alone, not Hispanic or Latino (ACS 2013
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Figure 5-3 Dot Map of Public Transit Commuters Identifying as White or as Black and African American (ACS 2013)
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5.1.2 Inferred Weekday Home-based Journeys 
As described in the previous chapter, AFC farecards are linked to census tracts by estimating the 

probability that the user of that farecard resides in a particular tract based on the intersection of a 

user’s home area with the tract geometry. Figure 5-4 shows the distribution of the density of 

farecards across the metropolitan area.  

Of the 4.23 million first weekday journeys that regular commuters took in April 2014, 3.38 

million (79.8%) started from that user’s inferred home and 1.96 million (46.3%, for a destination 

inference rate of 58.0%) of those have an inferred destination and arrival time. Figure 5-5 maps 

the distribution of destination inference rates by tract. Given that destination inference rates are 

higher for transactions on the subway rather than bus, there is a sampling bias in favor of heavy 

rail trips as well as tracts located near heavy rail stations. 

5.2 Performance Metrics for All Journeys 
This analysis first examines the travel time of users’ home-based journeys to determine whether 

the travel time difference highlighted by Williams et al. (2014) can be found in the AFC data. 

Connected to travel times are the distances travelled. If certain users are travelling longer, but 

this is due to covering greater distances from their homes, then there may be policy implications, 

but it is not a failure of the public transit network.  

This section will examine journey characteristics for the entire network to set a baseline before 

examining journeys by the demographics of their originating tracts in section 5.4. Figure 5-6 

shows the distribution of journey straight line distances whereas Figure 5-7 shows this same 

distribution averaged by census tract. Due to the heterogeneity of behavior within each tract, 

when journey distances are averaged by tract the shortest average trip distance is 3km when 

approximately 20% of the individual trips are shorter.  

Waiting times are not recorded in the ODX output when a bus stage is the first stage of a user’s 

journey since payment occurs after waiting at the stop. For rail journeys, fare payment occurs 

before waiting for a vehicle, and for multi-stage journeys, the transfer time between the arrival of 

one stage and the departure of the next includes waiting time at the stop. Waiting time is inferred 

for bus stages in section 5.4.1. Given the assumptions required in its inference, results will first 

be compared by disaggregating statistics by mode, such that journey times with recorded waiting 

times are not compared with journey times lacking waiting time.  
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Figure 5-4 Map of Farecard Density by Census Tract
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Figure 5-5 Destination Inference Rate by Census Tract
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Figure 5-6 Distribution of Straight-Line Distance by Journey 

 

 

Figure 5-7 Average Straight-Line Journey Distance by Census Tract 

Figure 5-8 shows the distribution of travel times by mode while Table 5-1 shows journey time, 

travel time, and the number of segments averaged by each mode. The “Rail” label applies to any 

journeys involving the rapid transit network, including the Silver Line Waterfront. Mixed refers 

to a combination of bus and rail. Segments take into account transfers behind the gate. Distances 

are measured as a straight-line from origin to destination, in order to capture their proximity, 

rather than detours taken by the transit network.  
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As one would expect, bus is used for shorter journeys than rail. Rail alone is used for the bulk of 

journeys and travel times are typically between bus and a combination of bus and rail (mixed). 

Mixed mode journeys are longer because they are journeys involving a bus stage to or from a rail 

stage in the inner core and on average, they cover more distance. 

 

 

Figure 5-8 Distribution of Journey Time by Mode 

Table 5-1 Journey Averages by Mode 

Journey 

Mode 

Average 

Journey 

Time 

Average 

Speed 

(km/hr) 

Average Straight-

Line Distance (m) 

Average Number 

of Segments 

Number of 

Journeys 

Mixed 41.7 12.4 8647 2.31 315,618  

Bus 18.2 14.0 3855 1.14 450,781  

Rail 26.1 14.0 6316 1.22 1,058,094  

 

The map in Figure 5-9 below shows the spatial distribution of average journey times by tract. 

Since travel time is only inferred for journeys that start at a gated station, there are artifacts along 

the surface portion of the Green Line because journeys on that segment are not used. Besides 

these, the pattern resembles what one might expect from a largely radial system: shorter travel 

times in the center, growing longer as the distance from the center increases. There exist a few 

outliers outside the center which are likely due to there being few trips originating from those 

tracts.
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Figure 5-9 Map of Average Journey Time by Census Tract
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5.3 Threshold Selection 
In the absence of being able to directly link a race/ethnicity to a farecard, geographic thresholds 

must be used: tracts are selected based on demographic thresholds and outcomes for the sampled 

populations are compared. Due to the geographic aggregation, this results in “noise” being 

introduced, since populations are not homogeneous within tracts (Karner & Niemeier, 2013), 

even though, as Figure 5-3 showed, White Alone and Black/African American commuters are 

geographically separated. 

As per FTA guidelines, the thresholds are selected based on the proportion of each demographic 

in the service area. Unlike CTPS analysis, which includes the entire commuter rail catchment 

area, the area used here are census tracts which intersect MBTA bus or rapid transit lines. For 

this service area, the proportion of Black and African American public transit commuters is 

15.3% (37,444 commuters) and the proportion of White Alone is 56.1% (136,583 commuters), 

shown in the second column of Table 5-2. Two mutually exclusive samples are selected using 

these two proportions as thresholds, while excluding tracts which meet both thresholds, thus: 

 White tracts have a proportion of 56.1% or greater White Alone commuters and fewer 

than 15.3% Black or African American commuters 

 Black tracts have a proportion of 15.3% or greater Black or African American commuters 

and fewer than 56.1% White Alone commuters  

Table 5-2 shows that over 75% of Black commuters reside in tracts meeting the Black threshold, 

and 73% of White commuters reside in tracts meeting the White threshold. Despite this, Black or 

African Americans make up only 46% of commuters in tracts meeting the Black threshold, 

resulting in the overrepresentation of the experiences of other transit demographics in that 

sample. On the other hand, a majority of commuters in the White tracts identify as White Alone 

(78%). 
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Table 5-2 Tract Demographics for Black or White Thresholds 

 All Tracts Tracts Above 

Black Threshold 

Tracts Above 

White 

Threshold 

Tracts Above 

Both Thresholds 

Black Commuters 37,444  28,504  4,421  1,765  

Proportion of 

Black Commuters 

100% 76% 12% 5% 

Black Proportion 

of Commuters 

15% 46% 3% 22% 

White Alone 

Commuters 

136,583  15,692  99,461  5,173  

Proportion of 

White Commuters 

100% 11% 73% 4% 

White Proportion 

of Commuters 

56% 25% 78% 64% 

All commuters 243,334  61,762  127,575  8,034  

 

5.3.1 Selecting Appropriate Thresholds 
Though the FTA has explicit guidance on how to select thresholds, Karner & Niemeier (2013) 

recommend that equity analyses should examine sensitivity of the results to the threshold used. 

Prior to selecting a threshold to use for an in-depth analysis of trip characteristics, this section 

examines how varying the threshold affects the demographics and the performance metrics of the 

resulting samples. The demographics and performance metrics of the sample are calculated for a 

sample formed by using each integer threshold between 0% and 100% for the White Alone and 

Black or African American demographics. 
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Figure 5-10 Census tracts above FTA Black or White commuter threshold
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How Varying the Threshold Changes the Sample Demographics 
In selecting a threshold one wants to ensure that the sample has a high concentration of that 

demographic (𝑃𝑑𝑖, see Equation 5-1) while ensuring a good representation of the target 

demographic in the threshold (𝑅𝑑𝑖, see Equation 5-2). When selecting census tracts, as one 

increases the threshold for that target demographic, the proportion within the sample increases 

but as the sample size decreases so does the number of individuals matching the target 

demographic.  

Equation 5-1 Concentration of target demographic within a sample 

𝐶𝑑𝑖 =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑚𝑚𝑢𝑡𝑒𝑟𝑠)𝑑𝑖

(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑚𝑚𝑢𝑡𝑒𝑟𝑠)𝑖
 

 
Equation 5-2 Representation of the sample for a given demographic 

𝑅𝑑𝑖 =
(𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑚𝑚𝑢𝑡𝑒𝑟𝑠)𝑑𝑖

(𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑚𝑚𝑢𝑡𝑒𝑟𝑠)𝑑
 

Where: 

𝑑: 𝑡𝑎𝑟𝑔𝑒𝑡 𝑑𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐, 𝑒𝑥: 𝑊ℎ𝑖𝑡𝑒 𝐴𝑙𝑜𝑛𝑒 𝑜𝑟 𝐵𝑙𝑎𝑐𝑘 𝑜𝑟 𝐴𝑓𝑟𝑖𝑐𝑎𝑛 𝐴𝑚𝑒𝑟𝑖𝑐𝑎𝑛  

𝑖: 𝑠𝑎𝑚𝑝𝑙𝑒 𝑜𝑓 𝑐𝑜𝑚𝑚𝑢𝑡𝑒𝑟𝑠 𝑚𝑒𝑒𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 

The FTA guidance requires thresholds to be based on area averages, however these can be overly 

restrictive or overly permissive depending on the circumstance. Figure 5-11 and Figure 5-12 

show how the representation of Black or African American commuters, and White Alone 

commuters varies by varying the threshold of Black or White commuters respectively. In order 

to be mutually exclusive, each sample excludes tracts exceeding the area proportion for the other 

demographic. For: 

 White Alone tracts: Any tract exceeding 15.3% Black or African American commuters is 

excluded 

 Black or African American tracts: Any tract exceeding 56.1% White Alone commuters is 

excluded 

For example, the tracts in Figure 5-11 exclude tracts exceeding the area average proportion of 

White Alone commuters. Selecting the most permissive threshold of 0% still results in 12% of 

Black or African American commuters being excluded from the sample (the green line). At the 

FTA threshold of 15.3% Black (the black vertical dashed line), 76% of Black commuters are 

included in the sample, but they are not a majority of commuters in the sample (the magenta 

line). By selecting a threshold between approximately 20% and 50%, the sample would ensure 

that Black or African Americans are the majority in the sample, while the majority of Black or 

African Americans are included in the sample. The reference population of White Alone 
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commuters would be between 25% and below 10% (the blue line). 

 

Figure 5-11 Sample Demographics as Black Threshold Varies 

Figure 5-12 shows that White Alone commuters make up a majority of commuters in tracts that 

have a below average proportion of Black or African American commuters. Above the FTA 

threshold (the black dotted line), the sample has a majority White Alone population (78%) while 

including 73% of White Alone commuters. The sample would exclude a majority of White 

Alone commuters when using a threshold above 75%. Thus the FTA threshold would be 

inappropriate for selecting a sample of tracts housing Black or African American commuters, but 

would be reasonable for sampling the White Alone population. 



 

92 

 

 

Figure 5-12 Sample Demographics as White Threshold Varies 

For the 80 tracts which fall below both the White Alone threshold and the Black or African 

American threshold (see Figure 5-10 for their locations), Figure 5-13 shows their demographic 

breakdown. A majority of the 45,683 public transit commuters in these tracts are White, either 

non-Hispanic or White Hispanic. 

 

Figure 5-13 Demographic Proportion of Tracts below the FTA Thresholds for White Alone and Black or African American 
Commuters 
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How Varying the Threshold Affects Performance Metrics 
After identifying a range of possible thresholds to select which balance the need to adequately 

represent a group within a sample with the need to have a sample with a high concentration of 

members of that particular demographic, the sensitivity of the results to the selected threshold 

should be examined. This section examines how the performance metrics of interest—speed and 

travel time—vary according to the threshold selected. For each threshold from 0% to 100% the 

average characteristics of the journeys from home for the sample are calculated by aggregating 

metrics by Census Tract, with the statistics being weighted by the probability of a farecard holder 

residing within that particular tract (see Chapter 4). By showing how the metrics change by 

changing the threshold the analyst can observe the presence of trends in the metrics as the 

proportion of a demographic increases. It also highlights whether a selected threshold is stable: 

does changing the threshold by a few percentage points have a dramatic impact on the results?  

Figure 5-14 shows how the straight-line speed for each mode varies with the selected Black or 

African American threshold on the left plot, and the White Alone threshold on the right plot. The 

dotted lines show the average values for commuting trips for all races/ethnicities. Average rail 

and bus speeds are the same. Above the FTA threshold (the black vertical line), commuters in 

Black tracts have below average speed across all modes whereas commuters in White Alone 

have above average speed on bus and the combination of bus and rail. Though below average, 

rail trips for commuters from White Alone tracts are still faster than speeds from Black tracts. 

