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Abstract

In the simulation of the behavior of neutrons in a nuclear reactor, there has long been a
dichotomy in solution techniques. One can use Monte Carlo methods, known to be very
accurate and problem agnostic but also very costly, or deterministic methods, known to be more
computationally efficient but also requiring tuning to a specific application. As designers rely
more and more heavily on predictive simulation, higher fidelity and more problem agnostic
deterministic methods are desired. This thesis seeks to push these deterministic methods
towards that goal of higher fidelity in the context of multigroup cross section generation and
resonance self-shielding.

This work has two primary objectives: to quantitatively assess the efficacy of current
self-shielding approximations and to propose new self-shielding methods. These objectives are
cast primarily in the context of mutual self-shielding, the effect of one nuclide’s resonances on
the neutron reaction rate with another nuclide.

The first objective is accomplished through the development of a framework for the evalua-
tion of self-shielding methods. This framework is analogous to a unit test suite in software
engineering, in that specific aspects of physics modeled by a self-shielding method are isolated.
The framework is used on numerous existing methods, and highlights the successes and
failures of these methods on very simple problems. This objective is also accomplished via an
analysis of the consequences of neglecting the angular dependence of multigroup cross sections
in the solution to the multigroup neutron transport equation.

The second objective is accomplished by proposing two new methods: the subgroup method
with interference cross sections and ultrafine with simplified scattering. The former uses a
fitting method to find the effect of interfering nuclides on the subgroup levels of a primary
nuclide, allowing mutual self-shielding effects to be treated natively inside the subgroup
method without increasing algorithmic complexity. The latter is a hybrid of the subgroup
method and ultrafine methods, using an ultrafine energy mesh on the left hand side of the
transport equation with the scatter source of the subgroup method on the right hand side.
These two methods are tested in the context of the evaluation framework alongside classical
methods. Although it shows promise on some simple problems, the subgroup method with
interference cross sections was seen to exhibit shortcomings on problems with many nuclides.
Ultrafine with simplified scattering was found to perform very well on all problems in the test
suite.

Thesis Supervisor: Benoit Forget
Title: Associate Professor of Nuclear Science and Engineering
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Chapter 1

Introduction

1.1 Introduction

In the modeling of a nuclear reactor, a requisite quantity of interest is the distribution of
nuclear reaction rates throughout the core. This is accomplished by modeling the distribution
of neutrons through the use of the neutron transport equation. This class of problems is known
as neutronics or reactor physics.

The independent variable in the neutron transport equation is the neutron flux. When used
to describe the distribution of neutrons including their direction of travel, this is the angular
flux ψ. When integrated over all angles, the resulting neutron distribution is known as the
scalar flux φ,

φ =

∫
4π
ψ dΩ̂ . (1.1)

These fluxes are not the typical definition of flux encountered in physics. Instead the flux is
the product of the volume density of neutrons and the speed of the neutrons. An alternative
but equivalent definition is the path length traveled by neutrons per unit volume.

The flux is related to the reaction rate R by a proportionality constant known as a macro-
scopic cross section Σ,

R = Σφ . (1.2)

The macroscopic cross section varies by material composition, but is related to another quantity
known as the microscopic cross section σ by

Σ = Nσ , (1.3)

where N is the number density of a nuclide. This microscopic cross section is a property of
a particular nuclide. It is measured experimentally, evaluated using experimental data and
theoretical models, and tabulated. The macroscopic cross section for a material containing

13
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Figure 1.1: Total microscopic cross section of U-238.

multiple nuclides is the sum of the macroscopic cross sections of the constituent nuclides.

The microscopic cross section for a given nuclide can be a wildly varying function of energy.
For instance, the cross section of one of the most important nuclides in reactor physics, U-238,
is given in Fig. 1.1. The cross section varies several orders of magnitude over an energy interval
on the order of an eV near nuclear resonances. This fact, coupled with neutrons in a nuclear
reactor covering more than 10 orders of magnitude in energy, provides significant challenges
in the solution of the neutron transport equation. This thesis focuses on means of accounting
for the effects of resonances on the solution of this equation.

The neutron transport equation is an integro-differential equation, and the flux it models is
a function of seven variables. These variables include three variables to describe the position
of a neutron, two to describe its direction of travel, one to describe its energy (or equivalently,
speed), and one to describe the point in time. It is a balance equation, setting the rate of change
of the neutron population equal to the difference in the neutron source rate and the neutron
sink rate. In this thesis, only steady-state applications will be considered. The transport
equation then requires the sources be balanced exactly by the sink. This implies either a very
specific condition be modeled, a fixed source be present, or an eigenvalue to force this balance.
The steady state transport equation with a generic source Q is

Ω̂ · ∇ψ(~r, Ω̂, E)+Σt(~r, E)ψ(~r, Ω̂, E) =∫ ∞

0
dE′

∫
4π

dΩ̂′ Σs(~r, Ω̂′ → Ω̂, E′ → E)ψ(~r, Ω̂′, E′) + Q(~r, Ω̂, E) .
(1.4)

14



The subscripts on the cross sections indicate the type of reaction they correspond to. Subscript
t indicates the total of all reactions, and s indicates scattering. Other subscripts used in this
thesis include a for absorption, γ for radiative capture, and f for fission. The subscript t will
sometimes be dropped from Σt, and Σ will imply the total cross section in this thesis.

In this equation, the first term on the left hand side represents the streaming of neutrons
from one spatial location to another. The second term is the total collision rate for a given
volume of phase space. On the right hand side, the first term is the scatter source, representing
neutrons that scatter off nuclei at some energy and emerge at the energy of interest. Finally,
a source term is included. In a typical reactor physics calculation, this is a fission source
including an eigenvalue k,

Q(~r, Ω̂, E) =
χ(~r, E)

k

∫ ∞

0
dE′

∫
4π

dΩ̂′ νΣ f (~r, Ω̂′ → Ω̂, E′ → E)ψ(~r, Ω̂′, E′)

≈
χ(~r, E)

4πk

∫ ∞

0
dE′ νΣ f (~r, E′ → E)φ(~r, E′) ,

(1.5)

where χ is the energy spectrum of emerging fission neutrons and ν is the number of neutrons
per fission. The approximation is the most commonly used form, as fission neutrons are emitted
nearly isotropically.

The neutron transport equation has been solved using a multitude of different approaches.
The most accurate and problem agnostic method is the Monte Carlo method, which simulates
the behavior of individual neutrons via stochastic methods and infers the distribution of
quantities of interests via population statistics. The major downside to the Monte Carlo
method is its associated high computational cost.

The alternative to Monte Carlo is to solve the neutron transport equation with a deter-
ministic method. The traditional application of these methods is much more computationally
efficient than Monte Carlo, but accurate and problem agnostic results are much more difficult.
The objective of this thesis is to provide additional accuracy for deterministic methods, pushing
them towards the ideal of being problem agnostic.

1.2 Multigroup Approximation

When using deterministic methods, the neutron transport equation is discretized in each
variable, sometimes with the exception of the angular variable, which is expanded with
orthogonal polynomials. Spatial discretization follows the well-known approaches used in other
fields for the solution of partial differential equations. The energy discretization, however,
presents a unique challenge for the neutron transport equation. Because of the large range of
important neutron energies in a reactor and the wild energy dependence of the cross sections,
the energy discretization must be performed very carefully. The most common approach for
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deterministic methods is the multigroup approximation.

The multigroup approximation is formulated in such a way as to preserve reaction rates, as
these are the primary quantities of interest. This is accomplished by integrating the neutron
transport equation over energy and defining multigroup constants in a consistent manner.
In this discussion, the scatter source is assumed to be isotropic, but this assumption is not
necessary for the multigroup approximation. Defining an energy group as a contiguous domain
of energy, the neutron transport equation is integrated over group g, ranging from [Eg+1, Eg],∫ Eg

Eg+1

dE
(
Ω̂ · ∇ψ(~r, Ω̂, E) + Σt(~r, E)ψ(~r, Ω̂, E)

)
=∫ Eg

Eg+1

dE
(

1
4π

∫ ∞

0
dE′ Σs(~r, E′ → E)φ(~r, E′) + Q(~r, Ω̂, E)

) (1.6)

Ω̂ · ∇ψg(~r, Ω̂) + Σt,g(~r, Ω̂)ψg(~r, Ω̂) =
1

4π

G∑
g′=1

Σs,g′→g(~r)φg′(~r) + Qg(~r, Ω̂) , (1.7)

where the multigroup constants are defined as

ψg(~r, Ω̂) =

∫ Eg

Eg+1

dE ψ(~r, E, Ω̂) (1.8)

Σt,g(~r, Ω̂) =

∫ Eg
Eg+1

dE Σt(~r, E)ψ(~r, E, Ω̂)∫ Eg
Eg+1

dE ψ(~r, E, Ω̂)
(1.9)

Σs,g′→g(~r) =

∫ E′g
Eg′+1

dE′
∫ Eg

Eg+1
dE Σs(~r, E′ → E)φ(~r, E)∫ E′g

Eg′+1
dE′ φ(~r, E′)

(1.10)

Qg(~r, Ω̂) =

∫ Eg

Eg+1

dE Q(~r, E, Ω̂) . (1.11)

Note that energy groups with higher indices are lower in energy. This convention stems from
the fact that neutrons are born from fission at high energies and slow down to lower energies
throughout their life.

The multigroup form of the transport equation presented here is not typically used, as it
has the inconvenient property of having an angular dependent total cross section. This angular
dependence is a result of collapsing to the multigroup form by integrating with the angular
flux. Instead, an approximate multigroup transport equation is much more commonly solved,
where the total cross section is collapsed using the scalar flux:

Ω̂ · ∇ψg(~r, Ω̂) + Σt,g(~r, Ω̂)ψg(~r, Ω̂) =
1

4π

G∑
g′=1

Σs,g′→g(~r)φg′(~r) + Qg(~r, Ω̂) (1.12)
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Figure 1.2: Diagram of the multilevel approach used in deterministic reactor physics calcula-
tions.

Σt,g(~r) =

∫ Eg
Eg+1

dE Σt(~r, E)φ(~r, E)∫ Eg
Eg+1

dE φ(~r, E)
. (1.13)

The consequences of this approximation are explored in Ch. 7.

Other than the approximation for the total multigroup cross section, the multigroup
transport equation is an exact representation of the true neutron transport equation. However,
the multigroup constants require knowledge of the continuous energy flux, which is not known
a priori. This difficulty is summarized particularly well by this quote from the NJOY manual
[1]:

“Wait a minute,” you ask, “the purpose of solving the transport equation is to get
the flux, but I have to know the flux to compute the multigroup constants!” This
conundrum is the source of much of the “art” in using multigroup methods.

To overcome this challenge, a multi-level framework is usually employed to approximate
the flux for use in collapsing multigroup constants. In this framework, a small problem—either
an infinite medium or a single unit cell—is solved with continuous or near continuous energy
cross sections. This is known as the self-shielding or database level. Next, cross sections are
condensed to O(50 − 500) groups, which are used in a larger calculation, typically a reactor fuel
assembly. This step is known as the lattice level. Finally, the cross sections are condensed
further to O(2 − 10) groups and used in a full-core calculation. A diagram of this process is
shown in Fig. 1.2.

In Part II, methods used for the self-shielding level and the lattice level are discussed. Typ-
ically, the self-shielding level involves solving the slowing down equation or an approximation
to it in an infinite medium, which is discussed in Ch. 2. In recent years, it has become more
common to incorporate geometry into this process, usually by means of an ultrafine solution
(discuseed in Ch. 5) or by Monte Carlo methods. Traditionally, the lattice level uses equivalence
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in dilution methods (Ch. 3) or the subgroup method (Ch. 4). Ultrafine methods can be used to
combine the self-shielding and lattice levels by applying the method to a larger geometry, but
this is typically associated with a prohibitive computational cost.

1.3 Method of Characteristics

Of the many approaches to solving the neutron transport equation, the primary solver used
in this work is the method of characteristics (MOC) [2]. The results given in this thesis were
generated by an MOC code developed by the author, inspired by the open source OpenMOC [3].
The method is briefly explained here.

The method of characteristics recognizes that the streaming term in the neutron transport
equation is just the rate of change of the angular flux along a straight line path, i.e., a
characteristic:

Ω̂ · ∇ψ(~r, Ω̂, E) =
d
ds
ψ(~r0 + sΩ̂, E) , (1.14)

where ~r = ~r0 + sΩ̂. The characteristic form of the transport equation, with a generic source that
includes scattering, is

d
ds
ψ(~r0 + sΩ̂, E) + Σt(~r0 + sΩ̂, E)ψ(~r0 + sΩ̂, E) = Q(~r0 + sΩ̂, E) . (1.15)

The most common form, and only form considered in this work, separates the geometry
into so-called flat source regions, regions of the geometry in which the source is assumed to
be constant. The solution to the transport equation is then solved by integrating along many
tracks at different angles and starting points along a global boundary and using a numerical
quadrature to obtain the scalar flux. An advantage of this approach is, unlike many other
deterministic solvers, the method of characteristics can use an exact geometry; it does not
require representing boundaries between materials or otherwise with any approximation.
Geometry specification is performed by constructive solid geometry. Quadratic surfaces—
those that can be represented by quadratic equations in the spatial variables—are used, and
geometric regions are defined by a list of bounding surfaces and their orientations.

Following geometry specification, characteristic tracks are layed down across the geometry.
Tracks start from one global boundary and extend until they reach another global boundary.
The tracks are then segmented, i.e., separated into segments by splitting the track at each
flat source region boundary. Tracks are separated by an equal amount approximately, and
the amount is input by the user. Similarly, azimuthal angles are chosen to be approximately
uniformly spanning the unit circle, and the number of angles used is an input by the user. The
track spacing and number of angles are not perfectly uniform, as cyclic tracking is imposed.
That is, all tracks must end at the same point that another track begins. This aids in the
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modeling of reflective and periodic boundary conditions. The polar angles and associated
quadrature used are those which were recommended by Yamamoto and Tabuchi [4].

Starting from a global boundary with a given boundary flux—either specified as the
boundary condition or iterated on for reflective or periodic boundary conditions—the neutron
transport equation is integrated across each track. The outgoing flux ψ+ as a function of the
incoming flux ψ− for each segment is given by

ψ+ = ψ−e−Σt∆ +
Q
Σt

(
1 − e−Σt∆

)
, (1.16)

where ∆ is the length of the segment. The average angular flux along a segment is

ψ =
1
∆

ψ−Σt

(
1 − e−Σt∆

)
+

∆Q
Σt

1 −
(
1 − e−Σt∆

)
Σt∆


 . (1.17)

Once the flux for each segment is computed, the volume-averaged scalar flux in each flat source
region is computed by

φ =
1
V

∫
V

d~r
∫

4π
dΩ̂ψ . (1.18)

The integrals are carried out by a numerical quadrature,

φ =
4π
V

∑
k∈V

ωm(k)ωp(k)ωk∆ sin θp(k)ψk , (1.19)

where k is the index for a particular segment, ωm(k) is the azimuthal quadrature weight for the
segment, ωp(k) is the polar quadrature weight for the segment, ωk is the spatial quadrature
weight for the segment, θp(k) is the polar angle for the segment, and ψk is the average flux along
that segment.

If the source is dependent upon the flux, after the flux is computed, the source is recomputed.
An iterative process is followed until the solution converges.

1.4 Motivation and Objectives

Deterministic neutron transport methods require carefully chosen multigroup constants to
accurately model the distribution of reaction rates in a nuclear reactor. These multigroup
constants are computed using various self-shielding methods, detailed in Part II. However,
these self-shielding methods are based on a series of approximations. Such approximations
have proven to yield suitable results for the design and analysis of the existing fleet of
commercial light water reactors. However, with the reality that large experiments are likely
too costly to be incorporated into advance reactor design, predictive capabilities outside of the
design space covered by existing reactors is desired. Even small changes to existing designs—
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such as pushing to higher burn-up fuel, using mixed oxide fuels, or axial heterogeneity—cause
many of the legacy reactor analysis tools to break down.

Furthermore, even without stressing the methods with new designs, higher fidelity simu-
lations are desired. Closer multiphysics coupling is the goal of much of the ongoing work in
reactor physics. Thermal hydraulic analysis provides temperature distributions that can be
used in neutronics simulations; in return, neutronics simulations provide power distributions
to be used in the thermal hydraulic analyses. Fuel performance analyses also are closely
coupled with both thermal hydraulics and neutronics. Although such multiphysics coupling is
not the subject of this thesis, the requirements of multiphysics coupling provide motivation
for better methods. Neutronics methods that can take into account temperature effects in the
self-shielding calculation or that predict the effect of a heterogeneous lattice on the rate of
depletion in intra-pin zones or be applied to distorted geometries are needed.

There are two primary objectives of this thesis. First, this thesis seeks to quantitatively
measure the current status of self-shielding methods. It seeks to identify situations in which
the current methods perform well and to also understand their limits. It seeks to find situations
that cannot be handled by existing methods and to quantify the adverse effects of applying
the existing methods to these situations. And it seeks to do this in a way that is adaptable to
problems not studied specifically in this thesis, as a framework for future evaluation of these
problems.

Second, the thesis proposes new self-shielding methods. The new methods are not intended
to be monumental deviations from the norm, revolutionizing the industry. Instead, the methods
are intended to be small changes to existing methods that allow their range of applicability to
increase.

For both of these objectives, the thesis primarily—although not exclusively—considers the
context of mutual self-shielding. This is the effect of the resonances of one nuclide affecting
the reaction rates in the resonances of another nuclide. This particular issue exists in current
LWRs, but is exacerbated in the context of higher burnup fuels, mixed oxide fuels, or other
alternate materials.

1.5 Outline

This thesis is divided into five parts, each containing chapters.

Part I contains only this chapter, and serves as an introduction to the problems considered
and the methods used in this thesis.

Part II is a substantial review of existing self-shielding methods. In it, Ch. 2 is a discussion
of neutrons slowing down in infinite media, which is the primary method used at the self-
shielding or database level of the multi-level approach and provides the basis of all the other
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methods considered. Chapter 3 introduces equivalence in dilution, the primary workhorse of
lattice-level cross section generation for many decades. Chapter 4 introduces the subgroup
method, which is an alternative to equivalence in dilution that has become increasingly popular
in lattice physics codes more recently. And Ch. 5 introduces ultrafine methods, the clear path
forward to higher fidelity, but which comes at a high computational cost.

Part III provides several significant contributions to the field. Chapter 6 presents a simple
framework for evaluating self-shielding methods. Chapter 7 investigates the approximation
made by scalar flux weighting the total multigroup cross section. Chapter 8 discusses the
issue of mutual self-shielding in detail and introduces two new methods for accounting for the
effects.

Part IV contains a single, long chapter, Ch. 9. This takes the next step from the framework
presented in Ch. 6 and compares both old and new methods on realistic but small problems.

Finally, Part V wraps up the thesis, providing conclusions and references.
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Part II

Background

22



Chapter 2

Slowing Down in Infinite Media

2.1 Introduction

The foundation of classical self-shielding methods is the solution of the neutron slowing down
equation, which represents how neutrons behave in an infinite medium. The resulting flux
is used to generated cross sections, which are used directly in heterogeneous calculations
(discussed in Ch. 3) and used to generate subgroup quadratures (discussed in Ch. 4).

The generation of infinite medium cross sections, stored in homogeneous nuclear data
tables, is typically the first level of the multi-level approach for multigroup cross section
generation. Continuous energy cross sections are collapsed to on the order of hundreds of
groups and stored in a database. These then serve as the inputs to lattice-level methods.

In this chapter, the slowing down of neutrons in the resolved resonance range of major
actinides is considered. Scattering is assumed to be isotropic in the center of mass, and the
implications of this are explored. The slowing down equation is presented, direct solutions are
discussed, and approximate solutions are introduced.

2.2 Physics of Elastic Scattering

When a neutron scatters off a target nucleus, its change in energy is directly correlated with
the scattering angle. Here, the relationship between energy and angle is demonstrated for a
target nucleus at rest. In the resonance region, thermal motion of the nucleus is generally
considered negligible compared to the energy of the neutron in regards to the scattering physics
(relationship of incoming and outgoing energies of the neutron and nucleus). Although thermal
motion affects the center of mass energy of interaction, which has an important impact on
resonance behavior, this effect can be accounted for by modifying the cross section through
a process known as Doppler broadening [5]. For some nuclides with resonances with large
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Table 2.1: Nomenclature used in scattering derivation, Eq. (2.1) through Eq. (2.13).
Symbol Meaning

~· Vector; magnitude implied when vector notation is not used
ẑ Unit vector in direction z
Ω̂ Unit vector in direction of neutron travel
θ Angle between ẑ and Ω̂

A Nucleus mass relative to the neutron mass
VCOM Velocity of the center of mass
v0 Initial velocity of the neutron in the LAB system
v Final velocity of the neutron in the LAB system
u0 Initial velocity of the neutron in the COM system
u Final velocity of the neutron in the COM system

U0 Initial velocity of the nucleus in the COM system
U Final velocity of the nucleus in the COM system
p0 Initial total momentum in the COM
p Final total momentum in the COM

K0 Total kinetic energy in the COM
K Final kinetic energy in the COM
E0 Initial kinetic energy in the LAB
E Final kinetic energy in the LAB

scattering widths, the small probability of upscattering due to thermal motion can have an
important effect, but the associated scattering physics is not discussed here [6].

Now, a derivation of relationships between incoming and outgoing energies of the neutron
and nucleus is presented, with nomenclature defined in Tab. 2.1. Consider a neutron with
kinetic energy E0 and corresponding velocity v0 in direction ẑ colliding with a stationary nucleus
with mass A times the neutron mass. The velocity of the center of mass is

~VCOM =
v0ẑ

A + 1
. (2.1)

The corresponding velocities of the neutron and target nucleus, respectively, in the center of
mass frame are

~u0 = ~v0 − ~VCOM =
A

A + 1
v0ẑ (2.2)

~U0 = 0 − ~VCOM = −
1

A + 1
v0ẑ . (2.3)

The total momentum in the center of mass frame before the collision is

~p0 = ~u0 + A ~U0

=
A

A + 1
v0ẑ − A

1
A + 1

v0ẑ = ~0 .
(2.4)
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The total kinetic energy in the center of mass frame before the collision is

K0 =
1
2
u

2
0 +

1
2

AU2
0

=
1
2

( A
A + 1

v0

)2
+

1
2

A
(

1
A + 1

v0

)2

=
1
2

A
A + 1

v2
0 .

(2.5)

After the collision, the neutron will be travelling in some direction Ω̂ with velocity u, both
defined in the center of mass frame. By conservation of linear momentum, the target nucleus
must be travelling in the opposite direction of the neutron, and its velocity U can be related to
the neutron’s by

~p = ~p0

u − AU = 0

u = AU .

(2.6)

With this relationship, the neutron velocity u can be put in terms of the initial lab velocity v0

through conservation of kinetic energy:

K = K0

1
2
u

2 +
1
2

AU2 =
1
2

A
A + 1

v2
0

u
2 +
u2

A
=

A
A + 1

v2
0

u
2 =

( A
A + 1

)2
v2

0

(2.7)

u =
A

A + 1
v0 . (2.8)

Defining the center of mass scattering angle θ as

cos(θ) = Ω̂ · ẑ , (2.9)

the components of the final neutron lab velocity v can be determined. With ẑ being the initial
neutron direction and ⊥ representing the perpendicular component, the components are

vz = VCOM + u cos(θ)

=
1

A + 1
v0 +

A
A + 1

v0 cos(θ)
(2.10)

v⊥ = u sin(θ)

=
A

A + 1
v0 sin(θ) .

(2.11)
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The squared magnitude of the final neutron lab velocity is

v2 = v2
z + v2

⊥ =
v2

0

(A + 1)2

[
(1 + A cos(θ))2 + A2 sin2(θ)

]
= v2

0

(
A2 + 2A cos(θ) + 1

(A + 1)2

)
.

(2.12)

The outgoing neutron energy in the lab system can then be put in terms of the cosine of the
center of mass scattering angle µ = cos(θ) as

E =
1
2
v2

= E0

(
A2 + 2Aµ + 1

(A + 1)2

)
.

(2.13)

In the resonance range, elastic scattering is nearly isotropic in the center of mass. If
isotropic COM scattering is assumed, the energy distribution can be obtained. To see this, first
consider the definition of isotropic scattering:

P(µ) dµ =
1
2

dµ, µ ∈ [−1, 1] . (2.14)

The equivalent energy distribution can be written as

P(E0 → E) dE = P(µ)
dµ
dE

dE . (2.15)

Equation (2.13) can be solved in terms of µ and then differentiated to obtain

dµ
dE

=
(A + 1)2

2AE0
. (2.16)

Therefore, the energy distribution is

P(E0 → E) dE =
(A + 1)2

4AE0
dE

=
1

(1 − α)E0
dE ,

(2.17)

where

α =

(
A − 1
A + 1

)2

. (2.18)

The bounds on this distribution can be determined by inserting the bounds of µ into Eq. (2.13):

E
∣∣∣∣
µ=−1

= αE0

E
∣∣∣∣
µ=1

= E0 .
(2.19)
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Thus, the probability distribution function for the outgoing energy after an elastic scattering
collision isotropic in the center of mass is

P(E0 → E) =


1

(1 − α)E0
, αE0 ≤ E ≤ E0

0, otherwise .
(2.20)

With this probability distribution, average quantities can be obtained. Of particular interest
is the average logarithmic energy decrement, defined as

ξ =
〈

ln E0 − ln E
〉

=

〈
ln

(E0

E

)〉
, (2.21)

where the angle brackets indicate an average over the outgoing energy. This is obtained by
averaging the quantity ln(E0/E) in terms of the probability distribution over the energy interval
in which the probability is nonzero:

ξ =

∫ E0

αE0

ln
(E0

E

) 1
(1 − α)E0

dE

=
1

(1 − α)E0

[
E ln

(E0

E

)
− E

]E0

αE0

(2.22)

ξ = 1 +
α

1 − α
lnα . (2.23)

This form is independent of the incoming energy, depending only on the mass of the target
nuclide.

Because neutron slowing down is characterized by neutrons losing fractions of their energy
in each collision, a common change of variables in the neutron slowing down equation intro-
duces a quantity known as the lethargy u (not to be confused with the COM velocity u used
earlier):

u = ln
Ere f

E
, (2.24)

where Ere f is some reference energy, often taken to be the largest energy encountered in a
simulation. Lethargy increases as neutron energy decreases—colloquially, this suggests that
neutrons with less energy are more “lethargic”. With this definition, ξ of Eq. (2.23) can also be
thought of as the average lethargy gain per collision. The elastic scattering kernel in terms of
lethargy is

P(E0 → E) dE = P(u0 → u) du

du = −
1
E

dE
(2.25)

P(u0 → u) =


1

1−αeu−u0 , u0 ≤ u ≤ u0 − lnα

0, otherwise .
(2.26)
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For further references on this topic, see [5, 7, 8].

2.3 Pure Elastic Scatterer

Next, consider the behavior of neutrons slowing down in an infinite medium of a purely
scattering material, assuming elastic scattering is isotropic in the center of mass. This thesis
is concerned with the resolved resonance range of the actinides, and so this energy range is
well below the threshold energies of inelastic scattering and is well below the average energy
of fission neutron emission.

Without spatial dependence, the neutron transport equation solely models the energy
spectrum of the flux. Because no upscattering is assumed, this equation is known as the
neutron slowing down equation. With a pure elastic scatter, the neutron slowing down equation
can be written as

Σs(E)φ(E) =

∫ E/α

E
Σs(E′)P(E′ → E)φ(E′)dE′ + S (E)

=

∫ E/α

E

Σs(E′)φ(E′)
(1 − α)E′

dE′ + S (E) .

(2.27)

If the assumption that the source S (E) exists only at high energies and the energy of interest
is far below the source energy, the equation can be simplified to represent the flux in its
asymptotic form:

Σs(E)φ(E) =

∫ E/α

E

Σs(E′)φ(E′)
(1 − α)E′

dE′ . (2.28)

It is easily verified that the solution to this equation takes the form

φ(E) =
C

Σs(E)E
(2.29)

by inserting this form into the equation. Because this flux varies as 1/E, it is often convenient
to define the flux in terms of lethargy with

φ(E) dE = φ(u) du

φ(u) = Eφ(E) .
(2.30)

This allows the flux to be treated as constant, except for the effects of the cross section. For
the remainder of this discussion, the flux will be kept in terms of energy, but this lethargy
transformation will be used in subsequent discussions.

To determine the constant C, consider the quantity known as the “slowing down current”
q(E). This quantity is the rate at which neutrons with energies greater than E scatter with
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outgoing energies less than E. Mathematically, this quantity is defined as

q(E) =

∫ E/α

E
dE′

∫ E

αE′
dE′′ Σs(E′)P(E′ → E′′)φ(E′) . (2.31)

By inserting the flux shape of Eq. (2.29) and the elastic scattering kernel, the slowing down
current becomes

q(E) =

∫ E/α

E
dE′

∫ E

αE′
dE′′

C
(1 − α)E′2

= C
[
1 +

α

1 − α
lnα

]
= Cξ ,

(2.32)

where ξ is the average logarithmic energy decrement defined in Eq. (2.23). Now, consider the
value of q(E). Below the energy of the source, assuming steady-state behavior and the absence
of absorption, the rate of neutrons slowing down past any energy point must be the same as
the source rate:

q(E) =

∫ ∞

E
S (E′)dE′ ≡ S 0 . (2.33)

Then, the flux in an infinite medium of a purely elastic scattering material at energies well
below the source energy is given by

φ(E) =
S 0

ξΣs(E)E
. (2.34)

Up to this point, only energies far below the source energy have been considered. This
is a good approximation for the resonance range of heavy nuclides, but a demonstration of
this fact is warranted. Consider a simple problem, that of an infinite medium containing a
purely elastic scattering constant cross section monoisotopic material with a source given
by S (E) = S 0δ(E − E0), where δ(E − E0) is the Dirac delta function centered at E0. Rather
than consider the entirety of the flux in this system, consider separately neutrons that have
undergone specific numbers of collisions.

First, the uncollided flux φ0 is given simply as

Σsφ0(E) = S 0δ(E − E0)

φ0(E) =
S 0

Σs
δ(E − E0) .

(2.35)

The flux exists only at the source energy and is nonzero only at a singularity.

Next, the once-collided flux φ1 is a solution to the slowing down equation with the source
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coming from scattering from the uncollided flux:

Σsφ1(E) =

∫ E/α

E

Σsφ0(E′)
(1 − α)E′

dE′

φ1(E) =


S 0

(1 − α)ΣsE0
, E ∈ [αE0, E0]

0, otherwise .

(2.36)

This flux is piecewise constant in energy, featuring a discontinuity at αE0.

Next, the twice-collided flux φ2 uses the once-collided flux in its scatter source:

Σsφ2(E) =

∫ E/α

E

Σsφ1(E′)
(1 − α)E′

dE′ . (2.37)

Because φ1 is defined piecewise, the integral must be split into pieces. First, the interval
E ∈ [αE0, E0] is considered:

φ2(E) =

∫ E0

E

S 0

(1 − α)ΣsE0

1
(1 − α)E′

dE′

=
S 0

(1 − α)2ΣsE0
ln

E0

E
, E ∈ [αE0, E0] .

(2.38)

The flux in the interval E ∈ [α2E0, E0] is

φ2(E) =

∫ E/α

αE0

S 0

(1 − α)ΣsE0

1
(1 − α)E′

dE′

=
S 0

(1 − α)2ΣsE0
ln

E
α2E0

, E ∈ [α2E0, αE0] .

(2.39)

The flux is zero below this point. Note that this twice-collided flux is continuous, but exhibits
discontinuities in its derivatives at α2E0 and αE0. It is piecewise linear in ln E—or equivalently,
in lethargy.

The thrice-collided flux φ3(E) uses the twice collided flux in its scatter source:

Σsφ3(E) =

∫ E/α

E

Σsφ2(E′)
(1 − α)E′

dE′ . (2.40)

As with the twice-collided flux, this integral is split to account for the piecewise definition of φ2.
In the interval E ∈ [αE0, E0], the flux is

φ3(E) =
S 0

(1 − α)2ΣsE0

∫ E0

E
ln

E0

E′
1

(1 − α)E′
dE′

=
1
2

S 0

(1 − α)3ΣsE0
ln2 E0

E
, E ∈ [αE0, E0] .

(2.41)
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In the interval E ∈ [α2E0, αE0], the flux is

φ3(E) =
S 0

(1 − α)2ΣsE0

[∫ E/α

αE0

ln
E0

E′
1

(1 − α)E′
dE′ +

∫ αE0

E
ln

E′

α2E0

1
(1 − α)E′

dE′
]

=
1
2

S 0

(1 − α)3ΣsE0

[
2 ln2 1

α
− ln2 αE0

E
− ln2 E

α2E0

]
, E ∈ [α2E0, αE0] .

(2.42)

And in the interval E ∈ [α3E0, α
2E0], the flux is

φ3(E) =
S 0

(1 − α)2ΣsE0

∫ E/α

α2E0

ln
E′

α2E0

1
(1 − α)E′

dE′

=
1
2

S 0

(1 − α)3ΣsE0
ln2 E

α3E0
, E ∈ [α3E0, α

2E0] .

(2.43)

The flux is zero below this interval. The flux is piecewise quadratic in ln E and exhibits
discontinuities in its second derivative at αnE0 for n = 1, 2, 3. It is continuous and has continuous
first derivatives.

This process can be continued for more and more collisions, with the integrals becoming
increasingly tedious. However, the trend is clear; each subsequent collision allows the flux
to extend an additional factor of α lower in energy, and each collision flux has one additional
derivative that is continuous than the previous. Each collision flux is piecewise polynomial
in ln E, with the orders increasing with collision. The piecewise nature of the flux is always
defined on intervals of the form [αnE0, α

n−1E0]. These intervals will be referred to as “scattering
intervals”.

The total flux is the sum of all the collision fluxes:

φ(E) =

∞∑
n=0

φn(E) . (2.44)

The total flux thus exhibits a discontinuity at αE0, a discontinuous first derivative at α2E0, a
discontinuous second derivative at α3E0, and so on. Because each of these discontinuities is
caused by a single collision flux, the collision fluxes can be used to determine the magnitude of
discontinuity. For instance, for the discontinuity at αE0, the magnitude of the discontinuity is

φ+(αE0) − φ−(αE0) = φ+
1 (αE0) − φ−1 (αE0)

=
S 0

(1 − α)ΣsE0
− 0

=
S 0

(1 − α)ΣsE0
.

(2.45)

In terms of the neutron lethargy, recalling that φ(u) = Eφ(E) from Eq. (2.30), this is

φ−(u0 − lnα) − φ+(u0 − lnα) =
S 0

Σs

α

1 − α
. (2.46)
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Although the higher collision fluxes are tedious to compute analytically, they are easily
computed numerically. Figure 2.1 shows the first several collision fluxes per unit energy,
plotted on a log scale, with A = 16. The piecewise polynomial in ln E can easily be seen. For
the fluxes with higher numbers of collisions, the curves peak lower in energy and increase in
magnitude. This suggests the 1/E flux shape is taking form. Figure 2.2 shows the total flux
per unit lethargy for this same case. The discontinuity at αE0 and the discontinuities in the
derivatives at αnE0 are easily seen. These discontinuities are known as Placzek transients.

From Fig. 2.2, it is observed that the flux reaches its asymptotic form after only a few
scattering intervals. The resolved resonance range for U-238, whose upper bound is 20 keV in
ENDF/B-VII.1, is below α5E0 for all nuclides A ≥ 6, assuming E0 is the average fission energy
of 1 MeV. For lighter moderators, the magnitude of the Placzek transients is much smaller,
and even for A = 2, the flux does not deviate more than 0.2% from the asymptotic value in
the resonance range. Furthermore, fission neutrons are actually emitted with a spectrum of
energies. This spread in the source energy lessens the effects of the Placzek transients even
further, as no sharp discontinuities will be observed in the flux or any of its derivatives when
starting from a distributed source. Thus, the assumption that the resonance range can be
treated as if energies are far below the source—and thus the flux takes its asymptotic form in
this range—is nearly exact.

For further references on this topic, see [5, 8].

2.4 Slowing Down with Absorption

In this section, the effect of absorption on the macroscopic form of the flux is considered. This
presentation is most similar to that of [8]. The flux shape near resonances is considered
starting in Sec. 2.5. The slowing down equation with absorption and elastic scattering isotropic
in the center of mass is

Σ(E)φ(E) =

∫ E/α

E

Σs(E′)φ(E′)
(1 − α)E′

dE′ + S (E) . (2.47)

Here, only a single nuclide is shown. This is easily extended to multiple nuclides by replacing
the integral on the right hand side with a sum of integrals, each corresponding to each nuclide’s
slowing down source.

2.4.1 Constant Absorption

For the case of α = 0, which corresponds to hydrogen, with energy-independent absorption and
scattering cross sections, the slowing down equation with absorption can be solved analytically.
Although absorption cross sections are never constant in energy in nature, if narrow enough
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Figure 2.1: Flux after n collisions with a monoenergetic source in a purely scattering infinite
medium.
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energy groups are used, it can be approximated as such. Furthermore, this analysis should
give the reader an appreciation of the effect of absorption over a large energy range. This
simplified slowing down equation is given by

Σφ(E) =

∫ ∞

E

Σsφ(E′)
E′

dE′ + S (E) . (2.48)

If it is assumed that the source exists only at high energies, then the equation for energies
below the source is

Σφ(E) =

∫ ∞

E

Σsφ(E′)
E′

dE′ . (2.49)

To solve, this is differentiated on both sides:

d
dE

φ(E) = −
Σs

Σt

φ(E)
E

. (2.50)

This differential equation can be solved by separation of variables. The result is

φ(E) = φ(E0)
(E0

E

)Σs/Σ

, (2.51)

where E0 is some energy at or below the source in which the flux is known. Note that this
result is the familiar φ ∼ 1/E result when the medium is purely scattering. If absorption is
present, this flux is always less than the 1/E flux, and the relative difference grows as energy
decreases.

2.4.2 Effect of Resonances

Now consider a material that is purely scattering aside from a single absorption resonance.
Above the resonance, the flux form of Eq. (2.34) holds, as no absorption has been encountered.
Far below the resonance, at least a factor of α lower in energy, the flux takes the same
asymptotic shape, but the normalization is lower to account for neutrons absorbed in the
resonance. Equation (2.34) can be generalized as

φ(E) =
q(E)

ξΣs(E)E
, (2.52)

valid when the scattering integrals do not include energies in which absorption cross sections
are nonzero. At energies below the resonance, the slowing down density is

q(E) = S 0 −

∫ ∞

E
Σa(E)φ(E) , (2.53)

which states that the rate at which neutrons slow down past energy E is equal to the difference
of the source rate and the absorption rate above E. Thus, the flux below the resonance
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eventually regains a 1/E shape, but with a magnitude reduced by a factor proportional to the
resonance absorption rate.

In the interval between the resonance and regaining the asymptotic flux form, the flux will
decrease during the slowing down process, as fewer neutrons from above the resonance will be
included in lower energy energy scatter sources. For large A nuclides, this transition region is
very small; for small A nuclides, potentially large. However, because the likelihood of jumping
over the resonance is higher for lower A nuclides, these exhibit smaller changes in the flux.

2.5 Slowing Down with Single Resonant Absorber

In this section, slowing down in the presence of a single resonant absorber is explored. The
resonant nuclide will be denoted with superscript ∗, and admixed moderator—referred to as the
“background” moderator—material with superscript +. It is assumed that the moderator has a
constant cross section, with both the scattering and absorption components possibly nonzero.
The background moderator will be shown as a single nuclide for most of this discussion, but
simply adding summations over moderator nuclides allows this to be generalized to multiple
background nuclides. The resonant nuclide is assumed to have a nonzero absorption cross
section only at its resonances. The scattering cross section is constant outside of resonances.
To justify these approximations, see Fig. 2.3, which shows the capture and scattering cross
section of U-238 below 70 eV. The capture cross section drops to near zero between resonances
while the scattering resonance is nearly constant at a nonzero value. The constant value
is denoted Σp as the potential scattering cross section, but it should be noted that this does
not suggest the quantum mechanical definition of potential scattering. Rather, it is merely
a matter of notational convenience to distinguish it from the scattering cross section that
includes resonance scattering Σs(E). All scattering is assumed to be isotropic in the center of
mass.

2.5.1 Direct Solution of Slowing Down Equation

The most obvious means of determining the neutron spectrum in infinite media is to simply
solve the slowing down equation numerically. For a resonant nuclide and background moderator
below the source energy, this equation is

(
Σ∗(E) + Σ+) φ(E) =

∫ E/α∗

E

Σ∗s(E
′)φ(E′)

(1 − α∗)E′
dE′ +

∫ E/α+

E

Σ+
pφ(E′)

(1 − α+)E′
dE′ . (2.54)

By directly solving this equation, no additional approximations are brought into play, other
than those involved in writing down the equation itself. The interaction between the resonances
and the scatter source is explicitly modeled. Note that the solution to this equation is only
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Figure 2.3: Capture and scattering cross section of U-238 below 70 eV.

unique within a multiplicative factor, and so some normalization must be chosen. Physically,
this normalization represents the source strength. In practice, the flux is used to generate
multigroup cross sections, and so is present both on the top and bottom of a fraction. Thus, the
choice of normalization is not significant.

This equation can be easily solved by Monte Carlo methods. This is a class of multigroup
cross section generation that has been explored in increasing detail in recent years, but these
methods are not explored in this thesis.

In a deterministic framework, this equation must be solved on a solution energy mesh
that resolves the resonances of nuclide ∗ sufficiently accurately. Typically, this is done on the
pointwise energy mesh on which the cross section is defined, but thinning is possible if so
desired.

Computation of the integrals naively requires O(n2) operations, where n is the number of
points. However, this can be reduced to O(n) operations by using cumulative integrals. If the
cumulative integral I for a given nuclide is defined as

I(E) =

∫ ∞

E

Σs(E′)
(1 − α)E′

dE′ , (2.55)

then the nuclide’s scatter source is given by∫ E/α

E

Σs(E′)
(1 − α)E′

dE′ = I(E) − I(E/α) . (2.56)

Furthermore, the cumulative integral I(E) can be computed during the solution of the slowing
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down equation by cumulatively adding only the lowest energy piece of the scattering integral.
If a cumulative integral is known at energy point E1, the cumulative integral’s value at the
next energy point E2 is given simply by

I(E2) = I(E1) +

∫ E1

E2

Σs(E′)φ(E′)
(1 − α)E′

dE′ . (2.57)

Note that the scatter sources must be calculated for each nuclide separately, and so a cumula-
tive integral must be stored for each nuclide to use this technique.

2.5.2 Narrow Resonance Model

In the narrow resonance (NR) model [9, 5], it is assumed that the interval in which neutrons
scatter is very large compared to the width of resonances. If the flux is written as

φ(E) = f (E)ϕ(E) , (2.58)

where f (E) is a slowly varying function representing the macroscopic behavior of the flux and
ϕ(E) is a fine structure function representing the behavior of the flux near the resonance, the
narrow resonance assumption implies∫ E/α

E

Σs(E′)φ(E′)
(1 − α)E′

dE′ ≈
∫ E/α

E

Σp f (E′)
(1 − α)E′

dE′ . (2.59)

The quantity C(E) is defined as

C(E) =

∫ E/α

E

f (E′)
(1 − α)E′

dE′ , (2.60)

and is itself a slowing varying function of the energy. Depending upon the choice of f (E), C(E)

may depend on the nuclide. If f (E) = 1/E, as is often used in practice, C(E) does not depend on
the nuclide, but most other choices do result in a nuclide-dependent definition.

The narrow resonance approximation can be made separately for the resonant nuclide
and the background moderator. That is, the appropriateness of the use of the NR model is
a function of the width of the resonances of a particular nuclide compared to the scattering
interval of a given nuclide. For the case of hydrogen, the scattering interval is very large, and
all resonances appear narrow in comparison. Here, the narrow resonance model is applied to
both the resonant nuclide and the background moderator. The slowing down equation with the
narrow resonance model is therefore

(
Σ∗(E) + Σ+) φNR(E) = Σ∗pC∗(E) + Σ+

pC+(E) , (2.61)
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and the flux is

φNR(E) =
Σ∗pC∗(E) + Σ+

pC+(E)

Σ∗(E) + Σ+
. (2.62)

It is common to define the background cross section σb as

σb =
Σ+

N∗
, (2.63)

and to define the quantity γ as

γ =
Σ+

p

Σ+
. (2.64)

The background cross section is often also known as the dilution cross section. With these
definitions, the NR flux is

φNR =
σ∗pC∗(E) + γσbC+(E)

σ∗(E) + σb
. (2.65)

Finally, in most applications, the macroscopic form of the flux is assumed to be f (E) ∼ 1/E.
Using this form, C(E) is independent of the nuclide and takes the form

C(E) =

∫ E/α

E

1
(1 − α)E′2

dE′ =
1
E

. (2.66)

Assuming a 1/E macroscopic form of the flux, the NR flux is

φNR(E) =
1
E

σ∗p + γσb

σ∗(E) + σb
. (2.67)

2.5.3 Slowing Down Equation with Narrow Resonance Moderator Source

The narrow resonance approximation can be used on the background moderator without being
applied to the resonant nuclide. This yields a simplified slowing down equation:

(
σ∗(E) + σb

)
φ(E) =

∫ E/α∗

E

Σs(E′)φ(E′)
(1 − α∗)E′

dE′ + C(E)γσb . (2.68)

This form is the form used in the NJOY flux calculator [1], which sets γ = 1. If the macroscopic
form of the flux is taken to be 1/E, then the slowing down equation can be further simplified to

(
σ∗(E) + σb

)
φ(E) =

∫ E/α∗

E

Σs(E′)φ(E′)
(1 − α∗)E′

dE′ +
γσb

E
. (2.69)

Here, the solution to the equation does not have a multiplicative degree of freedom and is in
fact unique. This is because the assumption that f (E) = 1/E contains the normalization.
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2.5.4 Wide Resonance Model

The wide resonance (WR) model [9, 5] assumes that resonances are wide in comparison to
the energy interval associated with scattering. Thus, neutrons that scatter at a resonance
energy are very likely to remain in the resonance. This allows the slowing down equation to
be simplified by assuming that no energy is lost in a scattering collision. The wide resonance
scatter source is thus∫ E/α

E

Σs(E′)φ(E′)
(1 − α)E′

dE′ ≈ lim
α→1

∫ E/α

E

Σs(E′)φ(E′)
(1 − α)E′

dE′

= lim
α→1

Σs(E)φ(E)
∫ E/α

E

1
(1 − α)E′

dE′

= Σs(E)φ(E) lim
α→1

− lnα
1 − α

= Σs(E)φ(E) .

(2.70)

Because assuming a very small scattering interval is equivalent to assuming α → 1, this
approximation is sometimes known as the infinite mass approximation.

As with the narrow resonance model, the wide resonance model can be applied individually
to the resonant nuclide and to the background moderator. The wide resonance model is rarely
applied to the background moderator, unless the moderator contains multiple nuclides, one
of which is heavy. This is because the moderator usually contains a lighter nuclide, and any
resonance would be narrow in comparison to a light nuclide’s scattering interval. What is
commonly presented as the wide resonance model itself is applying the wide resonance approx-
imation to the resonant nuclide but the narrow resonance approximation to the background
moderator. This is also known as the narrow resonance-infinite mass (NRIM) approximation:

(
σ∗(E) + σb

)
φ(E) = σs(E)φ(E) + C(E)γσb . (2.71)

Solving this equation for the flux, the wide resonance flux is achieved:

φWR(E) =
C(E)γσb

σ∗a(E) + σb
. (2.72)

Assuming a 1/E macroscopic form of the flux, this is

φWR(E) =
1
E

γσb

σ∗a(E) + σb
. (2.73)

2.5.5 Intermediate Resonance Model

The narrow resonance and wide resonance models represent two extreme cases, one with
resonances being very narrow compared to a scattering interval and one with resonances
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Figure 2.4: Scattering intervals of U-238 and O-16 compared to the 20.8 eV resonance of U-238.

being very wide. Of course, there is an entire spectrum of resonance widths versus scattering
intervals. Even in a single material, a resonance may appear wide to one nuclide but narrow
to another. To see this, consider Fig. 2.4. The scattering interval of U-238 is on the order of the
width of the resonance, whereas the scattering interval of O-16 is much larger. The scattering
of U-238 behaves more like the wide resonance model whereas the scattering of O-16 behaves
more like the narrow resonance. Note that hydrogen nearly always is well-represented by the
narrow resonance model, as it’s scatter interval extends to zero energy.

One means of approximating the flux in resonances that are neither narrow nor wide is
to use the intermediate resonance (IR) model [10]. The IR scatter source is simply a convex
combination with parameter λ of the NR and WR scatter sources:∫ E/α

E

Σs(E′)φ(E′)
(1 − α)E′

dE′ ≈ λC(E)Σp + (1 − λ)Σs(E)φ(E) . (2.74)

Note that this form reduces to the NR approximation when λ = 1 and to the WR approximation
when λ = 0. Thus, the IR model can be used as a more general case of all three models, and
this will be done in subsequent sections.

The IR approximation can be applied separately to the resonant nuclide and the background
moderator. In this section, it is applied only to the resonant nuclide; Sec. 2.5.6 discusses the
approximation applied to the background moderator. Applying the IR model to the resonant
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nuclide and the NR model for the background moderator, the approximated slowing down
equation is (

σ∗a(E) + λσ∗s(E) + σb
)
φ(E) = λC∗(E)σ∗p + C+(E)γσb , (2.75)

and the flux is given by the equation

φIR(E) =
λC∗(E)σ∗p + C+(E)γσb

σ∗a(E) + λσ∗s(E) + σb
. (2.76)

If the macroscopic form of the flux is assumed to vary as 1/E, then this simplifies to

φIR(E) =
1
E

λσ∗p + γσb

σ∗a(E) + λσ∗s(E) + σb
. (2.77)

The parameter λ is not easily obtained, and various prescriptions and usages can be found in
literature. The parameter is best defined in the context of a single resonance, and characterizes
the relative width of the resonance compared to the nuclide’s scattering interval. However, this
requires a means of determining many λ values for each nuclide, and is not easily accomplished
in practice.

In other applications, λ has been treated as a parameter for a given nuclide, using only
a single value for its entire energy range. Although this makes library generation simple, it
is difficult to justify physically. Even if resonance widths are approximately constant in an
absolute sense, the widths relative to the energy range are wildly varying. Because scattering
intervals are defined as fractions of the neutron energy, resonances at higher energies appear
much narrower than those at lower energies, if the width is held constant.

The compromise between these two inconvenient extremes is to use a value of λ for each
energy group for each resonant nuclide. This value is determined by comparing the cross
sections (or equivalently, effective resonance integrals) with various values of λ to a reference
value obtained by direct solution of the slowing down equation. When the cross sections match,
λ has been found. This value of λ is technically dependent upon the background moderation
level, but is often computed for a representative value and assumed constant.

It should be noted that the scatter source is not truly well-represented by a linear combina-
tion of the narrow and wide resonance models. Rather, λ serves more as a correction factor
that enables accurate cross sections to be obtained but does not accurately capture the physics
at hand. This detail is explored in more detail in Sec. 8.4.2.

2.5.6 Effective Background Cross Section

In the preceding section, application of the intermediate resonance model to the resonant
nuclide was considered. Now, consider application of the model to the background moderator.
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Because the scattering interval for hydrogen is the entire energy range below the incoming
neutron energy, hydrogen’s scattering interval is always considered to be very large compared
to a resonance width. Thus, hydrogen is very well-represented by the narrow resonance model.
A collision with hydrogen at a resonance energy will nearly always cause the neutron to scatter
to an energy well below the resonance. For other nuclides, a fraction of scattering events will
result in escape from the resonance, but another fraction will result in the neutron remaining
within the resonance. Scattering events resulting in neutrons remaining within the resonance
are nearly equivalent to the interaction not happening at all. In the narrow resonance model,
the value of α does not appear, and so the neutrons that escape from the resonance can be
treated as hydrogen without a change in the NR form. Thus, the intermediate resonance model
for background moderators is equivalent to replacing the background moderator with a smaller
quantity of hydrogen.

A similar procedure for the determination of λ as in the preceding section can be performed
for the background moderator, where various values of λ are compared against a reference
solution. This is complicated by the fact that λ for the resonant nuclide cannot be easily
separated in this calculation. Although procedures for resolving this issue can be found in
literature [11], another procedure that is quite intuitive and reliable exists. The procedure is
as follows.

First, two background cross section levels are chosen. These should be indicative of the
range of background cross sections expected to be encountered in a future simulation, but their
selection can be freely chosen. Assume the two levels are σb1 and σb2 with σb2 > σb1. Next,
compute cross sections (or equivalently, effective resonance integrals) using these background
levels in a direct solution of the slowing down equation, with the background nuclide set to
hydrogen. Let these cross sections be notated σ1 and σ2. Next, compute a cross section with a
material with an amount of hydrogen equivalent to a background level of σb1 and an amount
of the background nuclide of interest equivalent to a background level of σb2 − σb1, resulting in
cross section σ3. The intermediate resonance parameter is given by

λ =
σ3 − σ1

σ2 − σ1
. (2.78)

The difference in cross section between σ2 and σ1 is caused by the increased fraction of neutrons
that escape resonances due to an increase in the amount of hydrogen. The difference between
σ3 and σ1 is due to the resonance escape due to the presence of the background nuclide of
interest. The ratio of these differences gives the equivalent amount of hydrogen that the
nuclide of interest provides. This procedure assumes the effect of adding hydrogen has a linear
effect on the value of the cross section. This is, of course, most accurate for small changes in
the background level, and so σb2 should not be chosen to be too much larger than that of σb1.
Note that the value of λ is dependent on the nuclide mass A and the background level σb1. As
in the previous section, the σb1 dependence is most often ignored.
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With this definition, and with a background moderator made up of several nuclides, the
effective background cross section that can be used with a narrow resonance approximation
while accounting for these mass effects is

σb =
1

N∗
∑
i∈+

(
Σi

a + λiΣi
p

)
, (2.79)

where i denotes the nuclide, and γ for this case is

γ =

∑
i∈+ λ

iΣi
p∑

i∈+

(
Σi

a + λiΣi
p

) . (2.80)

2.5.7 Homogeneous Nuclear Data Tables

As will be shown in subsequent discussion, homogeneous cross sections are particularly
valuable quantities for reactor physics simulations, even for heterogeneous geometries. Thus,
rather than compute group cross sections for each simulation, it is generally desirable to
tabulate homogeneous cross sections into a cross section library.

A library generally consists of all relevant cross sections (or effective resonance integrals)
and other nuclear data for a particular group structure. The selection of the group structure
is an important consideration for reactor physics simulations but is outside the scope of this
thesis. Nuclear data is tabulated as a function of the background level and of the temperature.

The parameter γ is not usually considered a free parameter in the tabulation, but can
be included if so desired. However, the flux obtained in this section, used for generation of
cross sections or resonance integrals, is unique only within a multiplicative constant. The
flux obtained through Eqs. (2.67), (2.69), (2.73) and (2.77) depends upon γ only within the
multiplicative constant, and so parameterization by γ is unnecessary. If C(E) is not taken to be
1/E, or if the direct solution of the full slowing down equation is used, γ may play a—likely
very small—role in the obtained cross sections.

The background material used to generate the nuclear data tables is generally chosen to
consist solely of hydrogen. This removes the degrees of freedom introduced by allowing for
many background nuclides, and is a good approximation, due to the hydrogen equivalence
presented in Sec. 2.5.6. Of course, tables could be generated that parameterize the background
material, but these are not often seen in practice.

In the cross section table, there are several options of what data can be stored. Most
intuitively, the value of the cross section can be stored for each background and temperature
point. Alternatively, a cross section at a reference background and temperature can be stored
along with multiplicative factors, known as self-shielding factors, that can be used to recover
the cross section value. Finally, additive deviations can be stored relative to the reference
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value rather than multiplicative self-shielding factors. These additive deviations are generally
preferred if the scattering matrix is included as a function of background and temperature in
the table. In this case, many entries in the scattering matrix will not change, and the matrix
containing deviations will be more sparse than the scattering matrix itself.

Approximating the Group Flux

The group flux is an important quantity for the nuclear data library, as it allows conversion
between effective resonance integrals and group cross sections, and it is needed in other aspects
of the self-shielding process—e.g., in using n-term rational approximations (see Sec. 3.5.3).
However, it is rarely tabulated, as it can be approximated from other tabulated data when
using the intermediate resonance model (or equivalent form) and C(E) = 1/E.

Consider the group flux of the intermediate resonance model from Eq. (2.77), neglecting the
superscripts ∗:

φ(E) =
1
E

λσp + γσb

σa(E) + λσs(E) + σb
. (2.81)

The group flux is given by integrating this over the bounds of an energy group:

φg =

∫
g

1
E′

λσp + γσb

σa(E′) + λσs(E′) + σb
dE′ (2.82)

By adding and subtracting σa(E′) in the numerator, this integral can be rewritten as

φg =

∫
g

1
E′

σa(E′) + λσp + γσb

σa(E′) + λσs(E′) + σb
dE′ −

∫
g

1
E′

σa(E′)
σa(E′) + λσs(E′) + σb

dE′ . (2.83)

The first term on the right hand side has very nearly the same quantity in the numerator and
the denominator, with two differences. First, there is a γ multiplying σb in the numerator but
not the denominator. However, as previously argued, γ only affects the flux by a multiplicative
factor and is chosen to be unity in most situations. For this approximation to be valid, it
is assumed that γ is in fact set to unity. Second, σp appears in the numerator in the place
that σs(E′) appears in the denominator. For the vast majority of resonances, the resonance
absorption component is far greater than the scattering component—the 36 eV U-238 resonance
being the most notable exception. Thus, even at resonance energies, this ratio is very nearly
unity. Even in cases where the ratio may stray from unity, the resonance width is often much
smaller than the width of the energy group, and the effect on the integral is negligible. Thus,
this first term can be approximated by∫

g

1
E′

σa(E′) + λσp + γσb

σa(E′) + λσs(E′) + σb
dE′ ≈

∫
g

1
E′

dE′ = ∆ug . (2.84)
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The second term in Eq. (2.83) is exactly represented by∫
g

1
E′

σa(E′)
σa(E′) + λσs(E′) + σb

dE′ =
∆ugIa,g

λσp + σb
, (2.85)

maintaining the assumption that γ = 1. The integrated group flux is thus approximated by

φg = ∆ug

(
1 −

Ia,g

λσp + σb

)
. (2.86)

This result allows the group cross section to be put in terms of effective resonance integrals.
The group cross section for reaction ρ is given by

σρ,g =
∆ugIρ,g
φg

. (2.87)

Inserting Eq. (2.86) into this form gives the cross section defined in terms of the resonance
integrals:

σρ,g =
Iρ,g

1 − Ia,g/(λσp + σb)
. (2.88)

Thus, by only minor approximations in the determination of the group flux, the cross section
can be determined from resonance integrals without storing the group flux explicitly.

Finally, by inserting Eq. (2.88) into Eq. (2.86), the group flux can be approximated using
only cross sections. First, Eq. (2.88) with ρ as absorption is rearranged to solve for Ia,g:

Ia,g =
σa,g

1 + σa,g/(λσp + σb)
. (2.89)

This is inserted into Eq. (2.86) to obtain

φg = ∆ug

(
1 −

σa,g

σa,g + λσp + σb

)
. (2.90)

The information in this section was derived from material in [12].

