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Abstract

A good memory model should have a precise definition that can be understood by
any computer architect readily. It should also be resilient in the sense that it should
not break when new microarchitecture optimizations are introduced to improve single-
threaded performance. We introduce WMM, a new weak memory model, which meets
these criteria. WMM permits all load-store reorderings except a store is not allowed
to overtake a load. WMM also permits both memory dependency speculation and
load-value prediction. We define the operational semantics of WMM using a novel
conceptual device called invalidation buffer, which achieves the effect of out-of-order
instruction execution even when instructions are executed in-order and one-at-a-time.
We show via examples where memory fences need to be inserted for different pro-
gramming paradigms. We highlight the differences between WMM and other weak
memory models including Release Consistency and Power. Our preliminary perfor-
mance evaluation using the SPLASH benchmarks shows that WMM implementation
performs significantly better than the aggressive implementations of SC. WMM holds
the promise to be a vendor-independent stable memory model which will not stifle
microarchitectural innovations.
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Chapter 1

Introduction

The importance of memory models is difficult to deny; how can one specify an Instruc-

tion Set Architecture (ISA) if the meaning of load (Ld) and store (St) instructions

is not precise. How can one give the semantics of a multithreaded programming

language without specifying the behavior of shared writeable variables? Yet it is a

topic that most architecture and language researchers, except those who work on the

topic, want to avoid. Purely from a pragmatic point of view if the programmer or

the compiler writer totally ignores the memory model issues, he or she is unlikely

to pay a price for it; memory-model bugs are ephemeral and other bugs in parallel

programming, such as races and deadlocks, manifest themselves much more readily

[32]. Further to attribute a bug to the violation of a memory model is problematic be-

cause precise and understandable definitions of memory models are lacking [6, 42, 33].

This thesis presents WMM, a new weak memory model, with the goal of providing a

vendor-independent memory model which is easy to understand and which is resilient

to microarchitectural innovations.

It is important to recognize on the onset that unlike ISA, memory models were

never "designed" by architects. Every ISA contains Ld and St instructions whose

meaning is quite obvious in a uniprocessor setting or for a single-threaded program;

Ld 𝑎 returns the value stored by the most recent store to the address 𝑎. Every opti-

mization in a uniprocessor preserves this abstraction. Instructions can be executed

speculatively and out of order, store buffers and caches can be introduced, as long as
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the data dependencies are observed by the Ld and St instructions in a thread. None

of these architectural mechanisms are visible to the user program. Another condition

imposed by almost all general purpose ISAs is that the interrupts are precise, i.e.

instructions are retired in order even if they are executed out of order. Precise inter-

rupts are needed for the implementation of virtual memory and many other operating

system services. It would be pretty messy to implement a system if it allowed stores

to be retired out of order.

Unfortunately, the simple load-store abstraction breaks down in a system where

multiple threads share a common global memory because a load in a thread can read

the value written by a store in some other thread. So it is no longer sufficient to

talk about simple data dependencies within a single thread. The earliest specification

of a memory model was Sequential Consistency (SC) which specified how threads

were allowed to interact with each other. SC specified that the program behavior

must appear as if the instructions of various threads were executed one-by-one in

an interleaved manner. It was clear from the earliest days that enforcing SC at

the microarchitecture level downgraded performance unless aggressive speculation

techniques requiring significant extra hardware cost were employed [22, 40, 27, 24,

17, 48, 14, 45, 30, 26]. Worse yet, some of this cost had to be paid even when a program

ran in a single-threaded mode. Currently most manufacturers expose weaker memory

models than SC and provide instructions to enforce SC as needed. In spite of all the

advances in implementation, the performance advantage of weaker models over SC is

enough that the manufacturers are unlikely to give up on weaker memory models any

time soon.

Ideally we want a memory model to have the following properties:

1. Resilience: At the implementation level, the model should permit microarchitec-

tural optimizations such as out-of-order execution, memory dependency specu-

lation and load-value prediction [31, 21, 39, 38].

2. Simple description: The description of Ld and St instructions should be specified

in terms of instantaneous instruction execution (I2E) using monolithic multi-
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ported memory. So far such descriptions exist only for SC and Total Store

Order (TSO).

3. Vendor independent: The memory model, like SC, should not depend upon the

peculiarities of an ISA.

4. Completeness: Model should include read-modify-write, memory fences and

other memory instructions needed to write parallel programs.

1.1 Summary of Contributions

The main contributions of this thesis are:

1. WMM, a new memory model that meets the above goals;

2. A novel technique for describing out-of-order execution using a conceptual de-

vice called invalidation buffer which achieves the effect of out-of-order instruc-

tion execution even when instructions are executed in-order;

3. Formal separation of memory model and cache coherence issues using purely

coherent memory (PCM) abstraction;

4. A preliminary quantitative evaluation that shows that WMM implementation

performs up to 33% and on average 14% better than the aggressive implemen-

tation of SC.

1.2 Thesis Organization

In Chapter 2 we discuss other weak memory models and the techniques used to de-

scribe them. We also survey aggressive implementations of SC. In Chapter 3 we

explain Instantaneous Instruction Execution (I2E) and use it to describe SC and

TSO. WMM is introduced in Chapter 4 where we give its operational semantics, and

explain it further via programming examples. In Chapter 5, we show that WMM

semantics are not violated even under very aggressive out-of-order and speculative
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implementations. In Chapter 6 we separate memory model issues from cache co-

herence. In Chapter 7 we analytically compare WMM against other weak memory

models including Release Consistency and Power. In Chapter 8 we present our prelim-

inary quantitative evaluation of WMM implementation on SPLASH-2x benchmarks

[49, 1, 2] and contrast its performance with SC and TSO implementations with and

without store prefetch. We finally offer some conclusions in Chapter 9.
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Chapter 2

Related Work

2.1 Sequential Consistency

Sequential Consistency (SC) [29] is obviously the most intuitive memory model and

has been used since nineteen sixties, even before the existence of multiprocessors

(see Dijkstra [19]). However naive implementations of SC suffer from poor perfor-

mance because the strong instruction ordering required by SC invalidates almost

all optimizations for uniprocessor designs. Gharachorloo et al. [22] proposed load

speculation and store prefetch to enhance the performance of SC. As the under-

standing of out-of-order and speculative microarchitectures has improved over the

years, researchers have proposed more and more aggressive techniques to preserve SC

[40, 27, 24, 17, 48, 14, 45, 30, 26]. Perhaps because of their hardware complexity

and performance gap, no commercial microprocessor has adopted these techniques.

Manufacturers have chosen instead to present a weaker memory model than SC as

the memory interface.

2.2 Weak Memory Models

During the nineteen nineties a plethora of weak memory models emerged to charac-

terize the memory systems of multiprocessor systems. SPARC architecture manual

[46] specified Total Store Order (TSO), which relaxed the ordering between a younger
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load and an older store, and Partial Store Order (PSO), which further relaxed the

ordering between two stores. Goodman [25] proposed Processor Consistency (PC),

in which "the order of stores by two processors as observed by them and by a third

processor may be different". Dubious et al. [20] defined Weak Consistency (WC),

which required the shared variables in a program to be classified into synchronizing

variables and non-synchronizing variables, and it only enforced ordering with respect

to accesses to synchronizing variables. Gharachorloo et al. [23] presented Release

Consistency (RC), a model closely related to WC but in which synchronization ac-

cesses were further partitioned into acquire and release accesses. Based on the type of

the synchronization access (i.e. acquire or release), RC can further relax the ordering

between the synchronization access and some other accesses. The memory models

of Power [28] and ARM [11] as specified in the manuals were similar to WC, but

orderings were enforced by fences (instead of synchronization accesses). The manual

stated additional conditions such as "dependent loads will not be reordered", and

such conditions have turned out to be both vague and imprecise. The tutorial by

Adve et al. [3] and the tutorial by Maranget et al. [36] provide introductions to and

relationships among above models.

2.3 Describing Memory Models

The lack of clarity in the definition of weak memory models has generated two types

of research efforts to fix the problem. One type of effort has tried to develop a detailed

axiomatic semantics to characterize a specific commercial memory model accurately

[6, 8, 5, 33, 9]. Although the accuracy of the models has improved in the sense it

conforms to empirical observations, often the models themselves have become too

complicated to reason about. The second type of effort has been to describe the

model by specifying its operational semantics [43, 42, 41, 7]. Namely, the model

itself is described as an abstract machine, and the legal behaviors of the memory

model had to be observable by executing programs on this abstract machine. The

success of this approach depends upon the simplicity of the abstract machine. For
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example, the abstract machine for x86 includes a store buffer and results in an easy-

to-understand semantics [43]. In fact, Owens et al. prove the equivalence of the

axiomatic and operational semantics of TSO [37]. We also define the semantics of

WMM in a similar way by introducing a novel conceptual device called invalidation

buffer.