Above the 70% threshold for Black or African American tracts and the 80% threshold for White 

Alone ones, the speed varies considerably as the sample shrinks to below 25% and 35% of the  

respective demographics.  
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Figure 5-14 Average Straight-line Speed by Mode and by Varying Thresholds 

Also notable is that journey speeds slow as the concentration of Black or African Americans in 

the sample increases. A similar phenomenon can be observed with White Alone rail speeds, 

though bus and mixed speeds indicate no clear trends.  

Figure 5-15 shows that travel times tend to increase as the concentration of Black and African 

Americans increases. For all modes commuters in these tracts have above-average travel times. 

As with Figure 5-14 above, with thresholds above 70% for Black or African American tracts and 

80% for White Alone ones, the averages become unstable as sample sizes shrink.  

This increasing in journey times for commuters in Black or African American tracts is not due to 

these commuters living farther away as the concentration increases, Figure 5-16 shows that 

average journey distances do not increase as the threshold increases. Moreover, as one might 

expect due to their location, average journey distances are slightly shorter than for commuters 

from White Alone tracts. This also disproves the spatial mismatch theory that destinations are 

located further for Black or African American residents than for White ones.  
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Figure 5-15 Average Journey Time by Mode for Varying Thresholds 

 

Figure 5-16 Average Straight-line Distance for Varying Thresholds 
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Despite no increase in journey distance as the concentration of Black or African American 

commuters increases, the number of transfers required to complete these journeys increases. The 

proportion of trips requiring at least one transfer increases from over 35% to 55% at a Black 

proportion of 70% (Figure 5-17). Over the same range the proportion of trips requiring at least 

two transfers increases by over 5%. Meanwhile the proportion of trips requiring more than 1 

transfer for commuters from White Alone tracts barely goes above 35%. This indicates that the 

network is not currently configured to serve trips from Black or African American tracts very 

well, since shorter distances should not require more transfers.  

 

Figure 5-17 Number of Segments Required per Trip for Varying Thresholds 

There is therefore evidence for a difference in journey speed (Figure 5-14) and journey times 

(Figure 5-15) between commuters in Black or African American tracts versus commuters in 

White Alone tracts. It is telling that a population with lower average distances travelled (Figure 

5-16) who, given its location, should have better access, instead has longer travel times and 

lower speeds. This is partially due to these trips requiring more transfers (Figure 5-17), an 

indication that the network is not configured to serve these trips as efficiently as trips made from 

other zones. The increase in transfers causes an increase not only in actual travel time, but also in 

perceived travel time, as commuters tend to perceive waiting time as more onerous than in-

vehicle travel time. It also decreases journey reliability, as the possibility of missing a connection 

increases potential journey time.  

In the next section, distinct samples are selected to examine the reasons for these observed 
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differences in greater detail. In order to have greater concentrations of either demographic in the 

samples, a Black or African American threshold of 40% and White Alone threshold of 70% are 

selected. The average travel times and speeds at these thresholds do not vary greatly with minor 

variations in the threshold and the thresholds provide a reasonable balance between having a 

high concentration of the demographics while still retaining a majority of either demographic in 

the sample.  

5.4 Comparing Performance Metrics by Demographic Samples  
Table 5-3 shows the demographics for the two samples used in this section with the White 

sample being tracts above 70% White Alone public transit commuters and the Black sample 

being tracts above 40% Black or African American public transit commuters. The target 

demographics make up a majority of commuters in their respective samples, while the samples 

still contain over 50% of the commuters of the respective demographics (55% of Black 

Commuters, and 57% of White Commuters). 

Table 5-3 Tract Demographics for Black or White Thresholds 

Case Tracts Above Black 
Threshold 

Tracts Above White 
Threshold 

Tracts Below Both 
Thresholds 

Black Commuters 20,641 2,651 14,132 

Proportion of Black 
Commuters 55% 7% 38% 

Black Concentration 66% 3% 12% 

White Alone 
Commuters 4,130 77,903 54,494 

Proportion of White 
Commuters 3% 57% 40% 

White Concentration 13% 83% 46% 

Total 31,378 93,568 118,308 

Number of Tracts 61 252 230 

 

Figure 5-18 shows a map of the tracts. The Black tracts are close to the core, and principally in 

the region between the southwest ends of the Orange and Red Lines. The White tracts within the 

core are downtown along the Orange and Red Lines or along the branches of the Green Line. 

Otherwise they are out at the termini of the Orange and Red Lines, and occupy most of the 

suburbs.  One would expect the White Alone trips to be further, and bus trips to tend to be on 

express commuter buses. 



 

 

 

9
8 

 
Figure 5-18 Census Tracts above Black or White Commuter Thresholds (40% Black threshold, 70% White threshold)
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Figure 5-19 shows the mode split by demographic. Commuters from Black or African American 

tracts tend to use bus and the combination of bus and rail much more than commuters from 

White Alone tracts.  

 

Figure 5-19 Mode Split by Demographic 

5.4.1 Wait Time Inference for Bus Stages at the Beginning of a Journey 
Since fare payment on bus trips occurs after waiting for a vehicle to arrive, waiting times are not 

recorded for the first bus stage of a bus journey. In order to compare journey times across modes, 

it is necessary to infer bus wait times to include them in journey times for trips where the wait 

time is unobserved. 

In this section the waiting time was estimated for any bus stage at the beginning of a journey. For 

service with scheduled headways less than 10 minutes, passenger arrival times were assumed to 

be uniform and random, leading to waiting time estimates of Equation 5-3, or half the preceding 

headway. For the first bus trip of the day, there is no previous trip, the following headway is used 

as an estimate. 

Equation 5-3 Waiting Time for High-frequency Service 

𝑊𝑇𝑖𝑠 =
1

2
(𝐴𝑇𝑖𝑠 − 𝐴𝑇𝑖−1,𝑠) 

Where: 

𝑊𝑇: Waiting Time for a passenger boarding at stop 𝑠 on trip 𝑖 

𝐴𝑇: Arrival Time for trip 𝑖 at stops 𝑠 

38%
bus

23%
mixed

38%
rail

Black or African American

28%
bus

18%
mixed

54%
rail

White Alone
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For scheduled service, with scheduled headways greater than 10 minutes, two methods were 

used to have bounded estimates of the waiting time. First, wait times were assumed to follow a 

similar pattern to high frequency service, of a uniform arrival rate resulting in a wait time of half 

the headway. This ignores that passengers may want to look up the schedule for lower frequency 

service. In the second assumption, passengers were assumed to arrive at the stop at a constant 

average time before the scheduled arrival time of five minutes, and then experience waiting time 

equivalent to the schedule adherence. This assumes that none of the users have access to real-

time information, or that users don’t modify their “buffer time” before the scheduled departure 

based on previous experience of schedule adherence on that route. Nor does this penalize 

adequately the consequences of buses arriving at a stop early, which will result in some 

proportion of riders missing a trip and having to wait for the subsequent bus.  

Table 5-4 shows the results for the two samples. The half-headway method leads to higher wait 

times for commuters from White Tracts, as it estimates waiting from longer headways much 

more severely. With the second method, the average wait times have one second of difference in 

favor of commuters from Black tracts. These commuters benefit from a slightly larger proportion 

of their bus trips starting on high frequency routes. For the rest of this section the lower wait time 

estimates will be used. 

Table 5-4 Wait Times (min) by Threshold 

Threshold Average Wait Time 

Half-headway  

Average Wait Time 

Schedule-adherence  

High-Frequency 

Trips 

White Alone 14:52 07:29 38% 

Black or African American 12:57 07:28 40% 

 

Table 5-5 shows journey characteristics for the populations in White Alone and in Black or 

African American tracts, disaggregated by mode. Given the number of journeys in the samples, 

the differences in average travel time and speed are all statistically significant beyond a 95th 

percentile level using a weighted t-test.  

With wait time is included in all modes, it is possible to calculate an average travel time for each 

population by aggregating all trips across modes. This reveals the disadvantage commuters from 

Black tracts face due to relying more heavily on the much longer bus-to-rail mode (see modal 

split in Figure 5-19), with average travel times of 32.6 minutes to the 29.5 minutes of commuters 

from White tracts. This gap is greater than the gap of the individual modes due to the different 

mode splits and the relative travel times for each mode.  
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Table 5-5 Journey Time and Speed by Mode and Threshold 

Mode Bus Rail Mixed All Modes 

Threshold Black  White  Black  Black  White  White  Black  White  

Average Journey 

Time (min) 
26.8 25.5 50.5 27.3 25.4 48.1 32.6 29.5 

Average Speed 

(km/hr) 
7.9 9.4 10.3 12.4 12.8 10.8 10.2 11.5 

Average Straight 

Line Distance (m) 
3481 3985 8706 5611 5828 8750 5529 5836 

Number of Trips 74,746 169,544 46,199 75,877 332,639 108,594  196,822   610,778  

 

The difference of 1.9 min in rail average travel time is smaller than the travel-time penalties 

identified by Williams et al (2014) of 3.4 minutes for subway. The bus travel-time difference of 

one minute is also substantially less than the 8.4 minutes for bus identified by them (see Table 

5-6 below). Trips taking a combination of modes are reported under the respondent’s choice of a 

“primary mode”. Overall the travel time difference observed in the AFC of 3.1 minutes is nearly 

half the 5.8 minutes gleaned from the ACS.  

There are a few factors contributing to this. Since the ACS data is self-reported, differences in 

averages will be amplified due to respondents tending to report their travel times in 10 to 15 

minute increments (see the graphs in Section 3.6.1 for examples of this). Given that commuters 

from Black tracts tend to transfer more, perceptions of transfer time might increase self-reported 

travel times.  

Second, the average rail journey times are around 15 minutes shorter than the self-reported 

averages, and the bus travel times are 20 minutes shorter generally. This is because the AFC 

observations do not include access and egress times as part of journey time, whereas the ACS 

does. This implies that walking to access transit can be substantial, and that Black commuters on 

average may reside further from rail or bus lines. 

Third, it is possible that the ACS data are simply inaccurately over-reported or weighted and that 

this leads to the large differences in travel times reported by Williams et al (2014). 

Table 5-6 Average Journey Time Comparison between AFC and ACS (Williams, Pollack, & Billingham, 2014) Data 

Threshold Black  White  

Mode Bus Rail All Modes Bus Rail All Modes 

AFC Journey Time (min)  26.8 27.3 32.6 25.5 25.4 29.5 

ACS Journey Time (min)  47.1 44.2 45.9 38.7 40.8 40.1 
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Nevertheless, across modes the AFC data show that commuters from Black or African American 

tracts have slightly longer average commute times than the White Alone population, despite 

shorter average distances. For reference, the travel times from White tracts are 91.4% those of 

Black ones. This ratio is higher than the 80% rule that CTPS uses with the FTA’s approval to 

determine impacts. Therefore these results do not trigger a call to mitigate these differences per 

the regulation. However, subsequent sections demonstrate the value of inferred OD in 

highlighting areas of operations where interventions might be effective in reducing this gap.  

5.4.2 Analysis of Distributions of Metrics by Mode 
Due to the assumptions required for inferring waiting times for bus stages, and because average 

waiting times were not found to be meaningfully different between the two samples, journey 

time and speed metrics in this section will not include inferred bus waiting times. Observed rail 

speeds are therefore lower because platform wait time is included in the inferred OD travel 

times.  

The difference in travel speeds presented in Table 5-5 is partially due to users from Black or 

African American tracts making more transfers to get to their destination. Figure 5-20 shows that 

for a given distance, journeys from Black or African American tracts tend to require more 

transfers than those from White Alone tracts. Below that figure, Figure 5-21 shows the 

distribution of straight-line distances to indicate the relative frequency of trips being made of a 

given distance. 

Of the 42% of trips from Black or African American tracts which are made between distances of 

5 and 10 km, 56% of them require one or more transfers, compared to only 42% of trips from 

White Alone tracts over that same distance range. For journeys between 10 and 20 km, 9% of 

trips from Black or African American tracts, 81% of trips require more than one transfer, 

compared to only 53% of trips from White Alone tracts. This relative inaccessibility of the 

network, when, as the map in Figure 5-18 shows, Black tracts are mostly centrally located, 

suggests that the network has not been configured for the needs of Black or African American 

commuters. An increased number of transfers decreases trip reliability due to the possibility of a 

missed connection, and increases perceived travel time due to increased wait time.
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Figure 5-20 Distribution of Segments Required for Trips by Distance and Threshold 

 

Figure 5-21 Distribution of Straight-Line Distance by Threshold 

The increased number of transfers has implications for journey speed: average bus speed drops 

by 5km/hr after 1 transfer, as shown in Table 5-7. The table contains the average straight-line 
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speed aggregated by mode, threshold, and number of segments while also showing the relative 

proportion of trips for a given mode requiring a given number of segments. Cells in the table 

with fewer than 100 trips were excluded.  

