
Learning and Enforcing Diversity with

Determinantal Point Processes

by

Zelda Elaine Mariet

Submitted to the Department of Electrical Engineering and Computer

Science

in partial ful�llment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2016

c⃝ Massachusetts Institute of Technology 2016. All rights reserved.

Author .

Department of Electrical Engineering and Computer Science

January 29, 2016

Certi�ed by. .

Suvrit Sra

Principal Research Scientist

Thesis Supervisor

Certi�ed by. .

Leslie Pack Kaelbling

Professor

Thesis Supervisor

Accepted by .

Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Theses

2

Learning and Enforcing Diversity with Determinantal Point

Processes

by

Zelda Elaine Mariet

Submitted to the Department of Electrical Engineering and Computer Science
on January 29, 2016, in partial ful�llment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

As machine-learning techniques continue to require more data and become increas-
ingly memory-heavy, being able to choose a subset of relevant, high-quality and di-
verse elements among large amounts of redundant or noisy data and parameters has
become an important concern.

Here, we approach this problem using Determinantal Point Processes (DPPs),
probabilistic models that provide an intuitive and powerful way of balancing quality
and diversity in sets of items. We introduce a novel, �xed-point algorithm for esti-
mating the maximum likelihood parameters of a DPP, provide proof of convergence
and discuss generalizations of this technique.

We then apply DPPs to the di�cult problem of detecting and eliminating redun-
dancy in fully-connected layers of neural networks. By placing a DPP over a layer,
we are able to sample a subset of neurons that perform non-overlapping computa-
tions and merge all other neurons of the layer into the previous diverse subset. This
allows us to signi�cantly reduce the size of the neural network while simultaneously
maintaining a good performance.

Thesis Supervisor: Suvrit Sra
Title: Principal Research Scientist

Thesis Supervisor: Leslie Pack Kaelbling
Title: Professor

3

4

Acknowledgments

Before anything else, I would like to thank my advisors: Suvrit Sra, for introducing me

to DPPs, guiding me throughout this experience and asking many thought-provoking

questions that helped me better understand my research; and Leslie Pack Kaelbling,

for sharing her invaluable insight on all things machine-learning, as well as for her

advice and support. I have learned a lot as their student, and their advice and help

were invaluable throughout my time at MIT.

I would also like to thank my labmates Zi Wang and Beomjoon Kim, as well as

all my graduate and undergraduate colleagues in LIS and CSAIL, for their support

and for making my graduate experience such an enjoyable one.

Finally, I would like to thank my family for encouraging and supporting me un-

conditionally in all my scienti�c endeavors throughout the years.

5

6

Contents

1 Introduction 13

1.1 Determinantal Point Processes . 13

1.1.1 Formal de�nition . 14

1.1.2 L-ensembles . 14

1.1.3 Quality and diversity . 15

1.1.4 DPPs algorithms . 16

1.1.5 k-DPPs . 17

1.2 Positive de�nite matrices . 17

1.3 Contributions . 20

1.4 Thesis organization . 21

2 The Picard iteration 23

2.1 Introduction . 23

2.1.1 Problem setup: learning the DPP Kernel 24

2.2 The Picard iteration . 25

2.2.1 Convergence Analysis . 27

2.2.2 Generalized Picard iteration 30

2.2.3 Picard iteration for feature matrices 31

2.2.4 Pseudocode . 32

2.2.5 Iteration cost and convergence speed 33

2.3 Experimental results . 33

2.3.1 Baby registries dataset . 34

2.3.2 Implementation details . 34

7

2.3.3 Synthetic tests . 36

2.3.4 Baby registries experiment . 38

3 Diversity networks 43

3.1 Introduction . 43

3.2 Related work . 44

3.3 Diversity and redundancy reduction 46

3.3.1 Neuronal diversity via Determinantal Point Processes 46

3.3.2 Fusing redundant neurons . 47

3.4 Experimental results . 49

3.4.1 Pruning and reweighting analysis 49

3.4.2 Performance analysis . 51

3.4.3 In�uence of the bandwidth on the pruning procedure 55

3.4.4 Discussion and Remarks . 55

4 Conclusion 59

8

List of Figures

2-1 Normalized log-likelihood as a function of time for various set sizes N ,

with n = 5000 and a = 5 using the BASIC random distribution. 35

2-2 Normalized log likelihood as a function of time for various numbers

of training sets, with N = 50 and a = 5 using the BASIC random

distribution. 35

2-3 Normalized log likelihood as a function of time for di�erent values of

a, with N = 50 and n = 5000 using the BASIC random distribution. . 35

2-4 Evaluation of EM and the Picard iteration on the baby registries

dataset using Wishart initialization. 40

2-5 Evaluation of EM and the Picard iteration on the baby registries

dataset using moments-matching initialization. 41

3-1 Heat map of the activation of subsets of 50 neurons for one instance

of each class of the MNIST dataset. The rows correspond to digits 0

through 9. Each column corresponds to the activation values of one

neuron in the network's �rst layer on images of digits 0 through 9.

Green values are activations close to 1, red values are activations close

to 0. 50

3-2 Comparison of random and k-DPP pruning procedures. 52

3-3 Comparison of Divnet (k-DPP + reweighting) to simple k-DPP prun-

ing. 52

3-4 Comparison of random and k-DPP pruning of the �rst hidden layer

when both are followed by reweighting. 52

9

3-5 Comparison of random and k-DPP pruning procedures. 53

3-6 Comparison of Divnet to simple k-DPP pruning. 53

3-7 Comparison of random and k-DPP pruning when both are followed by

reweighting. 53

3-8 Comparison of random pruning, importance pruning, and Divnet's

impact on the network's performance after decreasing the number of

neurons in the �rst hidden layer. 54

3-9 Comparison of random pruning, importance pruning, and Divnet's

impact on the network's performance after decreasing the number of

parameters in the network. 54

3-10 In�uence of β on training error (using the networks trained on MNIST).

The dotted lines show min and max errors. 56

3-11 In�uence of β on the number of neurons that remain after pruning

networks trained on MNIST (when pruning non-parametrically, using a

DPP instead of a k-DPP.) . 56

10

List of Tables

1.1 Overview of some standard operations over DPPs and their complexity 16

2.1 Final log-likelihoods and time necessary for an iteration to reach 99%

of the optimal log likelihood for both algorithms when using BASIC

distribution for true and initialization matrices (training set size of

5,000, a = 5). 37

2.2 Final log-likelihoods and time necessary for an iteration to reach 99%

of the optimal log likelihood for both algorithms when using WISHART

distribution for true and initialization matrices (training set size of

5,000, a = 5). 37

2.3 Comparison of �nal log-likelihoods on all product categories for both

algorithms. δ is the relative closeness between Picard and EM: δ =

|ϕem − ϕpic|/ϕem. 39

3.1 Overview of the sets of networks used in the experiments. We train

each class of networks until the �rst iteration of backprop for which

the training error reaches a prede�ned threshold. 49

3.2 Training and test error for di�erent percentages of remaining neurons

(mean ± standard deviation). Initially, MNIST and MNIST_ROT nets

have 1000 hidden neurons, and CIFAR-10 have 3000. 55

11

12

Chapter 1

Introduction

Selecting a representative sample from large amounts of data is a recurring concern in

many machine-learning domains: in document summarization, a summary is created

from the sentences in the document that are representative of the various topics

covered by the text; for search engines, the retrieved results should cover a broad

range of the initial query's possible meanings.

In order to approach the problem of selecting a diverse subset of given items,

we must model negative interactions: when selecting one item, the probability of

simultaneously choosing other, similar items must decrease.

1.1 Determinantal Point Processes

Determinantal Point Processes (DPPs) are powerful probabilistic models over subsets

of a ground set that allow to model negative correlations; they provide polynomial

time algorithms for most usual tasks such as sampling, marginalizing and conditioning.

DPPs arose in statistical mechanics as �fermion processes� [37] to model the repulsive

interactions of fermion systems in thermal equilibrium. Recently, they have witnessed

substantial interest in a variety of machine learning applications [26, 29].

DPPs provide the ability to model the notion of diversity while respecting quality,

a concern that underlies the broader task of subset selection where balancing quality

with diversity is a well-known issue�see e.g., document summarization [35], [12],

13

object retrieval [3], recommender systems [47], and sensor placement [24]. They

have also been recently applied to modeling inter-neuron inhibitions in neural spiking

behavior in the rat hippocampus [42].

DPPs are also interesting in their own right: they have various combinatorial,

probabilistic, and analytic properties, and involve a fascinating set of open prob-

lems [36, 21, 26]. Within machine learning, DPPs have found good use�see for

instance [14]; [28]; [27]; [3]; [4]; [2]; [13]. We provide below some basic de�nitions

and theorems in DPP theory. For a more in-depth description, as well as additional

references and material, we refer the reader to the extensive work by Kulesza and

Taskar [29].

1.1.1 Formal de�nition

Without loss of generality, we assume that the ground set of N items is {1, 2, . . . , N},

which we denote by Y . A (discrete) DPP on Y is a probability measure P on 2Y (the

set of all subsets of Y) such that for any subset Y ⊆ Y drawn randomly from P and

any subset A ⊆ Y ,

P(A ⊆ Y) = det(KA).

where K is a positive semi-de�nite matrix in RN×N with all of its eigenvalues bounded

by 1. K is called the marginal kernel, and KA indicates the principal submatrix of

K indexed by the elements in A, with the convention that det(K∅) = 1.