Instead of describing memory models directly, Adve et al. [4] define a synchroniza-

tion model called Data-Race-Free-0 (DRF0), which software programs should obey.

In their proposal, the behavior of such programs is contained in SC. However, the

model cannot specify the behavior of programs that do not obey DRF0. Our se-

mantics do not require any labelling of memory access and is valid for all programs

including the pathological ones.

A large amount of research has also been devoted to specifying and formalizing

the memory models of high level languages: C++ [15, 13], Java [35, 16, 34], etc.

This remains an active area of research because a widely accepted memory model for

high-level parallel programming is yet to emerge.

There are also several other proposals on weak memory models: Shen et al. [44]

introduce a model called Commit-Reconcile & Fences (CRF), in which loads and

stores affect only the local cache, and Commit and Reconcile instructions are used to

control the movement of values between local caches and the global memory. Arvind

and Maessen [12] propose a weak memory model which is a combination of instruction

reordering and monolithic memory. It specifies precise conditions for preserving store

atomicity in program execution even when instruction reordering is permitted. In

contrast, the WMM model presented in this thesis does not insist on the atomicity

of stores at the program level.
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Chapter 3

Defining Memory Models

We will model multiprocessor systems as shown in Figure 3-1 to define memory mod-

els. The state of the system with 𝑛 processors is defined as ⟨𝑝𝑠,𝑚⟩, where 𝑚 is

an 𝑛-ported monolithic memory which is connected to the 𝑛 processors and 𝑝𝑠[𝑖]

(𝑖 = 1 . . . 𝑛) represents the state of the 𝑖𝑡ℎ processor. Each processor contains a reg-

ister state 𝑠, which represents all architectural registers, including both the general

purpose registers and special purpose registers, such as PC. Specific memory models

may add additional state elements, e.g. a store buffer, to each processor.

Figure 3-1: General model structure

3.1 Abstracting the Instruction Set

Memory model is always part of the ISA. However, we want our definitions of the

memory models to be as generic as possible. For this reason, we introduce the concept

of decoded instruction set (DIS). A decoded instruction contains all the information
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of an instruction after it has been decoded and has read all source registers. To begin

with our DIS has the following three instructions.

∙ ⟨Nm, 𝑜𝑝, 𝑟𝑒𝑔𝑠⟩: instructions that do not access memory, such as ALU or branch

instructions. 𝑜𝑝 is the type of operation performed by the instruction, and

𝑟𝑒𝑔𝑠 represents all the necessary source register values and destination register

names.

∙ ⟨Ld, 𝑎, 𝑑𝑠𝑡⟩: a load that reads memory address 𝑎 and updates the destination

register 𝑑𝑠𝑡.

∙ ⟨St, 𝑎, 𝑣⟩: a store that writes value 𝑣 to memory address 𝑎.

Later we will extend the DIS with fence and atomic read-modify-write instructions

as needed.

Next we explain how we get to decoded instructions from the source or raw in-

structions.

3.1.1 Instantaneous Instruction Execution (I2E)

To define memory models we restrict ourselves to the I2E model where each instruction

is executed instantaneously and the register state of each processor is by definition

always up-to-date. Therefore we can define the following two methods to manipulate

the register state 𝑠 of a processor:

∙ decode(): fetches the next raw instruction and returns the corresponding de-

coded instruction based on the current register state 𝑠.

∙ execute(𝑑𝐼𝑛𝑠, 𝑙𝑑𝑅𝑒𝑠): updates the register state 𝑠 (e.g. by writing destination

registers and incrementing PC) according to the current decoded instruction

𝑑𝐼𝑛𝑠. The Ld instruction requires a second argument 𝑙𝑑𝑅𝑒𝑠 which should be

the loaded value.

One limitation of I2E is that it cannot be used to describe the semantics of an in-

struction set where the meaning of an instruction may depend upon a future store
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instruction. The memory models we discuss do not permit stores to overtake loads

in execution.

After introducing our notation for operational semantics, we will give I2E defini-

tions of SC and TSO, and follow it by introducing our weak memory model WMM

in Chapter 4.

3.2 Operational Semantics

The operational semantics is a set of rules that describe how the state of the processor

and memory evolves as execution progresses. Each rule takes the following form:

𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠 (𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒)

𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝑡𝑜 𝑚𝑜𝑑𝑖𝑓𝑦 𝑡ℎ𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒)

If all 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒𝑠 of a rule are satisfied then it can fire and atomically update model

states according to the specified 𝑎𝑐𝑡𝑖𝑜𝑛𝑠.

A predicate is either a when statement or a pattern matching statement. For

example, when(𝑏.empty()) means that the rule requires buffer 𝑏 to be empty in order

to fire. The pattern matching statement has the following form:

𝑝𝑎𝑡𝑡𝑒𝑟𝑛 = 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

For example, if we want to match the instruction returned by the decode() method

to be a Nm instruction, we can write ⟨Nm, 𝑜𝑝, 𝑟𝑒𝑔𝑠⟩ = 𝑝𝑠[𝑖].𝑠.decode(). Free variables

𝑜𝑝 and 𝑟𝑒𝑔𝑠 will be assigned to appropriate values if the matching is successful.

We use "⇐" to assign a new value to a state, and use semicolon ";" to separate

statements written on the same line. If multiple rules can fire then our semantic

model selects any one of those rules to execute. The final outcome may depend on

the choice of rule selection, i.e. the rules are not necessarily "confluent".

To better understand the notation introduced above, we use it to specify two

well-known strong memory models, i.e. SC and TSO.
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3.3 SC Model

In SC model, a processor contains only the register state 𝑠. The operational semantics

of SC is shown in Figure 3-2. The three rules correspond to the instantaneous exe-

cution of the three types of decoded instructions. In each rule, the decode() method

first fetches and decodes a new instruction, and then the instruction is immediately

executed and committed. Loads and stores in SC directly access the monolithic mem-

ory. For example, the SC-Ld rule executes a load by reading the monolithic memory.

The three rules are disjoint, i.e. only one of them can be ready to fire. However, in a

multi-processor setting there is still a choice regarding which processor we select for

execution. The order of firing rules gives a total order of all loads and stores that is

consistent with the program order on each processor. Even though SC permits dif-

ferent global Load-Store reorderings, it can be shown formally that reordering loads

and stores on a single processor can take us out of the set of permitted behaviors.

SC-Nm rule (Nm execution).

⟨Nm, 𝑜𝑝, 𝑟𝑒𝑔𝑠⟩ = 𝑝𝑠[𝑖].decode()

𝑝𝑠[𝑖].𝑠.execute(⟨Nm, 𝑜𝑝, 𝑟𝑒𝑔𝑠⟩)

SC-Ld rule (Ld execution).

⟨Ld, 𝑎, 𝑑𝑠𝑡⟩ = 𝑝𝑠[𝑖].decode()

𝑝𝑠[𝑖].𝑠.execute(⟨Ld, 𝑎, 𝑑𝑠𝑡⟩,𝑚[𝑎])

SC-St rule (St execution).

⟨St, 𝑎, 𝑣⟩ = 𝑝𝑠[𝑖].decode()

𝑝𝑠[𝑖].𝑠.execute(⟨St, 𝑎, 𝑣⟩); 𝑚[𝑎]⇐ 𝑣

Figure 3-2: SC operational semantics

3.4 TSO Model

Figure 3-3 shows the states and structure of TSO model. In addition to register

state 𝑠, each processor now contains a store buffer 𝑠𝑏. 𝑠𝑏 is an unbounded buffer of

⟨address, value⟩ pairs, each representing a pending store. The following methods are
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defined on 𝑠𝑏:

∙ empty(): returns True when 𝑠𝑏 is empty.

∙ exist(𝑎): returns True if address 𝑎 is present in 𝑠𝑏.

∙ getYoungest(𝑎): returns the store data of the youngest store to address 𝑎 in 𝑠𝑏.

∙ enq(𝑎, 𝑣): enqueues the ⟨address, value⟩ pair ⟨𝑎, 𝑣⟩ into 𝑠𝑏.

∙ deq(): deletes the oldest store from 𝑠𝑏, and returns its ⟨address, value⟩ pair.

Notice that the above deq() method not only updates the state of 𝑠𝑏, but also returns

a value. For this kind of action-value method, we use "←" to assign its return value

to a free variable. For example, ⟨𝑎, 𝑣⟩ ← 𝑠𝑏.deq() assigns the return value of deq() to

pair ⟨𝑎, 𝑣⟩.

Figure 3-3: TSO model structure

In order to enforce instruction ordering in accessing the newly added store buffer,

we extend our instruction set with the memory fence instruction called Commit which

flushes the local store buffer.

Figure 3-4 shows the operational semantics of TSO. The first four rules are instan-

taneous execution of four types of decoded instructions, while the last rule handles

the interaction between the store buffer and the monolithic memory.