2.6 Multiple Resonant Absorbers

2.6.1 Direct Solution of Slowing Down Equation

The full slowing down equation can be solved directly, using the same methods as in Sec. 2.5.1.
The slowing down equation need not be split into resonant nuclides and background moderators,
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instead taking the seemingly simple form

Σ(E)φ(E) =
∑

i

∫ E/αi

E

Σs(E′)φ(E′)
(1 − αi)E′

dE′ . (2.91)

However, the solution energy mesh for this equation must be one that resolves all the reso-
nances of all the resonant nuclides to an acceptable degree of accuracy. This is accomplished
by using all of the energy points in the pointwise cross sections of all of the nuclides and
subsequently performing some sort of thinning process to reduce the resulting number of
energy points. The details of this thinning process are not discussed here.

The results of this process are not easily tabulated, as including multiple resonant nuclides
in the material opens a very large solution space, with a degree of freedom for the number
density of each nuclide present. This is not feasible for a cross section library in general. Thus,
this process would need to be performed for each simulation.

2.6.2 Approximations to Slowing Down Equation

As with slowing down with a single resonant nuclide, with multiple resonant nuclides, each
nuclide’s scatter source in Eq. (2.91) can be approximated with a resonant model. However,
with multiple resonant nuclides, determining if resonances are “wide” or “narrow” cannot
be done systematically. Different nuclides have different resonance widths, and an nuclide’s
scatter source in the full slowing down equation must respect all nuclides’ resonances, not just
its own. Furthermore, the intermediate resonance model does not produce an accurate shape
of the scatter source, but rather produces the correct cross sections (or effective resonance
integrals), as was alluded to in Sec. 2.5.5 and is described in more detail in Sec. 8.4.2.

2.6.3 Using Single Resonant Nuclide Tables

Because tabulating nuclear data with multiple resonance integrals is not feasible, it is desired
to use nuclear data generated assuming a single resonant nuclide and manipulate it in a way
that it can be used in a multiple resonant nuclide setting. With multiple resonant nuclides, the
resonances of one nuclide affect the multigroup constants of another nuclide, a phenomenon
known as mutual self-shielding, which will be explored in great detail in this thesis, starting
in Ch. 8.

Mutual self-shielding takes two forms. First, the non-constant nature of an nuclide’s cross
sections effectively reduces the group-integrated flux, which increases the cross section of other
resonant nuclides. This effect is known as resonance interference without overlap. Second, two
resonances can overlap, causing the flux depression for an nuclide’s resonance to be greater
than would be expected if the nuclide was treated alone. This effect is known as resonance
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overlap and reduces the cross section from that of a single nuclide. The effect of resonance
interference without overlap can be easily approximated from single resonant nuclide nuclear
data tables; resonance overlap cannot, and it requires specialized treatments outside the scope
of this section.

Resonance interference without overlap can be accounted for in two ways. First, the effect
of resonances of other nuclides on an nuclide of interest can be assumed to be uniform in energy
across an energy group, which leads to a procedure of iterating on the background cross section.
Second, if the resonances are assumed not to overlap at all, the effect of the resonances of all
nuclides can be accounted for together to obtain a group flux. This flux can be used to adjust
the single resonant nuclide cross sections. These two methods are described in the following
sections.

Background Cross Section Iteration

If one assumes the effect of other nuclides’ resonances on an nuclide of interest can be uniformly
spread out across an energy group, an iterative procedure for the background cross section
can be performed. Resonant cross sections for nuclides other than the nuclide of interest are
treated as constant, taking the value of their group-averaged value. If the nuclide of interest is
given by the superscript ∗, then the background cross section for that nuclide is

σ∗b =
1

N∗
∑
i,∗

(
Σi

a,g + λΣi
s,g

)
, (2.92)

where λ is defined with respect to the resonances of nuclide ∗. The value of γ is

γ∗ =

∑
i,∗ λΣi

s,g∑
i,∗

(
Σi

a,g + λΣi
s,g

) . (2.93)

The group-averaged cross sections used here correspond to those generated assuming a single
resonant nuclide. Note that each nuclide will have a different background cross section
and γ value. Also note that the background cross section relies upon group-averaged cross
sections, which themselves rely upon background cross sections for their respective nuclides.
Furthermore, those background cross sections rely upon the group-averaged cross section, and
thus the background cross section, of the original nuclide. Thus, an iteration procedure is
needed. Fortunately, this iteration procedure converges rapidly. The iteration procedure is as
follows:

1. Guess σb for each nuclide.

2. Compute group-averaged cross sections with these σb values.

3. Update σb for each nuclide with the new group-averaged cross sections.
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4. Repeat steps 2-3 until convergence is obtained on the group-averaged cross sections.

This allows the effect of resonance interference without overlap to be approximated easily.

Flux Correction

An alternative approach to accounting for resonance interference without overlap assumes that
the resonances of other nuclides affect a given resonant nuclide’s group-averaged cross sections
only through the group-integrated flux. First, group-averaged cross sections (or effective
resonance integrals) are generated assuming only a single resonant nuclide using

σ∗b =
1

N∗
∑
i,∗

λΣi
p . (2.94)

The other nuclides are assumed to be non-absorbing outside of their resonances. This implies
that γ = 1 unless a non-resonant absorber is also included. The group-integrated flux can then
be approximated for this with Eq. (2.86) or Eq. (2.90), reproduced here:

φ∗g = ∆ug

(
1 −

I∗a,g
λ∗σ∗p + σ∗b

)
= ∆ug

(
1 −

σ∗a,g

σ∗a,g + λ∗σ∗p + σ∗b

)
.

(2.95)

This flux deviates from the asymptotic value of ∆ug by an amount related to the absorption in
the group. With multiple resonant nuclides, each nuclide will provide its own reductions in the
flux, and they are assumed to be additive. Thus, the flux assuming multiple resonant nuclides
is

φ̃g = ∆ug

1 −∑
i

Ii
a,g

λiσi
p + σi

b


= ∆ug

1 −∑
i

σi
a,g

σi
a,g + λiσi

p + σi
b

 .

(2.96)

Then, the cross sections for each reaction type for each resonant nuclide are adjusted with this
new flux:

σ̃∗ρ,g =
σ∗ρ,gφ

∗
g

φ̃g
. (2.97)

Tables Assuming Admixed U-238

A common approach for accounting for mutual self-shielding effects is to generate nuclear
data tables for a particular nuclide, assuming it is admixed with U-238. This is done, as in
nearly all commercial reactor designs, actinides are nearly always present alongside a large
concentration of U-238, which is the dominate effect on the flux spectrum. These tables require
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an approximate ratio of the resonant nuclide to U-238, and multiple tables are needed if the
relative concentration of the nuclide compared to U-238 varies in the downstream application.

2.7 Chapter Summary

This chapter considered the slowing down of neutrons through the resolved resonance range of
the major actinides. The slowing down equation, assuming isotropic in the center of mass elastic
scattering, was the primary tool. Of particular interest was the effect of resonance absorption on
the neutron flux, and three approximations were introduced: the narrow resonance model, the
wide resonance model, and the intermediate resonance model. With these tools, homogeneous
nuclear data tables can be generated, which serve as the foundation of classical self-shielding
methods.
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Chapter 3

Equivalence in Dilution

3.1 Introduction

One of the two most widely used self-shielding methods is equivalence in dilution. This method
is used to relate nuclear data from homogeneous tables to heterogeneous lattice physics
calculations. By a clever manipulation of the neutron transport equation with two spatial
regions, a heterogeneous geometry can be represented by an equivalent infinite medium. Thus,
this manipulation allows cross sections from homogeneous tables to be used directly in the
lattice-level calculation.

3.2 Equivalence in Dilution Form

Given a two-region system with one region containing a resonant material (called “fuel” here
for simplicity) and the other containing a non-resonant material (“moderator”), the collision
probability form of the transport equation can be written as

ΣF(E)φF(E)VF =
(
1 − PF→M(E)

)
S F(E)VF + PM→F(E)S M(E)V M , (3.1)

where superscripts F and M indicate the fuel and moderator regions, respectively, φ is the flux
in the region, Σ is the total macroscopic cross section for the region, V is the volume of the
region, S is the source, and Pi→ j is the probability a neutron born uniformly and isotropically
in region i has its first collision in region j. By invoking the reciprocity relation

VFΣF PF→M = V MΣMPM→F , (3.2)

this equation can be written such that the only collision probability that appears is PF→M:

ΣF(E)φF(E) =
(
1 − PF→M(E)

)
S F(E) + PF→M(E)S M(E)

ΣF(E)
ΣM(E)

. (3.3)
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Next, it is assumed that the moderator has a constant cross section, is purely scattering, and
that the narrow resonance model well-represents its source. These approximations are not
strictly necessary for this derivation but are typical assumptions in practice and simplify the
problem. The transport equation takes the form

ΣF(E)φF(E) =
(
1 − PF→M(E)

)
S F(E) + PF→M(E)

ΣF(E)
E

. (3.4)

To obtain the equivalence in dilution form, this equation is first divided through by 1−PF→M:

ΣF(E)
1 − PF→M(E)

φF(E) = S F(E) +
PF→M(E)ΣF(E)
1 − PF→M(E)

1
E

. (3.5)

Noticing a similarity between the left hand side and the second term on the right hand side,
the left hand side is manipulated as

ΣF(E)
1 − PF→M(E)

φF(E) =

(
ΣF(E) +

ΣF(E)
1 − PF→M(E)

− ΣF(E)
)
φF(E)

=

(
ΣF(E) +

PF→M(E)ΣF(E)
1 − PF→M(E)

)
φF(E) ,

(3.6)

and the equivalence cross section is defined as

Σeq(E) =
PF→M(E)ΣF(E)
1 − PF→M(E)

. (3.7)

This allows the two-region transport equation to be written as

(
ΣF(E) + Σeq(E)

)
φF(E) = S F(E) +

Σeq(E)
E

, (3.8)

which has the form of a homogeneous problem of the fuel material admixed with a background
narrow resonance moderator with cross section Σeq. This form is known as the equivalence in
dilution form, as it casts a heterogeneous problem as an equivalent homogeneous problem by
adjusting the background—or dilution—cross section.

Although this takes the form of a homogeneous problem, this still requires the efforts
of solving a heterogeneous problem, as Σeq contains the fuel cross section and the fuel to
moderator collision probability. However, if Σeq were constant in energy, this form would be
much more convenient. In that case, several homogeneous problems could be solved and stored
in a table, and solutions representing heterogeneous problems could be retrieved via a table
lookup, only requiring knowledge of the system’s Σeq value. In practice, this is how equivalence
in dilution is performed.

Now, examine the form the fuel to moderator collision probability must take to achieve a
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constant Σeq. To do this, Σeq is set to a constant value c, and the equation is rearranged:

Σeq(E) =
PF→M(E)ΣF(E)
1 − PF→M(E)

= c (3.9)

PF→M(E) =
c

ΣF(E) + c
. (3.10)

This form is known as a rational approximation for the collision probability. Consider the
limiting behavior of this form. For large fuel cross sections, the collision probability tends
toward zero; for small cross sections, the collision probability tends toward one. This behavior
is correct physically, which suggests that this form is promising as an approximation model.
Selection of the constant c is examined in the following sections.

The information in this section follows the derivation given in [8].

3.3 Escape Probability

Next, consider the analytic form of the escape probability. That is, the probability that a
neutron born uniformly and isotropically inside some lump of resonant material (“fuel” here)
reaches the lump boundary and exits into surrounding material. Note that this definition only
considers the probability of exiting a single lump; it does not take into account the existence of
other resonant lumps. For a discussion of those effects, see Sec. 3.6. Because the only cross
section that appears in this section is the fuel cross section, the superscript F is dropped.
Likewise, the energy dependence of the cross section and escape probability will be implied
rather than explicitly shown.

The probability a neutron born at point ~r in volume dV moving in direction Ω̂ escapes the
fuel is

p(~r, Ω̂) dV dΩ̂ = exp(−Σs) dV dΩ̂ , (3.11)

where s is the distance between ~r and the intersection point with the fuel surface in direction
Ω̂. A convenient substitution here is to replace the generic volume element by a tube element.
With tube elements, the volume can be represented as an integral over the surface with an
integral over the length of the tube inside. The tube volume element is

dV = (n̂ · Ω̂) ds dS , (3.12)

where n̂ is a unit vector normal to the surface, dS is a surface element, s is the position along
the tube, and ds is the length of the tube. The quantity l will be used as the length of the tube,
also known as the chord length.

The average collision probability is given by a normalized integral of the collision probability
over the volume and over all angles. To avoid double counting tubes, these integrals are
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restricted to the halfspace in which (n̂ · Ω̂) > 0:

Pesc =

!
(n̂·Ω̂)>0 dΩ̂ dS

∫ l
0 ds (n̂ · Ω̂) exp(−Σs)!

(n̂·Ω̂)>0 dΩ̂ dS
∫ l

0 ds (n̂ · Ω̂)
. (3.13)

First, the s integrals are carried out:

Pesc =

!
(n̂·Ω̂)>0 dΩ̂ dS (n̂ · Ω̂)

[
1 − exp(−Σl)

] 1
Σ!

(n̂·Ω̂)>0 dΩ̂ dS (n̂ · Ω̂)l
. (3.14)

Next, consider the denominator. For a given angle, the single integral
∫

(n̂·Ω̂)>0 dS (n̂ · Ω̂)l is equal
to the volume of the region. Because the halfspace of (n̂ · Ω̂) > 0 has already been imposed, this
leaves an integral over all angles. The denominator thus simplifies to"

(n̂·Ω̂)>0
dΩ̂ dS (n̂ · Ω̂)l =

∫
4π

dΩ̂ V = 4πV . (3.15)

The final form of the escape probability without specifying information about the geometry of
the fuel lump now be can be written:

Pesc =
1

4πVΣ

"
(n̂·Ω̂)>0

dΩ̂ dS (n̂ · Ω̂)
[
1 − exp(−Σl)

]
. (3.16)

An important quantity that will be seen to relate to the escape probability is the mean
chord length l. For convex bodies, this is defined as the ratio of the integral of all chord lengths
over a uniform and isotropic distribution of surface elements to an integral of the distribution:

l =

!
(n̂·Ω̂)>0 dΩ̂ dS (n̂ · Ω̂)l!
(n̂·Ω̂)>0 dΩ̂ dS (n̂ · Ω̂)

. (3.17)

The numerator is the same as the denominator in the escape probability, and can be simplified
to 4πV, as show in Eq. (3.15). In the denominator, the polar angle θ is defined relative to the
surface normal. Then, Ω̂ can be expanded into its component angles and the denominator can
be simplified: "

(n̂·Ω̂)>0
dΩ̂ dS (n̂ · Ω̂) =

∫ 2π

0
dϕ

∫ π/2

0
sin(θ)dθ

∫
S

dS cos(θ)

= 2πS
∫ π/2

0
sin(θ) cos(θ) dθ = πS .

(3.18)

Combining the simplified numerator and denominator leads to the simple formula for the
mean chord length:

l =
4V
S

. (3.19)

This derivation was adapted from that of [12].
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3.4 Wigner’s Rational Approximation

Having formally defined the escape probability, possible values of c in Eq. (3.10) can be explored.

One such choice of c can be derived by enforcing an additional constraint for the black limit:
not only should the value tend toward zero for large cross sections, it should do so at the correct
rate. Taking the limit as Σ→ ∞ in Eq. (3.16), the exponential goes to zero:

lim
Σ→∞

1
4πVΣ

"
(n̂·Ω̂)>0

dΩ̂ dS (n̂ · Ω̂)
[
1 − exp(−Σl)

]
=

1
4πVΣ

"
(n̂·Ω̂)>0

dΩ̂ dS (n̂ · Ω̂) . (3.20)

The remaining integrals were previously encountered and evaluate to πS . Thus, the true
escape probability has the behavior

lim
Σ→∞

Pesc =
S

4VΣ
=

1

lΣ
. (3.21)

Now, consider the rational form of Eq. (3.10). As Σ → ∞, this form tends toward A/Σ. Thus,
c = 1/l satisfies the limiting behavior. Defining the escape cross section Σe as

Σe =
1

l
, (3.22)

this leads to Wigner’s Rational Approximation [13]:

Pesc(E) =
Σe

Σ(E) + Σe
. (3.23)

Wigner’s Rational Approximation results in Σeq(E) = Σe, allowing heterogeneous results to be
easily retrieved from a homogeneous table lookup. Furthermore, the table lookup parameter is
a very easily computable quantity, only requiring very basic geometric parameters.

3.4.1 Bell Factor

Wigner’s Rational Approximation is known to underpredict the escape probability at interme-
diate values of the fuel cross section. One possibility to account for this is to scale the escape
cross section by some factor. Larger values of the escape cross section lead to larger escape
probabilities, so this scaling factor should be greater than unity. The scaling factor is usually
denoted b and is known as the Bell factor. When incorporated into Wigner’s Rational Approxi-
mation, the rational form is usually referred to as the Wigner-Bell Rational Approximation
[8]:

Pesc(E) =
bΣe

Σ(E) + bΣe
. (3.24)

Typical Bell factors range from 1 to 1.5. Note that when b , 1, this does not preserve the correct
rate of decrease of the escape probability for large cross sections.
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Figure 3.1 compares the escape probability for a range of cross section values for a cylin-
drical fuel pin with radius 0.4 cm. Shown are the exact solution (computed numerically from
Eq. (3.16)), Wigner’s Rational Approximation, and the Wigner-Bell Rational Approximation
with b = 1.15. Figure 3.2 shows the error in the rational approximations as a function of the
cross section.

As is easily seen in Fig. 3.2, Wigner’s Rational Approximation accurately predicts the escape
probability at the white and black limits, but suffers from nearly 20% errors at intermediate
values. The Wigner-Bell form greatly reduces this error—down to approximately 10% for this
value of b—but has incorrect behavior at the black limit. Thus, the Bell factor can improve
upon Wigner’s Rational Approximation, but it must be chosen carefully for the range of cross
section values encountered. If large cross sections are encountered, the Bell factor should be
driven toward unity; for smaller values, larger Bell factors are appropriate.

3.5 n-Term Rational Approximations

Using the rational form of Eq. (3.10) is convenient in equivalence-based methods, and this form
can mimic the behavior of the escape probability with moderate accuracy. However, a higher
degree of accuracy is desired, while still maintaining the convenience of Σeq being constant in
energy. This can be achieved by using a multi-term rational approximation.

Consider a linear combination of rational forms:

PF→M(E) =

n∑
i=1

βi
αiΣe

Σ(E) + αiΣe
, (3.25)

which will be called an n-term rational approximation. Note that the constant c has been
replaced by αiΣe. This is still a constant value, as Σe is constant for a given geometry, and as
seen in Wigner’s Rational Approximation, Σe is likely to be a useful quantity. Note that for
n > 1, this linear combination will not satisfy the condition of Σeq being constant. However, if
the condition

n∑
i=1

βi = 1 (3.26)

is imposed, Eq. (3.4) can be manipulated into a form that takes advantage of the multi-term
rational form. The flux is expanded into partial fluxes

φ(E) =

n∑
i=1

βiφi(E) , (3.27)
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Figure 3.1: Escape probability for a pin of radius 0.4 cm.
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Figure 3.2: Error in rational approximations for a pin of radius 0.4 cm.
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and the collision probability is expanded likewise with

PF→M(E) =

n∑
i=1

βi pi(E) , (3.28)

pi(E) =
αiΣe

Σ(E) + αiΣe
. (3.29)

Inserting these into Eq. (3.4) yields

Σ(E)
n∑

i=1

βiφi(E) =

 n∑
i=1

βi −

n∑
i=1

βi pi(E)

 S F(E) +

n∑
i=1

βi pi(E)
Σ(E)

E
. (3.30)

Here, note that each term has a summation in it. The summations are collected into a single
summation:

n∑
i=1

βi

[
Σ(E)φi(E) −

(
1 − pi(E)

)
S F(E) − pi(E)

Σ(E)
E

]
= 0 . (3.31)

One solution to this is obtained when each term is individually zero. This solution is obtained
by solving the series of equations

Σ(E)φ1(E) =
(
1 − p1(E)

)
S F(E) + p1(E)

Σ(E)
E

Σ(E)φ2(E) =
(
1 − p2(E)

)
S F(E) + p2(E)

Σ(E)
E

...

Σ(E)φn(E) =
(
1 − pn(E)

)
S F(E) + pn(E)

Σ(E)
E

.

(3.32)

These equations each take the form of Eq. (3.4), which is equivalent to Eq. (3.8). Furthermore,
each pi(E) takes the rational form of Eq. (3.10), and so the corresponding Σeq for each is constant
in energy. Thus, each equation can be solved via table lookup from a table of homogeneous
solutions. The overall flux can be reconstructed from the partial fluxes with Eq. (3.27).

Now that the mechanics of using an n-term rational approximation have been shown,
constraints on the 2n coefficients βi and αi are considered. First, consider the white limit; PF→M

should tend toward unity for small cross sections. Setting the limit of Eq. (3.25) as Σ → 0 to
unity results in

n∑
i=1

βi = 1 , (3.33)

which is a constraint already imposed for the solution mechanics. For the black limit, the
presence of Σ in the denominator of each term in Eq. (3.25) ensures it tends toward zero for
large cross sections. Thus, the black and white limits do not impose any additional constraints
on the coefficients.

This gives freedom in choosing the coefficients. Additional constraints can be imposed, such
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as derivative behavior at the white and black limits. Either in addition to these or alternatively,
an optimization procedure can be performed over the coefficients seeking to minimize deviation
from some set of reference values.

3.5.1 Carlvik Two-Term Rational Approximation

A widely used rational approximation is Carlvik’s Two-Term Rational Approximation [14],
which applies to cylindrical fuel regions. In this section, only an isolated pin is considered. For
lattice effects, see Sec. 3.6. This rational approximation conserves the derivative behavior at
the white and black limits.

To start, consider the general form of a two-term rational approximation for the escape
probability, with energy dependences of the cross section and escape probabilities implied:

Pesc = β1
α1Σe

Σ + α1Σe
+ β2

α2Σe

Σ + α2Σe
. (3.34)

Because the βi values must sum to unity, these are replaced by β and 1 − β:

Pesc = β
α1Σe

Σ + α1Σe
+ (1 − β)

α2Σe

Σ + α2Σe
. (3.35)

Now, consider the black limit. As seen in Eq. (3.21), the asymptotic behavior for large cross
sections is Pesc → Σe/Σ. This limit is imposed on the two-term rational approximation:

lim
Σ→∞

Pesc = lim
Σ→∞

β
α1Σe

Σ + α1Σe
+ (1 − β)

α2Σe

Σ + α2Σe

=
βα1Σe

Σ
+

(1 − β)α2Σe

Σ
=

Σe

Σ
,

(3.36)

which gives the condition
βα1 + (1 − β)α2 = 1 . (3.37)

Next, consider the white limit. The derivative behavior of the exact escape probability can
be obtained analytically, although it is a somewhat arduous process. First, because of working
with small cross sections, the exponential in Eq. (3.16) can be replaced by a second-order Taylor
expansion:

exp(−Σl) ≈ 1 − Σl +
1
2

(Σl)2 . (3.38)

Inserting this into Eq. (3.16) and moving the outer Σ into the integrals gives

Pesc =
1

4πV

"
(n̂·Ω̂)>0

dΩ̂ dS (n̂ · Ω̂)
[
l −

1
2

Σl2
]

. (3.39)

58



Next, the derivative with respect to Σ is taken:

d
dΣ

Pesc = −
1

8πV

"
(n̂·Ω̂)>0

dΩ̂ dS (n̂ · Ω̂)l2 . (3.40)

For cylindrical geometry, this derivative can be evaluated analytically. The component angles θ
and ϕ of Ω̂ are set to those typical of cylindrical coordinates; θ is the polar angle measured with
respect to the central axis of the cylinder, and ϕ is the azimuthal angle. Because a cylinder is
symmetric azimuthally, the azimuthal angle component of Ω̂ can be set to a convenient value
in the integrand. Here, an azimuthal angle of 0 is chosen. With this choice,

(n̂ · Ω̂) = cos(η) sin(θ) , (3.41)

where η = tan(−y/x) for some Cartesian coordinate (x, y)—defined with the origin on the central
axis—on the surface of cylinder. The condition (n̂ · Ω̂) > 0 is satisfied for cos(η) > 0, as sin(θ) > 0

for all polar angles. The chord length l with azimuthal angle ϕ = 0 and some polar angle θ is

l =
2|x|

sin(θ)
=

2
√

r2 − y2

sin(θ)
. (3.42)

Inserting all of these quantities into Eq. (3.40) gives an updated form of

d
dΣ

Pesc = −
1

8πV

∫ 2π

0
dϕ

∫ π

0
sin(θ) dθ

∫
cos(η)>0

dS cos(η) sin(θ)
4(r2 − y2)

sin2(θ)

= −
1

2πV

∫ 2π

0
dϕ

∫ π

0
dθ

∫
cos(η)>0

dS cos(η) (r2 − y2) .

(3.43)

The surface element dS can be replaced by cos(η) dy, as the axial component of both the surface
area and the volume are neglected. Integrating over y for the half surface ranges from −r to r.
However, note that the integral is symmetric about y = 0, and so the integral is equal to twice
the integral from 0 to r. With these transformations, the integral can be evaluated:

d
dΣ

Pesc = −
1
πV

∫ 2π

0
dϕ

∫ π

0
dθ

∫ r

0
dy (r2 − y2)

= −
2π
V

[
r2y −

y3

3

]r

0

= −
2π
V

2r3

3
= −

2
3

2πr3

πr2 = −
2
3

2r

= −
2

3Σe
.

(3.44)

Now, the derivative of Eq. (3.35) is taken:

d
dΣ

Pesc = −β
α1Σe

(Σ + α1Σe)2 − (1 − β)
α2Σe

(Σ + α2Σe)2 . (3.45)
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This is evaluated at Σ = 0 and set equal to the result of Eq. (3.44):

d
dΣ

Pesc

∣∣∣∣
Σ=0

= −
β

α1Σe
−

1 − β
α2Σe

= −
2

3Σe
. (3.46)

This gives the second condition for the parameters of the Carlvik rational form:

β

α1
+

1 − β
α2

=
2
3

. (3.47)

The form of Eq. (3.35) has three unknowns (α1, α2, β), and now two constraints (Eqs. (3.37)
and (3.47)) have been determined. This still leaves a degree of freedom, allowing one parameter
to be chosen freely. One convenient choice is to set β = 2, which results in an integer solution
with α1 = 2 and α2 = 3. This particular selection has been quite successful in use in equivalence
in dilution applications and is Carlvik’s Two-Term Rational Approximation for an isolated pin:

Pesc(E) = 2
2Σe

Σ(E) + 2Σe
−

3Σe

Σ(E) + 3Σe
. (3.48)

Other two-term rational approximations are possible for an isolated pin, even those that
satisfy Eqs. (3.37) and (3.47). However, Carlvik is the most widely used and is quite accurate.
Figure 3.3 shows the error in the approximation plotted with the other rational approximations
for a pin of radius 0.4 cm. The Carlvik Two-Term Rational Approximation has a peak error less
than 3%, much reduced from the one-term approximations.

3.5.2 Román Two-Term Rational Approximation

Of course, cylindrical geometries are not the only ones encountered in reactor analysis. For
slab geometry, a suitable two-term rational approximation is given by Román:

Pesc(E) = 1.1
1.4Σe

Σ(E) + 1.4Σe
− .1

5.4Σe

Σ(E) + 5.4Σe
. (3.49)

This rational approximation obeys the black limit of Eq. (3.37). However, the escape probability
for a slab features a logarithmic singularity at Σ = 0, and so the derivative cannot be taken. In-
stead, these parameters were generated as a best fit to some set of reference values. Figure 3.4
shows the error in this approximation compared to the other rational approximations for a
slab of width 0.4 cm.

Rational approximations can of course be made for other geometries, and there is no single
“correct” method of selection of coefficients. Instead, coefficients are sought that yield the best
answers for the problems at hand. Furthermore, rational approximations can be generated
with more terms if this is deemed necessary for a given application (e.g., [Hebert1991]).
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Figure 3.3: Error in rational approximations for a pin of radius 0.4 cm.
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Figure 3.4: Error in rational approximations for a slab of radius 0.4 cm.
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3.5.3 Using n-Term Rational Approximations

Although it has been shown that an n-term rational approximation can be used to accurately
estimate the flux in a heterogeneous system, effective resonance integrals or cross sections are
what is actually desired.

First, consider the effective resonance integral for reaction type ρ, which is defined as

Iρ,g =
1

∆ug

∫
g
σρ(E)φ(E) dE . (3.50)

Inserting Eq. (3.27) into this definition yields

Iρ,g =
1

∆ug

∫
g
σρ(E)

n∑
i=1

βiφi(E) dE

=
1

∆ug

n∑
i=1

βi

∫
g
σρ(E)φi(E) dE .

(3.51)

The effective resonance integral defined using a partial flux is recognized in this equation:

Iρ,g,i ≡
1

∆ug

∫
g
σρ(E)φi(E) dE . (3.52)

This quantity is retrievable from homogeneous nuclear data tables. Then, the true effective
resonance integral is simply

Iρ,g =

n∑
i=1

βiIρ,g,i . (3.53)

Next, consider the group-averaged cross section for reaction type ρ:

σρ,g =

∫
g
σρ(E)φ(E) dE∫
g
φ(E) dE

. (3.54)

Inserting Eq. (3.27) into this equation yields

σρ,g =

∫
g
σρ(E)

n∑
i=1

βiφi(E) dE

∫
g

n∑
i=1

βiφi(E) dE

=

n∑
i=1

βi

∫
g
σρ(E)φi(E) dE

n∑
i=1

βi

∫
g
φi(E) dE

.

(3.55)
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The integral in the numerator is recognized as the group cross section multiplied by the group
integrated flux using a partial flux:∫

g
σρ(E)φi(E) dE = σρ,g,iφg,i . (3.56)

The integral in the denominator is simply the group integrated flux using a partial flux:∫
g
φi(E) dE = φg,i . (3.57)

These forms are inserted into the group cross section equation to achieve

σρ,g =

n∑
i=1

βiσρ,g,iφg,i

n∑
i=1

βiφg,i

. (3.58)

If the group integrated flux is stored in the homogeneous nuclear data table, this form can
be used directly to obtain group cross sections with an n-term rational approximation. If the
group integrated flux is not available, it can be approximated as in Sec. 2.5.7:

φg,i = ∆ug

(
1 −

σa,g,i

σa,g,i + λσp + σb,i

)
. (3.59)

Inserting this into Eq. (3.58) gives an alternate form for the cross section with an n-term
rational approximation:

σρ,g =

n∑
i=1

βiσρ,g,i

(
1 −

σa,g,i

σa,g,i + λσp + σb,i

)
n∑

i=1

βi

(
1 −

σa,g,i

σa,g,i + λσp + σb,i

) . (3.60)

3.6 The Dancoff Effect

In the approximations to the fuel to moderator collision probability, it has been assumed that a
fuel lump is isolated. However, in real reactor systems, fuel is generally arranged in a regular
or semi-regular lattice pattern, with fuel lumps in close enough proximity to each other for
neutrons born in one to reach another. In this context, the escape probability—the probability
a neutron born in a fuel lump exits that fuel lump—is not the same as the fuel to moderator
collision probability. The effect of fuel lumps being present in a lattice rather than being
isolated is known as the Dancoff effect [13, 8].

Consider Eq. (3.1) rewritten where the fuel F includes many lumped regions f ′ ∈ F and the
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moderator M is similarly segmented with regions m′ ∈ M. The region of interest is a particular
fuel region f . The transport equation for this problem is

Σ f (E)φ f (E)V f = P f→ f (E)S f (E)V f +
∑
f ′∈F
f ′, f

P f ′→ f (E)S f ′(E)V f ′ +
∑

m′∈M

Pm′→ f (E)S m′(E)Vm′ . (3.61)

Reciprocity relations are used to transform all the collision probabilities into those originating
from the region f . Assuming a generic region r , f , the reciprocity relation is

V f Σ f P f→r = VrΣrPr→ f . (3.62)

The transport equation for this problem is now written as

Σ f (E)φ f (E) = P f→ f S f (E) +
∑
f ′∈F
f ′, f

P f→ f ′(E)S f ′(E)
Σ f (E)
Σ f ′(E)

+
∑

m′∈M

P f→m′(E)S m′(E)
Σ f (E)
Σm′(E)

. (3.63)

If, as before, the moderator cross section is assumed constant and its source is assumed
to be that of the narrow resonance model, the moderator regions can be combined with
P f→M(E) =

∑
m′∈M P f→m′(E):

Σ f (E)φ f (E) = P f→ f S f (E) +
∑
f ′∈F
f ′, f

P f→ f ′(E)S f ′(E)
Σ f (E)
Σ f ′(E)

+ P f→M(E)
Σ f (E)

E
. (3.64)

If all fuel regions, including the region of interest, are assumed to have the same source and
the same cross section, this simplifies further to

Σ f (E)φ f (E) =

P f→ f +
∑
f ′∈F
f ′, f

P f→ f ′(E)

 S f (E) + P f→M(E)
Σ f (E)

E

=
(
1 − P f→M(E)

)
S f (E) + P f→M(E)

Σ f (E)
E

.

(3.65)

This is the same form as Eq. (3.4), but the specific meanings of the terms allow for P f→M to
be related to the escape probability. Note that because the cross section of the fuel is the only
cross section that appears here, the superscript f will be dropped in subsequent discussion.

3.6.1 Gray Dancoff Factor

Consider the relationship between P f→M in Eq. (3.65) and the escape probability. P f→M is
the probability that a neutron born in fuel region f both escapes the pin and has its next
interaction in the moderator. This is equivalent to a reduction in the escape probability by the
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probability the neutron has its next collision in a different fuel element:

P f→M(E) = Pesc(E) −
∑
f ′∈F
f ′, f

P f→ f ′(E) . (3.66)

If the quantity C̃ is defined as

C̃(E) =

∑
f ′∈F
f ′, f

P f→ f ′(E)

Pesc(E)
, (3.67)

then the fuel to moderator probability can be written as

P f→M(E) =
(
1 − C̃(E)

)
Pesc(E) . (3.68)

This parameter C̃ is known as the gray Dancoff factor. It can be computed for a given
configuration using the methods outline in Sec. 3.6.4. It is an energy dependent quantity, and
so must be computed for many points along a resonance to accurately model the Dancoff effect.
Furthermore, Eq. (3.68) does not satisfy the rational form of Eq. (3.10), and so it cannot be
used directly with homogeneous look-up tables. These considerations make the gray Dancoff
factor inconvenient to use in practice. Fortunately, a more convenient alternative exists and is
the subject of the following section.

3.6.2 Black Dancoff Factor

Consider the fuel to moderator collision probability:

P f→M(E) = 1 −

P f→ f (E) +
∑
f ′∈F
f ′, f

P f→ f ′(E)


= Pesc −

∑
f ′∈F
f ′, f

P f→ f ′(E) .

(3.69)

The sum can be expanded as

∑
f ′∈F
f ′, f

P f→ f ′(E) =

∞∑
n=0

P f→n f ′(E) , (3.70)

where

• P f→0 f ′ is the probability that a neutron born in the fuel escapes, traverses the moderator,
and collides in the next fuel element it encounters.
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• P f→1 f ′ is the probability a neutron born in the fuel escapes, traverses the moderator,
traverses another fuel element, again traverses the moderator and collides in the next
fuel element.

• P f→2 f ′ is the probability a neutron born in the fuel escapes, twice traverses the moderator
and a fuel element, traverses the moderator and eventually collides in the next element.

• . . .

Thus, n represents the number of fuel lumps a neutron traverses after it escapes and before
it eventually collides in a fuel lump. Similarly, define the probability a neutron entering the
moderator after traversing n fuel lumps (excluding the lump in which is was born) reaches
another fuel lump as Cn. Because the moderator has been assumed to have a constant cross
section, Cn is not a function of energy.

Also, define the probability a neutron collides in a given fuel lump after entering the
lump through its surface as PS→ f . The complementary probability, that a neutron entering a
fuel lump through its surfaces traverses it without collision, is notated PS→S . Of course, the
complementary relationship holds with these collision probabilities:

PS→ f (E) + PS→S (E) = 1 . (3.71)

Next, assume that any neutrons that enter a fuel lump do so uniformly and isotropically
across its surface. Likewise, assume any neutrons exiting a fuel lump do so uniformly and
isotropically across its surface. These assumptions are not physical, as a great deal of angular
structure is present in the probability of traversal, as a neutron is more likely to escape a fuel
lump if it travels a shorter distance inside the lump. However, these assumptions work well in
the context of equivalence in dilution methods. The first of these approximations gives rise to
the reciprocity relation

PS→ f (E) = lΣ(E)Pesc(E) . (3.72)

It is also assumed that all fuel lumps are the same size and shape. Thus, PS→ f and PS→S are
the same for each fuel lump.

With these definitions and assumptions, the probability of a neutron born in a fuel lump,
traversing the moderator, and colliding in the first subsequent fuel lump it encounters can be
written

P f→0 f ′(E) = Pesc(E)C0PS→ f (E) . (3.73)
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The probabilities a neutron traverses this fuel lump but collides in a different fuel lump are

P f→1 f ′(E) = Pesc(E)C0PS→S (E)C1PS→ f (E)

P f→2 f ′(E) = Pesc(E)C0PS→S (E)C1PS→S (E)C2PS→ f (E)
... .

(3.74)

In a regular lattice, with the uniform and isotropic assumptions, each Cn is equal. In irregular
lattices, Cn is a function of the geometry. However, the contributions of collision probabilities
representing multiple fuel lump traversals diminish rapidly, and so assuming Cn = C0 is
an easily justifiable approximation. In this case, using the complementary relationship of
Eq. (3.71) and dropping the subscript on C, P f→n f ′ can be written

P f→n f ′(E) = Pesc(E)
[
C

(
1 − PS→ f (E)

)]n
CPS→ f (E) . (3.75)

Using the reciprocity relation of Eq. (3.72), this becomes

P f→n f ′(E) = Pesc(E)
[
C

(
1 − lΣ(E)Pesc(E)

)]n
ClΣ(E)Pesc(E) . (3.76)

Because the quantity in square brackets is the product of probabilities, it is guaranteed to be
less than unity. Thus, the geometric series form

∞∑
n=0

x =
1

1 − x
(3.77)

can be invoked. The sum in Eq. (3.70) can now be written

∞∑
n=0

P f→n f ′(E) =
P2

esc(E)ClΣ(E)

1 −C
(
1 − lΣ(E)Pesc(E)

) . (3.78)

Finally, this is inserted into Eq. (3.69) to obtain the fuel to moderator collision probability:

P f→M(E) = Pesc(E)

1 − Pesc(E)ClΣ(E)

1 −C
(
1 − lΣ(E)Pesc(E)

) . (3.79)

By comparison to Eq. (3.68), the gray Dancoff factor has been approximated by

C̃(E) =
Pesc(E)ClΣ(E)

1 −C
(
1 − lΣ(E)Pesc(E)

) . (3.80)

Thus, the energy dependent lattice parameter C̃(E) is replaced by an energy independent lattice
parameter C and an equation that appears more complicated. C is the probability a neutron
that leaves fuel region f reaches another fuel region without colliding with the moderator. If
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Table 3.1: Comparison of using directly computed gray Dancoff factor to using approximation
with black Dancoff for an infinite square lattice of fuel pin with radius 0.4 cm, pitch 1.26 cm,
and moderator cross section 1.23 cm−1.

Gray Dancoff Factor

Σ [cm−1] Pesc Direct Approx Error C̃ Error
(1 − C̃)

1E-01 9.504E-01 0.0225 0.0243 7.64% -0.18%
1E+00 6.517E-01 0.1413 0.1457 3.12% -0.51%
1E+01 1.235E-01 0.2447 0.2442 -0.20% 0.06%
1E+02 1.250E-02 0.2465 0.2465 0.00% 0.00%
1E+03 1.250E-03 0.2465 0.2465 0.00% 0.00%
1E+04 1.250E-04 0.2465 0.2465 0.00% 0.00%
1E+05 1.250E-05 0.2465 0.2465 0.00% 0.00%

the fuel cross section were set to a very large value, all neutrons that reach a fuel region collide
there. Thus, C can be written as

C = lim
Σ→∞

∑
f ′∈F
f ′, f

P f→ f ′

Pesc
, (3.81)

which is the same as the previously encountered gray Dancoff factor evaluated with a very
large cross section. Therefore, C is known as the black Dancoff factor. Its computation is
discussed in Sec. 3.6.4. Table 3.1 shows a comparison of gray Dancoff factors computed directly
versus computed approximately as outlined in this section for an infinite square lattice of fuel
pins with radius 0.4 cm, pitch 1.26 cm, and moderator cross section 1.23 cm−1. The Dancoff factor
saturates quickly, with the gray Dancoff achieving its black limit with Σ = 100 cm−1. With small
cross sections, there is a noticeable error in the Dancoff factor, but this can be attributed to the
very small value it takes. Because the fuel to moderator probability is actually multiplied by
(1 − C̃), error in this quantity is perhaps a more appropriate measure, and the approximation
leads to almost no error here.

The form of Eq. (3.79) appears very complicated. However, as discussed in the subsequent
section, when used in conjunction with a rational approximation, it yields a fuel to moderator
probability that takes the same rational form. Thus, it is a very convenient form and can be
used directly with homogeneous lookup tables. Furthermore, by defining the quantity A as

A =
1 −C

C
, (3.82)

using Σe = 1/l, and rearranging terms, Eq. (3.79) can be written in a somewhat cleaner form:

P f→M(E) = Pesc(E)
(

AΣe

AΣe + Σ(E)Pesc(E)

)
. (3.83)
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3.6.3 Dancoff Form of Rational Approximations

In the previous section, it was claimed that using the black Dancoff factor with Eq. (3.79) or
equivalently Eq. (3.83) in conjunction with a rational approximation for the escape probability
yields another rational approximation for the true fuel to moderator collision probability. This
claim is proven here for one-term and two-term rational approximations.

Dancoff Form of One-Term Rational Approximation

The Wigner-Bell Rational Approximation can be considered the general form of the one-term
rational approximation, as Σe is a constant in energy, and so with proper selection of b, bΣe can
evaluate to any constant.

The Wigner-Bell Rational Approximation of Eq. (3.24) is inserted into Eq. (3.83):

P f→M(E) =
bΣe

Σ(E) + bΣe
·

AΣe

AΣe + Σ(E) bΣe
Σ(E)+bΣe

=
AbΣe

A(Σ(E) + bΣe) + bΣ(E)
.

(3.84)

This can be simplified to a rational approximation:

P f→M(E) =
b∗Σe

Σ(E) + b∗Σe
(3.85)

b∗ =
Ab

A + b
=

(1 −C)b
1 −C + Cb

. (3.86)

Thus, using Eq. (3.79) with a one-term rational approximation for the escape probability results
in a one-term rational approximation for the lattice fuel to moderator probability.

Dancoff Form of Two-Term Rational Approximation

Deriving the two-term rational form including the Dancoff effect is quite a bit more complicated
than for the one-term form. However, it can still be done, and is shown here. To simplify
notation, explicit dependences of the cross sections and escape probabilities on energy are not
shown. First, the general two-term rational expression

Pesc = β
α1Σe

Σ + α1Σe
+ (1 − β)

α2Σe

Σ + α2Σe
(3.87)

is inserted into Eq. (3.83):

P f→M =

(
β

α1Σe

Σ + α1Σe
+ (1 − β)

α2Σe

Σ + α2Σe

)
AΣe

AΣe +
Σβα1Σe
Σ+α1Σe

+
Σ(1−β)α2Σe

Σ+α2Σe

. (3.88)
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The numerator and denominator are each multiplied by (Σ + α1Σe)(Σ + α2Σe):

P f→M =
(βα1Σe(Σ + α1Σe) + (1 − β)α2Σe(Σ + α1Σe)) AΣe

AΣe(Σ + α1Σe)(Σ + α2Σe) + Σβα1Σe(Σ + α2Σe) + Σ(1 − β)α2Σe(Σ + α1Σe)
. (3.89)

Next, a factor of Σe is noticed to be in each term both in the numerator and denominator, and
so can be cancelled. With this and rearranging terms, the form becomes

P f→M =
A (βα1 + (1 − β)α2) ΣeΣ + Aα1α2Σ2

e

(A + βα1 + (1 − β)α2) Σ2 + (A(α1 + α2) + α1α2) ΣeΣ + Aα1α2Σ2
e

. (3.90)

The desired form for P f→M is another two-term rational approximation

P f→M =
β∗1α

∗
1Σe

Σ + α∗1Σe
+

β∗2α
∗
2Σe

Σ + α∗2Σe
, (3.91)

and because the denominator of Eq. (3.90) is quadratic in Σ and Σe, this form appears possible
with a partial fraction expansion. To do this, first, the denominator should be factorized as
(Σ + α∗1)(Σ + α∗2), with a leading multiplicative coefficient of γ:

D = (A + βα1 + (1 − β)α2) Σ2 + (A(α1 + α2) + α1α2) ΣeΣ + Aα1α2Σ2
e

= γ(Σ + α∗1)(Σ + α∗2) = γ
(
Σ2 + (α∗1 + α∗2)ΣeΣ + α∗1α

∗
2Σ2

)
.

(3.92)

By inspection, the following relationships are implied:

γ = A + βα1 + (1 − β)α2 (3.93)

α∗1 + α∗2 =
A(α1 + α2) + α1α2

γ
(3.94)

α∗1α
∗
2 =

Aα1α2

γ
. (3.95)

Solving Eq. (3.94) for α∗2 and inserting it into Eq. (3.95), α∗1 is determined:

α∗1
A(α1 + α2) + α1α2

γ
=

Aα1α2

γ
(3.96)

γα∗21 − (A(α1 + α2) + α1α2)α∗1 + Aα1α2 = 0 (3.97)

α∗1 =
(A(α1 + α2) + α1α2) ±

√
(A(α1 + α2) + α1α2)2 − 4γAα1α2

2γ
. (3.98)

By inspection, Eq. (3.95) is satisfied when

α∗2 =
(A(α1 + α2) + α1α2) ∓

√
(A(α1 + α2) + α1α2)2 − 4γAα1α2

2γ
. (3.99)
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α∗1 and α∗2 are symmetric and thus interchangable in the derivation so far. Thus, the lower
signs are chosen without loss of generality:

α∗1 =
(A(α1 + α2) + α1α2) −

√
(A(α1 + α2) + α1α2)2 − 4γAα1α2

2γ

α∗2 =
(A(α1 + α2) + α1α2) +

√
(A(α1 + α2) + α1α2)2 − 4γAα1α2

2γ
.

(3.100)

Next, Eq. (3.90) can be expanded into partial fractions to obtain the desired form:

P f→M =
A (βα1 + (1 − β)α2) ΣeΣ + Aα1α2Σ2

e

γ(Σ + α∗1Σe)(Σ + α∗2Σe)
=

C1

Σ + α∗1Σe
+

C2

Σ + α∗2Σe

=
β∗1α

∗
1Σe

Σ + α∗1Σe
+

β∗2α
∗
2Σe

Σ + α∗2Σe
,

(3.101)

where C1 and C2 are arbitrary constants to be solved for. Because α∗1, α∗2, and Σe are all con-
stants, C1 and C2 can be replaced by β∗1α

∗
1Σe and β∗2α

∗
2Σe, respectively, without loss of generality.

Multiplying through by the denominator yields

A (βα1 + (1 − β)α2) ΣeΣ + Aα1α2Σ2
e = γβ∗1α

∗
1Σe(Σ + α∗2Σe) + γβ∗2α

∗
2Σe(Σ + α∗1Σe)

= γ
(
β∗1α

∗
1 + β∗2α2

)
ΣeΣ + γ

(
β∗1 + β∗2

)
α∗1α

∗
2Σ2

e .
(3.102)

This gives constraints for β∗1 and β∗2:

β∗1α
∗
1 + β∗2α

∗
2 =

A (βα1 + (1 − β)α2)
γ

(3.103)

β∗1 + β∗2 =
Aα1α2

γα∗1α
∗
2

. (3.104)

Now, consider the constraint Eq. (3.104). The product α∗1α
∗
2 is

α∗1α
∗
2 =

(A(α1 + α2) + α1α2)2 − (A(α1 + α2) + α1α2)2 + 4γAα1α2

4γ2

=
Aα1α2

γ
,

(3.105)

and therefore, Eq. (3.104) simplifies to

β∗1 + β∗2 = 1 . (3.106)

This ensures the Dancoff form of a two-term rational approximation is also a two-term rational
approximation. Finally, this is inserted into Eq. (3.103) to determine the final unknown
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parameter:

β∗1α
∗
1 + (1 − β∗1)α∗2 =

A (βα1 + (1 − β)α2)
γ

(3.107)

β∗1 =

(
α∗2 −

A (βα1 + (1 − β)α2)
γ

)
1

α∗2 − α
∗
1

. (3.108)

To summarize, when a two-term rational approximation for the escape probability is used
in conjunction with Eq. (3.79), another two-term rational approximation is recovered. This
new two-term rational approximation for the fuel to moderator probability in a lattice system
is given by

P f→M(E) = β∗
α∗1Σe

Σ(E) + α∗1Σe
+ (1 − β∗)

α∗2Σe

Σ(E) + α∗2Σe
, (3.109)

where

α∗1 =
(A(α1 + α2) + α1α2) −

√
(A(α1 + α2) + α1α2)2 − 4γAα1α2

2γ

α∗2 =
(A(α1 + α2) + α1α2) +

√
(A(α1 + α2) + α1α2)2 − 4γAα1α2

2γ

β∗ =

(
α∗2 −

A (βα1 + (1 − β)α2)
γ

)
1

α∗2 − α
∗
1

γ = A + βα1 + (1 − β)α2

A =
1 −C

C
.

(3.110)

For the Carlvik Two-Term Rational Approximation with α1 = 2, α2 = 3, and β = 2, these
parameters simplify to

α∗1 =
5A + 6 −

√
A2 + 36A + 36

2A + 2

α∗2 =
5A + 6 +

√
A2 + 36A + 36

2A + 2

β∗ =
α∗2 −

A
A+1

α∗2 − α
∗
1

.

(3.111)

3.6.4 Computation of the Dancoff Factor

To this point, the Dancoff factor has been defined as augmenting the probability that a
neutron born in the fuel next collides in some fuel region. The definition of the Dancoff factor
in Eq. (3.67) can be applied to a computational procedure directly. First, this equation is
transformed such that it contains the collision probabilities P f→F and P f→ f :

C̃(E) =
P f→F(E) − P f→ f (E)

1 − P f→ f (E)
. (3.112)
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These collision probabilities can be determined using a transport solver. To see this, consider
the collision probability formulation

Σ f (E)φ(E)V f =
∑
f ′∈F

P f ′→ f (E)S f ′(E)V f ′ + PM→ f (E)S M(E)V M (3.113)

and set the source in the moderator to zero. If all fuel regions have the same cross section and
source and the reciprocity relation of Eq. (3.62) is used, this simplifies to

Σ f (E)φ(E) =
∑
f ′∈F

P f→ f ′(E)S f (E) = P f→F(E)S f (E) . (3.114)

Thus, by solving a very simple, purely absorbing, fixed source transport equation where S f (E)

is set to a known value and S M(E) = 0, the collision probability P f→F can be determined:

P f→F(E) =
Σ f (E)φ(E)

S f (E)
. (3.115)

P f→ f can be determined in the same manner simply by changing the geometry to include only
a single fuel lump in isolation. Because only the flux in the fuel lump is desired, the materials
outside the lump are not important, nor are the boundary conditions. If the flux for the isolated
case is notated as φ0 and for the lattice case as φ1, then the Dancoff factor is

C̃(E) =
φ1(E) − φ0(E)

S f (E)/Σ f (E) − φ0(E)
. (3.116)

This procedure, unfortunately, can be difficult, particularly with large cross sections. For-
tunately, another approach has been seen to be more successful. This alternate approach
is often called the Neutron Current Method [15], and it involves placing the source in the
moderator rather than the fuel. Rearranging Eq. (3.68), another formula for the Dancoff factor
is obtained:

C̃(E) =
Pesc(E) − P f→M(E)

Pesc(E)
. (3.117)

As in the previous method, these collision probabilities can be determined through the solution
of a simple transport problem. Start again with Eq. (3.113), but this time set the fuel source to
zero. The reciprocity relation is applied, which leads to

Σ f (E)φ(E) = P f→M(E)S M(E)
Σ f (E)
ΣM(E)

. (3.118)

The collision probability P f→M is thus

P f→M(E) =
ΣM(E)φ(E)

S M(E)
. (3.119)
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The escape probability can be computed similarly, by changing the geometry to that of an
isolated fuel lump. To perform this calculation directly, a very large region of moderator would
be needed. However, by noting that only the ratio ΣM/S M influences the collision probability, one
can set the moderator cross section to a large value, adjusting the source accordingly, to allow
for a much smaller region of moderator in the solution. (Note, though, that the value of ΣM

does influence the solution of the lattice system, and so must not be changed there.) If the flux
for the isolated system is φ0(E) and that of the lattice system is φ1(E), and assuming the ratio
ΣM/S M is maintained in both solutions, the Dancoff factor is obtained via the simple formula

C̃(E) =
φ0(E) − φ1(E)

φ0(E)
. (3.120)

In both of these formulations, the gray Dancoff factor C̃(E) was shown. For the black Dancoff
factor, the fuel cross section is simply set to a large value, and the transport solutions require
only a single energy point. For both formulations, the flux φ1 can be computed for all fuel
regions in a single lattice calculation. The flux φ0 needs to be computed for each unique fuel
shape.

3.7 Embedded Self-Shielding Method

A recent extension of equivalence in dilution methods is known as the Embedded Self-Shielding
Method (ESSM) [16, 17]. It recognizes that although equivalence in dilution seeks an equiva-
lence between heterogeneous and homogeneous models, the parameters at which this equiva-
lence holds are difficult to determine a priori. Instead, ESSM iterates between a heterogeneous
model and a homogeneous model until equivalence is obtained.

The homogeneous model is the equivalent homogeneous problem for a two-region fuel-
moderator system, as previously encountered in Sec. 3.2. The source in the fuel is left as a
generic S F in this discussion. An intermediate resonance source or true slowing down source
can be used. The form of this equation is

(
ΣF(E) + Σeq

)
φF(E) = S F(E) +

Σeq

E
, (3.121)

where Σeq is assumed to be constant in energy. As previously discussed, this is equivalent
to assuming the fuel to moderator probability is well-represented by a one-term rational
approximation. This homogeneous problem is integrated over energy to attain the multigroup
form: (

ΣF
g + Σeq,g

)
φF
g = S F

g + Σeq,g∆ug , (3.122)

where the subscript g is added to Σeq,g to indicate that it only needs to be group-wise constant
for this method and S F

g is simply S F(E) integrated over the energy group bounds. This equation,
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solved for Σeq,g, takes the form

Σeq,g =
ΣF
g φ

F
g − S F

g

∆ug − φF
g

. (3.123)

The heterogeneous model is simply a fixed-source, purely absorbing multigroup neutron
transport equation using the geometry of interest. The sources are set to be consistent with
the homogeneous model. For fuel regions, the fixed source is set to be S F

g ; for moderator regions
it is set to ΣM∆ug. The general form of this model is

Ω̂ · ∇ψg(~r, Ω̂) + Σg(~r)ψg(~r, Ω̂) =
1

4π
·

S F
g (~r) ~r ∈ F

Σg(~r)∆ug ~r ∈ M
. (3.124)

The mechanics of the ESSM procedure are as follows:

1. Σeq,g is guessed.

2. ΣF
g is determined from homogeneous look-up tables using Σeq,g.

3. The heterogeneous model of Eq. (3.124) is solved using ΣF
g to determine φF

g .

4. φF
g is inserted into the homogeneous model of Eq. (3.123) to obtain an updated Σeq,g.

5. Unless converged, return to step 2.

Convergence can, of course, be measured on a variety of metrics, but ensuring convergence on
the cross section ΣF is the most sensible, as this is the quantity that will be used in subsequent
calculations.

Note that this procedure includes all nuclides in the fuel together in the calculation for Σeq,g,
as this is primarily a geometric parameter. When obtaining ΣF

g from the homogeneous look-up
table, the nuclides are treated separately and combined as

ΣF
g =

∑
i

Niσi
g

(
σb +

Σeq,g

Ni

)
, (3.125)

where i denotes the nuclide. Similarly, the source in the fuel contains components from each
nuclide. This is straightforward with the narrow resonance model, where the scattering source
is given by Σp/E, and thus the multigroup combined source is

S F
g = ∆ug

∑
i

Niσi
p . (3.126)

However, this treatment is problematic with the the intermediate resonance model. In liter-
ature, the scatter source for each nuclide is given as λΣp/E + (1 − λ)Σsφ and a summation is
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performed:
S F
g = ∆ug

∑
i

λiNiσi
p + φ

∑
i

(1 − λi)Niσi
s . (3.127)

The problem with this form is that λ is not well-defined for a system with multiple resonant
nuclides. λ models how neutrons scatter with respect to the resonances of a single nuclide,
adjusting the effective background cross section that nuclide sees. With multiple resonant
nuclides, λ must be chosen to be some representative value for each nuclide for the formulation
of this source. This is discussed further in Sec. 8.4.

3.7.1 Heterogeneous Tables

The Embedded Self-Shielding Method has been adapted from its original publications to use
small heterogeneous geometries in the table rather than homogeneous tables. These tables are
generated by solving a suite of small problems with an ultrafine method. These small problems
could also be solved by Monte Carlo or some other fine-energy treatment. Typically unit cell
geometries are used. Several variables can be perturbed, including the amount of background
moderator in the fuel material, the pin pitch, the pin radius, and the moderator density. The
group-averaged cross sections are saved to the table as a function of the effective equivalence
cross section, as computed from Eq. (3.123).

The mechanics of the ESSM procedure with heterogeneous tables are as follows:

1. Σeq,g is guessed.

2. ΣF
g is determined from heterogeneous look-up tables using Σeq,g.

3. The full heterogeneous model of Eq. (3.124) is solved using ΣF
g to determine φF

g .

4. φF
g is inserted into the homogeneous model of Eq. (3.123) to obtain an updated Σeq,g.

5. Unless converged, return to step 2.

Note that in this process, the cross sections tabulated in the heterogeneous look-up table
are potentially multi-valued. That is, a given value of Σeq,g corresponds to more than one group-
averaged cross section. This is because changing one variable, e.g., the pin diameter, can have
the same effect on Σeq,g as a change in another variable, e.g., the moderator density, despite
having different collapsing spectra. Thus, the heterogeneous tables should be generated using
as similar geometry and conditions as possible to the real calculation. Multiple heterogeneous
tables may be needed if different pins and different conditions are present in the problem of
interest.
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3.8 Chapter Summary

In this chapter, equivalence in dilution methods were detailed. These methods relate a hetero-
geneous problem to an equivalent homogeneous problem, allowing cross sections generated in
infinite medium calculations to be used directly in a lattice-level calculation.

For this to be possible, the equivalent infinite medium must consist of the fuel material
and an admixed moderator with constant cross section. This can be a very good approximation
when a rational approximation is used to model the fuel to moderator collision probability.
This chapter provided rigorous derivations of the most common rational approximations and a
discussion of their use.