1.1.2 L-ensembles

In this thesis, we will slightly restrict our analysis of DPPs by considering the class

of L-ensembles [7], which de�ne the probability of a subset Y ⊆ Y in the following

way:

P(Y) ∝ det(LY), (1.1.1)

where L is also a positive semi-de�nite matrix in RN×N .

14

The normalization constant for P follows upon observing [29, Theorem 2.1] that

∑
Y⊆Y

det(LY) = det(L+ I).

Thus,

P(Y) =
det(LY)

det(L+ I)
, Y ⊆ Y .

One can easily show [29, Theorem 2.2] that an L-ensemble is also a DPP1, and

that the relationship between L and the marginal kernel K is given by the following

equation:

K = L(L+ I)−1. (1.1.2)

This also implies that K and L have the same eigenvectors and di�er only in their

eigenvalues. It can also be shown [26] that P(Y) = | det(K − IY c)|, where IY c is a

partial N ×N identity matrix with diagonal entries in Y zeroed out.

Intuitively, the diagonal entry Lii of the kernel matrix L captures some notion

of the importance of item i, whereas an o�-diagonal entry Lij = Lji measures the

similarity between items i and j. This provides further motivation for seeking DPPs

with non-diagonal kernels when there is implicit interaction between the observed

items.

1.1.3 Quality and diversity

A more intuitive understanding of how a DPP balances the quality and diversity

of the subsets of Y is provided by the decomposition by Kulesza and Taskar [29,

�3.1]: as any positive semi-de�nite matrix, the DPP kernel L can be decomposed as

a Gramian matrix: L = B⊤B, where each column of B represents one of the N items

of the ground set. This, in turn, provides a decomposition of L into quality terms

1The converse is not necessarily true: if an eigenvalue of the marginal kernel K is equal to 1, the
DPP is not an L-ensemble.

15

(qi ∈ R+) and normalized diversity features (ϕi ∈ Rp, ∥ϕi∥ = 1):

Lij = qiϕ
⊤
i ϕjqj.

The Gram matrix S for vectors ϕi (Sij = ϕ⊤
i ϕj) is called the diversity model; q is

called the quality model.

This allows us to rewrite 1.1.1 as

P(Y) ∝

(∏
i∈Y

qi

)
det(SY),

providing a decomposition of the probability of a subset Y as the product of the

quality of its elements and their diversity. The probability of Y is thus equal to the

squared volume spanned by the vectors qiϕi: the probability of a subset increases

with the quality of its items, and decreases as two items become more similar.

1.1.4 DPPs algorithms

A brief overview of some standard operations over DPPs is given in the following sec-

tion. DPPs allow for polynomial-time normalization, marginalization, conditioning,

and sampling.

Due to the complexity of estimating a matrix determinant, the complexities are

bounded by O(N3) in the general case. However, in situations where the eigendecom-

position of the DPP kernel is available, some algorithms have lower complexities.

Operation Complexity
Normalization

∑
Y ∈Y P(Y) O(N3)

Marginalization P(A ⊆ Y) O(N3)
Conditioning P(A ⊆ Y,B ∩ Y = ∅) O(N3)
Sampling Y ∼ P O(N3)
Mode estimation argmaxY P(Y) O(2N)

Table 1.1: Overview of some standard operations over DPPs and their complexity

Mode estimation, however, is an NP-hard problem [23]; speci�cally, approximat-

ing maxY det(LY) to a factor 8
9
+ ε is NP-hard [29, Theorem 2.9]. Approximate so-

16

lutions include greedy algorithms [48] and submodular function maximization-based

approaches [13].

Finally, the non-convex problem of learning a full DPP kernel non-parametrically

from data, i.e. �nding the L that maximizes the probability of observing n subsets

argmax
L
PL(Y1, . . . , Yn)

is also conjectured to be NP-hard [26, Conjecture 4.1]. Previous approaches include

projected gradient ascent and Expectation-Maximization [14], and are based on learn-

ing the marginal kernel K. We present a new approach to this problem, using �xed-

point analysis to learn instead the kernel L, in Chapter 2.

1.1.5 k-DPPs

In some cases, one may wish to have a probability distribution over subsets of the

same size k. For example, it may be preferable to return exactly 5 answers in certain

recommender systems, or to model the negative interactions of a �xed number of

elements.

This can be done using a variant of DPPs called k-DPPs [27]. Although the algo-

rithms described in Table 1.1 must be modi�ed in the k-DPP setting, their complex-

ities are similar to those of simple DPPs. Once again, when an eigendecomposition

of the k-DPP's kernel is provided, the time complexity can be somewhat reduced.

k-DPPs have been used in various settings, such as document analysis [12] and

image search engines [29, �5.3]. In Chapter 3 we apply k-DPPs to restructuring the

architecture of neural networks.

1.2 Positive de�nite matrices

For clarity purposes, we provide here some of the key de�nitions and properties of

positive de�nite matrices that are used in the following chapters.

17

De�nition 1.2.1 (Positive de�nite matrices). A matrixM ∈ Rn×n is positive de�nite

if it veri�es one of the following properties, which are equivalent:

(i) M is symmetric and each eigenvalue λ of M veri�es λ > 0

(ii) M is symmetric and M 's leading principal minors are all strictly positive

(iii) M is symmetric and for x ̸= 0 ∈ Rn, x⊤Mx > 0.

A matrix M ∈ Rn×n is positive semi-de�nite if it satis�es the previous de�nition

with non-strict inequalities.

It easily follows from de�nition 1.2.1 (iii) that the open set of positive de�nite

matrices is convex (for t ∈ [0, 1], if x⊤Ax > 0 and x⊤Bx > 0, then it follows that

(1− t) x⊤Ax+ t x⊤Bx > 0).

Proposition 1.2.2. Let M = PDP be the spectral decomposition of a positive semi-

de�nite matrix M . As all coe�cients of the diagonal matrix D are non-negative, we

can de�ne X = PD1/2P . X is positive semi-de�nite and veri�es X2 = M ; we note

this matrix M1/2.

Proposition 1.2.3. For A ∈ Rn×n positive semi-de�nite and X ∈ Rn×p, X⊤AX is

positive semi-de�nite. Moreover, if A is positive de�nite and X is of full rank, X⊤AX

is positive de�nite.

De�nition 1.2.4 (Partial order on positive de�nite matrices). For A,B ∈ Rn×n

positive semi-de�nite, we write A ≻ B if A − B is positive de�nite, and A ⪰ B if

A − B is positive semi-de�nite. This de�nes a partial order on the set of positive

semi-de�nite matrices.

Theorem 1.2.5. This order veri�es A ≻ B ≻ 0 =⇒ A−1 ≺ B−1.

Proof. Equivalently, we prove that for A,B ∈ Rn×n positive de�nite, (A+B)−1 ≺ A−1,

using Def 1.2.1 (iii).

18

Let x ∈ Rn ̸= 0 and y = (A+B)−1x.

x⊤A−1x = y⊤(A+B)A−1(A+B)y⊤

= y⊤(A+ 2B +BA−1B)y

= y⊤(A+B)y + y⊤B(B−1 + A−1)By

= x⊤ (A+B)−1 x+ (By)⊤(B−1 + A−1)By

As both A−1 and B−1 are positive de�nite, (By)⊤(B−1 + A−1)By > 0, and hence

x⊤A−1x > x⊤ (A+B)−1 x,

i.e. (A+B)−1 ≺ A−1.

Theorem 1.2.6. log det is de�ned and concave on the open set of positive de�nite

matrices, and veri�es ∇(log det)(A) = A−1.

Proof. For A ∈ Rn×n positive de�nite, det(A) > 0: log det is de�ned on the set of

positive de�nite matrices.

By using the expansion of detA according to its cofactors Cij, we have that

∂ log detA

∂aij
=

1

detA

∂ detA

∂aij

=
1

detA

∂

∂aij

(
n∑

k=1

aikCik

)
=

1

detA
Cij

As A is symmetric, its cofactor matrix C is as well; thus, as A−1 = 1
detA

C⊤, it

follows that ∂ log detA
∂aij

= A−1
ij , i.e.

∇(log det)(A) = A−1.

Finally, we prove the concavity of log det by proving its concavity when restricted

19

to an arbitrary line. For t ≥ 0 and A,B ∈ Rn×n positive de�nite,

log det(A+ tB) = log det(A) + log det(I + tA−1/2BA−1/2)

= log det(A) +
n∑

i=1

log(1 + tλi)

where the λi > 0 are the eigenvalues of A−1/2BA−1/2. Thus, log det is concave on the

set of positive de�nite matrices.

1.3 Contributions

The key contributions of this thesis are the following:

• Learning the DPP kernel (this work was previously published in [39])

� Picard iteration: we introduce a simple, fast and �exible �xed-point algo-

rithm for learning the kernel of a DPP from observed data. The Picard itera-

tion guarantees positive de�niteness of the kernel estimate L at each iteration

and does not require any projection step. Furthermore, it also guarantees to

increase the log-likelihood of the model at each iteration.

� Generalized Picard iteration: we additionally describe a more power-

ful, generalized version of the Picard iteration which does not guarantee a

systematic increase in log-likelihood; however, it experimentally provides sig-

ni�cantly faster convergence.