According to the TSO-Ld rule, Ld 𝑎 first tries to read the youngest store to address

𝑎 in the local store buffer, and if 𝑠𝑏 does not contain 𝑎 then it reads the monolithic

memory 𝑚. TSO adds new behavior to SC because buffering stores in 𝑠𝑏 essentially
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TSO-Nm rule (Nm execution).

⟨Nm, 𝑜𝑝, 𝑟𝑒𝑔𝑠⟩ = 𝑝𝑠[𝑖].decode()

𝑝𝑠[𝑖].𝑠.execute(⟨Nm, 𝑜𝑝, 𝑟𝑒𝑔𝑠⟩)

TSO-Ld rule (Ld execution).

⟨Ld, 𝑎, 𝑑𝑠𝑡⟩ = 𝑝𝑠[𝑖].decode()
𝑣 = if 𝑝𝑠[𝑖].𝑠𝑏.exist(𝑎) then 𝑝𝑠[𝑖].𝑠𝑏.getYoungest(𝑎)

else 𝑚[𝑎]

𝑝𝑠[𝑖].𝑠.execute(⟨Ld, 𝑎, 𝑑𝑠𝑡⟩, 𝑣)

TSO-St rule (St execution).

⟨St, 𝑎, 𝑣⟩ = 𝑝𝑠[𝑖].decode()

𝑝𝑠[𝑖].𝑠.execute(⟨St, 𝑎, 𝑣⟩); 𝑝𝑠[𝑖].𝑠𝑏.enq(𝑎, 𝑣)

TSO-Com rule (Commit execution).

⟨Commit⟩ = 𝑝𝑠[𝑖].decode(); when(𝑝𝑠[𝑖].𝑠𝑏.empty())

𝑝𝑠[𝑖].𝑠.execute(⟨Commit⟩)

TSO-DeqSb rule (dequeue store buffer).

when(¬𝑝𝑠[𝑖].𝑠𝑏.empty())

⟨𝑎, 𝑣⟩ ← 𝑝𝑠[𝑖].𝑠𝑏.deq(); 𝑚[𝑎]⇐ 𝑣

Figure 3-4: TSO operational semantics

allows a load to be executed before an older store accesses the monolithic memory.

Namely, TSO permits a load to overtake a store. The Commit instruction forces older

stores to be flushed from store buffer into monolithic memory before any following

instructions can execute. It should be noted that store atomicity [12] is broken at

program level due to the store buffer even though all accesses on the monolithic

memory are atomic.

Enable Store-Store reordering: We can introduce Store-Store reordering in TSO

to form the related model known as Partial Store Order (PSO)1. Only the TSO-DeqSb

rule should be changed such that the store buffer can commit the oldest store of any

address, instead of the oldest one of all stores, to the monolithic memory. Specifically,

we use the following two methods instead of deq() to delete entries from store buffer

𝑠𝑏:

1The PSO model described here is somewhat different from SPARC PSO [46, 47] regarding fences.
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∙ getAnyAddr(): returns any store address present in 𝑠𝑏. If 𝑠𝑏 is empty, it returns

𝜖.

∙ removeOldest(𝑎): deletes the oldest store to address 𝑎 from 𝑠𝑏, and returns its

store data.

Thus we can dequeue stores for different addresses from the same store buffer to

monolithic memory out of order, namely reordering stores. The substitute of the

TSO-DeqSb rule is the PSO-DeqSb rule shown in Figure 3-5

PSO-DeqSb rule (dequeue store buffer).

𝑎 = 𝑝𝑠[𝑖].𝑠𝑏.getAnyAddr(); when(𝑎 ̸= 𝜖)

𝑣 ← 𝑝𝑠[𝑖].𝑠𝑏.removeOldest(𝑎); 𝑚[𝑎]⇐ 𝑣

Figure 3-5: Rule for dequeuing store buffer in PSO

Comparing operational semantics and reordering axioms: I2E operational

semantics with monolithic memory simply and accurately define a memory model

and one can prove all the reordering axioms induced by the operational semantics.

The converse is not true, given a set of reordering axioms it is quite difficult to know if

all the relevant aspects of the operational semantics have been captured. For example,

the reordering axiom of TSO (i.e. loads overtaking stores) cannot capture the subtlety

in TSO operational semantics that a load may bypass data from the older store to

the same address even if it overtakes the store. A lot of difficulty in understanding

weak memory models arises from their complex axiomatic descriptions.
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Chapter 4

WMM Model

WMM, the weak memory model we are proposing, additionally allows Load-Load

reordering compared to PSO. Despite the new reordering, we still want to describe

WMM using I2E and monolithic memory for simplicity and independence of vendors.

When two loads appear to be reordered, the younger one should read a stale value

when it is executed in the I2E description. To model this behavior, we introduce

a conceptual device called invalidation buffer to each processor, which holds stale

values observable by the processor.

4.1 Structure of WMM

Figure 4-1: WMM model structure

The structure and states of WMM are shown in Figure 4-1. The change from PSO

to WMM is to add an invalidation buffer 𝑖𝑏 to each processor. 𝑖𝑏 is an unbounded
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buffer of ⟨address, value⟩ pairs, each representing a stale memory value for an address

that can be observed by the processor. The following methods are defined on 𝑖𝑏:

∙ insert(𝑎, 𝑣): inserts ⟨address, value⟩ pair ⟨𝑎, 𝑣⟩ into 𝑖𝑏.

∙ getRand(𝑎,𝑚): returns either a random stale value for address 𝑎 present in 𝑖𝑏

or monolithic memory value 𝑚[𝑎]. The choice is arbitrary.

∙ clear(): removes all contents from 𝑖𝑏 to make it empty.

∙ removeAddr(𝑎): removes all (stale) values for address 𝑎 from 𝑖𝑏.

The insert function is used to store stale values into 𝑖𝑏, and the getRand function

allows loads to access stale values and get reordered with older instructions. The

clear and removeAddr functions are called when ordering needs to be enforced.

Similar to the introduction of Commit fences in TSO, we extend our instruction set

with the memory fence instruction called Reconcile, which flushes the local invalidation

buffer (i.e. invoke 𝑖𝑏.clear()), to enforce ordering by preventing younger loads from

accessing stale values.

4.2 Operational Semantics of WMM

Figure 4-2 shows the operational semantics of WMM. The first five rules describe

the instantaneous execution of the decoded instructions, while the last one commits

stores from store buffer to the monolithic memory.

According to the WMM-Ld rule, a load first attempts to read from the local store

buffer in the same way as TSO-Ld rule does. If this attempt fails, the load reads

either a random stale value for address 𝑎 from the local invalidation buffer or the

monolithic memory 𝑚[𝑎]. The stale value from the invalidation buffer enables the

load to be reordered with older instructions. The choice between invalidation buffer

and monolithic memory is arbitrary in order to enable reordering of loads on the same

address, which will be discussed in detail in Chapter 5.1. In the WMM-Rec rule, the

Reconcile fence flushes the invalidation buffer.
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WMM-Nm rule (Nm execution).

⟨Nm, 𝑜𝑝, 𝑟𝑒𝑔𝑠⟩ = 𝑝𝑠[𝑖].decode()

𝑝𝑠[𝑖].𝑠.execute(⟨Nm, 𝑜𝑝, 𝑟𝑒𝑔𝑠⟩)

WMM-Ld rule (Ld execution).

⟨Ld, 𝑎, 𝑑𝑠𝑡⟩ = 𝑝𝑠[𝑖].decode()
𝑣 = if 𝑝𝑠[𝑖].𝑠𝑏.exist(𝑎) then 𝑝𝑠[𝑖].𝑠𝑏.getYoungest(𝑎)

else 𝑝𝑠[𝑖].𝑖𝑏.getRand(𝑎,𝑚)

𝑝𝑠[𝑖].𝑠.execute(⟨Ld, 𝑎, 𝑑𝑠𝑡⟩, 𝑣)

WMM-St rule (St execution).

⟨St, 𝑎, 𝑣⟩ = 𝑝𝑠[𝑖].decode()

𝑝𝑠[𝑖].𝑠.execute(⟨St, 𝑎, 𝑣⟩); 𝑝𝑠[𝑖].𝑠𝑏.enq(𝑎, 𝑣)

WMM-Com rule (Commit execution).

⟨Commit⟩ = 𝑝𝑠[𝑖].decode(); when(𝑝𝑠[𝑖].𝑠𝑏.empty())

𝑝𝑠[𝑖].𝑠.execute(⟨Commit⟩)

WMM-Rec rule (Reconcile execution).

⟨Reconcile⟩ = 𝑝𝑠[𝑖].decode()

𝑝𝑠[𝑖].𝑖𝑏.clear(); 𝑝𝑠[𝑖].𝑠.execute(⟨Reconcile⟩)

WMM-DeqSb rule (dequeue store buffer).