The derivations of the rational approximations assumed that a fuel region was isolated.
This is almost never the case in a real reactor calculation. Much more often, a repeated
geometry is encountered. The Dancoff factor is defined as a correction factor to scale the fuel to
moderator probability from a rational approximation to be appropriate in a lattice geometry.
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Chapter 4

The Subgroup Method

4.1 Method Description

In the subgroup method [18, 19, 20]—also known as the multiband method—unlike with
equivalence in dilution, the self-shielding calculation is performed on a heterogeneous geometry.
Rather than finding an equivalent homogeneous problem, the heterogeneous problem can be
used directly. Computational efficiency is maintained by a clever change of variables, allowing
the integration over an energy group to use the cross section value as the independent variable,
rather than the energy. The details are discussed next.

First, the subgroup method is usually formulated with a single resonant nuclide, here
denoted with superscript ∗. All other nuclides are lumped into the background moderator,
denoted with superscript +, whose cross sections are assumed to be constant across the energy
group. The scattering kernel assumes isotropic scattering in the center of mass, and the flux
is assumed to be isotropic enough that the scatter source can be treated as isotropic in the
transport solution. The transport equation under these conditions is written as

Ω̂ · ∇ψ(~r, Ω̂, E) +
(
Σ∗(~r, E) + Σ+(~r)

)
ψ(~r, Ω̂, E)

=
1

4π

∫ E/α∗

E

Σ∗s(~r, E
′)φ(~r, E′)

(1 − α∗)E′
dE′ +

1
4π

∫ E/α+

E

Σ+
p(~r)φ(~r, E)

(1 − α+)E′
dE′ ,

(4.1)

where only a single background moderator nuclide is shown, but generalization to multiple
requires only a summation over the nuclides.

Next, the scatter sources are approximated using the intermediate resonance model, dis-
cussed in Sec. 2.5.5. The background moderator’s source is shown using the narrow resonance
model, noting the hydrogen equivalence discussed in Sec. 2.5.6. Also, the macroscopic form of
the flux is taken to be 1/E and invariant with position. All these approximations lead to the
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simplified transport equation

Ω̂ · ∇ψ(~r, Ω̂, E) +
(
Σ∗a(~r, E) + Σ+(~r)

)
ψ(~r, Ω̂, E)

=
1

4π

λΣ∗p(~r)

E
+ (1 − λ)Σ∗s(~r, E)φ(~r, E) +

Σ+
p(~r)

E

 .
(4.2)

The wide resonance model term on the right hand side can be moved to the left hand side
by assuming that not only the neutron energy is constant after the collision, but the angle
also remains constant. Also, the equation is multiplied through by E and is cast in terms of
lethargy rather than energy:

Ω̂ · ∇ψ(~r, Ω̂, u) +
(
Σ∗a(~r, u) + λΣ∗s(~r, u) + Σ+(~r)

)
ψ(~r, Ω̂, u) =

1
4π

(
λΣ∗p(~r) + Σ+

p(~r)
)

. (4.3)

This equation provides the basis for the subgroup method. The lethargy shape of the flux is
influenced only by the value of the resonant nuclide’s cross sections. Defining the intermediate
resonance cross section as

σλ(u) = σa(u) + λσs(u) , (4.4)

the transport equation can be written with functional dependences on σλ rather than u:

Ω̂ · ∇ψ(~r, Ω̂, σ∗λ) +
(
N∗(~r)σ∗λ + Σ+(~r)

)
ψ(~r, Ω̂, σ∗λ) =

1
4π

(
λΣ∗p(~r) + Σ+

p(~r)
)

. (4.5)

Note that the functional dependence on σλ is matter of notation. The flux is still defined as a
quantity per unit lethargy, not per unit cross section.

Now, consider the group-averaged intermediate resonance cross section:

σλ,g(~r) =

∫
g
σλ(u)φ(~r, u) du∫
g
φ(~r, u) du

. (4.6)

Because φ is dependent on lethargy only through the lethargy dependence of the cross section,
these integrals can be transformed into integrals over the cross section value,

σλ,g(~r) =

∫ ∞
0 σλφ(~r, σλ)pg(σλ) dσλ∫ ∞

0 φ(~r, σλ)pg(σλ) dσλ
, (4.7)

where pg(σλ)dσλ is the probability the cross section takes a value between σλ and σλ + dσλ in
energy group g. By integrating over the cross section measure in this manner, the integrals
are effectively Lebesgue integrals, as opposed to the Riemann integrals appearing in Eq. (4.6).

Next, these integrals are approximated using numerical quadrature. For a given function

79



f (σλ), a numerical quadrature N base points σn and weights wn is given by

∫ ∞

0
f (σλ)p(σλ) dσλ ≈

N∑
n=1

wn f (σn) . (4.8)

With this and defining the term φn as

φn(~r) = φ(~r, σn) , (4.9)

the group-averaged cross section is

σλ,g(~r) =

N∑
n=1

wnσnφn(~r)

N∑
n=1

wnφn(~r)

. (4.10)

This form does not seem much different from a similar approach without transforming the
integrals into integrals over cross section. However, the quantities σλ(u)φ(u) and φ(u) feature
wild fluctuations as a function of the lethargy variable. As such, they require a great many
base points in the quadrature to be accurately integrated. Such an approach is known as an
ultrafine method because of this, and these methods are described further in Ch. 5. On the
other hand σλφ(σλ) and φ(σλ) are very smooth functions of the cross section variable. Thus, a
numerical quadrature can be very accurate with many fewer base points.

Now, the subgroup method is presented succinctly. Given a quadrature Q = {wn, σn} for a
specific nuclide, denoted ∗, a subgroup fixed source equation, given by

Ω̂ · ∇ψn(~r) +
(
N∗(~r)σn + Σ+(~r)

)
ψn(~r) =

1
4π

(
λΣ∗p(~r) + Σ+

p(~r)
)

, (4.11)

is solved to obtain the scalar subgroup flux φn. Then, the group-averaged cross section is
obtained by inserting the quadrature and these fluxes into

σλ,g(~r) =

N∑
n=1

wnσnφn(~r)

N∑
n=1

wnφn(~r)

. (4.12)

This procedure is repeated for each resonant nuclide. In this form, the subgroup method
assumes there are no resonance overlap effects. Resonance interference without overlap can
be modeled as in Sec. 2.6, and it is described in Sec. 8.2.3.

Two difficulties arise in using the subgroup method as defined here. First, the quadrature
Q = {wn, σn} is not easily defined. Many of the options for this quadrature are presented in
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Sec. 4.2. Second, this process only yields the group-averaged cross section σλ,g, but not any
partial cross sections for other desired reactions. Methods for determining these cross sections
are presented in Sec. 4.3.

4.2 Quadrature Generation

4.2.1 Direct Method

One method for defining the subgroup quadrature is known as the direct method or the direct
subgroup method. Oftentimes, use of the term “subgroup” implies use of probability tables, as
described in the subsequent sections. However, the direct method fits into the definition of the
methods of Sec. 4.1, and so is included as a subgroup method here.

In the direct method, explicit energy or lethargy intervals for each subgroup level are
defined. A subgroup level corresponds to a specific range of cross section values, given by
[σn,min, σn,max). The cross section used in the quadrature is the continuous energy cross section
collapsed across the disjoint lethargy range defined by this cross section interval. Equivalently,
defining an indicator function Hn as

Hn(u) =

1 σn,min ≤ σ(u) < σn,max

0 otherwise,
(4.13)

the cross section is a group collapse in which the integrands are multiplied by the indicator
function:

σn =

∫
g
σ(u)φ(u)Hn(u) du∫
g
φ(u)Hn(u) du

. (4.14)

The weights are correspondingly defined as

wn =

∫
g
φ(u)Hn(u) du∫
g
φ(u) du

. (4.15)

Figure 4.1 shows a conceptual illustration of defining the energy interval based on the cross
section value. The subgroup method is sometimes referred to as the “multiband” method, and
the cross section interval defining each level is known as a band. This terminology is used in
the illustration.

Two issues clearly arise in defining the quadrature in this manner. First, the cross section
interval defining a subgroup level is a free parameter. The cross section values defining the
boundaries of subgroup levels within a group—and even the number of levels—should be
selected in such a way as to minimize the error that this approach imposes. This should be
done by comparing cross sections obtained with this approach to those obtained by a reference
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Figure 4.1: A conceptual illustration of the direct subgroup method, reproduced from [21].

solution. Reference solutions should be for problems in which analytic or numerical continuous
energy solutions can be obtained. Typically, very simple problems are chosen, such as infinite
media or simple pin-cell configurations. However, this process is ultimately one that can vary
from implementation to implementation and perhaps even problem to problem.

The second issue is that the quadrature points and weights both depend upon the flux φ(u)

of the system. This is not a known quantity; in fact, the self-shielding calculation, of which
the subgroup method itself is an example, is intended to approximate this quantity. Thus,
including a dependence on the quantity seems to be a large issue. However, as discussed
in Sec. 4.1, the flux as a function of lethargy is a function of only the cross section for the
simplified problem solved in the subgroup method. Thus, for relatively small cross section
intervals, the flux is not likely to vary much. Certainly, the flux will not exhibit the same wild
fluctuations encountered if the entire energy group were to be included by itself. That said, the
flux will still exhibit some sort of variation. This is most easily accounted for using equivalence
in dilution methods, noting that only a coarse approximation is needed. The escape cross
section need not be rigorously calculated; a simple guess will suffice for most applications. For
additional accuracy, an iterative scheme similar to ESSM but for multiple cross section levels
has been proposed by Yamamoto [22, 23].
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4.2.2 Physical Probability Tables

The method of physical probability tables is another method to define the subgroup quadrature.
It removes the explicit energy range associated with each subgroup level; instead, weights
and quadrature points are defined based on minimizing error associated with using the
subgroup method on a set of reference problems. The term “probability table” arises because
the quadrature weight is analogous to a probability that a neutron in the energy group falls in
the corresponding subgroup level.

Fitting Multigroup Constants

One method for generating physical probability tables—or fit-based subgroup quadratures—is
to perform a least squares fitting procedure on multigroup constants—either cross sections or
effective resonance integrals.

First, a set of reference solutions are created. These are multigroup constants obtained
by solving some configuration either analytically or numerically using continuous energy
cross sections. Most commonly, infinite media are used as the configuration references; in
this case, the reference solutions are simply entries in the multigroup nuclear data tables for
difference background cross section values. Alternatively, other simple geometries, such as
pin-cell configurations, can be used [24]. In any case, the reference solution configurations
should span the parameter space expected in later simulations. Let the reference solutions for
configuration k be given as Ig,k or σg,k for effective resonance integrals or group cross sections,
respectively.

Next, approximate effective resonance integrals or cross sections are defined. These
quantities are functions of the subgroup quadrature Q = {wn, σn} and of the configuration. Let
them be notated Ĩg,k and σ̃g,k, and they are defined as

Ĩg,k(Q) =

N∑
n=1

wnσnφk(σn) (4.16)

σ̃g,k(Q) =

N∑
n=1

wnσnφk(σn)

N∑
n=1

wnφk(σn)

. (4.17)

Note that these definitions require knowledge of the flux in configuration k as a function of the
cross section. This flux should be consistent with the flux solution in the references. For infinite
medium configurations in which the reference solutions were computed with the intermediate
resonance model—or equivalently, the narrow or wide resonance models—the relationship is
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analytic:

φk(σn) =
σb,k + λσp

σb,k + σn
, (4.18)

where σb,k is the background cross section for configuration k and σn has previously been
defined as some value of the derived cross section quantity σa +λσs. For other more complicated
reference configurations, the flux must either be tabulated or approximated.

The quadrature is then obtained by a fitting procedure. Generally, the error in some norm is
minimized for all reference configurations. The choice of norm varies among implementations,
but the most common is the 2-norm for relative error, equally weighting each configuration.
Then, this is a non-linear least squares procedure. The quadrature is then given by

Q = arg min
Q′

∑
k

(
Ig,k − Ĩg,k(Q′)

Ig,k

)2

(4.19)

Q = arg min
Q′

∑
k

(
σg,k − σ̃g,k(Q′)

σg,k

)2

. (4.20)

Constraints are imposed on this procedure. For instance, the weights must sum to unity.
Many other constraints are possible and vary by implementation. Such constraints include
forcing the weights to be positive, preserving the infinite dilute cross section exactly, and the
quadrature points being limited to some range.

Fitting Background Cross Section Curve

Another fit-based quadrature generation technique is described in detail in [9]. With this
method, rather than performing a fitting procedure on the subgroup quadrature directly, a
fitting procedure is performed on the curve of the multigroup cross section as a function of
the background cross section level. Then, a quadrature is generated that can represent the
points on this curve exactly, and this is used as the subgroup quadrature. The details of this
generation process are not detailed in this thesis, but are spelled out in detail in the literature.

4.2.3 Mathematical Probability Tables

The method of mathematical probability tables is the final method of subgroup quadrature
generation detailed here. With this method, a set of cross section moments are preserved
in the selection of the quadrature. Unlike with physical probability tables, results are not
compared to reference configurations. The term “mathematical probability tables” arises due to
the quadrature generation involving only mathematical constructs, as opposed to using results
from calculations modeling the physics. The presentation here parallels that of [9, 25]. The
method itself was proposed originally by [26].
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The lth cross section moment in the gth energy group is defined as

Ml =

∫
g
σ(u)l du . (4.21)

The approximation to this cross section moment using the subgroup method with quadrature
Q = {wn, σn} is

M̃l(Q) =

N∑
n=1

wnσ
l
n . (4.22)

The quadrature Q is chosen such that Ml and M̃l are equivalent for a set of values of l. The
constraint

∑N
n=1 wn = 1 is needed to ensure the weights are consistent with the definitions of the

subgroup method. This is equivalent to preserving the 0th moment. This constraint removes
one degree of freedom, leaving 2N − 1 unknowns. Thus, 2N − 1 other moments can be preserved.

The most common choice of moments is integer moments ranging from 1 to 2N − 1. However,
there is little physics involved in preserving very high order moments. In work by [25], it was
suggested that fractional moments between −1 and 0 were perhaps better choices. The −1st
moment corresponds to the flux of a fully-shielded configuration. The 0th moment corresponds
to the 1/E flux encountered in an entirely unshielded configuration. Thus, moments in between
these two extremes can be interpreted as intermediate shielding states.

The quadrature can be determined by choosing the moments to preserve and solving the
resulting set of nonlinear equations. However, solving a large number of nonlinear equations is
not easy in general. Fortunately, a systematic procedure for the moment problem exists. Here,
the procedure for conserving integer moments ranging from 0 to 2N − 1 will be shown. It is
easily adaptable to other consecutive integer moments, including negative moments, and is
even extendible to fractional moments.

Consider the following functional form:

F(z) =

2N−1∑
l=0

zlMl . (4.23)

Because this function only includes moments preserved by the quadrature generation process,
the moments can be replaced by Eq. (4.22). The function can then be rewritten as

F(z) =

2N−1∑
l=0

zl
N∑

n=1

wnσ
l
n =

N∑
n=1

wn

2N−1∑
l=0

zlσl
n . (4.24)

Recognizing the sum over l as the first 2N terms in a Taylor expansion, F(z) can be approximated
as

F(z) =

N∑
n=1

wn

1 − zσn
+ O(z2N) . (4.25)
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This form is a simple relation between F(z) and the subgroup quadrature, which is at this point
unknown. Next, F(z) will be considered in terms of known quantities and compared back to
this form to find the quadrature.

Consider the form of Eq. (4.23) once again. This equation can be approximated to a high
degree of accuracy with a Padé approximation:

F(z) =
a0 + a1z + . . . + aN−1zN−1

1 + b1z + . . . + bNzN + O(z2N) . (4.26)

Setting this equal to Eq. (4.23) and multiplying both sides by the denominator, this is

N−1∑
i=0

aizi =

1 +

N∑
j=1

b jz j


2N−1∑

l=0

zlMl

 + O(z2N) . (4.27)

Collecting terms with like powers of z up to order 2N − 1 gives

z0 : a0 = M0 (4.28)

z1 : a1 = M1 + M0b1 (4.29)
...

zN−1 : aN−1 = MN−1 + MN−2b1 + . . . + M0bN−1 (4.30)

zN : 0 = MN + MN−1b1 + . . . + M0bN (4.31)

zN+1 : 0 = MN+1 + MNb1 + . . . + M1bN (4.32)
...

z2N−1 : 0 = M2N−1 + M2N−2b1 + . . . + MN−1bN . (4.33)

The equations for terms zN , . . . , z2N−1 are a linear system for the vector of b coefficients that is
easily solved. After the b coefficients are found, another linear system for a could be solved,
but this is not necessary for the technique shown here.

Once the b coefficients are known, the denominator of Eq. (4.26) is factored into

1 + b1z + . . . + bNzN =

N∏
j=1

(z − z j) . (4.34)

Then, Eq. (4.26) can be written

F(z) =
a0 + a1z + . . . + aN−1zN−1∏N

j=1(z − z j)
+ O(z2N) . (4.35)
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A partial fraction expansion is performed, yielding

F(z) =

N∑
n=1

cn

z − zn
+ O(z2N)

=

N∑
n=1

c̃n

1 − z/zn
+ O(z2N) ,

(4.36)

which is of the same form as Eq. (4.25). By inspection, the quadrature is given by

wn = c̃n ∀n (4.37)

σn =
1
zn
∀n . (4.38)

In practice, the partial fraction expansion does not need to be performed. The quadrature
base points can be found during the factorization from Eq. (4.34). Once the base points are
found, the weights can be found by solving the simple linear system

Ml =

N∑
n=1

wnσ
l
n . (4.39)

The matrix involved in this linear system is a van der Monde matrix, which has an analytic
inverse. Alternatively, a numerical solution is very straightforward.

4.3 Partial Cross Sections

Up to this point, discussion has been related to determining the primary cross section needed to
solve the subgroup fixed source equations to determine the subgroup level fluxes. If the narrow
resonance model is used, this is the total cross section. With the intermediate resonance model,
this cross section is the derived cross section σλ = σa + λσs. However, in the generation of
multigroup cross sections for downstream applications, the full gambit of partial cross sections
are needed.

Two options are possible. First, for a true subgroup approach, quadratures can be deter-
mined for the partial cross sections. Second, for a hybrid subgroup-equivalence approach, a
reverse table lookup method can be used.

4.3.1 Partial Cross Section Quadratures

After a quadrature for the primary cross section has been generated, secondary quadratures
for each desired partial cross section can be generated. During this process, it must be ensured
that the subgroup levels for the partial cross sections correspond to those of the primary cross
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section. This is because the subgroup fixed source equations are solved only for the primary
cross section, and the resulting flux must be able to be used in the collapsing of the partial
cross sections. This is typically accomplished by holding the weights constant between the two
quadratures. For probability table methods, the weight is an analogue to the discontiguous
energy range that would be attained in a direct subgroup approach, and this ensures the base
points are essentially average values of the cross section for these energy ranges.

In a fitting method, reference values of the partial cross section are generated as σρ,g,k for
configuration k. The approximate cross section attained via the subgroup method is

σ̃ρ,g,k(Qρ,Q0) =

N∑
n=1

wnσρ,nφk(σn)

N∑
n=1

wnφk(σn)

, (4.40)

where Qρ is quadrature for the partial cross sections and Q0 is the previously determined
quadrature of the primary cross section. The flux used in the fitting process is the same as
that in the generation of the primary cross section:

σk(σn) =
σb,k + λσp

σb,k + σn
. (4.41)

Then, the base points for the partial cross section quadrature as obtained via

Qρ = arg min
Q′ρ:Q0

∑
k

(
σρ,g,k − σ̃ρ,g,k(Q′ρ,Q0)

σρ,g,k

)2

. (4.42)

This process can, of course, be performed with effective resonance integrals rather than group
cross sections. The straightforward transformation is omitted from this discussion. In this
process, additional constraints can be placed upon the optimization routine, such as ensuring
the partial cross sections sum to the total cross section for each reference problem. One
implementation of such a fitting procedure is described in [27].

In a moment method, partial cross section moments can be defined as

Mρ,l =

∫
σρ(E)σl(E) dE . (4.43)

The approximate partial moments using the subgroup quadrature are

M̃ρ,l(Qρ,Q0) =

N∑
n=1

wnσρ,nσ
l
n . (4.44)

Because there are N unknowns, N partial moments can be conserved. The definition of the
partial moments was chosen such that finding the partial cross section base points can be
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accomplished by a straightforward linear solve.

Although these methods are similar to their counterparts in the quadrature generation
for the primary cross section, it is not strictly necessary to use the same method for both the
primary cross section and the partial cross sections. One could use a fitting method for the
primary cross section but a moment method for the partial cross sections. However, this is
rarely done in practice.

Finally, note that the quadrature generated in this manner does not necessarily correspond
exactly to that of the primary cross section. Even in holding the weights constant, a possibly
problematic quadrature for the partial cross section can be thought of as shifting the energy
range slightly while maintaining the same integrals over the energy range. This is in general
a small effect, but care must be taken to ensure the resulting quadratures maintain a fair
amount of accuracy. If the desired accuracy is not attained, one can refine the coarse energy
group structure or use a correlation matrix for the partial cross sections, similar to the matrix
quadrature described in Sec. 8.2.4 and described in [28].

4.3.2 Reverse Table Lookup

Another option for the generation of partial cross sections is to employ a reverse table lookup
procedure rather than generating a quadrature. In the context of the moment method, this is
often referred to as the Sanchez-Coste approach [28], but it is can be applied to fitting methods
just as easily. By this method, a table of the cross section as a function of the background cross
section is generated. This can be in the form homogeneous tables or based on heterogeneous
calculations in which the background cross section was inferred. Once the primary cross
section is generated from the subgroup method, the table is queried to find the background
cross section that corresponds to this primary cross section. That background cross section is
then used to pull partial cross sections from the table.

This method has the advantage that there is no lack of correlation concerns between the
primary and the partial cross sections. However, it suffers from the fact that it still requires
the two-region problem assumption from equivalence theory. The subgroup method’s primary
advantage over equivalence methods is its ability to model complex geometries natively, but
the use of the reverse table method brings these issues back. However, this method has been
found to be effective in practice and provides an option with much less complication than the
partial cross section quadratures.

4.4 Reducing Computational Burden

In general, the subgroup method is associated with a considerably higher computational cost
than equivalence in dilution methods, as it requires the solution of transport problems for each
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subgroup level, whereas the equivalence-based methods require transport solutions only in
the computation of the Dancoff factor. While it is unreasonable to expect subgroup methods
to rival equivalence in dilution methods in terms of computational efficiency, there are some
tricks that can be employed to reduce the computational burden.

One option is to enforce a condition that each coarse energy group have the same subgroup
levels for a particular nuclide. A fitting process is then used to determine the weights for
each group, which would be expected to vary from group to group. With this approximation,
a subgroup fixed source equation must be solved for each of the global subgroup levels, but
it avoids a loop over the coarse groups. In order to obtain sufficient accuracy, more levels
per group may be needed, but by avoiding scaling with the number of groups, this still is a
significant cost savings. In [29], a particular implementation of this procedure is shown.

Another common approach to reducing the computational burden is to solve the subgroup
fixed source equations with a fast but perhaps less accurate neutron transport solver. One
example found in literature is the use of the interface current method for these problems when
the method of characteristics is used for the lattice physics computation [30]. In this method,
simple collision probabilities are used on unit-cell problems, and these problems are coupled to
each other through a response matrix. Similarly, an MOC formulation with fewer tracks and
segments is possible. These methods provide a significant speed-up and have been found to
give sufficient results on some test cases, but such approximation must be carefully managed
to ensure it does not inject unwanted bias into the lattice physics calculation.

4.5 Chapter Summary

The subgroup method is used to provide fine-group cross sections to a lattice-level calculation
and in recent years has been the most prevalent such method for new code development. It
approaches the multigroup cross section generation process by integrating the integrated
reaction rate and flux by the cross section value rather than by energy. This clever change of
variables leads to a much smoother function, requiring many fewer base points in a numerical
quadrature. However, the quadrature is not well-defined, and determining an appropriate
quadrature is an arduous process.

Three classes of quadrature generation methods were presented: the direct method, fitting
methods, and moment methods. The direct method defines explicit energy ranges for subgroup
bands, which makes the definition of the quadrature very easy, but unfortunately leads to a
problem-dependent quadrature. Fitting methods compare subgroup approximations for cross
sections on simple problems to reference solutions, usually those of the homogeneous tables
discussed in Ch. 2, and perform an optimization process for the best fit. Moment methods
preserve mathematical constructs based on the cross section.
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Chapter 5

Ultrafine Methods

5.1 Background

The goal of reactor physics calculations is to determine the reaction rates throughout the core
of a nuclear reactor by solving the neutron transport equation as closely as possible. The
steady-state transport equation with explicit scattering and a generic external source,

Ω̂ · ∇ψ(~r, Ω̂, E) + Σt(~r, E)ψ(~r, Ω̂, E) =

∫
4π

dΩ̂′
∫ ∞

0
dE′ Σs(~r, Ω̂′ → Ω̂, E′ → E)ψ(~r, Ω̂′, E′) + Q(~r, Ω̂, E) ,

(5.1)
is the workhorse of most simulations. Note that eigenvalue calculations, where Q is a function
of ψ, use this form of the equation inside fission source iterations.

In approximating a solution to this equation by deterministic methods, the energy variable
is often divided into relatively few bins, or energy groups, and great care must be taken in
determining the nuclear data at each of these groups. The energy variable is complicated by
the existence of large spikes known as resonances in the cross sections at certain energy values.
These resonances lead to depressions in the flux, a phenomenon known as self-shielding, both
in the energy and spatial variables. However, this self-shielding phenomenon is implicit when
enough energy groups are used to resolve the shapes of the resonances in the nuclear cross
sections. Spatial self-shielding effects also require sufficient resolution in the spatial and
angular solution mesh to be captured implicitly.

Thus, a class of solution techniques to the transport equation known as ultrafine methods,
in which either a great many very narrow energy groups or true continuous energy dependence
is used in the solution, is considered to be the most accurate and flexible means of solution.
Unfortunately, this corresponds to very high computational cost, as the number of degrees
of freedom in the problem is greatly increased by using so many energy groups. Such a
solution on a large problem is not feasible on today’s computers. However, as computers are
improving, ultrafine methods with certain convenient approximations can be injected more
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and more into reactor physics calculations, allowing the field to move away from restricting
legacy self-shielding approximations.

If ultrafine methods are seen as a means of generating few-group cross sections for a
subsequent calculation, as opposed to being a standalone solution technique, they can be tuned
for this purpose. Ultrafine methods can be restricted to the resolved resonance range, as this
is the energy range where the methods have the most benefit. At higher energies, because
the exact shape of the cross section is not known, using narrower groups does not benefit the
solution. At thermal energies, standard energy group structures use narrow enough groups to
resolve the effects of the important resonances that exist, and specialized ultrafine methods
are not needed. Furthermore, using the ultrafine computation as a means of generating cross
sections removes much of the need for coupling the resonance range to higher and lower
energies, resulting in a simpler solution method.

5.2 Mechanics of Ultrafine Methods

5.2.1 Scatter Source

The typical method of modeling scattering in a deterministic reactor physics calculation is
to use a group-to-group scattering matrix. This is not feasible for an ultrafine calculation,
though, as the size of the matrix would be gigantic. Looping over elements in such a matrix
would be cost prohibitive in itself, but the memory footprint of the matrix is the true limiting
factor. Consider a scatter matrix for a material including hydrogen. Using 10,000 energy
groups—a moderate number for ultrafine methods—results in approximately 50 million non-
zero entries, requiring a whopping 400 MB to store in double precision. For a 100,000 energy
group calculation, this balloons to 5 billion non-zero entries requiring 40 GB to store. Clearly,
this is not a feasible tactic.

Fortunately, alternatives exist. In the resolved resonance range, elastic scattering domi-
nates. Inelastic scattering is a threshold reaction that only occurs above resonant energies. For
some isotopes, there may be a non-negligible incoming inelastic scatter source at resonance en-
ergies, but this is easily included in the external source. With elastic scattering off a stationary
nucleus, the group-to-group transfer matrix can be easily computed on the fly, and the source
in each group can be computed very efficiently. Although upscattering due to nuclear motion
in the resonance range has been found to have a significant effect on the Doppler reactivity
coefficient, this is neglected in this discussion.

The elastic scattering kernel has a convenient form for ultrafine calculations. Assuming
isotropic scattering in the center of mass, the probability of scattering to a particular energy is
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constant within the limits of physically allowable energies:

P(E′ → E) =


1

E′(1 − α)
αE′ < E < E′

0 otherwise .
(5.2)

For a given spatial point, the scatter source from scattering off a given isotope is given by

Qi
s(E) =

∫ ∞

0
Σs(E′ → E)φ(E′) dE′ =

∫ ∞

0
Σi

s(E
′)P(E′ → E)φ(E′) dE′ . (5.3)

Inserting the elastic scattering kernel, this scatter source becomes

Qi
s(E) =

∫ E/α

E

Σi
s(E
′)φ(E′)

E′(1 − α)
dE′ , (5.4)

which depends on the energy E only through the bounds on the integral. This has two important
implications for efficiently solving an ultrafine problem. First, no up-scattering appears in this
equation, which means a single Gauss-Seidel sweep in energy will lead to an exact solution,
with no energy iteration needed. Second, the loose dependence on E allows cumulative integrals,
described subsequently, to be used to efficiently compute this source.

The integral in Eq. (5.4) can be rewritten as the difference of two integrals with the same
integrand and the same upper bound E∗:

Qi
s(E) =

∫ E∗

E

Σi
s(E
′)φ(E′)

E′(1 − α)
dE′ −

∫ E∗

E/α

Σi
s(E
′)φ(E′)

E′(1 − α)
dE′ . (5.5)

If the upper bound energy is taken to be the largest energy in the problem—or equivalently,
infinity—then these integrals can be interpreted as a cumulative integrals. That is, the
integrals can be built by cumulatively adding contributions from each energy solved from the
maximum energy down to the energy E. This is easily accomplished during a Gauss-Seidel
sweep, and this allows the scatter source at each energy to be computed simply by subtracting
two stored values. The algorithmic complexity using cumulative integrals for computing the
scatter source is then Θ(g) where g is the number of groups or energy points, as opposed to the
naive Θ(g2) algorithm of simply numerically evaluating each integral when encountered.

The details of computing these cumulative integrals and the details of their use vary
somewhat depending upon a few assumptions. In particular, the details vary most between
ultrafine multigroup calculations and true continuous energy calculations. These details are
discussed in the subsequent sections.

Note that this method does not require that cumulative integrals as a function of energy
be stored explicitly. For instance, in the lattice physics code AEGIS [31], a single tally of the
scatter source is kept. At each energy group, a new contribution to the integral is added and
the contributions from higher energies than now possible are subtracted. The mechanics of
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this technique varies slightly from that shown here, but it is in essence the same method.

All of the discussion in this section has been for scattering from a single isotope. In a
mixture of several isotopes, the scatter source is simply a sum of the scatter source from each
individual isotope. Number densities are implied in the use of macroscopic cross sections in
this section. The maximum logarithmic energy decrement α is a function of the isotope, but
the superscript i is omitted for notational simplicity. The total scatter source Qs is simply

Qs(E) =
∑

i

Qi
s(E) . (5.6)

Multigroup Forms

In the multigroup form of the neutron transport equation, the scatter source Qsg is integrated
over the bounds of energy group g,

Qsg =

∫
g

Qs(E) dE . (5.7)

Considering a single isotope with only elastic scattering, Eq. (5.4) is inserted into this equation,
leading to a scatter source of the form

Qi
sg =

∫
g

dE
∫ E/α

E
dE′

Σi
s(E
′)φ(E′)

E′(1 − α)
. (5.8)

This integral is quite complicated to evaluate using available multigroup data. For simplicity,
here it is broken down into three components and each component is examined in turn. The
superscript i and subscript s will be implied for the remainder of this discussion. The three
components are in-group scatter Qgg, scatter from full energy groups Q fg, and scatter from
partial groups Qpg, with

Q = Qgg + Q fg + Qpg . (5.9)

Full Groups First, consider scatter from full energy groups Q fg. This component is the
scattering due to groups higher than the destination group in which it is physically possible for
any neutron energy from the scatter group to scatter to any energy in the destination group.
This occurs when the upper bound of the scatter group is less than the maximum energy that
can scatter to the bottom energy bound of the scatter group,

Eg′ <
Eg+1

α
. (5.10)
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Then, the scatter source from these full groups is the summation of the scatter source from
each of the groups,

Q fg =

∫
g

dE
∑
g′∈ fg

∫
g′

dE′
Σi

s(E
′)φ(E′)

E′(1 − α)
. (5.11)

Because only the group-averaged scatter cross section Σi
sg and the group-integrated flux φg

are available in a multigroup calculation, the E′ integral must be approximated. This is
most easily accomplished by inserting group-averaged cross section into the equation with the
group-averaged flux, given as the group-integrated flux divided by the width of the energy
group,

Q fg ≈

∫
g

dE
∑
g′∈ fg

Σi
sg′φg′

∆Eg′

∫
g′

dE′
1

E′(1 − α)

= ∆Eg

∑
g′∈ fg

Σi
sg′φg′ ln(Eg′/Eg′+1)

∆Eg′(1 − α)
.

(5.12)

Alternatively, the energy E′ could also be held constant at some average value Eg, which leads
to a very similar approximation,

Q fg ≈ ∆Eg

∑
g′∈ fg

Σi
sg′φg′

Eg′(1 − α)
. (5.13)

In-Group Next, consider the in-group scatter source Qgg. It is assumed that Eg+1/α > Eg;
that is, all neutrons that scatter in the group can lose at least as much energy as to reach the
bottom of the group. The in-group scatter source can be written as

Qgg =

∫
g

dE
∫ Eg

E
dE′

Σi
s(E
′)φ(E′)

E′(1 − α)
. (5.14)

As with the scatter from full energy groups, the group-average cross section and flux are pulled
out of the integral as constants,

Qgg ≈

∫
g

dE
Σi

sgφg

∆Eg

∫ Eg

E
dE′

1
E′(1 − α)

=
Σi

sgφg

∆Eg(1 − α)

∫
g

dE ln
Eg

E

=
Σi

sgφg

∆Eg(1 − α)

[
E ln

Eg

E
+ E

]Eg

Eg+1

=
Σi

sgφg

(1 − α)

(
1 −

Eg+1 ln(Eg/Eg+1)
∆Eg

)
.

(5.15)
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Again, an alternative form comes from using an average energy value Eg as a constant and
pulling that from the integral,

Qgg ≈
Σi

sgφg

∆EgEg(1 − α)

∫
g

dE (Eg − E)

=
Σi

sgφg∆Eg

2Eg(1 − α)
.

(5.16)

This component is very small for ultrafine energy discretization. In AEGIS, this term is
neglected altogether. Another approximation that is less drastic is to move this in-group
component to the next group’s source, so as to avoid source iteration.

Partial Groups Finally, consider the partial-group scatter source Qpg. This is the scatter
source due to groups that include energies greater than Eg+1/α. When using equal lethargy
groups, there are two such groups, (A) the group that contains the point Eg+1/α and (B) the
group that contains Eg/α. With equal lethargy groups, these two points cannot occur in the
same group unless both points fall exactly on the boundary; in that case, the group can be
treated as a group containing Eg+1/α. If groups have varying lethargy widths, there are two
more possibilities, (C) a group can contain both extreme points on its interior and (D) there can
exist groups that contain neither extreme point. For each of these four cases, rigorous integrals
contributing to Eq. (5.8) can be written down:

Qpg,A =

∫ Eg

Eg+1

dE
∫ Eg+1/α

Eg′+1

dE′
Σi

s(E
′)φ(E′)

E′(1 − α)
+

∫ Eg′

Eg+1/α
dE′

∫ Eg

αE′
dE

Σi
s(E
′)φ(E′)

E′(1 − α)
(5.17)

Qpg,B =

∫ Eg

αEg′+1

dE
∫ E/α

Eg′+1

dE′
Σi

s(E
′)φ(E′)

E′(1 − α)
(5.18)

Qpg,C =

∫ Eg

Eg+1

dE
∫ Eg+1/α

Eg′+1

dE′
Σi

s(E
′)φ(E′)

E′(1 − α)
+

∫ Eg/α

Eg+1/α
dE′

∫ Eg

αE′
dE

Σi
s(E
′)φ(E′)

E′(1 − α)
(5.19)

Qpg,D =

∫ Eg′

Eg′+1

dE′
∫ Eg

αE′
dE

Σi
s(E
′)φ(E′)

E′(1 − α)
. (5.20)

Note that the order of integration had to be changed in some of these cases due to the bounds
depending upon the integration variables. Each of these integrals can be approximated using
the same methods as in the full group and in-group cases, but the final forms are omitted from
this discussion. Instead, a possible approximation is to treat all partial groups as a single
partial group with a form similar to that of case C of Eq. (5.19) with the group-averaged cross
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sections and flux from the lowest energy partial group inserted as constants:

Qpg ≈

∫ Eg

Eg+1

dE
Σi

sg′φg′

∆Eg′(1 − α)

∫ Eg+1/α

Eg′+1

dE′

E′
+

∫ Eg/α

Eg+1/α
dE′

Σi
sg′φg′

∆Eg′(1 − α)E′

∫ Eg

αE′
dE

=
∆Eg

∆Eg′

Σsg′φg′

(1 − α)

[
ln

Eg+1

αEg′+1
+

Eg

∆Eg
ln

Eg

Eg+1
− 1

]
.

(5.21)

This is a very small quantity, so it is not hard to imagine that any approximation to it would
not lead to any consequential errors. Thus, AEGIS takes this approximation one step further
by treating each group as being defined by its average energy Eg. If αEg′ > Eg, then the group
is neglected; otherwise, it is treated as a full scatter group.

In an ultrafine calculation, in order to resolve resonances with the energy discretization,
the width of groups will tend to be much less than the scattering interval for even the heaviest
of isotopes. Thus, when calculating the scatter source, the vast majority of contributing groups
will be considered full groups. The sum in the full group scatter source form can be stored as a
cumulative sum (analog of previously discussed integrals), and the width of the destination
group can be multiplied on the fly. The in-group and partial group components can be computed
for each group.

Continuous Energy Forms

The continuous energy form of the scatter source is much more straightforward. The complica-
tions of the second integral from the multigroup form do not exist, and the cumulative integral
prescription is much more intuitively applied. However, there still are subtleties that must be
carefully considered in this form.

In continuous energy calculations, cross sections are generally assumed to vary linearly
between given points. Assuming the solution energy mesh is the same as the cross section
energy mesh, this leads to flux values at each energy point, but there is not necessarily a
correct interpretation for the shape between the flux points. In computing integrals, including
that of the scatter source, some flux shape or quadrature rule must be applied.

The simplest method is to assume a simple quadrature rule, such as the trapezoid rule.
Here, given two energy points with corresponding cross section values and flux values, the
integral of the reaction rate is given by∫ E2

E1

Σ(E)φ(E) dE ≈
1
2

(Σ1φ1 + Σ2φ2) (E2 − E1) . (5.22)

Although this is likely the simplest option and offers a good degree of accuracy, there are of
course many other options. Other quadrature rules are possible, but are not discussed here.
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Another possibility is to assume a linear form of the flux and the cross section and to perform
the integral analytically.

Regardless of the method taken, barring a one-sided Riemann sum quadrature, the integral
of Eq. (5.4) will include a dependence on the flux at the energy point E. Because the flux is not
known at that point a priori, this requires source iteration or an equivalent solution approach.
Although the energy variable is not divided into groups in a continuous energy approach,
this is equivalent to in-group scattering. As with the multigroup form, an easily defensible
approximation is to move this “in-group” component into the source of the subsequent energy
point, foregoing source iteration.

5.2.2 Starting Source

Any fixed source reactor physics calculation requires a specification of the fixed source in
order to compute a non-zero flux for the problem. Ultrafine methods, which generally do not
solve eigenvalue problems, therefore require some sort of fixed source specification. There are
several options for such a source, and two of them are discussed here.

Fission Source

The first option is to use a fission source as the fixed source. An external source Qext is then
defined as

Qext(~r, E) = χ(E)R f (~r) , (5.23)

where χ is the fission spectrum of the material at the given point and R is the fission rate.
Clearly, this requires knowledge of the spatial fission distribution. Note that because the ultra-
fine calculation is intended to generate a flux spectrum for cross sections, the absolute value of
the fission rates are not important; only their relation to each other survives normalization in
the cross section condensation process.

In a simple pin-cell calculation, R can be set to unity in the fuel region with minimal
approximation. The mean free path of a neutron at fission energies is long enough that
intra-pin specification of the fission source would not lead to any meaningful gains in accuracy.
However, in larger calculations, such as that of a lattice, a fission distribution between pins
is needed. This can come from a few-group multigroup calculation with approximate cross
sections or can be estimated. If a multigroup calculation is used, it is even possible to turn this
into an iterative procedure where ultrafine-calculation-generated cross sections are used in
the determination of the spatial fission source, the fission source is piped back into another
ultrafine calculation, and this iteration continues until convergence. Of course, such iteration
requires multiple ultrafine calculations and so is a very expensive endeavor.
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As discussed heretofore, ultrafine calculations generally are restricted to the resonance
range and do not have the appropriate physics embedded for the fast range. Unresolved
resonances and inelastic scattering are not easily modeled with these methods. Thus, starting
from a fission source has the problem of inaccuracies in slowing down from neutron birth to
the top of the resonance range.

1/E Source

Another option is to assume a 1/E flux with constant potential scattering above the energy
range of interest. With this method, no external source is needed; the fixed source is built
into the scatter source computation. If using cumulative integrals, this is accomplished by
setting negative cumulative integrals at energies above the maximum energy in the problem,
consistent with the potential scattering source.

This method has the advantage of separating broad energy groups in well-moderated
systems, as information from one broad group only minimally impacts any other broad group
outside of the 1/E scatter source it provides. By separating the broad groups into separate
calculations, an inherent parallelism is achieved.

This method, like the fission source technique, suffers in that the strength of the source
spatially is needed. The 1/E sources can be scaled spatially if such information is known, but
this requires an auxillary few-group multigroup calculation or additional approximation. Note
that the subgroup method, which assumes 1/E scatter sources, in its standard prescription,
assumes the fluxes do not vary spatially in this 1/E range, and the only impact on the scatter
source spatially comes from varying potential cross sections.

5.3 Existing Ultrafine Implementations

5.3.1 CENTRM

One existing implementation of ultrafine methods is the CENTRM continuous energy discrete
ordinates code [32, 33]. CENTRM uses a cylindrical geometry in S N with white boundary
conditions as the spatial solver, and has recently been extended to include a 2-D MOC solver
[34]. CENTRM models the energy variable to a very high degree of accuracy, including inelastic
scattering and anisotropic scattering. This is made possible by what is called the submoment
expansion.

The isotropic in center of mass elastic scattering kernel is able to be computed by cumulative
integrals because it is a function only of the incoming energy aside from its energy bounds.
The submoment expansion takes other scattering kernels, which do not have this property, and
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expand the dependence on the outgoing energy in Legendre polynomials:

P(E → E′) ≈
L∑

l=0

fl(E)Pl(E′) , (5.24)

where Pl is the lth Legendre polynomial and fl the lth Legendre moment of the kernel.

With this expansion, each term fl(E) can be computed as a cumulative integral. Although
the overhead associated with this expansion is quite large, this ensures the computation of the
scattering kernel is still Θ(g). For very large numbers of energy groups or energy points as in
CENTRM, this expansion leads to significant cost savings over a naive approach.

5.3.2 AEGIS

The Japanese lattice physics code AEGIS [35, 31] contains a 32,000-group ultrafine library.
The ultrafine capabilities of the code are used on pin-cell calculations. The AEGIS code is
a particularly good example of taking a complicated problem—in this case, the ultrafine
discretization of the neutron transport equation—and making justified simplifications in a
systematic manner.

First, a study was performed to demonstrate that for the problems of interest, anisotropy
does not play a significant role. Thus, AEGIS uses only isotropic scattering. Next, it was
shown that satisfactory accuracy could be achieved by using a two-region collision probability
model rather than a complete MOC transport solution. This reduced the run time for a pin-cell
from several hours to only seconds. Also, approximating the flux as 1/E in the moderator was
shown not to heavily influence the solution, and this allowed for a factor of 2 reduction in
runtime. Finally, rather than model each isotope and its respective scattering source explicitly,
AEGIS lumps together isotopes with similar masses as a single isotope. Isotopes are split
into categories including hydrogen, other light isotopes, mid-mass isotopes (fission products
and structural materials), and heavy isotopes (actinides). This greatly reduces the cost of
computing the scatter source for large numbers of isotopes. These approximations allow AEGIS
to perform as a very efficient ultrafine code, although they do limit the applicability of it.

5.3.3 MC2-3

The MC2-3 code [36] developed by Argonne National Laboratory for fast reactor cross section
generation is another existing ultrafine implementation. MC2-3 takes an innovative approach
of a two-level iterative scheme, which allows an eigenvalue calculation to be possible.

The finer energy mesh is known as the hyperfine mesh. This level contains 400,000 energy
points, which is likely more than necessary to resolve resonance effects fully implicitly. This
calculation inputs source information including the fission source and inelastic scattering
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source from the coarser energy mesh. Thus, it is a fully implicit resonance calculation that
can take into account the spatial distribution of power and reaction types that are not easily
modeled on this fine of a structure. Following the solution of the hyperfine energy mesh, the
obtained flux is used to collapse cross sections to the coarser mesh.

The coarser energy mesh is known as the ultrafine mesh, which contrasts with the meaning
of the term in this thesis. This level contains approximately 2,000 energy groups complete with
a full scattering matrix. At this level, all physics typically included in a multigroup solution is
modeled, and an eigenvalue problem is solved. The spatial distribution of the fission source
and the inelastic scattering source is fed back to the hyperfine energy mesh, and an iterative
procedure is followed until convergence is obtained, usually in only a few iterations.

This procedure can in theory be performed on a variety of geometries, and it is not required
that the two levels use the same geometry. However, this is a very costly process, as a
single iteration of a 2,000 energy group problem with a full scatter matrix is itself difficult.
Furthermore, it is complicated by an iteration scheme requiring the solution multiple times
and a 400,000 energy point calculation alongside it. Thus, it is typically used for very small
geometries.

5.3.4 RAZOR

The RAZOR code [37] developed at Bettis Atomic Power Laboratory takes a somewhat different
approach to the ultrafine problem. RAZOR does not use the cumulative integral approach to
computing the scatter source, but rather builds the scatter source for lower energy groups
as it sweeps down in energy. This appears to be a Θ(g2) approach, but clever implementation
ensures that the computational burden is manageable for problems of interest. This scattering
approach allows for the treatment of anisotropic scattering without difficulty.

The scatter sources are split into two buffers, a fine-structure buffer including energy
groups close to the current group and a coarse-structure buffer for energy groups far away
from the current group. This recognizes that the fine structure of the scatter source, including
peaks due to resonances, is only significant for neutrons that scatter very small intervals in
energy. Neutrons that scatter over larger intervals lead to scatter sources with little to no fine
structure; in fact, this is the basis of the narrow resonance approximation, which assumes a
scatter source that exhibits no fine structure behavior at all. Thus, a scattering event with a
heavy isotope contributes primarily to the fine-structure buffer, but a scattering even with a
light isotope (e.g., hydrogen) contributes in small part to the fine-structure buffer but in large
part to the coarse-structure buffer. This avoids iterating over all lower energy groups during a
scatter event, and ensures the scattering computation scales near linearly with the number of
groups.

Furthermore, a coarse energy mesh, with only about 20 groups, is overlaid across the energy
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regime. Inelastic scattering is treated only on this coarse mesh, and the resulting source is
applied uniformly to the fine groups contained in the coarse group. Because inelastic scattering
acts over a very large energy range, the outgoing energies do not exhibit much fine structure.
Furthermore, the effect of inelastic scattering on the resonance range is very small. Thus, this
approximation is deemed sufficient for these calculations.

5.4 Chapter Summary

Ultrafine methods account for resonance self-shielding effects by discretizing the energy
variable enough to resolve the resonances directly. They typically are associated with too
high a cost to be used on large geometries, but they can be used for multigroup cross section
generation. It is becoming increasingly common for database-level calculations to be based
on heterogeneous ultrafine calculations rather than infinite media. Researchers are currently
striving to combine the database and lattice levels by applying ultrafine methods directly to
larger geometries.

Ultrafine methods require the scatter source to be computed on the fly, as storage of an
ultrafine scattering matrix is not practical. The isotropic in center of mass scattering kernel
can be computed very efficiently by using an approach based on cumulative integrals. Existing
ultrafine implementations such as CENTRM and RAZOR include clever transformations of
more general scattering kernels to maintain computational efficiency.
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Part III

Contributions
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Chapter 6

Framework for Evaluating
Self-Shielding Models

6.1 Introduction

Too often new techniques are tested and justified using exclusively large, realistic problems.
While realism may sound like the ideal test bed for any method, without coupling it with an
isolated analysis of the physics, positive results could be driven by cancellation of error, or
the range of applicability may be limited beyond what is desired. In software development, a
proper test suite contains both unit tests, which isolate specific aspects of the program, and
integral tests, which ensure the program works together as a whole. The framework proposed
here is analogous to a unit test; it isolates the physics contained in the self-shielding step and
measures a method’s performance on this small problem.

The primary content of this chapter is a simple benchmark problem, designed to be the
simplest problem in which both spatial and energy effects of resonances can be seen. This
represents the first step in the evaluation of a self-shielding model and demonstrates the need
for and the use of simple benchmarks in self-shielding analysis.

After this sort of analysis, more realistic problems should be considered, adding complexity
to the self-shielding problem. The results of Part IV are framed with this in mind. First, simple
changes to the benchmark are considered, such as including the true elastic scattering kernel
and multiple nuclides. Then, further complexities are added including larger spatial problems
with significant heterogeneity.
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6.2 A Simple Benchmark

The benchmark problem presented in this chapter was originally intended to be an educational
exercise, to give students an appreciation of the quality of the approximations typically
encountered in a reactor physics calculation. However, the results warranted interest beyond
a simple educational tool. Although equivalence in dilution methods have been studied
extensively on very simple problems [14], side-by-side comparisons of these methods with the
subgroup method on problems where both are expected to perform well are not readily found.
Furthermore, with the advent of newer self-shielding techniques, it is common to only see
performance analysis on large problems. Ignoring very simple problems can lead to overlooking
fundamental aspects of a technique and risks relying on cancellation of error for accuracy on
specific problems.

Thus, this chapter presents the simplest problem in which both energy and spatial effects
are important in a self-shielding problem. It is designed such that the assumptions in self-
shielding methods are fully valid, allowing the performance of a method to be understood
without complications from poor assumptions. Results are presented for various self-shielding
methods with some commentary about the effectiveness and the ease of use of each method.

6.2.1 Overview

The benchmark is representative of light water reactor conditions. Geometrically, equivalence-
based self-shielding models assume two regions—fuel and moderator. Thus, this benchmark
contains exactly those regions. Because self-shielding models typically only treat one resonant
nuclide at a time, this benchmark contains only one such nuclide. This benchmark uses the
most common assumption for the scatter source in self-shielding models, the narrow resonance
approximation, and only a single energy group is considered.

Two classes of geometries are considered, an isolated slab and an infinite array of identical
pin-cells, referred to as a “reflected pin-cell.” Various widths of the slab and radii of the pin are
considered to test a wide variety of shielding states. Two classes of resonances are considered,
a square resonance and a single-level Breit-Wigner resonance. For the purpose of clarity in the
results, only a single resonance is included in the resonant material.

The fuel material is assumed to have a constant cross section background moderator
representative of U-238 in a light water reactor fuel pin. The resonant nuclide is given a
potential scattering cross section equivalent to that of U-238. The moderator material is
assumed to be purely scattering. Its properties are chosen to be representative of water in a
pressurized water reactor.

The quantity of interest is the group-averaged capture cross section of the resonant nuclide.
This is the output from a typical self-shielding calculation. The capture cross section is used
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rather than the total cross section, as it considers only the aspect of the cross section affected
by self-shielding, whereas the total cross section would in large part be influenced by the
constant potential scattering cross section.

This benchmark can be easily extended to cases not considered here, many of which are
explored in Part IV. Some simple examples include varying the pin pitch, adding additional
resonances to the fuel material, and changing the background level. Larger changes, breaking
the assumptions in some self-shielding methods, include introducing cladding to the geometry,
including a second resonant nuclide, and using a more realistic scattering model.

6.2.2 Specifications

Geometry

Isolated Slab For the case of the isolated slab, the benchmark geometry is a one-dimensional
configuration with a slab of lumped resonant material surrounded by an infinite medium of
moderating material. In this case, the only parameter needed to define the configuration is the
width of the slab. A slab width of 0.4 cm is the most analogous case to a pin found in a light
water reactor. However, this parameter is varied to evaluate the accuracy of self-shielding
methods over a range of configurations. The results presented in this thesis include widths of
0.3 cm, 0.4 cm, and 0.6 cm, but these can be varied over a larger range for methods verification.

The fuel slab should be treated as a single region for the purpose of determining the effective
cross section. That is, this benchmark does not attempt to determine the spatial distribution of
group cross section within the slab, but rather focuses only on the prediction of the spatial- and
energy-averaged cross section. This is to maintain the assumption of a two-region problem.

Reflected Pin-Cell For the case of the reflected pin-cell, the benchmark geometry is a
two-dimensional configuration with a cylindrical lump of resonant material surrounded by
moderator in an infinitely repeating lattice. The only parameter varied in this benchmark is
the fuel radius. The most realistic value for a pressurized water reactor is 0.4 cm, and results
are presented for radii of 0.3 cm, 0.4 cm, and 0.6 cm. These can be varied over a larger range for
methods verification. The pitch is held constant at 1.26 cm in this paper but can be varied in
subsequent studies.

As with the slab, the pin and the moderator regions should be treated as single regions for
the determination of effective cross sections in order to maintain the two-region assumption.

Physics

Energy Group A single energy group is used with group boundaries 1000 eV and 1100 eV.
This benchmark could easily be extended to consider other energy ranges, but this is not
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considered here.

Cross Sections The capture cross section of the resonant nuclide contains a single resonance,
either a square resonance or a single-level Breit-Wigner resonance, with parameters described
subsequently. The nuclide has a potential scattering cross section of 11.4 b and no other
reaction channels. The resonant material also contains non-resonant nuclides characterized
by a background cross section of 8 b. The number density of the resonant nuclide is 0.022 a/b·cm.
These values are consistent with U-238 in a light water reactor fuel pin.

The moderator is purely scattering and has macroscopic cross section 1.23 cm−1, representa-
tive of water in a pressurized water reactor.

Square Resonance For the case of a square resonance, the capture cross section takes some
value in a small range in the center of the energy group and is zero elsewhere,

σγ(E) =

 f E0 − δ/2 ≤ E ≤ E0 + δ/2

0 otherwise .
(6.1)

In this benchmark, f is varied, E0 = 1050 eV, and δ = 0.05 eV.

Single-Level Breit-Wigner Resonance For the case of a single-level Breit-Wigner reso-
nance [8], the capture cross section is a single resonance. The resonance parameters are
Γn = 0.095 eV and Γγ = 0.023 eV, which are taken from the resonance parameters from a real
U-238 resonance at a similar energy. The center of the resonance is E0 = 1050 eV, and the
temperature is T = 300 K. The formula for the resonance is

σ0(E) =
ΓnΓγ

(Γn + Γγ)2

√
E0

E
rψ(x, ξ) , (6.2)

where

r =
2603911 b · eV

E0

A + 1
A

(6.3)

x =
2(E − E0)
Γn + Γγ

(6.4)

ξ = (Γn + Γγ)

√
A

4kT E0
(6.5)

ψ(x, ξ) = <

(
ξ
√
π

2
W

(
(x + i)ξ

2

))
, (6.6)

and A = 238 is the atomic mass, k is the Boltzmann constant, and W(·) is the Faddeeva function.
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The size of the resonance is varied in this benchmark. This is accomplished by multiplica-
tively scaling this resonance to obtain a maximum cross section value f ,

σ(E) = σ0(E)
f

max
E

σ0(E)
. (6.7)

Scattering Approximation Scattering is approximated as in the narrow resonance model.
That is, all scattering is assumed to come from potential scattering resulting from a 1/E

spectrum and a constant cross section Σp. This gives a scattering source in both fuel and
moderator of

Q(E) =
Σp

E
. (6.8)

6.2.3 Transport Calculation

The transport calculation is performed using a collision probability approach. Because this
problem has only two regions, this is a very simple calculation. Consider the collision probability
form of the neutron transport equation, with the collision probabilities notated as P, the fuel or
resonant region indexed as F, the moderator region indexed as M, and volumes given as V,

ΣF(E)φF(E)VF =
(
1 − PF→M(E)

)
QF(E)VF + PM→F(E)QM(E)V M . (6.9)

Invoking the reciprocity relation

VFΣF PF→M = V MΣMPM→F (6.10)

and inserting Eq. (6.8), the transport equation simplifies to

ΣF(E)φF(E) =
(
1 − PF→M(E)

) ΣF
p

E
+ PF→M(E)

ΣF(E)
E

. (6.11)

For the case of the 1-D isolated slab, the collision probabilities are analytic,

PF→M =
1

2ΣFd

(
1 − 2E3(ΣFd)

)
, (6.12)

where d is the width of the slab and E3 is the third exponential integral. For the 2-D pin-cell
configuration, the collision probabilities were computed using a 2-D method of characteristics
code. The MOC parameters included 32 azimuthal angles, a track spacing of 0.01 cm, and a
3-point TY polar quadrature.
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6.2.4 Reference Solution

Because of the scattering approximation, the flux at a given energy is decoupled from that of
any other energy. Thus, a reference can be obtained by solving a series of one-speed transport
equations and performing an integration over energy. For the case of the square resonance,
this integral is analytic; for the single-level Breit-Wigner resonance, this requires a numerical
approach. The one-speed transport equation is solved using a collision probability model, as
described in Sec. 6.2.3.

6.3 Self-Shielding Methods Descriptions

The following self-shielding methods were compared on this benchmark problem. Equivalence
in dilution methods included using the Wigner rational model, Wigner-Bell, and a two-term
rational expansion (Román for slab, Carlvik for pin). The subgroup method and the Embed-
ded Self-Shielding Method were also tested. These methods and their implementations are
described next.

6.3.1 Equivalence in Dilution

First, several equivalence in dilution options were considered. For a detailed description of the
theory of these methods, see Ch. 3. The Wigner rational model, the simplest approximation for
the escape probability is

PF→M =
Σe

ΣF(E) + Σe
. (6.13)

If the Dancoff factor is included, this becomes

PF→M =
(1 −C)Σe

ΣF(E) + (1 −C)Σe
. (6.14)

Next, the Wigner-Bell model was considered, which scales the escape probability for an
isolated lump by a factor b. This Bell factor is taken to be 1.15 for this study. This is a
representative value for typical light water reactor conditions. Note, though, that the Bell
factor does not preserve the correct behavior at the high cross section limit, and so it should be
varied and driven to 1 for high cross sections in realistic simulations. The Wigner-Bell collision
probability without the Dancoff factor is

PF→M =
bΣe

ΣF(E) + bΣe
, (6.15)

and is

PF→M =
b̃Σe

ΣF(E) + b̃Σe
(6.16)
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b̃ =
(1 −C)b

1 −C + Cb
(6.17)

if the Dancoff factor is included.