� Proof of convergence: we provide a proof of convergence for the Picard it-

eration based on non-convex optimization theory. For the generalized version

of the Picard algorithm, we present bounds on the admissible step-size, and

conjecture that these bounds may be exact.

• Diversity networks (also available in [40])

� Diversity model for neural networks: we introduce the use of Deter-

minantal Point Processes as a �exible, powerful tool for modeling layer-wise

20

neuronal diversity. Speci�cally, we present a practical method for creating

DPPs over a set of neurons by analyzing each neuron's activation vector over

training input, thus allowing diversity-promoting sampling.

� Fusing procedure: we present a simple but powerful �fusing� procedure that

minimizes the adverse e�ects of removing neurons from a layer in a neural

network by transferring the contributions of the pruned neurons to the ones

that remain.

� Divnet: by using the two previous algorithms in succession, redundant neu-

rons in a layer can be removed without signi�cantly impacting the network's

overall calculation. This procedure, Divnet, provides a simple approach to

reducing the memory footprint of neural networks without overly penaliz-

ing their performance, and does not require further training of the network

after the pruning. Additionally, Divnet is independent from most hyper-

parameters of a network (number of layers, activation functions, etc.) and

as such can be combined with other approaches to size reduction in neural

networks.

Both contributions are validated on multiple datasets. We evaluate the Picard itera-

tion on synthetic and real-world data, compare its performance to that of Expectation-

Maximization, and show that the Picard iteration reaches the same log-likelihood

value at a much faster rate. As for Divnet, we evaluate it on fully-connected neu-

ral networks of varying sizes, trained on several common image recognition datasets:

MNIST, MNIST_ROT and CIFAR-10, and show that Divnet greatly outperforms a pre-

vious neuron-pruning approach for neural networks.

1.4 Thesis organization

We introduce the Picard iteration in Chapter 2, and present theoretical results regard-

ing its convergence in �2.2. Experimental results on synthetic and real-world data are

described in �2.3.

21

We apply Determinantal Point Processes to reorganizing the structure of neural

networks in order to reduce their memory footprint in Chapter 3. We describe how to

place a DPP over layers of a network and how to balance the network after pruning

in �3.3, and discuss theoretical results in �3.4.

22

Chapter 2

The Picard iteration

2.1 Introduction

The work presented in this chapter was motivated by the recent work of Gillenwater

et al. [14], who made notable progress on the task � conjectured to be NP-Hard [26,

Conjecture 4.1] � of learning a DPP kernel from data. Gillenwater et al. [14] presented

a carefully designed EM-style procedure, which, unlike several previous approaches

(e.g., [28, 27, 3]) learns a full DPP kernel nonparameterically.

One main observation of Gillenwater et al. [14] is that applying projected gradient

ascent to the DPP log-likelihood usually results in degenerate estimates (because it

involves projection onto the set {X : 0 ⪯ X ⪯ I}). Hence, one may wonder if

instead more sophisticated manifold optimization techniques [1, 8] could be applied.

While this idea is attractive, and indeed applicable, e.g., via theManopt toolbox [8],

empirically it turns out to be computationally too demanding; the EM strategy of

Gillenwater et al. [14] is more practical.

Here, we depart from both EM and manifold optimization to develop the Picard

iteration, a new learning algorithm that, compared to EM,

• is signi�cantly simpler

• yields essentially the same log-likelihood values

• runs signi�cantly faster. In particular, our algorithm runs an order of magnitude

23

faster than EM on larger problems.

The key innovation of our approach is a derivation via a �xed-point view, which by

construction ensures positive de�niteness at every iteration. Its convergence analysis

involves an implicit bound-optimization iteration to ensure monotonic ascent. A

pleasant byproduct of the �xed-point approach is that it avoids any eigenvalue/vector

computations, enabling further savings in running time.

2.1.1 Problem setup: learning the DPP Kernel

Parameterizations (2.1.1) and (2.1.2) of the DPP probability are both useful in this

context: Gillenwater et al. [14] used a formulation in terms of K; we prefer (2.1.1) as

it aligns better with our algorithmic approach.

P(Y) =
det(LY)

det(L+ I)
, Y ⊆ Y . (2.1.1)

P(A ⊆ Y) = det(KA). (2.1.2)

The learning task aims to �t a DPP kernel (either L or equivalently the marginal

kernel K) consistent with a collection of observed subsets: suppose we obtain as

training data n subsets (Y1, . . . , Yn) of the ground set Y ; the task is then to maximize

the likelihood of these observations. Two equivalent formulations of this maximization

task may be considered:

max
L⪰0

∑n

i=1
log det(LYi

)− n log det(I + L), (2.1.3)

max
0⪯K⪯I

∑n

i=1
log
(
| det(K − IY c

i
)|
)
. (2.1.4)

We will use formulation (2.1.3) in this paper. Gillenwater et al. [14] used formu-

lation (2.1.4) and exploited its structure to derive a somewhat intricate EM-style

method for its optimization.

Both (2.1.3) and (2.1.4) are nonconvex and di�cult to optimize. For instance, us-

ing projected gradient on (2.1.4) may seem tempting, but projection ends up yielding

24

degenerate (diagonal and rank-de�cient) solutions, which is undesirable when trying

to capture interactions between items � indeed, this criticism motivated Gillenwater

et al. [14] to derive the EM algorithm.

We approach problem (2.1.3) from a di�erent viewpoint (which also avoids pro-

jection) and as a result obtain a new optimization algorithm for estimating L. This

algorithm, its analysis, and empirical performance are the subject of the remainder

of this chapter.

2.2 The Picard iteration

The method that we derive has two key components:

• a �xed-point view that helps obtain an iteration that satis�es the crucial positive

de�niteness constraint L ⪰ 0 by construction

• an implicit bound optimization-based analysis that ensures monotonic ascent

If |Y | = k, then for a suitable N ×k indicator matrix U we can write LY = U∗LU ,

which is also known as a compression (U∗ denotes the Hermitian transpose1). We

write U∗
i LUi interchangeably with LYi

, implicitly assuming suitable indicator matrices

Ui such that U∗
i Ui = I|Yi|. We will drop the subscript on the identity matrix, its

dimension being clear from context.

Denote by ϕ(L) the objective function in (2.1.3). Assume for simplicity that the

constraint set is open, i.e., L ≻ 0. Then any critical point of the log-likelihood must

satisfy the following condition:

∇ϕ(L) = 0, or equivalently∑n

i=1
Ui (U

∗
i LUi)

−1 U∗
i − n (I + L)−1 = 0.

(2.2.1)

Any (strictly) positive de�nite solution to the nonlinear matrix equation (2.2.1) is a

candidate locally optimal solution.

1Although we present our theoretical analysis in the broader setting of complex matrices, in
practice their coe�cients are in R.

25

We solve this matrix equation by developing a �xed-point iteration. In particular,

de�ne

∆ := 1
n

∑n

i=1
Ui (U

∗
i LUi)

−1 U∗
i − (I + L)−1,

with which we may equivalently write (2.2.1) as

∆+ L−1 = L−1. (2.2.2)

Equation (2.2.2) suggests the following iteration

L−1
k+1 ← L−1

k +∆k, k = 0, 1, (2.2.3)

A priori there is no reason for iteration (2.2.3) to be valid (i.e., to converge to a

stationary point). But we write it in this form to highlight its crucial feature: starting

from an initial L0 ≻ 0, it generates positive de�nite iterates (Prop. 2.2.1).

Proposition 2.2.1. Let L0 ≻ 0. Then, the sequence {Lk}k≥1 generated by (2.2.3)

remains positive de�nite.

Proof. The proof is by induction. It su�ces to show that

L ≻ 0 =⇒ L−1 +∆ ≻ 0.

Since I + L ≻ L, from the order inversion property of the matrix inverse map it

follows that L−1 ≻ (I + L)−1.

Thus, since 1
n

∑
i=1 Ui (U

∗
i LUi)

−1 U∗
i ⪰ 0, we have

L−1 + 1
n

∑
i=1

Ui (U
∗
i LUi)

−1 U∗
i ≻ (I + L)−1 + 1

n

∑
i=1

Ui (U
∗
i LUi)

−1 U∗
i

L−1 +∆ ≻ 1
n

∑
i=1

Ui (U
∗
i LUi)

−1 U∗
i ⪰ 0

26

A quick experiment reveals that iteration (2.2.3) does not converge to a local

maximizer of ϕ(L). To �x this defect, we rewrite the key equation (2.2.2) in a di�erent

manner:

L = L+ L∆L. (2.2.4)

This equation is obtained by multiplying (2.2.2) on the left and right by L. Therefore,

we now consider the iteration

Lk+1 ← Lk + Lk∆kLk, k = 0, 1, (2.2.5)

Prop. 2.2.1, in combination with the fact that congruence preserves positive de�nite-

ness (i.e., if X ⪰ 0, then Z∗XZ ⪰ 0 for any matrix Z), implies that if L0 ≻ 0,

then the sequence {Lk}k≥1 obtained from iteration (2.2.5) is also positive de�nite.

What is more remarkable is that, contrary to iteration (2.2.3), the sequence gener-

ated by (2.2.5) monotonically increases the log-likelihood.

While monotonicity is not evident from our derivation above, it becomes apparent

once we recognize an implicit change of variables that seems to underlie our method.