Table 5-7 Straight-line Speed (km/hr) by Mode, Threshold, and Number of Segments 

S
eg

m
en

ts
 

Bus Mixed Rail 

Black or 

African 

American 

White 

Alone 

Black or 

African 

American 

White 

Alone 

Black or 

African 

American 

White 

Alone 

Speed Trips Speed Trips Speed Trips Speed Trips Speed Trips Speed Trips 

1 14.1 73% 15.0 91%     13.1 75% 13.5 79% 

2 9.3 25% 9.7 8.7% 12.5 69% 13.1 76% 10.5 23% 10.7 20% 

3 8.1 2.1% 7.8 0.4% 10.9 26% 11.3 22% 5.7 1.8%   

4     8.4 4.6% 8.8 1.7%     

Ave  12.7 14.5 11.9 12.6 12.4 12.8 

 

Except for rail journeys with 3 segments, for no other combination do commuters from Black or 

African American tracts have faster average speeds, with the difference in speed greater for 

journeys with fewer segments, and in particular for single speed bus trips. The bus speed 

differential is the combination of slower speeds, and the need to transfer more often, leading to 

the differences in average speed in the bottom row. 

The rail speed differential is a combination of trips being slower on the Ashmont branch of the 

Red Line, and more commuters from Black or African American tracts taking the slower Orange 

Line (see system schematic in Figure 2-3) as shown in Table 5-8. The greater speed on the Red 

Line can be explained by two factors: trips originating in downtown Boston, Cambridge and 

Somerville will have half the headways as trips on the branches because the trains from both 

branches run on the trunk. The second is that trips on the Braintree branch are likely faster 

because of greater stop spacing, and the trips are a longer distance, so platform wait time is a 

smaller component of the journey time. The Green Line trips originate in the Central Subway 

and neither sample had a substantial proportion of trips on the Blue Line.  

Commuters from White Alone tracts benefit from faster average bus speeds because they are 

sometimes riding express commuter buses from the suburbs to downtown Boston. Figure 5-22 

shows the relationship between average speed and distance for each mode, speeds are averaged 

by 500m distance bin. Bins with fewer than 210 trips, or 10/weekday, were excluded from the 

graph. Below it, for reference, Figure 5-23 shows the distribution of trips for each mode by 

distance.  
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Table 5-8 Rail Speed by Line for Trips with only 1 Segment 

Line Average Straight Line 

Speed(km/hr) 

Proportion of Trips 

Black or African 

American 

White Alone Black or African 

American 

White Alone 

Green  6.6 7.4 1.4% 8.6% 

Orange  12.2 11.9 44.8% 32.0% 

Red  14.1 15.2 53.8% 59.1% 

 

Speeds tend to increase with distance, and, for reasons identified above, speeds are lower for 

trips from Black or African American tracts. The difference is starkest for bus trips between 5.5 

and 11km long, 13% of trips from Black or African American tracts, where the difference in 

speed can exceed 10km/hr, though the difference in average over the range is 7km/hr. This 

appears to be primarily due to a much greater need to transfer over those distances for 

commuters from Black or African American areas (Figure 5-24); 72% of trips require at least 

one transfer compared to only 22% of trips from White tracts. Additionally, a greater availability 

of faster express buses from White suburbs to the downtown core is also an important factor.  

Between 3 and 4km, the location of the peak in White Alone bus trips, the average speed for 

White Alone trips is actually 0.7 km/hr slower than for Black or African American trips. 

However, this is mitigated by speeds below 3 km being faster for White Alone trips. Aggregating 

bus trips from 500 to 4000m, which include 69% of Black or African American bus trips and 

65% of White Alone ones, shows no difference in average speed. This reveals the importance of 

examining distributions, since the speed difference is null in the range where the bulk of bus trips 

are made, but the difference is substantial over medium distances.  
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Figure 5-22 Average Straight-line Speeds by Journey Distance and by Mode 

 

Figure 5-23 Journey Straight-line Distance Distributions by Mode 
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Figure 5-24 Distribution of Bus Segments Required for Trips by Distance and Threshold 

Figure 5-25 shows the distributions of start times for the journeys in both of the samples. For all 

modes commuters from Black tracts have a greater spread of start times than those from White 

tracts, with the difference in distributions greatest for bus trips. The greater proportion of trips 

outside of the peak could play a factor in lower trip speeds. In order to investigate whether this 

spreading of travel start time lowers average speeds, Table 5-9 shows how average speeds vary 

by time of day.  

Average speeds are typically faster in the early morning and then slow as the day progresses. 

However, speed differentials exist independently of time of day: for most time periods average 

journey speeds are lower for commuters from Black tracts. Speed differences in the AM Peak, of 

1.9 km/hr, 0.5 km/hr, and 0.4 km/hr for bus, mixed, and rail respectively, are comparable to the 

average speed differences by mode of 1.8 km/hr, 0.7 km/hr, and 0.4 km/hr excluding bus waiting 

times. For bus, that the average speed difference in the midday is slightly lower than the 

difference in the peak implies that the higher speeds, and higher proportion of trips with those 

higher speeds, in the off-peak periods except midday school reduces the average difference for 

that mode. For mixed journeys, the slower speeds and greater difference in speeds in off-peak 

periods result in increasing the average difference in journey speed by 0.2 km/hr. 
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Table 5-9 Speed (km/hr) by Time Period Hour, Mode, and Race 

 

Time period 

Bus Mixed Rail 

Black White Black White Black White 

Speed Trips Speed Trips Speed Trips Speed Trips Speed Trips Speed Trips 

Night/Sunrise 
[12AM,6 AM) 

16.3 7.9% 19.1 3.3% 13.2 9.5% 14.4 5.0% 12.6 5.4% 16.0 4.1% 

Early AM  
[6 AM,7 AM) 

14.0 13% 17.3 11% 12.7 18% 14.4 16% 13.4 10% 15.5 9.5% 

AM Peak  
[7 AM,9 AM) 

11.9 35% 13.8 53% 11.8 42% 12.3 55% 12.5 51% 12.9 54% 

Midday Base  
[9 AM,13:30) 

12.5 35% 14.3 29% 11.4 25% 12.1 21% 11.9 29% 11.9 29% 

Midday School 
[13:30,16:00) 

11.7 8.0% 13.7 5.0% 10.9 5.3% 11.7 2.9% 11.5 5.1% 11.1 4.1% 

All 12.7 14.5 11.9 12.6 12.4 12.8 

 

 
Figure 5-25 Distribution of Start Times by Mode and Threshold 

Rail is the only mode where journey speeds from Black tracts meet or exceed those from White 

tracts. This happens during the midday periods. Table 5-10 explores in greater depth the potential 

reasons for travel speed differences for heavy rail users by time of day, and why the gap might 

close during the midday. The “%Trips” column shows the proportion of trips made during that 

time period by users for a given sample on a given mode. Because only trips beginning on lines 

with substantial ridership are included, the values in %Trips will add up to close to 100% for a 
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given sample and time period. 

The faster average speeds experienced by commuters from Black tracts during the early AM 

period is due to a combination of faster speeds on both the Orange and Red lines, as well as a 

greater proportion of trips being made on the faster Red Line, with the proportion of trips on the 

Red Line decreasing as the day progresses. The big differences in speed observed in the early 

morning appear to be due to commuters from White tracts having substantially faster speeds in 

the early morning on the Red Line, between 3 and 4 km/hr faster than during the peak. This is 

likely due to better headways on the trunk and could be partially remedied by increasing 

headways on the Ashmont branch in the early morning, where a greater portion of trips from 

Black or African American tracts start than in the peak 

The closing of the gap during the midday is due to a combination of the gap in Red Line speeds 

decreasing and a shift in trips from White Tracts to slower lines like the Orange Line and the 

much slower central subway of the Green Line. 

Table 5-10 Average Heavy Rail Speeds (km/hr) for the Orange and Red Lines by Time of Day, Threshold, and Number of 
Segments 

Time 

Period 

Black or African American White Alone 

Orange Line Red Line Green Line  Orange Line Red Line 

Speed %Trips Speed %Trips Speed %Trips Speed %Trips Speed %Trips 

Sunrise 11.8 37.5% 13.1 62.2% 7.7 3.6% 12.3 33.9% 18.5 61.9% 

Early 
AM 

12.2 37.8% 14.2 61.5% 7.8 5.4% 12.9 34.6% 17.7 59.6% 

AM 
Peak 

11.6 44.1% 13.5 54.2% 7.5 9.3% 11.5 32.5% 14.5 57.9% 

Midday 
Base 

11.1 47.3% 13.0 50.7% 7.0 12.2% 10.7 31.3% 13.6 56.1% 

Midday 
School 

10.7 50.2% 12.5 47.8% 6.7 15.6% 10.5 33.6% 12.8 50.3% 

 

All of the factors discussed above lead to the distributions of travel times by mode in Figure 5-26 

below. Commuters from Black or African American tend to have both shorter and longer bus 

trips than those from White Alone tracts. The latter is due to medium-length trips being slower 

and requiring more transfers. For trips requiring a combination of bus and rail, the distribution of 

journey times is overall longer for commuters from Black tracts, again due to slower speeds and 

more transfers required. For rail trips, the middle of the distribution is shifted to the right for 

commuters from Black or African American tracts due to the relative speed of the Orange Line 

and Ashmont branch of the Red Line versus the trunk and Braintree branch of the Red Line. The 

next section, 5.4.3, will explore more specific areas for improvement based on these finding, 

leading to strategies to reduce these travel time differences that are suggested in section 5.6 

below. 
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Figure 5-26 Journey Time Distribution by Tract Threshold and Mode 

5.4.3 Mode-level Analysis  
Having identified the aggregated sources for differences in travel times in the preceding section, 

this section identifies looks at routes and combinations of routes where aggregate passenger-time 

from users in Black or African American tracts is greatest in order to identify potential solutions 

to be further discussed in section 5.6. Since one of the contributors to lower travel time speeds is 

the increased number of transfers required to reach destinations, it is possible to identify route 

pairs which could be good candidates to merge. For commuters using heavy rail only, the speed 

difference was primarily due to a greater reliance on the slower Orange Line and using a slower 

branch of the Red Line, neither of which can be easily resolved. 

Bus Trips Travelling between 5.5 and 11km 
As identified in Figure 5-22 above, the 13% of bus trips travelling these distances exhibited the 

greatest difference in speeds between commuters from Black tracts and those from White tracts. 

By aggregating journey times by bus route combination, in this case using only in-vehicle and 

transfer times, it is possible to query and find the bus routes on which aggregated passenger-

minutes for trips going these distances is the greatest. Ordering by this combined metric shows 

for which routes speed improvements would benefit a combination of numerous riders and riders 

with long travel times and have the largest effect on reducing travel time differences.  

The routes listed in Table 5-11 are the 15 route combinations for users travelling between 5.5 

and 11 km with the most passenger-minutes spent travelling on them. The third column displays 

this metric as a percentage of the total passenger-time spent making journeys in this range, to 

give an indication of how much passenger-time could be affected by speed improvements. For 
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routes where this proportion is larger than the proportion of trips made in this range, passengers 

taking this route combination spend on average more time travelling than the average passenger 

in this distance range. Most of the route combinations in the table listed involve a transfer 

because 72% of trips in this distance range require a transfer, which slows down travel.  

The table also shows how dispersed travel patterns are in this range, these fifteen route 

combinations only account for 38% of trips and 35% of the time spent travelling in this distance 

range, so single interventions can have limited impact on the overall travel times of users. 

However, some routes such as the 28 and the 23, which share Warren Avenue from its 

intersection with Blue Hill Avenue until Dudley Square and continuing to and then terminating 

at Ruggles, appear in a number of combinations. The two routes carry 22% and 10% of 

passengers respectively. So Warren Avenue could be a good candidate for improvements to bus 

speeds such as transit signal priority or queue jumping, which can save time for buses at 

intersections. 

Table 5-11 Bus Routes Used by Riders Travelling between 5.5 and 11 km  

Routes Average Speed(km/hr) Proportion of Aggregate Passenger-Minutes Proportion of Trips 

32->39 14.5 5.3% 6.1% 

28 13.6 5.2% 7.0% 

28->01 9.5 3.5% 3.1% 

31->39 11.9 2.7% 3.0% 

28->749 11.3 2.5% 2.4% 

238 20.5 2.4% 3.5% 

28->66 9.0 2.0% 1.6% 

21->39 10.5 1.8% 1.9% 

23->66 9.4 1.6% 1.4% 

30->39 10.8 1.6% 1.5% 

28->751 11.2 1.5% 1.5% 

23->01 8.7 1.4% 1.2% 

23->749 10.1 1.4% 1.4% 

28->47 9.0 1.2% 1.0% 

22 11.2 1.1% 1.4% 

Remaining routes 12.2 64.7% 62.2% 

 

Most of the routes listed in the table have below average speeds for the number of stages 

required to travel in this range of distances from Black tracts. For journeys in this range of 

lengths, the average speed is 16.5 km/hr for a single bus stage trip and 11.1 km/hr for two stages. 