Two-term rational approximations better approximate the escape probability. These take
the form of

PF→M = β
α1Σe

ΣF(E) + α1Σe
+ (1 − β)

α2Σe

ΣF(E) + α2Σe
, (6.18)

where the parameters α1, α2, and β are geometry dependent. For an isolated slab, the parame-
ters take the values

α1 = 1.4 α2 = 5.4 β = 1.1 , (6.19)

and it is known as the Román rational approximation. For a cylindrical fuel pin, the parameters
are given by

α1 =
5A + 6 −

√
A2 + 36A + 36

2A + 2

α2 =
5A + 6 +

√
A2 + 36A + 36

2A + 2

β =

4A + 6
A + 1

− α1

α2 − α1
,

(6.20)

where A = (1−C)/C, and this is known as Carlvik’s rational approximation. Note that in the
isolated pin limit, these parameters go to

α1 = 2 α2 = 3 β = 2 . (6.21)

To use this in practice, one can use a homogeneous dilution table to obtain two resonance
integrals I1 with added dilution α1Σe and I2 with added dilution α2Σe. The effective resonance
integral is then

I = βI1 + (1 − β)I2 . (6.22)

6.3.2 Embedded Self-Shielding Method

Next, the Embedded Self-Shielding Method (ESSM) [16] is considered. A full description is
included in Ch. 3. ESSM searches for a value of the equivalence cross section such that a
homogeneous model and heterogeneous model are equivalent. The homogenous model is

(ΣF
g + Σeq,g)φF

g = ΣF
p ∆ug + Σeq,g∆ug , (6.23)
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which is a simple infinite medium equation with a constant equivalence cross section. The
heterogeneous model for this benchmark is the multigroup form of Eq. (6.11),

ΣF
g φ

F
g =

(
1 − PF→M

)
ΣF

p ∆ug + PF→MΣF
g ∆ug , (6.24)

where the collision probabilities are computed using the multigroup cross sections.

With these two models defined, the ESSM procedure is as follows:

1. Guess Σeq,g.

2. Compute cross sections from dilution table using Σeq,g.

3. Solve Eq. (6.24) with obtained cross sections.

4. Use obtained flux from heterogeneous equation, and solve Eq. (6.23) for Σeq,g.

5. Iterate, repeating steps 2–4 to convergence.

6.3.3 Subgroup Method

The subgroup method, fully described in Ch. 4, recognizes that the flux used in self-shielding
models (e.g., narrow resonance) depends only on the cross section and the asymptotic 1/E

spectrum. Thus, in lethargy space, the flux can be written as only a function of the cross
section. This allows a change of variables, or in some sense a shift to Lebesgue integration,
resulting in an integral over cross section rather than energy in the condensation of multigroup
cross sections. This is a convenient transformation, as the flux is a much smoother function of
cross section than of energy.

A numerical quadrature is performed for this energy condensation,

σg =

∑
n
wnσnφ(σn)∑

n
wnφ(σn)

. (6.25)

In this study, only a fitting procedure is considered for the quadrature generation.

Once a quadrature is obtained, fixed source transport problems are solved for every sub-
group level in each group. These problems use the scattering source from the resonance
model, resulting in purely absorbing fixed source calculations. Thus, the subgroup fixed source
problems are entirely decoupled from one another.

In this benchmark, the subgroup fixed source equations are the equivalent of Eq. (6.11) in
lethargy space,

N∗(σn + σb)φ =
(
1 − PF→M

)
ΣF

p + PF→MN∗(σn + σb) , (6.26)

where the collision probabilities are computed by using ΣF = N∗(σn + σb).
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Quadrature Generation

The quadrature is determined by taking a set of reference problems {σ̄k}, in this case infinite
media with varying background levels σb,k, and comparing them to cross sections generated by
some quadrature Q = {wn, σn}. The approximate cross sections are given as

σ̃k(Q) =

∑
n

wnσn

σb,k + σn∑
n

wn

σb,k + σn

. (6.27)

The quadrature Q is obtained by performing a least squares fitting procedure,

Q = arg min
Q′

∑
k

(
σ̄k − σ̃k(Q′)

σ̄k

)2

. (6.28)

This process is constrained such that the weights sum to unity and are nonnegative.

In this study, the cross section used in the fitting procedure was the capture cross section,
as this allows the parameter of interest in the benchmark to be computed accurately. Note that
σn in Eq. (6.26) refers to the total cross section, and so σp must be added to the cross section
generated in this fitting procedure for use in the transport calculation. For all results given
here, six subgroup levels were used.

6.4 Results

Each self-shielding technique previously described was tested on the benchmark for various
configurations. Results are presented in tabular form, showing the dependence on the height
of the resonance. The reference solution is calculated using a calculation with ultrafine energy
discretization as described in Sec. 6.2.4. Performance of each method is described as the
percent error of the obtained group averaged capture cross section compared to this reference.
Positive errors represent obtained cross sections greater than the reference; negative errors
represent obtained cross sections less than the reference.

First, results with a square resonance in the 1-D isolated slab geometry are presented.
Table 6.1 gives results with a width of 0.3 cm; Tab. 6.2, with a width of 0.4 cm; and Tab. 6.3, with
a width of 0.6 cm. Note that subgroup results are not included, as the appropriate selection of a
subgroup quadrature results in an exact solution for this simple case.

Next, results with a single-level Breit-Wigner (SLBW) resonance in the 1-D isolated slab
geometry are given. Table 6.4 gives results with a width of 0.3 cm; Tab. 6.5, with a width of
0.4 cm; and Tab. 6.6, with a width of 0.6 cm.
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Figure 6.1: Error for equivalence in dilution techniques for 1-D isolated slab and a square
resonance.

Finally, results with a SLBW resonance in the 2-D reflected pin-cell geometry are included.
Table 6.7 gives results with a pin radius of 0.3 cm; Tab. 6.8, with a pin radius of 0.4 cm; and
Tab. 6.9, with a pin radius of 0.6 cm.

6.4.1 Equivalence in Dilution

Fig. 6.1 and Fig. 6.2 plot the error in the capture cross sections generated by equivalence in
dilution methods as a function of the resonance peak for the 1-D slab cases with 0.4 cm width.
The results are very familiar curves, behaving consistently with errors known for the rational
approximations [14].

Wigner’s rational approximation leads to very low error for small resonance peaks. For
larger resonance peaks, this approximation does well for the square resonance, and slightly less
so for the SLBW resonance. This is because although the peak of the resonance approaches the
high cross section limit, the flanks of the resonance are in the intermediate cross section range
where the approximation is less accurate. Furthermore, Wigner is seen to consistently under-
predict the group averaged capture cross section, and is rather significant for intermediate
resonance peaks.

The Wigner-Bell approximation shows the characteristic change of sign in the error at
intermediate cross section values. It fares better than Wigner’s rational approximation for low
and intermediate resonance peaks, but does poorly for large resonance peaks. This is expected,
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Figure 6.2: Error for equivalence in dilution techniques for 1-D isolated slab and a SLBW
resonance.

as a single Bell factor was used for all calculations. At high opacities, it is known that the Bell
factor should tend to unity, resulting in Wigner’s rational approximation.

Roman’s two-term rational approximation for the 1-D slab and Carlvik’s two-term rational
approximation for the 2-D pin-cell perform very well. For the square resonance case, errors
are at or below 2%. For the SLBW resonance cases, nearly all errors fall below 1%. Clearly,
a significant improvement is achieved by the inclusion of the second term in the rational
approximation.

6.4.2 Embedded Self-Shielding Method

ESSM results are best for smaller resonance peaks, and the method appears to break down for
larger resonances. This is somewhat counter-intuitive, as the iteration procedure is essentially
searching for the appropriate Dancoff and Bell factor. Thus, one would expect ESSM to perform
at least as well as the Wigner and Wigner-Bell approximations.

This can be explained primarily as this ESSM iteration being ill-conditioned. ESSM is
forcing equivalence between heterogeneous and homogeneous models, using the flux as the
connection. However, the flux varies over a very small range, and small changes in flux lead to
very different implied shielding states. For physical intuition of this effect, consider widening
the energy group, holding the single resonance constant. The group flux will approach unity
for all shielding states, but the effective cross section will still be a strong function of the
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background. This means that a small error in flux leads to large errors in the obtained cross
sections. For instance, in this benchmark, the heterogeneous problem suffers from small
condensation errors, explained in Sec. 7.5, and these errors are enough to impact the results.

Also, ESSM is essentially a direct subgroup method with a single level. Physically, the
subgroup method is effective because it can differentiate the behavior of neutrons at resonance
energies from those away from resonances. These cannot be separated with a single subgroup
level, and the resulting effect is more pronounced for larger resonance peaks. So although it is
mathematically possible to obtain an accurate quadrature with a single subgroup level, this is
not realistic in practice. Thus, the ESSM procedure cannot be expected to accurately model
self-shielding for large resonances.

The poor performance of ESSM is strong evidence of the need for this sort of simple
benchmark analysis. This method has been used on large problems with favorable results,
but in the form considered in this thesis, it is not suitable for predictive purposes outside of
carefully selected regions of design space. The difficulty with ESSM will be revisited in Sec. 7.5,
once additional tools for analysis are developed.

Note that more recent ESSM implementations have been based on nuclear data tables
generated through heterogeneous calculations, rather than the homogeneous calculations used
in this study. This approach is not easily tested on this simple benchmark, but is revisted in
Ch. 9.

6.4.3 Subgroup

The results for the subgroup method are very good, with nearly all errors falling below 1%.
The variance in the errors can be attributed to the varying quality of the quadrature obtained
in the fitting procedure for each configuration, as quadrature generation was found to be a
difficult process, even for this simple problem. Adjustment of the subgroup parameters can
lead to significant improvements in accuracy, but is not easily generalized. This suggests that
subgroup can be an effective self-shielding method, but it requires great care in the generation
of the quadrature. For realistic simulations with many energy groups and nuclides, this is
likely a very large effort.

It should be noted that using six subgroup levels in this study was an arbitrary choice,
and this was more subgroup levels than necessary. Initial results with four subgroup levels
provided similar accuracy. The issue of quadrature generation could be further explored using
this benchmark and similar problems, comparing various quadrature generation methods and
varying numbers of levels.
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Table 6.1: Errors in capture capture cross sections for square resonance in 1-D isolated slab
configuration with 0.3 cm width.

Peak [b] Reference [b] Error [%]

Wigner Wigner-Bell Roman ESSM

2 0.0010 -0.13 0.09 0.26 -0.02
5 0.0024 -0.39 0.15 0.55 -0.13

10 0.0046 -0.92 0.09 0.85 -0.44
25 0.0102 -2.81 -0.60 0.97 -1.75
50 0.0174 -5.69 -2.09 0.28 -3.98
75 0.0227 -7.84 -3.29 -0.57 -5.69

100 0.0269 -9.35 -4.11 -1.28 -6.88
175 0.0348 -11.46 -4.89 -2.39 -8.39
250 0.0390 -11.69 -4.30 -2.49 -8.25
375 0.0425 -10.67 -2.36 -1.82 -6.82
500 0.0440 -9.28 -0.35 -0.99 -5.15
750 0.0454 -6.98 2.75 0.20 -2.49
1000 0.0459 -5.47 4.74 0.78 -0.77
5000 0.0472 -1.18 10.37 0.70 4.12

10000 0.0474 -0.60 11.15 0.40 4.79

Table 6.2: Errors in capture capture cross sections for square resonance in 1-D isolated slab
configuration with 0.4 cm width.

Peak [b] Reference [b] Error [%]

Wigner Wigner-Bell Roman ESSM

2 0.0010 -0.23 0.03 0.22 -0.02
5 0.0024 -0.62 -0.00 0.45 -0.14

10 0.0045 -1.36 -0.20 0.64 -0.45
25 0.0098 -3.64 -1.19 0.48 -1.72
50 0.0162 -6.65 -2.78 -0.44 -3.63
75 0.0207 -8.60 -3.80 -1.27 -4.86

100 0.0240 -9.77 -4.31 -1.84 -5.53
175 0.0297 -10.79 -4.07 -2.31 -5.58
250 0.0325 -10.23 -2.73 -1.91 -4.43
375 0.0346 -8.58 -0.24 -0.88 -2.13
500 0.0356 -7.08 1.80 -0.08 -0.22
750 0.0364 -5.08 4.46 0.73 2.28
1000 0.0368 -3.91 5.99 1.00 3.72
5000 0.0378 -0.83 10.07 0.53 7.56

10000 0.0380 -0.42 10.62 0.29 8.08
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Table 6.3: Errors in capture capture cross sections for square resonance in 1-D isolated slab
configuration with 0.6 cm width.

Peak [b] Reference [b] Error [%]

Wigner Wigner-Bell Roman ESSM

2 0.0010 -0.38 -0.07 0.14 -0.02
5 0.0023 -0.97 -0.25 0.26 -0.13

10 0.0043 -1.97 -0.64 0.27 -0.42
25 0.0091 -4.57 -1.88 -0.24 -1.43
50 0.0144 -7.31 -3.24 -1.22 -2.55
75 0.0178 -8.63 -3.71 -1.78 -2.85

100 0.0200 -9.14 -3.61 -1.97 -2.64
175 0.0236 -8.64 -1.98 -1.50 -0.80
250 0.0252 -7.39 -0.05 -0.71 1.26
375 0.0263 -5.61 2.41 0.22 3.85
500 0.0269 -4.42 4.00 0.66 5.52
750 0.0274 -3.08 5.79 0.93 7.40
1000 0.0277 -2.35 6.76 0.93 8.41
5000 0.0284 -0.49 9.25 0.33 11.03

10000 0.0285 -0.25 9.58 0.18 11.38

Table 6.4: Errors in capture capture cross sections for SLBW resonance in 1-D isolated slab
configuration with 0.3 cm width.

Peak [b] Reference [b] Error [%]

Wigner Wigner-Bell Roman ESSM Subgroup

2 0.0260 -0.08 0.06 0.17 -0.01 0.00
5 0.0637 -0.24 0.11 0.38 -0.07 -0.00
10 0.1238 -0.58 0.11 0.62 -0.24 -0.01
25 0.2861 -1.75 -0.24 0.85 -1.00 -0.11
50 0.5129 -3.62 -1.12 0.59 -2.36 -0.32
75 0.7007 -5.11 -1.91 0.14 -3.48 -0.49

100 0.8600 -6.25 -2.52 -0.29 -4.32 0.19
175 1.2244 -8.18 -3.44 -1.13 -5.66 -0.02
250 1.4831 -8.88 -3.55 -1.45 -5.99 -1.02
375 1.7886 -8.97 -3.04 -1.44 -5.67 0.54
500 2.0087 -8.61 -2.30 -1.19 -5.04 0.05
750 2.3256 -7.71 -0.96 -0.70 -3.79 0.93

1000 2.5612 -6.96 0.01 -0.36 -2.82 -0.60
5000 4.4141 -3.95 3.00 0.31 0.80 0.09
10000 5.8114 -3.57 2.96 0.28 1.30 -0.00
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Table 6.5: Errors in capture capture cross sections for SLBW resonance in 1-D isolated slab
configuration with 0.4 cm width.

Peak [b] Reference [b] Error [%]

Wigner Wigner-Bell Roman ESSM Subgroup

2 0.0259 -0.15 0.02 0.15 -0.01 -0.00
5 0.0633 -0.40 0.01 0.32 -0.07 -0.01
10 0.1222 -0.87 -0.09 0.49 -0.25 -0.04
25 0.2782 -2.33 -0.65 0.53 -0.99 -0.19
50 0.4886 -4.36 -1.65 0.08 -2.18 -0.40
75 0.6569 -5.80 -2.40 -0.42 -3.04 -0.53

100 0.7958 -6.78 -2.89 -0.81 -3.60 0.17
175 1.1017 -8.13 -3.30 -1.37 -4.12 -0.03
250 1.3115 -8.35 -2.99 -1.42 -3.85 -0.67
375 1.5558 -7.98 -2.09 -1.13 -2.97 0.49
500 1.7328 -7.42 -1.21 -0.81 -2.08 -0.20
750 1.9929 -6.46 0.09 -0.35 -0.75 1.22

1000 2.1913 -5.78 0.92 -0.09 0.13 -0.54
5000 3.8342 -3.45 2.97 0.26 2.73 0.06
10000 5.1046 -3.26 2.73 0.20 2.83 -0.14

Table 6.6: Errors in capture capture cross sections for SLBW resonance in 1-D isolated slab
configuration with 0.6 cm width.

Peak [b] Reference [b] Error [%]

Wigner Wigner-Bell Roman ESSM Subgroup

2 0.0258 -0.25 -0.05 0.10 -0.01 -0.01
5 0.0626 -0.64 -0.15 0.19 -0.07 -0.04
10 0.1196 -1.29 -0.39 0.24 -0.23 -0.09
25 0.2656 -3.02 -1.17 0.02 -0.84 -0.30
50 0.4519 -5.01 -2.14 -0.56 -1.60 -0.47
75 0.5932 -6.14 -2.64 -0.97 -1.95 -0.47

100 0.7054 -6.76 -2.82 -1.20 -2.01 0.08
175 0.9419 -7.19 -2.45 -1.26 -1.42 -0.01
250 1.0996 -6.90 -1.71 -1.01 -0.54 0.02
375 1.2842 -6.19 -0.60 -0.59 0.72 0.33
500 1.4210 -5.60 0.22 -0.30 1.63 -0.36
750 1.6285 -4.79 1.23 -0.01 2.76 1.01

1000 1.7911 -4.28 1.80 0.11 3.39 -0.21
5000 3.2125 -2.82 2.76 0.18 4.57 -0.01
10000 4.3359 -2.82 2.37 0.10 4.26 -0.18
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Table 6.7: Errors in capture capture cross sections for SLBW resonance in 2-D reflected pin-cell
configuration with 0.3 cm diameter.

Peak [b] Reference [b] Error [%]

Wigner Wigner-Bell Carlvik ESSM Subgroup

2 0.0260 -0.40 -0.26 -0.05 0.00 0.00
5 0.0639 -0.97 -0.64 -0.13 0.01 -0.00

10 0.1243 -1.83 -1.21 -0.25 0.02 -0.03
25 0.2873 -3.91 -2.58 -0.57 0.13 -0.18
50 0.5115 -6.22 -4.05 -0.93 0.49 -0.47
75 0.6924 -7.62 -4.88 -1.12 1.01 -0.64
100 0.8422 -8.48 -5.31 -1.18 1.62 0.21
175 1.1724 -9.43 -5.44 -0.98 3.58 -0.03
250 1.3991 -9.40 -4.93 -0.61 5.40 -0.67
375 1.6642 -8.83 -3.86 -0.05 7.83 0.56
500 1.8567 -8.19 -2.93 0.33 9.59 -0.22
750 2.1395 -7.18 -1.60 0.74 11.86 1.25

1000 2.3540 -6.48 -0.74 0.90 13.19 -0.47
5000 4.0977 -4.05 1.52 0.71 15.24 0.03

10000 5.4323 -3.85 1.36 0.54 14.07 -0.17

Table 6.8: Errors in capture cross sections for SLBW resonance in 2-D reflected pin-cell
configuration with 0.4 cm diameter.

Peak [b] Reference [b] Error [%]

Wigner Wigner-Bell Carlvik ESSM Subgroup

2 0.0259 -0.44 -0.29 -0.07 0.00 -0.01
5 0.0631 -1.04 -0.70 -0.17 0.01 -0.03

10 0.1214 -1.93 -1.29 -0.32 0.04 -0.09
25 0.2724 -3.91 -2.59 -0.66 0.23 -0.32
50 0.4676 -5.82 -3.75 -0.95 0.76 -0.53
75 0.6163 -6.79 -4.24 -1.02 1.43 -0.52
100 0.7349 -7.27 -4.38 -0.98 2.14 0.08
175 0.9862 -7.50 -3.99 -0.61 4.13 -0.00
250 1.1552 -7.17 -3.31 -0.24 5.73 0.07
375 1.3539 -6.50 -2.32 0.18 7.60 0.36
500 1.5010 -5.94 -1.59 0.41 8.83 -0.31
750 1.7228 -5.16 -0.64 0.61 10.26 0.89

1000 1.8955 -4.66 -0.08 0.66 11.01 -0.17
5000 3.3810 -3.15 1.09 0.40 11.39 -0.00

10000 4.5462 -3.11 0.84 0.30 10.30 -0.12
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6.5 Chapter Summary

In this chapter, a framework for the evaluation of self-shielding methods was introduced.
Rather than relying on integral testing—i.e., using large problems with many important
aspects of physics—self-shielding methods should first be tested on very simple benchmarks.
These benchmarks should isolate the physics of interest and ensure the method performs as
desired. Only then should the method be used on more complex problems.

One such simple benchmark has been presented here, which is the simplest possible
problem in which both energy and spatial self-shielding effects are important. The benchmark
was designed such that the assumptions made in the derivation of self-shielding models are
fully valid. This allows self-shielding methods to be evaluated consistently and allows one to
separate errors associated with the self-shielding method from any other effects.

This benchmark problem was solved using several techniques, including various equivalence
in dilution methods, the Embedded Self-Shielding Method (ESSM), and the subgroup method.
The best results were obtained using two-term rational expansions in the equivalence in
dilutions methods and using the subgroup method. One-term rational expansion methods lead
to much larger errors, as did ESSM.
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Table 6.9: Errors in capture cross sections for SLBW resonance in 2-D reflected pin-cell
configuration with 0.6 cm diameter.

Peak [b] Reference [b] Error [%]

Wigner Wigner-Bell Carlvik ESSM Subgroup

2 0.0254 -0.21 -0.13 -0.01 0.00 -0.02
5 0.0603 -0.48 -0.29 -0.03 0.01 -0.09

10 0.1114 -0.84 -0.51 -0.04 0.03 -0.19
25 0.2293 -1.49 -0.86 -0.04 0.16 -0.35
50 0.3601 -1.92 -1.02 0.01 0.43 -0.09
75 0.4502 -2.03 -0.99 0.10 0.71 0.31
100 0.5186 -2.05 -0.90 0.16 0.94 -0.23
175 0.6606 -1.90 -0.61 0.31 1.48 0.01
250 0.7575 -1.73 -0.38 0.38 1.82 0.63
375 0.8760 -1.52 -0.11 0.43 2.15 -0.40
500 0.9679 -1.37 0.05 0.44 2.34 -0.09
750 1.1130 -1.18 0.24 0.43 2.53 -0.23

1000 1.2309 -1.07 0.34 0.41 2.61 0.01
5000 2.3270 -0.82 0.40 0.28 2.42 0.01

10000 3.2072 -0.83 0.31 0.27 2.29 0.06
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Chapter 7

Angular Dependence of Cross
Sections

7.1 Introduction

In a reactor physics neutronics simulations , the steady-state neutron transport equation is
often the primary workhorse, and is shown here with a generic source:

Ω̂ · ∇ψ(~r, E, Ω̂) + Σt(~r, E)ψ(~r, E, Ω̂) = Q(~r, E, Ω̂) . (7.1)

This equation can be solved efficiently for many problems by using the multigroup approxi-
mation, in which the energy variable is discretized into so-called energy groups. In general,
it is not possible to resolve the complex energy behavior of the nuclear data and the neutron
flux in a deterministic calculation on a large geometry, and so great care must be taken in the
generation of the nuclear data used in group-wise (or “multigroup”) solutions of the transport
equation.

The multigroup form of the transport equation is attained by integrating Eq. (7.1) over the
energies defining a group [Eg+1, Eg],∫ Eg

Eg+1
dE

(
Ω̂ · ∇ψ(~r, E, Ω̂) + Σt(~r, E)ψ(~r, E, Ω̂)

)
=

∫ Eg

Eg+1
dE Q(~r, E, Ω̂) (7.2)

Ω̂ · ∇ψg(~r, Ω̂) + Σt,g(~r, Ω̂)ψg(~r, Ω̂) = Qg(~r, Ω̂) , (7.3)
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where the multigroup parameters are given by

ψg(~r, Ω̂) =

∫ Eg

Eg+1

dE ψ(~r, E, Ω̂) (7.4)

Σt,g(~r, Ω̂) =

∫ Eg
Eg+1

dE Σt(~r, E)ψ(~r, E, Ω̂)∫ Eg
Eg+1

dE ψ(~r, E, Ω̂)
(7.5)

Qg(~r, Ω̂) =

∫ Eg

Eg+1

dE Q(~r, E, Ω̂) . (7.6)

The multigroup form of the transport equation of Eq. (7.3) has the same form as Eq. (7.1) with
one significant caveat: the total cross section in the multigroup form is dependent on the angle.
The multigroup total cross section given by Eq. (7.5) is condensed in energy through the use of
the angular flux, which gives rise to this newfound angular dependence. Because this angular
dependence is not convenient to use in a transport calculation, an approximation is often used
in which the scalar flux rather than the angular flux is used in the collapse; this is equivalent
to integrating Eq. (7.5) over all angles in both the numerator and denominator:

Σt,g(~r, Ω̂) ≈ Σt,g(~r) =

∫
4π dΩ̂

∫ Eg
Eg+1

dE Σt(~r, E)ψ(~r, E, Ω̂)∫
4π dΩ̂

∫ Eg
Eg+1

dE ψ(~r, E, Ω̂)

=

∫ Eg
Eg+1

dE Σt(~r, E)φ(~r, E)∫ Eg
Eg+1

dE φ(~r, E)
.

(7.7)

This leads to an approximate form of the transport equation,

Ω̂ · ∇ψg(~r, Ω̂) + Σt,g(~r)ψg(~r, Ω̂) = Qg(~r, Ω̂) , (7.8)

which features some error from this alternate condensation equation and whose consequences
will be analyzed here.

Note also that the cross section condensation formulas of both Eqs. (7.5) and (7.7) are
complicated by the fact the flux is included in the definition. The flux is the output of a
solution of the transport equation, and so this requires some estimation of the flux prior to the
multigroup solution. This estimation of the flux is the subject of self-shielding techniques that
have been studied extensively and developed over the past several decades and are outlined in
Part II. However, as higher fidelity flux estimates are used, the condensation errors of Eq. (7.8)
are becoming more noticeable.
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7.2 Demonstration of Condensation Errors

To demonstrate the existence of errors from approximately collapsing Eq. (7.1) into Eq. (7.8),
consider a very simple problem in which the reference flux can be computed precisely. This is
an extension of the benchmark problem presented in Ch. 6.

This example problem consists of a unit cell of an infinite array of unclad fuel pins. The fuel
material contains U-238 with an atom density of 0.022 a/b−cm and a purely scattering nuclide
with a constant cross section of 0.176 cm−1, an analog to oxygen in UO2. The moderator is a
pure scatterer with a constant cross section of 1.23 cm−1. The pin radius is 0.4 cm and the pitch
is 1.26 cm. The source is given by

Q(~r, E, Ω̂) =
1

4π
Σp(~r)

E
, (7.9)

which is the scatter source from the narrow resonance approximation.

The reference continuous energy flux is computed by solving Eq. (7.1) for each energy
point, and the reference reaction rate is obtained by integrating the flux multiplied by a
cross section over an energy range of interest and over the volume of the fuel pin. Next, the
collapsed cross section and collapsed source are generated using the reference flux in Eqs. (7.6)
and (7.7), respectively. With this collapsed cross section and source, Eq. (7.8) is solved. The
collapsed reaction rate is obtained by volume integrating the multigroup flux multiplied by the
multigroup cross section over the fuel pin.

This simple problem is solved for the WIMS 69-group energy structure [12] in the resonance
range. The results are shown in Tab. 7.1. The condensation errors range from 0.1% in the
high energy groups to just over 1% in the lower energy groups, with the exception of group 26.
Group 26 sits between the two lowest energy resonances of U-238 and contains no resonance
itself, and so it exhibits no significant error. This suggests that the condensation errors are
caused by improper self-shielding of the resonances. Furthermore, as the errors increase with
lower energy, this suggests that the effect is exacerbated by the magnitude of the resonance
peaks. These results are shown in graphical form in Fig. 7.1, plotted against the U-238 total
cross section.

In a more realistic simulation, the Monte Carlo code OpenMC [38] was used to generate
cross sections for use in the multigroup transport solver OpenMOC [3]. A UO2 pin-cell modeled
after the LWR fuel given in the BEAVRS benchmark [39] was considered, using real cross
sections for all materials. The errors observed were very nearly the same as in the simple
example problem, and these corresponded to approximately a 200 pcm underprediction of the
eigenvalue. A plot of the errors in the reaction rates of each group plotted alongside the U-238
capture cross section is given in Fig. 7.2.
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Table 7.1: U-238 resonance range reaction rates for collapsed cross sections on simple pin-cell.
Group Emax (eV) Reference Condensed Error (%)

15 9118.00 0.12018 0.12030 0.102
16 5530.00 0.11011 0.11027 0.142
17 3519.10 0.11407 0.11444 0.330
18 2239.45 0.10581 0.10630 0.457
19 1425.10 0.11572 0.11625 0.461
20 906.899 0.21110 0.21172 0.294
21 367.263 0.22169 0.22290 0.543
22 148.729 0.16551 0.16649 0.598
23 75.5014 0.10569 0.10621 0.487
24 48.0520 0.14256 0.14394 0.964
25 27.7000 0.13732 0.13867 0.984
26 15.9680 0.09348 0.09348 0.001
27 9.8770* 0.23567 0.23813 1.041

* Emin = 4 eV
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Figure 7.1: Condensation errors in the resonant groups of the WIMS69 group structure, plotted
alongside the U-238 cross section.
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Figure 7.2: Condensation errors in multigroup cross sections generated by OpenMC and used
in OpenMOC. Courtesy of W. Boyd.

7.3 Diagnosing the Cause of the Errors

It was just shown that errors exist and it was suggested that improper self-shielding was
the culprit. In fact, these condensation errors are more precisely due to spatial self-shielding
effects. In an infinite medium, there is no variation in angle or space for the angular flux, and
so the same results are obtained if one collapses cross sections with the scalar flux as if one
collapses with the angular flux. To see this, consider an infinite medium of U-238 with 50
barns of background moderator in a procedure analogous to the previous example. Tab. 7.2
contains the results. The errors are nearly zero in all groups, and the small errors that are
seen are entirely attributable to numerical precision.

To understand the cause of these errors, consider how neutrons reach a certain region of
a fuel pin. For a region of interest on the exterior of a fuel pin, neutrons may enter directly
from the moderator or they may traverse a portion of the fuel pin first, as depicted in Fig. 7.3.
The former are unshielded, and the spectrum is that of the asymptotic spectrum, likely 1/E.
The latter, however, are heavily shielded, and the spectrum will have a large depression at the
resonance energy. Thus, the resonance reaction rate is much larger for the first case than for
the second case.

And in fact, this difference in reaction rates translates to a difference in angular-flux-
weighted cross sections. Fig. 7.4 shows the collapsed capture cross section as a function of
incoming azimuthal angle for two regions of interest for the 6.67 eV resonance group.
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Table 7.2: U-238 resonance range reaction rates (arbitrary units) for collapsed cross sections in
an infinite medium.

Group Emax (eV) Reference Condensed Error (%)

15 9118.00 0.33893 0.33891 -0.004
16 5530.00 0.30636 0.30635 -0.003
17 3519.10 0.30631 0.30630 -0.003
18 2239.45 0.29363 0.29362 -0.002
19 1425.10 0.31908 0.31908 -0.001
20 906.899 0.61265 0.61265 0.000
21 367.263 0.61270 0.61270 0.000
22 148.729 0.45950 0.45950 0.000
23 75.5014 0.30625 0.30625 0.000
24 48.0520 0.37338 0.37338 0.000
25 27.7000 0.37333 0.37333 0.000
26 15.9680 0.32560 0.32560 0.000
27 9.8770* 0.61260 0.61260 0.000

* Emin = 4 eV

Figure 7.3: Illustration of neutron entering region of interest directly from moderator (top) and
after traversing fuel (bottom).
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Figure 7.4: Capture cross sections collapsed with angular flux as a function of incoming
azimuthal angle into region of interest for the 6.67 eV resonance group. Radial axis in units of
barns; azimuthal axis in degrees.
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The first region is on the exterior of the fuel pin, and is indicated by the darkly shaded
region in the upper half of the figure. The cross section for angles in which neutrons enter from
the moderator are all above 30 b, whereas the cross section for neutrons having traversed the
fuel pin are as low as 5 b. The peaks near 60◦ and 120◦ are due to the square array of pins; at
these angles, neutrons can traverse more moderator between pins than at 90◦.

The second region is in the interior of the fuel pin, and is indicated by the darkly shaded
region in the lower half of the figure. It exhibits the same characteristics of the first region,
but the effects are more muted. The maximum value of the cross section is only 15 b, and the
minimum value 5 b. A region at the very center of the fuel pin would exhibit almost no angular
dependence, as it would be shielded similarly from all directions.

From these plots, it is easy to imagine that accounting for this angular dependence by
simply averaging the angular component does not do a suitable job of picking up all the physics
at play. It is clearly very important to know whether neutrons are entering directly from the
moderator or traversing fuel first. It is conceivable that the vast majority of this effect could be
picked up by simply using two cross section values rather than using fully angularly dependent
data, but this possibility is not explored in this thesis.

Next, it will be shown that using fully angularly dependent data causes the bias in the
group reaction rates to vanish. However, as was noted, the most important aspect of the
physics to account for is whether neutrons are entering the region through the fuel pin or
directly from the moderator. By simply using angularly dependent data on a single region
fuel pin, this cannot be done. A cross section for a given angle would in this case be applied to
neutrons entering the fuel pin from the moderator and to neutrons exiting the fuel pin on the
opposite side alike. Thus, the fuel pin must be discretized for the error to subside.

The simple pin-cell problem is again used. The reference solution is computed on the
ultrafine energy mesh and is used to collapse cross sections. Cross sections for the left hand
side of the transport equation are collapsed separately for each angle, weighted by the angular
flux for that angle. Then geometry is discretized into rings and sectors. The pin is split up into
rings of equal volume. Although the solution is not sensitive to discretization of the moderator,
equal width rings are created in the moderator. Sectors are separated by equally spaced angles,
and the same angles are used in the fuel and the moderator. Fig. 7.5 shows a schematic of a
pin-cell discretized with three fuel rings, two moderator rings, and eight sectors.

Results are shown with no pin discretization in Tab. 7.3, with 3 fuel rings and 4 azimuthal
sectors in Tab. 7.4, and with 5 fuel rings and 8 azimuthal sectors in Tab. 7.5. In these tables,
the error in the condensed cross section for each resonance group is shown for both scalar
flux weighted and angular flux weighted cross sections. The errors resulting from scalar flux
weighting remain fairly constant regardless of pin discretization. The errors resulting from
angular flux weighting are greatly reduced as pin discretization is increased.

To see this more clearly, see Fig. 7.6 and Fig. 7.7. These figures show the maximum
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Figure 7.5: Discretized pin-cell system with 3 fuel rings, 2 moderator rings, and 8 sectors.

Table 7.3: Errors of group cross sections when collapsed with scalar vs. angular flux without
pin discretization.

Error (%)

Group Emax (eV) Scalar Angular

15 9.11800E+03 1.05E-01 1.83E-01
16 5.53000E+03 1.42E-01 2.28E-01
17 3.51910E+03 3.29E-01 4.85E-01
18 2.23945E+03 4.57E-01 6.42E-01
19 1.45210E+03 4.61E-01 6.34E-01
20 9.06899E+02 2.94E-01 4.08E-01
21 3.67263E+02 5.43E-01 7.12E-01
22 1.48729E+02 5.98E-01 7.79E-01
23 7.55014E+01 4.87E-01 6.21E-01
24 4.80520E+01 9.64E-01 1.25E+00
25 2.77000E+01 9.84E-01 1.26E+00
26 1.59680E+01 1.19E-03 2.77E-03
27 9.8770E+00* 1.04E+00 1.31E+00

* Emin = 4 eV
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Table 7.4: Errors of group cross sections when collapsed with scalar vs. angular flux with 3
fuel rings and 4 azimuthal sectors.

Error (%)

Group Emax (eV) Scalar Angular

15 9.11800E+03 1.27E-01 4.11E-02
16 5.53000E+03 1.72E-01 5.15E-02
17 3.51910E+03 3.96E-01 1.10E-01
18 2.23945E+03 5.53E-01 1.51E-01
19 1.45210E+03 5.62E-01 1.52E-01
20 9.06899E+02 3.58E-01 9.65E-02
21 3.67263E+02 6.78E-01 1.90E-01
22 1.48729E+02 7.49E-01 2.15E-01
23 7.55014E+01 6.21E-01 1.80E-01
24 4.80520E+01 1.19E+00 3.59E-01
25 2.77000E+01 1.23E+00 3.74E-01
26 1.59680E+01 1.27E-03 7.45E-04
27 9.8770E+00* 1.30E+00 3.89E-01

* Emin = 4 eV

Table 7.5: Errors of group cross sections when collapsed with scalar vs. angular flux with 5
fuel rings and 8 azimuthal sectors.

Error (%)

Group Emax (eV) Scalar Angular

15 9.11800E+03 1.29E-01 9.93E-03
16 5.53000E+03 1.75E-01 1.23E-02
17 3.51910E+03 4.04E-01 2.68E-02
18 2.23945E+03 5.67E-01 3.70E-02
19 1.45210E+03 5.75E-01 3.64E-02
20 9.06899E+02 3.65E-01 2.20E-02
21 3.67263E+02 6.99E-01 4.87E-02
22 1.48729E+02 7.75E-01 5.78E-02
23 7.55014E+01 6.47E-01 4.90E-02
24 4.80520E+01 1.24E+00 1.10E-01
25 2.77000E+01 1.27E+00 1.18E-01
26 1.59680E+01 1.29E-03 3.45E-04
27 9.8770E+00* 1.34E+00 1.21E-01

* Emin = 4 eV
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error in any resonance group. Each curve shows a particular number of rings, with the
number of sectors plotted on the abscissa. For scalar flux weighting, the errors are nearly
constant between 1% and 2%. For angular flux weighting, the error is decreasing with finer
discretization.

This demonstrates that the observed condensation errors can be removed by maintaining
fine structure in both angle and space in the condensed cross sections. Maintaining one
without the other is not sufficient to remove this error. Although this demonstration fully
diagnoses the observed errors, this does not suggest that the ultimate solution to condensation
errors is to use such fine structure. This would come at a great computational expense, as
the spatial discretization increases the cost of the transport solve, and the angular dependent
cross sections dramatically increase the memory requirements.

7.4 Alternatives to Explicit Angular Dependent Cross Sections

7.4.1 Transport Correction

One tactic for accounting for angular effects in transport equations without explicitly modeling
them is the transport correction. The transport correction has many definitions in the literature,
and the discussion here follows that of [1, 40], which are derived from [41]. If the scatter source
is written explicitly and the total and scattering reaction rates from Eq. (7.3) are expanded in
Legendre polynomials in angle, the transport equation in 1-D slab geometry becomes

µ
∂

∂x
ψg(x, µ) +

∞∑
l=0

2l + 1
2
Pl(µ)Σt,g,l(x)φg,l(x) =

∞∑
l=0

2l + 1
2
Pl(µ)

∑
g′

Σs,g′→g,l(x)φg′,l(x) + Qg(x, µ) . (7.10)

The Legendre moments of the flux are defined as

φg,l(x) =

∫
g

dE
∫ 1

−1
dµPl(µ)ψ(x, µ, E) . (7.11)

If the summations over l are brought to the right hand side and Σ̂t,g(x)ψg(x, µ) is added to both
sides, the transport corrected form of the transport equation is obtained:

µ
∂

∂x
ψg(x, µ)+Σ̂t,g(x)ψg(x, µ) =

∞∑
l=0

2l + 1
2
Pl(µ)

∑
g′

[
Σs,g′→g,l(x) −

(
Σt,g,l(x) − Σ̂t,g(x)

)
δg,g′

]
φg′,l(x) + Qg(x, µ) ,

(7.12)

where δg,g′ is the Kronecker delta function. No approximations have been made, and so this
form is exactly the same equation as the multigroup transport equation. However, in practice,
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Figure 7.6: Maximum relative error resulting from scalar flux weighting for various pin
discretizations.
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Figure 7.7: Maximum relative error resulting from angular flux weighting for various pin
discretizations.
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this is an approximation, as the Legendre order is truncated at some maximum value L:

µ
∂

∂x
ψg(x, µ)+Σ̂t,g(x)ψg(x, µ) =

L∑
l=0

2l + 1
2
Pl(µ)

∑
g′

[
Σs,g′→g,l(x) −

(
Σt,g,l(x) − Σ̂t,g(x)

)
δg,g′

]
φg′,l(x) + Qg(x, µ) .

(7.13)

The terms in square brackets are the transport corrected scattering matrix Σ̂s,g′→g,l. The
variable Σ̂t,g is a free parameter and can be chosen arbitrarily. Different choices have been
dubbed as different forms of the transport approximation. Some possibilities include the
Consistent-P transport approximation:

Σ̂t,g = Σt,g,0 , (7.14)

the Inconsistent-P transport approximation:

Σ̂t,g = Σt,g,L+1 , (7.15)

the Diagonal transport approximation:

Σ̂t,g = Σt,g,L+1 − Σs,g′→g,L+1 , (7.16)

the Bell-Hansen-Sandmeier (BHS) approximation:

Σ̂t,g = Σt,g,L+1 −
∑
g′

Σs,g→g′,L+1 , (7.17)

and the Inflow transport approximation:

Σ̂t,g = Σt,g,L+1 −

∑
g′ Σs,g′→g,L+1φg,L+1

φg,L+1
. (7.18)

These approximations, especially the BHS transport approximation, are commonly encoun-
tered in existing deterministic neutron transport codes. However, such correction is typically
performed to account for one more Legendre moment of anistropic scattering than is explicitly
modeled. But even in cases without any anisotropic scattering, the angular dependence of the
collapsed cross section can still be modeled in this manner. Rather than explicitly modeling
the angular dependence of the cross section, the anisotropy is moved to the right hand side
and takes the form of a higher order scattering moment.

Now, consider a simple example of the transport approximation applied to correct conden-
sation errors. Consider an isolated 1-D slab containing UO2. All uranium is considered to be
U-238 with number density 0.022 a/b−cm. The energy range 4–10 eV is considered. All scattering
is considered to be potential scattering, and the narrow resonance model is used as the scatter
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Table 7.6: Condensation errors in slab reaction rates using transport corrections.

Legendre Order Error (%)

Scalar Angular Consistent-P Inconsistent-P

0

0.277 0.001

0.277 -0.037
1 -1.152 -0.295
2 -0.084 -0.149
3 -0.148 -0.153
4 -0.031 -0.058
5 -0.047 -0.078

source. The reference solution is that of an ultrafine solution. With the reference continuous en-
ergy flux, the cross section is collapsed by the scalar flux, by the angular flux, and into moments.
Collapsed cross sections are then used for a one-group simulation and the reaction rates are
compared. Two transport corrections are considered, the Consistent-P and the Inconsistent-P.
Because all scattering is assumed to be potential scattering, there are no higher order scatter-
ing moments, and so the Inconsistent-P is equivalent to the Bell-Hansen-Sandmeier transport
correction. Condensation errors are shown in Tab. 7.6.

The scalar collapse results in a positive condensation error, consistent with what was
seen in the pin-cell. The angular collapse recovers the reaction rate exactly. Using transport
corrections, the error does not behave monatonically with Legendre order, but higher orders are
seen to yield better results. Note that with Legendre order 0, the Consistent-P approximation
is equivalent to a scalar flux collapse.

7.4.2 SPH Factors

As discussed in Sec. 7.1, multigroup cross sections are defined in such a way as to preserve
reaction rates, but an approximation prevents this from being true in general. The left hand
side cross sections should be collapsed with the angular flux, but the scalar flux is often used
instead to simplify the resulting data. While Sec. 7.3 shows that biases seen in condensation
can be attributed to this approximation, it did not present a viable alternative. One such
alternative is the superhomogénéisation (SPH) factor.

The SPH factor was originally used as a corrective factor to enforce conservation during
spatial homogenization [42]. It has been used in cross section condensation without spatial
homogenization [28] more recently, but very little discussion of the need for its use has been
included in this recent work. Here, the SPH factor is only considered in the case of no spatial
homogenization.

The SPH factor is defined as the multiplicative factor needed to adjust cross sections
computed from Eq. (7.7) such that reaction rates are preserved. Usually notated as µ, the SPH
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factor is thus inserted into the definition of the multigroup cross section, and the new collapsed
cross section equation for reaction ρ is

σ̃ρ,g = µg

∫ Eg
Eg+1

dE σρ(~r, E)φ(~r, E)∫ Eg
Eg+1

dE φ(~r, E)
. (7.19)

The same SPH factor µg is applied to each partial cross section and to the total cross section for
each nuclide in a given spatial region. Note that this equation is valid for all cross sections—
including the left hand side cross sections.

SPH factors can be determined by simple purely absorbing fixed source equations, coarse
group by coarse group. The SPH factor for each coarse group can be computed without
knowledge of the other groups, as the equations are not coupled. The equations are solved
iteratively, and in practice the equations converge rapidly. The equation solved at iteration n is

Ω̂ · ∇ψ̃(n)
g (~r, Ω̂) + µ(n−1)

g (~r)Σt(~r)ψ̃(n)
g (~r, Ω̂) = Qg(~r, Ω̂) . (7.20)

This equation yields the SPH-corrected angular flux ψ̃g which can be integrated to yield the
SPH-corrected scalar flux φ̃g. The cross section Σt is the uncorrected cross section computed
from Eq. (7.7). The source Qg is the source used in the fine group problem (e.g., ultrafine, Monte
Carlo, subgroup) integrated over energy. After solving this problem, the updated SPH factor is
computed:

µ(n)
g (~r) =

φg(~r)

φ̃(n)
g (~r)

, (7.21)

where φg is the uncorrected group-integrated flux, computed from the fine group problem.

Spatial dependence is shown here as continuously varying. However, standard practice is
to apply SPH factors by spatial region. For discretizations of spatial regions, one can choose as
an implementation decision whether to apply different SPH factors to each discretization zone
or only a single to the macro-region. Note that this procedure does not produce unique factors
if applied to every spatial domain in a system without leakage. Thus, it is typical to enforce
µg = 1 for all non-resonant regions (e.g., moderator).

Finally, note that this procedure is intended to preserve reaction rates, not the group-
integrated flux. If one desires the flux after a downstream calculation in which SPH-correct
cross sections were used, the inverse of the SPH factor must be applied to the resultant flux to
attain an estimate of the true flux:

φg(~r) = µg(~r)φ̃g(~r)

ψg(~r, Ω̂) = µg(~r)ψ̃g(~r, Ω̂) .
(7.22)

Now, consider an example showing the utility of the SPH factors. The simple problems
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Figure 7.8: Condensation errors in multigroup cross sections generated by OpenMC and used
in OpenMOC with and without SPH factors. Courtesy of W. Boyd.

considered so far in this Part cannot be used to demonstrate the effectiveness of the SPH
process, as the definition of the SPH factor ensures that single-group reaction rates are
conserved exactly. However, the Monte Carlo cross section generation discussed briefly in
Sec. 7.2 can be revisited. First, consider the errors as plotted in Fig. 7.8. The use of the SPH
factor reduces the errors in the reaction rate in each group such that they nearly vanish. The
computed eigenvalue error correspondingly vanishes. For a variety of group structures, the
bias associated with condensation errors is shown in Tab. 7.7.

7.5 Revisiting ESSM

By understanding these condensation errors, the Embedded Self-Shielding Method, introduced
in Sec. 3.7 and whose performance was assessed in Sec. 6.4.2, should be revisited.

As seen previously, ESSM finds an equivalence between a homogeneous problem and a
heterogeneous problem, but is prone to large errors in the inferred cross section when small
errors are present in the heterogeneous calculation. However, when multigroup cross sections
are generated by Eq. (7.7), small errors in the flux should be expected. Here, it will be shown
that much of the performance woes of ESSM, highlighted in Sec. 6.4.2 can be attributed to this
issue. The same benchmark problem is used with a slightly changed ESSM procedure.

First, the reference SPH factor for the heterogeneous geometry is generated. This is done
by solving the reference problem for the ultrafine flux. This flux is used to collapse to a
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Table 7.7: Biases due to condensation error in Monte Carlo cross section generation. Courtesy
of W. Boyd.

Reference Groups Bias [pcm]

No SPH With SPH

1.17421
±

0.00003

1 +69 +7
2 +49 +11
4 +51 +11
8 -91 +11

16 -99 +11
25 -164 +9
40 -178 +10
70 -187 +10

multigroup cross section. Then, the SPH procedure is performed to ensure the reaction rates
in the condensed problem match that of the reference. The resulting SPH factor is stored. For
configuration k, let this be notated µk.

Then, the ESSM procedure is amended to:

1. Guess Σeq,g.

2. Compute cross sections from dilution table using Σeq,g.

3. Adjust the cross sections by the SPH factor: Σ̃ = µkΣ.

4. Solve Eq. (6.24) with the corrected cross sections.

5. Un-correct the flux by the SPH factor: φ = µkφ̃.

6. Use un-corrected flux from heterogeneous equation, and solve Eq. (6.23) for Σeq,g.

7. Iterate, repeating steps 2–6 to convergence.

Several cases of the benchmark problem are solved with this process, and results are compared
to the original ESSM results. Results for the 1-D isolated slab with a square resonance
are shown in Tables 7.8 to 7.10. Results for the 2-D reflected pin-cell with a single-level
Breit-Wigner resonance are shown in Tables 7.11 to 7.13.

ESSM using the SPH factor has considerably better performance than without the SPH
factor. In the square resonance cases, the errors essentially vanish. In the SLBW resonance
cases, the errors are drastically reduced. If the results are compared to those from Ch. 6, these
are seen to outperform the Wigner and Wigner-Bell equivalence in dilution methods, but still
exhibit more error than the Carlvik and subgroup results. This is because the errors resulting
from errors in the heterogeneous problem have vanished, but the method is still reliant on a
one-term rational approximation.
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Note that for the slab case with a square resonance the SPH factors are incredibly close
to unity. The drastic reduction in error associated with such a small perturbation of the flux
suggests that ESSM is quite ill-conditioned for this problem and that the solution is very
sensitive to the chosen SPH factor. Fortunately, this is explained in large part by the very
small impact on the flux that the square resonance has. For more realistic problems, like those
of the SLBW resonance, the SPH factor is further from unity and ESSM is less ill-conditioned.
That said, the SPH factors still do not deviate too far from unity.

Although results have drastically improved with this technique, this analysis does not
provide a procedure for use in place of existing ESSM implementations. The SPH factor here
required knowledge of the reference solution. Of course, if the reference solution were known,
no further self-shielding calculation would be needed. Thus, this simply characterizes the
observed errors rather than solving them.

However, these results do suggest a path forward with ESSM. Although the originally
published descriptions of ESSM use the methods analyzed here, current implementations use
heterogeneous tables rather than homogeneous tables. This procedure is revisited in Ch. 9 with
more discussion. However, for the purposes of this discussion, the heterogeneous calculations
at table generation provide an opportunity to compute the SPH factor save it in the table.
These SPH factors are likely to be a good approximation for the true SPH factor for the full
geometry.

7.6 Chapter Summary

In this chapter, errors resulting from scalar flux weighting the total cross section were examined.
Even if the exact flux spectrum was known—e.g., by using Monte Carlo methods—significant
errors can be seen in the multigroup cross section if angular effects are not accounted for. For
the large low-lying resonances of U-238, errors were seen to be on the order of 1%.

The use of angular-dependent cross sections can alleviate these issues. However, it must be
accompanied by sufficient spatial discretization to be effective. The most important aspect of
the angular effect was shown to be accounting for neutrons entering a fuel region directly from
the moderator versus neutrons traversing another fuel region first.

Two approaches were considered to account for these issues without directly using angular
dependent cross sections. The first is to use a transport correction, where the anisotropic
components of the multigroup total reaction rate are moved to the right hand side of the
transport equation as part of the scatter source. The other was the SPH factor, which is a
correction factor that ensures that the reaction rate in a group is conserved, compared to a
fine-group solution.
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Table 7.8: Comparison of ESSM with and without SPH factor using a square resonance and a
0.3 cm-width slab.

Peak [b] Reference [b] SPH Error [%]

ESSM (No SPH) ESSM (SPH)

2 0.0009 1.00000 -0.02 0.00
5 0.0023 1.00000 -0.13 0.00

10 0.0045 1.00000 -0.44 0.00
25 0.0101 1.00001 -1.75 0.00
50 0.0173 1.00002 -3.98 0.00
75 0.0227 1.00003 -5.69 0.00
100 0.0268 1.00004 -6.88 0.01
175 0.0347 1.00005 -8.39 0.01
250 0.0390 1.00004 -8.25 0.01
375 0.0424 1.00004 -6.82 0.01
500 0.0440 1.00003 -5.15 0.00
750 0.0453 1.00001 -2.49 0.00

1000 0.0459 1.00000 -0.77 0.00
5000 0.0472 0.99998 4.12 0.00

10000 0.0474 0.99998 4.79 0.00

Table 7.9: Comparison of ESSM with and without SPH factor using a square resonance and a
0.4 cm-width slab.

Peak [b] Reference [b] SPH Error [%]

ESSM (No SPH) ESSM (SPH)

2 0.0009 1.00000 -0.02 0.00
5 0.0023 1.00000 -0.14 0.00

10 0.0044 1.00000 -0.45 0.00
25 0.0097 1.00001 -1.72 0.00
50 0.0161 1.00002 -3.63 0.00
75 0.0206 1.00003 -4.86 0.00
100 0.0239 1.00003 -5.53 0.00
175 0.0297 1.00003 -5.58 0.00
250 0.0325 1.00002 -4.43 0.00
375 0.0346 1.00001 -2.13 0.00
500 0.0355 1.00000 -0.22 0.00
750 0.0364 0.99999 2.28 0.00

1000 0.0368 0.99998 3.72 0.00
5000 0.0378 0.99996 7.56 -0.01

10000 0.0379 0.99996 8.08 -0.01
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Table 7.10: Comparison of ESSM with and without SPH factor using a square resonance and a
0.6 cm-width slab.

Peak [b] Reference [b] SPH Error [%]

ESSM (No SPH) ESSM (SPH)

2 0.0009 1.00000 -0.02 0.00
5 0.0023 1.00000 -0.13 0.00

10 0.0043 1.00000 -0.42 0.00
25 0.0091 1.00001 -1.43 0.00
50 0.0143 1.00001 -2.55 0.00
75 0.0177 1.00001 -2.85 0.00
100 0.0200 1.00001 -2.64 0.00
175 0.0236 1.00000 -0.80 0.00
250 0.0251 0.99999 1.26 0.00
375 0.0263 0.99998 3.85 0.00
500 0.0268 0.99997 5.52 -0.01
750 0.0274 0.99997 7.40 -0.01

1000 0.0277 0.99996 8.41 -0.01
5000 0.0284 0.99995 11.03 -0.01

10000 0.0285 0.99995 11.38 -0.01

Table 7.11: Comparison of ESSM with and without SPH factor using a SLBW resonance and a
0.3 cm-radius pin.

Peak [b] Reference [b] SPH Error [%]

ESSM (No SPH) ESSM (SPH)

2 0.0260 1.00000 0.00 0.00
5 0.0639 1.00000 0.01 0.00

10 0.1243 1.00000 0.02 0.00
25 0.2873 0.99998 0.13 0.02
50 0.5115 0.99991 0.49 0.08
75 0.6924 0.99982 1.01 0.17
100 0.8421 0.99970 1.62 0.27
175 1.1724 0.99930 3.58 0.60
250 1.3991 0.99889 5.40 0.91
375 1.6641 0.99831 7.83 1.34
500 1.8566 0.99783 9.59 1.66
750 2.1394 0.99712 11.86 2.12

1000 2.3540 0.99662 13.19 2.44
5000 4.0977 0.99383 15.24 3.82

10000 5.4323 0.99249 14.07 3.89
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Table 7.12: Comparison of ESSM with and without SPH factor using a SLBW resonance and a
0.4 cm-radius pin.

Peak [b] Reference [b] SPH Error [%]

ESSM (No SPH) ESSM (SPH)

2 0.0258 1.00000 0.00 0.00
5 0.0631 1.00000 0.01 0.00

10 0.1213 0.99999 0.04 0.01
25 0.2724 0.99996 0.23 0.04
50 0.4675 0.99986 0.76 0.12
75 0.6163 0.99973 1.43 0.23
100 0.7348 0.99958 2.14 0.35
175 0.9862 0.99914 4.13 0.69
250 1.1551 0.99874 5.73 0.96
375 1.3538 0.99822 7.60 1.30
500 1.5010 0.99782 8.83 1.54
750 1.7228 0.99724 10.26 1.88

1000 1.8955 0.99684 11.01 2.11
5000 3.3810 0.99453 11.39 2.96

10000 4.5461 0.99333 10.30 2.86

Table 7.13: Comparison of ESSM with and without SPH factor using a SLBW resonance and a
0.6 cm-radius pin.

Peak [b] Reference [b] SPH Error [%]

ESSM (No SPH) ESSM (SPH)

2 0.0253 1.00000 0.00 0.00
5 0.0602 1.00000 0.01 0.00

10 0.1114 0.99999 0.03 0.01
25 0.2292 0.99997 0.16 0.03
50 0.3600 0.99991 0.43 0.07
75 0.4501 0.99985 0.71 0.12
100 0.5186 0.99979 0.94 0.16
175 0.6605 0.99964 1.48 0.26
250 0.7574 0.99952 1.82 0.32
375 0.8760 0.99937 2.15 0.40
500 0.9679 0.99926 2.34 0.46
750 1.1129 0.99911 2.53 0.54

1000 1.2308 0.99900 2.61 0.58
5000 2.3270 0.99828 2.42 0.67

10000 3.2071 0.99764 2.29 0.55
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Chapter 8

Mutual Self-Shielding

8.1 Manifestations

The methods outlined in Part II serve to generate multigroup cross sections in the resonance
range when a system contains only a single resonant nuclide. In real reactor applications,
this is never the case. Although some discussion of generalizing to multiple nuclides has been
included previously in this thesis, the effect of multiple nuclides is explored in more detail here.
Because the self-shielding of one nuclide’s resonances can impact the flux seen by another
nuclide, the effect of multiple resonant nuclides is known as mutual self-shielding.

Figure 8.1 shows a plot of the resonances of several common nuclides encountered in reactor
physics in the 4–23 eV energy range. As is easily seen, the resonances do not exist in isolation.
Resonances of one nuclide exist at energies very near the resonances of another nuclide, and
sometimes the resonances even overlap. Methods that ignore the effect of other nuclides cannot
be expected to accurately predict the fine structure of the flux seen by each nuclide.

The effects of mutual self-shielding can be separated into two types, resonance overlap and
resonance interference without overlap. In this chapter, these effects will be discussed in detail
along with classical approaches to this phenomenon. Also, two new methods for accounting for
the effects will be presented in Sections 8.3 and 8.4.