𝑎 = 𝑝𝑠[𝑖].𝑠𝑏.getAnyAddr(); 𝑜𝑙𝑑𝑉 = 𝑚[𝑎]; when(𝑎 ̸= 𝜖)

𝑝𝑠[𝑖].𝑖𝑏.removeAddr(𝑎); 𝑣 ← 𝑝𝑠[𝑖].𝑠𝑏.removeOldest(𝑎); 𝑚[𝑎]⇐ 𝑣
∀𝑗 ̸= 𝑖. 𝑝𝑠[𝑗].𝑖𝑏.insert(𝑎, 𝑜𝑙𝑑𝑉 )

Figure 4-2: WMM operational semantics

The WMM-DeqSb rule removes the oldest store for any address from store buffer

and commits it to monolithic memory. It also performs two other actions simulta-

neously: remove all stale values for address 𝑎 from the local invalidation buffer and

insert the original memory value in 𝑚[𝑎] into the invalidation buffers of all other pro-

cessors. Removing the stale values for 𝑎 from the local invalidation buffer is essential

to maintain the correctness of the single-threaded execution. Insertion of the stale

𝑚[𝑎] value in other invalidation buffers allows Ld 𝑎 in other processors to effectively

get reordered with older instructions.
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4.3 Reordering Axioms of WMM

WMM executes instructions instantaneously and in order. However, because of store

buffers (𝑠𝑏) and invalidation buffers (𝑖𝑏), processor 𝑗 can see the effect of loads and

stores on some processor 𝑖 (𝑖 ̸= 𝑗) in a different order than the program order on

processor 𝑖. We explain the reorderings permitted by the definition of WMM using

examples.

Example: mutual exclusion. Figure 4-3 shows the kernel of Dekker’s algorithm,

which guarantees mutual exclusion by ensuring registers 𝑟1 and 𝑟2 cannot both be

zero after the program finishes. If no reordering were allowed, this invariant would

obviously hold. Now consider the following scenario in WMM, in which both stores

(𝐼1 and 𝐼3) are executed but stay in store buffers (not committed to memory) and

then following loads (𝐼2 and 𝐼4) are executed. In this case, the memory values of both

𝑎 and 𝑏 would be zero. It is as if the load overtook the older store on both processors.

We can force the stores to be performed before the following loads by inserting

Commit fences (𝐼5 and 𝐼7 in Figure 4-4). However, the stale values of 𝑎 and 𝑏 will

show up in the invalidation buffers, and can be read by subsequent loads. Basically,

the program will behave as if the load overtook the preceding Commit fence and store

on both processors.

If we want to prevent this reordering, we also need to insert Reconcile fences (𝐼6

and 𝐼8 in Figure 4-4). Once these fences are inserted, the invariant will be restored.

This implies that a load cannot overtake a Reconcile fence.

Example: message passing. A popular paradigm in programming is to signal an

event by writing a shared variable as shown in Figure 4-5. P1 writes data 100 to

addresses 𝑎, and then signals P2 that the data has been written by setting a flag at

address 𝑓 to 1. P2 waits for the value of 𝑓 to change and then reads the data. Due

to the store buffer in P1, the flag may be written to the monolithic memory before

the data is written, and P2 will not see the new data. It is as if the two stores on P1

are reordered. A Commit after data write (𝐼6 in Figure 4-6) will force the data to be

committed to memory, namely forbidding the reordering of stores on P1. However,
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Initial: 𝑚[𝑎] = 0, 𝑚[𝑏] = 0

Processor P1 Processor P2
𝐼1 : St 𝑎 1 𝐼3 : St 𝑏 1
𝐼2 : 𝑟1 = Ld 𝑏 𝐼4 : 𝑟2 = Ld 𝑎

Forbidden: 𝑟1 = 0 ∧ 𝑟2 = 0

Figure 4-3: Dekker’s algorithm in SC

Initial: 𝑚[𝑎] = 0, 𝑚[𝑏] = 0

Processor P1 Processor P2
𝐼1 : St 𝑎 1 𝐼3 : St 𝑏 1
𝐼5 : Commit 𝐼7 : Commit
𝐼6 : Reconcile 𝐼8 : Reconcile
𝐼2 : 𝑟1 = Ld 𝑏 𝐼4 : 𝑟2 = Ld 𝑎

Forbidden: 𝑟1 = 0 ∧ 𝑟2 = 0

Figure 4-4: Dekker’s algorithm in WMM

Initial: 𝑚[𝑎] = 0, 𝑚[𝑓 ] = 0

Processor P1 Processor P2
𝐼1 : St 𝑎 100 𝐼3 : 𝑟1 = Ld 𝑓
𝐼2 : St 𝑓 1 𝐼4 : if (𝑟1 ̸= 1)

goto 𝐼3
𝐼5 : 𝑟2 = Ld 𝑎

Forbidden: 𝑟2 = 0

Figure 4-5: Message passing in SC

Initial: 𝑚[𝑎] = 0, 𝑚[𝑓 ] = 0

Processor P1 Processor P2
𝐼1 : St 𝑎 100 𝐼3 : 𝑟1 = Ld 𝑓
𝐼6 : Commit 𝐼4 : if (𝑟1 ̸= 1)
𝐼2 : St 𝑓 1 goto 𝐼3

𝐼7 : Reconcile
𝐼5 : 𝑟2 = Ld 𝑎

Forbidden: 𝑟2 = 0

Figure 4-6: Message passing in WMM

Initial: 𝑚[𝑎] = 0, 𝑚[𝑏] = 0

Processor P1 Processor P2
𝐼1 : 𝑟1 = Ld 𝑏 𝐼3 : 𝑟2 = Ld 𝑎
𝐼2 : St 𝑎 1 𝐼4 : St 𝑏 1

Forbidden: 𝑟1 = 1 ∧ 𝑟2 = 1

Figure 4-7: Load buffering in WMM

P2 may still see stale data in the invalidation buffer, and the program behaves as if

the two loads on P2 are reordered. To make sure that P2 reads data from memory,

it must execute a Reconcile (𝐼7 in Figure 4-6) before reading the data.

Example: load buffering. Figure 4-7 shows the load buffering example, which is

the dual of Dekker’s algorithm. In WMM, P1 will execute 𝐼1 before 𝐼2 writes the

monolithic memory, and P2 will execute 𝐼3 before 𝐼4 writes the monolithic memory.

Therefore, it is impossible for both 𝐼1 and 𝐼3 to read from stores. This implies that

WMM prohibits the reordering of stores overtaking loads. In fact, such reordering

is not expressible in I2E models, because by definition we cannot see the effects of

stores yet to be executed.
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4.3.1 Summarizing Reordering Axioms

By studying above examples, we can summarize the following axioms on instruction

reordering in WMM:

1. Loads can overtake loads, stores and Commit fences, but cannot overtake any

Reconcile fence.

2. Stores can only overtake stores.

The second axiom is easy to see. To better illustrate the first axiom, we can consider

simple programs without control or data dependency. In case of such programs, the

following lemma shows the possible reorderings of loads in WMM.

Lemma 1. For any program 𝑃 , which only contains fences (i.e. Commit and Reconcile)

and memory access instructions (i.e. Ld and St) with fixed load/store addresses and

store data, reordering a Ld instruction with its direct predecessor, which is neither a

Reconcile fence nor a St instruction to the same address, will not generate any new

result in the WMM model.

Proof. Assume 𝑃 contains two consecutive instructions 𝐼1 and 𝐼2 on processor 𝑝𝑠[𝑖],

and 𝐼2 follows 𝐼1. Specifically, 𝐼2 is a Ld to address 𝑎, while 𝐼1 is neither a Reconcile

fence nor a St to address 𝑎. After reordering 𝐼1 and 𝐼2, we can get a new program

𝑃 ′. Our goal is to prove that any result 𝑅 of 𝑃 ′ is also a result of 𝑃 in WMM. Here

"result" refers to the return value of each load as well as the final memory states.

First of all, there must be a sequence of rules 𝐸 ′ to run program 𝑃 ′ and get result

𝑅. The guideline is to construct another sequence of rules 𝐸, which can run program

𝑃 to get result 𝑅, based on 𝐸 ′. We assume that 𝑟2 is the WMM-Ld rule in 𝐸 ′ to

execute 𝐼2, and 𝑟1 is the rule in 𝐸 ′ to execute 𝐼1. We further assume 𝑥 is the load

result of 𝐼2 in 𝐸 ′.

The construction of 𝐸 is simply to reschedule 𝑟2 to fire right after 𝑟1 in 𝐸 ′. It is

obvious that the behaviors of all rules other than 𝑟2 in 𝐸 are the same as those in 𝐸 ′.

Thus we only need to consider whether 𝑟2 can still get data 𝑥 in 𝐸. We can perform

a case analysis on where 𝑟2 gets data 𝑥 in 𝐸 ′.
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We first consider the case that 𝑟2 gets it from store buffer 𝑝𝑠[𝑖].𝑠𝑏 in 𝐸 ′. Since the

store forwarding 𝑥 to 𝐼2 in 𝐸 ′ must be the youngest store to address 𝑎 in 𝑝𝑠[𝑖].𝑠𝑏 and

𝐼1 is not a Reconcile fence, this value 𝑥 must be in store buffer 𝑝𝑠[𝑖].𝑠𝑏 or monolithic

memory 𝑚[𝑎] or invalidation buffer 𝑝𝑠[𝑖].𝑖𝑏 after 𝑟1 fires in 𝐸. Therefore 𝑟2 in 𝐸 can

still get value 𝑥.

