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Abstract

In the simulation of the behavior of neutrons in a nuclear reactor, there has long been a
dichotomy in solution techniques. One can use Monte Carlo methods, known to be very
accurate and problem agnostic but also very costly, or deterministic methods, known to be more
computationally efficient but also requiring tuning to a specific application. As designers rely
more and more heavily on predictive simulation, higher fidelity and more problem agnostic
deterministic methods are desired. This thesis seeks to push these deterministic methods
towards that goal of higher fidelity in the context of multigroup cross section generation and
resonance self-shielding.

This work has two primary objectives: to quantitatively assess the efficacy of current
self-shielding approximations and to propose new self-shielding methods. These objectives are
cast primarily in the context of mutual self-shielding, the effect of one nuclide’s resonances on
the neutron reaction rate with another nuclide.

The first objective is accomplished through the development of a framework for the evalua-
tion of self-shielding methods. This framework is analogous to a unit test suite in software
engineering, in that specific aspects of physics modeled by a self-shielding method are isolated.
The framework is used on numerous existing methods, and highlights the successes and
failures of these methods on very simple problems. This objective is also accomplished via an
analysis of the consequences of neglecting the angular dependence of multigroup cross sections
in the solution to the multigroup neutron transport equation.

The second objective is accomplished by proposing two new methods: the subgroup method
with interference cross sections and ultrafine with simplified scattering. The former uses a
fitting method to find the effect of interfering nuclides on the subgroup levels of a primary
nuclide, allowing mutual self-shielding effects to be treated natively inside the subgroup
method without increasing algorithmic complexity. The latter is a hybrid of the subgroup
method and ultrafine methods, using an ultrafine energy mesh on the left hand side of the
transport equation with the scatter source of the subgroup method on the right hand side.
These two methods are tested in the context of the evaluation framework alongside classical
methods. Although it shows promise on some simple problems, the subgroup method with
interference cross sections was seen to exhibit shortcomings on problems with many nuclides.
Ultrafine with simplified scattering was found to perform very well on all problems in the test
suite.

Thesis Supervisor: Benoit Forget
Title: Associate Professor of Nuclear Science and Engineering
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Chapter 1

Introduction

1.1 Introduction

In the modeling of a nuclear reactor, a requisite quantity of interest is the distribution of
nuclear reaction rates throughout the core. This is accomplished by modeling the distribution
of neutrons through the use of the neutron transport equation. This class of problems is known

as neutronics or reactor physics.

The independent variable in the neutron transport equation is the neutron flux. When used
to describe the distribution of neutrons including their direction of travel, this is the angular
flux . When integrated over all angles, the resulting neutron distribution is known as the
scalar flux ¢,

o= | wdQ . (1.1)
4r

These fluxes are not the typical definition of flux encountered in physics. Instead the flux is
the product of the volume density of neutrons and the speed of the neutrons. An alternative

but equivalent definition is the path length traveled by neutrons per unit volume.

The flux is related to the reaction rate R by a proportionality constant known as a macro-
scopic cross section X,
R=3Z¢p . (1.2)

The macroscopic cross section varies by material composition, but is related to another quantity
known as the microscopic cross section o by

>=No , (1.3)

where N is the number density of a nuclide. This microscopic cross section is a property of
a particular nuclide. It is measured experimentally, evaluated using experimental data and
theoretical models, and tabulated. The macroscopic cross section for a material containing
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Figure 1.1: Total microscopic cross section of U-238.

multiple nuclides is the sum of the macroscopic cross sections of the constituent nuclides.

The microscopic cross section for a given nuclide can be a wildly varying function of energy.
For instance, the cross section of one of the most important nuclides in reactor physics, U-238,
is given in Fig. 1.1. The cross section varies several orders of magnitude over an energy interval
on the order of an eV near nuclear resonances. This fact, coupled with neutrons in a nuclear
reactor covering more than 10 orders of magnitude in energy, provides significant challenges
in the solution of the neutron transport equation. This thesis focuses on means of accounting
for the effects of resonances on the solution of this equation.

The neutron transport equation is an integro-differential equation, and the flux it models is
a function of seven variables. These variables include three variables to describe the position
of a neutron, two to describe its direction of travel, one to describe its energy (or equivalently,
speed), and one to describe the point in time. It is a balance equation, setting the rate of change
of the neutron population equal to the difference in the neutron source rate and the neutron
sink rate. In this thesis, only steady-state applications will be considered. The transport
equation then requires the sources be balanced exactly by the sink. This implies either a very
specific condition be modeled, a fixed source be present, or an eigenvalue to force this balance.
The steady state transport equation with a generic source Q is

Q- VY Q, E)+3(7 EW(7, O, E) =

00 . R . R . (1.4)
f dE’ f dQ' X7 Q - QE — EYW(F Q' ,E") + Q7 Q, E)
0 4r

14



The subscripts on the cross sections indicate the type of reaction they correspond to. Subscript
t indicates the total of all reactions, and s indicates scattering. Other subscripts used in this
thesis include a for absorption, y for radiative capture, and f for fission. The subscript ¢ will
sometimes be dropped from X,, and X will imply the total cross section in this thesis.

In this equation, the first term on the left hand side represents the streaming of neutrons
from one spatial location to another. The second term is the total collision rate for a given
volume of phase space. On the right hand side, the first term is the scatter source, representing
neutrons that scatter off nuclei at some energy and emerge at the energy of interest. Finally,
a source term is included. In a typical reactor physics calculation, this is a fission source
including an eigenvalue &,

~ 7 E 0 ~ ~ ~ ~
07 0. F) = X0 E) f dE’ f A vE (7Y - O — EFO L E)
k 0 4n
v (e (1.5)
~ A dE'vE/(7,E' — EY(RE)
Ark

where y is the energy spectrum of emerging fission neutrons and v is the number of neutrons
per fission. The approximation is the most commonly used form, as fission neutrons are emitted
nearly isotropically.

The neutron transport equation has been solved using a multitude of different approaches.
The most accurate and problem agnostic method is the Monte Carlo method, which simulates
the behavior of individual neutrons via stochastic methods and infers the distribution of
quantities of interests via population statistics. The major downside to the Monte Carlo
method is its associated high computational cost.

The alternative to Monte Carlo is to solve the neutron transport equation with a deter-
ministic method. The traditional application of these methods is much more computationally
efficient than Monte Carlo, but accurate and problem agnostic results are much more difficult.
The objective of this thesis is to provide additional accuracy for deterministic methods, pushing
them towards the ideal of being problem agnostic.

1.2 Multigroup Approximation

When using deterministic methods, the neutron transport equation is discretized in each
variable, sometimes with the exception of the angular variable, which is expanded with
orthogonal polynomials. Spatial discretization follows the well-known approaches used in other
fields for the solution of partial differential equations. The energy discretization, however,
presents a unique challenge for the neutron transport equation. Because of the large range of
important neutron energies in a reactor and the wild energy dependence of the cross sections,
the energy discretization must be performed very carefully. The most common approach for

15



deterministic methods is the multigroup approximation.

The multigroup approximation is formulated in such a way as to preserve reaction rates, as
these are the primary quantities of interest. This is accomplished by integrating the neutron
transport equation over energy and defining multigroup constants in a consistent manner.
In this discussion, the scatter source is assumed to be isotropic, but this assumption is not
necessary for the multigroup approximation. Defining an energy group as a contiguous domain

of energy, the neutron transport equation is integrated over group g, ranging from [E ., E,],

E_‘/ A A N
f dE (Q V(7 QO E) + X7, E)W (7, Q, E)) =

Eg+l . 1 N (1.6)
f dE (— f dE' S(7 E' — E)p(7, E") + Q(7, Q. E)
Egn 4 Jo
1< .
Q- Viy(7. Q) + oy (7 Qg (. ) = Z Zog—g by () + Qg7 ) (L.7)
where the multigroup constants are defined as
Y (P Q) = f dE (7, E, Q) (1.8)
E,

g+1

e AESGEEWGEQ)
Ty, Q) = (1.9)
fE ¢ dEY(?,E,Q)
g+l
fEf’ dE’ qu. dES R E' — E)$(7, E)
2s,g’—>g('_}) = - 9;/ (110)
Je., dE" ¢ E")

. Eq .

Qy(7, Q) =f dE Q(%,E,Q) . (1.11)
Eg+l

Note that energy groups with higher indices are lower in energy. This convention stems from

the fact that neutrons are born from fission at high energies and slow down to lower energies

throughout their life.

The multigroup form of the transport equation presented here is not typically used, as it
has the inconvenient property of having an angular dependent total cross section. This angular
dependence is a result of collapsing to the multigroup form by integrating with the angular
flux. Instead, an approximate multigroup transport equation is much more commonly solved,

where the total cross section is collapsed using the scalar flux:
. . . 1 .
Q- ng(?a Q) + zt,g(?a Q)'vbg(?’ Q) = E Z Es,g’—)g(?)qsg’(’_}) + Qg(?, Q) (112)
g'=1
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Figure 1.2: Diagram of the multilevel approach used in deterministic reactor physics calcula-
tions.

E
¢ dE TP E)p(7, E)
ng“ (1.13)

Et, (’7) =
? [ dE ¢, )

The consequences of this approximation are explored in Ch. 7.

Other than the approximation for the total multigroup cross section, the multigroup
transport equation is an exact representation of the true neutron transport equation. However,
the multigroup constants require knowledge of the continuous energy flux, which is not known
a priori. This difficulty is summarized particularly well by this quote from the NJOY manual
[1]:

“Wait a minute,” you ask, “the purpose of solving the transport equation is to get
the flux, but I have to know the flux to compute the multigroup constants!” This

conundrum is the source of much of the “art” in using multigroup methods.

To overcome this challenge, a multi-level framework is usually employed to approximate
the flux for use in collapsing multigroup constants. In this framework, a small problem—either
an infinite medium or a single unit cell—is solved with continuous or near continuous energy
cross sections. This is known as the self-shielding or database level. Next, cross sections are
condensed to O(50 — 500) groups, which are used in a larger calculation, typically a reactor fuel
assembly. This step is known as the lattice level. Finally, the cross sections are condensed
further to OQ2 — 10) groups and used in a full-core calculation. A diagram of this process is
shown in Fig. 1.2.

In Part II, methods used for the self-shielding level and the lattice level are discussed. Typ-
ically, the self-shielding level involves solving the slowing down equation or an approximation
to it in an infinite medium, which is discussed in Ch. 2. In recent years, it has become more
common to incorporate geometry into this process, usually by means of an ultrafine solution
(discuseed in Ch. 5) or by Monte Carlo methods. Traditionally, the lattice level uses equivalence
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in dilution methods (Ch. 3) or the subgroup method (Ch. 4). Ultrafine methods can be used to
combine the self-shielding and lattice levels by applying the method to a larger geometry, but

this is typically associated with a prohibitive computational cost.

1.3 Method of Characteristics

Of the many approaches to solving the neutron transport equation, the primary solver used
in this work is the method of characteristics (MOC) [2]. The results given in this thesis were
generated by an MOC code developed by the author, inspired by the open source OpenMOC [3].
The method is briefly explained here.

The method of characteristics recognizes that the streaming term in the neutron transport
equation is just the rate of change of the angular flux along a straight line path, i.e., a
characteristic: d
Q- Vy(7 QO E) = Yo+ sQE) (1.14)

S
where 7 = 7 + sQ. The characteristic form of the transport equation, with a generic source that

includes scattering, is

diw(?o + 5O, E) + 37 + sQ, EW(7 + s E) = Q7 + sQ,E) . (1.15)
S

The most common form, and only form considered in this work, separates the geometry
into so-called flat source regions, regions of the geometry in which the source is assumed to
be constant. The solution to the transport equation is then solved by integrating along many
tracks at different angles and starting points along a global boundary and using a numerical
quadrature to obtain the scalar flux. An advantage of this approach is, unlike many other
deterministic solvers, the method of characteristics can use an exact geometry; it does not
require representing boundaries between materials or otherwise with any approximation.
Geometry specification is performed by constructive solid geometry. Quadratic surfaces—
those that can be represented by quadratic equations in the spatial variables—are used, and
geometric regions are defined by a list of bounding surfaces and their orientations.

Following geometry specification, characteristic tracks are layed down across the geometry.
Tracks start from one global boundary and extend until they reach another global boundary.
The tracks are then segmented, i.e., separated into segments by splitting the track at each
flat source region boundary. Tracks are separated by an equal amount approximately, and
the amount is input by the user. Similarly, azimuthal angles are chosen to be approximately
uniformly spanning the unit circle, and the number of angles used is an input by the user. The
track spacing and number of angles are not perfectly uniform, as cyclic tracking is imposed.
That is, all tracks must end at the same point that another track begins. This aids in the
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modeling of reflective and periodic boundary conditions. The polar angles and associated
quadrature used are those which were recommended by Yamamoto and Tabuchi [4].

Starting from a global boundary with a given boundary flux—either specified as the
boundary condition or iterated on for reflective or periodic boundary conditions—the neutron
transport equation is integrated across each track. The outgoing flux y* as a function of the
incoming flux ¢~ for each segment is given by

yr=ye 29 (1-e™2) (1.16)

t

where A is the length of the segment. The average angular flux along a segment is

£ 421 )

% % %A

1

v=—

A (1.17)

Once the flux for each segment is computed, the volume-averaged scalar flux in each flat source

¢=lfd?f dQy . (1.18)
Vv \% 4

The integrals are carried out by a numerical quadrature,

region is computed by

47 ) _
¢ = 7 Z wm(k)a)p(k)ka sin ap(k)l//k R (1.19)
keV

where k is the index for a particular segment, w,,) is the azimuthal quadrature weight for the
segment, w, is the polar quadrature weight for the segment, wy is the spatial quadrature

weight for the segment, 6, is the polar angle for the segment, and ¥, is the average flux along
that segment.

If the source is dependent upon the flux, after the flux is computed, the source is recomputed.
An iterative process is followed until the solution converges.

1.4 Motivation and Objectives

Deterministic neutron transport methods require carefully chosen multigroup constants to
accurately model the distribution of reaction rates in a nuclear reactor. These multigroup
constants are computed using various self-shielding methods, detailed in Part II. However,
these self-shielding methods are based on a series of approximations. Such approximations
have proven to yield suitable results for the design and analysis of the existing fleet of
commercial light water reactors. However, with the reality that large experiments are likely
too costly to be incorporated into advance reactor design, predictive capabilities outside of the
design space covered by existing reactors is desired. Even small changes to existing designs—
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such as pushing to higher burn-up fuel, using mixed oxide fuels, or axial heterogeneity—cause
many of the legacy reactor analysis tools to break down.

Furthermore, even without stressing the methods with new designs, higher fidelity simu-
lations are desired. Closer multiphysics coupling is the goal of much of the ongoing work in
reactor physics. Thermal hydraulic analysis provides temperature distributions that can be
used in neutronics simulations; in return, neutronics simulations provide power distributions
to be used in the thermal hydraulic analyses. Fuel performance analyses also are closely
coupled with both thermal hydraulics and neutronics. Although such multiphysics coupling is
not the subject of this thesis, the requirements of multiphysics coupling provide motivation
for better methods. Neutronics methods that can take into account temperature effects in the
self-shielding calculation or that predict the effect of a heterogeneous lattice on the rate of

depletion in intra-pin zones or be applied to distorted geometries are needed.

There are two primary objectives of this thesis. First, this thesis seeks to quantitatively
measure the current status of self-shielding methods. It seeks to identify situations in which
the current methods perform well and to also understand their limits. It seeks to find situations
that cannot be handled by existing methods and to quantify the adverse effects of applying
the existing methods to these situations. And it seeks to do this in a way that is adaptable to
problems not studied specifically in this thesis, as a framework for future evaluation of these
problems.

Second, the thesis proposes new self-shielding methods. The new methods are not intended
to be monumental deviations from the norm, revolutionizing the industry. Instead, the methods
are intended to be small changes to existing methods that allow their range of applicability to

increase.

For both of these objectives, the thesis primarily—although not exclusively—considers the
context of mutual self-shielding. This is the effect of the resonances of one nuclide affecting
the reaction rates in the resonances of another nuclide. This particular issue exists in current
LWRs, but is exacerbated in the context of higher burnup fuels, mixed oxide fuels, or other

alternate materials.

1.5 Outline

This thesis is divided into five parts, each containing chapters.

Part I contains only this chapter, and serves as an introduction to the problems considered
and the methods used in this thesis.

Part II is a substantial review of existing self-shielding methods. In it, Ch. 2 is a discussion
of neutrons slowing down in infinite media, which is the primary method used at the self-
shielding or database level of the multi-level approach and provides the basis of all the other
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methods considered. Chapter 3 introduces equivalence in dilution, the primary workhorse of
lattice-level cross section generation for many decades. Chapter 4 introduces the subgroup
method, which is an alternative to equivalence in dilution that has become increasingly popular
in lattice physics codes more recently. And Ch. 5 introduces ultrafine methods, the clear path
forward to higher fidelity, but which comes at a high computational cost.

Part III provides several significant contributions to the field. Chapter 6 presents a simple
framework for evaluating self-shielding methods. Chapter 7 investigates the approximation
made by scalar flux weighting the total multigroup cross section. Chapter 8 discusses the
issue of mutual self-shielding in detail and introduces two new methods for accounting for the
effects.

Part IV contains a single, long chapter, Ch. 9. This takes the next step from the framework
presented in Ch. 6 and compares both old and new methods on realistic but small problems.

Finally, Part V wraps up the thesis, providing conclusions and references.
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Part 11

Background
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Chapter 2

Slowing Down in Infinite Media

2.1 Introduction

The foundation of classical self-shielding methods is the solution of the neutron slowing down
equation, which represents how neutrons behave in an infinite medium. The resulting flux
is used to generated cross sections, which are used directly in heterogeneous calculations
(discussed in Ch. 3) and used to generate subgroup quadratures (discussed in Ch. 4).

The generation of infinite medium cross sections, stored in homogeneous nuclear data
tables, is typically the first level of the multi-level approach for multigroup cross section
generation. Continuous energy cross sections are collapsed to on the order of hundreds of
groups and stored in a database. These then serve as the inputs to lattice-level methods.

In this chapter, the slowing down of neutrons in the resolved resonance range of major
actinides is considered. Scattering is assumed to be isotropic in the center of mass, and the
implications of this are explored. The slowing down equation is presented, direct solutions are
discussed, and approximate solutions are introduced.

2.2 Physics of Elastic Scattering

When a neutron scatters off a target nucleus, its change in energy is directly correlated with
the scattering angle. Here, the relationship between energy and angle is demonstrated for a
target nucleus at rest. In the resonance region, thermal motion of the nucleus is generally
considered negligible compared to the energy of the neutron in regards to the scattering physics
(relationship of incoming and outgoing energies of the neutron and nucleus). Although thermal
motion affects the center of mass energy of interaction, which has an important impact on
resonance behavior, this effect can be accounted for by modifying the cross section through

a process known as Doppler broadening [5]. For some nuclides with resonances with large
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Table 2.1: Nomenclature used in scattering derivation, Eq. (2.1) through Eq. (2.13).

Symbol Meaning

-l

Vector; magnitude implied when vector notation is not used
2 Unit vector in direction z
Q Unit vector in direction of neutron travel
0 Angle between 2 and Q
A Nucleus mass relative to the neutron mass
Vcou  Velocity of the center of mass
vy Initial velocity of the neutron in the LAB system
v Final velocity of the neutron in the LAB system
1o Initial velocity of the neutron in the COM system
u Final velocity of the neutron in the COM system
Uy Initial velocity of the nucleus in the COM system
U Final velocity of the nucleus in the COM system
Do Initial total momentum in the COM
p Final total momentum in the COM
Ky Total kinetic energy in the COM
K Final kinetic energy in the COM
Ey Initial kinetic energy in the LAB
E Final kinetic energy in the LAB

scattering widths, the small probability of upscattering due to thermal motion can have an

important effect, but the associated scattering physics is not discussed here [6].

Now, a derivation of relationships between incoming and outgoing energies of the neutron
and nucleus is presented, with nomenclature defined in Tab. 2.1. Consider a neutron with
kinetic energy E and corresponding velocity vy in direction Z colliding with a stationary nucleus
with mass A times the neutron mass. The velocity of the center of mass is

voZ
A+1

Veom = (2.1)

The corresponding velocities of the neutron and target nucleus, respectively, in the center of
mass frame are

it = 8o — Veom = Ali Tvof (2.2)
Uo=0-Veom = - ! voZ (2.3)
A+1
The total momentum in the center of mass frame before the collision is
Po = ilo + AUy
A 1 s (2.4)
=A+10Z_ A+1voz:O .



The total kinetic energy in the center of mass frame before the collision is

1 2 1 2
K() = 5110 + EAUO
1

~ (A )2+1A 1Y 1A, (2.5)
“2\a+1) T2 a1 T2a+1

After the collision, the neutron will be travelling in some direction Q with velocity u, both
defined in the center of mass frame. By conservation of linear momentum, the target nucleus
must be travelling in the opposite direction of the neutron, and its velocity U can be related to

the neutron’s by

7= po
u-—AU=0 (2.6)
u=AU

With this relationship, the neutron velocity u can be put in terms of the initial lab velocity v
through conservation of kinetic energy:

K =K
1 1 A
2 2 2
Z ZAU? = Z
3 2A+1%0 o
2 A .
w2+ = vy
A A+1
A 2
2 _ 2
VN 1) Yo
A
= . 2.
b A+ lvo (2.8)
Defining the center of mass scattering angle 6 as
cos@=Q-% , (2.9)

the components of the final neutron lab velocity v can be determined. With % being the initial
neutron direction and L representing the perpendicular component, the components are

v, = VCOM + ucos(@)

1 A (2.10)
=171 IUO + el lvo cos(6)
v, = usin(6)
A ) (2.11)
= o lvo sin(0)
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The squared magnitude of the final neutron lab velocity is

2
2 2 2

v =v; + ]

_ (A:—Oly [(1+ Acos(8)? + A% sin’(6)

5 A% +2Acos(6) + 1
=V
0 (A +1)?

(2.12)

The outgoing neutron energy in the lab system can then be put in terms of the cosine of the
center of mass scattering angle u = cos(6) as

1
EZEUZ

A%+ 24+ 1
(A+ 1)

(2.13)

In the resonance range, elastic scattering is nearly isotropic in the center of mass. If
isotropic COM scattering is assumed, the energy distribution can be obtained. To see this, first

consider the definition of isotropic scattering:

1
P(/,t)d,uzid,u, pel-1,1] . (2.14)

The equivalent energy distribution can be written as

P(Ey — E)dE = P(u) j—‘g dE . (2.15)

Equation (2.13) can be solved in terms of u and then differentiated to obtain

2
j—g = (2;)510) (2.16)
Therefore, the energy distribution is
P(Ey — E)dE = (i; El)z dE
10 (2.17)
EEC
where R
a/=(A+1) . (2.18)

The bounds on this distribution can be determined by inserting the bounds of i into Eq. (2.13):

E|“:‘1 - (2.19)
E|ﬂ:1 - E '
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Thus, the probability distribution function for the outgoing energy after an elastic scattering
collision isotropic in the center of mass is

! aEy < E<E
P(Ey— E) = (1-a)Ey (2.20)

0, otherwise

With this probability distribution, average quantities can be obtained. Of particular interest

is the average logarithmic energy decrement, defined as

¢=(InEy~nE)= <m(i‘))> , 2.21)

where the angle brackets indicate an average over the outgoing energy. This is obtained by
averaging the quantity In(Ey/E) in terms of the probability distribution over the energy interval

in which the probability is nonzero:

1
£ = f _ 1 4k
(1 _;)EO . (2.22)
0 0
(l—a/)EO Eln(E) ELEO
E=1+ liw Ina . (2.23)

This form is independent of the incoming energy, depending only on the mass of the target
nuclide.

Because neutron slowing down is characterized by neutrons losing fractions of their energy
in each collision, a common change of variables in the neutron slowing down equation intro-
duces a quantity known as the lethargy u (not to be confused with the COM velocity u used

earlier): E
ref

E ’

where E,.; is some reference energy, often taken to be the largest energy encountered in a

(2.24)

u=1In

simulation. Lethargy increases as neutron energy decreases—colloquially, this suggests that
neutrons with less energy are more “lethargic”. With this definition, ¢ of Eq. (2.23) can also be
thought of as the average lethargy gain per collision. The elastic scattering kernel in terms of

lethargy is
P(Ey — E)dE = P(up — u)du
1 (2.25)
du = ——dE
E
1%6”‘”0, up<u<uy—Ina
Plug—»u)={""° (2.26)
0, otherwise
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For further references on this topic, see [5, 7, 8].

2.3 Pure Elastic Scatterer

Next, consider the behavior of neutrons slowing down in an infinite medium of a purely
scattering material, assuming elastic scattering is isotropic in the center of mass. This thesis
is concerned with the resolved resonance range of the actinides, and so this energy range is
well below the threshold energies of inelastic scattering and is well below the average energy
of fission neutron emission.

Without spatial dependence, the neutron transport equation solely models the energy
spectrum of the flux. Because no upscattering is assumed, this equation is known as the
neutron slowing down equation. With a pure elastic scatter, the neutron slowing down equation
can be written as

E/a
L(E)(E) = f L(EP(E" — E)$(E")AE" + S(E)
E

_ fE/" S (EG(E")
Je (d-aoF

(2.27)
dE’ + S(E)

If the assumption that the source S (E) exists only at high energies and the energy of interest
is far below the source energy, the equation can be simplified to represent the flux in its

asymptotic form:
FIO S (ENGE -,

xEwE) = [ =0 (2.28)
It is easily verified that the solution to this equation takes the form
C
¢(E) S(E)E (2.29)

by inserting this form into the equation. Because this flux varies as 1/E, it is often convenient
to define the flux in terms of lethargy with

#(E)dE = ¢(u) du
d(u) = EP(E)

(2.30)

This allows the flux to be treated as constant, except for the effects of the cross section. For
the remainder of this discussion, the flux will be kept in terms of energy, but this lethargy

transformation will be used in subsequent discussions.