8.1.1 Resonance Overlap

The first type of mutual self-shielding is resonance overlap. This occurs when resonances of
two nuclides in a system are centered at energies close enough together that both nuclides have
significant resonance cross sections. Then, the flux depression due to one nuclide’s resonance
will lower the reaction rate in the other nuclide, compared to the nuclides existing in isolation.
Thus, by neglecting the effects of resonance overlap, the reaction rate and thus the group
averaged cross section will be overpredicted, potentially drastically.
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Figure 8.1: Energy location of resonances of several nuclides in the 4-23 eV energy range.
Reproduced from [43].

To see this, consider a simple extension of the benchmark presented in Ch. 6. Here, the
benchmark contains two nuclides, the primary nuclide and an interfering nuclide. Although
similar results could be obtained for more complicated geometries, only an isolated 1-D slab of
width 0.4 cm is considered here. The subgroup results are with 6 subgroup levels, with the
quadrature generated by a fitting procedure. For the fitting procedure, cross sections from
infinite media in varying background states are used as the reference data, and the narrow
resonance formulation is used for the subgroup approximation.

Transport calculations for the benchmark are performed using a two-region collision proba-
bility model. For the 1-D results presented here, the collision probabilities are analytic. The
narrow resonance approximation is used for the scattering source. The reference solution is
computed using an ultrafine energy discretization. Results are shown as relative errors, where
positive errors represent obtained cross sections greater than the reference and negative errors
represent obtained cross sections less than the reference.

For the primary nuclide, as in the original benchmark specification, a single resonance
with the shape of a real U-238 resonance at 1050 eV is considered, varying the height by
multiplicatively scaling the cross section. For the interfering nuclide, a single resonance is
used, with its potential scattering set to 0. Multiplicatively scaling the second resonance is
the equivalent of varying the relative number density between the two nuclides. When two
nuclides are present in a system, macroscopic cross sections are the appropriate way to combine
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Table 8.1: Errors from cross sections generated by subgroup for nuclide without an interfering
nuclide.

Peak [b] Reference [b] Error [%]

5 0.063 -0.014
25 0.278 -0.008

100 0.796 0.170
375 1.556 0.489

1000 2.191 -0.536

Table 8.2: Errors from cross sections generated by subgroup for primary nuclide with second
nuclide resonance overlapping, as in Fig. 8.2.

Peak [b] Reference [b] Error [%]

5 0.040 59.325
25 0.182 52.964

100 0.558 42.847
375 1.199 30.414

1000 1.809 20.455

their effects. However, for simplicity, effective microscopic cross sections are used here,

σ1 =
Σ1

N1

σ2 =
Σ2

N2 .

(8.1)

Various spacings in energy between the peak of the primary nuclide resonance and the interfer-
ing nuclide resonance are considered so that both resonance overlap and resonance interference
without overlap are represented.

Before examples with mutual self-shielding effects are presented, consider the performance
of subgroup on an example with only one nuclide, without interference from a second nuclide.
Table 8.1 gives these results. All errors are considerably less than 1% and vary in sign.

To illustrate the effect of resonance overlap, an interfering nuclide with resonance height
375 b with a peak at 1051 eV, 1 eV away from the peak of the primary nuclide’s resonance, is
added as illustrated in Fig. 8.2. Using the traditional subgroup method, the effective group
capture cross section is computed for the primary nuclide in this configuration. These effective
group cross sections for various primary nuclide peak heights are presented in Tab. 8.2.

The subgroup cross sections show very large errors, as much as 60%. As these errors are
all positive, this indicates that neglecting mutual self-shielding leads to a gross overprediction
of the cross section. Note that this is a pathological benchmark example, thus errors of this
magnitude are not seen for important nuclides in typical reactor analysis. However, when one
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Figure 8.2: Illustration of cross sections for resonance overlap example. Small primary cross
section relative to interfering cross section (above); large primary cross section relative to
interfering cross section (below).
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Table 8.3: Errors from cross sections generated by subgroup for primary nuclide with second
nuclide resonance separated in energy, as in Fig. 8.3.

Peak [b] Reference [b] Error [%]

5 0.064 -1.605
25 0.283 -1.792

100 0.809 -1.456
375 1.581 -1.122

1000 2.225 -2.052

is interested in reaction rates of minor nuclides, such as in depletion calculations, these sorts
of errors are possible.

8.1.2 Resonance Interference without Overlap

The second type of mutual self-shielding is resonance interference without overlap, although
it is referred to by various other names throughout the literature. In this case, an nuclide’s
resonance causes a flux depression away from another nuclide’s resonance. This depression
should not play a large role in the reaction rate in the second nuclide’s resonance, but it does
affect the group-integrated flux needed to compute a multigroup cross section. It lowers said
flux, raising the group-averaged cross section slightly. Thus, ignoring the effect of resonance
interference without overlap leads to multigroup cross sections being slightly underpredicted.

To illustrate resonance interference without overlap, consider the benchmark problem from
the previous section, but now take as an example the case where the interfering nuclide having
a resonance height of 375 b, centered this time at 1060 eV, 10 eV separated from the primary
nuclide’s resonance. For various heights of the primary nuclide resonance, as illustrated in
Fig. 8.3, effective group capture cross section results for the primary nuclide are presented in
Tab. 8.3.

The errors in this case are much smaller than those of the overlapping case. However,
these are still several times larger than compared with the single case. Additionally, these
errors are all negative, indicating that neglecting the mutual self-shielding effect leads to an
underprediction in the effective cross section. These sorts of errors are commonly found in
realistic simulations.

8.2 Classical Approaches

8.2.1 Ultrafine Methods

The ultrafine methods described in Ch. 5 are the most direct way to account for mutual self-
shielding. By modeling the flux and the cross section on an ultrafine or continuous energy mesh,
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Figure 8.3: Illustration of cross sections for resonance interference without overlap example.
Small primary cross section relative to interfering cross section (above); large primary cross
section relative to interfering cross section (below).
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the effects of self-shielding—and of course, any mutual self-shielding effects—are incorporated
implicitly. Existing implementations are discussed in Ch. 5.

8.2.2 Resonance Interference Factors

One means of accounting for mutual self-shielding is an ad hoc method commonly referred to
as Resonance Interference Factors. This very simple concept has been shown to reduce errors
associated with mutual self-shielding in a variety of applications. It is, however, limited in that
it merely applies a correction factor to computed quantites rather than modeling the physics
directly. Furthermore, implementation for real systems can be very difficult due to the number
of nuclides present. While it is simple to use for a small number of nuclides, it quickly becomes
unwieldy with large numbers of nuclides.

A resonance interference factor is computed by first creating a resonant cross section table
or resonance integral table, as discussed in Ch. 2. For this discussion, it is assumed that cross
sections are kept in the table rather than resonance integrals. These tables are generally
computed based on infinite media with a single resonant nuclide. However, in recent years,
tables based on heterogeneous calculations are becoming more popular. For nuclide i, this gives
the cross section as a function of the background cross section, σi

g(σ
i
b).

Next, a table is made using multiple resonant nuclides. This is most often performed using
a direct solution of the slowing down equation, but approximate solutions as discussed in
Sec. 2.6.2 are also possible. With nuclides j1 . . . jN present alongside nuclide i, the table gives
the cross section as a function of the background cross section and the relative concentration of
each nuclide n j = N j/Ni, which is notated σi

g(σ
i, j
b , n

j1 , n j2 , . . . , n jN ). This table is potentially very
large, as each relative concentration is an independent variable. Also, the definition of the
background cross section was adjusted to be

σ
i, j
b = σi

b −

N∑
k=1

λ jk n jkσ
jk
p , (8.2)

where σi
b is the background cross section for analysis with a single resonant nuclide. This is

equivalent to the sum of the potential scattering contributions from each nuclide not included
in {i, j1, . . . , jN}.

The resonance interference factor is the ratio of values from the two tables,

f i
RI(σ

i, j
b , n

j1 , n j2 , . . . , n jN ) =
σi
g(σ

i, j
b , n

j1 , n j2 , . . . , n jN )

σi
g(σi

b)
. (8.3)

The resonance interference factor is used to adjust cross sections generated considering only a
single resonant nuclide. If a multigroup cross section is generated from some self-shielding

149



module as σi
g,0, the estimate of the true multigroup cross section is

σi
g = σi

g,0 · f i
RI(σ

i, j
b , n

j1 , n j2 , . . . , n jN ) . (8.4)

If the approximation is made that interference between certain nuclides can be treated
independently of other nuclides, the resonance interference factor can be split into pieces. If
only two nuclides are considered at a time, this is

f i
RI(σ

i, j
b , n

j1, n j2, . . . , n jN) ≈
N∏

k=1

σi
g(σ

i, jk
b , n jk )

σi
g(σi

b)

=

N∏
k=1

f i, jk
RI (σi, jk

b , n jk ) .

(8.5)

This approximation makes it clear that one can in practice choose which nuclides to include
interference effects for and which not to. Neglecting terms close to unity in Eq. (8.5) will not
lead to significant errors. Regardless of the number of terms included, this approximation will
lead to a considerably smaller table size than Eq. (8.3), and thus may be necessary for practical
considerations.

When this method is applied to equivalence in dilution methods, it is equivalent to simply
pulling values from the multiple resonant nuclide table and fRI does not need to be computed.
In the subgroup method, the explicit fRI table is necessary to apply the method. However,
the subgroup method does not supply an appropriate choice of σb. One has several options.
First, the most straightforward option is for σb to be computed as if the self-shielding was
being carried out by equivalence in dilution methods. It would not be straightforward to
define a procedure using multi-term rational approximations, but the effect should be captured
adequately using a single term. Second, a single transport sweep can be used to infer the
background cross section, similar to a single iteration of ESSM, as in [27, 44]. Note that [44]
uses an additive correction factor rather than a multiplicative one.

By defining fRI as a function of the background cross section, it is implicitly assuming the
problem can be modeled as a two-region equivalent geometry. That is, intra-fuel discretization
is not accounted for. It can be adapted to have a spatial dependence if fRI were computed on
unit cells, although this adds considerable complexity if the design space is at all large. One
example of this adaptation can be found in [45].

8.2.3 Resonance Interference without Overlap in the Subgroup Method

Resonance interference without overlap is, in general, somewhat less difficult from a methods
perspective than resonance overlap. This is because the effect manifests as a reduction in
the group-integrated flux, not in the reaction rate in the resonance of the nuclide of interest.
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Thus, knowledge of both nuclides’ resonances simultaneously is not strictly necessary. In
using homogeneous slowing down tables, two methods to account for resonance interference
without overlap were discussed in Sec. 2.6.3. As these tables are used directly in equivalence-
based methods, treatment for resonance interference without overlap is easily accomplished in
equivalence in dilution.

In the subgroup method, such treatment is less straightforward. However, recent work has
created analogs for both methods discussed in Sec. 2.6.3. These methods are described here.

First, in [46], the analog to flux correction is seen. The group-averaged cross section for
nuclide i is written as

σi
g =

∑
n w

i
nσ

i
nφ

i
n

1 +
∑

j
∑

n w
j
n(φ j

n − 1)
. (8.6)

Here, j represents each nuclide in the system, and φi
n is the flux implied by the cross section

value. In the fitting process, the intermediate resonance model were used, this is

φi
n =

λiσi
p + σi

b

σi
n + σi

b

, (8.7)

but other choices are possible. In the paper, the fluxes are computed in a heterogeneous
calculation. With this definition of the group-averaged cross section, a fitting process is
performed to compute the best fit quadrature. Because it would be difficult to perform this
process with many nuclides, the implementation described in the paper considers only two
nuclides at a time, the nuclide of interest and the “most important” other nuclide. For LWR
applications, the “most important” other nuclide is almost always U-238, aside from the case
of U-238 itself. When two nuclides are mutually most important, they must be fit together.
Otherwise, the quadrature of the most important nuclide can be held constant during the
fitting of the nuclide of interest’s quadrature. This fitting is performed for a variety of ratios of
number densities of the two nuclides, resulting in a separate quadrature for each ratio.

Second, in [24], an analog to background cross section iteration is developed. Here, a term
known as “rest absorption” and given as σx is added to the subgroup fixed source equations
and is used in the fitting procedure. This rest absorption is defined as

σi
x =

1
Ni

∑
j

σ
j
a . (8.8)

Then, the fixed source equations take the form

Ω̂ · ∇ψi
n + Ni(σi

n + σi
x,g)ψ

i
n = Qi

sg . (8.9)

In the fitting process, the flux used for the approximate solution is likewise adjusted to
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incorporate this rest absorption. If the intermediate resonance model is used, this is

φi
n =

σi
p + λiσi

b

σi
n + σi

x,g + σi
b

, (8.10)

Note that the rest absorption terms in these equations are the group-averaged rest absorption.
This requires knowledge of the group-averaged absorption cross section for each nuclide, thus
requiring an iteration process, similar to the iteration described in Sec. 2.6.3.

8.2.4 Matrix Quadrature in Subgroup

To account for mutual self-shielding—both resonance overlap and resonance interference
without overlap—in the subgroup method directly has been considered as a topic of research.
Most existing forays into this field have constructed the subgroup quadrature as a matrix, such
that a subgroup fixed source equation is solved for each of an nuclide’s subgroup levels using
each level of another nuclide. These methods are discussed here. A new method that does not
require a full matrix of solutions is presented in this thesis in Sec. 8.3.

Consider two nuclides whose resonances are known to interfere with each other. This
approach generates a quadrature matrix. Rather than computing a vector of weights wn for
nuclide i and another wm for nuclide j, a matrix of weights Wn,m is generated. Then, the group
averaged cross section as computed by the subgroup method is

σi
g =

∑
n
∑

m Wn,mσnφn,m∑
n
∑

m Wn,mφn,m

σ
j
g =

∑
n
∑

m Wn,mσmφn,m∑
n
∑

m Wn,mφn,m
.

(8.11)

Here, φn,m is the flux resulting when nuclide i has cross section σn and nuclide j has cross
section σm. This requires solving a subgroup fixed source problem for all combinations of N

subgroup levels of nuclide i and M subgroup levels of nuclide j, for a total of N × M equations.

The weight matrix Wn,m is subject to the constraints∑
n

Wn,m = 1 ∀m (8.12)∑
m

Wn,m = 1 ∀n , (8.13)

which is equivalent to enforcing that weights sum to unity in the typical subgroup method.
This matrix takes into account correlation effects between the cross section of nuclides i and j.
If no such correlation exists—i.e., if the likelihood of cross section i having level n at the same
time as nuclide j having level m is equal for all choices of m and vice versa—then the matrix
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quadrature is simply
Wn,m = wnwm , (8.14)

where wn and wm are quadrature weights as generated without considering mutual self-
shielding effects.

In the generation of the quadrature, there are several options, just as in the typical
subgroup method. In [28], the quadrature is generated by the moment method by considering
co-moments of the cross sections,

Ml,k =

∫ (
σi(E)

)l (
σ j(E)

)k
dE . (8.15)

In [47], the notation differs considerably, but in essence a direct subgroup formulation is
applied, using a 1/E flux. In notation consistent with that of this thesis, the quadrature
weights are defined as

Wn,m =

∫
Hn(E)Hm(E)

1
E

dE (8.16)

with

Hn(E) =

1 σn,min < σ
i(E) ≤ σn,max

0 otherwise

Hm(E) =

1 σm,min < σ
j(E) ≤ σm,max

0 otherwise
.

(8.17)

Finally, in [29], the matrix quadrature is applied only in high energy groups in which the
assumption of independence of the two nuclides is valid. Thus, matrix weights are generated
by Eq. (8.14). No implementation using a fitting method was found during the literature review
for this thesis, but such an implementation would be straightforward by fitting to reference
problems with multiple resonant nuclides. In fact, although the method introduced in Sec. 8.3
does not create a matrix quadrature, it does apply the fitting method to the problem of mutual
self-shielding in the subgroup method.

This procedure could be extended to more than two nuclides. However, the computational
burden increases exponentially with the number of nuclides, as the matrix space increases
in dimension. If the subgroup fixed source equations are to be solved for every combination
of each subgroup level of each nuclide, the cost of the self-shielding method would become
infeasible. Also, as presented in Sec. 8.4, a subgroup-like method that can account for mutual
self-shielding directly scales much better with additional nuclides.

8.2.5 SHEM Group Structures

Although researchers have studied and found treatments for mutual self-shielding effects,
another approach is to reduce the impact of mutual self-shielding. The Santamarina-Hfaiedh
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Energy Mesh (SHEM) accomplishes this by discretizing the energy variable finely at energies
where mutual self-shielding plays a significant role. This helps a reactor physics calculation
be more accurate not only because the mutual self-shielding issue is handled implicitly but
also because self-shielding in general is moved closer to being handled implicitly. The SHEM
energy structures differ from an ultrafine approach in that by using a relatively small number
of groups, these meshes are intended for lattice physics calculations directly, whereas ultrafine
methods to date are used only on small geometries as self-shielding treatments prior to lattice
calculations.

The first SHEM energy mesh was a 281-group structure known as SHEM281 [43]. This
energy mesh was designed to reduce the need for self-shielding up to 23 eV. The structure was
explicitly designed to mitigate mutual self-shielding errors arising from improper treatment of
U-235/U-238 at 6.7 eV and 21 eV, U-236/U-234 at 5.4 eV, U-238/Pu-240 at 21 eV , Hf-177/Hf-179
at 5.8 eV, and Hf-176/Hf-178 at 7.9 eV. The structure was also designed to reduce other errors
resulting from the multigroup approximation, including threshold reactions at higher energies
and avoiding splitting resonances throughout the resonance range for a variety of reactor fuel,
coolant, and structural materials.

Later, the SHEM energy mesh was extended to 361 groups, SHEM361 [48]. A total of 80
additional groups were added between 22.5 eV and 11.14 keV. This reduces mutual self-shielding
and other issues of the multigroup approximation for the majority of the resolved resonance
range for actinides. The paper suggests that the mutual self-shielding issue is resolved entirely
through the use of this structure. Later work included a 295-group structure SHEM295 [9],
where the number of groups was reduced for computational efficiency while maintaining high
fidelity results with an implementation of the subgroup method.

8.3 Subgroup with Interference Cross Sections

8.3.1 Method Description

The difficulties in the subgroup method with mutual self-shielding are a result of treating
each nuclide independently, assuming the self-shielding effect on one nuclide is separable from
that of another nuclide. Thus, a way must be found to incorporate an interfering nuclide’s
cross section into the self-shielding calculation for a given nuclide. This issue can be addressed
through the use of a matrix quadrature, as discussed in Sec. 8.2.4, but here a new method is
presented which does not increase the number of subgroup fixed source equations.

Although information about the shape of the cross section is lost in the generation of the
subgroup quadrature with mathematical or physical probability tables, the weights can still be
interpreted as representing an energy range and the base points as the average cross section in
that range, at least to first order. With this in mind, the average cross section of the interfering
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Figure 8.4: Conceptual illustration of inteference cross sections.

nuclide in the energy range corresponding to the quadrature weight is sought. This must be
defined consistently with the standard subgroup approximation. A conceptual illustration of
this is given in Fig. 8.4.

To do this, consider a homogeneous system with two nuclides, using the narrow resonance
approximation for the scattering sources,(

Σ1
t (u) + Σ2

t (u) + Σ+
)
φ1,2

NR(u)

=Σ1
p + Σ2

p + Σ+ .
(8.18)

Rearranging this equation and dividing through by N1 achieves

φ1,2
NR(u) =

σ1
p + γσ2

p + σb

σ1
t (u) + γσ2

t (u) + σb
, (8.19)

where σb = Σ+/N1 and γ = N2/N1. This defines the narrow resonance cross section for some
reaction ρ for the primary nuclide with interference from the secondary nuclide as

σ1
ρ,g =

∫
g
σ1
ρ(u)φ1,2

NR(u) du∫
g
φ1,2

NR(u) du
. (8.20)

Note that in Eq. (8.19), the flux is not a simple function of the cross section, as the

155



cross sections of the two nuclides have different energy shapes in general. However, the
subgroup approximation is still made, adding an additional parameter to the quadrature for
the secondary nuclide cross section.

Assuming the subgroup quadrature for the primary nuclide has already been generated,
denoted as Q1 = {wn, σn}, this quadrature is modified to include an interference cross section σ1,2

n

as Q1,2 = {wn, σn, σ
1,2
n }. A fitting procedure is then used to determine interference parameters.

First, a set of reference data is generated. Reference group cross sections are generated
with Eq. (8.20) with various values of σb and γ. Take the set of reference cross sections as {σ̄k},
with the index k referring to the configuration’s background level and density ratio.

Next, the approximate group cross sections are defined as {σ̃k}. For configuration k, this is

σ̃k(Q1,2) =

∑
n

wnσn

σn + γkσ
1,2
n + σb,k∑

n

wn

σn + γkσ
1,2
n + σb,k

. (8.21)

The base points and weights from Q1 are held fixed, and so Q1,2 can be found by a least
squares procedure on the interference cross sections,

Q1,2 = arg min
Q′1,2:Q1

∑
k

 σ̄k − σ̃k(Q′1,2)

σ̄k

2

. (8.22)

For multiple interfering nuclides, each interfering nuclide has its own interference cross
section. Each set of interference cross sections can be generated independently of each other.
An alternate formulation that takes into account interfering nuclides interfering with each
other is possible, but it is not shown here, as this case is unlikely to have a significant impact
in realistic applications.

Once the quadrature is appended with the interference cross sections, subgroup fixed source
problems are solved. The interference cross sections are added to the collision term. The fixed
source problems are otherwise unchanged,

Ω̂ · ∇ψn(~r, Ω̂)

+ N∗(~r)

σn +
∑

i

γiσ
1,i
n

ψn(~r, Ω̂)

= Σp(~r) .

(8.23)

8.3.2 Results and Discussion

Next, results in various configurations of the simple benchmark presented in Ch. 6 are
considered. As in the benchmark, in all cases, the subgroup method was implemented with
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six levels, generated by a fitting procedure with various infinite medium configurations as
references.

Now, consider two nuclides, a primary nuclide and an interfering nuclide. Both nuclides
have one resonance, and the heights and spacings between the resonances are varied.

First, consider a case of resonance overlap, where both resonances are centered at 1050
eV. Figure 8.5 shows one example of these cross sections. The heights of the cross sections are
varied relative to each other. Results are shown in Tab. 8.4. The column labeled “Peak” gives
the peak of the primary nuclide’s resonance; the column labeled “Subgroup” shows the error
in a subgroup implementation without interference cross sections; and the column labeled
“Interference” shows the results for subgroup with interference cross sections as introduced
in this section. Positive errors represent obtained cross sections greater than the reference;
negative errors represent obtained cross sections less than the reference.

As expected, subgroup errors are seen to greatly magnify as the interfering nuclide’s
resonance becomes larger. The effect is greatest for smaller primary nuclide resonances. In all
cases, the use of interference cross sections greatly reduces the error. This error is below 1% for
all cases but one. The one case, a 5 b primary resonance peak with a 1000 b interfering peak,
suffers because the primary nuclide has very nearly no effect on the flux near its resonance
and because the resulting effective cross section is very small.

Next, consider the case where the resonances are separated by 1 eV. That is, the second
resonance is centered at 1051 eV. An example of this is shown in Fig. 8.6. The interference effect
is no longer symmetric in the resonance. Errors in the subgroup method are also decreased,
but are still very significant. Results are given in Tab. 8.5.

As with the completely overlapping case, use of interference cross sections dramatically
decreases the error in all cases. Again, the only instance of errors greater than 1% is for the
case of a very small resonance being interfered with by a very large resonance.

Next, consider the case where the resonances are separated by 2 eV. That is, the second
resonance is centered at 1052 eV. An example of this is shown in Fig. 8.7. With the resonances
further spaced, errors have decreased further, but are still at substantial levels for the cases
with large interfering resonances. Results are shown in Tab. 8.6.

In all cases, interference cross sections lead to very small errors in the cross section, less
than 1%. For all three resonance overlap cases shown, the resonance interference cross sections
are shown to dramatically decrease errors in the subgroup method.

Finally, consider a case of resonance interference without overlap. Here, the second
resonance is centered at 1060 eV. An example of this is shown in Fig. 8.8. The errors in the
traditional subgroup method are all negative, as expected. Results with the new interference
cross section are given in Tab. 8.7.
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Figure 8.5: Example of cross sections for complete overlap case.
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Figure 8.6: Example of cross sections for significant partial overlap case.
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Table 8.4: Resonances fully overlap.
Interfering resonance peak: 5b

Peak [b] Reference [b] Subgroup Interference
Error [%] Error [%]

5 0.061 3.591 0.002
25 0.270 2.658 -0.273

100 0.782 1.976 0.161
375 1.543 1.304 0.494
1000 2.184 -0.201 -0.537

Interfering resonance peak: 100b
Peak [b] Reference [b] Subgroup Interference

Error [%] Error [%]

5 0.039 61.936 0.295
25 0.183 52.051 -0.419

100 0.590 35.170 0.043
375 1.343 16.430 0.522
1000 2.055 6.056 -0.535

Interfering resonance peak: 1000b
Peak [b] Reference [b] Subgroup Interference

Error [%] Error [%]

5 0.011 479.580 -2.892
25 0.054 415.307 0.025

100 0.206 287.865 0.083
375 0.663 135.746 -0.893
1000 1.377 58.286 0.241
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Table 8.5: Resonances are separated by 1 eV.
Interfering resonance peak: 10b

Peak [b] Reference [b] Subgroup Interference
Error [%] Error [%]

5 0.062 1.404 0.111
25 0.275 1.223 0.052

100 0.788 1.141 0.109
375 1.545 1.188 0.462
1000 2.181 -0.050 -0.422

Interfering resonance peak: 100b
Peak [b] Reference [b] Subgroup Interference

Error [%] Error [%]

5 0.052 21.443 0.305
25 0.233 19.138 0.156

100 0.689 15.673 0.134
375 1.399 11.764 0.505
1000 2.029 7.437 0.623

Interfering resonance peak: 1000b
Peak [b] Reference [b] Subgroup Interference

Error [%] Error [%]

5 0.029 117.527 -2.569
25 0.136 105.045 0.508

100 0.438 82.128 0.609
375 1.011 54.610 -0.985
1000 1.599 36.266 -0.639
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Figure 8.7: Example of cross sections for lesser partial overlap case.
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Figure 8.8: Example of cross sections for separated resonances case.
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Table 8.6: Resonances are separated by 2 eV.
Interfering resonance peak: 5b

Peak [b] Reference [b] Subgroup Interference
Error [%] Error [%]

5 0.063 0.079 -0.014
25 0.278 0.084 -0.009

100 0.795 0.276 0.177
375 1.553 0.650 0.479
1000 2.186 -0.307 -0.447

Interfering resonance peak: 100b
Peak [b] Reference [b] Subgroup Interference

Error [%] Error [%]

5 0.062 1.760 0.050
25 0.273 1.700 0.016

100 0.782 1.972 0.249
375 1.519 2.915 0.002
1000 2.122 2.736 0.428

Interfering resonance peak: 1000b
Peak [b] Reference [b] Subgroup Interference

Error [%] Error [%]

5 0.056 13.661 0.357
25 0.247 12.556 0.296

100 0.714 11.663 0.067
375 1.391 12.361 -0.708
1000 1.935 12.627 -0.961
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Table 8.7: Resonances are separated by 10 eV
Interfering resonance peak: 5b

Peak [b] Reference [b] Subgroup Interference
Error [%] Error [%]

5 0.063 -0.086 -0.019
25 0.278 -0.080 -0.071

100 0.796 0.098 0.108
375 1.557 0.418 0.428
1000 2.193 -0.602 -0.592

Interfering resonance peak: 100b
Peak [b] Reference [b] Subgroup Interference

Error [%] Error [%]

5 0.064 -0.835 0.043
25 0.280 -0.833 -0.663

100 0.802 -0.659 -0.452
375 1.569 -0.328 -0.138
1000 2.208 -1.303 -1.094

Interfering resonance peak: 1000b
Peak [b] Reference [b] Subgroup Interference

Error [%] Error [%]

5 0.065 -2.200 0.224
25 0.285 -2.237 -0.575

100 0.814 -2.112 -0.066
375 1.592 -1.794 0.062
1000 2.240 -2.690 -0.614
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Errors are not significant in the cases of the interfering nuclide having a peak of 5 b or 100
b. In these cases, the addition of the interference cross sections does little to improve errors,
but it does not harm the accuracy. For the case of a 1000 b interfering cross section peak, the
errors are seen to decrease significantly when compared to traditional subgroup, as the flux
levels for the lower subgroup levels are more significant and accounted for in this method.
Thus, this method is shown to be successful for resonance interference without overlap.

The inclusion of interference cross sections in the subgroup procedure was shown to have
a profound impact on the performance of the method for these simple benchmark cases.
This new technique improved results both for cases of resonance overlap and for cases of
resonance interference without overlap. However, several aspects of this new technique must
be considered for it to be useful. First, the generation of the interference cross sections is
discussed. Then the computational complexity and some of the flexibility of the method is
considered.

By using a range of background cross section values and density ratios, it is assumed that
the interference cross section is independent of these. However, this is not true in reality,
especially in regards to the density ratio. Over a small range of density ratio values, the
interference cross section is seen to be relatively constant; however, this is not true over a very
large range of values. Thus, it is recommended that in the generation of parameters, γ values
are chosen in a small range around the value expected to be encountered in applications. If a
large range of values are expected to be encountered, one can calculate separate parameters
for distinct ranges of γ.

In more concrete terms, consider the example of a light water reactor, containing various
enrichments in UO2 fuel pins. When considering U-235, one would expect γ for U-238 to fall in
the range of 20 (5% enrichment) to 50 (2% enrichment). When generating interference cross
sections, configurations with γ far outside this range need not be considered. However, the γ
for fission products with respect to U-235 would be expected to be small fractions, and so γ
values near those of U-238 should not be considered.

In this paper, the interference cross sections were generated using a fitting procedure which
is applicable regardless of the process used to generate the original subgroup parameters.
However, these parameters can be defined by—and in fact, are more theoretically rigorous
with—integrating with the explicit energy intervals from the direct subgroup method. Then,
average cross sections of interfering nuclides are well defined. The inherent weaknesses of the
direct subgroup method, that the assumed flux is dilution dependent, still applies.

The interference cross sections presented in this paper were generated without modifying
the original subgroup parameters. However, cases have been observed in which a subgroup
quadrature was found to have very good accuracy for an individual nuclide but adequate
interference cross sections could not be computed. In these cases, changing the original
quadrature, either by shifting the base points or introducing additional subgroup levels, is
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necessary. As an example, consider a primary nuclide with a single resonance, and take the
corresponding subgroup quadrature to have two levels. One could expect sufficient performance
with one level corresponding to areas away from the resonance and one level for the resonance.
Consider a resonance from another nuclide with a peak located a small amount in energy from
the peak of the primary nuclide’s resonance. In this case, this quadrature will not be able to
resolve the portion of the primary nuclide’s resonance that is being shielded by the interfering
resonance.

The addition of a new subgroup parameter for each interfering nuclide may seem cumber-
some, costly and memory intensive. However, this is not the case in practice. The calculation of
the interference cross sections is a pre-processing step in the generation of the subgroup library.
Although the nonlinear optimization required to compute the interference cross sections is
difficult in general, because this step is only performed once for each cross section library, this
is not of practical concern. The size of the subgroup library increases, which increases memory
requirements. However, this increase is not significant. For instance, consider a library of 100
nuclides with 100 resonance groups each with 5 subgroup levels. If one computes for each group
the interference effect of each nuclide with each other nuclide, the interference cross sections
require only 40 MB of storage in double precision. In practice, much less data is needed, as only
important interference effects need be considered. Furthermore, the computational complexity
remains the same as in the standard subgroup formulation, as neither the number nor the
complexity of the fixed source equations changes.

As was just suggested, it is unnecessary to use this method for each nuclide interfering
with each other nuclide in every energy group. One can identify specific groups and nuclides
where interference effects are important, and only use this method for those thus cutting down
on memory requirements and library generation complexity.

8.4 Ultrafine with Simplified Scattering

The subgroup method is plagued by two approximations, that the neutron flux per unit lethargy
is a function of only the cross section of a given nuclide and that each nuclide can be treated
independently. Outside of these approximations, the subgroup method has been shown to
be very effective, especially in complex geometries in which equivalence-based methods are
difficult to use. Much work has been performed addressing each of these weaknesses, but
ultimately, such work cannot fully account for the physics lost by these approximations.

The first approximation manifests itself in the difficulty of generating a suitable subgroup
quadrature. Three classes of methods—direct, fitting-based, and moment-based—have been
discussed in Ch. 4, and each provides an option in the tradeoff continuum of accuracy versus
ease of generation. The second approximation manifests itself, as with equivalence-based
methods, in the treatment of mutual self-shielding. Options such as resonance interference
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factors and matrix subgroup equations were discussed in Sec. 8.2. These methods either
provide only an engineering correction or come with great expense.

Here, a new method is presented that is not a subgroup method by its typical definition,
but rather is an ultrafine method. However, it retains enough similarity to the subgroup
method that it can be seen as a novel way of addressing the two approximations. This method
combines the aspects of the subgroup method that have proven to be effective with the aspects
of ultrafine methods required to make substantial progress relating to issues such as mutual
self-shielding.

8.4.1 Method Description

This proposed method is in essence a direct subgroup method (described in Sec. 4.2.1) with the
indicator function Hn defined contiguously in energy:

Hn(u) =

1 un ≤ u < un+1

0 otherwise .
(8.24)

Then, as the subgroup base points and weights are defined as

σn =

∫
g
σ(u)φ(u)Hn(u) du∫
g
φ(u)Hn(u) du

(8.25)

and

wn =

∫
g
φ(u)Hn(u) du∫
g
φ(u) du

, (8.26)

this process reduces to the standard procedure for collapsing multigroup cross sections. Because
φ(u) is not known a priori, a large number of base points are needed for accuracy. Because
the quadrature is no longer defined in terms of the cross section value but rather in terms of
energy, and because there are a very large number of base points needed, this is by standard
definitions an ultrafine method.

This method, though, is differentiated from typical ultrafine methods in that the source is
still that of the subgroup method; no attempt is made at a rigorous computation of the slowing
down source. The source is assumed to be that of some resonance model, shown here as the
intermediate resonance model. Then, the subgroup fixed source equations are

Ω̂ · ∇ψn(~r) +
∑

i

Ni(~r)σi
nψn(~r) =

1
4π

∑
i

λiNi(~r)σi
p , (8.27)

which are solved to obtain the scalar subgroup flux φn. The group averaged cross section is
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obtained by inserting the quadrature and these fluxes into

σλ,g(~r) =

N∑
n=1

wnσ
i
nφn(~r)

N∑
n=1

wnφn(~r)

. (8.28)

These subgroup fixed source equations differ from those of Sec. 4.1 in that all nuclides are
treated together. In this way, mutual self-shielding effects are accounted for, as each nuclide
sees the depressions in the flux caused by the resonances of each other nuclide. The effects of
mutual self-shielding on the scatter source—e.g., if a peak in the source due to one nuclide’s
scattering resonance sits atop another nuclide’s capture resonance—are not able to be modeled
in this method, but this effect is negligible in most situations. The scatter source itself is a
subtle issue, explored in more detail in Sec. 8.4.2. The solution of all nuclides concurrently also-
allows the total number of fixed source solutions to be independent of the number of nuclides
and kept at a tractable number.

A further benefit of this approach is its ability to easily model temperature effects natively.
Attempts have been made at including temperature dependence in the subgroup method
[49, 50, 51], but it is a difficult problem. With this ultrafine method, each transport sweep
corresponds to a specific energy range, and the cross section in that energy range is easily
determined for each region in the problem, regardless of temperature. For instance, if a pin
is discretized radially, one can model a temperature profile across the pellet, with higher
temperatures at the pin center.

This number of subgroup fixed source equations warrants further discussion. Although the
use of a quadrature based on ultrafine multigroup cross sections requires O(10,000 − 100,000)

base points, by only having one fixed source problem per base point, this is not necessarily a
drastic increase in cost compared to other subgroup implementations. As researchers have
become increasingly concerned with mutual self-shielding, the number of coarse groups has
been increasing. Recent energy meshes SHEM281 [43] and SHEM361 [48] contain 146 and 226
energy groups between 4 eV and 20 keV, respectively. A commonly used mesh XMAS172, [12],
contains 52 energy groups in this range. If these three groups were to be used in a depletion
analysis following 100 nuclides, each having 5 subgroup levels per coarse group, a total of
73,000, 113,000, or 26,000 subgroup fixed source equations would be required. Of course, these
numbers could be reduced—perhaps substantially—by using tricks discussed in Sec. 4.4, but
these come at the cost of accuracy. Even with a moderate number of resonance groups such as
XMAS172, considering just ten nuclides, using matrix quadratures for mutual self-shielding,
coupling each nuclide to one other nuclide, requires 13,000 fixed source solutions. If more
nuclides are coupled to each other, this can increase exponentially.

There are two benefits of this approach compared to standard ultrafine methods. First, in
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traditional ultrafine methods, the scatter source must be computed for each nuclide separately,
causing the simulation time to scale with the number of nuclides. Although there are techniques
to reduce this burden (such as in Sec. 5.3.2), this method avoids that through a simple scattering
approximation. More significantly, this method fully decouples each group. Thus, this approach
can be parallelized over energy groups without difficulty.

The very simple benchmark results shown in this Part cannot be applied to this method, as
it is equivalent to the reference solution given the conditions of the benchmark. Thus, results
are omitted from this portion. Results relating to this method can be found throughout Part IV.

8.4.2 Intermediate Resonance Scatter Source

A complication of this method is the selection of the scatter source. By using the intermediate
resonance model with all nuclides in the same calculation, the intermediate resonance parame-
ter λ is poorly defined. This is the same difficulty that other methods using the intermediate
resonance model with multiple nuclides have, including those in the Embedded Self-Shielding
Method (Sec. 3.7) and in the approximate solution of the slowing down equation (Sec. 2.6.2).

In the intermediate resonance model, the parameter λ is a measure of the “width” of
a resonance. That is, it measures how likely a neutron that scatters near the energy of a
resonance is to jump over the resonance’s energy range compared to how likely it is to stay near
the resonance. For this parameter to be well-defined, there must be a resonance of interest
and a mass of the scatterer. In a system with multiple resonant nuclides, a scatter could have
one value of λ for one resonance nuclide and another value of λ for another resonant nuclide.
In such a system, if the intermediate resonance model is to be used, an effective value of λ
must be used, treating each nuclide the same. This is further complicated by the fact that the
λ value for a resonant nuclide’s scattering compared to its own resonances are usually defined
differently from that of a background scatterer compared to another nuclide’s resonances, as
discussed in Sections 2.5.5 and 2.5.6.

One possible means of dealing with this is a fairly naive approach, but is sufficient for many
applications. Recognizing that many systems are dominated by a single nuclide, all λ values
can be tuned to that nuclide. For instance, in an LWR fuel pin, the most important nuclide in
terms of resonance effects is U-238. In the computation of λ, that of U-238 can be computed
as in Sec. 2.5.5, and that each other nuclide can be computed as in Sec. 2.5.6 using U-238 as
the reference. This allows the resonance effects of the most important nuclide to be modeled
accurately and recognizes that the mutual self-shielding effects will not be greatly influenced
by the choice of λ.

Another possible means of finding λ is to perform a search for every unique mixture of
nuclides. All nuclides but one can use some value of λ computed separately in an external
calculation. The λ for the last nuclide can be determined by matching some quantity (e.g., a
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multigroup cross section) computed from a direct solution of the slowing down equation. This
uses λ of the final nuclide as a tuning parameter to ensure the quantity of interest is being
computed accurately. However, it comes with a significantly higher computational burden than
the previous method if many unique mixtures are present.

Next, consider the scatter source given by the intermediate resonance model. Here, it
is shown that, regardless of the choice of λ, the intermediate resonance model is not a good
approximation for the true shape of the scatter source. Rather, it can only preserve the fraction
of neutrons absorbed in resonances versus those that escape. However, this does not imply
that this ultrafine-based method using the intermediate resonance model is to be rejected.
The method retains the ability to account for flux depressions due to resonant nuclides and
incorporate that information into the self-shielding of other resonant nuclides. The inaccuracy
of the scatter source is implicit in other self-shielding methods including equivalence-based
and subgroup methods.

Consider an infinite medium consisting of a mixture of U-238 and 50 b of constant cross
section background. The scatter source per unit lethargy resulting from a direct solution of
the slowing down equation, the wide resonance model, and the narrow resonance model is
shown in Fig. 8.9. The true scatter source—that of the direct solution of the slowing down
equation—does not always fall between the WR and NR sources. This is seen especially at the
interference dips in the scattering cross section on the low energy side of resonances where the
true scatter source peaks and the WR source is at a minimum. The intermediate resonance
model is a convex combination of the WR and NR models, and so its scatter source will always
fall between them. Thus, the IR source cannot be expected to be a good approximation to
the scatter source at all energies. This issue is most important in the self-shielding of an
nuclide that has a resonance just lower in energy than the resonance of another nuclide that
has a large scattering resonance. The IR model in this would underpredict the source at the
resonance energy, underpredicting the reaction rate.

8.4.3 Slowing Down Scatter Source

An alternative to using the intermediate resonance scatter source in this method exists. One
can use a solution of the slowing down equation to provide the source, analogous to using the
slowing down equation rather than the IR approximation to make tables used in equivalence
in dilution methods. When using this alternative scattering source, the method of ultrafine
with simplified scattering is essentially a hybrid of all three of the classes of methods outlined
in Part II: equivalence in dilution, subgroup, and ultrafine methods.

First, one must build the scatter source. This is accomplished by creating an equivalent
infinite medium for each resonance region. The infinite medium contains all the nuclides in
the region with the same number densities. An additional nuclide is added as a background
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Figure 8.9: Scatter source per unit lethargy from direct slowing down, wide resonance model,
and narrow resonance model for infinite medium of U-238 and 50 b of constant cross section
background.
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moderator, with a macroscopic cross section equal to the equivalence cross section. The simplest
choice of equivalence cross section—which will be shown to be very effective in Ch. 9—is to use
that of the Wigner Rational Approximation:

Σeq =
1 −C

l
, (8.29)

where C is the Dancoff factor and
l =

4V
S

, (8.30)

with V as the volume of the resonant region and S as its surface area. The slowing down
equation for the equivalent infinite medium is solved, and the scatter source for eac nuclide at
each energy point is tabulated. The scatter source for the subgroup fixed source equations is
the sum of the scatter sources of the nuclides that were present in the true resonant region;
the scatter source from the added background moderator is discarded. If this scatter source
per unit lethargy is given as Q(u), Eq. (8.27) is transformed into

Ω̂ · ∇ψn(~r) +
∑

i

Ni(~r)σi
nψn(~r) =

1
4π

Qn , (8.31)

where
Qn =

∫
g
Hn(u)Q(u) du , (8.32)

using the indicator function of Eq. (8.24).

Although the solution of the slowing down equation can be performed rapidly, it may not
be desired to solve it for every region in a large problem. For instance, in a depleted lattice,
every fuel region may have a different composition of nuclides. Fortunately, the solution of the
slowing down equation can be moved to a preprocessing step and tabulated. While tabulating
the source for a mixtures of many nuclides for every possible configuration is unrealistic—
much like tabulating the resonance interference factors from Sec. 8.2.2—the scatter source
for individual nuclides at varying background levels can easily be tabulated. If particular
interference effects are found to be important, tabulated sources for pairs of nuclides can be
generated. After tabulation, selection of the scatter source proceeds much like selecting cross
sections from equivalence in dilution methods. Each nuclide’s background level is determined
from the geometry and concetrations of other nuclides present in the same region. The table is
then queried with this background level, and the scatter source for use in the subgroup fixed
source equations is retrieved.
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8.5 Chapter Summary

Mutual self-shielding is the phenomenon in which the resonances of one nuclide impact
the reaction rate for another nuclide. It takes two forms, resonance overlap and resonance
interference without overlap. Resonance overlap leads to a significant overprediction of the
group cross section, whereas resonance interference without overlap causes an underprediction.
Two new methods were presented to account for these effects.

First, the subgroup method with interference cross sections was presented. Cross sections
of interfering nuclides are generated for each subgroup level of a primary isotope and are
included in the subgroup fixed source problems. This method is fully embedded in the subgroup
method, and so the effect is modeled in the self-shielding calculation directly. This offers a more
flexible approach than ad hoc correction factors applied after cross sections are determined.
Because of the flexibility and the computational efficiency of this method, it is an attractive
option when mutual self-shielding effects are important. It allows the effect to be considered
when one does not want to rigorously treat these effects in a continuous energy simulation, be
it with Monte Carlo or with an ultrafine energy discretization in a deterministic simulation.

Second, ultrafine with simplified scattering was presented. This is a hybrid between
ultrafine methods and the subgroup method, solving subgroup fixed source equations on an
ultrafine energy grid. This method provides a compromise between the accuracy of ultrafine
methods and the efficiency of classical self-shielding approaches. Two potential scatter sources
were identified, the intermediate resonance source and one computed from a slowing down
solution of an equivalent infinite medium.
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Part IV

Results
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Chapter 9

Analysis of Multigroup Cross
Section Generation Methods

9.1 Introduction

In this chapter, various ultrafine methods are compared side-by-side with equivalence-based
and subgroup methods on various pin-based geometries with various materials. Benchmark
problems considered are intended to be realistic—both in terms of geometry and cross sections—
but are kept small. Errors of group-wise cross sections compared to an ultrafine reference
are generated for each nuclide in the problem. Reaction rates integrated across the entire
resonance range are also considered.

This analysis is performed as part of the framework introduced in Ch. 6. The cases in this
chapter incorporate additional physics compared to that of Ch. 6, but are limited to small
geometries. However, the small geometries are chosen in such a way to stress the methods
and serve as realistic test cases for most applications. Coupled with the analyses of Ch. 6, this
is a nearly complete of test cases for evaluating these methods. One could also incorporate
results on full fuel assembly or even full core simulations to measure performance on full-scale
calculations, but this would add tremendous cost to testing and would highlight relatively few
additional sources of error. Such analysis is beyond the scope of this thesis.

A very simple group structure, the WIMS69 [12] structure, is used to evaluate results. This
group structure has 13 resonance range broad groups. The energy bounds of these groups are
given in Tab. 9.1. Note that each of the four lowest energy U-238 resonances is in its own
group and is approximately at the center of the group. The resonances are in group 27 (6.67 eV),
group 25 (20.9 eV), group 24 (36.6 eV), and group 23 (66 eV); no U-238 resonances are in group
26. The selection of a group structure for downstream application is not intended to be the
topic of this chapter, although some brief discussion of the implications of the group structure
is included.
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Table 9.1: Resonance groups of the WIMS69 structure.
Group Emax (eV) Emin (eV)

15 9118.00 5530.00
16 5530.00 3519.10
17 3519.10 2239.45
18 2239.45 1425.10
19 1425.10 906.899
20 906.899 367.263
21 367.263 148.729
22 148.729 75.5014
23 75.5014 48.0520
24 48.0520 27.7000
25 27.7000 15.9680
26 15.9680 9.87700
27 9.87700 4.00000

Throughout this study, ENDF/B-VII.1 cross sections, evaluated at 300 K are used. Only
elastic scattering and radiative capture cross sections are included. The total cross section is
built as the sum of these two partial cross sections.

Tables of group-averaged cross section values and other metrics will be included in the study.
Columns will use abbreviations for the method that generated the results. These abbreviations
are included in Tab. 9.2. Each method will be detailed before results are presented with it.

Errors in group-averaged cross sections are shown as percentages, calculated by

ε =
σ − σre f

σre f
× 100% . (9.1)

Positive errors therefore represent an overprediction of the true cross section; negative errors,
an underprediction.

9.2 Methods Descriptions

9.2.1 Reference Solution

The reference solution for these problems is created with ultrafine methods, described in more
detail in Ch. 5. A rigorously computed elastic scattering source, assumed isotropic in the center
of mass, is used. Pins are discretized with 10 equal volume rings in the fuel and 10 equally
sized azimuthal sectors. The surrounding moderator in the unit cell is discretized to have
5 equal width rings, and the azimuthal separations are continued into the moderator. The
energy variable is discretized by selecting 100,000 points equally spaced in lethargy from 4 eV
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Table 9.2: Abbreviations used in tables in this chapter.

Abbreviation Full Name

REF Reference Solution, Direct Ultrafine Method

2REG Ultrafine Method without Spatial Discretization

EQ-SD Equivalence in Dilution, using Carlvik’s Two-Term Rational Approxi-
mation and dilution tables based on the slowing down equation

EQ-IR Equivalence in Dilution, using Carlvik’s Two-Term Rational Approx-
imation and dilution tables based on the intermediate resonance
model

ESSM Embedded Self-Shielding Method, based on heterogeneous tables

SUBG Subgroup method, quadrature generated with a fitting method

S-INT Subgroup method with interference cross sections, using interference
cross sections for all nuclides

UF-IR Ultrafine with Simplified Scattering, using the intermediate reso-
nance model for the scatter source

UF-SD Ultrafine with Simplified Scattering, using the scatter source from
an infinite medium solved with the slowing down equation

+ Appended to abbreviation when Resonance Interference Factors
based on all nuclides in a material are applied

+U Appended to abbreviation when Resonance Interference Factors
based only on a nuclide interfering with U-238 are applied
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to 10 keV and is treated as continuous. The problem is solved in the method of characteristics,
using 32 azimuthal angles, a 0.01 cm ray spacing, and a 3-point TY polar quadrature.

This ultrafine solver was validated using a fixed source Monte Carlo code on several pin-cell
geometries using multiple nuclides. Results matched very closely. The ultrafine solution has a
much faster run time, no complications from statistical uncertainties, and better fits with the
analyses in this thesis, and so was selected to use as the reference case.

9.2.2 Ultrafine without Discretization

The first approximation is an ultrafine solution without spatial discretization. The pin is
treated as a single flat source region, as is the moderator. In an unclad pin-cell, this is a simple
two-region problem. The same energy discretization and MOC solution parameters are used
as in the reference solution.

Because two-region problems are the basis of equivalence theory and none of the methods
tested allow for a spatial distribution of the source, this provides a baseline for the best results
that can be obtained from any of the subsequent approximations.

9.2.3 Ultrafine with Simplified Scattering

Next, the method introduced in Sec. 8.4—Ultrafine with Simplified Scattering—is used. This
method is an ultrafine method, but instead of modeling elastic scattering physics explicitly,
the source term is that of the intermediate resonance model. It is analogous to a subgroup
method, where the quadrature is defined by the direct method with contiguous energy ranges.
No spatial discretization is imposed, and the MOC solution parameters are the same as in the
reference solution.

The intermediate resonance parameters, as discussed in Sec. 8.4.2 are not well-defined
for a solution technique that treats multiple resonant nuclides simultaneously. The choice
of technique for computing the intermediate resonance parameters is therefore a degree of
freedom. In this analysis, the primary method used will be to compute the parameters relative
to U-238.

The alternative formulation using a source computed from the slowing down equation as the
right hand side is also tested. Results shown here compute the source from an infinite medium
containing all the resonant nuclides in the fuel region together. Although the possibility of
tabulating the slowing down source for single nuclides was discussed in Sec. 8.4.3, this is not
included in the results in this chapter.
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9.2.4 Subgroup Method

The subgroup method is described in detail in Ch. 4, but there are many decisions left to
implementation. Here, a fitting method is used based on the intermediate resonance derived
cross section, σλ = σa +λσs. For each nuclide, a set of 12 infinite media problems are created. In
each, the primary nuclide is admixed with a background moderator with varying concentrations.
These infinite media problems are solved assuming the intermediate resonance source, and
group-averaged cross sections are generated as the reference values. Note that although the
dilution level is varied, the λ parameter is generated at a single dilution corresponding to
expected downstream application and held constant throughout the process.

For each group for each nuclide, six subgroup levels are used. They are determined by
fitting group-averaged cross sections generated by subgroup to those generated as reference
cases. Equation (4.20) is solved using the function fmincon in MATLAB [52]. The starting
guess for levels is taken to be six equally logarithmic spaced values between 1 b and 30, 000 b,
and for weights to be equal for each level. Constraints that weights and levels are positive
and that levels not be too large are imposed. The maximum number of function evaluations
is increased and the tolerance is tightened compared to the defaults for fmincon in order to
obtain a suitable quadrature. In nearly all cases, the discrepancy between the reference values
and the subgroup approximation is a fraction of a percent.

The partial cross sections and the total cross section are determined using a fitting method.
The same reference cases as before are used. The original quadrature is held constant, and
base points corresponding to the partial or total cross section are determined via least squares
process with fmincon. For the total cross section, an additional constraint is imposed that the
base points be greater than or equal to those of the original quadrature.

The subgroup fixed source equations are solved for each level of each group for each nuclide
using the method of characteristics. The same MOC solution parameters are used for the
subgroup fixed source equations as for the reference. The subgroup sources are λΣp for each
nuclide, with λ generated with respect to the primary nuclide. Care is taken to ensure the
intermediate resonance parameters are generated at the same dilution as in the quadrature
generation and correspond as closely as possible to the problem at hand.

9.2.5 Subgroup with Interference Cross Sections

The method introduced in Sec. 8.3 is used to account for mutual self-shielding effects in the
subgroup method. It introduces interference cross sections for the secondary nuclides to be used
in the subgroup fixed source equations. A fitting process is used to determine the interference
cross sections.

First, reference solutions are created. The reference solutions include a primary nuclide and
a secondary nuclide admixed with a background moderator. The same background moderator
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levels as in the creation of the subgroup quadrature are used. The ratio of number densities
of the primary and secondary nuclides are varied, using four values per nuclide pair. The
values are taken to be indicative of the expected ratio of number densities in downstream
applications. Intermediate resonance parameters are generated relative to the primary nuclide
at a dilution corresponding to downstream applications. The resulting intermediate resonance
group-averaged cross sections for the primary nuclide are stored as reference values.

In the fitting process, the original quadrature of the primary nuclide is held constant.
By using six levels in the original quadrature, there was a fair amount of freedom to fit the
interference cross sections levels. The least squares fitting problem from Eq. (8.22) is solved
using MATLAB’s fmincon function. As with classical subgroup, the options of the optimization
routine were altered to obtain a suitable quadrature. Interference cross sections are generated
for each nuclide as primary and for each other nuclide as secondary.

The generation of the interference quadratures proved to be a much more difficult process
than the base quadrature. While nearly all the reference cases with classical subgroup were
able to be represented by the subgroup approximation within a fraction of a percent, many
of the interference quadratures had approximations deviating from the reference values by
multiple percent. The quadratures used in this study are by no means optimal, obtaining
better quadratures has proven to be an arduous process, likely requiring adjusting the base
quadrature and a more specialized optimization solver.

The subgroup fixed source equations are then solved for each nuclide for each group and for
each level. The subgroup source is the same as that of classical subgroup. The cross section in
the collision term, though, has contributions from both the primary nuclide and the secondary
nuclides. If more than one secondary nuclide is used, their contributions to the collision term
are summed.

A particular challenge in the implementation of this method is for generating interference
cross sections for nuclides in groups where the cross section is nearly independent of dilution.
This case arises when a nuclide’s cross section has no or only very small resonances in an
energy group. In this case, for the infinite media that make up the reference problems, the
cross sections are independent of the interference cross sections. In the implementation in
this study, the optimizer tended to choose very large interference cross sections for these
cases. While still providing good agreement with the reference problems, these lead to large
errors in downstream applications that involve spatial heterogeneity and include the effects of
other nuclides that are not dilution independent. This was addressed in this study by forcing
interference cross sections of 0 if the dependence on them was sufficiently small. However, a
more elegant solution is an area to be addressed in future work.
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9.2.6 Equivalence in Dilution

Also included in this study are equivalence in dilution methods, described in Ch. 3. All
geometries in this study are cylindrical fuel pins, and so the Carlvik Two-Term Rational
Approximations is used exclusively.

First, for each geometry, the Dancoff factor is determined using the Neutron Current
Method, described in Sec. 3.6.4. The black Dancoff factor is used. In lattice problems, the
Dancoff factor is computed considering any region containing the nuclide of interest as fuel,
regardless of concentration, and all other regions as moderator. The black Dancoff factor cannot
account for varying concentrations of a nuclide across spatial regions. Note that this means
that in lattice problems, the Dancoff factor can be different for different nuclides present in the
same spatial region.

Next, the escape cross section for each resonant region is determined. Because all resonant
regions in this problem are cylindrical, the escape cross section is simply

Σe =
1
2r

, (9.2)

where r is the radius of the resonant region.

With the escape cross section, two infinite media configurations are solved. Each contains
the primary nuclide. The first region includes a background moderator with constant cross
section α∗1Σe/N; the second, with α∗2Σe/N, where α∗1 and α∗2 are functions of the Dancoff factor
and are given in Eq. (3.111) and N is the number density of the primary nuclide. In each
configuration, the background moderator cross section is augmented by λΣi

p/N for each nuclide i

other than the primary nuclide. The intermediate resonance parameters are generated relative
to the primary nuclide at a background level corresponding to the background level of the
system.

The configurations are solved in one of two ways. First, the slowing down equation is solved
directly. Alternatively, the intermediate resonance scatter source is used. These two methods
will be compared side-by-side.

Cross sections—total or partial—from these configuration are σ1 and σ2, respectively.
Assuming differences in the group flux between the two configurations are negligible, the
group-averaged cross section is

σg = β∗σ1 + (1 − β∗)σ2 , (9.3)

where β∗ is also defined in Eq. (3.111).

This process is repeated for each nuclide in each resonant region. Neither iteration for the
background iteration nor flux correction is performed to account for any mutual self-shielding
effects.
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9.2.7 Embedded Self-Shielding Method

The Embedded Self-Shielding Method, presented in Sec. 3.7, is an iterative procedure that re-
lates tabulated cross sections to a fixed source transport solution. The published version of this
method alternates between a heterogeneous and a homogeneous model, but this was shown to
be problematic in Sec. 6.4.2. A better performing alternative exists, in which the homogeneous
model is replaced by a heterogeneous pin-cell calculation. Here, the implementation of ESSM
is intended to represent the best-case performance of the method. It is only used on cases with
U-238 as a single resonant nuclide, and the tabulated cross sections are generated as closely to
the downstream calculation as possible.

First, the heterogeneous tables are generated. These tables are generated using a two-
region ultrafine calculation on a pin-cell configuration. The fuel material is taken to be 238UO2

with N = 0.022 a/b−cm. The radius is 0.4096 cm. This number density and radius are the only
such values used in downstream applications in this study. The moderator density is varied.
For each moderator density, the escape cross section is defined by

Σe =
ΣF

t,gφg − ΣF
s,g

∆ug − φg
. (9.4)

Next, in the geometry of the downstream application, a two-region fixed source equation is
solved for each group. This equation is simply

Ω̂ · ∇ψg + Σt,gψg = Qg , (9.5)

where Qg is the intermediate resonance model scatter source and the cross sections are pulled
from the heterogeneous table with a guessed value of Σe. The scalar flux in the fuel region is
used to compute an updated guess for Σe with Eq. (9.4). This solution for the flux and updating
of Σe is repeated until convergence is obtained.

9.2.8 Resonance Interference Factors

Resonance Interference Factors, originally presented in Sec. 8.2.2, are used to correct the cross
sections generated by classical subgroup and equivalence in dilution approaches. Resonance
interference factors (RIFs) are computed for each resonant nuclide in each resonant material.