As for other cases where 𝑟2 reads 𝑥 from monolithic memory or 𝑝𝑠[𝑖].𝑖𝑏 in 𝐸 ′, we

can use similar arguments to show that 𝑟2 in 𝐸 still gets data 𝑥.

It is interesting to note that the operational semantics of WMM capture the

effects of instruction reordering without ever requiring instructions to be executed

out-of-order. Later on we will show how WMM can be implemented using standard

reorder buffers and store buffers without any need for the invalidation buffer. In fact,

invalidation buffer is simply an abstraction to model out-of-order execution.

4.4 Synchronization Instructions

Processors often provide special instructions to implement synchronization efficiently.

The most common instructions fall into two categories: atomic read-modify-write and

load-linked/store-conditional (LL/SC) pair. Here we only show how to extend WMM

to include read-modify-write instructions. The LL/SC pair can be incorporated in a

similar way.

A read-modify-write instruction ⟨RMW, 𝑎, 𝑓, 𝑥, 𝑑𝑠𝑡⟩ may be described as follows.

It first reads address 𝑎 to get value 𝑣, then writes 𝑓(𝑣, 𝑥) back into 𝑚[𝑎], and finally

updates the 𝑑𝑠𝑡 register using 𝑣. For example, the XCHG instruction in x86 exchanges

register and memory values, which corresponds to function 𝑓(𝑣, 𝑥) returning 𝑥 (i.e.

the original register value). And the LOCK XADD instruction in x86 fetches and adds

to a memory location, which corresponds to 𝑓(𝑣, 𝑥) returning 𝑣 + 𝑥.

The additional rule to execute RMW is shown in Figure 4-8. We need to recognize

that memory read and write must be performed in the monolithic memory, so address

𝑎 cannot be in the store buffer. Similar to the WMM-DeqSb rule, we removes all stale
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values of address 𝑎 from the local invalidation buffer, and insert the stale 𝑚[𝑎] into

the invalidation buffers of all other processors

WMM-RMW rule (RMW execution).

⟨RMW, 𝑎, 𝑓, 𝑥, 𝑑𝑠𝑡⟩ = 𝑝𝑠[𝑖].𝑠.decode(); 𝑣 = 𝑚[𝑎]
when(¬𝑝𝑠[𝑖].𝑠𝑏.exist(𝑎))

𝑝𝑠[𝑖].𝑠.execute(⟨RMW, 𝑎, 𝑓, 𝑥, 𝑑𝑠𝑡⟩, 𝑣); 𝑚[𝑎]⇐ 𝑓(𝑣, 𝑥)
𝑝𝑠[𝑖].𝑖𝑏.removeAddr(𝑎); ∀𝑗 ̸= 𝑖. 𝑝𝑠[𝑗].𝑖𝑏.insert(𝑎, 𝑣)

Figure 4-8: Rule for execution of RMW in WMM

4.5 Well-synchronized Programs

In well-synchronized programs, the critical section is protected by locks. In order to

run such programs in WMM, we only need to add a Reconcile fence after acquiring

the lock and a Commit fence before releasing the lock. The general procedure is:

acquire lock → Reconcile fence → critical section → Commit fence → release lock

Figure 4-9 shows an implementation of LOCK() and UNLOCK() functions for a spin

lock in WMM. Here input argument 𝑎 is the memory address of the lock variable. If

the lock variable is equal to 0, then the lock is free. Otherwise the lock is held by

some thread.

LOCK(𝑎)
𝐼1: 𝑟1 = 1
𝐼2: XCHG 𝑎 𝑟1
𝐼3: if (𝑟1 ̸= 0) goto 𝐼2
𝐼4: Reconcile

UNLOCK(𝑎)
𝐼5: Commit
𝐼6: St 𝑎 0

Figure 4-9: Spin lock implementation for WMM

In the LOCK() function, 𝐼2 and 𝐼3 are spinning to acquire the lock. After getting

the lock, the Reconcile fence at 𝐼4 prevents loads in the following critical section from

reading stale memory values which have been overwritten before lock acquirement.

In the UNLOCK() function, the store in 𝐼6 just releases the lock. The Commit

fence at 𝐼5 ensures that all stores in the above critical section have been committed

to monolithic memory before 𝐼6 releases the lock.
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Chapter 5

WMM Processor Implementation

In the definition of WMM, we have used the invalidation buffer as a convenient way of

modelling out-of-order execution, and have used monolithic memory as an abstraction

of real memory system. In spite of these conceptual devices in the definition, WMM

implementation can be built with the conventional reorder buffer (ROB), store buffer

and coherent memory hierarchy. We will show that the implementation will not

step beyond WMM even with the most aggressive optimizations such as load-value

prediction.

5.1 Reorder Buffer (ROB)

If we are not concerned with fences, the WMM multi-processor can directly use the

ROB of the most aggressive uniprocessor implementation. In other words, WMM

implementation can issue a load as soon as the load address is known, even if the

address is a predicted value. Moreover, it does not need any additional logic to keep

track of the accessed memory location after the load returns, such as monitoring L1

cache eviction. Due to the in-order execution property of WMM, we only consider

ROBs that commit instructions in order. We refer to the slot containing the oldest

instruction in ROB as the commit slot.

The major operations of an ROB are committing stores to the store buffer, and

executing loads. Both operations can be related to the rules in WMM. The commit
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of a store corresponds to the WMM-St rule. The relation between a load execution

and the WMM-Ld rule depends on how the load in ROB gets its value:

∙ If the load in ROB bypasses from a store, which has not written the memory

when the load commits, the load execution corresponds to bypassing from store

buffer in the WMM-Ld rule.

∙ If the load in ROB bypasses from a store, which has written the memory before

the load commits and the memory location is never overwritten afterwards until

the load commits, the load execution corresponds to reading monolithic memory

in the WMM-Ld rule.

∙ If the load in ROB reads from memory and the memory location is never over-

written afterwards until the load commits, the load execution also corresponds

to reading monolithic memory in the WMM-Ld rule.

∙ In all other cases, the load reads a stale value as compared to the memory

value when the load commits, so the execution corresponds to accessing the

invalidation buffer in the WMM-Ld rule.

The above relation shows that WMM implementation can use a uniprocessor ROB.

To better illustrate the resilience of WMM, we study three subtle non-SC behaviors

induced by the microarchitectural optimizations in ROB, and we will show all these

behaviors are allowed by WMM.

Memory dependency speculation: Figure 5-1 shows a non-SC behavior induced

by memory dependency speculation. In implementation, 𝐼1 must have written mem-

ory before 𝐼3 is inserted to the store buffer, because 𝐼2 reads the store data of 𝐼1. If

P3 stalls 𝐼6 until 𝐼5 resolves its store address to avoid potential memory dependency

violation, 𝐼6 can never return the stale value 0 of 𝑎. However, with memory depen-

dency speculation, P3 can issue 𝐼6 to memory without knowing whether the store

address of 𝐼5 is the same as the load address of 𝐼6. Thus 𝐼6 can get the stale value

0 of 𝑎 even before 𝐼4 is issued. This behavior is allowed by WMM, because 𝐼6 can

access the stale value 0 of 𝑎 from the invalidation buffer.
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Load-value prediction: Figure 5-2 shows another non-SC behavior which is the

result of load-value prediction. If there were no load-value prediction in implementa-

tion, the load address of 𝐼5 would remain unknown until 𝐼4 returned from memory, so

𝐼5 would have to get the up-to-date value 1 of 𝑎. However, with load-value prediction,

P3 can predict the load result of 𝐼4 to be 1 so as to issue 𝐼5 to memory even before 𝐼4

is issued, and 𝐼5 will get the stale value 0 of 𝑎. After 𝐼4 finally returns from memory,

P3 verifies the correctness of the load-value prediction on 𝐼4, and the result of 𝐼5 can

be kept. This behavior is also allowed by WMM, because 𝐼5 can access the stale value

0 of 𝑎 from the invalidation buffer.

Reordering loads to the same address: In uniprocessor, a load only needs to

observe the dependency on earlier stores to the same address, so the ROB can issue

loads for the same address out of order. This leads to the non-SC behavior shown in

Figure 5-3, where P2 issues 𝐼3 before 𝐼2.

This behavior is still allowed by WMM since the WMM-Ld rule can make arbitrary

choice between the monolithic memory and invalidation buffer. Specifically, 𝐼1 first

modifies monolithic memory and inserts the stale value into P2’s invalidation buffer.

Then 𝐼2 reads the up-to-date value from monolithic memory without flushing the

invalidation buffer, and finally 𝐼3 reads the stale value from the invalidation buffer.