To determine the constant C, consider the quantity known as the “slowing down current”
q(E). This quantity is the rate at which neutrons with energies greater than E scatter with
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outgoing energies less than E. Mathematically, this quantity is defined as

E/a E
g(E) = f dE’ f dE” S(E)PE' — E")Q(E) . (2.31)
E aE’

By inserting the flux shape of Eq. (2.29) and the elastic scattering kernel, the slowing down

E/a E C
4(E) = f dE’ f dE" ———
E % (I-a)E (2.32)

=c[1+1“ -c¢

current becomes

Ina

-
where ¢ is the average logarithmic energy decrement defined in Eq. (2.23). Now, consider the
value of g(E). Below the energy of the source, assuming steady-state behavior and the absence
of absorption, the rate of neutrons slowing down past any energy point must be the same as
the source rate: .
q(E) = f S(ENYAE' =Sy . (2.33)
E

Then, the flux in an infinite medium of a purely elastic scattering material at energies well

below the source energy is given by

So

" &(E)E (2.34)

P(E)

Up to this point, only energies far below the source energy have been considered. This
is a good approximation for the resonance range of heavy nuclides, but a demonstration of
this fact is warranted. Consider a simple problem, that of an infinite medium containing a
purely elastic scattering constant cross section monoisotopic material with a source given
by S(E) = So6(E — Ey), where 6(E — Ey) is the Dirac delta function centered at E;. Rather
than consider the entirety of the flux in this system, consider separately neutrons that have
undergone specific numbers of collisions.

First, the uncollided flux ¢, is given simply as

2spo(E) = So0(E — Eop)

So
—O&(E — E
. ( 0)

(2.35)
Po(E) =

The flux exists only at the source energy and is nonzero only at a singularity.

Next, the once-collided flux ¢, is a solution to the slowing down equation with the source
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coming from scattering from the uncollided flux:

E/a ’
00 (E) = fE Z4(E)

(1 - a)E’
S0 ek Eyl (2.36)
¢1(E) = (1 —a)XsEp
0, otherwise

This flux is piecewise constant in energy, featuring a discontinuity at aE.

Next, the twice-collided flux ¢, uses the once-collided flux in its scatter source:

E/a P E’
£,0(E) = fE ﬁw . (2.37)

Because ¢; is defined piecewise, the integral must be split into pieces. First, the interval
E € [aEy, Ey] is considered:

(E)_fEO SO 1 dE’
P B)= | G onEd-oF

2.38
50 B0 g eE Eo 25
T (1-aPLE E’ 00
The flux in the interval E € [@*Ey, Ey] is
E/a SO 1
(E) = f dE’
P20 o, T-amEe (- @ 259

So E

= In , E€[a’Ey,aE
(1—a2L,E, a’E, La”Eo, aEo]

The flux is zero below this point. Note that this twice-collided flux is continuous, but exhibits
discontinuities in its derivatives at o>Eq and «Ey. It is piecewise linear in In E—or equivalently,

in lethargy.

The thrice-collided flux ¢;(E) uses the twice collided flux in its scatter source:

E/a Zs‘ E’
£.03(E) = fE FEa (2.40)

As with the twice-collided flux, this integral is split to account for the piecewise definition of ¢,.
In the interval E € [aE), Ey], the flux is

LU ¥ 1
#3(E) = S—‘;f In—2 ——dFE’
(1-a)?ZEy )y E (1-a)E ©2.41)
1 E '
_So ek g [aE, Eo]

T2 -aprE, E’
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In the interval E € [@?Ey, @Ey], the flux is

S Ble By 1 “Fo E 1
$y(E) = — 20 f ln—o—dE’+f In———— _dE’
(1 —a)2Z,Eg @Ey E' (1-a)FE’ E a2Ey (1 — a)E’ (2.42)
1 S 1 E E ’
S A N ) P P il U P . E e [a*Ey, aEy]
2 (1 - a/)3ESE0 @ E a2E0
And in the interval E € [a’Ey, @*E], the flux is
S Ele E 1
$3(E) = —‘;f In————— dE’

(1 - a’) ZSEO a?Ey a EO (1 - CL’)E (243)

= n , Ec€[a’Ey o’E
20— a)ys,E | PE, " Eo, a”Eol

The flux is zero below this interval. The flux is piecewise quadratic in In £ and exhibits
discontinuities in its second derivative at " Eq for n = 1, 2, 3. It is continuous and has continuous
first derivatives.

This process can be continued for more and more collisions, with the integrals becoming
increasingly tedious. However, the trend is clear; each subsequent collision allows the flux
to extend an additional factor of @ lower in energy, and each collision flux has one additional
derivative that is continuous than the previous. Each collision flux is piecewise polynomial
in In E, with the orders increasing with collision. The piecewise nature of the flux is always
defined on intervals of the form [a"Ey, o ' Ey]. These intervals will be referred to as “scattering
intervals”.

The total flux is the sum of all the collision fluxes:
H(E) = ) $u(E) . (2.44)
n=0

The total flux thus exhibits a discontinuity at aE, a discontinuous first derivative at o’Ey, a
discontinuous second derivative at o°E(, and so on. Because each of these discontinuities is
caused by a single collision flux, the collision fluxes can be used to determine the magnitude of

discontinuity. For instance, for the discontinuity at «Ej, the magnitude of the discontinuity is

¢T(@Ey) — ¢~ (@Ep) = ¢7(@Ep) — ¢7 (Ep)

___ S0 _ 0
T (1 - a)%,E (2.45)
(1 - @)K

In terms of the neutron lethargy, recalling that ¢(u) = E¢(E) from Eq. (2.30), this is

¢ (g —Ina) — ¢*(up — Ina) = %% ) (2.46)
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Although the higher collision fluxes are tedious to compute analytically, they are easily
computed numerically. Figure 2.1 shows the first several collision fluxes per unit energy,
plotted on a log scale, with A = 16. The piecewise polynomial in In E can easily be seen. For
the fluxes with higher numbers of collisions, the curves peak lower in energy and increase in
magnitude. This suggests the 1/E flux shape is taking form. Figure 2.2 shows the total flux
per unit lethargy for this same case. The discontinuity at «Ey and the discontinuities in the
derivatives at o"E are easily seen. These discontinuities are known as Placzek transients.

From Fig. 2.2, it is observed that the flux reaches its asymptotic form after only a few
scattering intervals. The resolved resonance range for U-238, whose upper bound is 20keV in
ENDF/B-VII.1, is below o’ E, for all nuclides A > 6, assuming E is the average fission energy
of 1 MeV. For lighter moderators, the magnitude of the Placzek transients is much smaller,
and even for A = 2, the flux does not deviate more than 0.2% from the asymptotic value in
the resonance range. Furthermore, fission neutrons are actually emitted with a spectrum of
energies. This spread in the source energy lessens the effects of the Placzek transients even
further, as no sharp discontinuities will be observed in the flux or any of its derivatives when
starting from a distributed source. Thus, the assumption that the resonance range can be
treated as if energies are far below the source—and thus the flux takes its asymptotic form in
this range—is nearly exact.

For further references on this topic, see [5, 8].

2.4 Slowing Down with Absorption

In this section, the effect of absorption on the macroscopic form of the flux is considered. This
presentation is most similar to that of [8]. The flux shape near resonances is considered
starting in Sec. 2.5. The slowing down equation with absorption and elastic scattering isotropic
in the center of mass is

E/a ’ ’
X(E)(E) = f M dE’ +S(E) . (2.47)

e (U-oF

Here, only a single nuclide is shown. This is easily extended to multiple nuclides by replacing
the integral on the right hand side with a sum of integrals, each corresponding to each nuclide’s

slowing down source.

2.4.1 Constant Absorption

For the case of @ = 0, which corresponds to hydrogen, with energy-independent absorption and
scattering cross sections, the slowing down equation with absorption can be solved analytically.

Although absorption cross sections are never constant in energy in nature, if narrow enough
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Flux of Neutrons After n Collisions (Energy)
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Figure 2.1: Flux after n collisions with a monoenergetic source in a purely scattering infinite
medium.

Total Flux (Lethargy)
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Energy (log scale)

Figure 2.2: Total flux per unit lethargy with a monoenergetic source in a purely scattering
infinite medium.
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energy groups are used, it can be approximated as such. Furthermore, this analysis should
give the reader an appreciation of the effect of absorption over a large energy range. This

simplified slowing down equation is given by
SH(E) = f % dE' + S(E) . (2.48)
E

If it is assumed that the source exists only at high energies, then the equation for energies
below the source is

SH(E) = f ZOED g (2.49)
E F
To solve, this is differentiated on both sides:
d Xy 9(E)
d_E¢(E) =35 (2.50)

This differential equation can be solved by separation of variables. The result is

)ZS/Z

E
S(E) = ¢(Ep) (EO , 2.51)

where Ej is some energy at or below the source in which the flux is known. Note that this
result is the familiar ¢ ~ 1/E result when the medium is purely scattering. If absorption is
present, this flux is always less than the 1/F flux, and the relative difference grows as energy
decreases.

2.4.2 Effect of Resonances

Now consider a material that is purely scattering aside from a single absorption resonance.
Above the resonance, the flux form of Eq. (2.34) holds, as no absorption has been encountered.
Far below the resonance, at least a factor of @ lower in energy, the flux takes the same
asymptotic shape, but the normalization is lower to account for neutrons absorbed in the
resonance. Equation (2.34) can be generalized as

E
o) = 22

= BJ(BE (2.52)

valid when the scattering integrals do not include energies in which absorption cross sections
are nonzero. At energies below the resonance, the slowing down density is

Q(E)=So—f 2 (E)P(E) (2.53)
E

which states that the rate at which neutrons slow down past energy E is equal to the difference
of the source rate and the absorption rate above E. Thus, the flux below the resonance
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eventually regains a 1/E shape, but with a magnitude reduced by a factor proportional to the
resonance absorption rate.

In the interval between the resonance and regaining the asymptotic flux form, the flux will
decrease during the slowing down process, as fewer neutrons from above the resonance will be
included in lower energy energy scatter sources. For large A nuclides, this transition region is
very small; for small A nuclides, potentially large. However, because the likelihood of jumping
over the resonance is higher for lower A nuclides, these exhibit smaller changes in the flux.

2.5 Slowing Down with Single Resonant Absorber

In this section, slowing down in the presence of a single resonant absorber is explored. The
resonant nuclide will be denoted with superscript *, and admixed moderator—referred to as the
“background” moderator—material with superscript +. It is assumed that the moderator has a
constant cross section, with both the scattering and absorption components possibly nonzero.
The background moderator will be shown as a single nuclide for most of this discussion, but
simply adding summations over moderator nuclides allows this to be generalized to multiple
background nuclides. The resonant nuclide is assumed to have a nonzero absorption cross
section only at its resonances. The scattering cross section is constant outside of resonances.
To justify these approximations, see Fig. 2.3, which shows the capture and scattering cross
section of U-238 below 70eV. The capture cross section drops to near zero between resonances
while the scattering resonance is nearly constant at a nonzero value. The constant value
is denoted X, as the potential scattering cross section, but it should be noted that this does
not suggest the quantum mechanical definition of potential scattering. Rather, it is merely
a matter of notational convenience to distinguish it from the scattering cross section that
includes resonance scattering X (E). All scattering is assumed to be isotropic in the center of

mass.

2.5.1 Direct Solution of Slowing Down Equation

The most obvious means of determining the neutron spectrum in infinite media is to simply
solve the slowing down equation numerically. For a resonant nuclide and background moderator
below the source energy, this equation is

E/a* s/ ’ Elat STH(E’
(ZHE) + ") $(E) = f Z(EDNED (g, f pHE) dE" . (2.54)

E (I -a")E E (1 —ah)E’

By directly solving this equation, no additional approximations are brought into play, other
than those involved in writing down the equation itself. The interaction between the resonances
and the scatter source is explicitly modeled. Note that the solution to this equation is only
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Figure 2.3: Capture and scattering cross section of U-238 below 70¢eV.

unique within a multiplicative factor, and so some normalization must be chosen. Physically,
this normalization represents the source strength. In practice, the flux is used to generate
multigroup cross sections, and so is present both on the top and bottom of a fraction. Thus, the
choice of normalization is not significant.

This equation can be easily solved by Monte Carlo methods. This is a class of multigroup
cross section generation that has been explored in increasing detail in recent years, but these
methods are not explored in this thesis.

In a deterministic framework, this equation must be solved on a solution energy mesh
that resolves the resonances of nuclide * sufficiently accurately. Typically, this is done on the
pointwise energy mesh on which the cross section is defined, but thinning is possible if so
desired.

Computation of the integrals naively requires O(n?) operations, where 7 is the number of
points. However, this can be reduced to O(n) operations by using cumulative integrals. If the
cumulative integral 7 for a given nuclide is defined as

_ « Z?(E") ’
1= [ s (2.55)

then the nuclide’s scatter source is given by

E/a ZS(E’) ,

Furthermore, the cumulative integral 7(E) can be computed during the solution of the slowing
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down equation by cumulatively adding only the lowest energy piece of the scattering integral.
If a cumulative integral is known at energy point E|, the cumulative integral’s value at the

next energy point E; is given simply by

E| ’ ’
T(Ey) = I(Ey) + f ZEVNE) g (2.57)

g, (I-aF

Note that the scatter sources must be calculated for each nuclide separately, and so a cumula-
tive integral must be stored for each nuclide to use this technique.

2.5.2 Narrow Resonance Model

In the narrow resonance (NR) model [9, 5], it is assumed that the interval in which neutrons

scatter is very large compared to the width of resonances. If the flux is written as

PH(E) = f(E)p(E) (2.58)

where f(E) is a slowly varying function representing the macroscopic behavior of the flux and
¢(E) is a fine structure function representing the behavior of the flux near the resonance, the
narrow resonance assumption implies

Ele s(ENGE) ., (H1" ZpfE) o,
‘L 1 —oF dE NL —(1 Y dE (2.59)
The quantity C(E) is defined as
B E/a f(EI) ,
C(E) = L m dE" (2.60)

and is itself a slowing varying function of the energy. Depending upon the choice of f(E), C(E)
may depend on the nuclide. If f(E) = 1/E, as is often used in practice, C(E) does not depend on

the nuclide, but most other choices do result in a nuclide-dependent definition.

The narrow resonance approximation can be made separately for the resonant nuclide
and the background moderator. That is, the appropriateness of the use of the NR model is
a function of the width of the resonances of a particular nuclide compared to the scattering
interval of a given nuclide. For the case of hydrogen, the scattering interval is very large, and
all resonances appear narrow in comparison. Here, the narrow resonance model is applied to
both the resonant nuclide and the background moderator. The slowing down equation with the
narrow resonance model is therefore

(Z(E) + ) pnr(E) = Z;C*(E) + Z;CJr(E) , (2.61)
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and the flux is

S*C*(E)+XtC*(E)
B = 27 P 2.62
ONR(E) S (E) 15 ( )
It is common to define the background cross section o, as

2+

o= (2.63)
and to define the quantity y as

Z+

Y=y (2.64)

The background cross section is often also known as the dilution cross section. With these

definitions, the NR flux is
0,C*(E) + yopC*(E)
= ) 2.
ANR o (E) + 03 (2.65)

Finally, in most applications, the macroscopic form of the flux is assumed to be f(E) ~ 1/E.
Using this form, C(E) is independent of the nuclide and takes the form

He ! d ! 2.66
E) = —  dE' =-— . .
C(E) fE ol = (2.66)

Assuming a 1/E macroscopic form of the flux, the NR flux is

I ) +y0

ONR(E) = —

2.5.3 Slowing Down Equation with Narrow Resonance Moderator Source

The narrow resonance approximation can be used on the background moderator without being
applied to the resonant nuclide. This yields a simplified slowing down equation:

H S (ENG(E)

(0*(E) + o) §(E) = f dE' + C(E)yyoy . (2.68)
E (I —a")E

This form is the form used in the NJOY flux calculator [1], which sets y = 1. If the macroscopic
form of the flux is taken to be 1/E, then the slowing down equation can be further simplified to

E/a* ’ ’
(0 (E) + o) H(E) = f EAEVHED o, YT0 (2.69)

(1 -a)E E

Here, the solution to the equation does not have a multiplicative degree of freedom and is in
fact unique. This is because the assumption that f(E) = 1/E contains the normalization.
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2.5.4 Wide Resonance Model

The wide resonance (WR) model [9, 5] assumes that resonances are wide in comparison to
the energy interval associated with scattering. Thus, neutrons that scatter at a resonance
energy are very likely to remain in the resonance. This allows the slowing down equation to
be simplified by assuming that no energy is lost in a scattering collision. The wide resonance

scatter source is thus

fE/a T(EVHE) 1o fE/“ Z(ENHE) 4
E

(-wE © “atl)p d-oF
' E/a 1 ,
= lim =,(E)(E) fE T-or % (2.70)

_ 5,(E)$(E) lim —2
a—1 1 —«
= 3 (E)$(E)

Because assuming a very small scattering interval is equivalent to assuming o — 1, this

approximation is sometimes known as the infinite mass approximation.

As with the narrow resonance model, the wide resonance model can be applied individually
to the resonant nuclide and to the background moderator. The wide resonance model is rarely
applied to the background moderator, unless the moderator contains multiple nuclides, one
of which is heavy. This is because the moderator usually contains a lighter nuclide, and any
resonance would be narrow in comparison to a light nuclide’s scattering interval. What is
commonly presented as the wide resonance model itself is applying the wide resonance approx-
imation to the resonant nuclide but the narrow resonance approximation to the background
moderator. This is also known as the narrow resonance-infinite mass (NRIM) approximation:

(0°(E) + 0p) §(E) = o5(E)(E) + C(E)yo . (2.71)

Solving this equation for the flux, the wide resonance flux is achieved:

C(E)yop
E)y= ———" 2.72
dwr(E) o(E) + 0 (2.72)
Assuming a 1/E macroscopic form of the flux, this is
1
SwR(E) = ———L2 (2.73)

Eoi(E)+ 0,

2.5.5 Intermediate Resonance Model

The narrow resonance and wide resonance models represent two extreme cases, one with

resonances being very narrow compared to a scattering interval and one with resonances
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Figure 2.4: Scattering intervals of U-238 and O-16 compared to the 20.8 eV resonance of U-238.

being very wide. Of course, there is an entire spectrum of resonance widths versus scattering
intervals. Even in a single material, a resonance may appear wide to one nuclide but narrow
to another. To see this, consider Fig. 2.4. The scattering interval of U-238 is on the order of the
width of the resonance, whereas the scattering interval of O-16 is much larger. The scattering
of U-238 behaves more like the wide resonance model whereas the scattering of O-16 behaves
more like the narrow resonance. Note that hydrogen nearly always is well-represented by the
narrow resonance model, as it’s scatter interval extends to zero energy.

One means of approximating the flux in resonances that are neither narrow nor wide is
to use the intermediate resonance (IR) model [10]. The IR scatter source is simply a convex
combination with parameter A of the NR and WR scatter sources:

E/a ’ ’
f 2EDNED 4pr o AC(EYS,) + (1 - DE(EE) (2.74)
E

(1 -a)E’

Note that this form reduces to the NR approximation when A = 1 and to the WR approximation
when A = 0. Thus, the IR model can be used as a more general case of all three models, and
this will be done in subsequent sections.

The IR approximation can be applied separately to the resonant nuclide and the background
moderator. In this section, it is applied only to the resonant nuclide; Sec. 2.5.6 discusses the
approximation applied to the background moderator. Applying the IR model to the resonant
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nuclide and the NR model for the background moderator, the approximated slowing down
equation is
(04(E) + A0{(E) + 0p) $(E) = AC*(E)T), + C*(Eyyop, (2.75)

and the flux is given by the equation

AC*(E)a, + C*(E)yoy

E) = 2.7
PR E) = Y+ Aoy (E) + 0 @79
If the macroscopic form of the flux is assumed to vary as 1/E, then this simplifies to
1 Ao + yoy,
$1r(E) = — . (2.77)

E o (E)+ A05(E) + 0

The parameter A is not easily obtained, and various prescriptions and usages can be found in
literature. The parameter is best defined in the context of a single resonance, and characterizes
the relative width of the resonance compared to the nuclide’s scattering interval. However, this
requires a means of determining many A values for each nuclide, and is not easily accomplished

in practice.

In other applications, A has been treated as a parameter for a given nuclide, using only
a single value for its entire energy range. Although this makes library generation simple, it
is difficult to justify physically. Even if resonance widths are approximately constant in an
absolute sense, the widths relative to the energy range are wildly varying. Because scattering
intervals are defined as fractions of the neutron energy, resonances at higher energies appear
much narrower than those at lower energies, if the width is held constant.

The compromise between these two inconvenient extremes is to use a value of A for each
energy group for each resonant nuclide. This value is determined by comparing the cross
sections (or equivalently, effective resonance integrals) with various values of A to a reference
value obtained by direct solution of the slowing down equation. When the cross sections match,
A has been found. This value of 1 is technically dependent upon the background moderation
level, but is often computed for a representative value and assumed constant.

It should be noted that the scatter source is not truly well-represented by a linear combina-
tion of the narrow and wide resonance models. Rather, 1 serves more as a correction factor
that enables accurate cross sections to be obtained but does not accurately capture the physics
at hand. This detail is explored in more detail in Sec. 8.4.2.

2.5.6 Effective Background Cross Section

In the preceding section, application of the intermediate resonance model to the resonant
nuclide was considered. Now, consider application of the model to the background moderator.
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Because the scattering interval for hydrogen is the entire energy range below the incoming
neutron energy, hydrogen’s scattering interval is always considered to be very large compared
to a resonance width. Thus, hydrogen is very well-represented by the narrow resonance model.
A collision with hydrogen at a resonance energy will nearly always cause the neutron to scatter
to an energy well below the resonance. For other nuclides, a fraction of scattering events will
result in escape from the resonance, but another fraction will result in the neutron remaining
within the resonance. Scattering events resulting in neutrons remaining within the resonance
are nearly equivalent to the interaction not happening at all. In the narrow resonance model,
the value of @ does not appear, and so the neutrons that escape from the resonance can be
treated as hydrogen without a change in the NR form. Thus, the intermediate resonance model
for background moderators is equivalent to replacing the background moderator with a smaller
quantity of hydrogen.

A similar procedure for the determination of 1 as in the preceding section can be performed
for the background moderator, where various values of A are compared against a reference
solution. This is complicated by the fact that A for the resonant nuclide cannot be easily
separated in this calculation. Although procedures for resolving this issue can be found in
literature [11], another procedure that is quite intuitive and reliable exists. The procedure is
as follows.

First, two background cross section levels are chosen. These should be indicative of the
range of background cross sections expected to be encountered in a future simulation, but their
selection can be freely chosen. Assume the two levels are o and o, with o > 0p;. Next,
compute cross sections (or equivalently, effective resonance integrals) using these background
levels in a direct solution of the slowing down equation, with the background nuclide set to
hydrogen. Let these cross sections be notated o; and 0. Next, compute a cross section with a
material with an amount of hydrogen equivalent to a background level of ,; and an amount
of the background nuclide of interest equivalent to a background level of o, — 0731, resulting in
cross section o3. The intermediate resonance parameter is given by

03 —01
A=

(2.78)
oy — 0

The difference in cross section between o, and o is caused by the increased fraction of neutrons
that escape resonances due to an increase in the amount of hydrogen. The difference between
o3 and o is due to the resonance escape due to the presence of the background nuclide of
interest. The ratio of these differences gives the equivalent amount of hydrogen that the
nuclide of interest provides. This procedure assumes the effect of adding hydrogen has a linear
effect on the value of the cross section. This is, of course, most accurate for small changes in
the background level, and so o, should not be chosen to be too much larger than that of o;.
Note that the value of 1 is dependent on the nuclide mass A and the background level ;. As
in the previous section, the o;,; dependence is most often ignored.
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With this definition, and with a background moderator made up of several nuclides, the
effective background cross section that can be used with a narrow resonance approximation

while accounting for these mass effects is
1 , .
o= D (EL+as) (2.79)
ie+
where i denotes the nuclide, and y for this case is
Zie+ /11'2;

= - — (2.80)
Tier (i + 1Z))

Y

2.5.7 Homogeneous Nuclear Data Tables

As will be shown in subsequent discussion, homogeneous cross sections are particularly
valuable quantities for reactor physics simulations, even for heterogeneous geometries. Thus,
rather than compute group cross sections for each simulation, it is generally desirable to
tabulate homogeneous cross sections into a cross section library.

A library generally consists of all relevant cross sections (or effective resonance integrals)
and other nuclear data for a particular group structure. The selection of the group structure
is an important consideration for reactor physics simulations but is outside the scope of this
thesis. Nuclear data is tabulated as a function of the background level and of the temperature.

The parameter y is not usually considered a free parameter in the tabulation, but can
be included if so desired. However, the flux obtained in this section, used for generation of
cross sections or resonance integrals, is unique only within a multiplicative constant. The
flux obtained through Eqgs. (2.67), (2.69), (2.73) and (2.77) depends upon y only within the
multiplicative constant, and so parameterization by y is unnecessary. If C(E) is not taken to be
1/E, or if the direct solution of the full slowing down equation is used, y may play a—likely
very small—role in the obtained cross sections.