2.2.1 Convergence Analysis

Lemma 2.2.2. Let U ∈ CN×k (k ≤ N) such that U∗U = I. The map g(S) :=

log det(U∗S−1U) is convex on the set of positive de�nite matrices.

Proof. Since g is continuous it su�ces to establish midpoint convexity. Consider

therefore, X,Y ≻ 0 and let

X#Y := X1/2(X−1/2Y X−1/2)1/2X1/2 (2.2.6)

be their geometric mean. It's easy to see from Eq. 2.2.6 that

det(X#Y) =
√
detX

√
detY (2.2.7)

27

and

(X#Y)−1 = X−1#Y −1. (2.2.8)

The operator inequality X#Y ⪯ X+Y
2

is well-known [6, Theorem 4.1.3].

Hence,

(
X+Y

2

)−1 ⪯ (X#Y)−1 = X−1#Y −1 (2.2.9)

U∗ (X+Y
2

)−1
U ⪯ U∗(X−1#Y −1)U (2.2.10)

⪯ (U∗X−1U)#(U∗Y −1U), (2.2.11)

where the �nal inequality follows from [6, Theorem 4.1.5] (see [43, Theorem 8] for an

explicit proof).

Since log det is monotonic on positive de�nite matrices, it then follows from 2.2.8

and 2.2.11 that

log det
(
U∗ (X+Y

2

)−1
U
)
≤ log det

(
(U∗X−1U)#(U∗Y −1U)

)
≤ 1

2
log det(U∗X−1U) + 1

2
log det(U∗Y −1U)

which proves the lemma.

Theorem 2.2.3. Let Lk be generated via (2.2.5). Then, the sequence {ϕ(Lk)}k≥0 is

monotonically increasing.

Proof. The key insight is to consider S = L−1 instead of L; this change is only for

the analysis�the actual iteration that we implement is still (2.2.5).

Writing ψ(S) := ϕ(L), we have

ψ(S) = 1
n

∑
i
log det(U∗

i S
−1Ui)− log det(S−1 + I)

= 1
n

∑
i
log det(U∗

i S
−1Ui) + log det(S)− log det(I + S).

28

We de�ne

h(S) = 1
n

∑
i

log det(U∗
i S

−1Ui)− log det(I + S)

f(S) = log det(S).

Clearly, f is concave in S, while h is convex is S; the latter from Lemma 2.2.2 and

the fact that − log det(I + S) is convex. This observation allows us to invoke itera-

tive bound-optimization (an idea that underlies EM, CCCP [46], and other related

algorithms).

We construct an auxiliary function ξ so that

ψ(S) ≥ ξ(S,R), ∀S,R ≻ 0,

ψ(S) = ξ(S, S), ∀S ≻ 0.

As in [46], we select ξ by exploiting the convexity of h: as h(S) ≥ h(R)+⟨∇h(R), S −R⟩,

we simply set

ξ(S,R) := f(S) + h(R) + ⟨∇h(R) |S −R⟩ .

Given an iterate Sk, we then obtain Sk+1 by solving

Sk+1 := argmaxS≻0 ξ(S, Sk), (2.2.12)

which clearly ensures monotonicity: ψ(Sk+1) ≥ ψ(Sk).

Since (2.2.12) has an open set as a constraint and ξ(S, ·) is strictly concave, to

solve (2.2.12) it su�ces to solve the necessary condition∇Sξ(S, Sk) = 0. This amounts

to

S−1 = (I + Sk)
−1 + 1

n

∑
i
S−1
k Ui(U

∗
i S

−1
k Ui)

−1U∗
i S

−1
k .

Rewriting in terms of L we immediately see that by setting

Lk+1 = Lk + Lk∆kLk,

29

we have

ϕ(Lk+1) ≥ ϕ(Lk)

(the inequality is strict unless Lk+1 = Lk).

Theorem 2.2.3 shows that iteration (2.2.5) is well-de�ned (positive de�niteness

was established by Prop. 2.2.1).

2.2.2 Generalized Picard iteration

The �xed-point formulation (2.2.5) actually suggests a broader iteration, with an

additional step-size a:

Lk+1 = Lk + aLk∆kLk. (2.2.13)

Above we showed that for a = 1 ascent is guaranteed. Empirically, a > 1 often also

provides good results and faster convergence.

Prop. 2.2.4 presents an easily computable upper bound on feasible a:

Proposition 2.2.4. Let L, Ui, and ∆ be as de�ned above. Let

Z = 1
n

∑
i

Ui (U
∗
i LUi)

−1 U∗
i .

De�ne the constant

γ := max{λmin(LZ), 1/λmax(I + L)}. (2.2.14)

Then, 0 ≤ γ ≤ 1 and for a ≤ (1− γ)−1 the update

L′ ← L+ aL∆L

ensures that L′ is also positive de�nite.

Proof. Let Z = 1
n

∑n
i=1 Ui (U

∗
i LUi)

−1 U∗
i .

30

To ensure L+ aL∆L ≻ 0 we equivalently show

L−1 + a
(

1
n

n∑
i=1

Ui (U
∗
i LUi)

−1 U∗
i − (L+ I)−1

)
≻ 0

=⇒ L−1 + aZ ≻ a (L+ I)−1

=⇒ I + aL1/2ZL1/2 ≻ aL (L+ I)−1

=⇒ I + aL1/2ZL1/2 ≻ a(I − (I + L)−1)

=⇒ (1− a)I + a(I + L)−1 + aL1/2ZL1/2 ≻ 0

=⇒ (1− a) + aλmin

(
(I + L)−1 + L1/2ZL1/2

)
> 0.

This inequality can be numerically optimized to �nd the largest feasible value of a.

The simpler bound in question can be obtained by noting that

λmin((I + L)−1 + L1/2ZL1/2) ≥ max{λmin(LZ), 1/λmax(I + L)} = γ.

Thus, we have the easily computable bound for feasible a:

a ≤ 1

1− γ
.

Clearly, by construction γ ≥ 0. To see why γ ≤ 1, observe that (I + L) ≺ I,

so that λmin((I + L)−1) < 1. Further, block-matrix calculations show that Z ⪯ L−1,

whereby λmin(L
1/2ZL1/2) ≤ λmin(I) = 1.

Conjecture 2.2.5. We conjecture that for all feasible values a ≥ 1, iteration (2.2.5)

is guaranteed to increase the log-likelihood.

2.2.3 Picard iteration for feature matrices

The Picard iteration can be adapted to the case where L = F ∗WF , where F ∈ RN×d

is a �xed feature matrix and W ∈ Rd×d is the weight matrix that we wish to learn.

31

In this case, the Lk+1 ← Lk + Lk∆kLk update is rewritten as

F ∗Wk+1F ← F ∗WkF + F ∗WkF∆F
∗WkF. (2.2.15)

By applying the following update on W :

Wk+1 ←Wk +WkF∆kF
∗Wk (2.2.16)

the update from 2.2.15 is veri�ed. Thus, the Picard iteration also generalizes to the

case of feature-based DPP learning via the update from 2.2.16, with similar guarantees

to those of the previous section.

2.2.4 Pseudocode

Pseudocode of our resulting learning method is presented in Algorithms 1 and 2.

Algorithm 1 Picard Iteration

Input: Matrix L, training set T , step-size a > 0.
for i = 1 to maxIter do
L←− FixedPointMap(L, T , a)
if stop(L, T , i) then
break

end if

end for

return L

Algorithm 2 FixedPointMap

Input: Matrix L, training set T , step-size a > 0
Z ←− 0
for Y in T do

ZY = ZY + L−1
Y

end for

return L+ aL(Z/|T | − (L+ I)−1)L

32

2.2.5 Iteration cost and convergence speed

The cost of each iteration of our algorithm is dominated by the computation of ∆,

which costs a total of O(
∑n

i=1 |Yi|3+N3) = O(nκ3+N3) arithmetic operations, where

κ = maxi |Yi|. The O(|Yi|3) cost comes from computing the inverse L−1
Yi
, while the

N3 cost stems from computing (I + L)−1. Moreover, additional N3 costs arise when

computing the L∆L product.

In comparison, each iteration of the method of Gillenwater et al. [14] has a com-

plexity of O(nNκ2 + N3), which is comparable to, though slightly greater than,

O(nκ3 + N3), as N ≥ κ. In applications where the sizes of the sampled subsets

satisfy κ≪ N , the di�erence can be more substantial. Moreover, we do not need any

eigenvalue/vector computations to implement our algorithm.

Finally, the Picard iteration also runs slightly faster than a K-Ascent iteration,

which costs O(nN3). Additionally, similarly to EM, our algorithm avoids the projec-

tion step necessary in the K-Ascent algorithm (in order to insure that K is a valid

marginal kernel, i.e. K ∈ {X : 0 ⪯ X ⪯ I}). As shown in [14], avoiding this step is

bene�cial, as it helps learn non-diagonal matrices.

We note in passing that similarly to EM, assuming a non-singular local maximum,

we can also obtain a local linear rate of convergence. This follows by relating itera-

tion (2.2.5) to scaled-gradient methods [5, �1.3] (taking into account the fact that we

have an implicit positive semi-de�nite constraint).