Trips using the 32 -> 39, the combination on which passengers spend the most time, are far faster 

than the average two stage trip. For single stage trips, the 238 also has above average speed, 

though the 28, and 22 are slower than average. Of the route combinations involving a transfer, 

only trips involving the 31->39, 28->749, and 28->751 are faster than average. This hints that the 
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flow of passengers may be a factor in slower than average speeds for the busiest routes. 

The 749 and 751 are the two variations of the Silver Line Washington Street. Combining them 

would make the 28 to Silver Line the 3rd most used route combination for trips in this distance 

range. Looking at all trips for the two routes from which the most users transfer to the Silver 

Line Washington St, the 23 (Table 5-12) and the 28 (Table 5-13) shows 8.2% of trips on route 23 

and 8.4% of trips on route 28 transferring to the combined variations of the Silver Line at Dudley 

Square. Both of these routes share Warren Avenue from its intersection with Blue Hill Avenue 

until they arrive at Dudley Square. So the potential for through-routing the Silver Line with 

either the 23 or 28 with the other route continuing on to Ruggles Station should be further 

investigated.  

The 28 stands out as the most heavily used route in this range of travel distances, and with 

passenger trips below average speeds. Bus speed improvements to Warren Avenue, which carries 

the 23 and 28, approximately 32% of trips, would benefit the greatest number of trips. Beyond 

these two routes, most of trips in this range of distances travelled require one or more transfers. 

Thus interventions to increase speed would be best aimed at reducing transfer times, though the 

lack of concentration of trips on particular route combinations reduces the effectiveness of 

individual interventions. The discussion of reduction of transfer times continues in the next 

section. 

Table 5-12 Top Ten Most Frequent Route Combinations using Route 23 

Routes 
Average 

Speed(km/hr) 

Proportion 

of Trips 
23 12.9 68% 

23->01 7.7 4.8% 

23->66 9.1 4.9% 

23->749 9.9 4.9% 

23->751 10.3 3.3% 

23->47 8.4 2.0% 

23->08 7.4 2.0% 

23->240 14.2 1.0% 

23->19 7.2 0.69% 

23->16 7.2 0.61% 
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Table 5-13 Top Ten Most Frequent Route Combinations using Route 28 

Routes 
Average 

Speed(km/hr) 

Proportion 

of Trips 

28 14.3 65% 

28->01 8.6 6.1% 

28->749 10.6 5.8% 

28->66 8.4 3.8% 

28->751 10.3 3.6% 

28->47 8.1 2.2% 

28->08 7.9 1.7% 

28->15 14.7 0.86% 

28->22 8.4 0.79% 

28->45 9.2 0.74% 

 

Bus Trips Requiring One or More Transfers 
 

Most of the routes identified above involved one or more transfers, and the increased need to 

transfer was shown to be a source of slower speeds for bus trips, so this section will further 

examine where users are transferring, and to where, in order to identify potentials for travel time 

savings.  

By clustering together stops within a circle of 250m radius, the demand for groups of related 

stops can be aggregated together. Selecting the top 15 clusters requiring one or more transfers 

produces the map in Figure 5-27. Each circle represents a cluster of destinations, scaled by 

demand and with the color representing the average straight-line speed for trips to that cluster. 

The census tracts display the proportion of Black public transit users in each tract above the 

threshold of 40%. 

The demand for Longwood—accessed by route 39, and the combination 32 to 39, amongst 

others—mentioned above is apparent in the cluster of points around the southernmost branch of 

the Green line. Those three clusters have a notable spread in average speed, from at most 8.2 

km/hr on the northern section of Longwood served by the 8 and the 60, to at least 11.0 km/hr at 

the southeastern edge, served by the 39. The map also shows strong demand for points 

Downtown, near Park St. and the Boston Common at the terminus of the Silver Line 5. 

Most notable is the collection of points around the Boston Medical Center, just at the northern tip 

of the Black or African American sample region on Massachusetts Avenue from Albany Street to 

Washington Street. Approximately 1.5 km from Dudley Station, the major bus transfer hub, 

more commuters from  Black or African American tracts travel there by bus than from White 

Alone ones (17% more). They come from slightly further away: 3.3km versus 3.0km, but travel 



 

114 

 

at 1.1km/hr slower and 75% of them must transfer at least once to get there whereas only 25% of 

commuters from White Alone tracts must transfer to get there. Either extending the Silver Line 

south towards Grove Hall or extending the 23 or 28 North would eliminate much of the need to 

transfer at Dudley to access this area. 

Transfers could be made easier by regulating departures by using an even-headway strategy at 

the transfer stops, thus reducing the wait time. Table 5-14 shows the 10 locations where users 

from Black or African American tracts spend the most time, and these locations are mapped in 

Figure 5-28. Dudley and Forest Hills are both locations where due to large transfer flows, 

aggregate passenger time spent waiting is substantially more than at other locations, despite 

relatively low average wait times. 

Table 5-14 Bus Transfer Points where Passengers Spend the Most Time 

Transfer Point Average Wait Time 

(min) 

Total Passenger Wait Time 

(min/day) 

Dudley Station 5.6 2,609 

Forest Hills Station 6.5 1,422 

Ashmont Station 7.7 385 

Ruggles Station 8.1 381 

Mattapan 8.3 266 

Franklin Park Entrance 8.0 192 

Roslindale Village 11.7 125 

Brookline Village 15.1 99 

Roxbury Crossing 10.9 92 

Malcolm X Blvd @ King St 6.6 92 

 

Through-routing 
The benefits of through-routing select bus routes can also be estimated from the data by 

assuming new journey times without transfer times for multi-stage trips for any proposed 

through-route pair. Table 5-15 shows the ten bus to bus transfers where passengers spend the 

most aggregate time transferring. Ordering route pairs by this metric shows for which route-pairs 

through-routing will have the greatest reduction in journey times. The third column shows the 

estimated benefits from through-routing a particular route pair as the percent impact of 

eliminating the transfer time on the overall average travel time difference of 3.1 minutes between 

Black and White trips.  
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Figure 5-27 Top 15 Destination for Bus Journeys Requiring 1+ Transfers Scaled by Demand, Coloured by Average Speed
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The 32 to 39, the most heavily used combination of bus routes is not as good a candidate as the 

28 to the 01 because it already has relatively good speeds. However, it would still be an ideal 

candidate for merging since there already exists a variation of the 32 which follows the 39’s 

route to the Longwood Medical Area. The main destinations accessed from the users transferring 

to the 01 are clustered near the Boston Medical Center, as well as Central Square in Cambridge 

to a lesser extent (see Figure 5-27).  Through-routing either the 23 or the 28 through Dudley to 

this area could provide a one-seat ride for a number of trips transferring from the 23 or 28 to the 

01, or the Silver Line 4 or 5. 

Theoretically, eliminating all bus to bus transfers would reduce the gap in average travel times 

by 36.7%. However this is infeasible because it would require a far greater number of provided 

routes and a larger fleet of buses to realize, increasing cost and network complexity. This is to 

illustrate that substantial benefits can be obtained from eliminating a number of transfers, but 

these benefits are slight without a large number of network modifications. Furthermore, since 

longer bus routes tend to be less reliable, the effects of increasing route length on journey time 

should be evaluated in order to adequately evaluate the benefits of through routing. 

Table 5-15 Ten Bus Route Combinations with Greatest Aggregated Transfer Time 

Routes Average 

Transfer 

Time (min) 

Reduction in Average 

Travel Time Gap by 

Through-Routing 

Proportion 

of transfers 

28->01 6.8 1.0% 2.1% 

32->39 4.0 0.7% 2.8% 

31->39 4.7 0.6% 1.7% 

28->66 6.5 0.6% 1.6% 

23->01 6.6 0.6% 2.2% 

28->749 4.1 0.5% 1.8% 

28->47 9.3 0.5% 2.0% 

23->66 4.9 0.4% 1.1% 

31->34E 10.8 0.4% 1.9% 

23->749 4.0   0.3% 0.6% 

Remaining 

Combinations 
7.6 31.1% 59.2% 
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Figure 5-28 Map of 10 Bus Transfer Points where Passengers Spend the Most Time (Circle Area Scaled by Total Passenger Waiting Time and Coloured by Average Waiting Time)
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Regulating Departures 
Since many transfers happen at bus terminals such as Forest Hills and Dudley Square, transfer 

times could alternatively be reduced by ensuring that buses leave those terminals with even 

headways. Table 5-16 shows the ten routes where regulating bus departures would be most 

beneficial. The benefit is estimated by comparing the current average transfer time with the 

expected waiting time if passengers arrived uniformly and randomly at the transfer location, the 

time it takes to exit and transfer to a subsequent bus is negligible, buses adhered to scheduled 

headways, and there were no coordination of bus scheduled arrivals and departures at transfer 

points to minimize transfer waiting time. This value is approximated by taking the averages of 

the scheduled headways for transfer and dividing by 2. This value appears in the fourth column. 

The fifth column represents the expected benefit for regulating the departures at transfer points 

by subtracting the observed average waiting time by the expected waiting time and multiplying 

that expected value over the number of transfers made for that given route combination. For 

transfers where the average transfer time is less than the expected transfer time, 60% of transfers, 

the benefit of regulating departures at the terminal is null. For the other 40% of users transfer 

with a longer average transfer time than expected, the expected benefit is an average of 1.4 

minutes. If all routes transferring at Forest Hills and Dudley Square had their departures 

coordinated, the expected benefit would be 2% of the overall difference in travel times. This 

does not include the additional benefits from reduced wait times for users boarding these routes 

at these terminals. For lower frequency routes, transfer times could further be reduced by 

coordinating by coordinating arrivals at terminals with bus departures, though this adds 

complexity to bus scheduling. 

Table 5-16 Ten Bus Routes Transferring at Forest Hills or Dudley Station which Can Benefit from Departure Regulation 

Routes Transfer Point Average Transfer 

Time  (min) 

1/2 Average Scheduled 

Headway (min) 

Percentage Reduction 

from Headway Regulation 

Proportion 

of transfers 

28->01 Dudley Station 7.0 5.9 0.18% 2.2% 

23->01 Dudley Station 6.5 5.6 0.11% 1.8% 

30->39 Forest Hills  5.6 4.0 0.09% 0.8% 

15->66 Dudley Station 6.8 5.9 0.08% 1.2% 

31->39 Forest Hills  4.5 4.1 0.06% 2.1% 

23->44 Dudley Station 16.8 9.1 0.05% 0.1% 

22->66 Dudley Station 5.7 5.1 0.05% 1.2% 

23->66 Dudley Station 5.4 5.0 0.05% 1.9% 

21->39 Forest Hills  4.2 3.7 0.05% 1.2% 

19->66 Dudley Station 6.0 4.7 0.04% 0.5% 

Remaining Routes 6.7 7.4 1.39% 57.4% 

 

Bus-Rail Combination Journeys 
The higher share of trips being made by the combination of bus and rail in the Black or African 

American sample is due to the poorer access to heavy rail. This could potentially be mitigated by 
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providing one-seat rides on express buses, or fast, frequent Commuter Rail service on the 

Fairmount branch. As with multi-stage bus trips above, the top 15 destination clusters were 

selected and mapped in Figure 5-29 below. The scale for the circles is different, as demand for 

Park St. by bus and rail is nearly ten times that by bus alone. Demand is much more heavily 

concentrated along stations on the Orange Line than the Red, though the combination of 

Downtown Crossing and South Station, less than 0.5 km apart, is the most desired area. Fast, 

frequent commuter rail service along the Fairmount branch could help serve Downtown Crossing 

and South Station.  

5.5 Limitations 
These findings are subject to the limitations outlined in Table 5-17, and their likely effects on 

whether they decrease or increase the observed differences in travel speed, and travel time. A 

limitation which decreases the estimated difference implies that the actual difference is greater. 

Given that the latest Title VI and EJ report for the MBTA found more bus routes having poor 

performance serving minority tracts, the omission of reliability may decrease the estimated 

difference in transit effectiveness. This is exacerbated due to the increased number of transfers 

required for trips from Black or African American tracts, which would increase the effects of 

reliability on the travel time difference.  