The background material used to generate the nuclear data tables is generally chosen to
consist solely of hydrogen. This removes the degrees of freedom introduced by allowing for
many background nuclides, and is a good approximation, due to the hydrogen equivalence
presented in Sec. 2.5.6. Of course, tables could be generated that parameterize the background
material, but these are not often seen in practice.

In the cross section table, there are several options of what data can be stored. Most
intuitively, the value of the cross section can be stored for each background and temperature
point. Alternatively, a cross section at a reference background and temperature can be stored
along with multiplicative factors, known as self-shielding factors, that can be used to recover
the cross section value. Finally, additive deviations can be stored relative to the reference
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value rather than multiplicative self-shielding factors. These additive deviations are generally
preferred if the scattering matrix is included as a function of background and temperature in
the table. In this case, many entries in the scattering matrix will not change, and the matrix

containing deviations will be more sparse than the scattering matrix itself.

Approximating the Group Flux

The group flux is an important quantity for the nuclear data library, as it allows conversion
between effective resonance integrals and group cross sections, and it is needed in other aspects
of the self-shielding process—e.g., in using n-term rational approximations (see Sec. 3.5.3).
However, it is rarely tabulated, as it can be approximated from other tabulated data when
using the intermediate resonance model (or equivalent form) and C(E) = 1/E.

Consider the group flux of the intermediate resonance model from Eq. (2.77), neglecting the
superscripts =:
(2.81)

1 Aoy, +yop
$(E) = — .
E oy E)+ Ao(E) + oy

The group flux is given by integrating this over the bounds of an energy group:

¢ = f 1 A% g (2.82)
I Jy E 0u(E") + AT y(E") + o '

By adding and subtracting o,(E’) in the numerator, this integral can be rewritten as

1 JE) + Ao, + 1 J(E'
¢g _ f_ g, ( ) Op T Y0 dE’ — f_ % ( ) dE’ . (283)
g B 04(E") + Ao s(E") + 0p g B 04(E") + Ao s(E) + 0p

The first term on the right hand side has very nearly the same quantity in the numerator and
the denominator, with two differences. First, there is a vy multiplying o in the numerator but
not the denominator. However, as previously argued, y only affects the flux by a multiplicative
factor and is chosen to be unity in most situations. For this approximation to be valid, it
is assumed that y is in fact set to unity. Second, o, appears in the numerator in the place
that o((E’) appears in the denominator. For the vast majority of resonances, the resonance
absorption component is far greater than the scattering component—the 36 eV U-238 resonance
being the most notable exception. Thus, even at resonance energies, this ratio is very nearly
unity. Even in cases where the ratio may stray from unity, the resonance width is often much
smaller than the width of the energy group, and the effect on the integral is negligible. Thus,

this first term can be approximated by

1 0uE")+ Ao, +yo 1
f_ a( ) p YOb dE/ ~ f_dE/ — Aug . (284)
g B 04(E") + Aos(E") + 0 g B’
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The second term in Eq. (2.83) is exactly represented by

(2.85)

fl oa(E") dE’ = Auglyy
g

E' 0 E)+A0(E) +ap Ao, + 0
maintaining the assumption that v = 1. The integrated group flux is thus approximated by

lag
—) . (2.86)
Aoy + oy

¢y = Aug(l -

This result allows the group cross section to be put in terms of effective resonance integrals.
The group cross section for reaction p is given by

Tog = =22 (2.87)

Inserting Eq. (2.86) into this form gives the cross section defined in terms of the resonance
integrals:

o log , (2.88)
P91 = Lug/(Aoy + )

Thus, by only minor approximations in the determination of the group flux, the cross section
can be determined from resonance integrals without storing the group flux explicitly.

Finally, by inserting Eq. (2.88) into Eq. (2.86), the group flux can be approximated using
only cross sections. First, Eq. (2.88) with p as absorption is rearranged to solve for 1, ,:

Loy = Tag (2.89)
Y+ 0ug /(Ao + Tp) '
This is inserted into Eq. (2.86) to obtain
Oa
=Auy[1-—22 | . 2.90
% "o Oqg t+ Aoy + o-b) ( )

The information in this section was derived from material in [12].

2.6 Multiple Resonant Absorbers

2.6.1 Direct Solution of Slowing Down Equation

The full slowing down equation can be solved directly, using the same methods as in Sec. 2.5.1.
The slowing down equation need not be split into resonant nuclides and background moderators,
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instead taking the seemingly simple form

E/o ’ ’
2(E)¢(E)—Z f Z( 1(? )Q?;g)dE’ . (2.91)

However, the solution energy mesh for this equation must be one that resolves all the reso-
nances of all the resonant nuclides to an acceptable degree of accuracy. This is accomplished
by using all of the energy points in the pointwise cross sections of all of the nuclides and
subsequently performing some sort of thinning process to reduce the resulting number of
energy points. The details of this thinning process are not discussed here.

The results of this process are not easily tabulated, as including multiple resonant nuclides
in the material opens a very large solution space, with a degree of freedom for the number
density of each nuclide present. This is not feasible for a cross section library in general. Thus,

this process would need to be performed for each simulation.

2.6.2 Approximations to Slowing Down Equation

As with slowing down with a single resonant nuclide, with multiple resonant nuclides, each
nuclide’s scatter source in Eq. (2.91) can be approximated with a resonant model. However,
with multiple resonant nuclides, determining if resonances are “wide” or “narrow” cannot
be done systematically. Different nuclides have different resonance widths, and an nuclide’s
scatter source in the full slowing down equation must respect all nuclides’ resonances, not just
its own. Furthermore, the intermediate resonance model does not produce an accurate shape
of the scatter source, but rather produces the correct cross sections (or effective resonance
integrals), as was alluded to in Sec. 2.5.5 and is described in more detail in Sec. 8.4.2.

2.6.3 Using Single Resonant Nuclide Tables

Because tabulating nuclear data with multiple resonance integrals is not feasible, it is desired
to use nuclear data generated assuming a single resonant nuclide and manipulate it in a way
that it can be used in a multiple resonant nuclide setting. With multiple resonant nuclides, the
resonances of one nuclide affect the multigroup constants of another nuclide, a phenomenon
known as mutual self-shielding, which will be explored in great detail in this thesis, starting
in Ch. 8.

Mutual self-shielding takes two forms. First, the non-constant nature of an nuclide’s cross
sections effectively reduces the group-integrated flux, which increases the cross section of other
resonant nuclides. This effect is known as resonance interference without overlap. Second, two
resonances can overlap, causing the flux depression for an nuclide’s resonance to be greater
than would be expected if the nuclide was treated alone. This effect is known as resonance
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overlap and reduces the cross section from that of a single nuclide. The effect of resonance
interference without overlap can be easily approximated from single resonant nuclide nuclear
data tables; resonance overlap cannot, and it requires specialized treatments outside the scope

of this section.

Resonance interference without overlap can be accounted for in two ways. First, the effect
of resonances of other nuclides on an nuclide of interest can be assumed to be uniform in energy
across an energy group, which leads to a procedure of iterating on the background cross section.
Second, if the resonances are assumed not to overlap at all, the effect of the resonances of all
nuclides can be accounted for together to obtain a group flux. This flux can be used to adjust
the single resonant nuclide cross sections. These two methods are described in the following

sections.

Background Cross Section Iteration

If one assumes the effect of other nuclides’ resonances on an nuclide of interest can be uniformly
spread out across an energy group, an iterative procedure for the background cross section
can be performed. Resonant cross sections for nuclides other than the nuclide of interest are
treated as constant, taking the value of their group-averaged value. If the nuclide of interest is

given by the superscript *, then the background cross section for that nuclide is

= Z ST (2.92)

i

where A is defined with respect to the resonances of nuclide «. The value of y is

Y= U (2.93)
Zi;&* (EZg + Azfv,g)

The group-averaged cross sections used here correspond to those generated assuming a single
resonant nuclide. Note that each nuclide will have a different background cross section
and y value. Also note that the background cross section relies upon group-averaged cross
sections, which themselves rely upon background cross sections for their respective nuclides.
Furthermore, those background cross sections rely upon the group-averaged cross section, and
thus the background cross section, of the original nuclide. Thus, an iteration procedure is
needed. Fortunately, this iteration procedure converges rapidly. The iteration procedure is as

follows:

1. Guess o, for each nuclide.
2. Compute group-averaged cross sections with these o, values.

3. Update o, for each nuclide with the new group-averaged cross sections.
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4. Repeat steps 2-3 until convergence is obtained on the group-averaged cross sections.

This allows the effect of resonance interference without overlap to be approximated easily.

Flux Correction

An alternative approach to accounting for resonance interference without overlap assumes that
the resonances of other nuclides affect a given resonant nuclide’s group-averaged cross sections
only through the group-integrated flux. First, group-averaged cross sections (or effective
resonance integrals) are generated assuming only a single resonant nuclide using

1 ‘
AT, (2.94)
i#%

oy, =
The other nuclides are assumed to be non-absorbing outside of their resonances. This implies
that y = 1 unless a non-resonant absorber is also included. The group-integrated flux can then
be approximated for this with Eq. (2.86) or Eq. (2.90), reproduced here:

I*
# = Dy (1 “ oo )

ES * k
/10'p+0'b

o_*
= Auy (1 - — )

* Ep *
Oag+ A0, + 0

(2.95)

This flux deviates from the asymptotic value of Au, by an amount related to the absorption in
the group. With multiple resonant nuclides, each nuclide will provide its own reductions in the

flux, and they are assumed to be additive. Thus, the flux assuming multiple resonant nuclides

Ii
b = A 1 - L
¥ ug( Z Ao + ‘f’b] (2.96)

Ty
=Aug|1-) ——
o-é,’g+/l’0';,+0';7

i

1s

Then, the cross sections for each reaction type for each resonant nuclide are adjusted with this

new flux: : g
o
5h, =2 (2.97)
) ¢g

Tables Assuming Admixed U-238

A common approach for accounting for mutual self-shielding effects is to generate nuclear
data tables for a particular nuclide, assuming it is admixed with U-238. This is done, as in
nearly all commercial reactor designs, actinides are nearly always present alongside a large
concentration of U-238, which is the dominate effect on the flux spectrum. These tables require
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an approximate ratio of the resonant nuclide to U-238, and multiple tables are needed if the

relative concentration of the nuclide compared to U-238 varies in the downstream application.

2.7 Chapter Summary

This chapter considered the slowing down of neutrons through the resolved resonance range of
the major actinides. The slowing down equation, assuming isotropic in the center of mass elastic
scattering, was the primary tool. Of particular interest was the effect of resonance absorption on
the neutron flux, and three approximations were introduced: the narrow resonance model, the
wide resonance model, and the intermediate resonance model. With these tools, homogeneous
nuclear data tables can be generated, which serve as the foundation of classical self-shielding
methods.
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Chapter 3

Equivalence in Dilution

3.1 Introduction

One of the two most widely used self-shielding methods is equivalence in dilution. This method
is used to relate nuclear data from homogeneous tables to heterogeneous lattice physics
calculations. By a clever manipulation of the neutron transport equation with two spatial
regions, a heterogeneous geometry can be represented by an equivalent infinite medium. Thus,
this manipulation allows cross sections from homogeneous tables to be used directly in the

lattice-level calculation.

3.2 Equivalence in Dilution Form

Given a two-region system with one region containing a resonant material (called “fuel” here
for simplicity) and the other containing a non-resonant material (“moderator”), the collision
probability form of the transport equation can be written as

>FE (E)VE = (1 —PF_’M(E))SF (EYVE + PM2EESMEYWM | (3.1)

where superscripts F and M indicate the fuel and moderator regions, respectively, ¢ is the flux
in the region, X is the total macroscopic cross section for the region, V is the volume of the
region, S is the source, and P~/ is the probability a neutron born uniformly and isotropically
in region i has its first collision in region j. By invoking the reciprocity relation

this equation can be written such that the only collision probability that appears is Pf—=¥:

F(E)

S (3.3)

sF ()" (E) = (1 - PFM(E)) ST (E) + PFM(E)SM(E)
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Next, it is assumed that the moderator has a constant cross section, is purely scattering, and
that the narrow resonance model well-represents its source. These approximations are not
strictly necessary for this derivation but are typical assumptions in practice and simplify the
problem. The transport equation takes the form

=P (E)

(B (E) = (1 - PYME) ST (E) + PFM(E) =

(3.4)

To obtain the equivalence in dilution form, this equation is first divided through by 1- P/~

=F(E)

1 — PFoM(E)

F _ ¢F
OB = ST E T g

(3.5)
Noticing a similarity between the left hand side and the second term on the right hand side,
the left hand side is manipulated as

F(E)

2 (E)
Foy _ [sF
T—W(E)¢ (E) = (Z (E) + I

T=pPr=ME) ZF(E)) ¢" (E)

1 - PF—)M(E)

(3.6)
= (2F<E> + )¢F<E) :

and the equivalence cross section is defined as

PF—)M(E)EF(E)

Zeq(E) = 1 —PF_>M(E) (37)

This allows the two-region transport equation to be written as

Zeq(E)
E

(ZF(E) + Zey(E)) ¢ (E) = ST (E) + : (3.8)

which has the form of a homogeneous problem of the fuel material admixed with a background
narrow resonance moderator with cross section X.,. This form is known as the equivalence in
dilution form, as it casts a heterogeneous problem as an equivalent homogeneous problem by
adjusting the background—or dilution—cross section.

Although this takes the form of a homogeneous problem, this still requires the efforts
of solving a heterogeneous problem, as X, contains the fuel cross section and the fuel to
moderator collision probability. However, if X, were constant in energy, this form would be
much more convenient. In that case, several homogeneous problems could be solved and stored
in a table, and solutions representing heterogeneous problems could be retrieved via a table
lookup, only requiring knowledge of the system’s %, value. In practice, this is how equivalence
in dilution is performed.

Now, examine the form the fuel to moderator collision probability must take to achieve a
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constant X,,. To do this, X, is set to a constant value ¢, and the equation is rearranged:

B PFHM(E)ZF(E) B
FoM g _ ¢
P = o (3.10)

This form is known as a rational approximation for the collision probability. Consider the
limiting behavior of this form. For large fuel cross sections, the collision probability tends
toward zero; for small cross sections, the collision probability tends toward one. This behavior
is correct physically, which suggests that this form is promising as an approximation model.
Selection of the constant ¢ is examined in the following sections.

The information in this section follows the derivation given in [8].

3.3 Escape Probability

Next, consider the analytic form of the escape probability. That is, the probability that a
neutron born uniformly and isotropically inside some lump of resonant material (“fuel” here)
reaches the lump boundary and exits into surrounding material. Note that this definition only
considers the probability of exiting a single lump; it does not take into account the existence of
other resonant lumps. For a discussion of those effects, see Sec. 3.6. Because the only cross
section that appears in this section is the fuel cross section, the superscript F is dropped.
Likewise, the energy dependence of the cross section and escape probability will be implied
rather than explicitly shown.

The probability a neutron born at point 7 in volume dV moving in direction Q escapes the
fuel is
p(%Q)dV dQ = exp(-Z5)dVdQ (3.11)

where s is the distance between 7 and the intersection point with the fuel surface in direction
Q. A convenient substitution here is to replace the generic volume element by a tube element.
With tube elements, the volume can be represented as an integral over the surface with an
integral over the length of the tube inside. The tube volume element is

dv = (- Q)dsdS (3.12)

where 71 is a unit vector normal to the surface, dS is a surface element, s is the position along
the tube, and ds is the length of the tube. The quantity / will be used as the length of the tube,
also known as the chord length.

The average collision probability is given by a normalized integral of the collision probability
over the volume and over all angles. To avoid double counting tubes, these integrals are
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restricted to the halfspace in which (7 - Q) > 0:

~ / A
500> dQdS | ds(@ - Q)exp(—Xs)
Pese = fj(‘ D20 j(‘) . (313)

[ty 42dS [ ds 2+ )

First, the s integrals are carried out:

b ff(ﬁ_ﬁ)>o dQds (- ) [1 - exp(-2D)]
esc — A ~ A
Moo 42dS 2 - Q)1

(3.14)

Next, consider the denominator. For a given angle, the single integral f(ﬁ~ﬁ)>0 ds (n - Q)lis equal
to the volume of the region. Because the halfspace of (i - ) > 0 has already been imposed, this
leaves an integral over all angles. The denominator thus simplifies to

ff dﬁdsm-f))zzfdﬁvzmrv : (3.15)
(1-€2)>0 4

The final form of the escape probability without specifying information about the geometry of
the fuel lump now be can be written:

1 f A ~
Poyo = —— dQdS (- Q)1 —exp(—2]) . (3.16)
ArVE JJih-a)>0 [ P ]

An important quantity that will be seen to relate to the escape probability is the mean
chord length /. For convex bodies, this is defined as the ratio of the integral of all chord lengths

over a uniform and isotropic distribution of surface elements to an integral of the distribution:

o dQdS (- Q)1
ff(n Q)>0 _ ' (3.17)

l= -
icys0 4€2dS (@ - )

The numerator is the same as the denominator in the escape probability, and can be simplified
to 47V, as show in Eq. (3.15). In the denominator, the polar angle 6 is defined relative to the
surface normal. Then, Q can be expanded into its component angles and the denominator can

. . 27 /2
f f - dQdS (7-Q) = f de f sin(6)dé f dS cos()
(#-9)>0 0 0 S

/2
=2nS f sin(@) cos(0) d0 = nS
0

be simplified:

(3.18)

Combining the simplified numerator and denominator leads to the simple formula for the

mean chord length:

- 4y
I=— . 3.19
S ( )

This derivation was adapted from that of [12].
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3.4 VWigner’s Rational Approximation

Having formally defined the escape probability, possible values of ¢ in Eq. (3.10) can be explored.

One such choice of ¢ can be derived by enforcing an additional constraint for the black limit:
not only should the value tend toward zero for large cross sections, it should do so at the correct
rate. Taking the limit as X — oo in Eq. (3.16), the exponential goes to zero:

. 1 f A A 1 A A
lim dOds (- O)[1 — exp(—=D)] = f f d0ds (- Q) . (3.20)
Tooo 47VE n-)>0 [ P ] AnVZ A-$)>0

The remaining integrals were previously encountered and evaluate to nS. Thus, the true

escape probability has the behavior

1
lim Py = S =— . (3.21)
S—c0 4VE Iz
Now, consider the rational form of Eq. (3.10). As £ — oo, this form tends toward A/X. Thus,
¢ = 1/I satisfies the limiting behavior. Defining the escape cross section ¥, as

s, = % , (3.22)

this leads to Wigner’s Rational Approximation [13]:

Z,
Po(E) = ———— . 3.23
ESC( ) Z(E) + Ze ( )
Wigner’s Rational Approximation results in X.,(E) = X, allowing heterogeneous results to be
easily retrieved from a homogeneous table lookup. Furthermore, the table lookup parameter is

a very easily computable quantity, only requiring very basic geometric parameters.

3.4.1 Bell Factor

Wigner’s Rational Approximation is known to underpredict the escape probability at interme-
diate values of the fuel cross section. One possibility to account for this is to scale the escape
cross section by some factor. Larger values of the escape cross section lead to larger escape
probabilities, so this scaling factor should be greater than unity. The scaling factor is usually
denoted » and is known as the Bell factor. When incorporated into Wigner’s Rational Approxi-
mation, the rational form is usually referred to as the Wigner-Bell Rational Approximation
[8]: .

Pese(E) = W:b& : (3.24)
Typical Bell factors range from 1 to 1.5. Note that when b # 1, this does not preserve the correct
rate of decrease of the escape probability for large cross sections.
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Figure 3.1 compares the escape probability for a range of cross section values for a cylin-
drical fuel pin with radius 0.4 cm. Shown are the exact solution (computed numerically from
Eq. (3.16)), Wigner’s Rational Approximation, and the Wigner-Bell Rational Approximation
with b = 1.15. Figure 3.2 shows the error in the rational approximations as a function of the
cross section.

As is easily seen in Fig. 3.2, Wigner’s Rational Approximation accurately predicts the escape
probability at the white and black limits, but suffers from nearly 20% errors at intermediate
values. The Wigner-Bell form greatly reduces this error—down to approximately 10% for this
value of b—but has incorrect behavior at the black limit. Thus, the Bell factor can improve
upon Wigner’s Rational Approximation, but it must be chosen carefully for the range of cross
section values encountered. If large cross sections are encountered, the Bell factor should be

driven toward unity; for smaller values, larger Bell factors are appropriate.

3.5 n-Term Rational Approximations

Using the rational form of Eq. (3.10) is convenient in equivalence-based methods, and this form
can mimic the behavior of the escape probability with moderate accuracy. However, a higher
degree of accuracy is desired, while still maintaining the convenience of X, being constant in

energy. This can be achieved by using a multi-term rational approximation.

Consider a linear combination of rational forms:

FoM _ C ik
P (E)‘;ﬁ’—z(b:)m,-ze , (3.25)

which will be called an n-term rational approximation. Note that the constant ¢ has been
replaced by «;Z,. This is still a constant value, as X, is constant for a given geometry, and as
seen in Wigner’s Rational Approximation, X, is likely to be a useful quantity. Note that for
n > 1, this linear combination will not satisfy the condition of X, being constant. However, if
the condition

Zn:ﬂi =1 (3.26)
i=1

is imposed, Eq. (3.4) can be manipulated into a form that takes advantage of the multi-term
rational form. The flux is expanded into partial fluxes

H(E) = ) Bidi(E) (3.27)
i=1
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and the collision probability is expanded likewise with

PFoMEy = Z BipiE) . (3.28)
=1
oz,Ze
pi(E) = m . (3.29)

Inserting these into Eq. (3.4) yields

X(E) ipi(E) = i iPi(E)|ST(E) + ipi(E)—— . (3.30)
IR I RCI I WRES
Here, note that each term has a summation in it. The summations are collected into a single
summation:
; F X(E)
Zﬂi 2(E)t/’h'(E)—(l —Pi(E))S (E)_Pi(E)T =0 . (3.31)
i=1

One solution to this is obtained when each term is individually zero. This solution is obtained
by solving the series of equations

2(E
E)I(E) = (1 - p1(E))ST(E) + pl(E)%
X(E
S(E)(E) = (1 - pa(E))ST(E) + pz(E)%
(3.32)
2(E
S(E)pn(E) = (1= pa(E))S " (E) + m(E)%

These equations each take the form of Eq. (3.4), which is equivalent to Eq. (3.8). Furthermore,
each p;(E) takes the rational form of Eq. (3.10), and so the corresponding X, for each is constant
in energy. Thus, each equation can be solved via table lookup from a table of homogeneous
solutions. The overall flux can be reconstructed from the partial fluxes with Eq. (3.27).

Now that the mechanics of using an n-term rational approximation have been shown,
constraints on the 2 coefficients 8; and «; are considered. First, consider the white limit; P~
should tend toward unity for small cross sections. Setting the limit of Eq. (3.25) as X — 0 to
unity results in

i Bi=1 , (3.33)
i=1

which is a constraint already imposed for the solution mechanics. For the black limit, the
presence of ¥ in the denominator of each term in Eq. (3.25) ensures it tends toward zero for
large cross sections. Thus, the black and white limits do not impose any additional constraints
on the coefficients.

This gives freedom in choosing the coefficients. Additional constraints can be imposed, such
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as derivative behavior at the white and black limits. Either in addition to these or alternatively,
an optimization procedure can be performed over the coefficients seeking to minimize deviation

from some set of reference values.

3.5.1 Carlvik Two-Term Rational Approximation

A widely used rational approximation is Carlvik’s Two-Term Rational Approximation [14],
which applies to cylindrical fuel regions. In this section, only an isolated pin is considered. For
lattice effects, see Sec. 3.6. This rational approximation conserves the derivative behavior at
the white and black limits.

To start, consider the general form of a two-term rational approximation for the escape

probability, with energy dependences of the cross section and escape probabilities implied:

a1, arZ,

Pose = .34
esc ﬂ12+alze +ﬁ22+a22€ (33 )
Because the B; values must sum to unity, these are replaced by 8 and 1 — 3:
a1z, X,
Poye =B——e—+ (1 -B—— . 3.35
ese = B s, ( /3)z s, (3.35)

Now, consider the black limit. As seen in Eq. (3.21), the asymptotic behavior for large cross
sections is P.; — X./Z. This limit is imposed on the two-term rational approximation:

T Z,
lim Pege = 1im Bt + (1 = ) e
S0 Sooo X+ G.’lZe X+ a’zze (3 36)
_BmE  (1-Pas¥. % '
== S =3
which gives the condition
par+(1-Paz=1 . (3.37)

Next, consider the white limit. The derivative behavior of the exact escape probability can
be obtained analytically, although it is a somewhat arduous process. First, because of working
with small cross sections, the exponential in Eq. (3.16) can be replaced by a second-order Taylor
expansion:

exp(-Z) ~ 1 — 31 + %(21)2 . (3.38)

Inserting this into Eq. (3.16) and moving the outer X into the integrals gives

7 [ g0 003
Pese = — dQdS (n-Q) |l - =ZI . (3.39)
4rv (ﬁ-fl)>0 2
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Next, the derivative with respect to X is taken:

d 1 . .
— P = ——— dQds (- Q)2 . 3.40
& 8V ﬂ(;@»o (7€) (3.40)

For cylindrical geometry, this derivative can be evaluated analytically. The component angles
and ¢ of Q are set to those typical of cylindrical coordinates; 6 is the polar angle measured with
respect to the central axis of the cylinder, and ¢ is the azimuthal angle. Because a cylinder is
symmetric azimuthally, the azimuthal angle component of Q can be set to a convenient value

in the integrand. Here, an azimuthal angle of 0 is chosen. With this choice,
(- Q) = cos(n) sin(6) (3.41)

where n = tan(—y/x) for some Cartesian coordinate (x, y)—defined with the origin on the central
axis—on the surface of cylinder. The condition (7 - Q) > 0 is satisfied for cos(r) > 0, as sin(§) > 0
for all polar angles. The chord length [ with azimuthal angle ¢ = 0 and some polar angle 0 is

2 2 rz —y?