2.3 Experimental results

We compare the performance of our algorithm, referred to as Picard iteration2, against

the EM algorithm presented in Gillenwater et al. [14]. We experiment on both syn-

thetic and real-world data.

2Our nomenclature stems from the usual name for such iterations in �xed-point theory [15].

33

2.3.1 Baby registries dataset

For real-world data, we use the baby registry dataset on which results are reported

in [14]. This dataset consists in 111, 006 sub-registries describing items across 13

di�erent categories; this dataset was obtained by collecting baby registries from

amazon.com, all containing between 5 and 100 products, and then splitting each

registry into subregistries according to which of the 13 categories (such as �feeding�,

�diapers�, �toys�, etc.) each product in the registry belongs to. [14] provides a more

in-depth description of this dataset.

These sub-registries are used to learn a DPP capable of providing recommenda-

tions for these products: indeed, a DPP is well-suited for this task as it provides sets

of products in a category that are popular yet diverse enough to all be of interest to

a potential customer.

2.3.2 Implementation details

We measure convergence by testing the relative change |ϕ(Lk+1)−ϕ(Lk)|
|ϕ(Lk)|

≤ ε in the log-

likelihood. We used a tighter convergence criterion for our algorithm (εpic = 0.5 · εem)

to account for the fact that the distance between two subsequent log-likelihoods tends

to be smaller for the Picard iteration than for EM.

The parameter a for Picard was set at the beginning of each experiment and

never modi�ed as it remained valid throughout each test. However, although it was

not necessary in our experiments, if the parameter a becomes invalid, it can be halved

until it reaches 1.

In EM, the step size was initially set to 1 and halved when necessary, as per the

algorithm described in [14]; we used the code of Gillenwater et al. [14] for our EM

implementation3.

3These experiments were run with MATLAB, on a Linux Mint system, using 16GB of RAM and
an i7-4710HQ CPU @ 2.50GHz.

34

time (s)

0 20 40

n
o
rm

a
liz

e
d
 l
o
g
 l
ik

e
lih

o
o
d

-17

-16.5

-16

-15.5

Picard

EM

(a) N = 50

time (s)

0 50 100 150

n
o
rm

a
liz

e
d
 l
o
g
 l
ik

e
lih

o
o
d

-26

-25.5

-25

-24.5

-24

Picard

EM

(b) N = 100

time (s)

0 50 100 150

n
o
rm

a
liz

e
d
 l
o
g
 l
ik

e
lih

o
o
d

-34

-33.5

-33

-32.5

-32

Picard

EM

(c) N = 150

Figure 2-1: Normalized log-likelihood as a function of time for various set sizes N ,
with n = 5000 and a = 5 using the BASIC random distribution.

time (s)

0 20 40

n
o
rm

a
liz

e
d
 l
o
g
 l
ik

e
lih

o
o
d

-17

-16.5

-16

-15.5

Picard

EM

(a) n = 5000

time (s)

0 20 40 60 80

n
o
rm

a
liz

e
d
 l
o
g
 l
ik

e
lih

o
o
d

-17

-16.5

-16

-15.5

Picard

EM

(b) n = 10000

time (s)

0 50 100

n
o
rm

a
liz

e
d
 l
o
g
 l
ik

e
lih

o
o
d

-17

-16.5

-16

-15.5

Picard

EM

(c) n = 15000

Figure 2-2: Normalized log likelihood as a function of time for various numbers of
training sets, with N = 50 and a = 5 using the BASIC random distribution.

time (s)

0 20 40

n
o
rm

a
liz

e
d
 l
o
g
 l
ik

e
lih

o
o
d

-17

-16.5

-16

-15.5

Picard

EM

(a) a = 1

time (s)

0 20 40

n
o
rm

a
liz

e
d
 l
o
g
 l
ik

e
lih

o
o
d

-17

-16.5

-16

-15.5

Picard

EM

(b) a = 5

time (s)

0 20 40

n
o
rm

a
liz

e
d
 l
o
g
 l
ik

e
lih

o
o
d

-17

-16.5

-16

-15.5

-15

Picard

EM

(c) a = 10

Figure 2-3: Normalized log likelihood as a function of time for di�erent values of a,
with N = 50 and n = 5000 using the BASIC random distribution.

35

2.3.3 Synthetic tests

In each experiment, we sample n training sets from a base DPP of size N , then learn

the DPP using EM and the Picard iteration. We initialize the learning process with a

random positive de�nite matrix L0 (or K0 for EM) drawn from the same distribution

as the true DPP kernel.

Speci�cally, we used two matrix distributions to draw the true kernel and the

initial matrix values from:

• BASIC: We draw the coe�cients of a matrix M from the uniform distribution

over
[
0,
√
2
]
, then return L =MM⊤ conditioned on its positive de�niteness.

• WISHART: We draw L from a Wishart distribution with N degrees of freedom

and an identity covariance matrix, and rescale it with a factor 1
N
.

Figures 2-1, 2-2 and 2-3 show the log-likelihood as a function of time for di�erent

parameter values when both the true DPP kernel and the initial matrix L0 were

drawn from the BASIC distribution. Tables 2.1 and 2.2 show the �nal log-likelihood

and the time necessary for each method to reach 99% of the optimal log likelihood

for both distributions and parameters n = 5000, a = 5.

As shown in Figure 2-1, the di�erence in time necessary for both methods to reach

a good approximation of the �nal likelihood (as de�ned by best �nal likelihood) grows

drastically as the size N of the set of all elements {1, 2, . . . , N} increases. Figure 2-2

illustrates the same phenomenon when N is kept constant and n increases.

Finally, the in�uence of the parameter a on convergence speed is illustrated in

Figure 2-34. Larger a values noticeably increase Picard's convergence speed, as long

as the matrices remain positive de�nite during the Picard iteration.

The greatest strength of the Picard iteration lies in its initial rapid convergence:

the log-likelihood increases signi�cantly faster for the Picard iteration than for EM.

Although for small datasets EM sometimes performs better, our algorithm provides

substantially better results in shorter timeframes, especially when dealing with larger

4In the cases where a > 1, a safeguard was added to check that the matrices returned by our
algorithm were positive de�nite.

36

Table 2.1: Final log-likelihoods and time necessary for an iteration to reach 99% of
the optimal log likelihood for both algorithms when using BASIC distribution for true
and initialization matrices (training set size of 5,000, a = 5).

Log-Likelihood Runtime to 99%
Picard EM Picard EM

N = 50 -15.5 -15.5 17.3s 30.7s
N = 100 -24.4 -24.2 143s 75.5s
N = 150 -32.5 -32.5 40.7s 84.0s
N = 200 -40.8 -41.2 51.1s 1,730s
N = 250 -45.7 -46.0 99.1s 2,850s

Table 2.2: Final log-likelihoods and time necessary for an iteration to reach 99% of
the optimal log likelihood for both algorithms when using WISHART distribution for
true and initialization matrices (training set size of 5,000, a = 5).

Log-Likelihood Runtime to 99%
Picard EM Picard EM

N = 50 -33.0 -33.1 0.2s 2.0s
N = 100 -66.2 -66.2 0.5s 3.6s
N = 150 -99.2 -99.3 0.8s 5.2s
N = 200 -132.1 -132.4 1.2s 8.9s
N = 250 -165.1 -165.7 2.5s 11s

37

datasets, due amongst others to the smaller complexity (and thus shorter runtime) of

one Picard iteration compared to one EM iteration.

Overall, our algorithm converges to 99% of the optimal log-likelihood (de�ned as

the maximum of the log-likelihoods returned by each algorithm) signi�cantly faster

than the EM algorithm for both distributions, particularly when dealing with large

values of N .

Thus, the Picard iteration is preferable when dealing with large ground sets; it is

also very well-suited to cases where larger amounts of training data are available.

2.3.4 Baby registries experiment

We tested our implementation on all 13 product categories in the baby registry dataset,

using two di�erent initializations:

• the aforementioned Wishart distribution

• the data-dependent moment matching initialization (MM) described in [14]

In each case, 70% of the baby registries in the product category were used for

training; 30% served as test. The results presented in Figures 2-4 and 2-5 are averaged

over 5 learning trials, each with di�erent initial matrices.

The parameter a was set equal to 1.3 for all iterations.

Similarly to its behavior on synthetic datasets, the Picard iteration provides overall

signi�cantly shorter runtimes when dealing with large matrices and training sets. As

shown in Table 2.3, the �nal log-likelihoods are very close (on the order of 10−2 to

10−4) to those attained by the EM algorithm.

Using a moments-matching initialization leaves Picard's runtimes overall unchanged

(a notable exception being the `gear' category). However, EM's runtime decreases

drastically with this initialization, although it remains signi�cantly longer than Pi-

card's in most categories.

The �nal log-likelihoods are also closer when using moments-matching initializa-

tion (Table 2.3).

38

Table 2.3: Comparison of �nal log-likelihoods on all product categories for both algo-
rithms. δ is the relative closeness between Picard and EM: δ = |ϕem − ϕpic|/ϕem.