Table 5-17 Limitations 

Limitation Effect on Estimated Difference 

Omission of reliability effects Decreases 

Conservative transfer inference Decreases 

Sample restricted to first commute Uncertain 

Exclusion of commuters who leave after 3PM Uncertain 

Use of geographic units Uncertain 

Exclusion of Green Line Surface  Increases 

Automobile mismatch Increases 

 

Journey (i.e. transfer) inference is conservative, as the parameters currently assigned to the 

algorithm tend to under-infer transfers. Given the higher proportion of journeys requiring 

multiple stages from Black or African American tracts, the inferred proportion of those journeys 

may be disproportionately low. Thus this analysis may contain a greater number of shorter, faster 

trips from Black tracts when in reality these may be linked into longer, slower ones.   
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Figure 5-29 Map of Top 15 Destination for Bus->Rail Journeys (Circle Areas Scaled by Demand and Coloured by Average Speed)
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This analysis focused exclusively on journeys from home areas as a proxy for the journey to 

work. It is unclear whether the transit experience of non-regular users would be better or worse, 

and whether it would affect users of different races or ethnicities differently. For commuters who 

travel to work after 3PM, it is likely that they face worse service with respect to headways and 

network connectivity, but may enjoy faster and more reliable bus and train service.  

That average trip length doesn’t increase as the concentration of Black or African American 

public transit commuters increases implies that, on average, the spatial mismatch hypothesis of a 

mismatch in available jobs and housing for African Americans does not hold on average in 

Boston. However, it is difficult to determine from the available data whether minorities such as 

Black commuters in majority White tracts have their needs served equally well by transit. It is 

possible that Black commuters in White tracts have different travel needs, and thus different 

travel outcomes.  

The surface portion of the Green Line is omitted from this analysis due to an absence of inferred 

origins and destinations, and consequently travel times. Analysis of the schedules for the central 

trunk of the Green Line reveals average speeds below those of average subway or bus speeds. An 

examination of the map in Figure 5-18 shows the surface portion of the Green Line exclusively 

serving White or tracts meeting neither threshold. Approximately 58% of the surface track 

mileage is within White tracts. Without inferred origins and travel times it is impossible to 

include the trips starting in White tracts on the surface Green Line. Assuming evenly distributed 

origins on the surface portion of the Green Line, the number of fare transactions on the surface 

originating in White tracts is approximately 5,300 in the weekday AM Peak. Boardings on the 

Ashmont branch of the Red Line in the AM Peak are only 4,500 per weekday. Therefore the 

inclusion of surface Green Line trips would likely have a significant decrease on the average 

speeds for commuters from White tracts and result in a significant reduction in the gap in travel 

times between Black and White tracts.  

The automobile mismatch is based on Black or African Americans having lower auto ownership 

than Whites. Thus, observations of transit travel may be biased by the ability of many to choose 

to drive rather than take transit. Service might be equal for all neighborhoods, but outcomes are 

better for commuters in White Alone areas because only trips that are competitive with the auto 

are being made. Proportionally more Black or African American commuters may be exclusively 

dependent on transit for their needs. Williams et al. (2014) controlled for this in their regression, 

adding a zero-auto household dummy variable. This variable was significant and positive, adding 

one minute to a commute, which would support the auto selection bias, but did not eliminate the 

difference in travel time found by their regression. For the samples selected in this study, the 

proportion of public transit riders without automobile at home was 22.6% for the White Alone 

sample, and 34.8% for the Black or African American sample. This does not necessarily sidestep 

equity considerations, however, since it is unclear from the FTA guidance how to consider when 

ridership demographics do not match service area residential demographics.  
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5.6 Suggestions for Solutions 

5.6.1 Changes in Bus Operations 
These shorter term solutions require no new capital purchases, merely further study to modify 

operations to better serve the transportation needs of Black commuters.  

Improve Bus Departure Reliability at Terminals 
Maltzan (2015) demonstrates that holding strategies to regulate headways on high-frequency bus 

routes are most effective at the departure terminal. Given that most bus-to-bus transfers for 

journeys from Black tracts occur at terminals such as Dudley Square and Forest Hills Station, 

implementing these holding strategies would have multiple benefits. First, regular departure 

times decrease in-vehicle travel time variability. Second, this would reduce the wait time for 

users transferring at these stations.  

Estimating waiting times for user’s walking up to a bus stop is discussed in Section 5.4.1 above. 

Estimating transfer times is described in the section entitled  

Bus Trips Requiring One or More Transfers above. The decreases in both forms of waiting from 

regulating departures can be estimated by simulating bus departures under controlled departure 

strategies at a given terminal such as Dudley or Forest Hills over the course of a day. From the 

simulated new departure schedule, waiting and transfer times can be estimated as described in 

the above sections. Aggregating the decreases in journeys gives the overall benefit of controlling 

departures at Forest Hills and Dudley. 

By only examining transfer time in aggregate, it is possible to estimate the impacts of regulating 

routes for which average transfer time exceeds half the average headway, the theoretical waiting 

time excluding the time it takes to walk from one bus to the next. By regulating departures at 

Forest Hills Station and Dudley Square, average journey times decrease by 1 minute for the 6% 

of trips transferring through those stations who experience longer than expected transfer times. 

This leads to a decrease of 2% in the overall average journey time difference of 3.1 minutes 

between commuters from Black tracts and those from White tracts.  

Through-routing Buses  
Given the higher rate of transfers required for trips from Black tracts, the demand from the 

southwest through Dudley to the Boston Medical Center into downtown is strong enough that 

routes ought not to terminate at Dudley. Combining the 28 and the SL4 would be a good 

candidate, since many commuters transfer from the 28 to the 1 or the SL4/5 to go to the Boston 

Medical Center or the SL4 to go to Downtown Crossing. This idea is not new: extending the 

Silver Line to Mattapan was featured in the 2004 Roxbury Strategic Masterplan (Menino & 

Maloney, 2004). Articulated buses already run the 28, so combining with the SL4 would not 

reduce the availability of articulated buses on either route. Bus drivers on the 28 currently take 

their breaks at Mattapan, so drivers of the extended Silver Line could also break at Mattapan, or 

driver changes would occur in the middle of this combined route at Dudley, and drivers could 
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break there. Journey times would be reduced by an average of 4.1 minutes for transfers to the 

Silver Line, to 6.8 minutes for transfers to the 1. The overall impact could be between 0.5% and 

over 1.0% of the overall average journey time difference of 3.1 minutes between commuters 

from Black tracts and those from White tracts.  

The 32 and 39 would be good candidates for a merger since there already exists a variation of the 

32 which follows the 39’s route to the Longwood medical area. Only 22% of trips that start on 

the 32 in this sample do not involve a transfer to another route, although 65% of trips involve a 

transfer to the Orange Line. The expected benefits of this through-routing would be a 4 minute 

reduction in travel time and a 0.7% reduction in the overall difference in travel times. 

Creating longer routes has some disadvantage, however, since the increased cycle time decreases 

reliability. Therefore the tradeoff in travel times before and after should be evaluated. This could 

be a good candidate for piloting, since the results of origin-destination inference will give rapid 

feedback on the outcomes of the route consolidation.  

5.6.2 Fare Policy 

Increasing Commuter Rail Access from Hyde Park 
Given the large number of riders transferring to the Orange Line from the 32, and that many of 

these Orange Line trips have destinations that are also Commuter Rail stations (Ruggles and 

Back Bay), these trips would be faster by commuter rail. Given the proximity between Hyde 

Park and Fairmount stations, reducing the fare from Hyde Park to Zone 1A, equivalent to the 

normal transit fare, would be reasonable.  

Maintain Free Transfers 
Given the much greater need for commuters from Black tracts to transfer in order to complete 

their journeys, it is critical to maintain the affordability of the system for these users by maintain 

free bus-to-bus transfers and the nominal step-up fare from bus to rail.  

5.6.3 Capital Investment 

Rapid Transit Frequencies on the Fairmount  
For users currently traveling to South Station, downtown Boston, or stops near the Fairmount 

Line, travel times could be improved by shifting users to commuter rail on the Fairmount Line, 

were that line to have Diesel Multiple Units trains operating at frequencies equivalent to heavy 

rail.  

Of the 35,257 farecards in Black tracts, 26% or 9,178 have the centroid of their home location—

their most likely residence—within 800m (1/2 mile) of a station on the Fairmount Line, 

accounting for 23% of the 200 thousand weekday journeys with inferred origins and destinations 

made by commuters in Black tracts (see Figure 5-30).  A further 12.6% of journeys start on bus 

routes that intersect closely with stations on the Fairmount line, so these trips could easily 

involve a transfer to the Fairmount if there were travel time savings. This also highlights how 

low ridership is on routes which intersect the Fairmount: 59.8% of journeys start with a bus 
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stage, but only 38.6% of these are on routes which intersect with the Fairmount. If the line is to 

become more significant in providing public transit access to the community, the reorganization 

of bus routes to better feed into the Fairmount ought to be explored further.  

Switching focus to destinations, over one quarter of journeys originating within Black tracts end 

within 800m of a station on the Fairmount. The bulk of these, 17.6% of all trips, end near South 

Station. In order to estimate the travel time savings of users who would benefit from transferring  

to or from the Fairmount Line, a network model of the transit network after improvements have 

been made which can recalculate every user’s shortest path is necessary.  

This analysis will first consider trips which can be replaced by a single stage on the Fairmount: 

trips which start and end within walking distance of the Fairmount, accounting for 5% of all trips 

starting in Black tracts. For these journeys, the travel time savings of improvements on the 

Fairmount will be greatest since travel on the Fairmount Line will be a significant portion of the 

journeys that switch to the line. Including journeys which require a transfer to or from the 

Fairmount will increase the total number of users benefiting from the improved line, while the 

individual benefits of switching to the line will decrease due to transfer times. After estimating 

the travel time savings for trips within walking distance of the Fairmount, the benefits will be 

extrapolated to a wider set of trips which could benefit from switching to the Fairmount.  

The set of Fairmount branch stops is available in the current version of the MBTA’s GTFS feed, 

excluding the proposed Blue Hill Avenue Station as well as running times between the stops. 

The location of Blue Hill Avenue Station was added from data provided by MassGIS8 and 

running time assumed between it and its neighboring stops. The following assumptions were 

made for this evaluation: 

 Users access origins (Fairmount stations, or bus or subway stations) from the centroid of 

their home location (the most likely point of residence) 

 Users within 800m (½ mile) walk to the Fairmount station 

 User walking speed is 3km/hr and walking distances are Euclidean 

 Fairmount headways are equivalent to peak Orange Line scheduled headways of 5 

minutes 

 Travel time to Blue Hill Avenue station is half the travel time between Fairmount Station 

and Morton Street Station. This extra stop adds 1 minute to the running time. Currently 

the Fairmount schedule includes no explicit estimate of dwell time: departure time is 

equal to arrival time. 

 Fairmount running times decrease by 16% due to decreased dwell time and faster 

                                                 
8 Accessed from http://www.mass.gov/anf/research-and-tech/it-serv-and-support/application-serv/office-of-
geographic-information-massgis/datalayers/trains.html 
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acceleration versus current equipment (Jacobs Edwards and Kelcey, 2008). Though 

current scheduled running times on the branch are already the 25 minutes predicted from 

the introduction of DMUs. 

Current travel times are the sum of the observed travel time and, for journeys that start with a bus 

stage, the estimated waiting time calculated in Section 5.4.1. New travel times are calculated per 

Equation 5-4.  

Equation 5-4 Travel Times for Users Switching to the Fairmount Line 

𝑇𝑇𝑓𝑎𝑖𝑟𝑚𝑜𝑢𝑛𝑡 = 𝐴𝑐𝑐𝑒𝑠𝑠 𝑇𝑖𝑚𝑒 + 𝑊𝑎𝑖𝑡 𝑇𝑖𝑚𝑒 + 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒𝑜𝑑 + 𝐸𝑔𝑟𝑒𝑠𝑠 𝑇𝑖𝑚𝑒 

Where: 

𝐴𝑐𝑐𝑒𝑠𝑠 𝑇𝑖𝑚𝑒 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 ℎ𝑜𝑚𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝐹𝑎𝑖𝑟𝑚𝑜𝑢𝑛𝑡 𝑆𝑡𝑎𝑡𝑖𝑜𝑛

3𝑘𝑚/ℎ𝑟 
 

𝑊𝑎𝑖𝑡 𝑇𝑖𝑚𝑒 =
1

2
∗ 5 𝑚𝑖𝑛 = 2.5𝑚𝑖𝑛 

𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒𝑜𝑑: Travel Time from nearest origin Fairmount Station to nearest Fairmount Station 

to the destination 

𝐸𝑔𝑟𝑒𝑠𝑠 𝑇𝑖𝑚𝑒 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 𝐹𝑎𝑖𝑟𝑚𝑜𝑢𝑛𝑡 𝑆𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛

3𝑘𝑚/ℎ𝑟 
 

The top 10 OD pairs are listed in  below. The general direction is inbound and in particular with 

South Station as a destination, the total number of trips that end within a walking distance of 

South Station is 225 per weekday.  