= = 42
sin(6) sin(6) (3.42)
Inserting all of these quantities into Eq. (3.40) gives an updated form of
d 1 27 s A2 = 1
S P | do f sin(9) do f ds cos(n) sin(@)w
dx 87V Jo 0 cos()>0 sin(6) (3.43)

1 2 T
=-—>— | d¢ f do f ds cos(n) (% - y*)
27V Jo 0 cos()>0

The surface element dS can be replaced by cos(7) dy, as the axial component of both the surface
area and the volume are neglected. Integrating over y for the half surface ranges from —r to r.
However, note that the integral is symmetric about y = 0, and so the integral is equal to twice
the integral from 0 to r. With these transformations, the integral can be evaluated:

dp ——ifﬂd fﬂdafrd -y
dz esc — 7TV 0 ‘/7 0 0 .1/ _l/
AR

=—-——|ry-— —:|
v [ 3o (3.44)
27213 2 2713 2

Now, the derivative of Eq. (3.35) is taken:

d ane a'lze

d_ZPesc = —ﬁm (1 —ﬁ)m (8.45)
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This is evaluated at £ = 0 and set equal to the result of Eq. (3.44):

d B 1-B_ 2

—Po| =- =- 4
dz” “*“lz=0 iz, @, 3%, (3.46)
This gives the second condition for the parameters of the Carlvik rational form:
1- 2
B, 1=B_2 (3.47)
ay s 3

The form of Eq. (3.35) has three unknowns (a1, az, ), and now two constraints (Eqs. (3.37)
and (3.47)) have been determined. This still leaves a degree of freedom, allowing one parameter
to be chosen freely. One convenient choice is to set 8 = 2, which results in an integer solution
with a1 = 2 and @, = 3. This particular selection has been quite successful in use in equivalence

in dilution applications and is Carlvik’s Two-Term Rational Approximation for an isolated pin:

2%, 3%,
X(E)+2%, X(E)+3%,

Pesc(E) =2 (3.48)
Other two-term rational approximations are possible for an isolated pin, even those that
satisfy Eqgs. (3.37) and (3.47). However, Carlvik is the most widely used and is quite accurate.
Figure 3.3 shows the error in the approximation plotted with the other rational approximations
for a pin of radius 0.4 cm. The Carlvik Two-Term Rational Approximation has a peak error less
than 3%, much reduced from the one-term approximations.

3.5.2 Roman Two-Term Rational Approximation

Of course, cylindrical geometries are not the only ones encountered in reactor analysis. For
slab geometry, a suitable two-term rational approximation is given by Roman:

1.4%, 5.4%,
YE)+14%, ~ X(E)+54%,

Po(E) = 1.1 (3.49)
This rational approximation obeys the black limit of Eq. (3.37). However, the escape probability
for a slab features a logarithmic singularity at X = 0, and so the derivative cannot be taken. In-
stead, these parameters were generated as a best fit to some set of reference values. Figure 3.4
shows the error in this approximation compared to the other rational approximations for a
slab of width 0.4 cm.

Rational approximations can of course be made for other geometries, and there is no single
“correct” method of selection of coefficients. Instead, coefficients are sought that yield the best
answers for the problems at hand. Furthermore, rational approximations can be generated
with more terms if this is deemed necessary for a given application (e.g., [Hebert1991]).
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Figure 3.3: Error in rational approximations for a pin of radius 0.4 cm.
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Figure 3.4: Error in rational approximations for a slab of radius 0.4 cm.

61



3.5.3 Using n-Term Rational Approximations

Although it has been shown that an n-term rational approximation can be used to accurately
estimate the flux in a heterogeneous system, effective resonance integrals or cross sections are

what is actually desired.

First, consider the effective resonance integral for reaction type p, which is defined as
1
Ly=— f o (EYP(E)AE . (3.50)
Aug J,

Inserting Eq. (3.27) into this definition yields

1 n
w=ﬁjkwé¥mmw

1’1
— o 2 [ onEErE
AMZ gp

9 i=1

(3.51)

The effective resonance integral defined using a partial flux is recognized in this equation:

1
Lpgi = A—%L‘Up(E)cﬁi(E)dE . (3.52)

This quantity is retrievable from homogeneous nuclear data tables. Then, the true effective

resonance integral is simply

lng =) Bilpgi - (3.53)
i=1

Next, consider the group-averaged cross section for reaction type p:

o,(E)Y(E)dE
Tpy = by (3.54)
J,¢E)dE
Inserting Eq. (3.27) into this equation yields
LooE) ) Bidi(E)dE
Ty = _ i=1
by > Bigi(E)dE
=l (3.55)

n

Y6 [ opEem e

=l 9
Z@fmmw
i=1 9
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The integral in the numerator is recognized as the group cross section multiplied by the group
integrated flux using a partial flux:

f oS EVOHE)AE = Tpgibpi - (3.56)

9

The integral in the denominator is simply the group integrated flux using a partial flux:
f¢i(E) dE = ¢4 . (3.57)
g

These forms are inserted into the group cross section equation to achieve

Z:Bio'p,g,i(pg,i
Opg= (3.58)

anﬁiﬁbg,i
i=1

If the group integrated flux is stored in the homogeneous nuclear data table, this form can
be used directly to obtain group cross sections with an n-term rational approximation. If the
group integrated flux is not available, it can be approximated as in Sec. 2.5.7:

bgi = Aug (1 - oo ) : (3.59)

Oagi+ Aoy +0p

Inserting this into Eq. (3.58) gives an alternate form for the cross section with an n-term
rational approximation:

n
1 Tag,i
Zﬁio-p’g’i  Gagi+ AT, + 0py
= a,g,i P b,i

n (3.60)
DI (e
— Cagi+ Aoy +0p

Tpyg

3.6 The Dancoff Effect

In the approximations to the fuel to moderator collision probability, it has been assumed that a
fuel lump is isolated. However, in real reactor systems, fuel is generally arranged in a regular
or semi-regular lattice pattern, with fuel lumps in close enough proximity to each other for
neutrons born in one to reach another. In this context, the escape probability—the probability
a neutron born in a fuel lump exits that fuel lump—is not the same as the fuel to moderator
collision probability. The effect of fuel lumps being present in a lattice rather than being
isolated is known as the Dancoff effect [13, 8].

Consider Eq. (3.1) rewritten where the fuel F includes many lumped regions f’ € F and the
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moderator M is similarly segmented with regions m’ € M. The region of interest is a particular
fuel region f. The transport equation for this problem is

sN(E) (E)WV/ = PIPIE)ST(EW + Z Pl ES T (EW + Z P lES™ (EWT . (3.61)
f'eF m'eM
A

Reciprocity relations are used to transform all the collision probabilities into those originating
from the region f. Assuming a generic region r # f, the reciprocity relation is

visfpf=r = yryrpr=f (3.62)

The transport equation for this problem is now written as

T/(E)

e - (863

> (E)¢'(E) = P/2IST(E) + Z P2 (E)S/T '(E)
f'e
o

f—m' m’
S f/(E)+ Z P> (E)S™ (E)

If, as before, the moderator cross section is assumed constant and its source is assumed
to be that of the narrow resonance model, the moderator regions can be combined with
PI2ME) = Svem P17 (E):

Y/ (E) ¥/ (E)
Fomaf (7Y = profof F=f (ye S f-M
>/ (E)¢/(E) = PI™TS (E)+f§€FP (E)ST(E)=—— ) +PoMpy =2 (3.64)
g

If all fuel regions, including the region of interest, are assumed to have the same source and
the same cross section, this simplifies further to

f
/() (E) = | P74 Y PIT (E) | $7(E) + PIM( E)¥
o (3.65)

= (1-P=ME)) s/ (E) + Pf_’M(E)Z (E)

This is the same form as Eq. (3.4), but the specific meanings of the terms allow for P/~ to
be related to the escape probability. Note that because the cross section of the fuel is the only
cross section that appears here, the superscript f will be dropped in subsequent discussion.

3.6.1 Gray Dancoff Factor

Consider the relationship between P/~" in Eq. (3.65) and the escape probability. P/~ is
the probability that a neutron born in fuel region f both escapes the pin and has its next
interaction in the moderator. This is equivalent to a reduction in the escape probability by the
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probability the neutron has its next collision in a different fuel element:

PIZM(E) = Po(E) - Y P21 (E)
feF
I'#f

If the quantity C is defined as
Sper PI2T(E)
f#f

C(E)Z P—(E) )

then the fuel to moderator probability can be written as

Pf_’M(E) = (1 - C(E))Pesc(E)

(3.66)

(3.67)

(3.68)

This parameter C is known as the gray Dancoff factor. It can be computed for a given

configuration using the methods outline in Sec. 3.6.4. It is an energy dependent quantity, and

so must be computed for many points along a resonance to accurately model the Dancoff effect.

Furthermore, Eq. (3.68) does not satisfy the rational form of Eq. (3.10), and so it cannot be

used directly with homogeneous look-up tables. These considerations make the gray Dancoff

factor inconvenient to use in practice. Fortunately, a more convenient alternative exists and is

the subject of the following section.

3.6.2 Black Dancoff Factor

Consider the fuel to moderator collision probability:

PIPME) = 1= | PIIE) + Y P ()

f'eF

I'#f

= Pese = Y PI(B)
I'eF
I#f

The sum can be expanded as

[59)

2 Pm =) P
f'eF n=0
#f

where

(3.69)

(3.70)

e P/=0F" is the probability that a neutron born in the fuel escapes, traverses the moderator,

and collides in the next fuel element it encounters.
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e P/~ is the probability a neutron born in the fuel escapes, traverses the moderator,
traverses another fuel element, again traverses the moderator and collides in the next
fuel element.

e P/™2f" is the probability a neutron born in the fuel escapes, twice traverses the moderator
and a fuel element, traverses the moderator and eventually collides in the next element.

Thus, n represents the number of fuel lumps a neutron traverses after it escapes and before
it eventually collides in a fuel lump. Similarly, define the probability a neutron entering the
moderator after traversing n fuel lumps (excluding the lump in which is was born) reaches
another fuel lump as C,,. Because the moderator has been assumed to have a constant cross

section, C, is not a function of energy.

Also, define the probability a neutron collides in a given fuel lump after entering the
lump through its surface as P~/. The complementary probability, that a neutron entering a
fuel lump through its surfaces traverses it without collision, is notated P~5. Of course, the

complementary relationship holds with these collision probabilities:

PSPIE)+PS7S(E) =1 . (3.71)

Next, assume that any neutrons that enter a fuel lump do so uniformly and isotropically
across its surface. Likewise, assume any neutrons exiting a fuel lump do so uniformly and
isotropically across its surface. These assumptions are not physical, as a great deal of angular
structure is present in the probability of traversal, as a neutron is more likely to escape a fuel
lump if it travels a shorter distance inside the lump. However, these assumptions work well in
the context of equivalence in dilution methods. The first of these approximations gives rise to
the reciprocity relation

PS7I(E) = IS(E)Puse(E) . (3.72)

It is also assumed that all fuel lumps are the same size and shape. Thus, P~/ and P55 are
the same for each fuel lump.

With these definitions and assumptions, the probability of a neutron born in a fuel lump,
traversing the moderator, and colliding in the first subsequent fuel lump it encounters can be
written

P2 (E) = Pog (E)CoPS™I(E) . (3.73)
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The probabilities a neutron traverses this fuel lump but collides in a different fuel lump are

P2V (E) = Pos (E)CoPS 7S (E)C PS™/(E)
P/ (E) = Poso(E)CoPS 7S (E)C1 PS5 (E)CLPS ™/ (E) (3.74)

In a regular lattice, with the uniform and isotropic assumptions, each C, is equal. In irregular
lattices, C, is a function of the geometry. However, the contributions of collision probabilities
representing multiple fuel lump traversals diminish rapidly, and so assuming C, = Cj is
an easily justifiable approximation. In this case, using the complementary relationship of
Eq. (3.71) and dropping the subscript on C, P/~"/" can be written

PI=M(E) = Poso(B) [C (1 - P2I(E))| P () (3.75)
Using the reciprocity relation of Eq. (3.72), this becomes
PIZM(E) = Pese(E) [ € (1 = IZ(E)Pese(E))| CIE(E)Pesc(E) . (3.76)

Because the quantity in square brackets is the product of probabilities, it is guaranteed to be
less than unity. Thus, the geometric series form

ixz ! 3.77)

~ 1—x
can be invoked. The sum in Eq. (3.70) can now be written

P2, (E)CIX(E)

- (3.78)
1= C (1 = IZ(E)Pesc(E))

2 P E) =
n=0

Finally, this is inserted into Eq. (3.69) to obtain the fuel to moderator collision probability:

PIM(E) = Py (B[ 1 - —— el XEEE) (3.79)
1= C(1 = IZ(E)Pesc(E))
By comparison to Eq. (3.68), the gray Dancoff factor has been approximated by
CE) = Pesc(E)CIE(E) (3.80)

1~ C(1 - TE(E)Pese(E))

Thus, the energy dependent lattice parameter C(E) is replaced by an energy independent lattice
parameter C and an equation that appears more complicated. C is the probability a neutron
that leaves fuel region f reaches another fuel region without colliding with the moderator. If

67



Table 3.1: Comparison of using directly computed gray Dancoff factor to using approximation
with black Dancoff for an infinite square lattice of fuel pin with radius 0.4 cm, pitch 1.26 cm,
and moderator cross section 1.23cm™".

Gray Dancoff Factor

T [em™1] P Direct Approx Error C Error
(1-0)

1E-01 9.504E-01 0.0225 0.0243 7.64% -0.18%
1E+00 6.517E-01 0.1413 0.1457 3.12% -0.51%
1E+01 1.235E-01 0.2447 0.2442 -0.20% 0.06%
1E+02 1.250E-02 0.2465 0.2465 0.00% 0.00%
1E+03 1.250E-03 0.2465 0.2465 0.00% 0.00%
1E+04 1.250E-04 0.2465 0.2465 0.00% 0.00%
1E+05 1.250E-05 0.2465 0.2465 0.00% 0.00%

the fuel cross section were set to a very large value, all neutrons that reach a fuel region collide

there. Thus, C can be written as

Sper P17
C=1lm L2 (3.81)
Z—o0 esc

which is the same as the previously encountered gray Dancoff factor evaluated with a very
large cross section. Therefore, C is known as the black Dancoff factor. Its computation is
discussed in Sec. 3.6.4. Table 3.1 shows a comparison of gray Dancoff factors computed directly
versus computed approximately as outlined in this section for an infinite square lattice of fuel
pins with radius 0.4 cm, pitch 1.26 cm, and moderator cross section 1.23cm™!. The Dancoff factor
saturates quickly, with the gray Dancoff achieving its black limit with X = 100cm™!. With small
cross sections, there is a noticeable error in the Dancoff factor, but this can be attributed to the
very small value it takes. Because the fuel to moderator probability is actually multiplied by
(1 - 0), error in this quantity is perhaps a more appropriate measure, and the approximation

leads to almost no error here.

The form of Eq. (3.79) appears very complicated. However, as discussed in the subsequent
section, when used in conjunction with a rational approximation, it yields a fuel to moderator
probability that takes the same rational form. Thus, it is a very convenient form and can be
used directly with homogeneous lookup tables. Furthermore, by defining the quantity A as

_1-C

A= —— .82
- (3.82)

using ¥, = 1/1, and rearranging terms, Eq. (3.79) can be written in a somewhat cleaner form:

(3.83)

PIE) = PoalE)| 3 )

AZ, + X(E)Pese(E)
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3.6.3 Dancoff Form of Rational Approximations

In the previous section, it was claimed that using the black Dancoff factor with Eq. (3.79) or
equivalently Eq. (3.83) in conjunction with a rational approximation for the escape probability
yields another rational approximation for the true fuel to moderator collision probability. This

claim is proven here for one-term and two-term rational approximations.

Dancoff Form of One-Term Rational Approximation

The Wigner-Bell Rational Approximation can be considered the general form of the one-term
rational approximation, as X, is a constant in energy, and so with proper selection of b, bX, can
evaluate to any constant.

The Wigner-Bell Rational Approximation of Eq. (3.24) is inserted into Eq. (3.83):

promgy - e A%,
3(E) + bZ, AZ + Z(E)Z(E)+b2 (3.84)
~ ADE,
"~ AZ(E) + bZ,) + bX(E)
This can be simplified to a rational approximation:
b*x
PIoME) = = :
B =SB+, (3.85)
. Ab (-0 (3.86)

T A+b 1-C+Ch
Thus, using Eq. (3.79) with a one-term rational approximation for the escape probability results
in a one-term rational approximation for the lattice fuel to moderator probability.

Dancoff Form of Two-Term Rational Approximation

Deriving the two-term rational form including the Dancoff effect is quite a bit more complicated
than for the one-term form. However, it can still be done, and is shown here. To simplify
notation, explicit dependences of the cross sections and escape probabilities on energy are not
shown. First, the general two-term rational expression

Pege = B2t 4 (1 - .
e =BT (=P (3.87)
is inserted into Eq. (3.83):
1Ze X AX
P = ( —a +(1 =P : (3.88)
,32 +a B L+ mk. ) AT, + gleé " 2(;@)2;22
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The numerator and denominator are each multiplied by (2 + 1 Z.)(Z + axX,):

FoM _ Ba1Z (X + a1Z) + (1 - pank.(E + a1 X)) AZ,

AT C H a1 Z)E + X)) + TP Ze(T + aaXe) + (1 — BanZe(T + 1 Xe) (3.89)

Next, a factor of X, is noticed to be in each term both in the numerator and denominator, and

so can be cancelled. With this and rearranging terms, the form becomes

2
pi-M _ ABa; + (1 - Pla2) Z.2 + AaarX; . (3.90)
(A +ﬁa/1 + (1 —ﬁ)alz) 2 4 Ala) + ap) + ajan) .2 + Aallazze
The desired form for P/~ is another two-term rational approximation
pl—M _ B\ Ze + ByasZe (3.91)

T+ajZ, THayXe

and because the denominator of Eq. (3.90) is quadratic in X and X, this form appears possible
with a partial fraction expansion. To do this, first, the denominator should be factorized as
(Z + a])(Z + a3), with a leading multiplicative coefficient of y:

D =(A+Ba; + (1 -Ba2) % + (A(a) + a2) + @12) TZ + AajarX?

. (3.92)
=Y(E+a)E +a3) =y (T + (] + )L + jasz?)
By inspection, the following relationships are implied:
y=A+Ba+ (1 -Pa (3.93)
A
ot +a = A1t e o (3.94)
Y
A
O i (3.95)
Y
Solving Eq. (3.94) for o and inserting it into Eq. (3.95), a] is determined:
Q/TA(Q] +a) +ajap _ Aaian (396)
Y Y
ya/{z - (A1 + @) + ajan) @) + Aajar =0 (3.97)
(Alar + a2) + a1) + \/(A(Q'l + @) +a1@)’ - dyAaiar
@) = . (3.98)
2y
By inspection, Eq. (3.95) is satisfied when
(Ala1 + @) + 12) F \/(A(a/l + @) + @1a2)” — dyAaa;
a; = ) (3.99)

2y
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@ and o} are symmetric and thus interchangable in the derivation so far. Thus, the lower

signs are chosen without loss of generality:

(Ala) + @) + a1@2) - \/(A(al + @) + a1@)’ - dyAaiar

a) =
24 (3.100)
(Alar + @) + a1a2) + \/(A(cn + @) + @102) ~ dyAaian

@, = >

Next, Eq. (3.90) can be expanded into partial fractions to obtain the desired form:

prom _ A+ —Aa) LI+ AT  C LG
o Y&+ a/*l;Ee*)(Z +a5%,) T+, T+arX (3.101)
1@ Ze 02928

= —+ .
Z+ a/*IZe z+ cx;Ze

where C| and C; are arbitrary constants to be solved for. Because ¢, o5, and X, are all con-
stants, C; and C, can be replaced by gja|Z, and Bja5%,, respectively, without loss of generality.
Multiplying through by the denominator yields

ABa; + (1 —Bap) T2 + Aalazzg = VB L (X + a3 X,) + VB (X + @) Z,)

=y (Bia} + Bra2) B2 +y (B} + B3) ] a3
This gives constraints for g} and g;:
A 1-
B + g = LB +; Bl (3.103)
. A
B+ Py = =2 (3.104)
Ya, @,
Now, consider the constraint Eq. (3.104). The product aja; is
o (Alar + @) + 102)? — (Alar + @) + 1a2)” + dyAaian
QIQZ = 4 2
4 (3.105)
_ ACZ]CL’Z
y b
and therefore, Eq. (3.104) simplifies to
Bi+B=1 . (3.106)

This ensures the Dancoff form of a two-term rational approximation is also a two-term rational
approximation. Finally, this is inserted into Eq. (3.103) to determine the final unknown
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parameter:

_ABay + (1 - Ban)

Biay + (1 =B = " (8.107)
Y a, —a;

To summarize, when a two-term rational approximation for the escape probability is used
in conjunction with Eq. (3.79), another two-term rational approximation is recovered. This

new two-term rational approximation for the fuel to moderator probability in a lattice system

is given by
R S L Ty . (3.109)
“FiE s @iz, FsE a;Z, '
where
., Al + @) +aia) - \/(A(Oll + @) + 1)’ - dyAciaz
- (Alar + o) + 1) + \/(A(a’l + @) + a1)’ - dyAaja;
a, =
2y (3.110)
*_( % A(Bal+(1 _B)a/2)) 1
18 - QZ - * *
Y @, —a,
Y =A+pa; + (1 -pPa;
A= i
C

For the Carlvik Two-Term Rational Approximation with @; = 2, a, = 3, and 8 = 2, these
parameters simplify to

. S5A+6- VA2 +36A +36

@

2A+2
SA+6+ VA2 +36A + 36
r = 3.111
“ 2A+2 ( )
* A
= 2T
(0% —(Il

2

3.6.4 Computation of the Dancoff Factor

To this point, the Dancoff factor has been defined as augmenting the probability that a
neutron born in the fuel next collides in some fuel region. The definition of the Dancoff factor
in Eq. (3.67) can be applied to a computational procedure directly. First, this equation is
transformed such that it contains the collision probabilities P/~ and P/~/:

PI=F(E) — PI2I(E)

= (3.112)

C(E) =
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These collision probabilities can be determined using a transport solver. To see this, consider

the collision probability formulation

N EYYE)W = Z P21 E)ST(EW! + PY2I(E)SM(E)WM (3.113)
fleF

and set the source in the moderator to zero. If all fuel regions have the same cross section and
source and the reciprocity relation of Eq. (3.62) is used, this simplifies to

> (E)$(E) = Z P2 (E)ST(E) = PIPR(E)ST(E) . (3.114)
f'eF

Thus, by solving a very simple, purely absorbing, fixed source transport equation where S/ (E)
is set to a known value and S¥(E) = 0, the collision probability P/~f can be determined:

_ Y(E)HE)

f—F
T

(3.115)
P/~7 can be determined in the same manner simply by changing the geometry to include only
a single fuel lump in isolation. Because only the flux in the fuel lump is desired, the materials
outside the lump are not important, nor are the boundary conditions. If the flux for the isolated
case is notated as ¢° and for the lattice case as ¢', then the Dancoff factor is

iy _ 40
CE) = ¢ (E) — ¢"(E)

B Sf(E)/zf(E) — ¢O(E) (3116)

This procedure, unfortunately, can be difficult, particularly with large cross sections. For-
tunately, another approach has been seen to be more successful. This alternate approach
is often called the Neutron Current Method [15], and it involves placing the source in the
moderator rather than the fuel. Rearranging Eq. (3.68), another formula for the Dancoff factor

is obtained:
Peso(E) — PIM(E)

CE) = Pose(E)

(3.117)

As in the previous method, these collision probabilities can be determined through the solution
of a simple transport problem. Start again with Eq. (3.113), but this time set the fuel source to

zero. The reciprocity relation is applied, which leads to

=/(E)
f _ pf-M M
SNE)Y(E) = PP7M(E)S (E)EM(E) (3.118)
The collision probability P/~ is thus
M
Pf—>M(E) = M (3.119)

SM(E)
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The escape probability can be computed similarly, by changing the geometry to that of an
isolated fuel lump. To perform this calculation directly, a very large region of moderator would
be needed. However, by noting that only the ratio ="/s¥ influences the collision probability, one
can set the moderator cross section to a large value, adjusting the source accordingly, to allow
for a much smaller region of moderator in the solution. (Note, though, that the value of =¥
does influence the solution of the lattice system, and so must not be changed there.) If the flux
for the isolated system is ¢°(E) and that of the lattice system is ¢!(E), and assuming the ratio
=¥/s¥ is maintained in both solutions, the Dancoff factor is obtained via the simple formula

¢°(E) - ¢'(E)

C(E) =
) ¢O(E)

(3.120)

In both of these formulations, the gray Dancoff factor C(E) was shown. For the black Dancoff
factor, the fuel cross section is simply set to a large value, and the transport solutions require
only a single energy point. For both formulations, the flux ¢! can be computed for all fuel
regions in a single lattice calculation. The flux ¢° needs to be computed for each unique fuel
shape.