Category δ (Wishart) δ (MM)
furniture 4.4e-02 1.2e-03
carseats 3.7e-02 7.6e-04
safety 3.3e-02 8.0e-04
strollers 3.9e-02 3.0e-03
media 2.3e-02 2.4e-03
health 2.6e-02 7.4e-03
toys 2.0e-02 5.9e-03
bath 2.6e-02 2.9e-03
apparel 9.2e-03 4.3e-03
bedding 1.3e-02 7.6e-03
diaper 7.2e-03 5.3e-03
gear 2.3e-03 9.0e-03
feeding 4.9e-04 2.1e-03

39

0 2 4 6 8 10 12 14

furniture

carseats

safety

strollers

media

health

toys

bath

apparel

bedding

diaper

gear

feeding

Normalized NLL

Picard

EM

(a) Final negative log-likelihood

0 10 20 30 40 50 60 70 80 90

furniture

carseats

safety

strollers

media

health

toys

bath

apparel

bedding

diaper

gear

feeding

time (seconds)

Picard

EM

(b) Runtime

Figure 2-4: Evaluation of EM and the Picard iteration on the baby registries dataset
using Wishart initialization.

40

0 2 4 6 8 10 12 14

furniture

carseats

safety

strollers

media

health

toys

bath

apparel

bedding

diaper

gear

feeding

Normalized NLL

Picard

EM

(a) Final negative log-likelihood

0 5 10 15 20 25 30 35

furniture

carseats

safety

strollers

media

health

toys

bath

apparel

bedding

diaper

gear

feeding

time (seconds)

Picard

EM

(b) Runtime

Figure 2-5: Evaluation of EM and the Picard iteration on the baby registries dataset
using moments-matching initialization.

41

42

Chapter 3

Diversity networks

3.1 Introduction

Training neural networks requires setting several hyper-parameters to adequate val-

ues: number of hidden layers, number of neurons per hidden layer, learning rate,

momentum, dropout rate, etc. Although tuning such hyper-parameters via parame-

ter search has been recently investigated by Maclaurin et al. [38], doing so remains

extremely costly, which makes it imperative to develop more e�cient techniques.

Of the many hyper-parameters, those that determine the network's architecture

are among the hardest to tune, especially because changing them during training is

more di�cult than adjusting more dynamic parameters such as the learning rate or

momentum. Typically, the architecture parameters are set once and for all before

training begins. Thus, assigning them correctly is paramount: if the network is too

small, it will not learn well; if it is too large, it may take signi�cantly longer to train

while running the risk of over�tting. Networks are therefore typically trained with

more parameters than necessary, and pruned once the training is complete.

This chapter introduces Divnet, a technique for reducing the size of a network.

Divnet decreases the amount of redundancy in a neural network (and hence reduces

its size as well) in two steps: �rst, it samples a diverse subset of neurons; then, it

merges the remaining neurons with the ones previously selected.

Speci�cally, Divnet models neuronal diversity by placing a Determinantal Point

43

Process [21] over neurons in a layer, which is then used to select a subset of diverse

neurons. Subsequently, Divnet �fuses� information from the dropped neurons into

the selected ones through a reweighting procedure. Together, these steps reduce net-

work size (and act as implicit regularization), without requiring any further training

or signi�cantly hurting performance. Divnet is fast and runs in time negligible com-

pared to the network's prior training time. Moreover, it is agnostic to other network

parameters such as activation functions, number of hidden layers, and learning rates.

For simplicity, we describe and analyze Divnet for feed-forward neural networks,

however Divnet is not limited to this setting. Indeed, as Divnet operates on a layer

fully connected to the following one in the network's hierarchy, it applies equally well

to other architectures with fully connected layers. For example, it can be applied

without any further modi�cation to Deep Belief Nets and to the fully-connected layers

in Convolutional Neural Networks. As these layers are typically responsible for the

large majority of the CNNs' memory footprint [45], Divnet is particularly well suited

to such types of networks.

3.2 Related work

Due to their large number of parameters, deep neural networks typically have a heavy

memory footprint. Moreover, in many deep neural network models, parameters show

a signi�cant amount of redundancy [11]. There has consequently been signi�cant

interest in developing techniques for reducing a network's size without penalizing its

performance.

A common approach to reducing the number of parameters is to remove con-

nections between layers. In [32, 18], connections are deleted using information drawn

from the Hessian of the network's error function. Sainath et al. [41] reduce the number

of parameters by analyzing the weight matrices, and applying low-rank factorization

to the �nal weight layer. Han et al. [17] remove connections with weights smaller

than a given threshold before retraining the network. These methods focus on delet-

ing parameters whose removal in�uences the network the least, while Divnet seeks

44

diversity and merges similar neurons; these methods can thus be used in conjunction

with ours for further size reduction.

Although methods such as [32] that remove connections between layers may also

delete neurons from the network by removing all of their outgoing or incoming con-

nections, it is likely that the overall impact on the size of the network will be lesser

than approaches such as Divnet that remove entire neurons: indeed, removing a

neuron decreases the number of rows or columns of the weight matrices connecting

the neuron's layer to the previous and following layers.

Convolutional Neural Networks [33] replace fully-connected layers with convolu-

tion and subsampling layers, which signi�cantly decreases the number of parameters.

However, as CNNs still maintain fully-connected layers, they may also bene�t from

using Divnet.

The procedure in [19] is closer to our own approach of reducing the network's

memory footprint by directly removing hidden neurons: in a given layer, each neuron's

importance is evaluated according to a prede�ned importance function, and neurons

with the smaller importance scores are deleted from the network.

In [44], a neuron is pruned when its weights are similar to those of another neuron

in the same layer. This leads the authors to formulate a reweighting procedure that

is somewhat similar in idea (albeit signi�cantly simpler) to the reweighting step we

describe in section 3.3.2: where they consider removing neurons with equal or very

similar weights, we consider the more complicated task of merging neurons that as a

group perform redundant calculations based on their activation vectors.

Other recent approaches consider network compression without pruning: in [20],

a new, smaller network is trained on the outputs of the large network; Chen et al. [9]

use hashing to reduce the size of the weight matrices by forcing all connections within

the same hash bucket to have the same weight. Courbariaux et al. [10] and Gupta

et al. [16] show that a network can be trained and run using limited precision values

to store its parameters, thus reducing the overall memory footprint.

We emphasize that Divnet's focus on neuronal diversity is orthogonal and com-

plementary to prior network compression techniques. Consequently, Divnet can be

45

combined, in most cases trivially, with previous approaches to reduce the memory

footprint of neural networks.

3.3 Diversity and redundancy reduction

In this section we introduce our technique for modeling neuronal diversity more for-

mally.

Let T denote the training data, ℓ a layer of nℓ neurons, aij the activation of the i-th

neuron on input tj, and vi = (ai1, . . . , ainℓ
)⊤ the activation vector of the i-th neuron

obtained by feeding the training data through the network. To enforce diversity in

layer ℓ, we must determine which neurons are computing redundant information and

remove them. Doing so requires �nding a maximal subset of (linearly) independent

activation vectors in a layer and retaining only the corresponding neurons.

In practice, however, the number of items in the training set (or the number of

batches) can be much larger than the number of neurons in a layer, so the activation

vectors v1, . . . , vnℓ
are likely linearly independent. Merely selecting by the maximal

subset may thus lead to a trivial solution that selects all neurons.

Reducing redundancy therefore requires a more careful approach to sampling. We

propose to select a subset of neurons whose activation patterns are diverse while

contributing to the network's overall computation. We achieve this diverse selection

by formulating the neuron selection task as sampling from a DPP. We describe the

details of this approach below.

3.3.1 Neuronal diversity via Determinantal Point Processes

There are numerous potential choices for the DPP kernel. We found that experimen-

tally a well-tuned Gaussian RBF kernel provides a good balance between simplicity

and quality: for instance, it provides much better results that simple linear kernels

(obtained via the outer product of the activation vectors) and is easier to use than

more complex Gaussian RBF kernels with additional parameters.

46

Recall that layer ℓ has activations v1, . . . , vnℓ
. Using these, we �rst create an

nℓ × nℓ kernel L
′ with bandwidth parameter β by setting

L′
ij = exp(−β∥vi − vj∥2) 1 ≤ i, j ≤ nℓ. (3.3.1)

To ensure strict positive de�niteness of the kernel matrix L′, we add a small diagonal

perturbation εI to L′ (ε = 0.01). The choice of the bandwidth parameter could be

done by cross-validation, but that would greatly increase the training cost. Therefore,

we use the �xed choice β = 10/|T |, which was experimentally seen to work well.

Finally, in order to limit rounding errors, we introduce a �nal scaling operation:

suppose we wish to obtain a desired size, say k, of sampled subsets (using a k-DPP).

To that end, we can scale the kernel L′+ εI by a factor γ, so that its expected sample

size becomes k. For a DPP with kernel L, the expected sample size is given by [29,

Eq. 34]:

E[|Y |] = Tr(L(I + L)−1).

Therefore, we scale the kernel to γ(L′ + εI) with γ such that

γ =
k

nℓ − k
· nℓ − k′

k′
,

where k′ is the expected sample size for the kernel L′ + εI.

Finally, generating and then sampling from L = γ(L′ + εI) has O(n3
ℓ + n2

ℓ |T |)

cost. In our experiments, this sampling cost was negligible compared to the cost of

training the network. For networks with very large hidden layers, one can avoiding

the n3
ℓ cost by using more scalable sampling techniques [34, 22].