To compute a RIF, first the base case is solved. An infinite medium configuration is setup
using the nuclide of interest and a background moderator corresponding to λΣp for each
other nuclide in the material and additional background corresponding to the equivalence
cross section. Here, the equivalence cross section is approximated using the Wigner Rational
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Approximation and the Dancoff factor,

Σeq =
1 −C

2r
, (9.6)

where C is the Dancoff factor and r is the radius of the cylindrical spatial region. The infinite
medium is then solved using the slowing down equation, and the total group-averaged cross
section σg is obtained.

Second, the multi-nuclide case is solved. Here, two approaches are taken. First, all resonant
nuclides are included in an infinite medium configuration, and only the equivalence cross
section is added as a background moderator. Second, several infinite medium configurations
are generated. Each contains the primary nuclide and a single interfering nuclide, along with
a background moderator corresponding to both the equivalence cross section and each other
nuclide. All these configurations are solved using the slowing down equation, and the total
group-averaged cross section of the primary nuclide is obtained σ̃g.

The complete resonance interference factor, given by Eq. (8.3), is determined by

fIR =
σ̃g

σg
, (9.7)

where σ̃g corresponds to the configuration including all resonant nuclides.

The partial resonance interference factors, given by Eq. (8.5) is determined by

f i
IR =

σ̃i
g

σg
, (9.8)

where σ̃i
g corresponds to the configuration including only the primary nuclide and interfering

nuclide i.

These resonance interference factors are applied to the cross sections obtained from classical
subgroup or equivalence in dilution methods multiplicatively. With the partial resonance
interference factors, each interfering nuclide’s RIF can be applied multiplicatively in succession,
or only a subset of the partial RIFs can be applied.

9.3 UO2 Fuel Pin

The first benchmark problem is that of a bare UO2 fuel pin in an infinite array. This is modeled
as a simple pin-cell geometry with reflective boundary conditions. The fuel enrichment, pin
radius, and the pin-to-pin pitch are varied. The moderator nuclide concentrations are based on
a potential cross section of 1.23 cm−1, and number densities for H-1 and O-16 are derived from
this. The concentration of UO2 molecules is taken to be 0.22 a/b−cm regardless of enrichment.
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Table 9.3: Errors induced in group-wise constants by using the intermediate resonance scatter
source.
Radius [cm] Rxn Rate Error [%] Flux Error [%] Cross Section Error [%]

0.3 9.6033 -0.2197 0.4928 0.9043 19.4872 -1.1140
0.4096 8.4370 -0.0097 0.4802 1.7015 17.5711 -1.6826

0.6 6.4498 3.1975 0.4331 6.6598 14.8932 -3.2461

Enrichments considered included 0%, 1.5%, 3.0%, 4.5%, and 20% by weight. Pin radii
were 0.3 cm, 0.4096 cm, and 0.6 cm. Pitch dimensions were 1.0 cm, 1.26 cm, and 1.5 cm. The non-
physical case of a 0.6 cm radius with a 1.0 cm pitch was excluded. A subset of the obtained
group-averaged cross sections are given here and discussed.

9.3.1 U-238 Alone

First, consider the case of 0% enrichment. In this case, there are no mutual self-shielding
effects, as only a single resonant nuclide is present. This provides a baseline for the performance
of the methods, similar to the analysis in Ch. 6. The notable difference between this analysis
and the previous is the use of the real elastic scattering kernel rather than making a narrow
resonance approximation.

Group-averaged cross sections for U-238, averaged across the pin, are generated for equiva-
lence in dilution, subgroup, and ultrafine methods for each of the 8 combinations of pin radius
and pitch. The results, given as the reference value and percent deviations from the reference,
are given in Tables 9.4 to 9.11.

There are several remarkable results in this suite of test cases. First, note that the error
for the two-region ultrafine case is non-negligible for the low energy groups. The error in group
24, which contains the 36.6 eV U-238 resonance, exceeds 1% for several test cases. This error is
driven by the large scattering resonances in these groups. The resonances cause the scatter
source to exhibit significant self-shielding effects. The approximation that the source is flat
throughout the pin, which all methods other than the reference case assume, is a significant
source of error.

Next, note that significant errors are seen in the methods making use of the intermediate
resonance model’s scatter source—ultrafine with simplified scattering, Carlvik with IR, and
the subgroup method—especially with larger radii. The cause of this error is the failure of the
IR flux to account for the reduction in flux due to absorption. The larger radius pins are at a
lower equivalent dilution, and so a higher fraction of neutrons are absorbed in the resonance.
To see this effect, see Figs. 9.1 to 9.3. For the larger diameter pins, the discrepancy in the
fluxes below the resonance in energy increases. The effects this has on the reaction rate, the
group flux, and the group cross section are shown in Tab. 9.3.
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Figure 9.1: Flux in pin cell of radius 0.3 cm with reference scatter source compared to interme-
diate resonance.
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Figure 9.2: Flux in pin cell of radius 0.4096 cm with reference scatter source compared to
intermediate resonance.
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Figure 9.3: Flux in pin cell of radius 0.6 cm with reference scatter source compared to interme-
diate resonance.

For the 0.3 cm radius, the reaction rate is slightly underpredicted, driven by the slight
flux error on the lower half of the resonance. The flux is overpredicted, resulting in an
underprediction of the cross section. For the 0.4 cm radius, similar behavior is seen, but
flux reduction due to absorption causes a cancellation of error for the reaction rate. For the
0.6 cm radius, the reaction rate is significantly overpredicted due to the flux reduction due to
absorption. However, the group flux is overpredicted by an even larger factor, and the group
cross section is significantly underpredicted.

This issue can be corrected in one of three ways. First, using data generated by the
slowing down equation rather than the intermediate resonance approximation allows this to
be taken into account. This is seen by the overall better performance of methods using the
slowing down equation than the methods using the IR approximation, including both ultrafine
with simplified scattering and equivalence in dilution methods. Second, corrective factors
can be applied to address the issue. Similar to resonance interference factors, a corrective
factor can be defined as the ratio of a cross section generated with the slowing down equation
to that of the intermediate resonance model. These corrective factors can be generated in
an equivalent infinite medium and parameterized on the background cross section. Finally,
narrower groups can be employed. This increases the complexity of downstream calculations
by adding additional groups, but it also prevents the flux from straying too far from 1/E in any
single group. This approach is employed by the HELIOS 47-group structure [53], which uses
many energy groups for the the low-lying U-238 resonances, and very wide groups at higher
energies in the resonance range.
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Table 9.4: U-238 cross sections with radius 0.3 cm and pitch 1 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-IR SUBG

15 9118.00 14.860 -0.04 -0.04 -0.09 -0.19 -0.21 -0.04
16 5530.00 15.358 0.00 0.00 -0.09 -0.14 -0.25 -0.06
17 3519.10 16.877 0.01 -0.00 -0.22 -0.24 -0.34 -0.20
18 2239.45 15.957 0.00 0.00 -0.26 -0.25 -0.35 -0.24
19 1425.10 16.109 -0.01 -0.01 -0.27 -0.24 -0.34 -0.35
20 906.899 14.252 0.01 0.03 -0.06 -0.10 -0.18 -0.08
21 367.263 16.949 0.11 -0.21 0.31 0.08 0.22 0.75
22 148.729 17.256 0.21 -0.25 0.86 0.38 0.64 1.45
23 75.5014 15.335 0.20 -0.13 0.87 0.50 0.69 1.33
24 48.0520 22.355 0.82 -0.42 1.31 1.77 1.80 2.77
25 27.7000 18.631 0.49 -0.45 -1.23 1.17 -0.55 -0.88
26 15.9680 9.117 -0.00 -0.01 -0.02 -0.02 -0.02 -0.00
27 9.87700 18.559 0.10 -0.39 0.43 1.14 0.53 0.23

Table 9.5: U-238 cross sections with radius 0.3 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-IR SUBG

15 9118.00 15.010 -0.02 -0.02 -0.06 -0.21 -0.24 -0.01
16 5530.00 15.539 0.00 0.00 -0.12 -0.19 -0.28 -0.04
17 3519.10 17.246 0.01 -0.01 -0.20 -0.30 -0.40 -0.15
18 2239.45 16.409 0.01 -0.00 -0.26 -0.32 -0.44 -0.20
19 1425.10 16.543 -0.00 -0.01 -0.29 -0.30 -0.38 -0.38
20 906.899 14.530 0.01 0.02 -0.09 -0.15 -0.21 -0.01
21 367.263 17.394 0.15 -0.22 0.06 0.10 0.31 1.40
22 148.729 17.736 0.28 -0.24 0.47 0.45 0.81 2.40
23 75.5014 15.695 0.27 -0.10 0.59 0.62 0.84 2.12
24 48.0520 23.183 1.04 -0.24 1.33 2.24 2.38 4.23
25 27.7000 19.413 0.63 -0.29 -0.74 1.51 0.03 -0.22
26 15.9680 9.118 -0.00 -0.01 -0.01 -0.02 -0.02 0.00
27 9.87700 19.346 0.14 -0.25 0.35 1.28 0.37 0.18
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Table 9.6: U-238 cross sections with radius 0.3 cm and pitch 1.5 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-IR SUBG

15 9118.00 15.068 -0.01 -0.01 -0.05 -0.18 -0.20 -0.01
16 5530.00 15.611 0.00 0.00 -0.08 -0.15 -0.24 -0.03
17 3519.10 17.395 0.02 -0.01 -0.20 -0.23 -0.36 -0.11
18 2239.45 16.595 0.01 0.00 -0.22 -0.20 -0.31 -0.18
19 1425.10 16.721 0.00 -0.01 -0.26 -0.18 -0.26 -0.39
20 906.899 14.644 0.01 0.02 -0.02 -0.06 -0.12 0.03
21 367.263 17.577 0.17 -0.21 0.95 0.27 0.50 1.67
22 148.729 17.934 0.31 -0.21 1.86 0.68 1.46 2.80
23 75.5014 15.843 0.30 -0.07 1.77 0.83 1.06 2.47
24 48.0520 23.520 1.13 -0.11 2.82 2.70 2.86 4.84
25 27.7000 19.733 0.69 -0.18 -0.49 1.95 0.59 0.07
26 15.9680 9.118 -0.00 -0.01 -0.01 -0.01 -0.01 0.01
27 9.87700 19.667 0.16 -0.16 0.30 1.63 0.60 0.20

Table 9.7: U-238 cross sections with radius 0.4096 cm and pitch 1 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-IR SUBG

15 9118.00 14.366 -0.09 -0.10 -0.14 -0.14 -0.16 -0.09
16 5530.00 14.790 -0.01 -0.02 -0.12 -0.06 -0.14 -0.10
17 3519.10 15.769 -0.00 -0.01 -0.23 -0.11 -0.24 -0.26
18 2239.45 14.645 -0.01 -0.01 -0.33 -0.15 -0.28 -0.35
19 1425.10 14.865 -0.01 -0.02 -0.28 -0.16 -0.27 -0.32
20 906.899 13.467 0.00 0.03 -0.15 -0.02 -0.12 -0.22
21 367.263 15.699 0.04 -0.23 -1.20 -0.01 0.11 -1.02
22 148.729 15.907 0.10 -0.29 -1.31 0.15 0.33 -1.09
23 75.5014 14.335 0.10 -0.10 -0.86 0.21 0.29 -0.73
24 48.0520 19.926 0.49 -0.70 -1.76 0.63 0.44 -1.04
25 27.7000 16.410 0.28 -0.72 -2.64 0.25 -2.29 -2.54
26 15.9680 9.114 -0.00 -0.04 -0.05 -0.05 -0.05 -0.04
27 9.87700 16.334 0.06 -0.55 1.29 0.83 0.42 0.89
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Table 9.8: U-238 cross sections with radius 0.4096 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-IR SUBG

15 9118.00 14.670 -0.04 -0.04 -0.09 -0.18 -0.20 -0.05
16 5530.00 15.132 -0.00 -0.00 -0.11 -0.14 -0.20 -0.09
17 3519.10 16.419 0.01 -0.01 -0.25 -0.22 -0.34 -0.28
18 2239.45 15.398 -0.01 -0.01 -0.31 -0.27 -0.38 -0.31
19 1425.10 15.573 -0.02 -0.03 -0.30 -0.27 -0.37 -0.34
20 906.899 13.908 0.00 0.02 -0.08 -0.09 -0.16 -0.15
21 367.263 16.387 0.09 -0.25 0.10 0.00 0.12 0.00
22 148.729 16.636 0.19 -0.28 0.63 0.29 0.56 0.41
23 75.5014 14.863 0.19 -0.11 0.64 0.40 0.59 0.51
24 48.0520 21.180 0.81 -0.41 1.05 1.62 1.50 1.58
25 27.7000 17.569 0.47 -0.47 -1.67 0.99 -1.14 -1.24
26 15.9680 9.116 -0.00 -0.02 -0.02 -0.03 -0.03 -0.01
27 9.87700 17.505 0.10 -0.35 0.66 1.15 0.86 0.73

Table 9.9: U-238 cross sections with radius 0.4096 cm and pitch 1.5 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-IR SUBG

15 9118.00 14.789 -0.02 -0.02 -0.07 -0.16 -0.18 -0.03
16 5530.00 15.270 0.00 -0.00 -0.10 -0.11 -0.17 -0.08
17 3519.10 16.687 0.01 -0.01 -0.24 -0.16 -0.27 -0.26
18 2239.45 15.712 -0.00 -0.01 -0.31 -0.16 -0.27 -0.27
19 1425.10 15.869 -0.01 -0.03 -0.32 -0.16 -0.26 -0.37
20 906.899 14.095 0.00 0.02 -0.09 -0.00 -0.07 -0.10
21 367.263 16.678 0.12 -0.25 -0.06 0.17 0.76 0.46
22 148.729 16.946 0.24 -0.26 0.37 0.54 0.84 1.06
23 75.5014 15.089 0.23 -0.09 0.51 0.64 0.85 1.07
24 48.0520 21.707 0.96 -0.23 0.99 2.30 2.24 2.68
25 27.7000 18.061 0.55 -0.32 -1.25 1.59 -0.35 -0.70
26 15.9680 9.117 -0.00 -0.02 -0.02 -0.02 -0.02 -0.00
27 9.87700 18.001 0.12 -0.23 0.89 1.58 1.01 0.78
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Table 9.10: U-238 cross sections with radius 0.6 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-IR SUBG

15 9118.00 13.946 -0.11 -0.12 -0.14 -0.10 -0.11 -0.08
16 5530.00 14.344 -0.03 -0.06 -0.21 -0.05 -0.14 -0.10
17 3519.10 14.948 -0.02 -0.03 -0.19 -0.07 -0.19 -0.18
18 2239.45 13.716 -0.02 -0.02 -0.25 -0.14 -0.27 -0.36
19 1425.10 14.001 -0.02 -0.03 -0.15 -0.14 -0.25 -0.35
20 906.899 12.945 -0.01 0.01 -0.02 -0.02 -0.09 -0.29
21 367.263 14.875 0.00 -0.23 0.57 -0.09 -0.29 -2.23
22 148.729 15.046 0.05 -0.27 1.24 -0.10 -0.09 -2.99
23 75.5014 13.716 0.06 0.07 -0.31 -0.06 -0.10 -2.14
24 48.0520 18.413 0.30 -0.70 -3.43 -0.76 -2.83 -4.20
25 27.7000 15.039 0.16 -0.77 -4.18 -0.92 -4.01 -4.22
26 15.9680 9.112 -0.00 -0.13 -0.13 -0.13 -0.13 -0.13
27 9.87700 14.933 0.03 -0.53 -0.07 0.35 0.33 1.69

Table 9.11: U-238 cross sections with radius 0.6 cm and pitch 1.5 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-IR SUBG

15 9118.00 14.296 -0.05 -0.05 -0.10 -0.07 -0.08 -0.06
16 5530.00 14.715 -0.01 -0.02 -0.12 -0.02 -0.10 -0.11
17 3519.10 15.625 -0.00 -0.02 -0.25 -0.04 -0.17 -0.29
18 2239.45 14.476 -0.02 -0.03 -0.36 -0.09 -0.23 -0.40
19 1425.10 14.705 -0.03 -0.05 -0.33 -0.11 -0.22 -0.34
20 906.899 13.363 -0.01 0.01 -0.19 0.04 -0.05 -0.24
21 367.263 15.529 0.04 -0.27 -1.51 0.06 0.19 -1.26
22 148.729 15.711 0.12 -0.29 -1.72 0.29 0.45 -1.38
23 75.5014 14.183 0.13 -0.05 -1.06 0.34 0.89 -0.90
24 48.0520 19.494 0.62 -0.45 -1.95 1.12 0.54 -1.08
25 27.7000 16.046 0.34 -0.55 -2.65 0.63 -2.04 -2.40
26 15.9680 9.113 -0.00 -0.05 -0.06 -0.06 -0.05 -0.05
27 9.87700 15.974 0.08 -0.35 1.78 1.27 1.12 1.34
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9.3.2 Enriched UO2

Next, consider the case of an enriched UO2 fuel pin. This is the simplest realistic case in
which multiple resonant nuclides are present and mutual self-shielding effects are important.
Group-averaged cross sections for both U-238 and U-235 are generated for each configuration.
A multitude of methods are compared to reference values. For the sake of brevity and clarity,
only results with a pitch of 1.26 cm are shown. Results are shown in Tables 9.12 to 9.35.
Included are enrichments of 1.5%, 3.0%, 4.5%, and 20% with pin radii of 0.3 cm, 0.4096 cm, and
0.6 cm.

Although the results are presented here as a seemingly endless stream of data points, one
can see clear trends in the errors. First, the errors in both U-238 and U-235 for all methods are
relatively insensitive to enrichment for the three lowest values of enrichment. For these cases,
the errors in U-238 cross sections from the various methods are very similar to those of the
unenriched case shown previously. With U-238 nuclei outnumbering U-235 nuclei 20:1 or more,
the impact of the additional nuclide on U-238’s cross sections is quite small. However, for the
20% enriched case, significant errors are seen in some groups for U-238, demonstrating that
the U-235 cross section has a more significant impact on the flux spectrum when it is present
in larger quantities.

Next, errors in the cross sections for both nuclides are exacerbated for the largest pin radius.
Because the escape cross section is much smaller for the larger pin, the nuclides see a much
lower equivalent dilution in this case. Thus, the depressions in the flux in the vicinities of
resonances are deeper, and mutual self-shielding effects are magnified.

Mutual self-shielding errors are most easily seen in the lower energy groups of U-235.
Methods that do not model the effect exhibit errors over 5% in the lowest energy group
(27), which contains the U-238 6.67 eV resonance; errors in the range of 10% in group 25,
which contains the U-238 20.9 eV resonance; and errors of 2-3% in group 24, which contains
the U-238 36.6 eV resonance. The errors are positive in groups 25 and 27, suggesting that
resonance overlap is driving the errors. The errors in group 24 are negative, suggesting that
resonance interference without overlap is the primary cause of the errors. These observations
are corroborated looking at the cross sections in these groups, Fig. 9.4. The two lowest energy
U-238 resonances overlap U-235 resonances significantly. The 36.6 eV resonance sits primarily
between U-235 resonances without significant overlap.

Now, consider the ultrafine methods in this study—approximations including the two
region approximation, simplified scattering with slowing down, and simplified scatter with the
intermediate resonance model. The two region approximation leads to measurable errors in
the U-238 cross section in groups with the 20.9 eV and 36.6 eV resonances, as was seen in the
unenriched case. No such errors are seen in the cross sections of U-235.

Ultrafine with simplified scattering based on the slowing down equation performs very
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Figure 9.4: Cross sections of U-238 and U-235 for WIMS69 groups 24-27. Black lines show the
breakpoints between the groups.

191



well in nearly all cases. Its largest errors are seen in both U-235 and U-238 in the low energy
groups with the 0.6 cm pin for all enrichments. Even in these cases, errors remain below 1% in
all configurations other than the 20% enrichment case where the peak error is 1.5%. These
errors are driven by the fact that a 1/E source is assumed in the moderator, failing to account
for the reduction in flux due to absorption. This effect is much smaller than what was seen
with the intermediate resonance model and discussed for the unenriched case, as the true flux
in the moderator changes much more slowly than that of the pin. This method is by far the
most dependable of the methods that do not use a true ultrafine scattering source.

Ultrafine with simplified scattering based on the intermediate resonance model performs
similarly to the unenriched cases for these cases. Significant errors are seen in the lower
energy groups of U-238 due to the failure to account for flux reduction due to absorption for
larger pin radii. For smaller radii, when the resonance escape probability for the low-lying
resonances is greater, the method performs better. Similar trends are seen with U-235 cross
sections as with U-238 cross sections. However, a particularly interesting data point is group
26 for the 20% enrichment case with a 0.6 cm radius, shown in Tab. 9.35. The error for U-235
in this group is over 3%, by far the highest seen for U-235 in any group. This is because at this
low dilution level, the resonances of U-235 make a significant impact on the flux shape. This is
a group without a U-238 resonance, and so using an intermediate resonance parameter based
on U-238 fails to model the scatter source.

Next, consider the effect of resonance interference factors. The same resonance interference
factors were applied to equivalence in dilution with the intermediate resonance model, equiva-
lence in dilution with the slowing down source, and the subgroup method. For the U-238 cross
sections, the resonance interference factors were largely unnecessary, as they had very little
impact on the already very small errors. Mutual self-shielding errors were most easily seen
for the large radius cases; in these cases, the resonance interference factors did reduce errors
significantly. For U-235 cross sections, significant errors were seen in the low energy groups for
all configurations. Resonance interference factors drove the error below 1% in nearly all cases.

Finally, consider subgroup with interference cross sections. In most cases, this method
performs about as well as the methods using resonance interference factors. The largest
errors are seen for U-238 with the 0.3 cm radius cases and with the 0.6 cm cases. For the 0.3 cm

cases, the errors parallel the errors associated with the subgroup method. As this method
uses the same base quadrature as the subgroup method, any issues with the quadrature from
the classical subgroup method will not be corrected by using the interference cross sections.
The errors in the 0.3 cm case likely arise from the intermediate resonance parameter used in
quadrature generation not corresponding to that of the downstream application. In the 0.6 cm

cases, the error again parallels that of subgroup without interference factors. For these low
dilution cases, where mutual self-shielding effects can be seen in the U-238 cross section, the
method does not do an adequate job of picking up the errors. This, however, can be attributed to
the true flux’s deviation from the 1/E spectrum assumed by the method and perhaps problems
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with the quadrature. With the U-235 cross sections, subgroup with interference cross sections
models the mutual self-shielding effects very well, reducing all the errors seen significantly. In
nearly all cases, it is comparable to methods using resonance interference factors.
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Table 9.12: U-238 cross sections in 1.5% UO2 pin with radius 0.3 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 15.022 -0.02 -0.02 -0.06 -0.20 -0.20 -0.22 -0.22 -0.01 -0.01 -0.01
16 5530.00 15.554 0.00 0.00 -0.08 -0.17 -0.17 -0.27 -0.27 -0.04 -0.04 -0.04
17 3519.10 17.279 0.01 -0.01 -0.20 -0.27 -0.27 -0.37 -0.37 -0.14 -0.14 -0.15
18 2239.45 16.453 0.01 -0.00 -0.23 -0.28 -0.27 -0.40 -0.39 -0.20 -0.19 -0.21
19 1425.10 16.586 -0.00 -0.01 -0.26 -0.26 -0.25 -0.34 -0.33 -0.39 -0.37 -0.38
20 906.899 14.558 0.01 0.02 -0.03 -0.13 -0.11 -0.19 -0.18 -0.01 0.00 -0.00
21 367.263 17.442 0.15 -0.23 0.83 0.14 0.16 0.35 0.37 1.43 1.46 1.46
22 148.729 17.790 0.28 -0.24 1.66 0.50 0.54 0.85 0.89 2.45 2.49 2.50
23 75.5014 15.744 0.27 -0.10 1.57 0.61 0.77 0.85 1.01 2.12 2.29 2.21
24 48.0520 23.324 1.05 -0.26 2.46 2.10 2.63 2.27 2.80 4.08 4.62 4.15
25 27.7000 19.506 0.63 -0.30 -0.69 1.56 1.91 0.12 0.46 -0.25 0.09 -0.20
26 15.9680 9.118 -0.00 -0.01 -0.01 -0.01 -0.03 -0.01 -0.03 0.01 -0.01 0.01
27 9.87700 19.418 0.14 -0.26 0.27 1.40 1.33 0.47 0.40 0.19 0.12 0.15

Table 9.13: U-235 cross sections in 1.5% UO2 pin with radius 0.3 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 13.332 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.07 0.07 -0.01
16 5530.00 13.345 0.00 -0.00 -0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01
17 3519.10 13.575 0.00 0.00 0.01 -0.01 0.00 -0.01 0.00 0.01 0.01 0.01
18 2239.45 15.033 0.00 0.00 -0.01 0.11 -0.01 0.11 -0.01 0.11 -0.01 0.06
19 1425.10 16.189 0.00 0.00 0.02 -0.02 -0.03 -0.02 -0.03 -0.01 -0.02 -0.08
20 906.899 16.830 -0.00 0.01 0.02 -0.09 0.01 -0.09 0.01 -0.09 0.01 -0.09
21 367.263 21.224 -0.03 -0.01 0.42 0.65 -0.23 0.65 -0.23 0.66 -0.22 0.61
22 148.729 24.499 -0.03 -0.01 0.24 -0.36 -0.09 -0.36 -0.09 -0.37 -0.10 -0.45
23 75.5014 29.798 -0.05 -0.03 0.31 -0.60 -0.16 -0.59 -0.16 -0.63 -0.19 -0.27
24 48.0520 39.471 -0.09 0.06 0.29 -2.47 -0.39 -2.46 -0.38 -2.47 -0.38 -1.42
25 27.7000 41.349 0.01 0.01 0.43 9.55 -0.61 9.59 -0.58 9.63 -0.54 -1.26
26 15.9680 52.263 -0.00 -0.09 -0.19 -0.29 -0.24 -0.22 -0.17 -0.10 -0.06 -0.10
27 9.87700 40.638 -0.00 -0.10 0.69 4.24 -0.76 4.23 -0.77 4.27 -0.74 -2.20

Table 9.14: U-238 cross sections in 1.5% UO2 pin with radius 0.4096 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 14.684 -0.04 -0.04 -0.09 -0.16 -0.16 -0.18 -0.18 -0.05 -0.05 -0.05
16 5530.00 15.149 -0.00 -0.00 -0.11 -0.11 -0.11 -0.18 -0.18 -0.09 -0.09 -0.09
17 3519.10 16.453 0.01 -0.01 -0.24 -0.17 -0.17 -0.29 -0.29 -0.28 -0.27 -0.28
18 2239.45 15.439 -0.01 -0.01 -0.31 -0.20 -0.19 -0.32 -0.31 -0.31 -0.29 -0.32
19 1425.10 15.612 -0.02 -0.03 -0.31 -0.21 -0.20 -0.31 -0.30 -0.36 -0.34 -0.34
20 906.899 13.934 0.00 0.02 -0.11 -0.05 -0.04 -0.13 -0.11 -0.16 -0.14 -0.15
21 367.263 16.428 0.09 -0.26 -0.29 0.05 0.08 0.18 0.21 0.03 0.06 0.08
22 148.729 16.683 0.19 -0.29 -0.02 0.34 0.41 0.60 0.67 0.45 0.52 0.52
23 75.5014 14.907 0.19 -0.11 0.16 0.38 0.64 0.60 0.86 0.48 0.74 0.60
24 48.0520 21.321 0.82 -0.44 0.31 1.42 2.27 1.31 2.16 1.33 2.19 1.43
25 27.7000 17.658 0.47 -0.49 -1.63 0.99 1.61 -1.11 -0.50 -1.35 -0.74 -1.28
26 15.9680 9.115 -0.00 -0.02 -0.01 -0.02 -0.05 -0.02 -0.05 0.00 -0.03 0.00
27 9.87700 17.560 0.10 -0.36 0.91 1.31 1.25 1.02 0.96 0.75 0.69 0.77
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Table 9.15: U-235 cross sections in 1.5% UO2 pin with radius 0.4096 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 13.332 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.06 0.06 -0.00
16 5530.00 13.345 0.00 -0.00 -0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01
17 3519.10 13.575 0.00 0.00 0.01 -0.01 0.00 -0.01 0.00 0.00 0.01 0.02
18 2239.45 15.027 0.00 0.01 -0.01 0.14 -0.01 0.14 -0.01 0.14 -0.01 0.07
19 1425.10 16.182 0.00 0.00 0.04 0.01 -0.03 0.01 -0.03 0.02 -0.03 -0.08
20 906.899 16.827 -0.00 0.02 0.02 -0.09 0.01 -0.09 0.01 -0.09 0.01 -0.09
21 367.263 21.182 -0.03 -0.01 0.53 0.77 -0.23 0.77 -0.22 0.79 -0.20 0.70
22 148.729 24.474 -0.03 -0.02 0.21 -0.40 -0.07 -0.40 -0.07 -0.41 -0.08 -0.54
23 75.5014 29.802 -0.05 -0.04 0.34 -0.76 -0.18 -0.75 -0.17 -0.79 -0.21 -0.25
24 48.0520 39.346 -0.08 0.13 0.43 -2.53 -0.47 -2.51 -0.45 -2.53 -0.46 -0.96
25 27.7000 40.799 0.00 0.05 0.44 10.21 -0.65 10.30 -0.57 10.33 -0.54 -0.58
26 15.9680 51.631 -0.00 -0.18 -0.42 -0.45 -0.43 -0.30 -0.28 -0.17 -0.15 -0.21
27 9.87700 39.642 -0.00 -0.22 0.72 6.03 -0.40 6.05 -0.39 6.09 -0.35 -1.63

Table 9.16: U-238 cross sections in 1.5% UO2 pin with radius 0.6 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 13.963 -0.10 -0.12 -0.14 -0.04 -0.04 -0.05 -0.05 -0.09 -0.09 -0.09
16 5530.00 14.362 -0.02 -0.06 -0.13 0.02 0.02 -0.08 -0.09 -0.10 -0.10 -0.09
17 3519.10 14.981 -0.02 -0.03 -0.21 0.04 0.05 -0.09 -0.08 -0.19 -0.18 -0.18
18 2239.45 13.755 -0.02 -0.02 -0.33 -0.01 0.04 -0.16 -0.11 -0.39 -0.34 -0.36
19 1425.10 14.037 -0.02 -0.03 -0.26 -0.03 -0.00 -0.14 -0.12 -0.37 -0.35 -0.34
20 906.899 12.967 -0.01 0.01 -0.22 0.05 0.07 -0.02 -0.00 -0.30 -0.28 -0.27
21 367.263 14.911 0.00 -0.24 -2.28 -0.02 0.04 -0.19 -0.13 -2.23 -2.18 -2.14
22 148.729 15.087 0.05 -0.29 -3.02 -0.05 0.24 -0.03 0.26 -2.99 -2.71 -2.87
23 75.5014 13.762 0.06 0.08 -2.10 -0.15 0.57 -0.10 0.62 -2.28 -1.58 -2.10
24 48.0520 18.582 0.31 -0.76 -4.51 -1.18 1.27 -3.15 -0.74 -4.75 -2.38 -4.60
25 27.7000 15.141 0.17 -0.83 -4.16 -1.08 0.80 -4.13 -2.32 -4.56 -2.76 -4.45
26 15.9680 9.108 -0.00 -0.14 -0.07 -0.07 -0.17 -0.07 -0.17 -0.08 -0.18 -0.06
27 9.87700 14.975 0.04 -0.58 1.95 0.54 0.85 0.53 0.84 1.64 1.95 1.75

Table 9.17: U-235 cross sections in 1.5% UO2 pin with radius 0.6 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 13.331 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.05 0.04
16 5530.00 13.345 0.00 -0.01 -0.01 0.00 -0.01 0.00 -0.01 0.01 0.00 0.01
17 3519.10 13.575 0.00 0.00 0.03 -0.01 0.00 -0.01 0.00 0.00 0.01 0.03
18 2239.45 15.016 0.00 0.01 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.06
19 1425.10 16.156 0.00 -0.00 0.11 0.15 -0.04 0.15 -0.04 0.16 -0.03 -0.05
20 906.899 16.816 -0.00 0.04 0.03 -0.08 0.04 -0.08 0.04 -0.08 0.04 -0.07
21 367.263 21.045 -0.02 -0.01 0.90 1.15 -0.17 1.16 -0.16 1.21 -0.12 1.01
22 148.729 24.396 -0.02 -0.02 -0.02 -0.52 -0.03 -0.52 -0.03 -0.55 -0.06 -0.85
23 75.5014 29.784 -0.03 -0.18 0.39 -1.23 -0.38 -1.18 -0.32 -1.24 -0.39 -0.07
24 48.0520 38.559 -0.03 0.20 0.86 -1.80 -0.47 -1.73 -0.40 -1.81 -0.48 1.61
25 27.7000 39.275 0.00 -0.06 0.62 11.58 -1.03 12.00 -0.66 11.91 -0.74 1.09
26 15.9680 49.567 -0.00 -0.68 -2.14 -1.14 -1.21 -0.49 -0.56 -0.50 -0.57 -1.03
27 9.87700 37.793 -0.00 -0.59 -0.40 8.10 0.38 8.26 0.53 8.28 0.55 -1.57
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Table 9.18: U-238 cross sections in 3.0% UO2 pin with radius 0.3 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 15.034 -0.02 -0.02 -0.06 -0.21 -0.21 -0.23 -0.23 -0.01 -0.01 -0.01
16 5530.00 15.570 0.00 0.00 -0.12 -0.19 -0.19 -0.28 -0.28 -0.04 -0.04 -0.04
17 3519.10 17.313 0.01 -0.01 -0.20 -0.31 -0.30 -0.41 -0.40 -0.14 -0.13 -0.15
18 2239.45 16.497 0.01 -0.00 -0.25 -0.33 -0.31 -0.45 -0.43 -0.20 -0.18 -0.22
19 1425.10 16.630 -0.00 -0.01 -0.28 -0.31 -0.29 -0.40 -0.38 -0.39 -0.37 -0.38
20 906.899 14.586 0.01 0.02 -0.08 -0.17 -0.15 -0.23 -0.21 -0.01 0.01 0.00
21 367.263 17.491 0.15 -0.23 0.08 0.07 0.12 0.29 0.33 1.47 1.52 1.52
22 148.729 17.846 0.28 -0.25 0.50 0.41 0.49 0.77 0.85 2.50 2.59 2.59
23 75.5014 15.793 0.27 -0.10 0.61 0.50 0.76 0.73 1.00 2.12 2.39 2.28
24 48.0520 23.467 1.05 -0.29 1.35 1.80 2.64 1.97 2.81 3.94 4.79 4.05
25 27.7000 19.599 0.64 -0.30 -0.69 1.42 1.89 0.01 0.46 -0.27 0.19 -0.16
26 15.9680 9.117 -0.00 -0.01 -0.00 -0.01 -0.04 -0.01 -0.04 0.01 -0.02 0.02
27 9.87700 19.493 0.14 -0.27 0.26 1.34 1.28 0.38 0.32 0.19 0.13 0.11

Table 9.19: U-235 cross sections in 3.0% UO2 pin with radius 0.3 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 13.332 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.06 0.06 -0.01
16 5530.00 13.345 0.00 -0.00 -0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01
17 3519.10 13.574 0.00 0.00 0.01 -0.01 0.00 -0.01 0.00 0.00 0.01 0.01
18 2239.45 15.032 0.00 0.00 -0.01 0.10 -0.01 0.10 -0.01 0.10 -0.01 0.05
19 1425.10 16.187 0.00 0.00 0.02 -0.02 -0.03 -0.02 -0.03 -0.02 -0.02 -0.08
20 906.899 16.824 -0.00 0.01 0.02 -0.09 0.01 -0.09 0.01 -0.09 0.01 -0.09
21 367.263 21.194 -0.03 -0.01 0.41 0.63 -0.23 0.63 -0.23 0.67 -0.20 0.61
22 148.729 24.433 -0.03 -0.02 0.22 -0.37 -0.10 -0.37 -0.10 -0.37 -0.11 -0.46
23 75.5014 29.715 -0.05 -0.03 0.33 -0.60 -0.18 -0.60 -0.18 -0.64 -0.22 -0.30
24 48.0520 39.195 -0.09 0.06 0.36 -2.49 -0.41 -2.49 -0.41 -2.49 -0.40 -1.48
25 27.7000 40.901 0.01 -0.01 0.38 9.32 -0.59 9.32 -0.59 9.39 -0.53 -0.98
26 15.9680 51.027 -0.00 -0.14 -0.31 -0.31 -0.34 -0.31 -0.34 -0.09 -0.12 -0.14
27 9.87700 40.228 -0.00 -0.12 0.73 3.90 -0.60 3.82 -0.67 3.91 -0.59 -2.10

Table 9.20: U-238 cross sections in 3.0% UO2 pin with radius 0.4096 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 14.699 -0.04 -0.04 -0.09 -0.18 -0.18 -0.21 -0.20 -0.05 -0.04 -0.05
16 5530.00 15.166 -0.00 -0.00 -0.11 -0.14 -0.14 -0.21 -0.20 -0.09 -0.09 -0.09
17 3519.10 16.487 0.01 -0.01 -0.24 -0.23 -0.22 -0.35 -0.34 -0.28 -0.27 -0.28
18 2239.45 15.481 -0.01 -0.01 -0.30 -0.28 -0.25 -0.40 -0.37 -0.31 -0.28 -0.33
19 1425.10 15.653 -0.02 -0.03 -0.30 -0.29 -0.26 -0.39 -0.36 -0.37 -0.34 -0.34
20 906.899 13.960 0.00 0.02 -0.08 -0.11 -0.08 -0.19 -0.16 -0.16 -0.13 -0.14
21 367.263 16.471 0.09 -0.26 0.14 -0.04 0.02 0.09 0.16 0.07 0.13 0.14
22 148.729 16.731 0.19 -0.30 0.68 0.22 0.35 0.49 0.61 0.49 0.61 0.60
23 75.5014 14.953 0.19 -0.11 0.66 0.22 0.61 0.44 0.83 0.44 0.83 0.65
24 48.0520 21.463 0.82 -0.48 0.92 0.99 2.25 0.89 2.14 1.10 2.36 1.26
25 27.7000 17.746 0.47 -0.50 -1.64 0.74 1.55 -1.33 -0.55 -1.44 -0.65 -1.30
26 15.9680 9.114 -0.00 -0.03 0.00 -0.01 -0.07 -0.01 -0.07 0.01 -0.05 0.02
27 9.87700 17.617 0.10 -0.38 0.60 1.22 1.17 0.93 0.88 0.77 0.72 0.73
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Table 9.21: U-235 cross sections in 3.0% UO2 pin with radius 0.4096 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 13.332 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.05 0.05 -0.01
16 5530.00 13.345 0.00 -0.00 -0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01
17 3519.10 13.575 0.00 0.00 0.01 -0.01 0.00 -0.01 0.00 0.00 0.01 0.01
18 2239.45 15.026 0.00 0.01 -0.01 0.13 -0.01 0.13 -0.01 0.13 -0.01 0.06
19 1425.10 16.179 0.00 0.00 0.04 0.01 -0.04 0.01 -0.04 0.02 -0.03 -0.08
20 906.899 16.819 -0.00 0.02 0.02 -0.10 0.01 -0.10 0.01 -0.09 0.02 -0.08
21 367.263 21.138 -0.03 -0.01 0.52 0.74 -0.23 0.74 -0.23 0.80 -0.18 0.71
22 148.729 24.376 -0.03 -0.02 0.18 -0.41 -0.09 -0.41 -0.09 -0.41 -0.09 -0.54
23 75.5014 29.676 -0.05 -0.04 0.29 -0.76 -0.20 -0.76 -0.20 -0.80 -0.24 -0.29
24 48.0520 38.944 -0.08 0.12 0.26 -2.57 -0.49 -2.56 -0.48 -2.57 -0.49 -1.06
25 27.7000 40.148 0.01 0.02 0.33 9.93 -0.60 9.94 -0.59 10.01 -0.52 -0.19
26 15.9680 49.860 0.00 -0.26 -0.70 -0.38 -0.48 -0.37 -0.47 -0.13 -0.23 -0.29
27 9.87700 39.086 0.00 -0.25 0.53 5.46 -0.19 5.34 -0.30 5.46 -0.18 -1.54

Table 9.22: U-238 cross sections in 3.0% UO2 pin with radius 0.6 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 13.981 -0.10 -0.12 -0.14 -0.12 -0.11 -0.12 -0.12 -0.10 -0.09 -0.09
16 5530.00 14.380 -0.02 -0.06 -0.16 -0.06 -0.06 -0.15 -0.15 -0.11 -0.10 -0.09
17 3519.10 15.015 -0.02 -0.02 -0.18 -0.09 -0.06 -0.22 -0.19 -0.20 -0.18 -0.18
18 2239.45 13.794 -0.02 -0.02 -0.24 -0.18 -0.10 -0.33 -0.25 -0.41 -0.33 -0.36
19 1425.10 14.073 -0.02 -0.04 -0.14 -0.18 -0.13 -0.30 -0.24 -0.39 -0.34 -0.33
20 906.899 12.989 -0.01 0.01 -0.01 -0.06 -0.01 -0.13 -0.08 -0.32 -0.27 -0.27
21 367.263 14.947 0.00 -0.25 0.64 -0.19 -0.07 -0.36 -0.25 -2.24 -2.12 -2.09
22 148.729 15.127 0.05 -0.31 1.32 -0.24 0.12 -0.22 0.14 -2.99 -2.64 -2.80
23 75.5014 13.808 0.06 0.09 -0.20 -0.43 0.50 -0.36 0.57 -2.42 -1.50 -2.12
24 48.0520 18.742 0.31 -0.83 -3.31 -1.96 1.11 -3.89 -0.88 -5.24 -2.27 -4.96
25 27.7000 15.234 0.17 -0.89 -4.18 -1.61 0.56 -4.65 -2.54 -4.85 -2.74 -4.62
26 15.9680 9.104 -0.00 -0.16 -0.02 -0.03 -0.21 -0.03 -0.21 -0.04 -0.21 -0.01
27 9.87700 15.016 0.04 -0.61 -0.15 0.32 0.64 0.31 0.63 1.60 1.92 1.66

Table 9.23: U-235 cross sections in 3.0% UO2 pin with radius 0.6 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 13.331 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.03 0.03
16 5530.00 13.345 0.00 -0.01 -0.01 0.00 -0.01 0.00 -0.01 0.01 -0.00 0.01
17 3519.10 13.575 0.00 0.00 0.03 -0.01 0.00 -0.01 0.00 -0.00 0.01 0.03
18 2239.45 15.013 0.00 0.01 0.00 0.20 0.00 0.20 0.00 0.19 -0.00 0.06
19 1425.10 16.149 0.00 -0.00 0.11 0.14 -0.04 0.14 -0.04 0.15 -0.03 -0.06
20 906.899 16.798 -0.00 0.04 0.01 -0.08 0.04 -0.08 0.04 -0.07 0.05 -0.06
21 367.263 20.954 -0.02 -0.01 0.79 1.11 -0.17 1.11 -0.17 1.21 -0.07 1.02
22 148.729 24.198 -0.02 -0.02 -0.26 -0.52 -0.05 -0.51 -0.04 -0.54 -0.07 -0.85
23 75.5014 29.511 -0.03 -0.19 -0.07 -1.15 -0.36 -1.15 -0.36 -1.19 -0.40 -0.14
24 48.0520 37.786 -0.03 0.18 0.10 -1.87 -0.43 -1.85 -0.41 -1.96 -0.52 1.27
25 27.7000 38.057 0.00 -0.13 0.19 11.21 -0.74 11.24 -0.72 11.25 -0.71 1.59
26 15.9680 46.332 0.00 -0.79 -3.63 -0.44 -0.66 -0.45 -0.67 -0.36 -0.58 -1.23
27 9.87700 36.786 -0.00 -0.60 -1.69 6.96 0.80 6.69 0.55 6.79 0.64 -1.65
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Table 9.24: U-238 cross sections in 4.5% UO2 pin with radius 0.3 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 15.047 -0.02 -0.02 -0.06 -0.20 -0.19 -0.22 -0.22 -0.01 -0.01 -0.01
16 5530.00 15.586 0.00 0.00 -0.08 -0.17 -0.17 -0.27 -0.26 -0.04 -0.03 -0.03
17 3519.10 17.348 0.01 -0.01 -0.20 -0.28 -0.27 -0.38 -0.36 -0.14 -0.12 -0.15
18 2239.45 16.542 0.01 -0.00 -0.22 -0.29 -0.26 -0.41 -0.38 -0.20 -0.17 -0.23
19 1425.10 16.674 -0.00 -0.01 -0.25 -0.28 -0.24 -0.36 -0.33 -0.40 -0.36 -0.37
20 906.899 14.615 0.01 0.02 -0.02 -0.15 -0.11 -0.21 -0.17 -0.01 0.02 0.01
21 367.263 17.541 0.15 -0.24 0.94 0.11 0.18 0.32 0.39 1.51 1.59 1.57
22 148.729 17.902 0.28 -0.26 1.84 0.45 0.57 0.80 0.92 2.56 2.69 2.69
23 75.5014 15.844 0.28 -0.10 1.72 0.49 0.85 0.72 1.08 2.12 2.49 2.35
24 48.0520 23.611 1.05 -0.31 2.63 1.67 2.80 1.85 2.98 3.80 4.96 3.97
25 27.7000 19.692 0.64 -0.31 -0.63 1.48 2.05 0.11 0.67 -0.28 0.28 -0.12
26 15.9680 9.117 -0.00 -0.01 0.00 -0.00 -0.05 -0.00 -0.05 0.02 -0.03 0.02
27 9.87700 19.571 0.14 -0.28 0.19 1.46 1.41 0.47 0.42 0.19 0.14 0.07

Table 9.25: U-235 cross sections in 4.5% UO2 pin with radius 0.3 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 13.332 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.06 0.06 -0.01
16 5530.00 13.345 0.00 -0.00 -0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01
17 3519.10 13.574 0.00 0.00 0.01 -0.01 0.00 -0.01 0.00 0.00 0.01 0.01
18 2239.45 15.031 0.00 0.00 -0.01 0.10 -0.01 0.10 -0.01 0.10 -0.01 0.05
19 1425.10 16.185 0.00 0.00 0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.02 -0.08
20 906.899 16.819 -0.00 0.01 0.02 -0.09 0.01 -0.09 0.01 -0.09 0.01 -0.08
21 367.263 21.165 -0.03 -0.01 0.40 0.61 -0.24 0.61 -0.23 0.67 -0.18 0.62
22 148.729 24.368 -0.03 -0.02 0.21 -0.38 -0.11 -0.38 -0.11 -0.38 -0.11 -0.46
23 75.5014 29.633 -0.05 -0.03 0.29 -0.62 -0.21 -0.61 -0.20 -0.64 -0.24 -0.31
24 48.0520 38.929 -0.09 0.06 0.22 -2.54 -0.45 -2.51 -0.42 -2.50 -0.42 -1.53
25 27.7000 40.482 0.01 -0.02 0.33 8.98 -0.68 9.08 -0.58 9.17 -0.50 -0.72
26 15.9680 49.900 0.00 -0.18 -0.42 -0.52 -0.60 -0.36 -0.44 -0.08 -0.16 -0.18
27 9.87700 39.836 0.00 -0.14 0.67 3.50 -0.55 3.46 -0.59 3.59 -0.46 -2.00

Table 9.26: U-238 cross sections in 4.5% UO2 pin with radius 0.4096 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 14.713 -0.04 -0.04 -0.08 -0.16 -0.15 -0.18 -0.18 -0.05 -0.04 -0.05
16 5530.00 15.183 -0.00 -0.00 -0.10 -0.11 -0.11 -0.18 -0.17 -0.09 -0.08 -0.08
17 3519.10 16.522 0.01 -0.01 -0.23 -0.19 -0.17 -0.30 -0.28 -0.28 -0.26 -0.28
18 2239.45 15.523 -0.01 -0.01 -0.30 -0.22 -0.18 -0.34 -0.29 -0.32 -0.27 -0.34
19 1425.10 15.694 -0.02 -0.03 -0.30 -0.23 -0.19 -0.33 -0.29 -0.38 -0.33 -0.34
20 906.899 13.986 0.00 0.02 -0.10 -0.07 -0.03 -0.15 -0.11 -0.17 -0.12 -0.14
21 367.263 16.514 0.09 -0.27 -0.18 0.01 0.10 0.14 0.23 0.10 0.19 0.20
22 148.729 16.780 0.20 -0.31 0.14 0.27 0.44 0.52 0.70 0.53 0.70 0.69
23 75.5014 14.999 0.19 -0.11 0.26 0.20 0.72 0.41 0.93 0.41 0.93 0.70
24 48.0520 21.605 0.82 -0.52 0.43 0.81 2.45 0.72 2.36 0.88 2.52 1.11
25 27.7000 17.834 0.48 -0.52 -1.59 0.77 1.73 -1.27 -0.33 -1.51 -0.57 -1.30
26 15.9680 9.114 -0.00 -0.03 0.01 0.00 -0.08 0.00 -0.08 0.02 -0.06 0.03
27 9.87700 17.676 0.10 -0.39 0.80 1.38 1.33 1.09 1.04 0.79 0.74 0.69
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Table 9.27: U-235 cross sections in 4.5% UO2 pin with radius 0.4096 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 13.332 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.05 0.05 -0.01
16 5530.00 13.345 0.00 -0.00 -0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01
17 3519.10 13.575 0.00 0.00 0.01 -0.01 0.00 -0.01 0.00 0.00 0.01 0.01
18 2239.45 15.025 0.00 0.01 -0.01 0.13 -0.01 0.13 -0.01 0.13 -0.01 0.06
19 1425.10 16.176 0.00 0.00 0.04 0.01 -0.04 0.01 -0.04 0.01 -0.03 -0.09
20 906.899 16.811 -0.00 0.02 0.02 -0.10 0.01 -0.10 0.01 -0.09 0.02 -0.08
21 367.263 21.094 -0.03 -0.01 0.50 0.71 -0.24 0.72 -0.23 0.80 -0.15 0.72
22 148.729 24.283 -0.03 -0.02 0.14 -0.42 -0.11 -0.41 -0.10 -0.41 -0.10 -0.55
23 75.5014 29.554 -0.05 -0.05 0.29 -0.79 -0.25 -0.76 -0.22 -0.79 -0.25 -0.30
24 48.0520 38.564 -0.08 0.11 0.26 -2.64 -0.54 -2.59 -0.49 -2.60 -0.50 -1.14
25 27.7000 39.555 0.01 -0.01 0.25 9.42 -0.76 9.63 -0.57 9.71 -0.49 0.14
26 15.9680 48.312 0.00 -0.32 -0.88 -0.70 -0.86 -0.40 -0.56 -0.12 -0.28 -0.35
27 9.87700 38.564 0.00 -0.28 0.74 4.78 -0.19 4.76 -0.21 4.93 -0.05 -1.46

Table 9.28: U-238 cross sections in 4.5% UO2 pin with radius 0.6 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 13.999 -0.10 -0.12 -0.14 -0.06 -0.04 -0.07 -0.05 -0.10 -0.09 -0.09
16 5530.00 14.398 -0.02 -0.05 -0.12 0.02 0.02 -0.09 -0.08 -0.11 -0.10 -0.09
17 3519.10 15.049 -0.02 -0.02 -0.21 0.02 0.06 -0.11 -0.08 -0.22 -0.18 -0.19
18 2239.45 13.833 -0.02 -0.02 -0.32 -0.05 0.05 -0.20 -0.10 -0.43 -0.32 -0.36
19 1425.10 14.110 -0.02 -0.04 -0.25 -0.07 0.01 -0.19 -0.11 -0.41 -0.33 -0.33
20 906.899 13.012 -0.01 0.01 -0.21 0.01 0.08 -0.06 0.01 -0.33 -0.27 -0.26
21 367.263 14.983 0.00 -0.27 -2.15 -0.11 0.06 -0.30 -0.13 -2.24 -2.07 -2.04
22 148.729 15.167 0.05 -0.33 -2.85 -0.17 0.27 -0.15 0.29 -2.99 -2.57 -2.73
23 75.5014 13.854 0.06 0.10 -2.02 -0.49 0.65 -0.39 0.75 -2.54 -1.42 -2.12
24 48.0520 18.897 0.32 -0.89 -4.40 -2.27 1.37 -4.10 -0.53 -5.68 -2.17 -5.28
25 27.7000 15.322 0.17 -0.95 -4.13 -1.65 0.79 -4.66 -2.29 -5.08 -2.73 -4.74
26 15.9680 9.102 -0.00 -0.17 0.02 0.00 -0.24 -0.00 -0.24 -0.00 -0.24 0.03
27 9.87700 15.057 0.04 -0.64 1.77 0.54 0.86 0.53 0.85 1.56 1.88 1.59

Table 9.29: U-235 cross sections in 4.5% UO2 pin with radius 0.6 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 13.331 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.02 0.03
16 5530.00 13.345 0.00 -0.01 -0.01 0.00 -0.01 0.00 -0.01 0.01 -0.00 0.01
17 3519.10 13.574 0.00 0.00 0.03 -0.01 0.00 -0.01 0.00 -0.00 0.00 0.03
18 2239.45 15.010 0.00 0.01 0.00 0.19 0.00 0.19 0.00 0.19 -0.00 0.06
19 1425.10 16.142 0.00 -0.00 0.11 0.14 -0.04 0.14 -0.04 0.14 -0.04 -0.06
20 906.899 16.782 -0.00 0.04 0.02 -0.08 0.04 -0.08 0.04 -0.06 0.06 -0.05
21 367.263 20.867 -0.02 -0.01 0.80 1.05 -0.19 1.07 -0.17 1.22 -0.03 1.03
22 148.729 24.016 -0.02 -0.03 -0.33 -0.50 -0.05 -0.48 -0.03 -0.54 -0.08 -0.86
23 75.5014 29.256 -0.03 -0.20 0.12 -1.23 -0.50 -1.10 -0.37 -1.13 -0.40 -0.18
24 48.0520 37.100 -0.03 0.15 0.07 -2.08 -0.52 -1.94 -0.37 -2.09 -0.53 0.98
25 27.7000 37.045 0.01 -0.20 -0.15 10.05 -1.21 10.75 -0.58 10.65 -0.67 1.89
26 15.9680 43.858 0.01 -0.85 -3.41 -1.13 -1.39 -0.29 -0.56 -0.31 -0.58 -1.30
27 9.87700 35.900 0.00 -0.60 0.06 5.41 0.49 5.53 0.60 5.65 0.72 -1.73
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Table 9.30: U-238 cross sections in 20% UO2 pin with radius 0.3 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 15.183 -0.02 -0.01 -0.05 -0.20 -0.17 -0.22 -0.20 -0.01 0.01 -0.02
16 5530.00 15.760 0.00 0.00 -0.06 -0.18 -0.16 -0.26 -0.24 -0.03 -0.01 -0.01
17 3519.10 17.736 0.01 -0.01 -0.18 -0.33 -0.27 -0.45 -0.39 -0.11 -0.05 -0.21
18 2239.45 17.059 0.01 -0.01 -0.17 -0.37 -0.24 -0.46 -0.34 -0.21 -0.09 -0.32
19 1425.10 17.190 0.00 -0.01 -0.19 -0.37 -0.22 -0.47 -0.32 -0.44 -0.29 -0.33
20 906.899 14.948 0.01 0.01 0.02 -0.26 -0.10 -0.32 -0.15 -0.04 0.13 0.05
21 367.263 18.136 0.16 -0.29 1.63 -0.07 0.27 0.13 0.48 1.96 2.30 2.21
22 148.729 18.570 0.30 -0.32 2.92 0.22 0.73 0.59 1.11 3.27 3.80 3.86
23 75.5014 16.443 0.30 -0.09 2.51 -0.14 1.21 0.17 1.51 2.23 3.60 3.23
24 48.0520 25.248 1.09 -0.53 3.73 -0.37 3.45 -0.15 3.68 2.66 6.60 3.33
25 27.7000 20.733 0.69 -0.38 -0.23 1.51 2.55 0.54 1.57 0.03 1.05 0.76
26 15.9680 9.116 0.00 -0.02 0.04 0.02 -0.14 0.02 -0.14 0.04 -0.12 0.07
27 9.87700 20.542 0.16 -0.35 -0.23 1.57 1.73 0.32 0.48 0.01 0.18 -0.42

Table 9.31: U-235 cross sections in 20% UO2 pin with radius 0.3 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 13.332 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.03 0.03 -0.02
16 5530.00 13.345 0.00 -0.00 -0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01
17 3519.10 13.574 0.00 0.00 0.01 -0.00 0.00 -0.00 0.00 -0.00 0.01 0.00
18 2239.45 15.022 0.00 0.00 -0.01 0.08 -0.01 0.08 -0.01 0.08 -0.01 0.04
19 1425.10 16.162 0.00 0.00 0.01 -0.05 -0.03 -0.05 -0.03 -0.04 -0.02 -0.10
20 906.899 16.763 -0.00 0.01 0.01 -0.11 -0.01 -0.11 -0.01 -0.06 0.04 -0.06
21 367.263 20.880 -0.03 -0.01 0.34 0.44 -0.27 0.45 -0.27 0.72 -0.00 0.67
22 148.729 23.789 -0.03 -0.03 0.09 -0.45 -0.20 -0.43 -0.18 -0.38 -0.13 -0.46
23 75.5014 28.868 -0.04 -0.04 0.18 -0.70 -0.41 -0.66 -0.37 -0.53 -0.25 -0.31
24 48.0520 36.620 -0.08 0.02 -0.10 -2.71 -0.57 -2.70 -0.56 -2.58 -0.43 -1.83
25 27.7000 37.236 0.02 -0.16 -0.02 6.87 -0.66 7.00 -0.54 7.34 -0.23 0.71
26 15.9680 42.105 0.02 -0.37 -0.92 -0.74 -0.94 -0.69 -0.89 -0.11 -0.32 -0.29
27 9.87700 36.588 0.01 -0.25 0.53 1.42 -0.02 1.18 -0.27 1.62 0.17 -1.34

Table 9.32: U-238 cross sections in 20% UO2 pin with radius 0.4096 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 14.874 -0.03 -0.03 -0.08 -0.18 -0.14 -0.20 -0.16 -0.06 -0.02 -0.05
16 5530.00 15.374 0.00 -0.00 -0.08 -0.13 -0.10 -0.24 -0.21 -0.09 -0.06 -0.06
17 3519.10 16.914 0.01 -0.01 -0.20 -0.24 -0.15 -0.35 -0.26 -0.27 -0.18 -0.30
18 2239.45 16.010 -0.00 -0.02 -0.24 -0.31 -0.12 -0.41 -0.22 -0.35 -0.16 -0.44
19 1425.10 16.169 -0.01 -0.04 -0.23 -0.34 -0.13 -0.43 -0.23 -0.49 -0.28 -0.34
20 906.899 14.294 0.00 0.02 -0.05 -0.20 0.01 -0.28 -0.06 -0.22 -0.01 -0.08
21 367.263 17.025 0.11 -0.34 0.48 -0.21 0.22 -0.10 0.33 0.49 0.92 0.87
22 148.729 17.352 0.22 -0.41 1.10 -0.04 0.59 0.23 0.87 1.07 1.71 1.78
23 75.5014 15.531 0.21 -0.10 0.91 -0.68 1.08 -0.53 1.23 0.18 1.96 1.45
24 48.0520 23.166 0.87 -0.86 1.21 -1.92 3.00 -1.83 3.09 -0.95 4.01 -0.01
25 27.7000 18.754 0.52 -0.66 -1.27 0.34 2.11 -1.37 0.37 -1.68 0.06 -0.69
26 15.9680 9.111 0.00 -0.05 0.08 0.04 -0.19 0.04 -0.19 0.06 -0.17 0.11
27 9.87700 18.426 0.12 -0.49 0.30 1.57 1.66 0.99 1.07 0.69 0.78 0.11
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Table 9.33: U-235 cross sections in 20% UO2 pin with radius 0.4096 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 13.332 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 -0.02
16 5530.00 13.345 0.00 -0.00 -0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01
17 3519.10 13.574 0.00 0.00 0.01 -0.01 0.00 -0.01 0.00 -0.01 0.00 0.00
18 2239.45 15.011 0.00 0.01 -0.01 0.10 -0.01 0.10 -0.01 0.11 -0.01 0.05
19 1425.10 16.143 0.00 0.00 0.03 -0.03 -0.04 -0.03 -0.04 -0.02 -0.03 -0.11
20 906.899 16.730 -0.00 0.02 0.00 -0.11 -0.01 -0.11 -0.01 -0.05 0.06 -0.05
21 367.263 20.692 -0.03 -0.01 0.39 0.48 -0.28 0.49 -0.27 0.84 0.07 0.77
22 148.729 23.488 -0.02 -0.04 -0.09 -0.48 -0.18 -0.44 -0.14 -0.44 -0.14 -0.56
23 75.5014 28.464 -0.04 -0.06 0.09 -0.84 -0.49 -0.75 -0.40 -0.59 -0.24 -0.29
24 48.0520 35.499 -0.07 0.05 -0.38 -2.88 -0.56 -2.95 -0.63 -2.82 -0.49 -1.71
25 27.7000 35.420 0.02 -0.21 -0.34 6.89 -0.67 6.90 -0.67 7.39 -0.21 1.50
26 15.9680 39.038 0.02 -0.52 -1.49 -0.57 -0.83 -0.44 -0.71 -0.14 -0.41 -0.41
27 9.87700 34.553 0.02 -0.41 0.63 1.90 0.36 1.69 0.15 2.01 0.47 -1.06

Table 9.34: U-238 cross sections in 20% UO2 pin with radius 0.6 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 14.199 -0.11 -0.12 -0.14 -0.12 -0.04 -0.14 -0.05 -0.18 -0.10 -0.11
16 5530.00 14.607 -0.02 -0.05 -0.10 -0.03 0.03 -0.13 -0.07 -0.16 -0.11 -0.09
17 3519.10 15.435 -0.01 -0.02 -0.18 -0.09 0.09 -0.23 -0.05 -0.36 -0.18 -0.18
18 2239.45 14.283 -0.01 -0.01 -0.27 -0.27 0.13 -0.42 -0.02 -0.64 -0.24 -0.36
19 1425.10 14.535 -0.02 -0.05 -0.17 -0.29 0.06 -0.41 -0.06 -0.60 -0.25 -0.24
20 906.899 13.275 -0.00 0.01 -0.14 -0.19 0.13 -0.30 0.01 -0.50 -0.19 -0.20
21 367.263 15.402 0.01 -0.38 -1.42 -0.53 0.18 -0.75 -0.04 -2.16 -1.46 -1.35
22 148.729 15.611 0.06 -0.51 -1.86 -0.65 0.34 -0.80 0.18 -2.74 -1.78 -1.70
23 75.5014 14.347 0.06 0.19 -1.70 -2.07 1.02 -2.09 1.00 -3.62 -0.57 -1.76
24 48.0520 20.402 0.36 -1.48 -3.79 -6.35 1.46 -7.47 0.24 -8.96 -1.37 -7.20
25 27.7000 16.123 0.19 -1.42 -3.78 -3.14 0.59 -5.90 -2.28 -6.29 -2.69 -4.66
26 15.9680 9.094 -0.00 -0.29 0.21 0.12 -0.47 0.12 -0.47 0.12 -0.47 0.24
27 9.87700 15.537 0.05 -0.83 1.12 0.64 0.90 0.66 0.93 1.24 1.51 0.95

Table 9.35: U-235 cross sections in 20% UO2 pin with radius 0.6 cm and pitch 1.26 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 13.331 -0.00 0.01 0.01 0.01 0.01 0.01 0.01 -0.01 -0.01 -0.00
16 5530.00 13.345 0.00 -0.01 -0.01 0.00 -0.01 0.00 -0.00 0.01 -0.00 0.01
17 3519.10 13.573 0.00 0.00 0.03 -0.01 -0.00 -0.01 0.00 -0.01 -0.00 0.01
18 2239.45 14.981 0.00 0.00 -0.01 0.16 -0.00 0.16 -0.00 0.15 -0.01 0.05
19 1425.10 16.075 0.00 -0.01 0.09 0.07 -0.05 0.07 -0.05 0.07 -0.04 -0.12
20 906.899 16.625 -0.00 0.04 -0.01 -0.09 0.04 -0.09 0.04 -0.03 0.10 -0.02
21 367.263 20.142 -0.02 -0.00 0.47 0.70 -0.20 0.72 -0.18 1.09 0.19 0.97
22 148.729 22.707 -0.01 -0.06 -1.04 -0.48 -0.01 -0.61 -0.15 -0.64 -0.18 -0.94
23 75.5014 27.270 -0.02 -0.26 -0.44 -1.02 -0.61 -0.82 -0.42 -0.75 -0.35 -0.29
24 48.0520 32.622 -0.03 0.03 -1.98 -2.82 -0.18 -3.05 -0.42 -3.11 -0.48 -0.84
25 27.7000 31.533 0.02 -0.56 -1.49 6.46 -0.83 6.81 -0.50 6.66 -0.64 1.90
26 15.9680 33.213 0.02 -0.90 -3.38 -0.32 -0.56 -0.31 -0.56 -0.41 -0.65 -0.89
27 9.87700 30.420 0.02 -0.48 0.58 1.46 1.31 1.21 1.06 1.12 0.96 -2.06

201



9.4 MOX Fuel Pin

The next benchmark problem is a bare MOX fuel pin in an infinite array, modeled as a
simple pin-cell geometry with reflective boundary conditions. The uranium enrichment is
held constant at 3.0% by weight, and the relative weight fractions of transuranics are held
constant at the values shown in Tab. 9.36. As with the previous benchmark, moderator nuclide
concentrations are based on a potential cross section of 1.23 cm−1, and number densities for H-1
and O-16 are derived from this. The concentration of molecules in the MOX fuel is taken to be
0.22 a/b−cm regardless of composition.