Fence implementation: Fences in WMM can also be easily implemented in the

ROB design. The Commit fence is the same as a NOP instruction except that it

cannot be committed from ROB until all older stores on this processor have been

committed to the coherent memory. The Reconcile fence is also similar to a NOP

instruction. The difference is that the Reconcile fence will stall all younger loads,

which cannot bypass from stores younger than the fence, from execution. Neither the

Commit nor Reconcile fence gets into the store buffer or coherent memory.

5.2 Store Buffer

The store buffer holds stores, which have been committed by the ROB but are not yet

committed to the coherent memory. Since WMM allows the reordering of stores, the
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Initial: 𝑚[𝑎] = 0, 𝑚[𝑏] = 0, 𝑚[𝑐] = 0

Processor P1 Processor P2 Processor P3
𝐼1 : St 𝑎 1 𝐼2 : 𝑟1 = Ld 𝑎 𝐼4 : 𝑟2 = Ld 𝑏

𝐼3 : St 𝑏 1 𝐼5 : St (𝑟2 + 𝑐− 1) 1
𝐼6 : 𝑟3 = Ld 𝑎

Allowed: 𝑟1 = 1 ∧ 𝑟2 = 1 ∧ 𝑟3 = 0

Figure 5-1: Behavior by memory dependency speculation

Initial: 𝑚[𝑎] = 0, 𝑚[𝑏] = 0

Processor P1 Processor P2 Processor P3
𝐼1 : St 𝑎 1 𝐼2 : 𝑟1 = Ld 𝑎 𝐼4 : 𝑟2 = Ld 𝑏

𝐼3 : St 𝑏 1 𝐼5 : 𝑟3 = Ld (𝑟2 + 𝑎− 1)

Allowed: 𝑟1 = 1 ∧ 𝑟2 = 1 ∧ 𝑟3 = 0

Figure 5-2: Behavior by load-value prediction

Initial: 𝑚[𝑎] = 0

Processor P1 Processor P2
𝐼1 : St 𝑎 1 𝐼2 : 𝑟1 = Ld 𝑎

𝐼3 : 𝑟2 = Ld 𝑎

Allowed: 𝑟1 = 1 ∧ 𝑟2 = 0

Figure 5-3: Behavior by reordering loads to the same address

store buffer in WMM implementation can merge stores for the same cache line, and

can commit stores for different addresses to memory out of order. The interaction

between the store buffer and the L1 cache is quite subtle, and we leave the discussion

to Chapter 6.

It should be noted that the store buffer in the WMM model is private to each

logical processor. A multithreaded WMM processor will violate the model if every

entry of the store buffer can be accessed by all threads sharing the physical core. To

avoid such violation, we need to tag thread IDs to stores in the shared store buffer to

prevent a thread from accessing stores of any other threads.
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Chapter 6

Separating Memory Model from

Cache Coherence

The interaction between processors and memory system varies across implementa-

tions, which complicates the reasoning about whether an implementation conforms

to a certain memory model. To simplify the reasoning, we will re-draw the boundary

between processors and memory so that the memory is only responsible for coherence

while processors are fully responsible for ordering memory accesses to ensure compli-

ance with the memory model. We refer to the memory system after the new partition

as purely coherent memory (PCM) and show how existing implementations can be

logically partitioned to take advantage of PCM for reasoning about memory model

issues.

6.1 Specification of PCM

A high-performance memory system is always pipelined, i.e. handles many requests

concurrently, while our monolithic memory in I2E definitions does not. Furthermore,

the order in which a memory system processes requests is either not visible to or can-

not be relied upon by the processors. We define the semantics of PCM operationally

using the monolithic memory. Intuitively the idea can be understood in terms of a

monolithic memory 𝑚 and a memory request buffer (𝑚𝑟𝑏[𝑖], 𝑖 = 1 . . . 𝑛) for each port.
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The monolithic memory arbitrarily selects any request from any 𝑚𝑟𝑏 and processes

it instantaneously. Since the memory can hold many requests, each request has to be

assigned a unique tag so that responses can be attached to requests unambiguously.

For correct functioning, each processor has to exercise control over which requests

it enters into its 𝑚𝑟𝑏, since PCM can process requests out of order. For example, no

processor should enter the second store for the same address until it gets a response

back for the first store. Whether a processor can enter a store for a different address

before getting the response for the previous store depends upon the memory model

the processor wants to observe. Similar reasoning is needed to issue load requests to

PCM.

We now formalize the definition of PCM. Figure 6-1 shows that PCM has one port

connected to each processor. Processor 𝑖 sends requests to port 𝑖 using the following

methods, where 𝑡 are the unique tags of processor requests:

∙ reqLd(𝑎, 𝑡): inserts load request ⟨Ld, 𝑎, 𝑡⟩ into 𝑚𝑟𝑏[𝑖], where 𝑎 is the load address.

∙ reqSt(𝑎, 𝑣, 𝑡): inserts store request ⟨St, 𝑎, 𝑣, 𝑡⟩ into 𝑚𝑟𝑏[𝑖], where 𝑎 is the store

address and 𝑣 is the store data.

The PCM sends responses back by calling the following methods of the processor,

where 𝑡 are the tags of original requests:

∙ respLd(𝑟𝑒𝑠, 𝑡): 𝑟𝑒𝑠 is the result of the load request.

∙ respSt(𝑎, 𝑡): 𝑎 is the store address of the store request.

When the respLd and respSt methods are invoked, the processor will take action (e.g.

satisfying a load in ROB or removing a store from store buffer) according to the

response. The operational semantics of PCM is shown in Figure 6-2, where getRand()

returns any entry in 𝑚𝑟𝑏[𝑖].

The order in which the rules of PCM fire imposes a total order on all memory

accesses, which is what we mean by coherence. And this order will correspond to the

order of accesses to the monolithic memory used in the I2E definitions of SC, TSO

and WMM.
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Figure 6-1: PCM interface and structure

PCM-Ld rule (load request processing).

⟨Ld, 𝑎, 𝑡⟩ = 𝑚𝑟𝑏[𝑖].getRand()

𝑚𝑟𝑏[𝑖].remove(⟨Ld, 𝑎, 𝑡⟩); 𝑝𝑟𝑜𝑐[𝑖].respLd(𝑚[𝑎], 𝑡)

PCM-St rule (store request processing).

⟨St, 𝑎, 𝑣, 𝑡⟩ = 𝑚𝑟𝑏[𝑖].getRand()

𝑚𝑟𝑏[𝑖].remove(⟨St, 𝑎, 𝑣, 𝑡⟩); 𝑚[𝑎]⇐ 𝑣; 𝑝𝑟𝑜𝑐[𝑖].respSt(𝑎, 𝑡)

Figure 6-2: PCM operational semantics

Atomicity violations because of delayed responses: The store buffer of a WMM

processor needs the store response from PCM to remove the completed store from

it. The removal of a store from the store buffer and the updating of memory must

appear to happen atomically. To understand what happens when this atomicity is

violated, consider the case when another processor updates the same address between

the time store response is generated and the time store buffer entry is deleted. Then

the store buffer will contain a stale value for that address, violating WMM semantics.

To ensure the atomicity, we can typically restrict the delay of propagating the

response to the store buffer, because the store is performed in L1, which is close to

the store buffer, for a common write-back cache hierarchy. However, if the delay can

be arbitrarily long, a processor must conservatively assume that any store already

issued to PCM may have become stale even before the response comes back. It deals

with this possibility by making such stores inaccessible to younger loads. Namely, if

a load attempts to bypass from a store in the store buffer, the load will be stalled

from execution if the store has been issued to the PCM.
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6.2 Mapping Real Memory Systems to PCM

The behavior of a real memory system may not match the specification of PCM

exactly, but we can transform it to a valid PCM by conceptually moving part of the

memory system to the processor side. Here we study two examples on transforming

real memory systems to PCM.

Relying on the order of processing memory requests: In a real implementa-

tion, a processor may rely on ordered processing of requests by the memory system,

which will disqualify such a memory system to be a PCM. To understand how a sys-

tem does it, consider a memory system composed of write-back caches. Processing of

a store has two distinct phases: (1) get exclusive permission for the cache line, and

(2) update the cache line. It should be clear that phase (1) can be done for multiple

distinct addresses in any order. Ordering of stores can be enforced by ordering phase

(2) operations starting from L1. If L1 updates memory in order, so will higher-level

caches. A TSO implementation can rely on its L1 cache to process store requests

in order and forward data from in-flight store requests to subsequent load requests.

By exploiting this ordering, a processor can dequeue the oldest store from the store

buffer as soon as the store is issued to L1, as opposed to waiting for the response to

come back from the memory system.

Such a memory system can be trivially transformed into a PCM by conceptually

treating the MSHR (miss status handling register) entries that hold in-flight store

requests as part of the processor’s store buffer.