3.3.2 Fusing redundant neurons

Simply excising the neurons that are not sampled by the DPP drastically alters the

neuron inputs to the next layer. Intuitively, since activations of neurons marked

redundant are not arbitrary, throwing them away is wasteful. Ideally we should

preserve the total information of a given layer, which suggests that we should �fuse�

47

the information from unselected neurons into the selected ones. We achieve this via

a reweighting procedure as outlined below.

Without loss of generality, let neurons 1 through k be the ones sampled by the

DPP and v1, . . . , vk be their corresponding activation vectors. Let wij be the weights

connecting the i-th neuron (1 ≤ i ≤ k) in the current layer to the j-th neuron in

the next layer; let w̃ij = δij + wij denote the updated weights after merging the

contributions from the removed neurons.

We seek to minimize the impact of removing nℓ− k neurons from layer ℓ. To that

end, we minimize the di�erence in inputs to neurons in the subsequent layer before

(
∑

i≤nℓ
wijvi) and after (

∑
i=1≤k w̃ijvi) DPP pruning.

That is, we wish to solve for all neurons in the next layer (indexed by j, with

1 ≤ j ≤ nℓ+1):

min
w̃ij∈{R}

∥∥∥∥∥
k∑

i=1

w̃ijvi −
nℓ∑
i=1

wijvi

∥∥∥∥∥
2

= min
δij∈{R}

∥∥∥∥∥
k∑

i=1

δijvi −
nℓ∑

i=k+1

wijvi

∥∥∥∥∥
2

(3.3.2)

Eq. 3.3.2 is minimized when
∑

i≤k δijvi is the projection of
∑

i>k wijvi onto the

linear space generated by {v1, . . . , vk}. Thus, to minimize Eq. 3.3.2, we obtain the

coe�cients αij that for j > k minimize

∥∥∥∥∥vj −
k∑

i=1

αijvi

∥∥∥∥∥
2

and then update the weights by setting

∀i, 1 ≤ i ≤ k, w̃ij = wij +

nℓ∑
r=k+1

αirwrj (3.3.3)

Using ordinary least squares to obtain α, the reweighting procedure has a complexity

of O(|T |n2
ℓ + n3

ℓ).

48

3.4 Experimental results

To quantify the performance of our algorithm, we present below the results of experi-

ments1 on common datasets for neural network evaluation: MNIST [31], MNIST_ROT [30]

and CIFAR-10 [25].

All networks were trained up until a certain training error threshold, using softmax

activation on the output layer and sigmoids on other layers; see Table 3.1 for more

details. In all following plots, error bars represent standard deviations.

Table 3.1: Overview of the sets of networks used in the experiments. We train each
class of networks until the �rst iteration of backprop for which the training error
reaches a prede�ned threshold.

Dataset Instances Trained up until Architecture
MNIST 5 < 1% error 784 - 500 - 500 - 10

MNIST_ROT 5 < 1% error 784 - 500 - 500 - 10
CIFAR-10 5 < 50% error 3072 - 1000 - 1000 - 1000 - 10

3.4.1 Pruning and reweighting analysis

To validate our claims on the bene�ts of using DPPs and fusing neurons, we compare

these steps separately and also simultaneously against random pruning, where a �xed

number of neurons are chosen uniformly at random from a layer and then removed,

with and without our fusing step. We present performance results on the test data;

of course, both DPP selection and reweighting are based solely on information drawn

from the training data.

Figure 3-1 visualizes neuron activations in the �rst hidden layer of a network

trained on the MNIST dataset. Each column in the plotted heat maps represents the

activation of a neuron on instances of digits 0 through 9. Figure 3-1a shows the

activations of the 50 neurons sampled using a k-DPP (k = 50) de�ned over the �rst

hidden layer, whereas Figure 3-1b shows the activations of the �rst 50 neurons of the

same layer. Figure 3-1b contains multiple similar columns: for example, there are 3

1Run in MATLAB, based on the code from DeepLearnToolBox (https://github.com/
rasmusbergpalm/DeepLearnToolbox) and Alex Kulesza's code for DPPs (http://web.eecs.umich.
edu/~kulesza/), on a Linux Mint system with 16GB of RAM and an i7-4710HQ CPU @ 2.50GHz.

49

https://github.com/rasmusbergpalm/DeepLearnToolbox
https://github.com/rasmusbergpalm/DeepLearnToolbox
http://web.eecs.umich.edu/~kulesza/
http://web.eecs.umich.edu/~kulesza/

entirely green columns, corresponding to three neurons that saturate to 1 on each of

the 10 instances. In contrast, the DPP samples neurons with diverse activations, and

Figure 3-1a shows no similar redundancy.

0
1
2
3
4
5
6
7
8
9

(a) 50 neurons sampled via DPP from the �rst hidden layer

0
1
2
3
4
5
6
7
8
9

(b) First 50 neurons of the �rst hidden layer

Figure 3-1: Heat map of the activation of subsets of 50 neurons for one instance of
each class of the MNIST dataset. The rows correspond to digits 0 through 9. Each
column corresponds to the activation values of one neuron in the network's �rst layer
on images of digits 0 through 9. Green values are activations close to 1, red values
are activations close to 0.

Figures 3-2 through 3-7 illustrate the impact of each step of Divnet separately

(Figures 3-2 through 3-4 show pruning on the �rst hidden layer, Figures 3-5 through 3-

7 on the second hidden layer). Figures 3-2 and 3-5 show the impact of pruning on test

error using DPP pruning and random pruning (in which a �xed number of neurons are

selected uniformly at random and removed from the network). DPP-pruned networks

have consistently better training and test errors than networks pruned at random for

the same �nal size. As expected, the more neurons are maintained, the less the error

su�ers from the pruning procedure; however, the pruning is in both cases destructive,

and is seen to signi�cantly increase the error rate.

This phenomenon can be mitigated by our reweighting procedure, as shown in

50

Figures 3-3 and 3-6. By fusing and reweighting neurons after pruning, the training

and test errors are considerably reduced, even when 90% of the layer's neurons are

removed. Pruning also reduces the variability of the results: the standard deviation

for the results of the reweighted networks is signi�cantly smaller than for the non-

reweighted networks, and may be thus seen as a way to regularize neural networks.

Finally, Figures 3-4 and 3-7 illustrate the performance of Divnet (DPP pruning

and reweighting) compared to random pruning with reweighting. Although Divnet's

performance is ultimately better, the reweighting procedure also dramatically bene�ts

the networks that were pruned randomly.

Notably, we found that the gap between Divnet and random pruning's perfor-

mances was much wider when pruning the last layer. We believe this is due to the

connections to the output layer being learned much faster, thus letting a small, di-

verse subset of neurons (hence well suited to DPP sampling) in the last hidden layer

take over the majority of the computational e�ort.

3.4.2 Performance analysis

Much attention has been given to reducing the size of neural networks in order to

reduce memory consumption. When using neural nets locally on devices with limited

memory, it is crucial that their memory footprint be as small as possible.

Node importance-based pruning (henceforth �importance pruning�) is one of the

most intuitive ways to cut down on network size. Introduced to deep networks by [19],

this method removes the neurons whose calculations impact the network the least.

Among the three solutions to estimating a neuron's importance discussed in [19],

the sum the output weights of each neuron (the `onorm' function) provided the best

results:

onorm(ni) :=
1

nℓ+1

∑nℓ

j=1
|wℓ+1

ij |.

Figures 3-8 and 3-9 compare the test data error of the networks after being pruned

using importance pruning that uses onorm as a measure of relevance against Divnet.

51

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

number of neurons in first hidden layer

te
st

er
ro

r

random pruning

k-DPP pruning

(a) MNIST dataset

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

number of neurons in first hidden layer

te
st

er
ro

r

random pruning

k-DPP pruning

(b) MNIST_ROT dataset

Figure 3-2: Comparison of random and k-DPP pruning procedures.

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

number of neurons in first hidden layer

te
st

er
ro

r

k-DPP pruning

k-DPP + reweighting

(a) MNIST dataset

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

number of neurons in first hidden layer

te
st

er
ro

r
k-DPP pruning

k-DPP + reweighting

(b) MNIST_ROT dataset

Figure 3-3: Comparison of Divnet (k-DPP + reweighting) to simple k-DPP pruning.

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

number of neurons in first hidden layer

te
st

er
ro

r

random pruning + reweighting

k-DPP + reweighting

(a) MNIST dataset

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

number of neurons in first hidden layer

te
st

er
ro

r

random pruning + reweighting

k-DPP + reweighting

(b) MNIST_ROT dataset

Figure 3-4: Comparison of random and k-DPP pruning of the �rst hidden layer when
both are followed by reweighting.

52

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

number of neurons in second hidden layer

te
st

er
ro
r

random pruning

k-DPP pruning

(a) MNIST dataset

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

number of neurons in second hidden layer

te
st

er
ro
r

random pruning

k-DPP pruning

(b) MNIST_ROT dataset

Figure 3-5: Comparison of random and k-DPP pruning procedures.

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

number of neurons in second hidden layer

te
st

er
ro
r

k-DPP pruning

k-DPP + reweighting

(a) MNIST dataset

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

number of neurons in second hidden layer

te
st

er
ro
r

k-DPP pruning

k-DPP + reweighting

(b) MNIST_ROT dataset

Figure 3-6: Comparison of Divnet to simple k-DPP pruning.