3.7 Embedded Self-Shielding Method

A recent extension of equivalence in dilution methods is known as the Embedded Self-Shielding
Method (ESSM) [16, 17]. It recognizes that although equivalence in dilution seeks an equiva-
lence between heterogeneous and homogeneous models, the parameters at which this equiva-
lence holds are difficult to determine a priori. Instead, ESSM iterates between a heterogeneous
model and a homogeneous model until equivalence is obtained.

The homogeneous model is the equivalent homogeneous problem for a two-region fuel-
moderator system, as previously encountered in Sec. 3.2. The source in the fuel is left as a
generic S’ in this discussion. An intermediate resonance source or true slowing down source

can be used. The form of this equation is

(ZF(E) +Ze) " (E) = ST(E) + % , (3.121)

where X, is assumed to be constant in energy. As previously discussed, this is equivalent
to assuming the fuel to moderator probability is well-represented by a one-term rational
approximation. This homogeneous problem is integrated over energy to attain the multigroup
form:

(ZF + Zegg) 0 = S§ +Zeqgtuy (3.122)

where the subscript g is added to X, , to indicate that it only needs to be group-wise constant
for this method and § 5 is simply S (E) integrated over the energy group bounds. This equation,
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solved for %, ,, takes the form
FyF _ GF
299y —Sq

)y
Aug — ¢>5

(3.123)

eq.g =

The heterogeneous model is simply a fixed-source, purely absorbing multigroup neutron
transport equation using the geometry of interest. The sources are set to be consistent with
the homogeneous model. For fuel regions, the fixed source is set to be S 5 ; for moderator regions
it is set to ¥ Au,. The general form of this model is

Q- Vi (7, Q) + Z, (P, (7, Q)

F =2
I{SQ(?) rek (3.124)

AT s, (DA, PeM
The mechanics of the ESSM procedure are as follows:

1. X4 is guessed.

2. ¥/ is determined from homogeneous look-up tables using X, ,.

3. The heterogeneous model of Eq. (3.124) is solved using %/ to determine ¢/

4, ¢g is inserted into the homogeneous model of Eq. (3.123) to obtain an updated %, ,.

5. Unless converged, return to step 2.

Convergence can, of course, be measured on a variety of metrics, but ensuring convergence on
the cross section X is the most sensible, as this is the quantity that will be used in subsequent

calculations.

Note that this procedure includes all nuclides in the fuel together in the calculation for %, 4,
as this is primarily a geometric parameter. When obtaining 25 from the homogeneous look-up
table, the nuclides are treated separately and combined as

- T,
=3 N ((rb+ ]\;’;g) , (3.125)

i

where i denotes the nuclide. Similarly, the source in the fuel contains components from each
nuclide. This is straightforward with the narrow resonance model, where the scattering source
is given by X,/E, and thus the multigroup combined source is

SE = Auy Z Niol, . (3.126)

However, this treatment is problematic with the the intermediate resonance model. In liter-
ature, the scatter source for each nuclide is given as 1X,/E + (1 — 1)X¢ and a summation is
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performed:
SE = Au, Z AN'ol + ¢ Z(l —- )Niot . (3.127)

The problem with this form is that A is not well-defined for a system with multiple resonant
nuclides. 1 models how neutrons scatter with respect to the resonances of a single nuclide,
adjusting the effective background cross section that nuclide sees. With multiple resonant
nuclides, 2 must be chosen to be some representative value for each nuclide for the formulation
of this source. This is discussed further in Sec. 8.4.

3.7.1 Heterogeneous Tables

The Embedded Self-Shielding Method has been adapted from its original publications to use
small heterogeneous geometries in the table rather than homogeneous tables. These tables are
generated by solving a suite of small problems with an ultrafine method. These small problems
could also be solved by Monte Carlo or some other fine-energy treatment. Typically unit cell
geometries are used. Several variables can be perturbed, including the amount of background
moderator in the fuel material, the pin pitch, the pin radius, and the moderator density. The
group-averaged cross sections are saved to the table as a function of the effective equivalence

cross section, as computed from Eq. (3.123).

The mechanics of the ESSM procedure with heterogeneous tables are as follows:

1. X, is guessed.

2. 25 is determined from heterogeneous look-up tables using X, 4.

F

3. The full heterogeneous model of Eq. (3.124) is solved using 25 to determine ¢, .

4. ¢5 is inserted into the homogeneous model of Eq. (3.123) to obtain an updated %, ,.

5. Unless converged, return to step 2.

Note that in this process, the cross sections tabulated in the heterogeneous look-up table
are potentially multi-valued. That is, a given value of X, , corresponds to more than one group-
averaged cross section. This is because changing one variable, e.g., the pin diameter, can have
the same effect on X, , as a change in another variable, e.g., the moderator density, despite
having different collapsing spectra. Thus, the heterogeneous tables should be generated using
as similar geometry and conditions as possible to the real calculation. Multiple heterogeneous
tables may be needed if different pins and different conditions are present in the problem of

interest.
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3.8 Chapter Summary

In this chapter, equivalence in dilution methods were detailed. These methods relate a hetero-
geneous problem to an equivalent homogeneous problem, allowing cross sections generated in

infinite medium calculations to be used directly in a lattice-level calculation.

For this to be possible, the equivalent infinite medium must consist of the fuel material
and an admixed moderator with constant cross section. This can be a very good approximation
when a rational approximation is used to model the fuel to moderator collision probability.
This chapter provided rigorous derivations of the most common rational approximations and a
discussion of their use.

The derivations of the rational approximations assumed that a fuel region was isolated.
This is almost never the case in a real reactor calculation. Much more often, a repeated
geometry is encountered. The Dancoff factor is defined as a correction factor to scale the fuel to

moderator probability from a rational approximation to be appropriate in a lattice geometry.
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Chapter 4

The Subgroup Method

4.1 Method Description

In the subgroup method [18, 19, 20]—also known as the multiband method—unlike with
equivalence in dilution, the self-shielding calculation is performed on a heterogeneous geometry.
Rather than finding an equivalent homogeneous problem, the heterogeneous problem can be
used directly. Computational efficiency is maintained by a clever change of variables, allowing
the integration over an energy group to use the cross section value as the independent variable,
rather than the energy. The details are discussed next.

First, the subgroup method is usually formulated with a single resonant nuclide, here
denoted with superscript =. All other nuclides are lumped into the background moderator,
denoted with superscript +, whose cross sections are assumed to be constant across the energy
group. The scattering kernel assumes isotropic scattering in the center of mass, and the flux
is assumed to be isotropic enough that the scatter source can be treated as isotropic in the

transport solution. The transport equation under these conditions is written as

Q- VY@ QE) + (P E)+Z @) (7 O, E)
_ L (EGEWRE) o, 1 (P B0O6CE) (4.1)
C4n g (1 —a*)E’ Ar Jg (1 —a*)E’ ’

where only a single background moderator nuclide is shown, but generalization to multiple
requires only a summation over the nuclides.

Next, the scatter sources are approximated using the intermediate resonance model, dis-
cussed in Sec. 2.5.5. The background moderator’s source is shown using the narrow resonance
model, noting the hydrogen equivalence discussed in Sec. 2.5.6. Also, the macroscopic form of
the flux is taken to be 1/E and invariant with position. All these approximations lead to the
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simplified transport equation

Q- VY QO E) + (ZH(7 E) + 25 (D) (7. Q, E)

1 (. Z®
=—1A1
4 E

+ (1 = V(7 EY(7, E) +

P (4.2)
)

The wide resonance model term on the right hand side can be moved to the left hand side
by assuming that not only the neutron energy is constant after the collision, but the angle
also remains constant. Also, the equation is multiplied through by E and is cast in terms of
lethargy rather than energy:

Q- VY@ Qu) + (SR u) + AZ5F u) + (D) v Q, u) = %T (1Zy +25®) (4.3)

This equation provides the basis for the subgroup method. The lethargy shape of the flux is
influenced only by the value of the resonant nuclide’s cross sections. Defining the intermediate
resonance cross section as

o(u) = o) + Aos(u) (4.4)

the transport equation can be written with functional dependences on o, rather than u:
A 2 A * % % 2> A * 1 *
Q- VY, Q.0 + (N (Ao + 25 @) u(, Q.0 = yo (AZ) + () (4.5)

Note that the functional dependence on o, is matter of notation. The flux is still defined as a
quantity per unit lethargy, not per unit cross section.

Now, consider the group-averaged intermediate resonance cross section:

J, 2. u) du

(4.6)
fg o7, u) du

o 24(F) =

Because ¢ is dependent on lethargy only through the lethargy dependence of the cross section,
these integrals can be transformed into integrals over the cross section value,

fooo T ad(F, 7 2)py(oa) doy
fooo ¢(F, o) py(oa) doy

o 4(F) = 4.7)

where p, (0 1)do; is the probability the cross section takes a value between o) and o) + doy in

energy group g. By integrating over the cross section measure in this manner, the integrals
are effectively Lebesgue integrals, as opposed to the Riemann integrals appearing in Eq. (4.6).

Next, these integrals are approximated using numerical quadrature. For a given function

79



f(o)), a numerical quadrature N base points o, and weights w, is given by

00 N
fo fleppeydor~ Y w.fon) (4.8)
n=1

With this and defining the term ¢, as

¢n(?) = ¢(?s O-n) ’ (4.9)
the group-averaged cross section is
N
Z Wy O ( ’7)
1P = (4.10)
Z Wy dn( 7)

n=1

This form does not seem much different from a similar approach without transforming the
integrals into integrals over cross section. However, the quantities o, (u)¢(u) and ¢(u) feature
wild fluctuations as a function of the lethargy variable. As such, they require a great many
base points in the quadrature to be accurately integrated. Such an approach is known as an
ultrafine method because of this, and these methods are described further in Ch. 5. On the
other hand o,¢(0,) and ¢(o,) are very smooth functions of the cross section variable. Thus, a
numerical quadrature can be very accurate with many fewer base points.

Now, the subgroup method is presented succinctly. Given a quadrature Q = {w,, o} for a
specific nuclide, denoted *, a subgroup fixed source equation, given by

Q- V() + (N (Do + ZH D) YD) = - (az A +IpP) (4.11)

is solved to obtain the scalar subgroup flux ¢,. Then, the group-averaged cross section is
obtained by inserting the quadrature and these fluxes into

N
Zw Un‘pn 7_‘))
V() (4.12)

N
Z Wnn( ’7)
n=1

This procedure is repeated for each resonant nuclide. In this form, the subgroup method
assumes there are no resonance overlap effects. Resonance interference without overlap can
be modeled as in Sec. 2.6, and it is described in Sec. 8.2.3.

Two difficulties arise in using the subgroup method as defined here. First, the quadrature
0 = {wy, 0} is not easily defined. Many of the options for this quadrature are presented in
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Sec. 4.2. Second, this process only yields the group-averaged cross section o, 4, but not any
partial cross sections for other desired reactions. Methods for determining these cross sections

are presented in Sec. 4.3.

4.2 Quadrature Generation

4.2.1 Direct Method

One method for defining the subgroup quadrature is known as the direct method or the direct
subgroup method. Oftentimes, use of the term “subgroup” implies use of probability tables, as
described in the subsequent sections. However, the direct method fits into the definition of the
methods of Sec. 4.1, and so is included as a subgroup method here.

In the direct method, explicit energy or lethargy intervals for each subgroup level are
defined. A subgroup level corresponds to a specific range of cross section values, given by
[0 n.min> On.max)- The cross section used in the quadrature is the continuous energy cross section
collapsed across the disjoint lethargy range defined by this cross section interval. Equivalently,
defining an indicator function #, as

Ho () = {1 Tnmin < 0(U) < Opmax (4.13)

0 otherwise,

the cross section is a group collapse in which the integrands are multiplied by the indicator

function:
Jy @) Hy(u) du
o, = . (4.14)
Jy $@OH, (ue) du
The weights are correspondingly defined as
J #aH ) du @15
b [ etdu '

Figure 4.1 shows a conceptual illustration of defining the energy interval based on the cross
section value. The subgroup method is sometimes referred to as the “multiband” method, and
the cross section interval defining each level is known as a band. This terminology is used in
the illustration.

Two issues clearly arise in defining the quadrature in this manner. First, the cross section
interval defining a subgroup level is a free parameter. The cross section values defining the
boundaries of subgroup levels within a group—and even the number of levels—should be
selected in such a way as to minimize the error that this approach imposes. This should be
done by comparing cross sections obtained with this approach to those obtained by a reference
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Figure 4.1: A conceptual illustration of the direct subgroup method, reproduced from [21].

solution. Reference solutions should be for problems in which analytic or numerical continuous
energy solutions can be obtained. Typically, very simple problems are chosen, such as infinite
media or simple pin-cell configurations. However, this process is ultimately one that can vary

from implementation to implementation and perhaps even problem to problem.

The second issue is that the quadrature points and weights both depend upon the flux ¢(u«)
of the system. This is not a known quantity; in fact, the self-shielding calculation, of which
the subgroup method itself is an example, is intended to approximate this quantity. Thus,
including a dependence on the quantity seems to be a large issue. However, as discussed
in Sec. 4.1, the flux as a function of lethargy is a function of only the cross section for the
simplified problem solved in the subgroup method. Thus, for relatively small cross section
intervals, the flux is not likely to vary much. Certainly, the flux will not exhibit the same wild
fluctuations encountered if the entire energy group were to be included by itself. That said, the
flux will still exhibit some sort of variation. This is most easily accounted for using equivalence
in dilution methods, noting that only a coarse approximation is needed. The escape cross
section need not be rigorously calculated; a simple guess will suffice for most applications. For
additional accuracy, an iterative scheme similar to ESSM but for multiple cross section levels

has been proposed by Yamamoto [22, 23].
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4.2.2 Physical Probability Tables

The method of physical probability tables is another method to define the subgroup quadrature.
It removes the explicit energy range associated with each subgroup level; instead, weights
and quadrature points are defined based on minimizing error associated with using the
subgroup method on a set of reference problems. The term “probability table” arises because
the quadrature weight is analogous to a probability that a neutron in the energy group falls in
the corresponding subgroup level.

Fitting Multigroup Constants

One method for generating physical probability tables—or fit-based subgroup quadratures—is
to perform a least squares fitting procedure on multigroup constants—either cross sections or
effective resonance integrals.

First, a set of reference solutions are created. These are multigroup constants obtained
by solving some configuration either analytically or numerically using continuous energy
cross sections. Most commonly, infinite media are used as the configuration references; in
this case, the reference solutions are simply entries in the multigroup nuclear data tables for
difference background cross section values. Alternatively, other simple geometries, such as
pin-cell configurations, can be used [24]. In any case, the reference solution configurations
should span the parameter space expected in later simulations. Let the reference solutions for
configuration k be given as I, or o, for effective resonance integrals or group cross sections,
respectively.

Next, approximate effective resonance integrals or cross sections are defined. These
quantities are functions of the subgroup quadrature Q = {w,, o,} and of the configuration. Let
them be notated I,x and &4, and they are defined as

N
I,(Q) = " wnouica) (4.16)

n=1

N
Z wnUr1¢k(Un)
For(Q) = o (4.17)

Z Wy Pr(01)
n=1

Note that these definitions require knowledge of the flux in configuration k as a function of the
cross section. This flux should be consistent with the flux solution in the references. For infinite
medium configurations in which the reference solutions were computed with the intermediate

resonance model—or equivalently, the narrow or wide resonance models—the relationship is
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analytic:

o-b’k+/la'p

or(oy) = (4.18)

Opk+ 0y
where o, is the background cross section for configuration k& and o, has previously been

defined as some value of the derived cross section quantity o, + Ao-s. For other more complicated
reference configurations, the flux must either be tabulated or approximated.

The quadrature is then obtained by a fitting procedure. Generally, the error in some norm is
minimized for all reference configurations. The choice of norm varies among implementations,
but the most common is the 2-norm for relative error, equally weighting each configuration.
Then, this is a non-linear least squares procedure. The quadrature is then given by

o Lok~ L)Y
Q = arg min (g—) (4.19)
rgQ, i ; Tt
- NN 2
Q = arg min Z (M) (4.20)
o k O-g,k

Constraints are imposed on this procedure. For instance, the weights must sum to unity.
Many other constraints are possible and vary by implementation. Such constraints include
forcing the weights to be positive, preserving the infinite dilute cross section exactly, and the
quadrature points being limited to some range.

Fitting Background Cross Section Curve

Another fit-based quadrature generation technique is described in detail in [9]. With this
method, rather than performing a fitting procedure on the subgroup quadrature directly, a
fitting procedure is performed on the curve of the multigroup cross section as a function of
the background cross section level. Then, a quadrature is generated that can represent the
points on this curve exactly, and this is used as the subgroup quadrature. The details of this
generation process are not detailed in this thesis, but are spelled out in detail in the literature.

4.2.3 Mathematical Probability Tables

The method of mathematical probability tables is the final method of subgroup quadrature
generation detailed here. With this method, a set of cross section moments are preserved
in the selection of the quadrature. Unlike with physical probability tables, results are not
compared to reference configurations. The term “mathematical probability tables” arises due to
the quadrature generation involving only mathematical constructs, as opposed to using results
from calculations modeling the physics. The presentation here parallels that of [9, 25]. The
method itself was proposed originally by [26].
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The Ith cross section moment in the gth energy group is defined as
M:fdﬁm. (4.21)
g

The approximation to this cross section moment using the subgroup method with quadrature
0 = {wy,0,} 18
N
M(Q) = ) waorl, (4.22)
n=1
The quadrature Q is chosen such that M; and M, are equivalent for a set of values of I. The
constraint Z,,N: | W, = 1 is needed to ensure the weights are consistent with the definitions of the
subgroup method. This is equivalent to preserving the 0th moment. This constraint removes
one degree of freedom, leaving 2N — 1 unknowns. Thus, 2N — 1 other moments can be preserved.

The most common choice of moments is integer moments ranging from 1 to 2N — 1. However,
there is little physics involved in preserving very high order moments. In work by [25], it was
suggested that fractional moments between —1 and 0 were perhaps better choices. The —1st
moment corresponds to the flux of a fully-shielded configuration. The Oth moment corresponds
to the 1/FE flux encountered in an entirely unshielded configuration. Thus, moments in between
these two extremes can be interpreted as intermediate shielding states.

The quadrature can be determined by choosing the moments to preserve and solving the
resulting set of nonlinear equations. However, solving a large number of nonlinear equations is
not easy in general. Fortunately, a systematic procedure for the moment problem exists. Here,
the procedure for conserving integer moments ranging from 0 to 2N — 1 will be shown. It is
easily adaptable to other consecutive integer moments, including negative moments, and is
even extendible to fractional moments.

Consider the following functional form:

2N-1
F@ = ) M . (4.23)
=0

Because this function only includes moments preserved by the quadrature generation process,
the moments can be replaced by Eq. (4.22). The function can then be rewritten as

2N-1 N N 2N-1
F(z) = Z Z Z wyol, = Z Wy Z dotl . (4.24)

=0 n=1 n=1 1=0
Recognizing the sum over [ as the first 2V terms in a Taylor expansion, F(z) can be approximated

as
N w,
F@g)= ) ——+0") . (4.25)
n=1 - WOn
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This form is a simple relation between F(z) and the subgroup quadrature, which is at this point
unknown. Next, F(z) will be considered in terms of known quantities and compared back to
this form to find the quadrature.

Consider the form of Eq. (4.23) once again. This equation can be approximated to a high

degree of accuracy with a Padé approximation:
_agtaizt... aN_lzN‘l

F(z) = Ny 4.2
@ 1+biz+...+byzV +0E) (4.26)

Setting this equal to Eq. (4.23) and multiplying both sides by the denominator, this is
N-1 N \(2N=1
Daid = [1 + b ,-zf] ( > le,] +0(") (4.27)
=1

i=0 =0

Collecting terms with like powers of z up to order 2N — 1 gives

20 ap = My (4.28)

Zl : a =M, + M0b1 (429)

ZN_I Toan—1 = My_1+ My_oby + ...+ Myby_q (4.30)

ZNI OZMN+MN_1b1+...+M0bN (431)

ZN+1 : 0=Mpn. +MNb1 +...+M1bN (432)

ZQ‘N_I : 0 = MZN—l + MZN_Zbl + ...+ MN_le . (4'33)

The equations for terms 7V, ..., z?Y~! are a linear system for the vector of b coefficients that is

easily solved. After the b coefficients are found, another linear system for a could be solved,
but this is not necessary for the technique shown here.

Once the b coefficients are known, the denominator of Eq. (4.26) is factored into

N
1+biz+...+by7" = l_[(Z—Zj) : (4.34)
j=1

Then, Eq. (4.26) can be written

ay+az+...+ aN_lzN‘l

+0N) . (4.35)
H?’Zl(z - zj) -

F(z) =
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A partial fraction expansion is performed, yielding

N
F@ =), == +0")

n=1 Z7Zn

N . (4.36)
_ n 2N
_Zl—z/szrO(Z )

w, =8¢, Vn (4.37)
o, = i Vn . (4.38)
Zn

In practice, the partial fraction expansion does not need to be performed. The quadrature
base points can be found during the factorization from Eq. (4.34). Once the base points are
found, the weights can be found by solving the simple linear system

N
M=) wo, (4.39)
n=1

The matrix involved in this linear system is a van der Monde matrix, which has an analytic

inverse. Alternatively, a numerical solution is very straightforward.

4.3 Partial Cross Sections

Up to this point, discussion has been related to determining the primary cross section needed to
solve the subgroup fixed source equations to determine the subgroup level fluxes. If the narrow
resonance model is used, this is the total cross section. With the intermediate resonance model,
this cross section is the derived cross section o), = o, + 1o0;. However, in the generation of
multigroup cross sections for downstream applications, the full gambit of partial cross sections
are needed.

Two options are possible. First, for a true subgroup approach, quadratures can be deter-
mined for the partial cross sections. Second, for a hybrid subgroup-equivalence approach, a
reverse table lookup method can be used.

4.3.1 Partial Cross Section Quadratures

After a quadrature for the primary cross section has been generated, secondary quadratures
for each desired partial cross section can be generated. During this process, it must be ensured

that the subgroup levels for the partial cross sections correspond to those of the primary cross
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section. This is because the subgroup fixed source equations are solved only for the primary
cross section, and the resulting flux must be able to be used in the collapsing of the partial
cross sections. This is typically accomplished by holding the weights constant between the two
quadratures. For probability table methods, the weight is an analogue to the discontiguous
energy range that would be attained in a direct subgroup approach, and this ensures the base

points are essentially average values of the cross section for these energy ranges.

In a fitting method, reference values of the partial cross section are generated as o, 4 for
configuration k. The approximate cross section attained via the subgroup method is

N
Z wno-p,n(pk(o-n)
Fpgi(Qp, Qo) = = , (4.40)

Z Wy (o)
n=1

where Q, is quadrature for the partial cross sections and Q is the previously determined
quadrature of the primary cross section. The flux used in the fitting process is the same as
that in the generation of the primary cross section:

Opi + Ao
W) = G” : (4.41)

Then, the base points for the partial cross section quadrature as obtained via

Qp = arg min (442)

~ 2
(O-p,g,k - O—p,g,k(Q, > QO))
000 %

Op.g.k

This process can, of course, be performed with effective resonance integrals rather than group
cross sections. The straightforward transformation is omitted from this discussion. In this
process, additional constraints can be placed upon the optimization routine, such as ensuring
the partial cross sections sum to the total cross section for each reference problem. One
implementation of such a fitting procedure is described in [27].

In a moment method, partial cross section moments can be defined as
M, = f o,(E)or(E)dE . (4.43)

The approximate partial moments using the subgroup quadrature are

N
My i(Qpr Q0) = ) wn@puhy - (4.44)

n=1

Because there are N unknowns, N partial moments can be conserved. The definition of the

partial moments was chosen such that finding the partial cross section base points can be
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accomplished by a straightforward linear solve.

Although these methods are similar to their counterparts in the quadrature generation
for the primary cross section, it is not strictly necessary to use the same method for both the
primary cross section and the partial cross sections. One could use a fitting method for the
primary cross section but a moment method for the partial cross sections. However, this is

rarely done in practice.

Finally, note that the quadrature generated in this manner does not necessarily correspond
exactly to that of the primary cross section. Even in holding the weights constant, a possibly
problematic quadrature for the partial cross section can be thought of as shifting the energy
range slightly while maintaining the same integrals over the energy range. This is in general
a small effect, but care must be taken to ensure the resulting quadratures maintain a fair
amount of accuracy. If the desired accuracy is not attained, one can refine the coarse energy
group structure or use a correlation matrix for the partial cross sections, similar to the matrix
quadrature described in Sec. 8.2.4 and described in [28].

4.3.2 Reverse Table Lookup

Another option for the generation of partial cross sections is to employ a reverse table lookup
procedure rather than generating a quadrature. In the context of the moment method, this is
often referred to as the Sanchez-Coste approach [28], but it is can be applied to fitting methods
just as easily. By this method, a table of the cross section as a function of the background cross
section is generated. This can be in the form homogeneous tables or based on heterogeneous
calculations in which the background cross section was inferred. Once the primary cross
section is generated from the subgroup method, the table is queried to find the background
cross section that corresponds to this primary cross section. That background cross section is

then used to pull partial cross sections from the table.

This method has the advantage that there is no lack of correlation concerns between the
primary and the partial cross sections. However, it suffers from the fact that it still requires
the two-region problem assumption from equivalence theory. The subgroup method’s primary
advantage over equivalence methods is its ability to model complex geometries natively, but
the use of the reverse table method brings these issues back. However, this method has been
found to be effective in practice and provides an option with much less complication than the

partial cross section quadratures.