Table 5-18 Top 10 Origin-Destination Pairs Within 800m of the Fairmount Line by Ridership 

Origin Station Destination Station Monthly Number of Trips 

Newmarket South Station 1,204 

Four Corners / Geneva South Station 924 

Morton Street South Station 823 

Morton Street Blue Hill Avenue 685 

Uphams Corner South Station 674 

Four Corners / Geneva Newmarket 550 

Blue Hill Avenue South Station 444 

Talbot Avenue South Station 434 

Uphams Corner Newmarket 424 

Four Corners / Geneva Talbot Avenue 417 

 



 

 

 

1
2
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Figure 5-30 Map of Fairmount Stations with 800 m (1/2 mile) Buffer
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New travel times are calculated with the assumption that users walk from their home location to 

the nearest Fairmount station and then travel to the nearest Fairmount station to their original 

destination and walk to the destination. Under this assumption 50% of trips currently being made 

along the corridor switch to the Fairmount Line, benefiting from an average travel time decrease 

of 13.5 minutes. Of the trips making the switch 52% are bus to rail, 44% bus, and 4% are rail. 

This decreases average travel times in the corridor by 6.8 minutes, from 33.1 minutes to 26.3 

minutes. Figure 5-31 shows the distribution of trip times along the corridor before and after. The 

dramatic decrease in trip times above 45 minutes is notable. Table 5-19 shows the benefits 

aggregated by the number of segments the original trip had. As the number of segments initially 

required to travel from origin to destination increases, the benefits of the Fairmount Line and the 

single-stage journey it offers increases. Only 21% of trips with only one stage switch to the 

Fairmount Line, but 81% of two-stage journeys benefit from changing to the Fairmount Line. 

 

Figure 5-31 Journey Time Distribution for Trips within Fairmount Corridor 

Recalculating the overall average journey times taking into account the trips switched to the 

Fairmount branch for commuters from Black or African American tracts reveals an overall 

average decrease of 0.3 minutes from 32.6 minutes to 32.3 minutes. This results in a decrease in 

the gap in average travel times between Black tracts and White tracts by nearly 10%. This is a 

low estimate of the benefits of these improvements, since the number of users who may want to 

transfer to or from the Fairmount Line is much higher than the five percent of trips which can be 

completed by walking to the line.  
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Table 5-19 Travel Time Savings by Original Trips Number of Segments 

Number of 

Segments 

Proportion who 

Switch 

Proportion who Don't 

Switch 

Proportion of Trips within 

Corridor 

Average Savings 

(min) 

1 21% 79% 53% 7.3 

2 81% 19% 43% 14.1 

3 99% 0.9% 4.2% 24.1 

 

In order to get a closer estimate of the full benefits, the benefits for trips walking to and from the 

Fairmount Line will be extrapolated for the types of trips listed in Table 5-20. By examining the 

map of the rapid transit network, trips having destinations within the area in purple in Figure 

5-32 are assumed to likely have travel time savings from the Roxbury, Dorchester, Mattapan, 

Hyde Park area by switching from the Fairmount Line at South Station. These benefits are 

assumed for users residing within walking distance of a Fairmount station, and for users who 

make trips on bus routes which intersect the Fairmount Line whose trips currently require two or 

more segments. Single stage trips to these destinations are unlikely to receive benefits by having 

to transfer from the Fairmount. 

Table 5-20 Types of Trips Used to Extrapolate Fairmount Benefits 

Type of Trip Proportion of Black Trips  

Home location within walking distance of Fairmount Line 

Destination requiring a transfer at South Station (see Figure 5-32) 

4.3% 

Origin on a bus route intersecting with the Fairmount Line 

Destination requiring a transfer at South Station  

3.2% 

Origin on a bus route intersecting with the Fairmount Line 

Destination within walking distance of Fairmount Line 

  1.2% 

 

Travel time savings will be the same as the average savings for trips with the minimum number 

of segments required to reach South Station from the same origin station on the Fairmount. Trips 

that normally require two or more segments to reach South Station will have a 6 minute transfer 

penalty deducted from the benefits because switching to the Fairmount is unlikely to reduce the 

number of segments in these trips. In the analysis above, part of the benefits for these the trips 

came from reducing the number of stages by taking the straighter path on the Fairmount. The 

benefits are also assumed similarly distributed.  

For users transferring through South Station, users whose bus routes intersected with Readville 

Station were not included because these routes, the 32 and 33, are already relatively fast. 

Travelling to Readville to catch the Fairmount Line would require substantial backtracking in 

order to travel to South Station. 

Table 5-21 shows the travel time savings by origin station and the proportion of trips from that 

station which switch to the Fairmount Line. For example, from Uphams Corner, 2 stages are 

required to reach South Station, and 99% of trips switch to the Fairmount in order to save 7.4 
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minutes of travel time on average. Because of differing connectivity to bus routes to South 

Station as well as to the Orange and Red Line, the savings are not distributed in the same order 

as the distance from the stations to South Station. 

Table 5-21 Travel Time Savings to South Station, by Origin Station on the Fairmount 

Origin Station Number of Segments Average Travel Time Savings Proportion who Switch 

Newmarket 1 5.9 4% 

Uphams Corner 2 7.4 99% 

Four Corners / Geneva 2 10 100% 

Talbot Avenue 1 12 95% 

Blue Hill Avenue 2 14 100% 

Morton Street 2 15 100% 

Fairmount 3 17 100% 

 

For users who take a bus that intersects with the Fairmount in order to access destinations by 

walking from a station, a similar table to Table 5-21 was constructed, but using all origin and 

destination stations on the Fairmount Line. The same transfer penalty was applied for Fairmount 

OD pairs where the shortest path outside the Fairmount involves one or more transfers.  

The results for the three types of trips are in Table 5-22 below. The aggregate travel time savings 

are more substantial for the users who can walk to the Fairmount because they are nearer to 

stations where a greater proportion of users would switch to the new Fairmount Line. Users who 

take buses to the Fairmount, on the contrary, take routes near stations where the network is such 

that fewer of them might transfer to the Fairmount.  

Table 5-22 Travel Time Benefits from Switching to the Fairmount Line by Trip Type 

Trip Type Average 

Time Saved 

(min) 

Proportion of all 

Trips Switching 

to Fairmount 

Impact on Travel 

Time Differential 

Home location within walking distance of Fairmount Line 

Destination requiring a transfer at South Station 

12.4 4.0% 

 

16% 

Origin on a bus route intersecting with the Fairmount Line  

Destination requiring a transfer at South Station 

12.2 1.3% 

 

5.2% 

Origin on a bus route intersecting with the Fairmount Line  

Destination within walking distance of Fairmount Line 

12.1 0.8% 

 

3.2% 
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Figure 5-32 Map of Destination Area for Which Transferring to Fairmount Line Might Provide Travel TIme Benefits
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Summing all the potential benefits together brings an aggregate impact of a reduction of nearly 

35% in the travel time difference between commuters from Black tracts and commuters from 

White tracts. Given the potential, this warrants more disaggregate analysis to fully estimate the 

benefits by modelling the paths of all trips to determine individual benefits. With a shortest-path 

model of the transit network it would be possible to estimate the new travel times for each 

individual and recalculate average travel times as above. Beyond the short-term travel time 

benefits, the analysis should consider how making accessible destinations for which travel took 

too long may result in users changing their travel patterns and employment. In particular, the 

Seaport District, which is a short walk or ride on the Silver Line from South Station, is rapidly 

growing (Gordon, 2015). The Fairmount provides good access to these new jobs becoming 

available in the coming years. Additionally, access to job centers such as the Longwood Medical 

Area and Copley Square by transferring from the Fairmount to buses to these areas should be 

further investigated. 

Heavy Rail 
The difference in journey time between the Ashmont branch and the trunk of the Red Line will 

always exist due to there being fewer trains operating on a branch. However, frequencies could 

be increased on the Ashmont branch in the early morning, when a greater proportion of 

commuters from Black tracts travelling at that hour are on the Red Line compared to the Orange. 

With the increased frequencies offered by modern signaling equipment and a larger fleet of 

vehicles, both the Ashmont branch of the Red Line and the Orange Line could decrease journey 

times through decreased waiting time. The benefits of reduced headways on travel times can be 

estimated at the disaggregate level by: 

1. estimating individual waiting times as the time between fare payment at a station and the 

first train bound for the user’s destination 

2. creating a new GTFS schedule with the new headway(s) 

3. re-estimating individual waiting times as per step 1 with the new schedule  

4. comparing the difference in waiting times 

Buses 
A deeper analysis of bus usage by Black riders using the inferred OD should be undertaken to 

determine how bus routes could better serve current and future needs. The benefits and tradeoffs 

of interventions such as increasing frequency, performing BRT interventions to increase vehicle 

speeds such as transit signal priority, and consolidating routes to reduce the number of required 

transfers should be incorporated into such a study. This could be performed using transportation 

network analysis software.   
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5.6.4 Housing Affordability and Displacement 
Though housing affordability is not in the mission of the MBTA, it would be remiss to propose 

these solutions without a warning about the link between transit access and housing affordability. 

There are concerns that increased accessibility from the Green Line Extension into Somerville 

will raise rents such that low and moderate income families will be forced to move to areas with 

decreased accessibility (Metropolitan Area Planning Council, 2014). Similar displacement forces 

may affect Black or African American residents in the sample area used in this analysis. It would 

be unfortunate if improvements to right inequities in access resulted in displacing residents to 

regions of similar or worse accessibility. Therefore, cooperation is required with agencies 

responsible for the protection of housing affordability when implementing these proposed 

solutions.  

5.7 Suggestions for Future Spatial Analyses 
The analysis described in this chapter should be repeated with other transit riders from other 

minorities, treating them by racial or ethnic category rather than as a homogeneous group to 

determine how outcomes are different by race. This analysis could also be repeated with 

Hispanic commuters, or low-income commuters, but not both characteristics simultaneously. The 

intersection, or combination, of the aforementioned characteristics by individual is difficult to 

analyze with the ACS’s data at the Census Tract level because each category is aggregated 

independently. One could look at tracts with high concentrations of Hispanic persons, and high 

concentrations of Black persons, but this does not necessarily imply a high concentration of 

persons who are both Hispanic and Black. The use of inferred home locations linked to census 

tracts will be difficult with groups who are not numerous such as Native Americans, or groups 

who are well dispersed with the rest of the commuting population.  

There are other corridors which have high concentrations of minority riders and are located in 

between rail lines. For example, the area of Everett, Chelsea and sections of Revere is similar to 

the Roxbury, Mattapan, Hyde Park corridor and is also disconnected from Downtown Boston by 

water. A similar study of that area with OD data may reveal similar travel time differences and 

may suggest operational improvements to bus routes or introduction of DMU service on 

commuter rail lines that could benefit commuters in those areas.  

Future analysis by the MBTA could incorporate inferred OD and be compliant with FTA 

regulations by adopting new performance standards based on passenger-centric metrics such as 

journey time reliability, journey speed, or journey time. The FTA requirement is to focus on all 

users, not just commuters, so the AFC sample would be expanded to include all trips and the 

source of demographic information would be residential proportions based on Census or ACS 

data by block group. Though heterogeneity within tracts was not perceived to be an issue in this 

analysis, whether minority individuals in White majority tracts have different transit outcomes 

than their White neighbors should be investigated. This would ideally be achieved by including a 

question requesting the respondent’s farecard ID in subsequent Title VI & EJ Systemwide 
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Surveys, as has previously been piloted at the MBTA (Chow, 2014). Linking observed farecard 

travel to survey responses would have a number of co-benefits beyond being able to make a 

direct link between respondents’ demographics and their travel. A prompted-recall survey asking 

respondents their prior travel by presenting them their previous travel would provide a large 

scale validation of OD inference. By collecting respondents’ home addresses or nearest 

intersections, the home location inference algorithm presented in Chapter 4 could be validated 

and refined.  