The ratio of transuranics to uranium by weight was varied, using values 5%, 10%, and 20%.
The pitch was held constant at 1.26 cm and the pin radius was varied between 0.3 cm, 0.4096 cm,
and 0.6 cm. For each configuration, group-averaged cross sections for each of the resonance
groups in the WIMS69 structure for each nuclide were created. A multitude of cross section
generation methods were compared to an ultrafine reference case.

This benchmark problem is intended to stress each method further in terms of mutual
self-shielding. Figure 9.5 shows the cross sections for WIMS69 groups 23-27 for the three
highest concentration nuclides in MOX fuel: U-238, Pu-239, and Pu-240. Each nuclide’s cross
section features large resonances that have a significant impact on the flux. Furthermore,
several cases of significant resonance overlap are easily seen. U-238 and Pu-240 have over-
lapping resonances at 20 eV; Pu-239 and Pu-240 overlap at 41 eV; and all three nuclides have
significantly overlapping resonances at 66 eV. Furthermore, several more nuclides are present
in the fuel, albeit at lower concentrations, and each presents its own challenge with mutual
self-shielding.

Results are presented in two formats at the end of this section. First, for each nuclide
and for each of the full suite of cases considered, approximate errors in the total isotopic
reaction rate for the entire resonance region are shown. The reaction rates are obtained by
solving for the group-integrated flux for each group in the reference solution and subsequently
multiplying these reference fluxes by the cross sections obtained in each method. The total

Table 9.36: Relative weight fraction of transuranics in MOX benchmark.
Nuclide Weight Fraction

Np-237 0.05343
Pu-238 0.02636
Pu-239 0.48407
Pu-240 0.21778
Pu-241 0.10506
Pu-242 0.06222
Am-241 0.03368
Am-242 0.01740

202



10 20 30 40 50 60 70

Energy [eV]

10
0

10
1

10
2

10
3

10
4

10
5

T
o

ta
l 
C

ro
s
s
 S

e
c
ti
o

n
 [

b
]

u238

pu239

pu240

Figure 9.5: Cross sections of U-238, Pu-239, and Pu-240 for WIMS69 groups 23-27. Black lines show the breakpoints between the
groups.

203



Table 9.37: Summary table. Errors in integrated reaction rate in resonance range for MOX
fuel pin benchmark with 10% transuranics, radius 0.4096 cm, and pitch 1.26 cm.

Error (%)

Nuclide REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

U-238 100.1 0.17 -0.26 0.06 0.04 0.49 -0.13 0.32 0.07 0.52 0.15
U-235 152.0 -0.02 -0.04 0.27 0.69 -0.12 0.67 -0.13 0.72 -0.08 0.31

Np-237 311.8 0.02 -0.02 0.04 -1.10 -0.04 -1.10 -0.04 -1.25 -0.20 -1.95
Pu-238 209.5 -0.04 0.14 1.09 -2.02 -0.40 -2.02 -0.40 -2.67 -1.08 -1.51
Pu-239 177.1 -0.01 -0.26 -1.22 -1.62 0.27 -1.66 0.22 -1.36 0.54 -1.82
Pu-240 185.2 0.11 -0.35 -0.33 1.09 0.67 1.14 0.72 1.73 1.32 -2.54
Pu-241 186.6 -0.01 0.13 0.13 -1.42 -0.42 -1.39 -0.39 -1.53 -0.54 -1.29
Pu-242 173.4 -0.01 -0.21 1.23 -1.55 -0.26 -1.52 -0.24 -2.45 -1.21 -1.91
Am-241 284.2 0.02 0.27 0.66 -0.22 -0.28 -0.22 -0.28 -0.43 -0.49 -0.59
Am-242 133.0 0.02 -0.33 -0.59 4.25 -0.30 4.24 -0.31 4.23 -0.31 -1.91

reaction rate is the sum of the reaction rates for each group. Note that this is not a perfect
metric for evaluating the quality of each multigroup cross section generation method, as it is
quite possible for unpredicted reaction rates in one group to cancel with overpredicted reaction
rates in another. However, by looking at this metric for a large number of cases, it does provide
a good feeling for the quality of the approximations. These results are shown in Tables 9.38
to 9.47.

Second, the group-averaged cross sections for each nuclide are shown for a single configura-
tion, the 0.4096 cm radius pin with 10% transuranics by weight in the MOX fuel. These results,
coupled with the integrated reaction rate errors, paint a clearer picture of the performance of
each method. The configuration used is intended to be the most typical configuration encoun-
tered in a realistic MOX-fueled light water reactor. These results are shown in Tables 9.48
to 9.57.

A summary table is shown in Tab. 9.37. This table shows the integrated reaction rates
across the entire resonance range for each nuclide for the same single configuration, the
0.4096 cm radius pin with 10% transuranics by weight in the MOX fuel. This table compares all
nuclides side-by-side and serves to simplify the large amount of data presented in subsequent
tables.

Consider first the classical self-shielding methods, equivalence in dilution and the subgroup
method. Even without using resonance interference factors, the integrated reaction rates for
U-238 and U-235 are quite accurate. For U-238, this is because mutual self-shielding plays a
minor role in its cross sections, as it is by far the dominant nuclide in the material. For U-235,
this is a result of cancellation of error. By consulting Tab. 9.49, it is seen that positive errors
in groups 25 and 27 cancel with negative errors in groups 23, 24, and 26. For other nuclides,
mutual self-shielding errors are significant. In all cases, resonance interference factors greatly
reduce any large errors, and the integrated reaction rates are accurate within a fraction of a
percent.
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Comparing equivalence in dilution and subgroup, the methods perform very similarly
for most cases. However, for some cases, the subgroup method does exhibit slightly higher
deviations from reference. Subgroup results are consistently less than ideal for 0.3 cm radius
pin configurations, which can be attributed to the intermediate resonance parameters used
in quadrature generation not being compatible with the downstream application. Dispersed
in the various groups of various nuclides, a few other larger errors are encountered. As these
errors do not show a systematic trend, this is likely due to less than optimal quadratures.

Next, consider ultrafine with simplified scatter using the slowing down source. This method,
as it was with the UO2 fuel pin is very reliable, providing the smallest errors of any of the
methods that do not use a true ultrafine scatter source. For all integrated reaction rates for all
nuclides and all configurations, this method shows less than 0.5% error, and the majority of
cases are considerably less than this.

A more interesting case is ultrafine with simplified scattering using the intermediate
resonance approximation. As expected, errors are slightly higher than that of its sister method
using the slowing down source, but errors remain quite small in most cases. However, large
errors are seen in a few groups of Pu-238, Pu-239, Pu-240, and Pu-242. These errors arise
due to the flux reduction due to absorption in U-238, similar to what was described previously
in Sec. 9.3. The most striking example of this is in the Pu-239’s and Pu-240’s cross sections
in group 24, which contains the U-238 36.6 eV resonance. As seen in Fig. 9.5, both Pu-239
and Pu-240 have two large resonances higher in energy than the U-238 resonance but no
large resonances lower in energy. The ultrafine with simplified scattering method accurately
predicts the reaction rate for these resonances above the U-238 resonance, but by failing to
account for the reduction in the flux below the resonance, the denominator in the cross section
condensation is much too large and causes large errors. Consulting Tables 9.52 and 9.53, the
errors for Pu-239 and Pu-240 in this group are -3.37% and -0.85%, respectively. When the
radius is increased to 0.6 cm, the flux reduction becomes much more significant, and the errors
balloon to -10.62% and -12.89%, respectively.

Finally, consider subgroup with interference cross sections. The errors seen in the integrated
reaction rates for these cases are, quite frankly, unacceptably high. Looking at the group-wise
errors in the cross sections, one can see the method performs well in some groups but quite
poorly in others. Overall, the method is not dependable with the quadratures generated in this
study. Many of the single nuclide quadratures obtained were able to accurately preserve single
nuclide cross sections in downstream applications, but the quadratures did not lend much
insight into the shape of the cross section in the group. That is, the quadrature base points and
weights did not appear to be representative of ranges of cross section values and the support
of the domain, as would be obtained in a direct subgroup method. Without this property, the
interference cross sections were not able to be fitted adequately. The errors seen in these cases
correlate with errors seen on the infinite media references used in the quadrature generation
process.
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Table 9.38: Errors in integrated reaction rate in resonance range for U-238 in MOX fuel pin
benchmark.

Error (%)

Frac TU Radius REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

5 0.3 114.1 0.23 -0.18 0.08 0.30 0.58 0.14 0.42 0.83 1.11 0.87
5 0.4096 101.3 0.16 -0.23 0.05 0.13 0.45 -0.03 0.29 0.08 0.39 0.14
5 0.6 71.8 0.03 -0.26 -0.21 -0.31 0.15 -0.65 -0.19 -1.25 -0.80 -1.07

10 0.3 113.8 0.24 -0.20 0.06 0.20 0.63 0.03 0.46 0.82 1.25 0.87
10 0.4096 100.1 0.17 -0.26 0.06 0.04 0.49 -0.13 0.32 0.07 0.52 0.15
10 0.6 68.6 0.03 -0.28 -0.09 -0.39 0.15 -0.70 -0.17 -1.24 -0.71 -1.00
20 0.3 114.0 0.26 -0.23 0.06 -0.01 0.73 -0.18 0.56 0.81 1.56 0.90
20 0.4096 98.6 0.19 -0.28 0.11 -0.19 0.57 -0.36 0.39 0.03 0.79 0.19
20 0.6 64.4 0.04 -0.30 0.12 -0.60 0.17 -0.87 -0.11 -1.30 -0.53 -0.87

Table 9.39: Errors in integrated reaction rate in resonance range for U-235 in MOX fuel pin
benchmark.

Error (%)

Frac TU Radius REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

5 0.3 169.8 -0.02 -0.03 0.27 0.96 -0.20 0.95 -0.21 1.00 -0.16 0.54
5 0.4096 156.1 -0.02 -0.05 0.22 1.04 -0.16 1.02 -0.18 1.08 -0.12 0.46
5 0.6 109.5 -0.01 -0.13 -0.14 0.81 -0.13 0.79 -0.15 0.80 -0.13 0.04

10 0.3 167.3 -0.02 -0.02 0.30 0.68 -0.14 0.67 -0.15 0.72 -0.11 0.40
10 0.4096 152.0 -0.02 -0.04 0.27 0.69 -0.12 0.67 -0.13 0.72 -0.08 0.31
10 0.6 102.0 -0.01 -0.13 0.02 0.40 -0.14 0.38 -0.16 0.39 -0.15 -0.04
20 0.3 163.2 -0.02 -0.02 0.33 0.21 -0.07 0.20 -0.08 0.24 -0.04 0.18
20 0.4096 145.6 -0.02 -0.04 0.34 0.13 -0.08 0.12 -0.09 0.16 -0.05 0.11
20 0.6 91.7 -0.01 -0.14 0.20 -0.11 -0.19 -0.13 -0.20 -0.12 -0.19 -0.01

Table 9.40: Errors in integrated reaction rate in resonance range for Np-237 in MOX fuel pin
benchmark.

Error (%)

Frac TU Radius REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

5 0.3 354.1 0.02 0.01 0.06 -1.07 0.01 -1.07 0.01 -1.15 -0.07 -1.88
5 0.4096 325.1 0.02 -0.00 0.08 -1.07 -0.01 -1.07 -0.01 -1.18 -0.13 -1.90
5 0.6 222.2 0.01 -0.14 -0.24 -0.99 -0.15 -0.99 -0.15 -1.15 -0.31 -1.85

10 0.3 345.2 0.02 -0.00 0.04 -1.09 -0.02 -1.09 -0.02 -1.23 -0.16 -1.98
10 0.4096 311.8 0.02 -0.02 0.04 -1.10 -0.04 -1.10 -0.04 -1.25 -0.20 -1.95
10 0.6 201.0 0.01 -0.16 -0.44 -1.01 -0.16 -1.01 -0.16 -1.18 -0.33 -1.81
20 0.3 330.3 0.02 -0.02 0.02 -1.13 -0.04 -1.13 -0.04 -1.29 -0.21 -1.98
20 0.4096 290.7 0.02 -0.04 -0.01 -1.15 -0.05 -1.15 -0.05 -1.30 -0.20 -1.92
20 0.6 173.0 0.02 -0.17 -0.64 -1.08 -0.14 -1.08 -0.14 -1.21 -0.27 -1.72
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Table 9.41: Errors in integrated reaction rate in resonance range for Pu-238 in MOX fuel pin
benchmark.

Error (%)

Frac TU Radius REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

5 0.3 231.0 -0.04 0.10 0.75 -1.72 -0.34 -1.72 -0.34 -2.11 -0.75 -1.14
5 0.4096 216.7 -0.05 0.14 1.07 -1.82 -0.40 -1.82 -0.41 -2.32 -0.92 -0.93
5 0.6 161.8 -0.03 0.04 2.03 -1.41 -0.51 -1.42 -0.52 -2.03 -1.14 0.26

10 0.3 226.2 -0.04 0.10 0.79 -1.89 -0.34 -1.89 -0.34 -2.47 -0.95 -1.71
10 0.4096 209.5 -0.04 0.14 1.09 -2.02 -0.40 -2.02 -0.40 -2.67 -1.08 -1.51
10 0.6 149.3 -0.03 0.03 1.82 -1.58 -0.46 -1.59 -0.47 -2.20 -1.10 -0.19
20 0.3 218.0 -0.04 0.10 0.83 -2.14 -0.34 -2.15 -0.35 -2.83 -1.07 -2.21
20 0.4096 197.7 -0.04 0.14 1.10 -2.30 -0.39 -2.31 -0.40 -2.94 -1.08 -1.89
20 0.6 131.6 -0.03 0.00 1.52 -1.76 -0.37 -1.80 -0.40 -2.23 -0.86 -0.33

Table 9.42: Errors in integrated reaction rate in resonance range for Pu-239 in MOX fuel pin
benchmark.

Error (%)

Frac TU Radius REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

5 0.3 209.0 -0.02 -0.17 -0.62 -1.45 0.27 -1.46 0.26 -1.41 0.31 -1.56
5 0.4096 191.6 -0.02 -0.24 -1.03 -1.74 0.26 -1.76 0.24 -1.64 0.36 -1.82
5 0.6 133.0 -0.00 -0.25 -2.68 -2.16 0.34 -2.21 0.30 -2.14 0.37 -2.35

10 0.3 197.8 -0.02 -0.20 -0.76 -1.39 0.21 -1.41 0.19 -1.15 0.45 -1.56
10 0.4096 177.1 -0.01 -0.26 -1.22 -1.62 0.27 -1.66 0.22 -1.36 0.54 -1.82
10 0.6 116.0 0.00 -0.18 -2.85 -1.94 0.46 -2.02 0.38 -2.00 0.40 -2.29
20 0.3 181.0 0.00 -0.21 -0.90 -1.30 0.28 -1.34 0.23 -0.90 0.68 -1.55
20 0.4096 157.3 0.01 -0.23 -1.34 -1.48 0.42 -1.56 0.34 -1.24 0.67 -1.80
20 0.6 96.7 0.01 -0.06 -2.64 -1.78 0.58 -1.88 0.47 -2.08 0.26 -2.09

Table 9.43: Errors in integrated reaction rate in resonance range for Pu-240 in MOX fuel pin
benchmark.

Error (%)

Frac TU Radius REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

5 0.3 237.9 0.08 -0.28 0.37 2.15 -0.04 2.18 -0.02 3.20 0.97 -1.18
5 0.4096 211.2 0.08 -0.36 -0.02 2.37 0.34 2.38 0.35 3.32 1.27 -2.07
5 0.6 142.6 0.04 -0.24 -3.26 0.80 0.94 0.77 0.91 0.95 1.12 -4.71

10 0.3 213.5 0.11 -0.31 0.34 1.22 0.30 1.30 0.38 2.28 1.34 -1.49
10 0.4096 185.2 0.11 -0.35 -0.33 1.09 0.67 1.14 0.72 1.73 1.32 -2.54
10 0.6 119.4 0.05 -0.16 -3.47 -0.88 1.07 -0.90 1.05 -1.16 0.79 -4.67
20 0.3 183.5 0.16 -0.30 0.20 0.51 0.72 0.63 0.85 1.02 1.24 -1.85
20 0.4096 155.8 0.15 -0.30 -0.53 0.11 0.99 0.20 1.08 0.10 0.98 -2.82
20 0.6 95.8 0.06 -0.07 -2.90 -1.87 1.10 -1.91 1.06 -2.61 0.30 -4.06
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Table 9.44: Errors in integrated reaction rate in resonance range for Pu-241 in MOX fuel pin
benchmark.

Error (%)

Frac TU Radius REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

5 0.3 216.5 -0.01 0.08 0.10 -1.37 -0.39 -1.36 -0.38 -1.49 -0.52 -1.23
5 0.4096 196.7 -0.01 0.15 0.18 -1.51 -0.41 -1.49 -0.39 -1.65 -0.55 -1.17
5 0.6 128.9 -0.01 0.26 0.35 -1.52 -0.38 -1.49 -0.35 -1.64 -0.50 -0.61

10 0.3 209.5 -0.01 0.07 0.07 -1.28 -0.43 -1.26 -0.40 -1.42 -0.57 -1.33
10 0.4096 186.6 -0.01 0.13 0.13 -1.42 -0.42 -1.39 -0.39 -1.53 -0.54 -1.29
10 0.6 115.0 -0.01 0.21 0.14 -1.51 -0.35 -1.46 -0.30 -1.52 -0.37 -0.83
20 0.3 198.2 -0.01 0.05 0.04 -1.23 -0.42 -1.18 -0.37 -1.30 -0.49 -1.43
20 0.4096 171.4 -0.01 0.10 0.08 -1.42 -0.37 -1.36 -0.31 -1.41 -0.36 -1.41
20 0.6 97.6 -0.01 0.16 0.01 -1.65 -0.28 -1.59 -0.22 -1.53 -0.16 -1.01

Table 9.45: Errors in integrated reaction rate in resonance range for Pu-242 in MOX fuel pin
benchmark.

Error (%)

Frac TU Radius REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

5 0.3 199.1 -0.03 -0.08 0.87 -1.24 -0.26 -1.25 -0.27 -2.33 -1.38 -1.72
5 0.4096 185.5 -0.03 -0.13 1.07 -1.40 -0.29 -1.39 -0.28 -2.53 -1.46 -1.77
5 0.6 138.7 -0.01 -0.34 0.51 -1.52 -0.29 -1.54 -0.30 -2.47 -1.28 -1.41

10 0.3 189.5 -0.02 -0.16 1.10 -1.43 -0.30 -1.41 -0.27 -2.49 -1.40 -2.11
10 0.4096 173.4 -0.01 -0.21 1.23 -1.55 -0.26 -1.52 -0.24 -2.45 -1.21 -1.91
10 0.6 123.8 -0.00 -0.38 0.23 -1.61 -0.20 -1.63 -0.21 -2.31 -0.93 -1.19
20 0.3 175.6 -0.00 -0.25 1.16 -1.54 -0.22 -1.48 -0.15 -2.23 -0.93 -1.97
20 0.4096 157.2 0.01 -0.29 1.13 -1.58 -0.13 -1.53 -0.07 -2.14 -0.71 -1.61
20 0.6 106.5 0.01 -0.41 -0.05 -1.65 -0.11 -1.67 -0.13 -2.28 -0.79 -0.83

Table 9.46: Errors in integrated reaction rate in resonance range for Am-241 in MOX fuel pin
benchmark.

Error (%)

Frac TU Radius REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

5 0.3 324.8 0.02 0.17 0.51 -0.67 -0.32 -0.67 -0.32 -0.79 -0.44 -0.96
5 0.4096 296.8 0.02 0.27 0.71 -0.53 -0.31 -0.53 -0.31 -0.69 -0.47 -0.54
5 0.6 199.1 0.01 0.36 1.15 0.26 -0.24 0.26 -0.24 0.07 -0.43 0.82

10 0.3 316.1 0.02 0.17 0.47 -0.36 -0.32 -0.36 -0.32 -0.55 -0.51 -0.96
10 0.4096 284.2 0.02 0.27 0.66 -0.22 -0.28 -0.22 -0.28 -0.43 -0.49 -0.59
10 0.6 180.6 0.01 0.33 0.97 0.30 -0.22 0.29 -0.23 0.10 -0.41 0.42
20 0.3 302.3 0.02 0.18 0.42 -0.06 -0.23 -0.07 -0.24 -0.29 -0.46 -1.00
20 0.4096 265.4 0.02 0.28 0.62 -0.05 -0.16 -0.06 -0.17 -0.28 -0.39 -0.80
20 0.6 156.6 0.01 0.30 0.76 -0.01 -0.16 -0.02 -0.17 -0.15 -0.30 -0.24
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Table 9.47: Errors in integrated reaction rate in resonance range for Am-242 in MOX fuel pin
benchmark.

Error (%)

Frac TU Radius REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

5 0.3 149.0 0.00 -0.25 -0.64 3.79 -0.44 3.79 -0.44 3.79 -0.44 -1.61
5 0.4096 136.7 0.01 -0.32 -0.58 4.67 -0.36 4.67 -0.36 4.67 -0.36 -1.91
5 0.6 96.7 0.01 -0.28 -0.41 5.11 -0.08 5.11 -0.08 5.10 -0.09 -1.69

10 0.3 146.8 0.01 -0.25 -0.63 3.48 -0.38 3.48 -0.39 3.48 -0.39 -1.63
10 0.4096 133.0 0.02 -0.33 -0.59 4.25 -0.30 4.24 -0.31 4.23 -0.31 -1.91
10 0.6 90.1 0.02 -0.30 -0.36 4.36 -0.08 4.35 -0.09 4.34 -0.09 -1.63
20 0.3 143.0 0.01 -0.26 -0.61 2.92 -0.28 2.91 -0.29 2.90 -0.30 -1.63
20 0.4096 127.2 0.02 -0.34 -0.62 3.49 -0.22 3.49 -0.23 3.48 -0.23 -1.89
20 0.6 81.0 0.02 -0.32 -0.30 3.27 -0.10 3.26 -0.10 3.25 -0.11 -1.52

Table 9.48: Cross sections for U-238 in a MOX pin with radius 0.4096 cm, pitch 1.26 cm, and
10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 14.797 -0.03 -0.04 -0.08 -0.20 -0.16 -0.23 -0.19 -0.06 -0.02 -0.08
16 5530.00 15.283 0.00 -0.00 -0.10 -0.17 -0.13 -0.24 -0.19 -0.11 -0.06 -0.14
17 3519.10 16.730 0.01 -0.01 -0.24 -0.34 -0.20 -0.45 -0.31 -0.34 -0.20 -0.33
18 2239.45 15.775 -0.00 -0.02 -0.27 -0.40 -0.20 -0.51 -0.31 -0.40 -0.20 -0.50
19 1425.10 15.943 -0.01 -0.03 -0.30 -0.43 -0.22 -0.53 -0.31 -0.52 -0.30 -0.41
20 906.899 14.152 0.00 0.01 -0.06 -0.28 -0.05 -0.35 -0.12 -0.29 -0.06 -0.25
21 367.263 16.806 0.10 -0.32 0.34 -0.42 0.16 -0.30 0.28 0.04 0.62 0.52
22 148.729 17.091 0.22 -0.47 0.53 -0.15 0.39 0.06 0.61 0.61 1.15 0.96
23 75.5014 15.048 0.29 -0.19 -0.86 1.08 0.93 1.27 1.11 1.69 1.53 0.19
24 48.0520 21.865 0.92 -0.80 1.25 1.59 2.25 1.47 2.14 2.23 2.91 2.67
25 27.7000 18.304 0.49 -0.65 -1.30 0.30 1.94 -1.59 0.03 -1.72 -0.11 -2.43
26 15.9680 9.122 -0.00 -0.02 0.07 -0.08 -0.15 -0.08 -0.15 -0.06 -0.13 0.01
27 9.87700 18.231 0.11 -0.43 0.63 0.28 1.37 -0.13 0.95 -0.30 0.78 0.44

Table 9.49: Cross sections for U-235 in a MOX pin with radius 0.4096 cm, pitch 1.26 cm, and
10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 13.332 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.06 0.06 0.06
16 5530.00 13.345 0.00 -0.00 -0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01
17 3519.10 13.574 0.00 0.00 0.01 -0.00 0.00 -0.00 0.00 0.00 0.01 0.00
18 2239.45 15.029 0.00 0.01 -0.01 0.12 -0.01 0.12 -0.01 0.12 -0.01 0.05
19 1425.10 16.180 0.00 0.00 0.04 0.01 -0.04 0.01 -0.04 0.01 -0.03 -0.03
20 906.899 16.819 -0.00 0.02 0.03 -0.08 0.01 -0.08 0.01 -0.08 0.01 -0.07
21 367.263 21.164 -0.03 0.01 0.59 0.67 -0.25 0.67 -0.25 0.72 -0.20 0.70
22 148.729 24.368 -0.03 -0.04 0.08 -0.30 -0.14 -0.29 -0.14 -0.30 -0.14 -0.60
23 75.5014 29.947 -0.06 -0.03 0.60 -1.57 -0.21 -1.57 -0.21 -1.61 -0.25 0.48
24 48.0520 39.083 -0.09 0.21 0.60 -2.71 -0.53 -2.71 -0.53 -2.71 -0.53 -1.17
25 27.7000 41.120 0.00 0.06 0.44 7.73 -0.27 7.74 -0.27 7.81 -0.21 4.51
26 15.9680 51.189 0.01 -0.33 -0.08 -2.31 -0.27 -2.30 -0.26 -2.08 -0.03 -0.95
27 9.87700 39.925 0.00 -0.22 0.45 3.65 0.31 3.54 0.21 3.65 0.31 0.21

209



Table 9.50: Cross sections for Np-237 in a MOX pin with radius 0.4096 cm, pitch 1.26 cm, and
10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 17.325 0.00 0.01 0.00 0.02 0.01 0.02 0.01 0.03 0.02 0.09
16 5530.00 18.714 0.00 -0.00 -0.03 0.01 -0.00 0.01 -0.00 0.02 0.01 0.02
17 3519.10 20.299 0.00 0.00 -0.00 0.01 0.00 0.01 0.00 0.02 0.01 0.01
18 2239.45 22.247 -0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.01 0.01 0.00
19 1425.10 24.744 0.00 0.00 -0.02 0.01 -0.00 0.02 -0.00 0.02 0.01 1.23
20 906.899 29.900 -0.00 0.01 0.09 -0.07 -0.08 -0.07 -0.08 -0.04 -0.06 -1.46
21 367.263 41.657 0.06 0.01 -0.59 -0.22 0.01 -0.22 0.01 -0.13 0.11 -1.22
22 148.729 53.254 0.15 0.15 -0.99 -1.93 0.19 -1.93 0.19 -1.91 0.20 -0.72
23 75.5014 82.730 0.02 -0.07 -0.24 0.96 -0.51 0.96 -0.51 0.73 -0.74 -0.61
24 48.0520 64.919 -0.09 -0.17 0.60 1.32 -0.16 1.32 -0.16 1.14 -0.35 -0.44
25 27.7000 112.638 0.03 -0.44 -1.77 -2.45 1.05 -2.45 1.06 -2.61 0.88 -5.70
26 15.9680 113.171 0.00 -0.14 0.27 -0.55 -1.10 -0.53 -1.08 -0.72 -1.27 -1.62
27 9.87700 95.783 0.02 0.38 2.18 -4.26 0.02 -4.28 -0.01 -4.83 -0.57 -4.01

Table 9.51: Cross sections for Pu-238 in a MOX pin with radius 0.4096 cm, pitch 1.26 cm, and
10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 16.073 0.00 0.01 0.00 0.02 0.01 0.02 0.01 0.03 0.02 0.03
16 5530.00 17.335 0.00 -0.00 -0.03 0.01 -0.00 0.01 -0.00 0.02 0.01 0.13
17 3519.10 18.851 0.00 0.00 -0.00 0.01 0.00 0.01 0.00 0.26 0.25 0.00
18 2239.45 20.662 -0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.01 0.01 0.10
19 1425.10 22.939 0.00 0.00 -0.02 0.01 -0.00 0.01 -0.00 0.02 0.00 0.03
20 906.899 30.495 -0.01 0.01 0.22 -0.49 -0.10 -0.49 -0.10 -0.50 -0.11 0.36
21 367.263 52.249 -0.09 0.05 2.24 -0.46 -0.62 -0.47 -0.63 -0.88 -1.04 -1.90
22 148.729 63.248 -0.13 -0.15 0.71 -2.28 -0.30 -2.28 -0.31 -3.10 -1.14 -3.44
23 75.5014 21.389 -0.05 -0.03 0.27 -2.40 0.40 -2.40 0.40 -2.42 0.37 -2.40
24 48.0520 15.513 -0.00 0.03 0.13 0.54 -0.11 0.54 -0.11 0.54 -0.11 0.03
25 27.7000 102.473 -0.02 0.83 2.67 -7.12 -1.24 -7.12 -1.24 -9.62 -3.91 -2.57
26 15.9680 30.551 -0.00 0.02 0.74 -2.78 -0.62 -2.78 -0.62 -2.76 -0.59 -1.55
27 9.87700 17.818 -0.00 0.20 0.00 -0.75 0.41 -0.76 0.40 -0.75 0.40 -0.54

Table 9.52: Cross sections for Pu-239 in a MOX pin with radius 0.4096 cm, pitch 1.26 cm, and
10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 14.675 0.00 0.01 0.01 0.02 0.02 0.02 0.02 0.04 0.03 0.05
16 5530.00 15.597 -0.00 -0.00 -0.01 0.02 -0.00 0.02 -0.00 0.03 0.00 0.03
17 3519.10 16.320 -0.00 0.00 0.01 -0.15 0.01 -0.15 0.01 -0.16 0.00 -0.11
18 2239.45 16.861 0.00 0.00 -0.12 -0.03 -0.02 -0.03 -0.02 -0.02 -0.01 -0.21
19 1425.10 17.775 0.01 0.01 -0.12 0.46 -0.03 0.46 -0.03 0.48 -0.02 0.22
20 906.899 20.178 0.02 -0.04 -0.50 -1.36 0.10 -1.37 0.09 -1.33 0.13 -1.01
21 367.263 28.596 -0.01 -0.08 -0.25 -1.41 -0.11 -1.43 -0.13 -1.30 -0.00 -0.72
22 148.729 33.335 -0.09 -0.16 0.31 0.67 -0.60 0.65 -0.62 0.97 -0.30 -0.42
23 75.5014 49.424 0.07 0.27 -3.61 1.00 0.49 1.02 0.50 1.66 1.14 -1.52
24 48.0520 30.294 -0.07 -0.56 -3.37 -1.26 1.31 -1.24 1.34 -0.60 2.00 -5.61
25 27.7000 44.270 -0.03 -0.20 -0.56 -6.34 -0.04 -6.32 -0.02 -6.02 0.31 -3.24
26 15.9680 79.864 0.02 -0.36 -1.40 0.31 -0.42 0.18 -0.56 0.75 0.02 -0.73
27 9.87700 28.537 -0.02 -1.66 -3.91 -10.28 3.06 -10.51 2.80 -10.11 3.25 -7.72
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Table 9.53: Cross sections for Pu-240 in a MOX pin with radius 0.4096 cm, pitch 1.26 cm, and
10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 16.350 0.00 0.02 0.02 -0.11 0.05 -0.11 0.05 -0.11 0.05 0.01
16 5530.00 15.052 -0.00 0.01 0.11 -0.59 0.06 -0.59 0.06 -0.58 0.07 -0.29
17 3519.10 17.117 0.01 -0.01 -0.23 -1.00 0.15 -1.00 0.14 -0.99 0.15 -0.42
18 2239.45 18.274 0.04 -0.01 -1.27 -1.78 0.41 -1.79 0.41 -1.75 0.44 -1.16
19 1425.10 22.357 -0.01 0.02 0.72 0.70 -0.24 0.69 -0.25 0.65 -0.28 0.65
20 906.899 21.359 0.01 -0.06 -0.74 -1.49 -0.13 -1.54 -0.18 -1.71 -0.36 -1.48
21 367.263 30.166 0.06 0.02 -0.17 -5.21 0.34 -5.26 0.29 -5.43 0.11 -1.99
22 148.729 45.250 -0.09 -0.51 0.11 0.53 -0.60 0.49 -0.64 0.52 -0.61 -2.62
23 75.5014 75.902 0.09 -0.61 2.17 10.23 2.04 10.46 2.25 13.23 4.81 -2.78
24 48.0520 93.142 -0.02 -1.46 -0.85 -4.47 2.26 -4.28 2.47 -2.61 4.25 -7.04
25 27.7000 31.976 1.66 1.34 -6.41 21.26 -0.12 21.29 -0.10 19.73 -1.38 -0.41
26 15.9680 7.878 -0.00 -0.02 0.04 0.04 -0.11 0.04 -0.11 0.07 -0.08 0.06
27 9.87700 10.815 0.00 0.21 0.64 -0.25 -0.65 -0.26 -0.65 -0.26 -0.65 0.92
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Table 9.54: Cross sections for Pu-241 in a MOX pin with radius 0.4096 cm, pitch 1.26 cm, and
10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 12.580 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02
16 5530.00 13.102 0.00 -0.00 -0.01 0.00 -0.00 0.00 -0.00 0.01 0.01 0.01
17 3519.10 13.584 0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.01 0.01 0.01
18 2239.45 14.364 -0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.01 0.01
19 1425.10 14.826 0.00 -0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00 -0.00 0.00
20 906.899 16.454 -0.00 0.00 0.08 0.05 -0.09 0.05 -0.09 0.05 -0.09 -0.13
21 367.263 20.304 -0.01 -0.00 0.19 -0.87 0.06 -0.87 0.06 -0.89 0.03 -0.81
22 148.729 25.041 -0.03 0.09 0.60 -1.03 -0.35 -1.03 -0.35 -1.03 -0.35 -1.14
23 75.5014 18.268 0.02 -0.03 -0.00 3.60 0.06 3.60 0.06 3.61 0.06 -3.07
24 48.0520 22.871 -0.05 0.07 0.33 -1.94 -0.19 -1.94 -0.19 -1.95 -0.21 -1.60
25 27.7000 55.669 -0.01 0.44 1.15 -1.54 -1.30 -1.54 -1.30 -1.71 -1.46 -0.30
26 15.9680 92.763 -0.00 -0.13 -1.42 1.23 0.78 1.24 0.80 1.25 0.80 0.27
27 9.87700 92.092 -0.01 0.36 0.58 -5.05 -1.40 -4.94 -1.29 -5.44 -1.80 -3.64

Table 9.55: Cross sections for Pu-242 in a MOX pin with radius 0.4096 cm, pitch 1.26 cm, and
10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 17.300 0.00 0.01 0.00 0.02 0.01 0.02 0.01 0.21 0.20 0.21
16 5530.00 18.591 0.00 -0.00 -0.03 0.01 -0.00 0.01 -0.00 0.12 0.11 0.50
17 3519.10 20.152 0.00 0.00 -0.00 0.01 0.00 0.01 0.00 0.01 0.00 -0.00
18 2239.45 22.080 -0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.01 0.01 -0.05
19 1425.10 24.453 0.01 0.01 -0.11 -0.10 0.02 -0.10 0.02 -0.14 -0.02 -0.25
20 906.899 26.355 -0.02 -0.02 0.60 2.64 -0.29 2.63 -0.30 2.33 -0.59 1.80
21 367.263 34.252 0.04 0.03 0.94 -0.49 0.17 -0.58 0.08 -0.96 -0.30 -1.18
22 148.729 23.038 -0.09 -0.19 0.01 -1.59 -0.09 -1.61 -0.11 -2.79 -1.30 -5.86
23 75.5014 142.007 -0.04 -0.68 3.64 -5.72 -0.80 -5.58 -0.66 -8.28 -3.50 -5.25
24 48.0520 10.716 0.01 -0.26 -0.26 -1.94 0.07 -1.94 0.07 -1.93 0.07 -2.66
25 27.7000 14.790 -0.02 -0.38 -0.64 -3.13 0.59 -3.13 0.59 -3.14 0.58 -4.70
26 15.9680 12.679 0.01 -0.07 -0.35 4.68 -0.57 4.68 -0.57 4.71 -0.54 4.02
27 9.87700 13.978 0.00 0.22 0.60 -0.58 -0.65 -0.58 -0.65 -0.58 -0.65 1.28

Table 9.56: Cross sections for Am-241 in a MOX pin with radius 0.4096 cm, pitch 1.26 cm, and
10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 16.245 0.00 0.01 0.00 0.02 0.01 0.02 0.01 0.02 0.02 0.02
16 5530.00 17.429 0.00 -0.00 -0.04 0.01 0.00 0.01 0.00 0.02 0.01 0.06
17 3519.10 18.951 0.00 0.00 -0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01
18 2239.45 20.424 -0.00 0.00 0.03 0.00 -0.00 0.00 -0.00 0.00 0.00 -0.08
19 1425.10 22.575 0.00 0.00 -0.01 0.01 -0.00 0.01 -0.00 0.02 0.01 -0.16
20 906.899 27.392 -0.00 -0.00 0.06 0.03 -0.08 0.04 -0.08 0.07 -0.05 -0.03
21 367.263 36.500 0.00 0.02 0.11 0.06 -0.08 0.06 -0.08 0.08 -0.06 0.11
22 148.729 49.430 0.01 -0.05 -0.18 -0.51 0.12 -0.51 0.12 -0.50 0.14 -0.96
23 75.5014 59.316 0.24 0.14 -1.60 -0.53 0.46 -0.53 0.46 -0.51 0.48 -1.95
24 48.0520 54.117 -0.07 -0.13 0.91 11.70 -0.38 11.70 -0.38 11.55 -0.52 1.15
25 27.7000 73.945 -0.04 0.24 0.20 -6.28 0.32 -6.28 0.32 -6.31 0.29 -3.86
26 15.9680 87.103 0.01 -0.17 -1.12 12.32 -1.68 12.32 -1.68 11.64 -2.28 3.30
27 9.87700 130.648 0.02 1.09 3.26 -6.74 -0.58 -6.75 -0.60 -7.30 -1.18 -1.67
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Table 9.57: Cross sections for Am-242 in a MOX pin with radius 0.4096 cm, pitch 1.26 cm, and
10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+ S-INT

15 9118.00 12.633 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02
16 5530.00 13.094 0.00 -0.00 -0.01 0.00 -0.00 0.00 -0.00 0.01 0.01 0.01
17 3519.10 13.581 0.00 0.00 -0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01
18 2239.45 14.131 -0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.01 0.01
19 1425.10 14.793 0.00 0.00 -0.01 0.01 -0.00 0.01 -0.00 0.13 0.12 0.14
20 906.899 16.099 -0.00 -0.00 0.03 0.02 -0.04 0.02 -0.04 0.02 -0.03 0.02
21 367.263 18.537 0.00 0.01 0.06 0.06 -0.05 0.06 -0.05 0.06 -0.05 -0.58
22 148.729 22.342 -0.00 0.02 0.25 -0.37 -0.03 -0.37 -0.03 -0.36 -0.02 0.67
23 75.5014 28.765 0.13 0.04 -0.60 0.70 -0.05 0.70 -0.05 0.71 -0.05 -0.43
24 48.0520 26.544 0.02 -0.81 2.77 5.36 -0.78 5.36 -0.78 5.36 -0.79 -3.17
25 27.7000 25.954 -0.00 0.03 0.58 4.24 -0.74 4.24 -0.74 4.20 -0.77 3.06
26 15.9680 33.818 -0.00 0.03 -0.47 -1.28 0.91 -1.29 0.90 -1.24 0.95 -1.29
27 9.87700 44.726 0.03 -1.52 -4.43 20.01 -1.39 19.99 -1.41 19.89 -1.49 -9.75
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9.5 Lattice with Water Hole

Next, consider a small lattice consisting of UO2 fuel pins in water. The lattice is 3 cells by 3
cells, with the central cell consisting only of water and the surrounding cells containing fuel
pins. A visual depiction of this geometry is given in Fig. 9.6. Reflective boundary conditions are
imposed. As in previous benchmarks, the water is H2O with its density selected such that the
potential scattering cross section to be 1.23 cm−1. The fuel is 3% enriched UO2 with a number
density of 0.022 a/b−cm. The pitch is 1.26 cm, and the radius is varied, taking the values of 0.3 cm,
0.4096 cm, and 0.6 cm. Due to the symmetry of the geometry, there are only two distinct values
of the pin-averaged cross sections: one for corner pins and another for pins face-adjacent to the
water hole.

Total cross sections are compared for a multitude of methods for both pin locations. Results
are given in Tables 9.58 to 9.69. These results show only small differences in cross sections
between the two pin locations, and the trends in the errors closely match that of the pin in a
uniform lattice.

Figure 9.6: 3x3 lattice of UO2 fuel pins with central water hole.
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Table 9.58: U-238 cross sections in UO2 lattice with water hole, corner pin with radius 0.3 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+

15 9118.00 15.042 -0.01 -0.01 -0.06 -0.20 -0.19 -0.22 -0.22 -0.01 -0.01
16 5530.00 15.582 -0.01 -0.01 -0.12 -0.18 -0.18 -0.28 -0.28 -0.09 -0.09
17 3519.10 17.338 0.00 -0.02 -0.20 -0.30 -0.29 -0.39 -0.38 -0.14 -0.13
18 2239.45 16.526 0.01 -0.00 -0.24 -0.30 -0.28 -0.42 -0.40 -0.20 -0.18
19 1425.10 16.657 0.00 -0.01 -0.27 -0.29 -0.26 -0.37 -0.35 -0.39 -0.37
20 906.899 14.604 0.01 0.02 -0.09 -0.15 -0.13 -0.21 -0.19 -0.09 -0.06
21 367.263 17.521 0.16 -0.23 -0.39 0.10 0.15 0.32 0.37 1.36 1.41
22 148.729 17.879 0.29 -0.24 -0.02 0.44 0.52 0.80 0.89 2.35 2.44
23 75.5014 15.818 0.29 -0.08 0.29 0.52 0.79 0.76 1.02 2.02 2.29
24 48.0520 23.524 1.08 -0.25 0.26 1.87 2.69 2.04 2.87 3.99 4.84
25 27.7000 19.653 0.66 -0.27 -0.84 1.48 1.94 0.08 0.54 -0.20 0.25
26 15.9680 9.118 -0.00 -0.01 -0.00 -0.01 -0.04 -0.01 -0.04 0.01 -0.02
27 9.87700 19.546 0.16 -0.22 0.28 1.40 1.33 0.42 0.36 -0.25 -0.31

Table 9.59: U-235 cross sections in UO2 lattice with water hole, corner pin with radius 0.3 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+

15 9118.00 13.332 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.06 0.06
16 5530.00 13.345 0.00 -0.00 -0.01 0.00 0.00 0.00 0.00 0.01 0.01
17 3519.10 13.574 0.00 0.00 0.01 -0.01 0.00 -0.01 0.00 0.00 0.01
18 2239.45 15.032 0.00 0.00 -0.01 0.10 -0.01 0.10 -0.01 0.10 -0.01
19 1425.10 16.187 0.00 0.00 0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.02
20 906.899 16.824 -0.00 0.01 0.02 -0.09 0.01 -0.09 0.01 -0.09 0.01
21 367.263 21.196 -0.03 -0.01 0.41 0.63 -0.23 0.63 -0.23 0.66 -0.20
22 148.729 24.434 -0.03 -0.02 0.22 -0.37 -0.10 -0.37 -0.10 -0.38 -0.11
23 75.5014 29.716 -0.05 -0.04 0.33 -0.60 -0.18 -0.60 -0.18 -0.67 -0.25
24 48.0520 39.201 -0.09 0.05 0.36 -2.49 -0.40 -2.49 -0.40 -2.49 -0.41
25 27.7000 40.921 0.01 -0.01 0.37 9.30 -0.59 9.31 -0.59 9.25 -0.64
26 15.9680 51.053 -0.00 -0.13 -0.30 -0.29 -0.32 -0.29 -0.32 -0.19 -0.22
27 9.87700 40.248 -0.00 -0.09 0.75 3.89 -0.58 3.81 -0.65 3.82 -0.64

Table 9.60: U-238 cross sections in UO2 lattice with water hole, corner pin with radius 0.4096
cm.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+

15 9118.00 14.715 -0.03 -0.03 -0.08 -0.18 -0.17 -0.21 -0.21 -0.04 -0.04
16 5530.00 15.188 -0.01 -0.02 -0.12 -0.16 -0.15 -0.24 -0.24 -0.17 -0.17
17 3519.10 16.528 -0.01 -0.02 -0.24 -0.26 -0.25 -0.41 -0.40 -0.28 -0.26
18 2239.45 15.526 -0.01 -0.01 -0.29 -0.29 -0.26 -0.45 -0.42 -0.30 -0.27
19 1425.10 15.694 -0.01 -0.02 -0.28 -0.30 -0.27 -0.43 -0.40 -0.36 -0.33
20 906.899 13.986 0.01 0.02 -0.09 -0.12 -0.09 -0.20 -0.17 -0.25 -0.22
21 367.263 16.512 0.10 -0.26 -0.51 -0.07 -0.01 0.04 0.11 0.00 0.07
22 148.729 16.776 0.21 -0.29 -0.31 0.16 0.28 0.42 0.55 0.39 0.51
23 75.5014 14.985 0.21 -0.09 0.28 0.19 0.57 0.42 0.80 0.43 0.81
24 48.0520 21.537 0.86 -0.42 -0.37 0.84 2.07 0.77 2.00 1.28 2.51
25 27.7000 17.816 0.51 -0.45 -1.74 0.48 1.26 -1.49 -0.73 -1.31 -0.54
26 15.9680 9.115 -0.00 -0.03 -0.00 -0.01 -0.07 -0.01 -0.07 0.01 -0.05
27 9.87700 17.684 0.12 -0.30 0.67 0.81 0.75 0.84 0.78 0.39 0.34
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Table 9.61: U-235 cross sections in UO2 lattice with water hole, corner pin with radius 0.4096
cm.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+

15 9118.00 13.332 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.06 0.05
16 5530.00 13.345 0.00 -0.00 -0.01 0.00 0.00 0.00 0.00 0.01 0.01
17 3519.10 13.575 0.00 0.00 0.01 -0.01 0.00 -0.01 0.00 0.00 0.01
18 2239.45 15.026 0.00 0.01 -0.01 0.13 -0.01 0.13 -0.01 0.13 -0.01
19 1425.10 16.179 0.00 0.00 0.04 0.01 -0.04 0.01 -0.04 0.01 -0.03
20 906.899 16.819 -0.00 0.02 0.02 -0.10 0.01 -0.10 0.01 -0.09 0.02
21 367.263 21.142 -0.03 -0.01 0.51 0.73 -0.23 0.73 -0.23 0.77 -0.19
22 148.729 24.380 -0.03 -0.02 0.18 -0.41 -0.09 -0.41 -0.09 -0.41 -0.10
23 75.5014 29.680 -0.05 -0.05 0.29 -0.76 -0.20 -0.76 -0.20 -0.86 -0.30
24 48.0520 38.962 -0.08 0.11 0.29 -2.57 -0.49 -2.57 -0.48 -2.58 -0.50
25 27.7000 40.191 0.01 0.01 0.32 9.90 -0.60 9.91 -0.59 9.71 -0.77
26 15.9680 49.925 0.00 -0.25 -0.66 -0.37 -0.46 -0.36 -0.45 -0.35 -0.44
27 9.87700 39.124 -0.00 -0.19 0.61 5.45 -0.16 5.33 -0.27 5.30 -0.29

Table 9.62: U-238 cross sections in UO2 lattice with water hole, corner pin with radius 0.6 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+

15 9118.00 14.025 -0.08 -0.09 -0.11 -0.19 -0.18 -0.20 -0.19 -0.07 -0.06
16 5530.00 14.430 -0.04 -0.07 -0.18 -0.17 -0.17 -0.26 -0.26 -0.27 -0.27
17 3519.10 15.100 -0.04 -0.05 -0.20 -0.24 -0.21 -0.37 -0.35 -0.23 -0.20
18 2239.45 13.883 -0.04 -0.04 -0.20 -0.32 -0.25 -0.47 -0.39 -0.39 -0.32
19 1425.10 14.154 -0.03 -0.05 -0.13 -0.29 -0.24 -0.41 -0.35 -0.34 -0.28
20 906.899 13.034 -0.01 0.01 0.02 -0.10 -0.06 -0.17 -0.12 -0.40 -0.35
21 367.263 15.014 0.01 -0.28 -0.25 -0.23 -0.12 -0.39 -0.28 -2.13 -2.02
22 148.729 15.185 0.07 -0.31 -0.16 -0.20 0.14 -0.16 0.19 -2.82 -2.48
23 75.5014 13.841 0.08 0.11 -0.68 -0.33 0.56 -0.22 0.67 -2.17 -1.30
24 48.0520 18.784 0.42 -0.66 -4.07 -1.49 1.45 -3.30 -0.41 -4.48 -1.63
25 27.7000 15.283 0.24 -0.69 -3.95 -1.20 0.88 -4.20 -2.18 -4.24 -2.23
26 15.9680 9.107 -0.00 -0.15 -0.03 -0.05 -0.22 -0.05 -0.22 -0.05 -0.21
27 9.87700 15.056 0.08 -0.29 0.37 0.77 1.05 0.75 1.02 1.89 2.17

Table 9.63: U-235 cross sections in UO2 lattice with water hole, corner pin with radius 0.6 cm.
Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+

15 9118.00 13.331 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.04
16 5530.00 13.345 0.00 -0.01 -0.01 0.00 -0.01 0.00 -0.01 0.01 -0.00
17 3519.10 13.575 0.00 0.00 0.03 -0.01 0.00 -0.01 0.00 -0.00 0.00
18 2239.45 15.014 -0.00 0.01 0.00 0.19 -0.00 0.19 -0.00 0.19 -0.01
19 1425.10 16.152 0.00 -0.01 0.10 0.13 -0.05 0.13 -0.05 0.12 -0.06
20 906.899 16.800 -0.00 0.04 0.02 -0.09 0.03 -0.09 0.03 -0.07 0.05
21 367.263 20.975 -0.02 -0.03 0.77 1.04 -0.22 1.04 -0.22 1.10 -0.16
22 148.729 24.213 -0.02 -0.02 -0.19 -0.53 -0.07 -0.53 -0.07 -0.54 -0.08
23 75.5014 29.542 -0.03 -0.20 -0.06 -1.19 -0.41 -1.20 -0.41 -1.45 -0.67
24 48.0520 37.914 -0.04 0.19 0.16 -2.07 -0.57 -2.05 -0.55 -2.09 -0.60
25 27.7000 38.245 0.01 -0.12 0.21 10.95 -0.90 10.98 -0.88 10.09 -1.67
26 15.9680 46.622 0.02 -0.69 -3.11 -0.63 -0.85 -0.63 -0.86 -1.07 -1.30
27 9.87700 36.776 0.01 -0.28 -1.06 7.30 1.04 7.03 0.79 6.72 0.50

216



Table 9.64: U-238 cross sections in UO2 lattice with water hole, face-adjacent pin with radius
0.3 cm.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+

15 9118.00 15.056 -0.01 -0.01 -0.05 -0.20 -0.20 -0.23 -0.22 -0.01 -0.00
16 5530.00 15.599 -0.00 -0.00 -0.12 -0.19 -0.19 -0.28 -0.28 -0.08 -0.08
17 3519.10 17.371 0.00 -0.02 -0.20 -0.30 -0.30 -0.40 -0.39 -0.14 -0.13
18 2239.45 16.568 0.01 -0.01 -0.25 -0.31 -0.29 -0.42 -0.41 -0.20 -0.18
19 1425.10 16.697 -0.00 -0.01 -0.28 -0.29 -0.27 -0.37 -0.35 -0.40 -0.38
20 906.899 14.629 0.01 0.02 -0.09 -0.15 -0.13 -0.21 -0.19 -0.09 -0.06
21 367.263 17.561 0.16 -0.23 -0.37 0.12 0.17 0.34 0.39 1.40 1.45
22 148.729 17.921 0.29 -0.24 0.01 0.47 0.55 0.84 0.92 2.41 2.50
23 75.5014 15.849 0.29 -0.08 0.32 0.56 0.82 0.80 1.06 2.08 2.34
24 48.0520 23.591 1.09 -0.23 0.31 1.96 2.78 2.13 2.95 4.12 4.95
25 27.7000 19.718 0.66 -0.26 -0.81 1.57 2.01 0.19 0.63 -0.15 0.29
26 15.9680 9.118 -0.00 -0.01 -0.00 -0.01 -0.04 -0.01 -0.04 0.01 -0.02
27 9.87700 19.615 0.15 -0.23 0.26 1.44 1.38 0.44 0.38 -0.28 -0.34

Table 9.65: U-235 cross sections in UO2 lattice with water hole, face-adjacent pin with radius
0.3 cm.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+