4.4 Reducing Computational Burden

In general, the subgroup method is associated with a considerably higher computational cost
than equivalence in dilution methods, as it requires the solution of transport problems for each
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subgroup level, whereas the equivalence-based methods require transport solutions only in
the computation of the Dancoff factor. While it is unreasonable to expect subgroup methods
to rival equivalence in dilution methods in terms of computational efficiency, there are some
tricks that can be employed to reduce the computational burden.

One option is to enforce a condition that each coarse energy group have the same subgroup
levels for a particular nuclide. A fitting process is then used to determine the weights for
each group, which would be expected to vary from group to group. With this approximation,
a subgroup fixed source equation must be solved for each of the global subgroup levels, but
it avoids a loop over the coarse groups. In order to obtain sufficient accuracy, more levels
per group may be needed, but by avoiding scaling with the number of groups, this still is a
significant cost savings. In [29], a particular implementation of this procedure is shown.

Another common approach to reducing the computational burden is to solve the subgroup
fixed source equations with a fast but perhaps less accurate neutron transport solver. One
example found in literature is the use of the interface current method for these problems when
the method of characteristics is used for the lattice physics computation [30]. In this method,
simple collision probabilities are used on unit-cell problems, and these problems are coupled to
each other through a response matrix. Similarly, an MOC formulation with fewer tracks and
segments is possible. These methods provide a significant speed-up and have been found to
give sufficient results on some test cases, but such approximation must be carefully managed
to ensure it does not inject unwanted bias into the lattice physics calculation.

4.5 Chapter Summary

The subgroup method is used to provide fine-group cross sections to a lattice-level calculation
and in recent years has been the most prevalent such method for new code development. It
approaches the multigroup cross section generation process by integrating the integrated
reaction rate and flux by the cross section value rather than by energy. This clever change of
variables leads to a much smoother function, requiring many fewer base points in a numerical
quadrature. However, the quadrature is not well-defined, and determining an appropriate

quadrature is an arduous process.

Three classes of quadrature generation methods were presented: the direct method, fitting
methods, and moment methods. The direct method defines explicit energy ranges for subgroup
bands, which makes the definition of the quadrature very easy, but unfortunately leads to a
problem-dependent quadrature. Fitting methods compare subgroup approximations for cross
sections on simple problems to reference solutions, usually those of the homogeneous tables
discussed in Ch. 2, and perform an optimization process for the best fit. Moment methods
preserve mathematical constructs based on the cross section.
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Chapter 5

Ultrafine Methods

5.1 Background

The goal of reactor physics calculations is to determine the reaction rates throughout the core
of a nuclear reactor by solving the neutron transport equation as closely as possible. The
steady-state transport equation with explicit scattering and a generic external source,

Q- VY@ QE) + (7 EWF Q. E) = f dey’ f " aE (7O - QE - EWiQLE)+ QR QE)

4n 0 5.1)
is the workhorse of most simulations. Note that eigenvalue calculations, where Q is a function
of ¢, use this form of the equation inside fission source iterations.

In approximating a solution to this equation by deterministic methods, the energy variable
is often divided into relatively few bins, or energy groups, and great care must be taken in
determining the nuclear data at each of these groups. The energy variable is complicated by
the existence of large spikes known as resonances in the cross sections at certain energy values.
These resonances lead to depressions in the flux, a phenomenon known as self-shielding, both
in the energy and spatial variables. However, this self-shielding phenomenon is implicit when
enough energy groups are used to resolve the shapes of the resonances in the nuclear cross
sections. Spatial self-shielding effects also require sufficient resolution in the spatial and

angular solution mesh to be captured implicitly.

Thus, a class of solution techniques to the transport equation known as ultrafine methods,
in which either a great many very narrow energy groups or true continuous energy dependence
is used in the solution, is considered to be the most accurate and flexible means of solution.
Unfortunately, this corresponds to very high computational cost, as the number of degrees
of freedom in the problem is greatly increased by using so many energy groups. Such a
solution on a large problem is not feasible on today’s computers. However, as computers are
improving, ultrafine methods with certain convenient approximations can be injected more
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and more into reactor physics calculations, allowing the field to move away from restricting
legacy self-shielding approximations.

If ultrafine methods are seen as a means of generating few-group cross sections for a
subsequent calculation, as opposed to being a standalone solution technique, they can be tuned
for this purpose. Ultrafine methods can be restricted to the resolved resonance range, as this
is the energy range where the methods have the most benefit. At higher energies, because
the exact shape of the cross section is not known, using narrower groups does not benefit the
solution. At thermal energies, standard energy group structures use narrow enough groups to
resolve the effects of the important resonances that exist, and specialized ultrafine methods
are not needed. Furthermore, using the ultrafine computation as a means of generating cross
sections removes much of the need for coupling the resonance range to higher and lower
energies, resulting in a simpler solution method.

5.2 Mechanics of Ultrafine Methods

5.2.1 Scatter Source

The typical method of modeling scattering in a deterministic reactor physics calculation is
to use a group-to-group scattering matrix. This is not feasible for an ultrafine calculation,
though, as the size of the matrix would be gigantic. Looping over elements in such a matrix
would be cost prohibitive in itself, but the memory footprint of the matrix is the true limiting
factor. Consider a scatter matrix for a material including hydrogen. Using 10,000 energy
groups—a moderate number for ultrafine methods—results in approximately 50 million non-
zero entries, requiring a whopping 400 MB to store in double precision. For a 100,000 energy
group calculation, this balloons to 5 billion non-zero entries requiring 40 GB to store. Clearly,
this is not a feasible tactic.

Fortunately, alternatives exist. In the resolved resonance range, elastic scattering domi-
nates. Inelastic scattering is a threshold reaction that only occurs above resonant energies. For
some isotopes, there may be a non-negligible incoming inelastic scatter source at resonance en-
ergies, but this is easily included in the external source. With elastic scattering off a stationary
nucleus, the group-to-group transfer matrix can be easily computed on the fly, and the source
in each group can be computed very efficiently. Although upscattering due to nuclear motion
in the resonance range has been found to have a significant effect on the Doppler reactivity
coefficient, this is neglected in this discussion.

The elastic scattering kernel has a convenient form for ultrafine calculations. Assuming
isotropic scattering in the center of mass, the probability of scattering to a particular energy is
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constant within the limits of physically allowable energies:

,; aE' <E<FE’
P(E' > E) = E'(l-a) (5.2)

0 otherwise

For a given spatial point, the scatter source from scattering off a given isotope is given by

00

Q'(E) = f Y(E — E)p(E")dE' = f Y (E"P(E' — E)$(E')dE' . (5.3)
0 0
Inserting the elastic scattering kernel, this scatter source becomes

; B E/a Za(E,)QS(E’) ,
QS(E)—L mdlf , (5.4)

which depends on the energy E only through the bounds on the integral. This has two important
implications for efficiently solving an ultrafine problem. First, no up-scattering appears in this
equation, which means a single Gauss-Seidel sweep in energy will lead to an exact solution,
with no energy iteration needed. Second, the loose dependence on E allows cumulative integrals,

described subsequently, to be used to efficiently compute this source.

The integral in Eq. (5.4) can be rewritten as the difference of two integrals with the same

integrand and the same upper bound E*:

fom_ [FOEENE) (P EENNE)
QS<E>—fE e fm NS 5.5)

If the upper bound energy is taken to be the largest energy in the problem—or equivalently,
infinity—then these integrals can be interpreted as a cumulative integrals. That is, the
integrals can be built by cumulatively adding contributions from each energy solved from the
maximum energy down to the energy E. This is easily accomplished during a Gauss-Seidel
sweep, and this allows the scatter source at each energy to be computed simply by subtracting
two stored values. The algorithmic complexity using cumulative integrals for computing the
scatter source is then ©O(g) where g is the number of groups or energy points, as opposed to the
naive 0(g?) algorithm of simply numerically evaluating each integral when encountered.

The details of computing these cumulative integrals and the details of their use vary
somewhat depending upon a few assumptions. In particular, the details vary most between
ultrafine multigroup calculations and true continuous energy calculations. These details are
discussed in the subsequent sections.

Note that this method does not require that cumulative integrals as a function of energy
be stored explicitly. For instance, in the lattice physics code AEGIS [31], a single tally of the
scatter source is kept. At each energy group, a new contribution to the integral is added and
the contributions from higher energies than now possible are subtracted. The mechanics of
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this technique varies slightly from that shown here, but it is in essence the same method.

All of the discussion in this section has been for scattering from a single isotope. In a
mixture of several isotopes, the scatter source is simply a sum of the scatter source from each
individual isotope. Number densities are implied in the use of macroscopic cross sections in
this section. The maximum logarithmic energy decrement « is a function of the isotope, but
the superscript i is omitted for notational simplicity. The total scatter source Q; is simply

OyE) = )" OE) . (5.6)

Multigroup Forms

In the multigroup form of the neutron transport equation, the scatter source Q,, is integrated
over the bounds of energy group g,

ng=st(E)dE . (5.7)
g

Considering a single isotope with only elastic scattering, Eq. (5.4) is inserted into this equation,
leading to a scatter source of the form

H o TEDGED
% f a8 [ 68

This integral is quite complicated to evaluate using available multigroup data. For simplicity,
here it is broken down into three components and each component is examined in turn. The
superscript i and subscript s will be implied for the remainder of this discussion. The three
components are in-group scatter Q,,, scatter from full energy groups Qy,, and scatter from
partial groups Q,,, with

Q=0gg+0sg+0pg - (5.9)

Full Groups First, consider scatter from full energy groups Qy,. This component is the
scattering due to groups higher than the destination group in which it is physically possible for
any neutron energy from the scatter group to scatter to any energy in the destination group.
This occurs when the upper bound of the scatter group is less than the maximum energy that
can scatter to the bottom energy bound of the scatter group,

Eg+1

E, < (5.10)
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Then, the scatter source from these full groups is the summation of the scatter source from

each of the groups,
i ,
0 [ar 3, [ ar BEE) 511
9 gefq
Because only the group-averaged scatter cross section Zf;g and the group-integrated flux ¢,
are available in a multigroup calculation, the E’ integral must be approximated. This is
most easily accomplished by inserting group-averaged cross section into the equation with the

group-averaged flux, given as the group-integrated flux divided by the width of the energy

group, ,
le Dy 1
Oy ~ f dE J f dE/ ———
1=, Z AE;, Jy  E(l-a)

_AE, Z sg¢g In(Ey /Ey+1)
e AEy(1 — )

(5.12)

Alternatively, the energy E’ could also be held constant at some average value E_g, which leads
to a very similar approximation,

i
ng’ ¢g’

_ (5.13)
Ey(1-a)

Qg ~ AE, )

g'efg

In-Group Next, consider the in-group scatter source Q,,. It is assumed that E . /a > E,;
that is, all neutrons that scatter in the group can lose at least as much energy as to reach the
bottom of the group. The in-group scatter source can be written as

~ By SHENGE")
Qgg = fqufE dE El-a) (5.14)

As with the scatter from full energy groups, the group-average cross section and flux are pulled
out of the integral as constants,

Ziy ¢g E, 1
~ dE — 9 dE/ ———
Qg f Myﬁ Eﬂw)

“’% f dE ln
T AE(1-a)

Tty
~ AE,(1-a)

_ Zby (| Byt InEy/Egs1)
(1-a) AE,

. E, (5.15)
Elnh-2+E
E

Eg+]
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Again, an alternative form comes from using an average energy value E, as a constant and
pulling that from the integral,
i
Qg ~ %de(Eg—E)
AE,E (1 — ) Jg
_ SL,4,0E,
2E,(1 —a)

(5.16)

This component is very small for ultrafine energy discretization. In AEGIS, this term is
neglected altogether. Another approximation that is less drastic is to move this in-group

component to the next group’s source, so as to avoid source iteration.

Partial Groups Finally, consider the partial-group scatter source Q,,. This is the scatter
source due to groups that include energies greater than E,,|/o. When using equal lethargy
groups, there are two such groups, (A) the group that contains the point E . /@ and (B) the
group that contains E,/a. With equal lethargy groups, these two points cannot occur in the
same group unless both points fall exactly on the boundary; in that case, the group can be
treated as a group containing E,./a. If groups have varying lethargy widths, there are two
more possibilities, (C) a group can contain both extreme points on its interior and (D) there can
exist groups that contain neither extreme point. For each of these four cases, rigorous integrals
contributing to Eq. (5.8) can be written down:

(T (P EENGED (R EEDE)
ng,A _Lg+l dEf, dE m+f dE LE, dEm (517)

Eg+l/a’
E/a/ ZI(E/)¢(E/)
Ot = f dE f (5.18)
P ety Je,. E(-a)

E 1/ Si(E’ E’ E,/a E Zi E’ E’
Opy.c :f ! dEf AR w +f T 4E f ngw (5.19)
Eyo o E'(1-a) Egi/a 9% E'(1-a)
ngD —f

Note that the order of integration had to be changed in some of these cases due to the bounds

f 2’ Z(ENG(E") (5.20)
aFE’

E’(l -a)

g’ +1

depending upon the integration variables. Each of these integrals can be approximated using
the same methods as in the full group and in-group cases, but the final forms are omitted from
this discussion. Instead, a possible approximation is to treat all partial groups as a single
partial group with a form similar to that of case C of Eq. (5.19) with the group-averaged cross
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sections and flux from the lowest energy partial group inserted as constants:

E, zig,%/ Eguila g Eja Zig'%’ E,
Opg~ | dE 0 B S d—oE ). 4
Egi1 9 @) Ey i Egi1/a g ( @) «F’
AE, Xy E E E
_ g “sg ¢g [ln g+1 " g In g _1}

(5.21)

This is a very small quantity, so it is not hard to imagine that any approximation to it would
not lead to any consequential errors. Thus, AEGIS takes this approximation one step further
by treating each group as being defined by its average energy E_g If ozE_gf > E_g, then the group
is neglected; otherwise, it is treated as a full scatter group.

In an ultrafine calculation, in order to resolve resonances with the energy discretization,
the width of groups will tend to be much less than the scattering interval for even the heaviest
of isotopes. Thus, when calculating the scatter source, the vast majority of contributing groups
will be considered full groups. The sum in the full group scatter source form can be stored as a
cumulative sum (analog of previously discussed integrals), and the width of the destination
group can be multiplied on the fly. The in-group and partial group components can be computed
for each group.

Continuous Energy Forms

The continuous energy form of the scatter source is much more straightforward. The complica-
tions of the second integral from the multigroup form do not exist, and the cumulative integral
prescription is much more intuitively applied. However, there still are subtleties that must be
carefully considered in this form.

In continuous energy calculations, cross sections are generally assumed to vary linearly
between given points. Assuming the solution energy mesh is the same as the cross section
energy mesh, this leads to flux values at each energy point, but there is not necessarily a
correct interpretation for the shape between the flux points. In computing integrals, including
that of the scatter source, some flux shape or quadrature rule must be applied.

The simplest method is to assume a simple quadrature rule, such as the trapezoid rule.
Here, given two energy points with corresponding cross section values and flux values, the
integral of the reaction rate is given by

E, 1
f Z(EYP(E)dE ~ 3 (11 +2Zog0) (Ex — E1) . (5.22)
E

1

Although this is likely the simplest option and offers a good degree of accuracy, there are of
course many other options. Other quadrature rules are possible, but are not discussed here.
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Another possibility is to assume a linear form of the flux and the cross section and to perform
the integral analytically.

Regardless of the method taken, barring a one-sided Riemann sum quadrature, the integral
of Eq. (5.4) will include a dependence on the flux at the energy point E. Because the flux is not
known at that point a priori, this requires source iteration or an equivalent solution approach.
Although the energy variable is not divided into groups in a continuous energy approach,
this is equivalent to in-group scattering. As with the multigroup form, an easily defensible
approximation is to move this “in-group” component into the source of the subsequent energy

point, foregoing source iteration.

5.2.2 Starting Source

Any fixed source reactor physics calculation requires a specification of the fixed source in
order to compute a non-zero flux for the problem. Ultrafine methods, which generally do not
solve eigenvalue problems, therefore require some sort of fixed source specification. There are
several options for such a source, and two of them are discussed here.

Fission Source

The first option is to use a fission source as the fixed source. An external source Q,,, is then
defined as

Qext(7, E) = X(EYRf(P) (5.23)

where y is the fission spectrum of the material at the given point and R is the fission rate.
Clearly, this requires knowledge of the spatial fission distribution. Note that because the ultra-
fine calculation is intended to generate a flux spectrum for cross sections, the absolute value of
the fission rates are not important; only their relation to each other survives normalization in

the cross section condensation process.

In a simple pin-cell calculation, R can be set to unity in the fuel region with minimal
approximation. The mean free path of a neutron at fission energies is long enough that
intra-pin specification of the fission source would not lead to any meaningful gains in accuracy.
However, in larger calculations, such as that of a lattice, a fission distribution between pins
is needed. This can come from a few-group multigroup calculation with approximate cross
sections or can be estimated. If a multigroup calculation is used, it is even possible to turn this
into an iterative procedure where ultrafine-calculation-generated cross sections are used in
the determination of the spatial fission source, the fission source is piped back into another
ultrafine calculation, and this iteration continues until convergence. Of course, such iteration

requires multiple ultrafine calculations and so is a very expensive endeavor.
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As discussed heretofore, ultrafine calculations generally are restricted to the resonance
range and do not have the appropriate physics embedded for the fast range. Unresolved
resonances and inelastic scattering are not easily modeled with these methods. Thus, starting
from a fission source has the problem of inaccuracies in slowing down from neutron birth to

the top of the resonance range.

1/E Source

Another option is to assume a 1/E flux with constant potential scattering above the energy
range of interest. With this method, no external source is needed; the fixed source is built
into the scatter source computation. If using cumulative integrals, this is accomplished by
setting negative cumulative integrals at energies above the maximum energy in the problem,
consistent with the potential scattering source.

This method has the advantage of separating broad energy groups in well-moderated
systems, as information from one broad group only minimally impacts any other broad group
outside of the 1/E scatter source it provides. By separating the broad groups into separate

calculations, an inherent parallelism is achieved.

This method, like the fission source technique, suffers in that the strength of the source
spatially is needed. The 1/FE sources can be scaled spatially if such information is known, but
this requires an auxillary few-group multigroup calculation or additional approximation. Note
that the subgroup method, which assumes 1/E scatter sources, in its standard prescription,
assumes the fluxes do not vary spatially in this 1/E range, and the only impact on the scatter
source spatially comes from varying potential cross sections.

5.3 Existing Ultrafine Implementations

5.3.1 CENTRM

One existing implementation of ultrafine methods is the CENTRM continuous energy discrete
ordinates code [32, 33]. CENTRM uses a cylindrical geometry in Sy with white boundary
conditions as the spatial solver, and has recently been extended to include a 2-D MOC solver
[34]. CENTRM models the energy variable to a very high degree of accuracy, including inelastic
scattering and anisotropic scattering. This is made possible by what is called the submoment

expansion.

The isotropic in center of mass elastic scattering kernel is able to be computed by cumulative
integrals because it is a function only of the incoming energy aside from its energy bounds.
The submoment expansion takes other scattering kernels, which do not have this property, and
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expand the dependence on the outgoing energy in Legendre polynomials:
L
P(E—E)=~ ) fIBPIE) (5.24)
1=0

where P; is the /th Legendre polynomial and f; the /th Legendre moment of the kernel.

With this expansion, each term f;(E) can be computed as a cumulative integral. Although
the overhead associated with this expansion is quite large, this ensures the computation of the
scattering kernel is still ®(g). For very large numbers of energy groups or energy points as in
CENTRM, this expansion leads to significant cost savings over a naive approach.

5.3.2 AEGIS

The Japanese lattice physics code AEGIS [35, 31] contains a 32,000-group ultrafine library.
The ultrafine capabilities of the code are used on pin-cell calculations. The AEGIS code is
a particularly good example of taking a complicated problem—in this case, the ultrafine
discretization of the neutron transport equation—and making justified simplifications in a

systematic manner.

First, a study was performed to demonstrate that for the problems of interest, anisotropy
does not play a significant role. Thus, AEGIS uses only isotropic scattering. Next, it was
shown that satisfactory accuracy could be achieved by using a two-region collision probability
model rather than a complete MOC transport solution. This reduced the run time for a pin-cell
from several hours to only seconds. Also, approximating the flux as 1/F in the moderator was
shown not to heavily influence the solution, and this allowed for a factor of 2 reduction in
runtime. Finally, rather than model each isotope and its respective scattering source explicitly,
AEGIS lumps together isotopes with similar masses as a single isotope. Isotopes are split
into categories including hydrogen, other light isotopes, mid-mass isotopes (fission products
and structural materials), and heavy isotopes (actinides). This greatly reduces the cost of
computing the scatter source for large numbers of isotopes. These approximations allow AEGIS
to perform as a very efficient ultrafine code, although they do limit the applicability of it.

5.3.3 MC>-3

The MC?-3 code [36] developed by Argonne National Laboratory for fast reactor cross section
generation is another existing ultrafine implementation. MC?-3 takes an innovative approach
of a two-level iterative scheme, which allows an eigenvalue calculation to be possible.

The finer energy mesh is known as the hyperfine mesh. This level contains 400,000 energy
points, which is likely more than necessary to resolve resonance effects fully implicitly. This

calculation inputs source information including the fission source and inelastic scattering
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source from the coarser energy mesh. Thus, it is a fully implicit resonance calculation that
can take into account the spatial distribution of power and reaction types that are not easily
modeled on this fine of a structure. Following the solution of the hyperfine energy mesh, the
obtained flux is used to collapse cross sections to the coarser mesh.

The coarser energy mesh is known as the ultrafine mesh, which contrasts with the meaning
of the term in this thesis. This level contains approximately 2,000 energy groups complete with
a full scattering matrix. At this level, all physics typically included in a multigroup solution is
modeled, and an eigenvalue problem is solved. The spatial distribution of the fission source
and the inelastic scattering source is fed back to the hyperfine energy mesh, and an iterative

procedure is followed until convergence is obtained, usually in only a few iterations.

This procedure can in theory be performed on a variety of geometries, and it is not required
that the two levels use the same geometry. However, this is a very costly process, as a
single iteration of a 2,000 energy group problem with a full scatter matrix is itself difficult.
Furthermore, it is complicated by an iteration scheme requiring the solution multiple times
and a 400,000 energy point calculation alongside it. Thus, it is typically used for very small
geometries.

5.3.4 RAZOR

The RAZOR code [37] developed at Bettis Atomic Power Laboratory takes a somewhat different
approach to the ultrafine problem. RAZOR does not use the cumulative integral approach to
computing the scatter source, but rather builds the scatter source for lower energy groups
as it sweeps down in energy. This appears to be a ®(¢%) approach, but clever implementation
ensures that the computational burden is manageable for problems of interest. This scattering

approach allows for the treatment of anisotropic scattering without difficulty.

The scatter sources are split into two buffers, a fine-structure buffer including energy
groups close to the current group and a coarse-structure buffer for energy groups far away
from the current group. This recognizes that the fine structure of the scatter source, including
peaks due to resonances, is only significant for neutrons that scatter very small intervals in
energy. Neutrons that scatter over larger intervals lead to scatter sources with little to no fine
structure; in fact, this is the basis of the narrow resonance approximation, which assumes a
scatter source that exhibits no fine structure behavior at all. Thus, a scattering event with a
heavy isotope contributes primarily to the fine-structure buffer, but a scattering even with a
light isotope (e.g., hydrogen) contributes in small part to the fine-structure buffer but in large
part to the coarse-structure buffer. This avoids iterating over all lower energy groups during a

scatter event, and ensures the scattering computation scales near linearly with the number of
groups.

Furthermore, a coarse energy mesh, with only about 20 groups, is overlaid across the energy
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regime. Inelastic scattering is treated only on this coarse mesh, and the resulting source is
applied uniformly to the fine groups contained in the coarse group. Because inelastic scattering
acts over a very large energy range, the outgoing energies do not exhibit much fine structure.
Furthermore, the effect of inelastic scattering on the resonance range is very small. Thus, this

approximation is deemed sufficient for these calculations.

5.4 Chapter Summary

Ultrafine methods account for resonance self-shielding effects by discretizing the energy
variable enough to resolve the resonances directly. They typically are associated with too
high a cost to be used on large geometries, but they can be used for multigroup cross section
generation. It is becoming increasingly common for database-level calculations to be based
on heterogeneous ultrafine calculations rather than infinite media. Researchers are currently
striving to combine the database and lattice levels by applying ultrafine methods directly to

larger geometries.

Ultrafine methods require the scatter source to be computed on the fly, as storage of an
ultrafine scattering matrix is not practical. The isotropic in center of mass scattering kernel
can be computed very efficiently by using an approach based on cumulative integrals. Existing
ultrafine implementations such as CENTRM and RAZOR include clever transformations of
more general scattering kernels to maintain computational efficiency.
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Chapter 6

Framework for Evaluating
Self-Shielding Models

6.1 Introduction

Too often new techniques are tested and justified using exclusively large, realistic problems.
While realism may sound like the ideal test bed for any method, without coupling it with an
isolated analysis of the physics, positive results could be driven by cancellation of error, or
the range of applicability may be limited beyond what is desired. In software development, a
proper test suite contains both unit tests, which isolate specific aspects of the program, and
integral tests, which ensure the program works together as a whole. The framework proposed
here is analogous to a unit test; it isolates the physics contained in the self-shielding step and
measures a method’s performance on this small problem.