5.8 Summary 
This chapter has demonstrated an application of 21 weekdays of OD data to analyze the spatial 

variation of transit service between areas with high concentrations of Black or African American 

transit commuters and area with high concentrations of White Alone transit commuters. Using 

the 2013 American Community Survey 5-year estimates, the demographics of possible samples 

were compared over the range of possible thresholds. From this analysis, stricter thresholds than 

the FTA-prescribed ones were selected in order to ensure a high enough concentration of the 

target demographics. A sensitivity analysis of the thresholds show that speeds tend to decrease, 

and travel time increase, as the concentration of Black and African Americans increases, despite 

distances remaining constant. The proportion of trips requiring one or more transfers also 

increases as the concentration increases.  

Based on the sensitivity analysis, thresholds of 40% Black or African American and 70% White 

Alone were chosen for respective samples for a more in-depth analysis. There is a persistent 

difference in travel time and speed (Table 5-23), though differences in travel time are not as 

great as those previously reported for the Boston Metropolitan Area (Williams et al., 2014). 

There is a far greater need for commuters in Black or African tracts to transfer to complete trips 

over similar distances to commuters from White Alone tracts, resulting in lower average speeds. 

This results in trips that take longer for rail and the combination of bus and rail, despite shorter 

average travel distances. It also leads to substantially lower speeds and longer trips for bus trips 

between 6 and 11km, 13% of trips from Black tracts. Shorter bus trips, the bulk of bus trips, have 

no difference in average speeds.  

Table 5-23 Average Journey Characteristics by Mode and Black-White Home Location 

Mode Bus Mixed Rail 

Threshold Black or 
African 
American 

White 
Alone 

Black or 
African 
American 

White 
Alone 

Black or 
African 
American 

White 
Alone 

Average Straight 
Line Speed 
(km/hr) 

12.7 14.5 11.9 12.6 12.4 12.8 

Average Journey 
Time (min) 

19.2 18.2 43.7 41.1 27.3 25.4 
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Wait times were estimated for bus stages, which resulted in journey times in Table 5-24 below, 

increasing the difference in bus travel times, but decreasing the gap for users taking bus to rail. 

Averaging travel times across modes results in average travel times of 32.6 minutes for 

commuters from Black tracts to the average travel time of 29.5 minutes.  

Based on these findings, some recommendations were made and evaluated for interventions 

which could mitigate the 3.1 minute difference in average journey times which are summarized 

in Table 5-25. Given the high number of bus to bus transfers, interventions to reduce transfer 

times through regulating bus departures or by through-routing bus routes at the major transfer 

stations of Dudley Square and Forest Hills Station. Also suggested is the extension of the Silver 

Line Washington St. from Dudley Square to Grove Hall or further to Mattapan Square in order to 

provide a greater number of single-stage journeys for passengers. Additionally, increasing access 

to the Providence/Stoughton and Fairmount commuter rail lines with reduced fares should be 

further investigated.  

Table 5-24 Journey Time and Speed by Mode and Threshold with Wait Times Included 

Mode Bus Mixed Rail 

Threshold Black or 
African 
American 

White 
Alone 

Black or 
African 
American 

White 
Alone 

Black or 
African 
American 

White 

Alone 

Average Speed 
(km/hr) 

7.9 9.4 10.3 10.8 12.4 12.8 

Average Journey 
Time (min) 

26.8 25.5 50.5 48.1 27.3 25.4 

 

The greatest potential travel time benefit for commuters from Black tracts would come from 

increasing frequencies and speeds on the Fairmount Line by introducing DMUs. This was 

investigated in disaggregate for users who could walk to and from the Fairmount Line in order to 

complete their journeys. For those individuals, journey times for those who switched to the 

Fairmount decreased by an average of 13.5 minutes, primarily trips that involved transferring 

from bus to rail, leading to an estimated reduction in the travel time difference of 10%. These 

benefits were extrapolated to those who could walk to a Fairmount Station and whose 

destinations were well-served by a transfer at South Station. Considering all trips which begin 

within walking distance of a Fairmount Station leads to an estimated reduction of up to 25% of 

the current travel time difference. Because the walk-only trips represent only a portion of the 

trips which could benefit from the Fairmount Line, their benefits were also extrapolated in 

aggregate for other trips that would use intersecting bus lines and could benefit from transferring 

to the Fairmount Line. This led to the upper bound of estimated potential travel time difference 

reduction of 35%.  
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Table 5-25 Summary of Potential Solutions 

 

Potential Solution 

Potential Impact on 

Travel Time Difference 

(% of Current Gap) 

Comments 

O
p

er
a

ti
o

n
s 

Improve Bus Departure 

Reliability at Dudley and Forest 

Hills 

2% Doesn’t include wait time reductions for 

users starting journeys at those stations. 

Through-routing most Heavily 

Used Bus Route Pairs 

0.3%-1.0% per route  

F
a

re
 Reduce Commuter Rail Fares 

at Hyde Park 

Further analysis required  

C
a

p
it

a
l 

Im
p

ro
v

em
en

ts
 

Rapid Transit Frequencies on 

the Fairmount Line 

25-35% Use of a network model to examine all 

disaggregate benefits to users who could use 

the line required.  

Increase Heavy Rail 

Frequencies on Orange Line 

and Ashmont Branch 

Further analysis required  

Reconfigure Bus Network  Further analysis required Examine bus speed improvements from BRT 

Examine benefits from reorganizing bus 

network to reduce transfers 

 

Given the magnitude of the potential benefits, and the assumptions required to estimating them, a 

fully disaggregated analysis of the benefits is recommended. This would require a model of the 

new transit network with a shortest-path routing algorithm to reassign users to shorter trips using 

the Fairmount and should consider changing trip patterns from increased accessibility as well as 

economic growth in nearby areas such as the Seaport District. 
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6 Conclusion 
The methods presented in this thesis have demonstrated the processing the utility of inferred 

origins, destinations, and transfers (ODX) from AFC data as input into the analysis of the spatial 

variation of public transit service. Using a month of ODX-inference data from April 2014, it has 

been possible to link users’ transit travel to the demographics of their neighborhoods at the 

census tract level by inferring users’ home locations from the first trips they make on weekdays. 

By using ODX information inferred at the resolution of the individual farecard, metrics based on 

journey outcomes such as speed and journey time were developed and compared, giving a 

passenger-centric perspective on the spatial analysis of transit effectiveness.  

This chapter summarizes the results of an analysis comparing the outcomes of journeys from 

home for regular transit users from two areas: one of users residing in areas where public transit 

commuters are a majority White Alone and another of users residing in areas where commuters 

are a majority Black or African American. Recommendations are then proposed for the 

Massachusetts Bay Transportation Authority (MBTA) or others who adopt these methods, and 

suggestions are put forth for future research that could build upon this work. 

6.1 Summary and Findings 

The bus ODX-inference algorithm, previously developed and validated for Transport for London 

(Gordon, 2012) was extended was extended to the MBTA’s fully open bus and rail network. 

Excluded from the stop-level ODX results are the Green Line Surface LRT and the Mattapan 

High-Speed Line, due to an absence of stop-level location data for vehicles serving those routes 

over the date processed. Scripts were then developed to automate the inference of a day in order 

to process months of data for March, April, and May 2014. For April weekdays Bus and Heavy 

Rail origin inference was 97.1% and 100%, and destination inference was 56.4% and 74.8% 

respectively. Due to an absence of stop-level location data for vehicles serving Green Line 

Surface LRT and the Mattapan High-Speed Line over the time period processed, trips originating 

on those routes are excluded from the stop-level origin-destination data used for the analysis of 

spatial variation of transit effectiveness. Of the 16 million weekday journeys in April 2014, 

13.4% were inferred to have more than one stage. 

Selecting data from the 21 non-holiday weekdays in April, regular users were identified who 

were likely to walk from their homes to their first origin of the day. Assuming these first 

journeys are started from near the farecard holder’s home, it was possible to infer home locations 

for 328 thousand fare cards travelling a total of 10.6 million weekday stages and 4.3 million first 

weekday journeys. The home locations for these farecards were intersected with Census Tracts 

containing the results from the 2013 American Community Survey’s Journey to Work five-year 

estimates, which presents the demographics of commuters by mode, such as transit.  

From this link of demographics and observed transit trips an example analysis of spatial variation 

in transit effectiveness was performed comparing areas with high concentrations of White non-
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Hispanic public transit commuters (White Alone) and those with high concentrations of Black or 

African American public transit commuters. A sensitivity analysis of average travel time and 

average speed to concentrations of either commuters shows a persistent difference for commuters 

from Black or African American tracts compared to those from White tracts. The difference 

increases as the concentration of Black commuters increases beyond the area average proportion 

that the Federal Transit Administration (FTA) would recommend in its guidance. This difference 

is in part the result of a greater need for commuters from Black or African American tracts to 

transfer to complete journeys of equivalent distance.  

A more in depth analysis was performed using a threshold of 40% Black or African American 

commuters and a threshold of 70% White Alone commuters, the average values for which are 

presented in Table 6-1.  

After inferring waiting times, it was possible to average travel times from all trips, resulting in 

overall average travel times of 32.6 minutes for commuters from Black tracts and 29.5 minutes 

for commuters from White tracts, a difference of 3.1 minutes. This gap is greater than the gap of 

the individual modes due to the different mode splits and the relative travel times for each mode.  

This 10% difference is insufficient to trigger the 80% threshold used by the Central 

Transportation Planning Staff, the agency which evaluates service provision by the MBTA under 

the guidance of the Federal Transit Administration.  

Table 6-1 Average Journey Characteristics by Mode and Black-White Home Location 

Mode Bus Rail Mixed All Modes 

Threshold Black  White  Black  Black  White  White  Black  White  

Average Journey 

Time (min) 
26.8 25.5 50.5 27.3 25.4 48.1 32.6 29.5 

Average Speed 

(km/hr) 
7.9 9.4 10.3 12.4 12.8 10.8 10.2 11.5 

Average Straight 

Line Distance (m) 
3481 3985 8706 5611 5828 8750 5529 5836 

Number of Trips 74,746 169,544 46,199 75,877 332,639 108,594  196,822   610,778  

 

The difference of 1.9 min in rail average travel time is smaller than the travel-time penalties 

identified by Williams et al (2014) of 3.4 minutes for subway. The bus travel-time difference of 

one minute is also substantially less than the 8.4 minutes for bus identified by them (see Table 

6-2 below). Trips taking a combination of modes are reported under the respondent’s choice of a 

“primary mode”. Overall the travel time difference observed in the AFC of 3.1 minutes is nearly 

half the 5.8 minutes gleaned from the ACS.  

There are a few factors contributing to this. Since the ACS data is self-reported, differences in 
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averages will be amplified due to respondents tending to report their travel times in 10 to 15 

minute increments (see the graphs in Section 3.6.1 for examples of this). Given that commuters 

from Black tracts tend to transfer more, perceptions of transfer time might increase self-reported 

travel times.  

Second, the average rail journey times are around 15 minutes shorter than the self-reported 

averages, and the bus travel times are 20 minutes shorter generally. This is because the AFC 

observations do not include access and egress times as part of journey time, whereas the ACS 

does. This implies that walking to access transit can be substantial, and that Black commuters on 

average may reside further from rail or bus lines. 

Third, it is possible that the ACS data are simply inaccurately over-reported or weighted and that 

this leads to the large differences in travel times reported by Williams et al (2014). 

Table 6-2 Average Journey Time Comparison between AFC and ACS (Williams, Pollack, & Billingham, 2014) Data 

Threshold Black  White  

Mode Bus Rail All Modes Bus Rail All Modes 

AFC Journey Time (min)  26.8 27.3 32.6 25.5 25.4 29.5 

ACS Journey Time (min)  47.1 44.2 45.9 38.7 40.8 40.1 

 

The difference in rail speed was due to a greater reliance on the slower Orange Line compared to 

the Red Line, and the use of the slower Ashmont branch of the Red Line as compared to the 

trunk, which has double the train frequency, and the Braintree branch, with greater stop spacing. 

Differences in speed primarily occurred in the early morning, before the peak, when commuters 

from White tracts had much faster service on the Red Line than commuters from Black tracts on 

the same line. Moreover, the lack of OD information for boardings on the surface portion of the 

Green Line in this analysis currently exaggerates the superiority of rail service to White areas.  

For bus and bus to rail trips, the differences were not as great, but existed nevertheless. An 

analysis of speeds by distance shows the greatest difference in bus speeds for trips travelling 

between 5 and 11 km, which represent 13% of trips from Black tracts. This is due to a significant 

difference in the proportion of these trips requiring one or more transfers: 72% of trips from 

Black tracts compared to only 22% of trips from White tracts. The bulk of bus trips, 69% of trips 

from Black tracts, are in the shorter range from 500m to 4000m. For these there was no 

meaningful difference in travel speeds. 