15 9118.00 13.332 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.06 0.06
16 5530.00 13.345 0.00 -0.00 -0.01 0.00 0.00 0.00 0.00 0.01 0.01
17 3519.10 13.574 0.00 0.00 0.01 -0.00 0.00 -0.00 0.00 0.00 0.01
18 2239.45 15.032 0.00 0.00 -0.01 0.10 -0.01 0.10 -0.01 0.10 -0.01
19 1425.10 16.187 0.00 0.00 0.02 -0.03 -0.03 -0.03 -0.03 -0.02 -0.02
20 906.899 16.825 -0.00 0.01 0.02 -0.09 0.01 -0.09 0.01 -0.09 0.01
21 367.263 21.199 -0.03 -0.02 0.40 0.62 -0.24 0.62 -0.24 0.65 -0.21
22 148.729 24.437 -0.03 -0.02 0.22 -0.37 -0.10 -0.37 -0.10 -0.38 -0.11
23 75.5014 29.719 -0.05 -0.04 0.32 -0.60 -0.18 -0.60 -0.18 -0.67 -0.25
24 48.0520 39.213 -0.09 0.05 0.35 -2.50 -0.41 -2.49 -0.41 -2.50 -0.41
25 27.7000 40.952 0.01 -0.02 0.36 9.27 -0.60 9.27 -0.60 9.23 -0.64
26 15.9680 51.099 -0.00 -0.13 -0.29 -0.30 -0.33 -0.30 -0.32 -0.18 -0.21
27 9.87700 40.295 -0.00 -0.09 0.74 3.81 -0.61 3.74 -0.68 3.76 -0.65
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Table 9.66: U-238 cross sections in UO2 lattice with water hole, face-adjacent pin with radius
0.4096 cm.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+

15 9118.00 14.743 -0.02 -0.02 -0.07 -0.17 -0.17 -0.21 -0.21 -0.04 -0.03
16 5530.00 15.220 -0.01 -0.01 -0.11 -0.15 -0.15 -0.23 -0.23 -0.16 -0.16
17 3519.10 16.591 -0.00 -0.02 -0.24 -0.25 -0.24 -0.41 -0.40 -0.28 -0.27
18 2239.45 15.601 -0.01 -0.02 -0.29 -0.29 -0.26 -0.44 -0.42 -0.31 -0.28
19 1425.10 15.766 -0.02 -0.03 -0.30 -0.30 -0.28 -0.44 -0.41 -0.38 -0.35
20 906.899 14.031 0.00 0.02 -0.09 -0.12 -0.09 -0.19 -0.17 -0.26 -0.23
21 367.263 16.582 0.11 -0.26 -0.46 -0.05 0.01 0.07 0.14 0.08 0.14
22 148.729 16.850 0.22 -0.29 -0.22 0.20 0.32 0.47 0.59 0.51 0.63
23 75.5014 15.038 0.21 -0.10 0.35 0.23 0.60 0.46 0.84 0.54 0.91
24 48.0520 21.657 0.89 -0.39 -0.25 1.00 2.19 0.94 2.14 1.53 2.73
25 27.7000 17.931 0.52 -0.44 -1.68 0.59 1.35 -1.33 -0.59 -1.20 -0.46
26 15.9680 9.115 -0.00 -0.02 -0.00 -0.01 -0.06 -0.01 -0.06 0.01 -0.05
27 9.87700 17.808 0.12 -0.33 0.61 0.83 0.77 0.85 0.79 0.31 0.25

Table 9.67: U-235 cross sections in UO2 lattice with water hole, face-adjacent pin with radius
0.4096 cm.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+

15 9118.00 13.332 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.06 0.06
16 5530.00 13.345 0.00 -0.00 -0.01 0.00 0.00 0.00 0.00 0.01 0.01
17 3519.10 13.575 0.00 0.00 0.01 -0.01 0.00 -0.01 0.00 0.00 0.01
18 2239.45 15.027 0.00 0.01 -0.01 0.13 -0.01 0.13 -0.01 0.13 -0.01
19 1425.10 16.180 0.00 0.00 0.03 0.00 -0.04 0.00 -0.04 0.01 -0.03
20 906.899 16.820 -0.00 0.02 0.02 -0.10 0.01 -0.10 0.01 -0.09 0.02
21 367.263 21.148 -0.04 -0.02 0.49 0.72 -0.24 0.72 -0.24 0.76 -0.20
22 148.729 24.386 -0.03 -0.02 0.18 -0.41 -0.10 -0.41 -0.10 -0.41 -0.10
23 75.5014 29.686 -0.05 -0.05 0.28 -0.75 -0.21 -0.75 -0.21 -0.84 -0.30
24 48.0520 38.998 -0.08 0.10 0.27 -2.59 -0.50 -2.59 -0.50 -2.60 -0.51
25 27.7000 40.260 0.01 0.00 0.32 9.85 -0.61 9.85 -0.60 9.69 -0.75
26 15.9680 50.040 0.00 -0.24 -0.63 -0.38 -0.46 -0.37 -0.45 -0.33 -0.41
27 9.87700 39.226 -0.00 -0.20 0.60 5.31 -0.21 5.20 -0.32 5.19 -0.33
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Table 9.68: U-238 cross sections in UO2 lattice with water hole, face-adjacent pin with radius
0.6 cm.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+

15 9118.00 14.110 -0.06 -0.06 -0.10 0.00 0.01 -0.01 -0.00 -0.05 -0.04
16 5530.00 14.525 -0.03 -0.05 -0.16 -0.00 0.00 -0.09 -0.09 -0.25 -0.25
17 3519.10 15.280 -0.03 -0.04 -0.20 -0.02 0.00 -0.15 -0.13 -0.25 -0.23
18 2239.45 14.092 -0.04 -0.03 -0.23 -0.10 -0.03 -0.24 -0.18 -0.44 -0.38
19 1425.10 14.350 -0.04 -0.05 -0.18 -0.12 -0.07 -0.23 -0.19 -0.40 -0.35
20 906.899 13.154 -0.01 0.01 0.00 -0.02 0.02 -0.12 -0.08 -0.40 -0.36
21 367.263 15.205 0.01 -0.24 -0.05 -0.10 0.00 -0.22 -0.11 -1.85 -1.75
22 148.729 15.389 0.08 -0.27 0.10 -0.06 0.22 0.04 0.32 -2.41 -2.13
23 75.5014 13.989 0.08 0.06 -0.50 -0.22 0.55 -0.22 0.55 -1.89 -1.14
24 48.0520 19.150 0.45 -0.61 -3.84 -1.02 1.50 -2.39 0.10 -3.83 -1.38
25 27.7000 15.632 0.24 -0.75 -3.94 -0.91 0.86 -3.77 -2.05 -4.07 -2.35
26 15.9680 9.107 -0.00 -0.12 -0.02 -0.02 -0.16 -0.02 -0.16 -0.03 -0.17
27 9.87700 15.442 0.04 -0.52 -0.11 0.66 0.83 0.60 0.76 1.33 1.50

Table 9.69: U-235 cross sections in UO2 lattice with water hole, face-adjacent pin with radius
0.6 cm.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+ SUBG SUBG+

15 9118.00 13.331 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.04 0.04
16 5530.00 13.345 0.00 -0.00 -0.01 0.00 -0.00 0.00 -0.00 0.01 0.00
17 3519.10 13.575 0.00 0.00 0.03 -0.01 0.00 -0.01 0.00 -0.00 0.01
18 2239.45 15.016 -0.00 0.01 -0.00 0.19 0.00 0.19 0.00 0.18 -0.00
19 1425.10 16.156 0.00 -0.00 0.09 0.11 -0.03 0.11 -0.03 0.10 -0.04
20 906.899 16.803 -0.00 0.04 0.02 -0.08 0.03 -0.08 0.03 -0.07 0.04
21 367.263 20.998 -0.03 -0.02 0.72 1.03 -0.18 1.03 -0.18 1.05 -0.15
22 148.729 24.238 -0.02 -0.03 -0.14 -0.47 -0.04 -0.47 -0.04 -0.54 -0.10
23 75.5014 29.560 -0.04 -0.16 -0.02 -1.07 -0.31 -1.07 -0.31 -1.36 -0.60
24 48.0520 38.084 -0.05 0.14 0.12 -2.08 -0.41 -2.05 -0.39 -2.23 -0.57
25 27.7000 38.535 -0.00 -0.11 0.17 11.05 -0.58 11.06 -0.57 9.97 -1.54
26 15.9680 47.098 -0.00 -0.68 -2.87 -0.24 -0.46 -0.24 -0.46 -1.04 -1.26
27 9.87700 37.157 -0.01 -0.45 -1.10 7.18 0.75 6.94 0.53 6.36 -0.02
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Perhaps a more interesting quantity of interest is the capture cross section. Consider now
a similar lattice with the enrichment reduced to 0%. Only a radius of 0.4096 cm is included in
this analysis. To allow the reader to more easily see the effect of the water hole, cross sections
corresponding to three configurations are included in the same table: uniform lattice, corner
pin, and face-adjacent pin. For this analysis, the Embedded Self-Shielding Method is included.
For the uniform lattice, this implementation of ESSM reproduces the value of the two region
ultrafine solution exactly. Results are given in Tables 9.70 to 9.72.

The capture cross sections for the lower energy groups, which contain large resonances,
exhibit an increase of over 2% from the uniform lattice to the face-adjacent pin. This is caused
by the effective dilution of the face-adjacent pin being higher; i.e., neutrons emerging from the
water hole are less shielded than those from other directions. For these methods, the errors
remain close to constant for each pin location. Also, the error induced by the self-shielding of
the scatter source—most significantly in group 24—is seen much more clearly with capture
cross sections than with the total cross section.

Table 9.70: Capture cross sections for U-238 in lattice with water hole.
Error [%]

REF 2REG ESSM

Group Emax (eV) Uniform Corner Face Uniform Corner Face Uniform Corner Face

15 9118.00 0.700 0.701 0.703 0.01 0.04 0.04 0.01 0.07 0.09
16 5530.00 0.737 0.739 0.742 -0.00 0.05 0.05 -0.00 0.08 0.11
17 3519.10 0.952 0.955 0.961 0.01 0.06 0.05 0.01 -0.05 0.02
18 2239.45 0.846 0.851 0.858 0.02 0.03 0.02 0.02 -0.12 0.04
19 1425.10 1.216 1.223 1.234 0.02 0.03 0.02 0.02 -0.28 -0.10
20 906.899 1.363 1.373 1.388 0.04 0.05 0.04 0.04 -0.25 -0.01
21 367.263 1.568 1.580 1.598 0.48 0.51 0.51 0.48 -0.10 0.17
22 148.729 2.453 2.471 2.499 0.84 0.88 0.89 0.84 0.34 0.65
23 75.5014 2.124 2.140 2.164 1.17 1.23 1.25 1.17 0.93 1.26
24 48.0520 4.678 4.712 4.763 2.17 2.27 2.31 2.17 1.78 2.12
25 27.7000 6.339 6.392 6.477 1.06 1.13 1.14 1.06 0.52 0.92
26 15.9680 0.473 0.473 0.473 -0.00 -0.00 -0.00 -0.00 -0.06 -0.05
27 9.87700 8.102 8.170 8.289 0.22 0.26 0.24 0.22 -0.19 0.12
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Table 9.71: Capture cross sections for U-238 in lattice with water hole.
Error [%]

REF UF-SD UF-IR

Group Emax (eV) Uniform Corner Face Uniform Corner Face Uniform Corner Face

15 9118.00 0.700 0.701 0.703 -0.02 0.02 0.01 -0.04 -0.01 -0.02
16 5530.00 0.737 0.739 0.742 0.02 0.08 0.07 -0.14 -0.07 -0.08
17 3519.10 0.952 0.955 0.961 -0.01 0.04 0.03 0.07 0.14 0.12
18 2239.45 0.846 0.851 0.858 0.06 0.07 0.06 0.13 0.16 0.14
19 1425.10 1.216 1.223 1.234 -0.07 -0.06 -0.08 -0.87 -0.85 -0.85
20 906.899 1.363 1.373 1.388 0.08 0.08 0.06 -0.89 -0.91 -0.90
21 367.263 1.568 1.580 1.598 -0.28 -0.27 -0.28 -1.67 -2.96 -2.71
22 148.729 2.453 2.471 2.499 -0.19 -0.16 -0.17 -3.92 -5.84 -5.53
23 75.5014 2.124 2.140 2.164 0.07 0.13 0.12 -2.91 -4.36 -4.03
24 48.0520 4.678 4.712 4.763 0.34 0.41 0.46 -2.47 -5.09 -4.85
25 27.7000 6.339 6.392 6.477 -0.20 -0.13 -0.13 -3.25 -3.49 -3.42
26 15.9680 0.473 0.473 0.473 -0.07 -0.07 -0.06 -0.15 -0.15 -0.14
27 9.87700 8.102 8.170 8.289 -0.18 -0.08 -0.15 3.60 3.77 3.54

Table 9.72: Capture cross sections for U-238 in lattice with water hole.
Error [%]

REF EQ-SD EQ-IR

Group Emax (eV) Uniform Corner Face Uniform Corner Face Uniform Corner Face

15 9118.00 0.700 0.701 0.703 -0.21 -0.19 -0.21 -0.22 -0.21 -0.22
16 5530.00 0.737 0.739 0.742 -0.29 -0.25 -0.26 -0.43 -0.39 -0.39
17 3519.10 0.952 0.955 0.961 -0.46 -0.42 -0.43 -0.29 -0.24 -0.26
18 2239.45 0.846 0.851 0.858 -0.44 -0.42 -0.43 -0.27 -0.25 -0.26
19 1425.10 1.216 1.223 1.234 -0.53 -0.52 -0.51 -1.31 -1.29 -1.28
20 906.899 1.363 1.373 1.388 -0.36 -0.33 -0.32 -1.43 -1.39 -1.35
21 367.263 1.568 1.580 1.598 0.76 0.80 0.89 -1.58 -1.44 -1.20
22 148.729 2.453 2.471 2.499 1.54 1.58 1.71 -4.00 -3.85 -3.56
23 75.5014 2.124 2.140 2.164 2.58 2.66 2.83 -2.95 -2.80 -2.52
24 48.0520 4.678 4.712 4.763 3.91 4.03 4.27 -1.96 -1.80 -0.75
25 27.7000 6.339 6.392 6.477 1.51 1.60 1.74 -2.91 -2.77 -2.54
26 15.9680 0.473 0.473 0.473 -0.15 -0.15 -0.14 -0.21 -0.20 -0.19
27 9.87700 8.102 8.170 8.289 1.20 1.27 1.27 3.88 3.93 3.89
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9.6 UO2-MOX Lattice

The final benchmark case considered in this study is a small lattice with alternating UO2 and
MOX pins. This is modeled as a 2 cell by 2 cell geometry with periodic boundary conditions. A
visual depiction of the geometry is given in Fig. 9.7.

As with previous benchmarks, the moderator is H2O with a density corresponding to a
potential scatter cross section of 1.23 cm−1. The fuel has number density 0.022 a/b−cm and a
transuranic concentration of 10%. The relative concentrations of the transuranic isotopes are
given in Tab. 9.36. The uranium is enriched to 3%. The pitch is 1.26 cm and the radius is varied
with values 0.3 cm, 0.4096 cm, and 0.6 cm.

Results are shown for the four most prevalent nuclides in MOX: U-238, U-235, Pu-239, and
Pu-240. The quantity of interest is the total cross section. Results are shown in Tables 9.73
to 9.90.

In this benchmark problem, not all resonant nuclides are present in all fuel regions. The
uranium isotopes are present in each fuel pin, but the transuranics are only present in
alternating fuel pins. This means in equivalence-based methods, the Dancoff factor is not the
same for different nuclides in the MOX pin.

Also, mutual self-shielding effects can arise from the resonances of uranium isotopes
affecting the reaction rate of the transuranics in a different pin. This spatial mutual self-
shielding effect cannot be modeled by resonance interference factors. This effect is fairly small
for most cases, but can be seen clearly in the cross sections for Pu-240 with radius 0.6 cm

(Tab. 9.90). In group 25, where a significant resonance overlap with U-238 occurs, errors
greater than 10% persist even after using resonance interference factors. Ultrafine with
simplified scattering using a slowing down source is able to model this effect without any
correction factors.

Figure 9.7: 2x2 lattice with alternating UO2 and MOX fuel pins.
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Table 9.73: Cross sections for U-238 in a UO2 pin in a UO2-MOX lattice with radius 0.3 cm,
pitch 1.26 cm, and 10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+

15 9118.00 15.038 -0.01 -0.01 -0.05 -0.23 -0.35 -0.26 -0.37
16 5530.00 15.576 -0.00 -0.00 -0.12 -0.22 -0.36 -0.32 -0.45
17 3519.10 17.324 0.01 -0.01 -0.19 -0.37 -0.60 -0.46 -0.70
18 2239.45 16.507 0.01 -0.00 -0.28 -0.38 -0.69 -0.50 -0.80
19 1425.10 16.638 0.00 -0.01 -0.28 -0.36 -0.65 -0.44 -0.74
20 906.899 14.592 0.01 0.02 -0.09 -0.21 -0.41 -0.27 -0.47
21 367.263 17.502 0.16 -0.23 -0.35 0.02 -0.20 0.23 0.01
22 148.729 17.857 0.29 -0.24 -0.09 0.35 0.17 0.71 0.53
23 75.5014 15.779 0.27 -0.02 0.29 0.59 0.64 0.83 0.88
24 48.0520 23.473 1.06 -0.25 0.60 1.78 2.40 1.96 2.57
25 27.7000 19.622 0.64 -0.32 -0.77 1.31 1.55 -0.11 0.13
26 15.9680 9.117 -0.00 -0.00 0.01 -0.01 -0.04 -0.01 -0.04
27 9.87700 19.516 0.15 -0.26 0.26 1.23 1.02 0.27 0.07

Table 9.74: Cross sections for U-235 in a UO2 pin in a UO2-MOX lattice with radius 0.3 cm,
pitch 1.26 cm, and 10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+

15 9118.00 13.332 0.00 0.00 0.00 0.01 0.01 0.01 0.01
16 5530.00 13.345 0.00 -0.00 -0.01 0.00 0.00 0.00 0.00
17 3519.10 13.574 0.00 0.00 0.01 -0.00 0.00 -0.00 0.00
18 2239.45 15.032 0.00 0.00 -0.01 0.10 -0.01 0.10 -0.01
19 1425.10 16.187 0.00 0.00 0.02 -0.02 -0.03 -0.02 -0.03
20 906.899 16.824 -0.00 0.01 0.02 -0.09 0.01 -0.09 0.01
21 367.263 21.195 -0.03 -0.01 0.42 0.63 -0.24 0.63 -0.24
22 148.729 24.432 -0.03 -0.02 0.21 -0.37 -0.10 -0.37 -0.10
23 75.5014 29.729 -0.05 -0.02 0.38 -0.65 -0.23 -0.65 -0.23
24 48.0520 39.203 -0.09 0.06 0.42 -2.51 -0.43 -2.51 -0.43
25 27.7000 40.958 0.01 -0.01 0.39 9.17 -0.74 9.17 -0.74
26 15.9680 51.103 -0.00 -0.12 -0.24 -0.46 -0.51 -0.45 -0.50
27 9.87700 40.285 -0.00 -0.14 0.70 3.75 -0.75 3.67 -0.83
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Table 9.75: Cross sections for U-238 in a UO2 pin in a UO2-MOX lattice with radius 0.4096 cm,
pitch 1.26 cm, and 10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+

15 9118.00 14.706 -0.02 -0.02 -0.08 -0.23 -0.41 -0.25 -0.43
16 5530.00 15.177 -0.01 -0.01 -0.12 -0.21 -0.41 -0.28 -0.47
17 3519.10 16.504 -0.00 -0.02 -0.26 -0.34 -0.68 -0.46 -0.80
18 2239.45 15.497 -0.01 -0.02 -0.32 -0.39 -0.81 -0.51 -0.92
19 1425.10 15.667 -0.02 -0.03 -0.32 -0.38 -0.78 -0.48 -0.88
20 906.899 13.970 0.00 0.02 -0.11 -0.18 -0.45 -0.26 -0.53
21 367.263 16.490 0.09 -0.28 -0.41 -0.16 -0.43 -0.02 -0.29
22 148.729 16.742 0.20 -0.29 -0.01 0.16 -0.04 0.43 0.22
23 75.5014 14.929 0.18 0.00 0.19 0.38 0.51 0.60 0.73
24 48.0520 21.445 0.83 -0.41 0.11 1.07 2.05 0.97 1.95
25 27.7000 17.782 0.47 -0.54 -1.76 0.54 1.07 -1.53 -1.01
26 15.9680 9.114 -0.00 -0.01 0.03 -0.00 -0.06 -0.00 -0.06
27 9.87700 17.653 0.10 -0.38 0.69 1.02 0.78 0.73 0.49

Table 9.76: Cross sections for U-235 in a UO2 pin in a UO2-MOX lattice with radius 0.4096 cm,
pitch 1.26 cm, and 10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+

15 9118.00 13.332 0.00 0.00 0.00 0.01 0.01 0.01 0.01
16 5530.00 13.345 0.00 -0.00 -0.01 0.00 0.00 0.00 0.00
17 3519.10 13.575 0.00 0.00 0.01 -0.01 0.00 -0.01 0.00
18 2239.45 15.026 0.00 0.01 -0.01 0.13 -0.01 0.13 -0.01
19 1425.10 16.179 0.00 0.00 0.04 0.01 -0.04 0.01 -0.04
20 906.899 16.819 -0.00 0.02 0.02 -0.10 0.01 -0.10 0.01
21 367.263 21.140 -0.03 -0.00 0.54 0.73 -0.25 0.73 -0.25
22 148.729 24.374 -0.03 -0.01 0.17 -0.40 -0.08 -0.40 -0.08
23 75.5014 29.707 -0.05 -0.03 0.42 -0.86 -0.31 -0.86 -0.31
24 48.0520 38.969 -0.08 0.12 0.34 -2.63 -0.56 -2.63 -0.56
25 27.7000 40.282 0.01 0.01 0.37 9.56 -0.95 9.57 -0.94
26 15.9680 50.030 0.00 -0.21 -0.49 -0.72 -0.86 -0.71 -0.85
27 9.87700 39.215 -0.00 -0.30 0.55 5.11 -0.54 4.99 -0.66
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Table 9.77: Cross sections for U-238 in a UO2 pin in a UO2-MOX lattice with radius 0.6 cm,
pitch 1.26 cm, and 10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+

15 9118.00 13.998 -0.07 -0.07 -0.10 -0.24 -0.23 -0.25 -0.24
16 5530.00 14.403 -0.03 -0.06 -0.15 -0.23 -0.23 -0.32 -0.31
17 3519.10 15.056 -0.03 -0.03 -0.18 -0.36 -0.34 -0.50 -0.47
18 2239.45 13.840 -0.03 -0.02 -0.20 -0.52 -0.44 -0.66 -0.59
19 1425.10 14.112 -0.03 -0.02 -0.13 -0.46 -0.40 -0.57 -0.52
20 906.899 13.014 -0.01 0.04 0.01 -0.25 -0.20 -0.31 -0.27
21 367.263 15.006 0.01 -0.19 0.09 -0.59 -0.47 -0.76 -0.64
22 148.729 15.123 0.04 0.01 0.20 -0.22 0.14 -0.20 0.16
23 75.5014 13.781 0.02 0.45 -0.95 -0.24 0.69 -0.17 0.76
24 48.0520 18.601 0.31 -0.02 -3.89 -1.22 1.87 -3.17 -0.14
25 27.7000 15.332 0.17 -0.80 -4.12 -2.24 -0.08 -5.26 -3.16
26 15.9680 9.101 -0.00 -0.11 0.13 0.01 -0.17 0.01 -0.17
27 9.87700 15.103 0.03 -0.58 0.03 -0.26 0.05 -0.27 0.04

Table 9.78: Cross sections for U-235 in a UO2 pin in a UO2-MOX lattice with radius 0.6 cm,
pitch 1.26 cm, and 10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+

15 9118.00 13.331 0.00 0.01 0.01 0.01 0.01 0.01 0.01
16 5530.00 13.345 0.00 -0.01 -0.01 0.00 -0.01 0.00 -0.01
17 3519.10 13.574 0.00 0.00 0.03 -0.01 0.00 -0.01 0.00
18 2239.45 15.014 -0.00 0.01 0.00 0.19 -0.00 0.19 -0.00
19 1425.10 16.149 0.00 -0.00 0.11 0.14 -0.04 0.14 -0.04
20 906.899 16.798 -0.00 0.04 0.02 -0.08 0.04 -0.08 0.04
21 367.263 20.961 -0.02 0.02 0.92 1.08 -0.21 1.08 -0.21
22 148.729 24.177 -0.02 0.00 -0.22 -0.43 0.04 -0.43 0.04
23 75.5014 29.605 -0.03 -0.16 0.53 -1.46 -0.68 -1.46 -0.68
24 48.0520 37.896 -0.03 0.05 0.27 -2.16 -0.72 -2.14 -0.70
25 27.7000 38.564 0.01 -0.27 0.42 9.75 -2.05 9.78 -2.03
26 15.9680 46.844 -0.00 -0.60 -2.25 -1.53 -1.75 -1.54 -1.76
27 9.87700 37.214 -0.00 -0.66 -1.67 5.73 -0.36 5.46 -0.61
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Table 9.79: Cross sections for U-238 in a MOX pin in a UO2-MOX lattice with radius 0.3 cm,
pitch 1.26 cm, and 10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+

15 9118.00 15.109 -0.01 -0.01 -0.05 -0.16 -0.45 -0.19 -0.47
16 5530.00 15.670 -0.00 -0.00 -0.11 -0.17 -0.50 -0.26 -0.59
17 3519.10 17.539 0.01 -0.01 -0.18 -0.31 -0.88 -0.44 -1.01
18 2239.45 16.792 0.01 -0.00 -0.24 -0.33 -1.09 -0.44 -1.20
19 1425.10 16.928 0.00 -0.01 -0.27 -0.35 -1.07 -0.43 -1.15
20 906.899 14.783 0.01 0.01 -0.07 -0.25 -0.70 -0.31 -0.76
21 367.263 17.849 0.16 -0.27 0.11 -0.12 -0.43 0.08 -0.23
22 148.729 18.272 0.30 -0.37 0.15 0.03 -0.08 0.37 0.25
23 75.5014 16.046 0.40 -0.40 -1.67 0.68 0.25 0.91 0.47
24 48.0520 24.081 1.13 -0.57 1.32 1.93 2.16 2.07 2.29
25 27.7000 20.233 0.67 -0.38 -0.12 1.23 1.91 0.03 0.70
26 15.9680 9.124 0.00 -0.02 0.03 -0.08 -0.10 -0.08 -0.10
27 9.87700 20.184 0.16 -0.28 0.44 0.71 1.42 -0.40 0.30

Table 9.80: Cross sections for U-235 in a MOX pin in a UO2-MOX lattice with radius 0.3 cm,
pitch 1.26 cm, and 10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+

15 9118.00 13.332 0.00 0.00 0.00 0.01 0.01 0.01 0.01
16 5530.00 13.345 0.00 -0.00 -0.01 0.00 0.00 0.00 0.00
17 3519.10 13.574 0.00 0.00 0.01 -0.00 0.00 -0.00 0.00
18 2239.45 15.034 0.00 0.00 -0.01 0.09 -0.01 0.09 -0.01
19 1425.10 16.188 0.00 0.00 0.02 -0.03 -0.03 -0.03 -0.03
20 906.899 16.824 -0.00 0.01 0.02 -0.08 0.00 -0.08 0.00
21 367.263 21.213 -0.03 -0.00 0.47 0.58 -0.25 0.58 -0.25
22 148.729 24.434 -0.03 -0.04 0.12 -0.32 -0.16 -0.32 -0.16
23 75.5014 29.910 -0.05 -0.02 0.67 -1.19 -0.12 -1.20 -0.13
24 48.0520 39.265 -0.10 0.14 0.64 -2.53 -0.47 -2.53 -0.47
25 27.7000 41.568 0.01 0.02 0.50 7.84 -0.21 7.85 -0.21
26 15.9680 51.942 0.00 -0.19 -0.01 -1.59 -0.03 -1.59 -0.02
27 9.87700 40.786 0.00 -0.08 0.68 2.75 -0.07 2.68 -0.13
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Table 9.81: Cross sections for Pu-239 in a MOX pin in a UO2-MOX lattice with radius 0.3 cm,
pitch 1.26 cm, and 10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+

15 9118.00 14.676 0.00 0.01 0.00 0.02 0.02 0.02 0.02
16 5530.00 15.598 -0.00 -0.00 -0.01 0.02 -0.00 0.02 -0.00
17 3519.10 16.319 -0.00 0.00 0.01 -0.12 0.01 -0.12 0.01
18 2239.45 16.886 0.00 0.00 -0.10 -0.06 -0.02 -0.06 -0.02
19 1425.10 17.821 0.01 0.01 -0.11 0.44 -0.04 0.44 -0.04
20 906.899 20.258 0.02 -0.04 -0.46 -1.19 0.03 -1.20 0.02
21 367.263 29.133 -0.02 -0.06 -0.39 -1.35 -0.38 -1.36 -0.39
22 148.729 34.651 -0.09 -0.13 -0.09 0.22 -1.26 0.21 -1.26
23 75.5014 52.354 0.07 0.03 -3.21 1.04 -0.46 1.06 -0.44
24 48.0520 32.490 -0.11 -0.51 -3.39 -1.44 -0.50 -1.42 -0.47
25 27.7000 45.945 -0.04 -0.17 -0.43 -5.76 -0.59 -5.75 -0.57
26 15.9680 85.210 0.01 -0.24 -0.91 -0.19 -1.19 -0.25 -1.25
27 9.87700 29.356 -0.04 -1.03 -2.75 -8.11 2.50 -8.27 2.33

Table 9.82: Cross sections for Pu-240 in a MOX pin in a UO2-MOX lattice with radius 0.3 cm,
pitch 1.26 cm, and 10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+

15 9118.00 16.349 0.00 0.01 0.01 -0.07 0.05 -0.07 0.05
16 5530.00 15.060 -0.00 0.01 0.09 -0.46 0.02 -0.46 0.02
17 3519.10 17.142 0.00 -0.01 -0.22 -0.75 0.08 -0.75 0.08
18 2239.45 18.318 0.04 -0.02 -1.12 -1.40 0.25 -1.40 0.25
19 1425.10 22.630 -0.01 0.02 0.52 0.65 -0.36 0.65 -0.37
20 906.899 21.790 0.01 -0.07 -0.75 -1.47 -0.45 -1.50 -0.48
21 367.263 31.109 0.04 -0.03 -1.36 -4.54 -0.37 -4.56 -0.39
22 148.729 49.187 -0.10 -0.42 -2.08 -0.17 -2.09 -0.18 -2.09
23 75.5014 88.339 0.07 -0.74 -5.41 10.38 -0.28 10.68 -0.02
24 48.0520 109.012 -0.08 -1.27 -7.76 -3.78 -1.09 -3.57 -0.87
25 27.7000 37.535 1.74 1.23 -7.08 14.31 -0.63 14.33 -0.60
26 15.9680 7.880 0.00 -0.01 0.02 0.01 -0.08 0.01 -0.08
27 9.87700 10.827 0.00 0.11 0.37 -0.36 -0.56 -0.36 -0.56
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Table 9.83: Cross sections for U-238 in a MOX pin in a UO2-MOX lattice with radius 0.4096
cm, pitch 1.26 cm, and 10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+

15 9118.00 14.783 -0.02 -0.02 -0.01 -0.11 -0.56 -0.13 -0.58
16 5530.00 15.273 -0.01 -0.01 -0.03 -0.10 -0.60 -0.17 -0.66
17 3519.10 16.710 -0.00 -0.02 -0.07 -0.22 -1.05 -0.33 -1.16
18 2239.45 15.754 -0.01 -0.02 -0.01 -0.26 -1.31 -0.37 -1.42
19 1425.10 15.923 -0.02 -0.04 -0.06 -0.31 -1.29 -0.41 -1.39
20 906.899 14.139 0.00 0.00 0.10 -0.18 -0.80 -0.26 -0.88
21 367.263 16.782 0.10 -0.33 0.49 -0.27 -0.63 -0.15 -0.51
22 148.729 17.076 0.22 -0.52 0.76 -0.06 -0.41 0.15 -0.19
23 75.5014 15.065 0.31 -0.37 -1.07 0.97 0.13 1.15 0.31
24 48.0520 21.864 0.92 -0.93 1.68 1.59 1.64 1.48 1.52
25 27.7000 18.258 0.50 -0.65 -1.03 0.55 1.61 -1.34 -0.30
26 15.9680 9.123 0.00 -0.04 0.06 -0.09 -0.16 -0.09 -0.16
27 9.87700 18.184 0.12 -0.42 1.02 0.54 1.35 0.12 0.93

Table 9.84: Cross sections for U-235 in a MOX pin in a UO2-MOX lattice with radius 0.4096
cm, pitch 1.26 cm, and 10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+

15 9118.00 13.332 0.00 0.00 0.00 0.01 0.01 0.01 0.01
16 5530.00 13.345 0.00 -0.00 -0.01 0.00 -0.00 0.00 -0.00
17 3519.10 13.574 0.00 0.00 0.01 -0.01 0.00 -0.01 0.00
18 2239.45 15.028 0.00 0.01 -0.01 0.12 -0.01 0.12 -0.01
19 1425.10 16.180 0.00 0.00 0.04 0.01 -0.04 0.01 -0.04
20 906.899 16.819 -0.00 0.02 0.03 -0.08 -0.00 -0.08 -0.00
21 367.263 21.161 -0.03 0.00 0.61 0.68 -0.27 0.68 -0.27
22 148.729 24.372 -0.03 -0.05 0.08 -0.31 -0.20 -0.31 -0.20
23 75.5014 29.923 -0.06 -0.03 0.76 -1.49 -0.17 -1.50 -0.17
24 48.0520 39.061 -0.09 0.24 0.59 -2.65 -0.58 -2.65 -0.58
25 27.7000 40.994 0.00 0.07 0.51 8.07 -0.13 8.07 -0.13
26 15.9680 51.023 0.01 -0.36 -0.12 -1.99 -0.21 -1.98 -0.20
27 9.87700 39.797 0.00 -0.18 0.57 3.98 0.51 3.87 0.41
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Table 9.85: Cross sections for Pu-239 in a MOX pin in a UO2-MOX lattice with radius 0.4096
cm, pitch 1.26 cm, and 10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+

15 9118.00 14.676 0.00 0.01 0.01 0.02 0.02 0.02 0.02
16 5530.00 15.597 -0.00 -0.00 -0.01 0.02 -0.00 0.02 -0.00
17 3519.10 16.321 -0.00 0.00 0.01 -0.16 -0.01 -0.16 -0.01
18 2239.45 16.868 0.00 0.00 -0.13 -0.04 -0.04 -0.04 -0.04
19 1425.10 17.790 0.01 0.00 -0.14 0.44 -0.09 0.44 -0.09
20 906.899 20.229 0.02 -0.04 -0.52 -1.46 -0.13 -1.47 -0.13
21 367.263 28.778 -0.01 -0.08 -0.61 -1.54 -0.58 -1.56 -0.59
22 148.729 33.795 -0.09 -0.19 -0.39 0.17 -1.58 0.16 -1.59
23 75.5014 50.416 0.07 0.03 -4.24 0.46 -0.93 0.49 -0.91
24 48.0520 31.158 -0.07 -0.68 -5.12 -2.36 -0.93 -2.33 -0.90
25 27.7000 45.010 -0.03 -0.27 -0.66 -6.83 -1.22 -6.81 -1.19
26 15.9680 81.762 0.01 -0.38 -1.41 -0.49 -1.73 -0.61 -1.85
27 9.87700 29.044 -0.02 -1.69 -4.18 -10.63 1.70 -10.84 1.46

Table 9.86: Cross sections for Pu-240 in a MOX pin in a UO2-MOX lattice with radius 0.4096
cm, pitch 1.26 cm, and 10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+

15 9118.00 16.352 0.00 0.02 0.02 -0.11 0.03 -0.11 0.03
16 5530.00 15.063 -0.00 0.01 0.11 -0.61 -0.04 -0.61 -0.04
17 3519.10 17.145 0.01 -0.01 -0.28 -1.06 -0.06 -1.06 -0.06
18 2239.45 18.332 0.04 -0.01 -1.38 -1.93 0.03 -1.93 0.02
19 1425.10 22.447 -0.01 0.02 0.65 0.61 -0.56 0.60 -0.57
20 906.899 21.523 0.01 -0.07 -0.87 -1.72 -0.78 -1.77 -0.83
21 367.263 30.591 0.06 -0.00 -1.89 -5.62 -1.01 -5.66 -1.04
22 148.729 46.453 -0.09 -0.64 -2.91 -0.21 -2.61 -0.23 -2.63
23 75.5014 78.175 0.11 -0.83 -6.78 10.93 0.18 11.20 0.43
24 48.0520 97.880 -0.00 -1.83 -10.75 -5.50 -1.68 -5.28 -1.45
25 27.7000 32.423 1.68 1.35 -6.94 22.67 1.02 22.70 1.05
26 15.9680 7.879 0.00 -0.03 0.03 0.02 -0.11 0.02 -0.11
27 9.87700 10.818 0.00 0.19 0.60 -0.28 -0.62 -0.28 -0.62
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Table 9.87: Cross sections for U-238 in a MOX pin in a UO2-MOX lattice with radius 0.6 cm,
pitch 1.26 cm, and 10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+

15 9118.00 14.070 -0.07 -0.07 -0.09 0.07 0.15 0.05 0.14
16 5530.00 14.486 -0.03 -0.07 -0.14 0.04 0.12 -0.05 0.03
17 3519.10 15.221 -0.03 -0.04 -0.16 -0.00 0.24 -0.14 0.11
18 2239.45 14.031 -0.03 -0.03 -0.14 -0.11 0.30 -0.26 0.15
19 1425.10 14.299 -0.02 -0.06 -0.12 -0.15 0.19 -0.26 0.08
20 906.899 13.135 -0.01 -0.02 0.07 -0.11 0.21 -0.18 0.15
21 367.263 15.203 0.01 -0.41 0.75 -0.55 0.39 -0.76 0.18
22 148.729 15.310 0.09 -0.78 0.65 -0.07 0.18 -0.10 0.14
23 75.5014 13.797 0.14 -0.20 -2.21 0.72 0.70 0.55 0.54
24 48.0520 18.709 0.45 -1.59 -2.90 0.14 0.90 -1.44 -0.69
25 27.7000 15.600 0.19 -1.27 -3.07 -1.95 1.24 -4.85 -1.75
26 15.9680 9.110 -0.00 -0.22 0.16 -0.07 -0.46 -0.07 -0.46
27 9.87700 15.405 0.07 -0.84 0.86 -0.40 1.09 -0.40 1.09

Table 9.88: Cross sections for U-235 in a MOX pin in a UO2-MOX lattice with radius 0.6 cm,
pitch 1.26 cm, and 10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+

15 9118.00 13.331 0.00 0.01 0.01 0.01 0.01 0.01 0.01
16 5530.00 13.345 0.00 -0.01 -0.01 0.00 -0.01 0.00 -0.01
17 3519.10 13.574 0.00 0.00 0.03 -0.00 -0.00 -0.00 -0.00
18 2239.45 15.016 0.00 0.01 0.00 0.18 0.01 0.18 0.01
19 1425.10 16.151 0.00 -0.01 0.11 0.14 -0.04 0.14 -0.04
20 906.899 16.798 -0.00 0.04 0.03 -0.06 0.03 -0.06 0.03
21 367.263 20.983 -0.02 0.00 1.02 1.07 -0.20 1.07 -0.20
22 148.729 24.166 -0.01 -0.08 -0.29 -0.23 -0.15 -0.23 -0.15
23 75.5014 29.846 -0.04 -0.24 0.90 -2.09 -0.36 -2.09 -0.37
24 48.0520 37.997 -0.05 0.29 0.55 -2.01 -0.36 -2.00 -0.34
25 27.7000 39.318 -0.00 -0.13 0.65 8.42 0.28 8.45 0.30
26 15.9680 47.860 0.02 -1.15 -1.61 -2.44 -0.12 -2.44 -0.13
27 9.87700 37.802 0.01 -0.36 -1.44 4.87 2.50 4.63 2.26
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Table 9.89: Cross sections for Pu-239 in a MOX pin in a UO2-MOX lattice with radius 0.6 cm,
pitch 1.26 cm, and 10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+

15 9118.00 14.673 0.00 0.02 0.03 0.04 0.03 0.04 0.03
16 5530.00 15.595 -0.00 -0.01 -0.02 0.04 0.00 0.04 0.00
17 3519.10 16.320 -0.00 -0.01 0.02 -0.21 -0.02 -0.21 -0.02
18 2239.45 16.811 0.00 0.01 -0.19 0.06 0.02 0.06 0.02
19 1425.10 17.706 0.00 -0.02 -0.18 0.47 -0.10 0.47 -0.10
20 906.899 20.139 0.02 -0.07 -0.68 -2.06 -0.43 -2.07 -0.45
21 367.263 27.963 -0.01 -0.14 -1.78 -1.99 -0.45 -2.03 -0.49
22 148.729 31.981 -0.05 -0.35 -2.10 -0.13 -1.29 -0.17 -1.33
23 75.5014 46.407 0.08 0.28 -8.10 -0.65 -0.43 -0.58 -0.36
24 48.0520 29.229 0.03 -0.38 -11.67 -6.79 -1.69 -6.77 -1.68
25 27.7000 42.626 0.01 -0.45 -1.62 -8.98 -1.68 -9.03 -1.74
26 15.9680 74.117 0.04 -0.55 -3.90 -1.17 -1.70 -1.44 -1.97
27 9.87700 28.847 0.01 -3.09 -9.43 -18.07 -1.53 -18.40 -1.92

Table 9.90: Cross sections for Pu-240 in a MOX pin in a UO2-MOX lattice with radius 0.6 cm,
pitch 1.26 cm, and 10% transuranic concentration.

Error (%)

Group Emax (eV) REF 2REG UF-SD UF-IR EQ-SD EQ-SD+ EQ-IR EQ-IR+

15 9118.00 16.357 0.00 0.03 0.07 -0.18 0.01 -0.18 0.01
16 5530.00 15.067 -0.00 0.03 0.14 -0.99 -0.14 -0.99 -0.14
17 3519.10 17.142 0.00 -0.04 -0.36 -1.79 -0.36 -1.80 -0.36
18 2239.45 18.420 0.03 0.02 -2.02 -3.54 -0.80 -3.56 -0.81
19 1425.10 21.941 -0.01 0.00 0.93 0.71 -0.31 0.70 -0.33
20 906.899 20.844 0.01 0.00 -1.18 -2.06 -0.62 -2.16 -0.72
21 367.263 29.465 0.07 0.09 -4.24 -8.09 -1.52 -8.17 -1.61
22 148.729 41.221 -0.01 -1.02 -6.45 -0.51 -1.27 -0.51 -1.27
23 75.5014 63.019 0.16 0.17 -13.88 9.77 4.75 9.90 4.87
24 48.0520 81.890 0.17 -2.59 -21.21 -11.79 -0.78 -11.69 -0.67
25 27.7000 23.170 0.94 0.33 -6.07 45.02 10.84 45.04 10.86
26 15.9680 7.871 -0.00 -0.14 0.10 0.12 -0.18 0.12 -0.18
27 9.87700 10.745 -0.00 0.27 1.64 0.39 -0.51 0.39 -0.52
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9.7 Chapter Summary

This chapter presented several benchmark problems—a UO2 fuel pin, a MOX fuel pin, a
UO2 lattice with water hole, and a UO2-MOX lattice—and used them to compare various
self-shielding methods side-by-side. The methods tested included both classical methods and
new methods.

Significant results included:

• a demonstration of the effect of the self-shielding of the scattering source, which effects
all of the methods for groups such as the one containing the U-238 36.6 eV resonance.

• the failure of the intermediate resonance model to account for flux reduction due to
resonance absorption.

• significant mutual self-shielding effects in MOX fuel.

• difficulty in the generation of subgroup with interference cross section quadratures.

• success of ultrafine with simplified scattering with the slowing down source and the
difficulty with the intermediate resonance source with broad groups.

• failure of resonance interference factors when spatial mutual self-shielding effects are
important.
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Chapter 10

Conclusions

10.1 Summary

In Sec. 1.4, two overarching thesis objectives were defined. First, the thesis sought to measure
the current status of existing self-shielding methods. Second, the thesis sought to propose new
self-shielding methods to extend the range of applicability of the methods. These objectives
were accomplished through the six major contributions detailed in this thesis:

1. Existing self-shielding methods were presented in great detail in Part II. Although this is
not novel work, such an exhaustive description of such a wide array of methods is not
readily found in literature—with [12] being the closest—and should serve as a useful
reference for many future applications.

2. A framework for evaluating self-shielding methods was proposed in Ch. 6. Under this
framework a simple benchmark problem was defined and applied to numerous self-
shielding methods. This provided a baseline for performance of the methods.

3. The effect of using scalar-flux-weighted multigroup cross sections was quantified in Ch. 7.
This approximation was shown to have a measurable and significant impact even on
simple and small problems. Using angular-dependent cross sections was shown to correct
the issue. Other options exist and were detailed, including Legendre expanding the
angular dependence and using a corrective factor known as an SPH factor.

4. A new means of accounting for mutual self-shielding in the subgroup method was devel-
oped in Sec. 8.3. This method fits a parameter known as an interference cross section for
each level of a nuclide’s subgroup quadrature for each other nuclide. It allows interfer-
ence effects to be modeled natively inside the subgroup method without increasing the
algorithmic complexity of the method.
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5. A new method known as Ultrafine with Simplified Scattering, a hybrid of ultrafine and
subgroup methods, was introduced in Sec. 8.4. This method gives many of the benefits
of the ultrafine method without needing to rigorously compute the scatter source. This
allows self-shielding effects to be handled much more elegantly than in current methods,
and allows for very straightforward parallelization and otherwise reduced computational
burden of a true ultrafine method.

6. In Ch. 9, both old and new methods were compared on a series of benchmark problems.
This uses the framework of Ch. 6 and applies it to realistic problems. The results not
only shed light on the quality of classical self-shielding approximations but also serve to
assess the quality of the newly proposed methods.

For each of these contributions, a brief summary and future work related to the area will
now be discussed.

10.2 Classical Self-Shielding Approximations

Summary

Part II explained in great detail the classical approaches to self-shielding. Included were
slowing down in infinite media, equivalence in dilution, the subgroup method, and ultrafine
methods.

The solution of the slowing down equation is the backbone of all the subsequent self-
shielding methods. It is used to generate tables of multigroup constants as a function of the
dilution, i.e., the amount of moderating material other than the nuclide of interest in the
the medium. These tables are used directly by the equivalence in dilution method or used to
generate quadratures for the subgroup method.

The equivalence in dilution method (Ch. 3) uses a clever manipulation of the transport
equation in its collision probability form on a problem with exactly two regions—fuel and
moderator—to find an equivalence between a heterogeneous problem and a homogeneous
problem. An equivalence cross section serves effectively as an additional background moderator
and with it, the tables generated by the solution of the slowing down equation can be used
in a heterogeneous problem. This equivalence cross section is obtained using a rational
approximation based on the shape and size of the lumped fuel regions as well as the Dancoff
factor, which accounts for the likelihood of a neutron exiting one fuel lump and entering another
lump elsewhere in the geometry.

The subgroup method (Ch. 4) uses a clever change of variables to integrate the reaction rate
by cross section value rather than by energy. This allows many fewer base points to be needed
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in a numerical quadrature, and allows a lattice-level calculation to account for self-shielding
effects through the solution of a simplified transport equation with a fixed source only a small
number of times per energy group per nuclide. The quadrature needed, though, is not easily
defined, and several methods for the generation of the quadrature are detailed in the main
text.

Ultrafine methods (Ch. 5) discretize the energy variable sufficiently to implicitly account for
self-shielding effects. If computationally feasible, one could use ultrafine methods directly on a
downstream application without resorting to a multi-level cross section generation approach.
However, this is not currently feasible, and ultrafine methods are typically used to generate
cross sections on small geometries for use in downstream applications. In the main text, the
means of treating the scatter source, which is the primary complication of these methods, is
discussed.

Future Work

Although this section of the thesis was intended to be background material rather than new
work, there is still future work that can and should be done. Specifically, rather than leaving
this material as a textual reference, each method should be implemented in an open source
framework for use by educators and researchers. In the spirit of OpenMC [38] and OpenMOC
[3], this open source approach enables those in the field to make meaningful progress toward
their educational and research goals, avoiding unneeded difficulties with implementation. Also,
there is no better means of explaining the workings of a method than a demonstration.

Such an open source framework could come in one of two varieties (or ambitiously, both).
First, the framework could be standalone, including its own transport solver and only applying
these methods to small problems, such as those shown in Ch. 9. Second, the methods could
be adapted to a larger scale and included in OpenMOC, effectively transforming it from a
transport solver to a lattice physics code.

10.3 Framework for Evaluating Self-Shielding Methods

Summary

In Ch. 6, a framework for evaluating self-shielding methods was introduced. This framework
sought to be analogous to unit testing and integral testing in a software engineering framework.
Rather than evaluating a self-shielding method only by its results on a large problem with
many aspects of physics working in different ways, the specific physical aspects being modeled
by the method should first be isolated.
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A specific benchmark problem was then given, one that was the simplest possible problem
in which both energy and spatial self-shielding are important. The benchmark used two simple
geometries, an isolated slab and an infinite square array of identical pins, and only a single
resonance, whose height was varied, in the fuel material. Several different self-shielding
methods were tested and quantitatively evaluated using this benchmark.

This test highlighted how two-term rational approximations in equivalence in dilution do a
very good job of modeling the spatial self-shielding effect. Likewise, it showed the efficacy of
the subgroup method when a suitable quadrature was obtained. The quadrature generation
process was noted to be quite difficult in some cases. Perhaps most significantly, this test
highlighted that a newer method known as the Embedded Self-Shielding Method failed to
perform nearly as well on this simple benchmark. The implementation of ESSM used was based
on an iterative procedure to determine the appropriate data to use from homogeneous tables.
Newer implementations of ESSM—perhaps because this issue was seen in separate work—use
the iterative procedure to determine the appropriate data to use from tables generated from
heterogeneous calculations.

Future Work

The most desired aspect of future work for this framework is for it to be applied to any and all
new self-shielding methods. While this has little to do with the framework itself, this is the
means that the framework will have the most significant impact.

In terms of the benchmark problem, a plethora of future work is readily performable by
considering incremental additions to the aspects of physics under consideration. Later in this
thesis, realistic scattering and real cross sections were applied to the benchmark to serve as
the next step in the framework. Other possibilities abound. One could study the effect of
intra-pin discretization, perhaps with a temperature distribution across the pin or differing
number densities in different radial zones. A second resonant nuclide was admixed in the fuel
in Ch. 8, and this could be extended further by using a more realistic scattering model.

10.4 Angular Effects on Multigroup Cross Sections

Summary

In Ch. 7, the effect of using the scalar flux to collapse the total multigroup cross section was
examined. Condensation errors were seen in the reaction rates and shown to be the result of
improper treatment of self-shielding. Effectively, the neutron flux entering a resonant region
from the moderator is not shielded; that is, there are a significant number of neutrons at the
resonance energies. However, as neutrons pass through the resonant region, those neutrons
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at resonance energies preferentially collide, and there is a significant reduction in the flux at
those energies. Thus, the multigroup cross section is very different for neutrons entering the
resonant region than those that have traversed a piece of it first. This effect is not sufficiently
treated by using an average value obtained by scalar flux weighting.

It was shown that using angular dependent total multigroup cross sections alleviated
this effect. Importantly, it showed that simply using angular dependent cross sections is not
sufficient to alleviate the issue; they must be coupled with sufficiently fine spatial discretization.

Two possible means of accounting for this issue without resorting to angular dependent
cross section data were presented. First, a transport correction can be used, where the total
reaction rate is expanded in Legendre polynomials, and the anisotropic terms are moved to
the right hand side as a source. This tactic can be effective, but adds anisotropy to the scatter
source. More moments than desired for the scattering may be required to adequately model the
total reaction rate. Second, the SPH factor can be used. The SPH factor is a correction factor
that enforces conservation of reaction rates. Although a very simple concept, it was shown to
be very effective on a simple test problem.

Future Work

A truly elegant means of accounting for these angular issues is desired. Correction factors,
especially ones with as little physical basis as the SPH factor, are not ideal in a high-fidelity
simulation. However, this desire must be balanced with the reality of computations, and a
solution must not add too much computational complexity.

Some possible solutions that warrant further study include a coarse spatial discretization
coupled with course angularly dependent data. Rather than use different cross sections for
each angle in an MOC solution, perhaps using cross sections defined on the octant would
be sufficient. Alternatively, the Legendre expansion approach could be investigated using
double-Legendre expansions, i.e., separate expansions for neutrons entering the fuel region
than for those exiting the region. There are difficulties applying this in 2-D, as the surface
normal may not be constant in a flat source region, but further investigation is still warranted.

10.5 Subgroup with Interference Cross Sections

Summary

In Sec. 8.3, a means of accounting for mutual self-shielding in the subgroup method was
proposed. This method, the subgroup method with interference cross sections, adds an extra
quantity to the quadrature for a given nuclide to account for interference effects for each
other nuclide. Holding the base quadrature constant, so-called interference cross sections
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are obtained from a fitting process, minimizing the error between subgroup estimates and
infinite medium reference solutions. This approach allows the resonance interference effect to
be modeled natively inside the subgroup method without increasing algorithmic complexity.

The results in Sec. 8.3 were very promising, and the method was further tested in Ch. 9.
On the UO2 fuel pin, the method again performed adequately. However, with the MOX fuel pin,
this method was not at all successful. Difficulties arose in the generation of the interference
cross sections. For nuclides that had little impact on the cross section of another nuclide in a
particular group, nonsensical interference cross section values were chosen by the optimizer.
Furthermore, because in many cases, the base quadrature was not directly analogous to energy
ranges, the obtained interference cross sections retained errors on the order of several percent.

Future Work

Despite the struggles identified in this analysis, this method still has merit, but requires much
future work. There were two major issues in the generation of the interference quadratures in
this work, likely each requiring its own solution.

First, the issue of the optimizer choosing large interference cross sections when an infinite
medium is insensitive to the cross section must be addressed. The approach taken in this
analysis, of forcing interference cross sections to zero when a lack of sensitivity was observed,
is not adequate, as there is no clear cutoff between the cross section being sensitive versus
not sensitive. One possibility is to generate the interference cross sections on heterogeneous
geometries, similar to the approach for generating the base quadrature in [24].

Second, the base quadratures used in this study were not compatible with the interference
cross sections. One means of alleviating this issue is to use a base quadrature defined by a direct
approach to quadrature generation. This guarantees the quadrature will have the necessary
properties for the interference cross section procedure. However, the direct approach is not
typically desired in subgroup implementations, and so further work is needed to determine a
procedure that is suitable with a fitting or moment-based method.

10.6 Ultrafine with Simplified Scattering

Summary

Section 8.4 presents a new method that is a hybrid of the subgroup and ultrafine methods,
dubbed Ultrafine with Simplified Scattering. This method uses an ultrafine discretization of
the energy variable and uses the same left hand side of the transport equation as ultrafine
methods. It uses the scatter source used in the subgroup method on the right hand side, which
decouples each energy point from each other point. The generation of cross sections is then
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entirely analogous to the procedure used in the subgroup method, but the quadrature is much
more easily defined, and mutual self-shielding effects are modeled implicitly.

Two possible right hand sides were considered. First, the intermediate resonance source,
the most commonly employed scatter source in the subgroup method, was used. This approach
has two primary difficulties. First, the intermediate resonance parameter must be defined for
each nuclide relative to another nuclide. By treating all nuclides in the same calculation, the
nuclide to use as the reference is ill-defined. Second, if wide groups are used, this method fails
to account for the depression in the flux due to resonance absorption. In Ch. 9, this was seen to
be significant in certain cases, including moderate errors with U-238 alone and exacerbated
errors in MOX fuel for certain nuclides.

The second choice of the scatter source is that of a solution to the slowing down equation.
An equivalent infinite medium is defined in the same manner as in the equivalence in dilution
method, and the source is computed from the solution of the slowing down equation with this
medium. The slowing down source can be tabulated by nuclide, and so these slowing down
solutions can be precomputed.

In Ch. 9, both choices of scatter source were examined. As wide groups were used in this
analysis, the slowing down solution performed much better than the intermediate resonance
source. Overall, it was the best performing method considered in the analysis. Although
this method was certainly not the most computationally efficient method considered, it was
successfully identified as a possible method to use for higher fidelity calculations.

Future Work

With the positive results obtained in Ch. 9, this method warrants considerable future work.
It should be applied to larger problems, such as fuel assembly calculations, and perhaps
examined for full-core applications. In these applications, studies will need to be performed to
quantify many outstanding issues. For instance, this work did not address the best approach
for selecting the ultrafine energy mesh used in the solution. The sensitivity and trade-offs
implied by the selection of the energy mesh in the context of computational efficiency should
be studied. Furthermore, although this method appears to be easily performed on parallel
architectures, additional studies should be performed to identify the best approach to this.
Also, a study examining how this method fits into a production-level workflow is needed.
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10.7 Analysis of Cross Section Generation Methods

Summary

Chapter 9 was a significant study that compared both old and new self-shielding methods on
small geometries using realistic cross sections. Cases were chosen to highlight the performance
of the methods with only a single resonant nuclide and with multiple resonant nuclides. In
the latter case, cases were specifically chosen to stress the methods’ handling of mutual self-
shielding. This study was a continuation of the framework presented in Ch. 6, increasing the
complexity and providing more realistic test cases.

This process was used to evaluate the two new self-shielding methods proposed in the
thesis, one with a high degree of success, and one requiring considerable future work to be
viable. These mixed results are precisely the reason such benchmark cases are necessary. This
procedure highlights specific aspects of physics and allows any issues to be diagnosed before
they are applied to larger problems and clouded by other aspects of the physics at play.

The method also included legacy methods and the correction-based approach to mutual
self-shielding of resonance interference factors. These methods were compared side-by-side
with the new methods, and were found to be rather effective. In some cases, the methods did
break down somewhat, highlighting the limits of their application.

Future Work

The quantity of future work in this area is endless. More and more test cases can be applied,
with more and more methods tested. However, this should be applied in a very systematic
manner. In the spirit of software engineering’s unit tests and integral tests, cases should be
chosen that minimize the total burden of running the test cases while maximizing the coverage
of situations tested. Although a goal of newer self-shielding methods is to be more problem
agnostic, a test suite could be tailored to a specific class of reactors, and additional test suites
made for other classes of reactors.

An additional area of future work is in the application of cross section generation methods
to larger geometries. The small geometries considered in this study are not greatly impacted by
issues such as the spatial distribution of the flux across the core. However, if one were to merge
the lattice and full-core levels of the multi-level approach to reactor physics simulations, using
self-shielding methods directly on full-core problems, a flat distribution of neutrons as a source
would not be a sufficient approximation. In this case, an iterative approach to self-shielding
may be warranted, where information from a coarse-group calculation is used to inform the
self-shielding calculation.
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