The primary content of this chapter is a simple benchmark problem, designed to be the
simplest problem in which both spatial and energy effects of resonances can be seen. This
represents the first step in the evaluation of a self-shielding model and demonstrates the need
for and the use of simple benchmarks in self-shielding analysis.

After this sort of analysis, more realistic problems should be considered, adding complexity
to the self-shielding problem. The results of Part IV are framed with this in mind. First, simple
changes to the benchmark are considered, such as including the true elastic scattering kernel
and multiple nuclides. Then, further complexities are added including larger spatial problems
with significant heterogeneity.
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6.2 A Simple Benchmark

The benchmark problem presented in this chapter was originally intended to be an educational
exercise, to give students an appreciation of the quality of the approximations typically
encountered in a reactor physics calculation. However, the results warranted interest beyond
a simple educational tool. Although equivalence in dilution methods have been studied
extensively on very simple problems [14], side-by-side comparisons of these methods with the
subgroup method on problems where both are expected to perform well are not readily found.
Furthermore, with the advent of newer self-shielding techniques, it is common to only see
performance analysis on large problems. Ignoring very simple problems can lead to overlooking
fundamental aspects of a technique and risks relying on cancellation of error for accuracy on

specific problems.

Thus, this chapter presents the simplest problem in which both energy and spatial effects
are important in a self-shielding problem. It is designed such that the assumptions in self-
shielding methods are fully valid, allowing the performance of a method to be understood
without complications from poor assumptions. Results are presented for various self-shielding
methods with some commentary about the effectiveness and the ease of use of each method.

6.2.1 Overview

The benchmark is representative of light water reactor conditions. Geometrically, equivalence-
based self-shielding models assume two regions—fuel and moderator. Thus, this benchmark
contains exactly those regions. Because self-shielding models typically only treat one resonant
nuclide at a time, this benchmark contains only one such nuclide. This benchmark uses the
most common assumption for the scatter source in self-shielding models, the narrow resonance

approximation, and only a single energy group is considered.

Two classes of geometries are considered, an isolated slab and an infinite array of identical
pin-cells, referred to as a “reflected pin-cell.” Various widths of the slab and radii of the pin are
considered to test a wide variety of shielding states. Two classes of resonances are considered,
a square resonance and a single-level Breit-Wigner resonance. For the purpose of clarity in the

results, only a single resonance is included in the resonant material.

The fuel material is assumed to have a constant cross section background moderator
representative of U-238 in a light water reactor fuel pin. The resonant nuclide is given a
potential scattering cross section equivalent to that of U-238. The moderator material is
assumed to be purely scattering. Its properties are chosen to be representative of water in a

pressurized water reactor.

The quantity of interest is the group-averaged capture cross section of the resonant nuclide.
This is the output from a typical self-shielding calculation. The capture cross section is used
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rather than the total cross section, as it considers only the aspect of the cross section affected
by self-shielding, whereas the total cross section would in large part be influenced by the
constant potential scattering cross section.

This benchmark can be easily extended to cases not considered here, many of which are
explored in Part IV. Some simple examples include varying the pin pitch, adding additional
resonances to the fuel material, and changing the background level. Larger changes, breaking
the assumptions in some self-shielding methods, include introducing cladding to the geometry,

including a second resonant nuclide, and using a more realistic scattering model.

6.2.2 Specifications
Geometry

Isolated Slab For the case of the isolated slab, the benchmark geometry is a one-dimensional
configuration with a slab of lumped resonant material surrounded by an infinite medium of
moderating material. In this case, the only parameter needed to define the configuration is the
width of the slab. A slab width of 0.4 cm is the most analogous case to a pin found in a light
water reactor. However, this parameter is varied to evaluate the accuracy of self-shielding
methods over a range of configurations. The results presented in this thesis include widths of
0.3cm, 0.4 cm, and 0.6 cm, but these can be varied over a larger range for methods verification.

The fuel slab should be treated as a single region for the purpose of determining the effective
cross section. That is, this benchmark does not attempt to determine the spatial distribution of
group cross section within the slab, but rather focuses only on the prediction of the spatial- and

energy-averaged cross section. This is to maintain the assumption of a two-region problem.

Reflected Pin-Cell For the case of the reflected pin-cell, the benchmark geometry is a
two-dimensional configuration with a cylindrical lump of resonant material surrounded by
moderator in an infinitely repeating lattice. The only parameter varied in this benchmark is
the fuel radius. The most realistic value for a pressurized water reactor is 0.4 cm, and results
are presented for radii of 0.3 cm, 0.4 cm, and 0.6 cm. These can be varied over a larger range for
methods verification. The pitch is held constant at 1.26 cm in this paper but can be varied in
subsequent studies.

As with the slab, the pin and the moderator regions should be treated as single regions for
the determination of effective cross sections in order to maintain the two-region assumption.

Physics

Energy Group A single energy group is used with group boundaries 1000eV and 1100eV.
This benchmark could easily be extended to consider other energy ranges, but this is not
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considered here.

Cross Sections The capture cross section of the resonant nuclide contains a single resonance,
either a square resonance or a single-level Breit-Wigner resonance, with parameters described
subsequently. The nuclide has a potential scattering cross section of 11.4b and no other
reaction channels. The resonant material also contains non-resonant nuclides characterized
by a background cross section of 8 b. The number density of the resonant nuclide is 0.022 4/b-cm.

These values are consistent with U-238 in a light water reactor fuel pin.

The moderator is purely scattering and has macroscopic cross section 1.23cm™!, representa-

tive of water in a pressurized water reactor.

Square Resonance For the case of a square resonance, the capture cross section takes some

value in a small range in the center of the energy group and is zero elsewhere,

(6.1)

f Ey—92<E<Ey+9)2
O-y(E) = .
0 otherwise

In this benchmark, f is varied, Ey = 1050eV, and 6§ = 0.05¢V.

Single-Level Breit-Wigner Resonance For the case of a single-level Breit-Wigner reso-
nance [8], the capture cross section is a single resonance. The resonance parameters are
I, =0.095eV and I', = 0.023 eV, which are taken from the resonance parameters from a real
U-238 resonance at a similar energy. The center of the resonance is Ey = 1050eV, and the

temperature is T = 300 K. The formula for the resonance is

_ Ty  JE
oo(E) = O+ VE r(x, &) (6.2)
where
2603911b-eV A+ 1
r= 5 1 (6.3)
_ 2(E - Ep)
T, +T, (6.4)
=T,+T 4 (6.5)
&=+l 4kTE, :
Y(x,é) = ‘R(#W((x;l)f)) , (6.6)

and A = 238 is the atomic mass, k is the Boltzmann constant, and W(:) is the Faddeeva function.
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The size of the resonance is varied in this benchmark. This is accomplished by multiplica-

tively scaling this resonance to obtain a maximum cross section value f,

E

Scattering Approximation Scattering is approximated as in the narrow resonance model.
That is, all scattering is assumed to come from potential scattering resulting from a /e
spectrum and a constant cross section X,. This gives a scattering source in both fuel and

moderator of
2y

Q(E) = z (6.8)

6.2.3 Transport Calculation

The transport calculation is performed using a collision probability approach. Because this
problem has only two regions, this is a very simple calculation. Consider the collision probability
form of the neutron transport equation, with the collision probabilities notated as P, the fuel or
resonant region indexed as F, the moderator region indexed as M, and volumes given as V,

SH(E BV = (1- PFME)) QR BV + PMI(E)QM(EWM (6.9)
Invoking the reciprocity relation
VFEFPF—)M — VMszM—)F (6.10)

and inserting Eq. (6.8), the transport equation simplifies to

F

) F
P ()" (E) = (1 - PFM(E) L + Pt (E)Z—(E) (6.11)
E E
For the case of the 1-D isolated slab, the collision probabilities are analytic,
1
FoM _ F
Pt = (1-2E52"a)) . (6.12)

where d is the width of the slab and Ej is the third exponential integral. For the 2-D pin-cell
configuration, the collision probabilities were computed using a 2-D method of characteristics
code. The MOC parameters included 32 azimuthal angles, a track spacing of 0.01 cm, and a
3-point TY polar quadrature.
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6.2.4 Reference Solution

Because of the scattering approximation, the flux at a given energy is decoupled from that of
any other energy. Thus, a reference can be obtained by solving a series of one-speed transport
equations and performing an integration over energy. For the case of the square resonance,
this integral is analytic; for the single-level Breit-Wigner resonance, this requires a numerical
approach. The one-speed transport equation is solved using a collision probability model, as
described in Sec. 6.2.3.

6.3 Self-Shielding Methods Descriptions

The following self-shielding methods were compared on this benchmark problem. Equivalence
in dilution methods included using the Wigner rational model, Wigner-Bell, and a two-term
rational expansion (Roman for slab, Carlvik for pin). The subgroup method and the Embed-
ded Self-Shielding Method were also tested. These methods and their implementations are
described next.

6.3.1 Equivalence in Dilution

First, several equivalence in dilution options were considered. For a detailed description of the
theory of these methods, see Ch. 3. The Wigner rational model, the simplest approximation for
the escape probability is

)
pfoM - = 6.13
YF(E)+ 2, (6.13)

If the Dancoff factor is included, this becomes

T SFE)+(1-0)%, (6.14)

Next, the Wigner-Bell model was considered, which scales the escape probability for an
isolated lump by a factor b. This Bell factor is taken to be 1.15 for this study. This is a
representative value for typical light water reactor conditions. Note, though, that the Bell
factor does not preserve the correct behavior at the high cross section limit, and so it should be
varied and driven to 1 for high cross sections in realistic simulations. The Wigner-Bell collision
probability without the Dancoff factor is

bx
pfoM _ 77 6.15
YF(E) + bZ, (6.15)
and is .
prom _ __ Dre (6.16)
YF(E) + bX,
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(1-C)b
1-C+Ch

S
I

(6.17)

if the Dancoff factor is included.

Two-term rational approximations better approximate the escape probability. These take
the form of

a1z, @ X,

SFE 1ayx, TP ’ 6.18)

F YE(E) + X,

where the parameters a1, @y, and B8 are geometry dependent. For an isolated slab, the parame-
ters take the values

a1=14 arx=54 =11 , (6.19)
and it is known as the Roman rational approximation. For a cylindrical fuel pin, the parameters

are given by

_ 5A+6— VAZ +36A + 36

“= 2A+2
_ 5A+6+ VAZ +36A + 36
@ = 2A+2 (6.20)
4A + 6
_Ax1
@) — ’
where A = (1-0O)/c, and this is known as Carlvik’s rational approximation. Note that in the
isolated pin limit, these parameters go to
ar=2 ap=3 B=2 . (6.21)

To use this in practice, one can use a homogeneous dilution table to obtain two resonance
integrals I} with added dilution X, and I, with added dilution a»X.. The effective resonance
integral is then

I=BL+(1-pL . (6.22)

6.3.2 Embedded Self-Shielding Method

Next, the Embedded Self-Shielding Method (ESSM) [16] is considered. A full description is
included in Ch. 3. ESSM searches for a value of the equivalence cross section such that a

homogeneous model and heterogeneous model are equivalent. The homogenous model is
(L + Zeq )bl = ZhAug + Zegghuy (6.23)
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which is a simple infinite medium equation with a constant equivalence cross section. The
heterogeneous model for this benchmark is the multigroup form of Eq. (6.11),

F F F—-M\vyF F—-M<sF
il = (1- P 2  Aug + PPMEl Ay, (6.24)

where the collision probabilities are computed using the multigroup cross sections.

With these two models defined, the ESSM procedure is as follows:

1. Guess Z,.

2. Compute cross sections from dilution table using X, ,.

3. Solve Eq. (6.24) with obtained cross sections.

4. Use obtained flux from heterogeneous equation, and solve Eq. (6.23) for X, ,.

5. Iterate, repeating steps 2—4 to convergence.

6.3.3 Subgroup Method

The subgroup method, fully described in Ch. 4, recognizes that the flux used in self-shielding
models (e.g., narrow resonance) depends only on the cross section and the asymptotic /£
spectrum. Thus, in lethargy space, the flux can be written as only a function of the cross
section. This allows a change of variables, or in some sense a shift to Lebesgue integration,
resulting in an integral over cross section rather than energy in the condensation of multigroup
cross sections. This is a convenient transformation, as the flux is a much smoother function of

cross section than of energy.

A numerical quadrature is performed for this energy condensation,

Z wna-nﬁb(o_n)
T S oo (6.25)

In this study, only a fitting procedure is considered for the quadrature generation.

Once a quadrature is obtained, fixed source transport problems are solved for every sub-
group level in each group. These problems use the scattering source from the resonance
model, resulting in purely absorbing fixed source calculations. Thus, the subgroup fixed source

problems are entirely decoupled from one another.

In this benchmark, the subgroup fixed source equations are the equivalent of Eq. (6.11) in
lethargy space,
N (o +0p)p = (1= PP Il 4 PPMNY (o + o) (6.26)

where the collision probabilities are computed by using X = N*(o, + o).
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Quadrature Generation

The quadrature is determined by taking a set of reference problems {7}, in this case infinite
media with varying background levels o4, and comparing them to cross sections generated by
some quadrature Q = {w,,c,}. The approximate cross sections are given as

WnOp

n OpktOp

&k(Q) = —wn . (6.27)

n Opk+0Op

The quadrature Q is obtained by performing a least squares fitting procedure,

_ ~ N\ 2
(O'k - (Q )) (6.28)

(o

Q = argmin

This process is constrained such that the weights sum to unity and are nonnegative.

In this study, the cross section used in the fitting procedure was the capture cross section,
as this allows the parameter of interest in the benchmark to be computed accurately. Note that
o, in Eq. (6.26) refers to the total cross section, and so o, must be added to the cross section
generated in this fitting procedure for use in the transport calculation. For all results given

here, six subgroup levels were used.

6.4 Results

Each self-shielding technique previously described was tested on the benchmark for various
configurations. Results are presented in tabular form, showing the dependence on the height
of the resonance. The reference solution is calculated using a calculation with ultrafine energy
discretization as described in Sec. 6.2.4. Performance of each method is described as the
percent error of the obtained group averaged capture cross section compared to this reference.
Positive errors represent obtained cross sections greater than the reference; negative errors
represent obtained cross sections less than the reference.

First, results with a square resonance in the 1-D isolated slab geometry are presented.
Table 6.1 gives results with a width of 0.3 cm; Tab. 6.2, with a width of 0.4 cm; and Tab. 6.3, with
a width of 0.6 cm. Note that subgroup results are not included, as the appropriate selection of a
subgroup quadrature results in an exact solution for this simple case.

Next, results with a single-level Breit-Wigner (SLBW) resonance in the 1-D isolated slab
geometry are given. Table 6.4 gives results with a width of 0.3 cm; Tab. 6.5, with a width of
0.4 cm; and Tab. 6.6, with a width of 0.6 cm.
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Figure 6.1: Error for equivalence in dilution techniques for 1-D isolated slab and a square
resonance.

Finally, results with a SLBW resonance in the 2-D reflected pin-cell geometry are included.
Table 6.7 gives results with a pin radius of 0.3 cm; Tab. 6.8, with a pin radius of 0.4 cm; and
Tab. 6.9, with a pin radius of 0.6 cm.

6.4.1 Equivalence in Dilution

Fig. 6.1 and Fig. 6.2 plot the error in the capture cross sections generated by equivalence in
dilution methods as a function of the resonance peak for the 1-D slab cases with 0.4 cm width.
The results are very familiar curves, behaving consistently with errors known for the rational

approximations [14].

Wigner’s rational approximation leads to very low error for small resonance peaks. For
larger resonance peaks, this approximation does well for the square resonance, and slightly less
so for the SLBW resonance. This is because although the peak of the resonance approaches the
high cross section limit, the flanks of the resonance are in the intermediate cross section range
where the approximation is less accurate. Furthermore, Wigner is seen to consistently under-
predict the group averaged capture cross section, and is rather significant for intermediate

resonance peaks.

The Wigner-Bell approximation shows the characteristic change of sign in the error at
intermediate cross section values. It fares better than Wigner’s rational approximation for low
and intermediate resonance peaks, but does poorly for large resonance peaks. This is expected,
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Figure 6.2: Error for equivalence in dilution techniques for 1-D isolated slab and a SLBW
resonance.

as a single Bell factor was used for all calculations. At high opacities, it is known that the Bell
factor should tend to unity, resulting in Wigner’s rational approximation.

Roman’s two-term rational approximation for the 1-D slab and Carlvik’s two-term rational
approximation for the 2-D pin-cell perform very well. For the square resonance case, errors
are at or below 2%. For the SLBW resonance cases, nearly all errors fall below 1%. Clearly,
a significant improvement is achieved by the inclusion of the second term in the rational

approximation.

6.4.2 Embedded Self-Shielding Method

ESSM results are best for smaller resonance peaks, and the method appears to break down for
larger resonances. This is somewhat counter-intuitive, as the iteration procedure is essentially
searching for the appropriate Dancoff and Bell factor. Thus, one would expect ESSM to perform
at least as well as the Wigner and Wigner-Bell approximations.

This can be explained primarily as this ESSM iteration being ill-conditioned. ESSM is
forcing equivalence between heterogeneous and homogeneous models, using the flux as the
connection. However, the flux varies over a very small range, and small changes in flux lead to
very different implied shielding states. For physical intuition of this effect, consider widening
the energy group, holding the single resonance constant. The group flux will approach unity
for all shielding states, but the effective cross section will still be a strong function of the
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background. This means that a small error in flux leads to large errors in the obtained cross
sections. For instance, in this benchmark, the heterogeneous problem suffers from small
condensation errors, explained in Sec. 7.5, and these errors are enough to impact the results.

Also, ESSM is essentially a direct subgroup method with a single level. Physically, the
subgroup method is effective because it can differentiate the behavior of neutrons at resonance
energies from those away from resonances. These cannot be separated with a single subgroup
level, and the resulting effect is more pronounced for larger resonance peaks. So although it is
mathematically possible to obtain an accurate quadrature with a single subgroup level, this is
not realistic in practice. Thus, the ESSM procedure cannot be expected to accurately model
self-shielding for large resonances.

The poor performance of ESSM is strong evidence of the need for this sort of simple
benchmark analysis. This method has been used on large problems with favorable results,
but in the form considered in this thesis, it is not suitable for predictive purposes outside of
carefully selected regions of design space. The difficulty with ESSM will be revisited in Sec. 7.5,
once additional tools for analysis are developed.

Note that more recent ESSM implementations have been based on nuclear data tables
generated through heterogeneous calculations, rather than the homogeneous calculations used

in this study. This approach is not easily tested on this simple benchmark, but is revisted in
Ch. 9.

6.4.3 Subgroup

The results for the subgroup method are very good, with nearly all errors falling below 1%.
The variance in the errors can be attributed to the varying quality of the quadrature obtained
in the fitting procedure for each configuration, as quadrature generation was found to be a
difficult process, even for this simple problem. Adjustment of the subgroup parameters can
lead to significant improvements in accuracy, but is not easily generalized. This suggests that
subgroup can be an effective self-shielding method, but it requires great care in the generation
of the quadrature. For realistic simulations with many energy groups and nuclides, this is
likely a very large effort.

It should be noted that using six subgroup levels in this study was an arbitrary choice,
and this was more subgroup levels than necessary. Initial results with four subgroup levels
provided similar accuracy. The issue of quadrature generation could be further explored using
this benchmark and similar problems, comparing various quadrature generation methods and
varying numbers of levels.
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Table 6.1: Errors in capture capture cross sections for square resonance in 1-D isolated slab
configuration with 0.3 cm width.

Peak [b] Reference [b] Brror [%]

Wigner Wigner-Bell Roman ESSM

2 0.0010 -0.13 0.09 0.26 -0.02

5 0.0024 -0.39 0.15 0.55 -0.13
10 0.0046 -0.92 0.09 0.85 -0.44
25 0.0102 -2.81 -0.60 0.97 -1.75
50 0.0174 -5.69 -2.09 0.28 -3.98
75 0.0227 -7.84 -3.29 -0.57 -5.69
100 0.0269 -9.35 -4.11 -1.28 -6.88
175 0.0348 -11.46 -4.89 -2.39 -8.39
250 0.0390 -11.69 -4.30 -2.49 -8.25
375 0.0425 -10.67 -2.36 -1.82 -6.82
500 0.0440 -9.28 -0.35 -0.99 -5.15
750 0.0454 -6.98 2.75 0.20 -2.49
1000 0.0459 -5.47 4.74 0.78 -0.77
5000 0.0472 -1.18 10.37 0.70 4.12
10000 0.0474 -0.60 11.15 0.40 4.79

Table 6.2: Errors in capture capture cross sections for square resonance in 1-D isolated slab
configuration with 0.4 cm width.

Peak [b] Reference [b] Error [%]

Wigner Wigner-Bell Roman ESSM

2 0.0010 -0.23 0.03 0.22 -0.02

5 0.0024 -0.62 -0.00 0.45 -0.14
10 0.0045 -1.36 -0.20 0.64 -0.45
25 0.0098 -3.64 -1.19 0.48 -1.72
50 0.0162 -6.65 -2.78 -0.44 -3.63
75 0.0207 -8.60 -3.80 -1.27 -4.86
100 0.0240 -9.77 -4.31 -1.84 -5.53
175 0.0297 -10.79 -4.07 -2.31 -5.58
250 0.0325 -10.23 -2.73 -1.91 -4.43
375 0.0346 -8.58 -0.24 -0.88 -2.13
500 0.0356 -7.08 1.80 -0.08 -0.22
750 0.0364 -5.08 4.46 0.73 2.28
1000 0.0368 -3.91 5.99 1.00 3.72
5000 0.0378 -0.83 10.07 0.53 7.56
10000 0.0380 -0.42 10.62 0.29 8.08
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Table 6.3: Errors in capture capture cross sections for square resonance in 1-D isolated slab
configuration with 0.6 cm width.

Peak [b] Reference [b] Brror [%]

Wigner Wigner-Bell Roman ESSM

2 0.0010 -0.38 -0.07 0.14 -0.02

5 0.0023 -0.97 -0.25 0.26 -0.13
10 0.0043 -1.97 -0.64 0.27 -0.42
25 0.0091 -4.57 -1.88 -0.24 -1.43
50 0.0144 -7.31 -3.24 -1.22 -2.55
75 0.0178 -8.63 -3.71 -1.78 -2.85
100 0.0200 -9.14 -3.61 -1.97 -2.64
175 0.0236 -8.64 -1.98 -1.50 -0.80
250 0.0252 -7.39 -0.05 -0.71 1.26
375 0.0263 -5.61 2.41 0.22 3.85
500 0.0269 -4.42 4.00 0.66 5.52
750 0.0274 -3.08 5.79 0.93 7.40
1000 0.0277 -2.35 6.76 0.93 8.41
5000 0.0284 -0.49 9.25 0.33 11.03
10000 0.0285 -0.25 9.58 0.18 11.38

Table 6.4: Errors in capture capture cross sections for SLBW resonance in 1-D isolated slab
configuration with 0.3 cm width.

Peak [b] Reference [b] Error [%]
Wigner Wigner-Bell Roman ESSM Subgroup

2 0.0260 -0.08 0.06 0.17 -0.01 0.00

5 0.0637 -0.24 0.11 0.38 -0.07 -0.00
10 0.1238 -0.58 0.11 0.62 -0.24 -0.01
25 0.2861 -1.75 -0.24 0.85 -1.00 -0.11
50 0.5129 -3.62 -1.12 0.59 -2.36 -0.32
75 0.7007 -5.11 -1.91 0.14 -3.48 -0.49
100 0.8600 -6.25 -2.52 -0.29 -4.32 0.19
175 1.2244 -8.18 -3.44 -1.13 -5.66 -0.02
250 1.4831 -8.88 -3.55 -1.45 -5.99 -1.02
375 1.7886 -8.97 -3.04 -1.44 -5.67 0.54
500 2.0087 -8.61 -2.30 -1.19 -5.04 0.05
750 2.3256 -7.71 -0.96 -0.70 -3.79 0.93
1000 2.5612 -6.96 0.01 -0.36 -2.82 -0.60
5000 4.4141 -3.95 3.00 0.31 0.80 0.09
10000 5.8114 -3.57 2.96 0.28 1.30 -0.00
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Table 6.5: Errors in capture capture cross sections for SLBW resonance in 1-D isolated slab
configuration with 0.4 cm width.

Peak [b] Reference [b] Error [%]
Wigner Wigner-Bell Roman ESSM Subgroup

2 0.0259 -0.15 0.02 0.15  -0.01 -0.00

5 0.0633 -0.40 0.01 0.32  -0.07  -0.01
10 0.1222 -0.87 -0.09 049  -025  -0.04
25 0.2782 -2.33 -0.65 053 -099  -0.19
50 0.4886 -4.36 -1.65 0.08 -2.18  -0.40
75 0.6569 -5.80 -2.40 042 -3.04  -0.53
100 0.7958 -6.78 -2.89 20.81  -3.60 0.17
175 1.1017 -8.13 -3.30 137  -412  -0.03
250 1.3115 -8.35 -2.99 142  -3.85 -0.67
375 1.5558 -7.98 -2.09 113 -2.97 0.49
500 1.7328 -7.42 -1.21 0.81 -2.08  -0.20
750 1.9929 -6.46 0.09 20.35 -0.75 1.22
1000 2.1913 -5.78 0.92 0.09  0.13 -0.54
5000 3.8342 -3.45 2.97 026  2.73 0.06
10000 5.1046 -3.26 2.73 020  2.83 -0.14

Table 6.6: Errors in capture capture cross sections for SLBW resonance in 1-D isolated slab
configuration with 0.6 cm width.