For trips involving a combination of bus and rail, speeds were slower due to more transfers being 

required, and a greater proportion of trips transferred to the slower Orange Line. Though the 

observed differences were not large enough to trigger the finding of a disparity, the use of 

inferred OD to highlight interventions to mitigate differences in speed was demonstrated. 
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Recommendations for actionable interventions are outlined in Section 6.2.1 below.  

6.1.1 Limitations 
Limitations of the identification of travel time differences are discussed in greater detail in 

Section 5.5. The two main limitations which would moderate the observed differences are the 

absence of surface Green Line trips and the disparity in access to auto between the two samples. 

The absence of stop-level data on the Green Line for this analysis has likely led to overestimate 

of travel speeds and an underestimate of travel times for commuters from White tracts. The area 

where the surface portions of the Green Line pass is predominantly White and has a significant 

number of peak boardings. 

Also the use of observed trips weighs this analysis in favor of people who either have the ability 

to choose to use transit and those who have no better option than transit for their trips. These two 

categories of user can vary geographically, given the availability of transit in the urban core 

compared to the suburbs, and they can vary by demographics, for example by the ability of many 

to forego transit in favor of driving. In this case study, 12.4% fewer commuters from the area 

with predominantly Black or African commuters had access to an automobile. This variation in 

ability to choose transit may result in some of the difference in travel time observed and 

underscores these populations’ greater reliance on public transit. It is up to agencies and the FTA 

to define how differences in travel time and speed ought to be considered in light of demographic 

differences in choice riders versus riders for whom transit is the best mode. 

6.2 Recommendations 

6.2.1 Operational Speed Improvements for Black Commuters 

Based on these findings, some recommendations were made and evaluated for interventions 

which could mitigate travel time difference between commuters from Black tracts and those 

from White tracts. The potential impacts of these measures are presented in the Table 6-3 in 

terms of the percent decrease in the observed 3.1 minute difference in average journey times.  
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Table 6-3 Summary of Potential Solutions 

 

Potential Solution 

Potential Impact on 

Travel Time Difference 

(% of Current Gap) 

Comments 

O
p

er
a

ti
o

n
s 

Improve Bus Departure 

Reliability at Dudley and Forest 

Hills 

2% Doesn’t include wait time reductions for 

users starting journeys at those stations. 

Through-routing most Heavily 

Used Bus Route Pairs 

0.3%-1.0% per route  

F
a

re
 Reduce Commuter Rail Fares 

at Hyde Park 

Further analysis required  

C
a

p
it

a
l 

Im
p

ro
v

em
en

ts
 

Rapid Transit Frequencies 

on the Fairmount Line 

25-35% Use of a network model to examine all 

disaggregate benefits to users who could 

use the line required.  

Increase Heavy Rail 

Frequencies on Orange Line 

and Ashmont Branch 

Further analysis required  

Reconfigure Bus Network  Further analysis required Examine bus speed improvements from BRT 

Examine benefits from reorganizing bus 

network to reduce transfers 

 

Bus 
Given the greater reliance on bus, and the increased need to make bus to bus transfers, improving 

the reliability of departures at Dudley Square and Forest Hills, terminals where users are 

transferring would improve transfer times. This would result in a decrease in the difference in 

average travel times by 2%. Furthermore it would decrease in-vehicle travel times on routes 

departing those terminals and waiting times for users starting their bus journeys on those routes. 

The operational logistics of through-routing buses through Dudley Square should be 

investigated. For example, the merging of either of the Silver Line Washington St. branches with 

routes 28 or 23 would provide a one-seat ride for commuters living near Warren Avenue and 

beyond to the Boston Medical Center, Chinatown, and Downtown Crossing stations. This would 

decrease their travel times by an average of 4 minutes, and result in a 0.5% decrease in the 

overall difference in travel times.  

Extending the SL4 through Washington Street in Downtown Boston to the Blue Line ought to be 

further investigated in order to provide users’ better access to the Blue Line and slightly shorter 

walking distances to the Orange Line.  

The 32 and 39 could also be merged in order to increase speed to access the Longwood Medical 

Area. This would decrease travel times using those routes by an average of 4 minutes, and reduce 

the overall difference in travel times by 0.7%. ODX output should be further investigated to the 

potential improvement from merging routes in order to improve access to Longwood from 

Roxbury and Mattapan. 
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Heavy Rail 
Early morning frequencies on the Orange Line and the Ashmont branch could be increased in 

order to reduce waiting times. Investing in Communication-Based Train Control and Automatic 

Train Operation to coincide with the introduction of new vehicles on the Red and Orange Lines 

can improve reliability, capacity, and peak frequency for rail and bus to rail trips.  

Commuter Rail 
Reducing the fare on the Main Line commuter rail line at Hyde Park from Zone 1 to Zone 1a 

would allow users currently riding the 32 to the Orange Line in order to access commuter rail 

stations such as Ruggles and Back Bay, and locations near South Station to have a faster trip.  

The greatest potential benefit of any intervention would come from the introduction of Diesel 

Multiple Unit (DMU) service running at Orange Line frequencies on the Fairmount Line, which 

runs in the middle of the Black or African American area of Roxbury, Dorchester, and Mattapan. 

The use of this equipment would improve frequency and running times and could reduce the 

travel time gap between 25 and 35%. 

An evaluation of this improved service with 5 minute headways and 16% faster running times 

than current schedule was performed first in disaggregate for trips starting and ending within a ½ 

mile (800m) radius of station on the Fairmount. Half of the 5% of Black trips meeting that 

criteria would switch to this improved Fairmount service, benefiting from an average decrease in 

travel time of 13.5 minutes. This switch would lead to an overall decrease in the average travel 

time difference between White and Black commuters of 10%. These benefits were extrapolated 

to those who could walk to a Fairmount Station and whose destinations were well-served by a 

transfer at South Station. Considering all trips which begin within walking distance of a 

Fairmount Station leads to an estimated reduction of up to 25% of the current travel time 

difference.  

Because the walk-only trips represent only a small portion of the trips which could benefit from 

the Fairmount Line, their benefits were extrapolated in aggregate for other trips which could 

benefit from the Fairmount. This led to the upper bound of estimated potential travel time 

difference reduction of 35%.  

Given the magnitude of the potential benefits, and the assumptions required to estimate them in 

this thesis, a fully disaggregated analysis of the benefits is recommended. This would require a 

model of the new transit network with a routing algorithm to reassign users to shorter trips using 

the Fairmount and should consider changing trip patterns from increased accessibility as well as 

economic growth in nearby areas such as the Seaport District. 

6.2.2 Future Title VI and EJ Reporting 

The Federal Transit Administration should modify Title VI and EJ guidelines to encourage 

agencies to use data from ADCS to inform analyses at better resolution and using passenger-



 

142 

 

centric metrics. In light of the differences in travel time by transit for different races/ethnicities 

based on survey responses to the American Community Survey highlighted by (Williams et al., 

2014) and reproduced in this thesis (see Section 3.6.1), the FTA should encourage agencies to 

consider outcomes by racial or ethnicity categories, rather than treating all minorities as one 

homogeneous non-white population. Though this thesis did not use inferred OD to examine 

travel time differences for other minority classifications, the analysis could be repeated to 

examine other races and ethnicities, commuters who with low-incomes, or commuters 

identifying as Hispanic. 

Future analysis by the MBTA could incorporate inferred ODX and be compliant by adopting 

new performance standards based on passenger-centric metrics such as journey speed, journey 

time, and journey-time reliability. Ridership could be used to weigh the comparison of metrics 

rather than aggregating at a route level.  

Although heterogeneity within tracts was not perceived to be an issue in this analysis, whether 

minority individuals in White majority tracts have different transit outcomes than their neighbors 

should be investigated. This would ideally be achieved by including a question requesting the 

respondent’s farecard ID in subsequent Title VI & EJ Systemwide Surveys, as has previously 

been piloted at the MBTA (Chow, 2014). Linking observed farecard travel to survey responses 

would have a number of additional benefits beyond being able to make a direct link between 

respondents’ demographics and their travel. A prompted recall survey asking respondents their 

prior travel by presenting them their previous travel would provide a large scale validation of OD 

inference. By collecting respondents’ home address, or the nearest intersection, the home 

location inference algorithm presented in Chapter 4 could be validated and refined.  

6.2.3 OD-Inference Refinements 

Green Line LRT 
Now that vehicle positions are being automatically collected on the Green Line LRT, it is 

possible to infer origins and destinations at a stop-level accuracy on the surface branches of this 

line. Given that these branches travel through predominantly White tracts, and carry a significant 

number of passengers, the inclusion of these branches could have a significant effect on the 

observed travel times and speeds of White commuters in the sample tracts analyzed in this thesis. 

6.3 Future Research 

6.3.1 Origin and Destination Inference: Verifying or replacing the symmetry assumption 
With multiple days of data available, the assumptions that commuters return to the closest point 

in the network to their first origin should be revisited, as it is possible to infer the last destination 

of the day with the next day’s origin. If warranted, the next day’s origin might replace the 

analysis day’s origin as a proxy for the present day’s destination. 
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6.3.2 Home Location Inference 

The home location inference could be refined, validated, and the utility of more sophisticated 

methodologies evaluated. By incorporating number of observations at each stop or station into 

weighing confidence in determining the home area, rather than assuming card holders are equally 

likely to reside in any given catchment area.  

The value in generating Voronoi polygons that take the street network into account should be 

investigated. Additionally, it should be determined whether the directionality of bus stops and 

stations that only allow users to travel in one direction affects the resulting shapes of the 

catchment area since, to some degree, users can be unwilling to walk in the opposite direction in 

order to access transit.  

This analysis excluded workers who may work overnight, as well as users without a majority 

proportion of their days started in a home location. The behavior of these users should be further 

investigated, as well as the opportunity to use activity inference to determine home and work 

locations to be able to include users with more irregular commuting patterns into the analysis. 

6.3.3 Housing Affordability and Displacement 
Alhough housing affordability is not in the mission of the MBTA, it would be remiss to propose 

these solutions without a warning about the link between transit access and housing affordability. 

There are concerns that increased accessibility from the Green Line Extension into Somerville 

will raise rents such that low and moderate income families will be forced to move to areas with 

decreased accessibility (Metropolitan Area Planning Council, 2014). Similar displacement forces 

may affect Black or African American residents in the sample area used in this analysis. It would 

be unfortunate if improvements to right inequities in access resulted in displacing residents to 

regions of similar or worse accessibility. Therefore, cooperation is required with agencies 

responsible for the protection of housing affordability when implementing these proposed 

solutions.  

6.3.4 Vehicle Loads 
This analysis only examined journey time, speed, and distance characteristics. Vehicle loads 

have a large effect on passenger comfort and the possibility of vehicles being too crowded to 

board. Inferring loads from inferred OD is possible with appropriate scaling and the spatial 

variation in these loads can be analyzed. 

6.3.5 Analyzing Variability for Other Demographics 
The analysis described in this thesis should be repeated with other transit riders from other 

minorities, treating them by racial or ethnic category rather than as a homogeneous group to 

determine how outcomes are different by race. This analysis could also be repeated with 

Hispanic commuters, or low-income commuters, but not both characteristics simultaneously. The 

intersection, or combination, of the aforementioned characteristics by individual is difficult to 

analyze with the ACS’s data at the Census Tract level because each category is aggregated 
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independently. One could look at tracts with high concentrations of Hispanic persons, and high 

concentrations of Black persons, but this does not necessarily imply a high concentration of 

persons who are both Hispanic and Black. The use of inferred home locations linked to census 

tracts will be difficult with groups who are not numerous such as Native Americans, or groups 

who are well dispersed with the rest of the commuting population.  

There are other corridors which have high concentrations of minority riders and are located in 

between rail lines. For example, the area of Everett, Chelsea and sections of Revere is similar to 

the Roxbury, Mattapan, Hyde Park corridor and is also disconnected from Downtown Boston by 

water. A similar study of that area with OD data may reveal similar travel time differences and 

may suggest operational improvements to bus routes or introduction of DMU service on 

commuter rail lines that could benefit commuters in those areas.  

6.3.6 Off-Peak and Weekend Service 
Users who commute after 3PM and on weekends were explicitly excluded from this analysis. 

More sophisticated techniques to infer home locations and potential work locations for users 

with more irregular patterns, as per 6.3.2, would identify these users’ home locations for linking 

to demographics and commute trips for analysis. Finally, the most recent Title VI analysis of the 

MBTA highlighted disparate bus loads for weekend service, so this should also be further 

investigated (Central Transportation Planning Staff, 2014). 
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