Write-through L1 cache: A memory system with write-through L1 caches is not a

PCM since store atomicity is broken inside it. When the write-through policy is used,

the store request is always sent to the L2, and it also directly writes L1 if the cache

line is valid. The store is removed from the store buffer when L2 finishes processing

it. Store atomicity is broken, because the modification on L1 made by this store can

be observed by subsequent loads issued by any processor sharing the same L1 while

being invisible to other processors.

Such a memory system can be transformed into PCM by considering the "dirty"

44



data in L1 as part of the processor’s store buffer. Then the remaining part of the

memory system, including the "clean" data in L1, forms a valid PCM.
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Chapter 7

Comparison with other Weak

Memory Models

7.1 Comparison with Release Consistency

Release Consistency (RC) [23] is defined in terms of the ordering of when memory

accesses are performed with respect to certain processors. We call such type of defini-

tion event ordering (EO) as opposed to I2E. RC enforces ordering by tagging memory

accesses as acquire or release operations, which are collectively referred to as special

accesses.

The definition of being performed is subtle in EO because the memory abstraction

is not monolithic. Namely, a store may become visible to different processors (which

do not issue the store) at different time. The exact definitions of "performed with

respect to", "performed", and "globally performed", and the definitions of SC and

RC using EO can be found in [23]. RC comes with two versions: RC𝑝𝑐 where special

accesses are processor consistent, and RC𝑠𝑐 where special accesses are sequentially

consistent. Here we only discuss RC𝑠𝑐 for simplicity.

RC is weaker than WMM, because RC allows a store to overtake a load and allows

store access to be non-atomic inside the memory, while WMM forbids both behaviors.
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7.1.1 Comparing understandability

WMM is more understandable than RC when being used to reason about racy pro-

grams, because the non-monolithic memory in RC breaks the atomicity of memory

accesses. One can view WMM as a tradeoff between model weakness and under-

standability. To illustrate this point, we study how to insert fences in WMM and how

to tag accesses in RC to enforce SC behavior for the independent-read-independent-

write (IRIW) example shown in Figure 7-1. The behavior in Figure 7-1 is disallowed

under SC because P3 and P4 must observe the same order of the memory writes by

𝐼1 and 𝐼2.

The forbidden behavior under SC is allowed in WMM because both 𝐼4 and 𝐼6 can

read stale values from invalidation buffers. To prohibit this behavior, we simply need

to insert Reconcile fences 𝐼7 and 𝐼8 as shown in Figure 7-2. To understand the reason,

let’s assume 𝐼1 writes the monolithic memory before 𝐼2 does. Since 𝐼5 reads from

𝐼2, the stale value 0 of 𝑎 must have been inserted into the invalidation buffer of P4

when 𝐼5 is executed. Then 𝐼8 will flush this stale value from the invalidation buffer,

so 𝐼6 can never read it. A similar argument applies to the situation where 𝐼2 writes

the monolithic memory before 𝐼1 does. As we can see, the reasoning using I2E and

monolithic memory is very simple.

RC also allows the forbidden result in SC by permitting 𝐼4 and 𝐼6 to be performed

earlier than any other instruction. In contrast to the simplicity in WMM, tagging

accesses in RC to enforce SC behavior is more convoluted. Figure 7-3 shows a wrong

tagging scheme, where 𝐼3 and 𝐼5 are tagged as acquire operations. The intention is

to force P3 and P4 to perform loads in program order, so they are not expected to

observe different orders of 𝐼1 and 𝐼2. However, the non-monolithic memory in RC

makes it possible that 𝐼1 is not performed with respect to P4 when 𝐼6 is performed,

and that 𝐼2 is not performed with respect to P3 when 𝐼4 is performed. Therefore the

non-SC behavior is still allowed. This pitfall is the direct result of non-monolithic

memory abstraction.

A correct tagging scheme is given in Figure 7-4, where 𝐼4 and 𝐼6 are also tagged as
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Initial: 𝑚[𝑎] = 0, 𝑚[𝑏] = 0

Processor P1 Processor P2 Processor P3 Processor P4
𝐼1 : St 𝑎 1 𝐼2 : St 𝑏 1 𝐼3 : 𝑟1 = Ld 𝑎 𝐼5 : 𝑟3 = Ld 𝑏

𝐼4 : 𝑟2 = Ld 𝑏 𝐼6 : 𝑟4 = Ld 𝑎

Forbidden: 𝑟1 = 1 ∧ 𝑟2 = 0 ∧ 𝑟3 = 1 ∧ 𝑟4 = 0

Figure 7-1: IRIW in SC

Initial: 𝑚[𝑎] = 0, 𝑚[𝑏] = 0

Processor P1 Processor P2 Processor P3 Processor P4
𝐼1 : St 𝑎 1 𝐼2 : St 𝑏 1 𝐼3 : 𝑟1 = Ld 𝑎 𝐼5 : 𝑟3 = Ld 𝑏

𝐼7 : Reconcile 𝐼8 : Reconcile
𝐼4 : 𝑟2 = Ld 𝑏 𝐼6 : 𝑟4 = Ld 𝑎

Forbidden: 𝑟1 = 1 ∧ 𝑟2 = 0 ∧ 𝑟3 = 1 ∧ 𝑟4 = 0

Figure 7-2: IRIW in WMM

Initial: 𝑚[𝑎] = 0, 𝑚[𝑏] = 0

Processor P1 Processor P2 Processor P3 Processor P4
𝐼1 : St 𝑎 1 𝐼2 : St 𝑏 1 𝐼3 : 𝑟1 = Ld-acq 𝑎 𝐼5 : 𝑟3 = Ld-acq 𝑏

𝐼4 : 𝑟2 = Ld 𝑏 𝐼6 : 𝑟4 = Ld 𝑎

Allowed: 𝑟1 = 1 ∧ 𝑟2 = 0 ∧ 𝑟3 = 1 ∧ 𝑟4 = 0

Figure 7-3: IRIW in RC: wrong tagging

Initial: 𝑚[𝑎] = 0, 𝑚[𝑏] = 0

Processor P1 Processor P2 Processor P3 Processor P4
𝐼1 : St 𝑎 1 𝐼2 : St 𝑏 1 𝐼3 : 𝑟1 = Ld-acq 𝑎 𝐼5 : 𝑟3 = Ld-acq 𝑏

𝐼4 : 𝑟2 = Ld-acq 𝑏 𝐼6 : 𝑟4 = Ld-acq 𝑎

Forbidden: 𝑟1 = 1 ∧ 𝑟2 = 0 ∧ 𝑟3 = 1 ∧ 𝑟4 = 0

Figure 7-4: IRIW in RC: correct tagging

acquire operations. One may wonder why adding these tags could solve the problem,

since we have already enforced the program order on P3 and P4 in Figure 7-3. The

subtlety is that both 𝐼3 and 𝐼4 are special accesses now, so they are sequentially

consistent. According to the definition of SC in EO, 𝐼3 must be globally performed,

not just performed, before 𝐼4 is performed. Thus 𝐼1 should be performed with respect

to all processors before 𝐼4 is performed. Similarly, 𝐼2 must be performed with respect

to all processors before 𝐼6 is performed. In this way, at least one of 𝐼4 and 𝐼6 will

observe the up-to-date value 1, so the non-SC behavior is prohibited. As we can see,

if one is not extremely familiar with the definition of RC, he/she may even fail to

justify the correct tagging scheme.
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Through the above reasoning process, we found WMM is much more understand-

able than RC. The primary drawback of RC in terms of understandability is the

non-monolithic memory abstraction, which forces the definition to describe the re-

ordering of events with respect to each processor.

7.1.2 Comparing implementation

Although RC is weaker than WMM, it is unclear whether the additional behaviors

(i.e. non-monolithic memory and store overtaking load) allowed by RC could benefit

implementations. As for the non-monolithic memory, perhaps it can only relax imple-

mentation in the case of multithreaded cores. This is because the stores in the store

buffer are visible to all threads sharing the core but are invisible to other threads,

exhibiting the non-monolithic memory behavior. However, WMM implementations

can still use multithreaded cores with very little overhead, as described in Section

5.2. As for the store-overtaking-load behavior, it is disallowed by Intel’s x86 memory

model, and it cannot be observed on most Power processors [42] even though the

memory model allows it. Thus the advantage of including these behaviors into the

memory model is not obvious.

7.1.3 Summary

Although RC is weaker than WMM, WMM is much simpler than RC and the addi-

tional behavior allowed by RC may not benefit implementation.

7.2 Comparison with Power

Power is incomparable with WMM in terms of which model is weaker. On the one

hand, Power is stronger than WMM in issuing loads for two reasons. First, Power

cannot reorder dependent loads [28], i.e. it disallows the behavior in Figure 5-2. If

a Power implementation employs load-value prediction to issue load 𝐼5 in Figure 5-2

with the load address as a predicted value, it must check whether the load result of
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𝐼5 becomes stale when the prediction of 𝐼4 is verified. Second, Power enforces SC

for memory accesses to the same address, so it prohibits the behavior in Figure 5-3

[42]. If a Power implementation issues a load and then resolves the load address of

an older load to be the same as the just issued one, it must make sure that two loads

appear to be performed sequentially. In contrast, WMM allows both behaviors and

implementations do not need any additional logic in these cases.