Peak [b] Reference [b] Error [%]
Wigner Wigner-Bell Roman ESSM Subgroup

2 0.0258 -0.25 -0.05 0.10 -0.01 -0.01

5 0.0626 -0.64 -0.15 0.19 -0.07 -0.04
10 0.1196 -1.29 -0.39 0.24 -0.23 -0.09
25 0.2656 -3.02 -1.17 0.02 -0.84 -0.30
50 0.4519 -5.01 -2.14 -0.56 -1.60 -0.47
75 0.5932 -6.14 -2.64 -0.97 -1.95 -0.47
100 0.7054 -6.76 -2.82 -1.20 -2.01 0.08
175 0.9419 -7.19 -2.45 -1.26 -1.42 -0.01
250 1.0996 -6.90 -1.71 -1.01 -0.54 0.02
375 1.2842 -6.19 -0.60 -0.59 0.72 0.33
500 1.4210 -5.60 0.22 -0.30 1.63 -0.36
750 1.6285 -4.79 1.23 -0.01 2.76 1.01
1000 1.7911 -4.28 1.80 0.11 3.39 -0.21
5000 3.2125 -2.82 2.76 0.18 4.57 -0.01
10000 4.3359 -2.82 2.37 0.10 4.26 -0.18
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Table 6.7: Errors in capture capture cross sections for SLBW resonance in 2-D reflected pin-cell
configuration with 0.3 cm diameter.

Peak [b] Reference [b] Brror [%]
Wigner Wigner-Bell Carlvik ESSM Subgroup

2 0.0260 -0.40 -0.26 -0.05 0.00 0.00

5 0.0639 -0.97 -0.64 -0.13 0.01 -0.00
10 0.1243 -1.83 -1.21 -0.25 0.02 -0.03
25 0.2873 -3.91 -2.58 -0.57 0.13 -0.18
50 0.5115 -6.22 -4.05 -0.93 0.49 -0.47
75 0.6924 -7.62 -4.88 -1.12 1.01 -0.64
100 0.8422 -8.48 -5.31 -1.18 1.62 0.21
175 1.1724 -9.43 -5.44 -0.98 3.58 -0.03
250 1.3991 -9.40 -4.93 -0.61 5.40 -0.67
375 1.6642 -8.83 -3.86 -0.05 7.83 0.56
500 1.8567 -8.19 -2.93 0.33 9.59 -0.22
750 2.1395 -7.18 -1.60 0.74 11.86 1.25
1000 2.3540 -6.48 -0.74 0.90 13.19 -0.47
5000 4.0977 -4.05 1.52 0.71 15.24 0.03
10000 5.4323 -3.85 1.36 0.54 14.07 -0.17

Table 6.8: Errors in capture cross sections for SLBW resonance in 2-D reflected pin-cell
configuration with 0.4 cm diameter.

Peak [b] Reference [b] Error [%]
Wigner Wigner-Bell Carlvik ESSM Subgroup

2 0.0259 -0.44 -0.29 -0.07 0.00 -0.01

5 0.0631 -1.04 -0.70 -0.17 0.01 -0.03
10 0.1214 -1.93 -1.29 -0.32 0.04 -0.09
25 0.2724 -3.91 -2.59 -0.66 0.23 -0.32
50 0.4676 -5.82 -3.75 -0.95 0.76 -0.53
75 0.6163 -6.79 -4.24 -1.02 1.43 -0.52
100 0.7349 -7.27 -4.38 -0.98 2.14 0.08
175 0.9862 -7.50 -3.99 -0.61 4.13 -0.00
250 1.1552 -7.17 -3.31 -0.24 5.73 0.07
375 1.3539 -6.50 -2.32 0.18 7.60 0.36
500 1.5010 -5.94 -1.59 041 8.83 -0.31
750 1.7228 -5.16 -0.64 0.61 10.26 0.89
1000 1.8955 -4.66 -0.08 0.66 11.01 -0.17
5000 3.3810 -3.15 1.09 0.40 11.39 -0.00
10000 4.5462 -3.11 0.84 0.30 10.30 -0.12
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6.5 Chapter Summary

In this chapter, a framework for the evaluation of self-shielding methods was introduced.
Rather than relying on integral testing—i.e., using large problems with many important
aspects of physics—self-shielding methods should first be tested on very simple benchmarks.
These benchmarks should isolate the physics of interest and ensure the method performs as
desired. Only then should the method be used on more complex problems.

One such simple benchmark has been presented here, which is the simplest possible
problem in which both energy and spatial self-shielding effects are important. The benchmark
was designed such that the assumptions made in the derivation of self-shielding models are
fully valid. This allows self-shielding methods to be evaluated consistently and allows one to
separate errors associated with the self-shielding method from any other effects.

This benchmark problem was solved using several techniques, including various equivalence
in dilution methods, the Embedded Self-Shielding Method (ESSM), and the subgroup method.
The best results were obtained using two-term rational expansions in the equivalence in
dilutions methods and using the subgroup method. One-term rational expansion methods lead
to much larger errors, as did ESSM.
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Table 6.9: Errors in capture cross sections for SLBW resonance in 2-D reflected pin-cell
configuration with 0.6 cm diameter.

Peak [b] Reference [b] Error [%]
Wigner Wigner-Bell Carlvik ESSM Subgroup

2 0.0254 -0.21 -0.13 -0.01 0.00 -0.02

5 0.0603 -0.48 -0.29 -0.03 0.01 -0.09
10 0.1114 -0.84 -0.51 -0.04 0.03 -0.19
25 0.2293 -1.49 -0.86 -0.04 0.16 -0.35
50 0.3601 -1.92 -1.02 0.01 0.43 -0.09
75 0.4502 -2.03 -0.99 0.10 0.71 0.31
100 0.5186 -2.05 -0.90 0.16 0.94 -0.23
175 0.6606 -1.90 -0.61 0.31 1.48 0.01
250 0.7575 -1.73 -0.38 0.38 1.82 0.63
375 0.8760 -1.52 -0.11 0.43 2.15 -0.40
500 0.9679 -1.37 0.05 0.44 2.34 -0.09
750 1.1130 -1.18 0.24 0.43 2.53 -0.23
1000 1.2309 -1.07 0.34 0.41 2.61 0.01
5000 2.3270 -0.82 0.40 0.28 2.42 0.01
10000 3.2072 -0.83 0.31 0.27 2.29 0.06
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Chapter 7

Angular Dependence of Cross
Sections

7.1 Introduction

In a reactor physics neutronics simulations , the steady-state neutron transport equation is
often the primary workhorse, and is shown here with a generic source:

Q- VYR E Q)+ 27 EW( E,Q) = Q7 E,Q) . (7.1)

This equation can be solved efficiently for many problems by using the multigroup approxi-
mation, in which the energy variable is discretized into so-called energy groups. In general,
it is not possible to resolve the complex energy behavior of the nuclear data and the neutron
flux in a deterministic calculation on a large geometry, and so great care must be taken in the
generation of the nuclear data used in group-wise (or “multigroup”) solutions of the transport
equation.

The multigroup form of the transport equation is attained by integrating Eq. (7.1) over the
energies defining a group [Ey.1, Eyl,
E

E, g N
f dE (Q- VY. E. Q) + %7, E)(F, E. Q) = f dE Q(7 E, Q) (7.2)
E,

gt1 Ey+1
Q- Vi (7, Q) + Ty (7, Qg (7, Q) = Qy(7,Q) (7.3)

122



where the multigroup parameters are given by

E, .

Uy, Q) = f dE y(7, E, Q) (7.4)
Eg+]

P AES@EWEEQ
T g(7 Q) = —— - (7.5)
Je! dEY(7. E,Q)

E, .

0,1t~ [ aEQRED . (76)
E

g+1

The multigroup form of the transport equation of Eq. (7.3) has the same form as Eq. (7.1) with
one significant caveat: the total cross section in the multigroup form is dependent on the angle.
The multigroup total cross section given by Eq. (7.5) is condensed in energy through the use of
the angular flux, which gives rise to this newfound angular dependence. Because this angular
dependence is not convenient to use in a transport calculation, an approximation is often used
in which the scalar flux rather than the angular flux is used in the collapse; this is equivalent

to integrating Eq. (7.5) over all angles in both the numerator and denominator:

~ . S .
Jir 40 quil dEX, (7, E)W(7, E, )

[ 4 [ dEW(G.E.Q)

% g(F Q) 2, 4(F) =

E (7.7)
Jz! dEZ(F E)p(¥, E)
_ g+1
E -
Ji,!, dE ¢, E)
This leads to an approximate form of the transport equation,
Q- V(B Q) + 2y (Mg (7 Q) = QR (7.8)

which features some error from this alternate condensation equation and whose consequences
will be analyzed here.

Note also that the cross section condensation formulas of both Eqgs. (7.5) and (7.7) are
complicated by the fact the flux is included in the definition. The flux is the output of a
solution of the transport equation, and so this requires some estimation of the flux prior to the
multigroup solution. This estimation of the flux is the subject of self-shielding techniques that
have been studied extensively and developed over the past several decades and are outlined in
Part II. However, as higher fidelity flux estimates are used, the condensation errors of Eq. (7.8)
are becoming more noticeable.
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7.2 Demonstration of Condensation Errors

To demonstrate the existence of errors from approximately collapsing Eq. (7.1) into Eq. (7.8),
consider a very simple problem in which the reference flux can be computed precisely. This is
an extension of the benchmark problem presented in Ch. 6.

This example problem consists of a unit cell of an infinite array of unclad fuel pins. The fuel
material contains U-238 with an atom density of 0.022 2/b-cm and a purely scattering nuclide
with a constant cross section of 0.176cm™!, an analog to oxygen in UO,. The moderator is a
pure scatterer with a constant cross section of 1.23 cm™!. The pin radius is 0.4 cm and the pitch
is 1.26 cm. The source is given by

Q(?’ E’ Q) =T s (7.9)

which is the scatter source from the narrow resonance approximation.

The reference continuous energy flux is computed by solving Eq. (7.1) for each energy
point, and the reference reaction rate is obtained by integrating the flux multiplied by a
cross section over an energy range of interest and over the volume of the fuel pin. Next, the
collapsed cross section and collapsed source are generated using the reference flux in Egs. (7.6)
and (7.7), respectively. With this collapsed cross section and source, Eq. (7.8) is solved. The
collapsed reaction rate is obtained by volume integrating the multigroup flux multiplied by the
multigroup cross section over the fuel pin.

This simple problem is solved for the WIMS 69-group energy structure [12] in the resonance
range. The results are shown in Tab. 7.1. The condensation errors range from 0.1% in the
high energy groups to just over 1% in the lower energy groups, with the exception of group 26.
Group 26 sits between the two lowest energy resonances of U-238 and contains no resonance
itself, and so it exhibits no significant error. This suggests that the condensation errors are
caused by improper self-shielding of the resonances. Furthermore, as the errors increase with
lower energy, this suggests that the effect is exacerbated by the magnitude of the resonance
peaks. These results are shown in graphical form in Fig. 7.1, plotted against the U-238 total
cross section.

In a more realistic simulation, the Monte Carlo code OpenMC [38] was used to generate
cross sections for use in the multigroup transport solver OpenMOC [3]. A UO, pin-cell modeled
after the LWR fuel given in the BEAVRS benchmark [39] was considered, using real cross
sections for all materials. The errors observed were very nearly the same as in the simple
example problem, and these corresponded to approximately a 200 pcm underprediction of the
eigenvalue. A plot of the errors in the reaction rates of each group plotted alongside the U-238
capture cross section is given in Fig. 7.2.
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Table 7.1: U-238 resonance range reaction rates for collapsed cross sections on simple pin-cell.
Group E,..(eV) Reference Condensed Error (%)

15 9118.00  0.12018 0.12030 0.102
16 5530.00  0.11011 0.11027 0.142
17 3519.10  0.11407 0.11444 0.330
18 2239.45  0.10581 0.10630 0.457
19 1425.10  0.11572 0.11625 0.461
20 906.899  0.21110 0.21172 0.294
21 367.263  0.22169 0.22290 0.543
22 148.729  0.16551 0.16649 0.598
23 75.5014  0.10569 0.10621 0.487
24 48.0520  0.14256 0.14394 0.964
25 27.7000  0.13732 0.13867 0.984
26 15.9680  0.09348 0.09348 0.001

27 9.8770% 0.23567 0.23813 1.041
* Emin =4eV
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Figure 7.1: Condensation errors in the resonant groups of the WIMS69 group structure, plotted
alongside the U-238 cross section.
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Figure 7.2: Condensation errors in multigroup cross sections generated by OpenMC and used
in OpenMOC. Courtesy of W. Boyd.

7.3 Diagnosing the Cause of the Errors

It was just shown that errors exist and it was suggested that improper self-shielding was
the culprit. In fact, these condensation errors are more precisely due to spatial self-shielding
effects. In an infinite medium, there is no variation in angle or space for the angular flux, and
so the same results are obtained if one collapses cross sections with the scalar flux as if one
collapses with the angular flux. To see this, consider an infinite medium of U-238 with 50
barns of background moderator in a procedure analogous to the previous example. Tab. 7.2
contains the results. The errors are nearly zero in all groups, and the small errors that are
seen are entirely attributable to numerical precision.

To understand the cause of these errors, consider how neutrons reach a certain region of
a fuel pin. For a region of interest on the exterior of a fuel pin, neutrons may enter directly
from the moderator or they may traverse a portion of the fuel pin first, as depicted in Fig. 7.3.
The former are unshielded, and the spectrum is that of the asymptotic spectrum, likely 1/E.
The latter, however, are heavily shielded, and the spectrum will have a large depression at the
resonance energy. Thus, the resonance reaction rate is much larger for the first case than for
the second case.

And in fact, this difference in reaction rates translates to a difference in angular-flux-
weighted cross sections. Fig. 7.4 shows the collapsed capture cross section as a function of
incoming azimuthal angle for two regions of interest for the 6.67 eV resonance group.
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Table 7.2: U-238 resonance range reaction rates (arbitrary units) for collapsed cross sections in
an infinite medium.
Group E,..(eV) Reference Condensed Error (%)

15 9118.00  0.33893 0.33891 -0.004
16 5530.00  0.30636 0.30635 -0.003
17 3519.10  0.30631 0.30630 -0.003
18 2239.45  0.29363 0.29362 -0.002
19 1425.10  0.31908 0.31908 -0.001

20 906.899  0.61265 0.61265 0.000
21 367.263  0.61270 0.61270 0.000
22 148.729  0.45950 0.45950 0.000
23 75.5014  0.30625 0.30625 0.000
24 48.0520  0.37338 0.37338 0.000
25 27.7000  0.37333 0.37333 0.000
26 15.9680  0.32560 0.32560 0.000
27 9.8770*  0.61260 0.61260 0.000

* Epin = 4eV

.~rl

Figure 7.3: Illustration of neutron entering region of interest directly from moderator (top) and
after traversing fuel (bottom).

127



0

Figure 7.4: Capture cross sections collapsed with angular flux as a function of incoming
azimuthal angle into region of interest for the 6.67 eV resonance group. Radial axis in units of
barns; azimuthal axis in degrees.
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The first region is on the exterior of the fuel pin, and is indicated by the darkly shaded
region in the upper half of the figure. The cross section for angles in which neutrons enter from
the moderator are all above 30b, whereas the cross section for neutrons having traversed the
fuel pin are as low as 5b. The peaks near 60° and 120° are due to the square array of pins; at

these angles, neutrons can traverse more moderator between pins than at 90°.

The second region is in the interior of the fuel pin, and is indicated by the darkly shaded
region in the lower half of the figure. It exhibits the same characteristics of the first region,
but the effects are more muted. The maximum value of the cross section is only 15b, and the
minimum value 5b. A region at the very center of the fuel pin would exhibit almost no angular
dependence, as it would be shielded similarly from all directions.

From these plots, it is easy to imagine that accounting for this angular dependence by
simply averaging the angular component does not do a suitable job of picking up all the physics
at play. It is clearly very important to know whether neutrons are entering directly from the
moderator or traversing fuel first. It is conceivable that the vast majority of this effect could be
picked up by simply using two cross section values rather than using fully angularly dependent
data, but this possibility is not explored in this thesis.

Next, it will be shown that using fully angularly dependent data causes the bias in the
group reaction rates to vanish. However, as was noted, the most important aspect of the
physics to account for is whether neutrons are entering the region through the fuel pin or
directly from the moderator. By simply using angularly dependent data on a single region
fuel pin, this cannot be done. A cross section for a given angle would in this case be applied to
neutrons entering the fuel pin from the moderator and to neutrons exiting the fuel pin on the

opposite side alike. Thus, the fuel pin must be discretized for the error to subside.

The simple pin-cell problem is again used. The reference solution is computed on the
ultrafine energy mesh and is used to collapse cross sections. Cross sections for the left hand
side of the transport equation are collapsed separately for each angle, weighted by the angular
flux for that angle. Then geometry is discretized into rings and sectors. The pin is split up into
rings of equal volume. Although the solution is not sensitive to discretization of the moderator,
equal width rings are created in the moderator. Sectors are separated by equally spaced angles,
and the same angles are used in the fuel and the moderator. Fig. 7.5 shows a schematic of a

pin-cell discretized with three fuel rings, two moderator rings, and eight sectors.

Results are shown with no pin discretization in Tab. 7.3, with 3 fuel rings and 4 azimuthal
sectors in Tab. 7.4, and with 5 fuel rings and 8 azimuthal sectors in Tab. 7.5. In these tables,
the error in the condensed cross section for each resonance group is shown for both scalar
flux weighted and angular flux weighted cross sections. The errors resulting from scalar flux
weighting remain fairly constant regardless of pin discretization. The errors resulting from
angular flux weighting are greatly reduced as pin discretization is increased.

To see this more clearly, see Fig. 7.6 and Fig. 7.7. These figures show the maximum
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Figure 7.5: Discretized pin-cell system with 3 fuel rings, 2 moderator rings, and 8 sectors.

Table 7.3: Errors of group cross sections when collapsed with scalar vs. angular flux without
pin discretization.

Error (%)
Group Eax (€V) Scalar Angular

15 9.11800E+03 1.05E-01 1.83E-01
16 5.563000E+03 1.42E-01 2.28E-01
17 3.51910E+03 3.29E-01 4.85E-01
18 2.23945E+03 4.57E-01 6.42E-01
19 1.45210E+03 4.61E-01 6.34E-01
20 9.06899E+02 2.94E-01 4.08E-01
21 3.67263E+02 5.43E-01 7.12E-01
22 1.48729E+02 5.98E-01 7.79E-01
23 7.55014E+01 4.87E-01 6.21E-01
24 4.80520E+01 9.64E-01 1.25E+00
25 2.77000E+01 9.84E-01 1.26E+00
26 1.59680E+01 1.19E-03 2.77E-03
27 9.8770E+00* 1.04E+00 1.31E+00

* Emin =4eV
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Table 7.4: Errors of group cross sections when collapsed with scalar vs. angular flux with 3
fuel rings and 4 azimuthal sectors.

Error (%)
Group Eux (€V) Scalar Angular

15 9.11800E+03 1.27E-01 4.11E-02
16 5.53000E+03 1.72E-01 5.15E-02
17 3.51910E+03 3.96E-01 1.10E-01
18 2.23945E+03 5.53E-01 1.51E-01
19 1.45210E+03 5.62E-01 1.52E-01
20 9.06899E+02 3.58E-01 9.65E-02
21 3.67263E+02 6.78E-01 1.90E-01
22 1.48729E+02 7.49E-01 2.15E-01
23 7.55014E+01 6.21E-01 1.80E-01
24 4.80520E+01 1.19E+00 3.59E-01
25 2.77000E+01 1.23E+00 3.74E-01
26 1.59680E+01 1.27E-03 7.45E-04
27 9.8770E+00* 1.30E+00 3.89E-01

* Emin =4eV

Table 7.5: Errors of group cross sections when collapsed with scalar vs. angular flux with 5
fuel rings and 8 azimuthal sectors.

Error (%)
Group Enax (€V) Scalar Angular

15 9.11800E+03 1.29E-01 9.93E-03
16 5.53000E+03 1.75E-01 1.23E-02
17 3.51910E+03 4.04E-01 2.68E-02
18 2.23945E+03 5.67E-01 3.70E-02
19 1.45210E+03 5.75E-01 3.64E-02
20 9.06899E+02 3.65E-01 2.20E-02
21 3.67263E+02 6.99E-01 4.87E-02
22 1.48729E+02 7.75E-01 5.78E-02
23 7.55014E+01 6.47E-01 4.90E-02
24 4.80520E+01 1.24E+00 1.10E-01
25 2.77000E+01 1.27E+00 1.18E-01
26 1.59680E+01 1.29E-03 3.45E-04
27 9.8770E+00* 1.34E+00 1.21E-01

* Ein = 4eV
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error in any resonance group. Each curve shows a particular number of rings, with the
number of sectors plotted on the abscissa. For scalar flux weighting, the errors are nearly
constant between 1% and 2%. For angular flux weighting, the error is decreasing with finer

discretization.

This demonstrates that the observed condensation errors can be removed by maintaining
fine structure in both angle and space in the condensed cross sections. Maintaining one
without the other is not sufficient to remove this error. Although this demonstration fully
diagnoses the observed errors, this does not suggest that the ultimate solution to condensation
errors is to use such fine structure. This would come at a great computational expense, as
the spatial discretization increases the cost of the transport solve, and the angular dependent

cross sections dramatically increase the memory requirements.

7.4 Alternatives to Explicit Angular Dependent Cross Sections

7.4.1 Transport Correction

One tactic for accounting for angular effects in transport equations without explicitly modeling
them is the transport correction. The transport correction has many definitions in the literature,
and the discussion here follows that of [1, 40], which are derived from [41]. If the scatter source
is written explicitly and the total and scattering reaction rates from Eq. (7.3) are expanded in
Legendre polynomials in angle, the transport equation in 1-D slab geometry becomes

0 O 20+ 1 20+ 1
uaw(,,(x,w; Pl (D Bg(0) = ) =

Pi) D Ty g (g 10+ Qg ) . (7.10)
.

=0

The Legendre moments of the flux are defined as
1
Pgi(x) = de f du P (x,u, E) . (7.11)
g -1

If the summations over / are brought to the right hand side and fl,’g(x)wg(x, ) is added to both
sides, the transport corrected form of the transport equation is obtained:

0 .
ﬂ&lﬂg(x, ) +2 g (W4 (x, 1) =

2+ 1 . (7.12)
DI D [Zogogi() = (Brgi(0) = £0g(0) 00| b a(0) + Qg pt)
.

=0 2

where ¢, is the Kronecker delta function. No approximations have been made, and so this
form is exactly the same equation as the multigroup transport equation. However, in practice,
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Figure 7.6: Maximum relative error resulting from scalar flux weighting for various pin
discretizations.
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this is an approximation, as the Legendre order is truncated at some maximum value L:

a A
,Ua_x'vbg(x, W+ 5 O (x, 1) =
L

Z 21;— 1?1(/’1) Z [Zs,g’—»g,l(X) - (Zt,g,l(X) - it,g(x)) 6g,g’] ¢g’,l(x) + Qg(x,,u)
=0 g

(7.13)

The terms in square brackets are the transport corrected scattering matrix ﬁs,g/_w,l. The
variable £, , is a free parameter and can be chosen arbitrarily. Different choices have been
dubbed as different forms of the transport approximation. Some possibilities include the
Consistent-P transport approximation:

$9=Zig0 > (7.14)
the Inconsistent-P transport approximation:
$0g= Zigiel (7.15)
the Diagonal transport approximation:

ﬁlag = Et,g,LH - E‘Y,g’—>g,L+1 , (7.16)

the Bell-Hansen-Sandmeier (BHS) approximation:

ﬁ’»g = Zt,g,LH - Z z:s,g—>g’,L+1 5 (7.17)
gl

and the Inflow transport approximation:

& Zg’ Zs,q’—>g,L+1¢5q,L+l
Zl,g = 2t,g,L+1 - — - . (7.18)
¢g,L+1

These approximations, especially the BHS transport approximation, are commonly encoun-
tered in existing deterministic neutron transport codes. However, such correction is typically
performed to account for one more Legendre moment of anistropic scattering than is explicitly
modeled. But even in cases without any anisotropic scattering, the angular dependence of the
collapsed cross section can still be modeled in this manner. Rather than explicitly modeling
the angular dependence of the cross section, the anisotropy is moved to the right hand side
and takes the form of a higher order scattering moment.

Now, consider a simple example of the transport approximation applied to correct conden-
sation errors. Consider an isolated 1-D slab containing UQ,. All uranium is considered to be
U-238 with number density 0.022 a/b—cm. The energy range 4-10 eV is considered. All scattering
is considered to be potential scattering, and the narrow resonance model is used as the scatter
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Table 7.6: Condensation errors in slab reaction rates using transport corrections.

Legendre Order Error (%)
Scalar Angular Consistent-P Inconsistent-P
0 0.277 -0.037
1 -1.152 -0.295
2 -0.084 -0.149
3 0.277  0.001 0,148 o 1es
4 -0.031 -0.058
> -0.047 -0.078

source. The reference solution is that of an ultrafine solution. With the reference continuous en-
ergy flux, the cross section is collapsed by the scalar flux, by the angular flux, and into moments.
Collapsed cross sections are then used for a one-group simulation and the reaction rates are
compared. Two transport corrections are considered, the Consistent-P and the Inconsistent-P.
Because all scattering is assumed to be potential scattering, there are no higher order scatter-
ing moments, and so the Inconsistent-P is equivalent to the Bell-Hansen-Sa