On the other hand, Power is similar to RC and weaker than WMM in processing

stores. Specifically, Power also employs a non-monolithic memory abstraction and

allows stores to overtake loads. As discussed earlier, these two features may not benefit

implementation, while the non-monolithic memory abstraction definitely complicates

the model.

In summary, WMM is more understandable than Power, and has more area-

efficient implementation than Power does.
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Chapter 8

Comparing Performance with Strong

Memory Models

It should be noted that any optimization permitted by a weak memory model can

also be employed by a strong memory model implementation via speculation. For

example, even though SC model dictates instructions to be executed in order, SC im-

plementation can still speculatively issue a load from the middle of ROB, as long as the

implementation checks whether the load result becomes stale at commit time and rolls

back on mispeculation. Therefore the performance gap between the implementations

of a weak memory model and a strong memory model is mostly determined by the

frequency of speculation failure in the strong memory model implementation, which

is highly dependent on benchmarks. As a preliminary evaluation, we only compare a

moderate WMM implementation against well-known speculative implementations of

SC and TSO using well-synchronized programs.

8.1 Evaluation Methodology

We evaluate the performance of SC, TSO and WMM implementations by running

SPLASH-2x benchmarks [49, 1, 2] on an 8-core multiprocessor using ESESC simulator

[10]. We ran only 12 out of 14 benchmarks because we could not compile ocean_ncp

and volrend. We used sim-medium size inputs except for cholesky, fft and radix,
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where we use sim-large size inputs. We run all benchmarks to completion without

sampling.

The overall system configuration of the 8-core multiprocessor is shown in Table

8.1, and the configuration for each out-of-order core is shown in Table 8.2. All three

models share these configurations; the difference between the implementations lies in

how we implement loads and stores.

Cores 8 cores (@2GHz) with private L1 and L2 caches
L3 cache 4MB shared, MESI coherence, 64 byte cache line

8 banks, 16-way set-associative, LRU replacement
3-cycle tag, 10-cycle data (both pipelined)
5 cycles between cache bank and core (pipelined)
Max 32 upgrade requests per bank

Memory 120-cycle latency, max 24 requests

Table 8.1: Multiprocessor system configuration

Front end fetch + decode + rename
7-cycle pipelined latency in all
2-way superscalar, hybrid branch predictor

ROB 128 entries, 2-way issue/commit
Function 2 ALUs, 1 FPU, 1 branch unit
units 1 load unit, 1 store unit

32-entry reservation station per unit
load queue Max 32 loads
store buffer Max 24 stores
Store set 8192-entry store set ID table (SSIT)

256-entry last fetched store table (LFST)
L1 D cache 32KB private, 1 bank, 64 byte cache line

4-way set associative, LRU replacement
1-cycle tag, 2-cycle data (pipelined)
Max 32 upgrade and 8 downgrade requests

L2 cache 128KB private, 1 bank, 64 byte cache line
8-way set associative, LRU replacement
2-cycle tag, 6-cycle data (both pipelined)
Max 32 upgrade and 8 downgrade requests

Table 8.2: Core configuration

Store implementation: We issue a store into the store buffer at the same time

when issuing it to ROB, but only the stores committed by ROB can write memory.

This avoids associative searches on ROB. The store buffer is a FIFO in SC and TSO

while the store buffer in WMM employs the optimizations described in Section 5.2.
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Figure 8-1: Normalized execution time and its breakdown at the commit slot of ROB

We also implement store prefetch as an optional feature for SC and TSO. We

initiate a prefetch when a store resolves its address and the store buffer does not

contain any other store on the same cache line. We use SC-pf and TSO-pf to

denote implementations of SC and TSO with store prefetch.

Load implementation: All models execute loads speculatively, and use store sets

[18] to predict memory dependency. For SC, a load cannot be committed when the

store buffer contains any older store. For both SC and TSO, we monitor L1 cache

eviction to kill speculative loads that violate the consistency model.

8.2 Evaluation Results

A common way to study the performance of memory models is to monitor the commit

of instructions at the commit slot of ROB. Here are some reasons why an instruction

may not commit in a given cycle:

∙ empty: The ROB is empty.

∙ exe: The instruction at the commit slot of ROB is still executing.

∙ pendSt: The Ld instruction (in SC) or Commit fence (in TSO or WMM) at the

commit slot of ROB cannot commit due to pending older stores.

∙ flushSt: ROB is being flushed due to a memory dependency violation.

∙ flushInv: ROB is being flushed after cache invalidation caused by a remote

store (only in SC or TSO).
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∙ flushRep: ROB is being flushed after cache replacement (only in SC or TSO).

Figure 8-1 shows the execution time normalized to WMM and its breakdown at the

commit slot of ROB. The total height of each bar represents the normalized execution

time, and stacks represent different types of stall times added to the active committing

time at the commit slot.

8.3 Performance: WMM versus SC

Figure 8-1 shows that WMM is much faster than both SC and SC-pf for most bench-

marks. WMM can reach up to 1.53× performance of SC, with a geometric mean over

all benchmarks of 1.20×. Store prefetch helps but WMM can still reach up to 1.33×

performance of SC-pf, with a geometric mean of 1.14×. The reason why WMM out-

performs SC is because a pending older store can block SC from committing loads.

As shown in Figure 8-1, "pendSt" stall dominates in both SC and SC-pf.

8.4 Performance: WMM versus TSO

Figure 8-1 shows that in terms of geometric mean over all benchmarks WMM gives

negligible improvement over TSO and TSO-pf. However, WMM never does worse

than TSO or TSO-pf, and in some cases it shows up to 1.46× speedup over TSO

and 1.18× over TSO-pf. In the following, we analyze the three benchmarks: lu_ncb,

ocean_cp and radix, where WMM does better.

ocean_cp: In ocean_cp, Figure 8-1 illustrates that TSO and TSO-pf suffer from su-

perfluous load speculation failures caused by cache replacement ("flushRep"). These

evictions have no effect in WMM.

radix: In radix, Figure 8-1 shows that TSO-pf can match the performance of WMM

while TSO is much slower. This implies that store prefetch is crucial. Figure 8-2

shows the amount of time that a store is stalled from being issued into ROB due to

full store buffer in radix. The time shown in the figure is normalized to the execution

time of WMM. As we can see, TSO suffers from significant store issue stalls, which
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causes ROB to be empty for long periods of time ("empty" in Figure 8-1). This is

because the store miss latency is so long that in TSO the store buffer stays full most

of the time. On the contrary, store prefetch helps TSO-pf drain store buffer much

more quickly, and its stall time becomes similar to WMM.
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Figure 8-2: Stalls due to full store
buffer
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Figure 8-3: Memory read latency

lu_ncb: In lu_ncb, Figure 8-1 shows that TSO can match the performance of WMM

while TSO-pf is much slower. To understand this counterintuitive result, we analyze

memory read latency in lu_ncb in Figure 8-3. The latency can be broken down into

the following three parts:

∙ base: the real processing time. It is the difference between the time when a

request accesses L1 tag array, and the time when the response is sent back to

the load queue.

∙ conflict: a new request is stalled in L1 while another request for the same cache

line is being processed.

∙ misc: all other time spent in memory.

Figure 8-3 shows that TSO-pf has longer memory read latency than TSO and

WMM due to the increase in conflict stall time. This counterintuitive result can be

understood when we look at the kernel of lu_ncb:

for(i=0; i<n; i++) a[i] += alpha * b[i];
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The prefetch request for store a[i] may be on the same cache line as the load of

a[i’], increasing the number of conflict stalls in L1. That is, store prefetch interferes

with load execution and downgrades performance.

Summary: The above analysis reveals two disadvantages of TSO compared to

WMM. First, load speculation in TSO is subject to L1 cache eviction. Second,

TSO requires store prefetch to reduce store miss latency while store prefetch may

sometimes degrade performance due to interference with load execution. In contrast,

WMM can perform load speculation without getting affected by L1 cache eviction,

and can efficiently hide store miss latency without prefetching.
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Chapter 9

Conclusion

In the thesis we have presented WMM, a resilient weak memory model, which is easy

to understand because of monolithic memory and instantaneous instruction execu-

tion (I2E) style definition. I2E style definition itself was made possible because of the

introduction of a novel conceptual entity called invalidation buffer. We have shown

that WMM admits all instruction reorderings except stores overtaking loads, and is

resilient to speculative microarchitectural optimizations such as memory dependency

speculation and load-value prediction. Preliminary evaluation using SPLASH bench-

marks shows that WMM implementation outperforms the aggressive implementations

of SC and TSO.
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