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

number of neurons in second hidden layer

te
st

er
ro
r

random pruning + reweighting

k-DPP + reweighting

(a) MNIST dataset

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

number of neurons in second hidden layer

te
st

er
ro
r

random pruning + reweighting

k-DPP + reweighting

(b) MNIST_ROT dataset

Figure 3-7: Comparison of random and k-DPP pruning when both are followed by
reweighting.

53

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

size of first hidden layer

te
st

er
ro

r
random

importance pruning

DIVNET

(a) MNIST dataset

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

size of first hidden layer

te
st

er
ro

r

random

importance pruning

DIVNET

(b) MNIST_ROT dataset

Figure 3-8: Comparison of random pruning, importance pruning, and Divnet's im-
pact on the network's performance after decreasing the number of neurons in the �rst
hidden layer.

0 200 400 600 800 1,000
0.4

0.6

0.8

1

size of first hidden layer

tr
a
in

in
g

er
ro

r

random

importance pruning

DIVNET

(a) Training error on CIFAR-10 dataset

0 200 400 600 800 1,000
0.4

0.6

0.8

1

size of first hidden layer

te
st

er
ro

r

random

importance pruning

DIVNET

(b) Test error on CIFAR-10 dataset

Figure 3-9: Comparison of random pruning, importance pruning, and Divnet's im-
pact on the network's performance after decreasing the number of parameters in the
network.

Since importance pruning deletes the neurons that contribute the least to the

next layer's computations, it performs well up to a certain point; however, when

pruning a signi�cant amount of neurons, this pruning procedure even removes neurons

performing essential calculations, hurting the network's performance signi�cantly.

However, since Divnet fuses redundant neurons instead of merely deleting them,

its resulting network delivers a much better performance even when used with large

amounts of pruning.

Table 3.2 shows network training and test errors under various compression rates,

54

without additional retraining (that is, the pruned network is not retrained to further

optimize its weights).

Table 3.2: Training and test error for di�erent percentages of remaining neurons
(mean ± standard deviation). Initially, MNIST and MNIST_ROT nets have 1000 hidden
neurons, and CIFAR-10 have 3000.

Remaining hidden neurons 10% 25% 50% 75%

MNIST
training error 0.76 ± 0.06 0.28 ± 0.12 0.15 ± 0.04 0.06 ± 0.04
test error 0.76 ± 0.07 0.29 ± 0.12 0.17 ± 0.05 0.07 ± 0.03

MNIST_ROT
training error 0.74 ± 0.08 0.54 ± 0.09 0.34 ± 0.06 0.20 ± 0.03
test error 0.73 ± 0.09 0.49 ± 0.11 0.25 ± 0.07 0.06 ± 0.03

CIFAR-10
training error 0.84 ± 0.05 0.61 ± 0.01 0.52 ± 0.01 0.50 ± 0.01
test error 0.85 ± 0.05 0.62 ± 0.02 0.54 ± 0.01 0.52 ± 0.01

3.4.3 In�uence of the bandwidth on the pruning procedure

Figure 3-10 shows how varying the RBF kernel's bandwidth parameter β in�uences

the training error of a network after pruning; Figure 3-11 illustrates how β in�uences

the sampled size of a subset when the size of the �nal subset isn't controlled by using

a k-DPP. When β >> 1, the kernel L approaches the identity matrix, in which case

in expectation n/2 neurons are chosen, uniformly at random.

3.4.4 Discussion and Remarks

� In all experiments, sampling and reweighting ran several orders of magnitude faster

than training; reweighting required signi�cantly more time than sampling. If Di-

vnet must be further sped up, a fraction of the training set can be used instead

of the entire set, at the possible cost of subsequent network performance.

� When using DPPs with a Gaussian kernel, sampled neurons need not have linearly

independent activation vectors: not only is the DPP sampling probabilistic, the

Gaussian kernel itself is not scale invariant. Indeed, for two collinear but unequal

activation vectors, the corresponding coe�cient in the kernel will not be 1 (or γ

with the L← γL update).

55

100 200 300 400 500

10−2

10−1

number of neurons in first hidden layer

tr
a
in

in
g

e
rr

o
r

β = 10−1

β = 10−2

β = 10−3

β = 10−4

Figure 3-10: In�uence of β on training error (using the networks trained on MNIST).
The dotted lines show min and max errors.

-
10 -5 10 -4 10 -3 10 -2 10 -1 10 0

N
u
m

b
er

of
h
id

d
en

n
eu

ro
n
s

0

50

100

150

200

250

300

Figure 3-11: In�uence of β on the number of neurons that remain after pruning
networks trained on MNIST (when pruning non-parametrically, using a DPP instead
of a k-DPP.)

� In our work, we selected a subset of neurons by sampling once from the DPP.

Alternatively, one could sample a �xed amount of times, using the subset with the

highest likelihood (i.e., largest det(LY)), or greedily approximate the mode of the

56

DPP distribution.

� Our reweighting procedure bene�ts competing pruning methods as well (see Fig-

ure 3-4).

� We also investigated DPP sampling for pruning concurrently with training itera-

tions, hoping that this might allow us to detect super�uous neurons before con-

vergence, and thus reduce training time. However, we observed that in this case

DPP pruning, with or without reweighting, did not o�er a signi�cant advantage

over random pruning.

� Consistently over all datasets and networks, the expected sample size from the

kernel L′ was much smaller for the last hidden layer than for other layers. We

hypothesize that this is caused by the connections to the output layer being learned

faster than the others, allowing a small subset of neurons to take over the majority

of the computational e�ort.

57

58

Chapter 4

Conclusion

In a world where large amounts of data are available and where machine-learning tools

are increasingly memory-heavy, leveraging methods for enforcing diversity � both in

the data and in the machine-learning structures themselves � is a necessary step to

obtaining e�cient and precise approaches to machine-learning.

By allowing a careful balancing of quality and diversity considerations, Determi-

nantal Point Processes provide a powerful way to approach these issues, both theo-

retically and on real-world data.

In Chapter 2, we approached the problem of maximum-likelihood estimation of

a DPP kernel from a new angle: we analyzed the stationarity properties of the cost

function and used them to obtain a novel �xed-point Picard iteration. Experiments

on both simulated and real data showed that for a range of ground set sizes and

number of samples, the Picard iteration runs remarkably faster than the previous

best approach, while being extremely simple to implement. In particular, for large

ground set sizes our experiments show that our algorithm cuts down runtime to a

fraction of the previously optimal EM runtimes.

We presented a theoretical analysis of the convergence properties of the Picard it-

eration, and found su�cient conditions for its convergence. However, our experiments

reveal that the Picard iteration converges for a wider range of step-sizes (parameter a

in the iteration and plots) than currently accessible to our theoretical analysis. It is

a part of our future work to develop a more complete convergence theory, especially

59

because of its strong empirical performance. In light of our results, another line of

future work is to apply �xed-point analysis to other DPP learning tasks.

Chapter 3 introducesDivnet, a DPP-based algorithm which leverages similarities

between the behaviors of neurons in a layer to detect redundant parameters and

merge them, thereby enforcing neuronal diversity within each hidden layer. Using

Divnet, large, redundant networks can be shrunk to much smaller structures without

impacting their performance and without requiring further training.

Many hyper-parameters can be tuned by a user as per need: the number of re-

maining neurons per layer can be �xed manually; the precision of the reweighting and

the sampling procedure can be tuned by choosing how many training instances are

used to generate the DPP kernel and the reweighting coe�cients, creating a trade-o�

between accuracy, memory management, and computational time.

Although Divnet requires the user to select the size of the �nal network, we

believe that a method where no parameter explicitly needs to be tuned is worth inves-

tigating. The fact that DPPs can be augmented to also re�ect di�erent distributions

over the sampled set sizes [29, �5.1.1] might be leveraged to remove the burden of

choosing the layer's size from the user.

Importantly, Divnet is agnostic to most parameters of the network, as it only

requires knowledge of the activation vectors. Consequently, Divnet can be easily

used jointly with other pruning and memory management methods to reduce size.

Moreover, the reweighting procedure is agnostic to how the pruning is done, as shown

in our experiments.

Furthermore, the principles behind Divnet can theoretically also be leveraged

non fully-connected settings. For example, the same diversifying approach may also

be applicable to �lters in CNNs: if a layer of the CNN is connected to a simple,

feed-forward layer � such as the S4 layer in [33] � by viewing each �lter's activation

values as a vector and applying Divnet on the resulting activation matrix, one may

be able to remove entire �lters from the network, thus signi�cantly reducing a CNN's

memory footprint.

Finally, we believe that investigating DPP pruning with di�erent kernels, includ-

60

ing learning the kernel from data, may provide insight into which interactions between

neurons of a layer contain the information necessary for obtaining good representa-

tions and accurate classi�cation. This marks an interesting line of future investigation,

both for training and representation learning.

61

62

Bibliography

[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix
manifolds. Princeton University Press, 2009.

[2] R. A�andi, A. Kulesza, E. Fox, and B. Taskar. Nyström approximation for
large-scale Determinantal Point Processes. In Arti�cial Intelligence and Statistics
(AISTATS), 2013.

[3] R. A�andi, E. Fox, R. Adams, and B. Taskar. Learning the parameters of Deter-
minantal Point Process kernels. In International Conference on Machine Learn-
ing, 2014.

[4] R. A�andi, E. Fox, and B. Taskar. Approximate inference in continuous Deter-
minantal Point Processes. In Uncertainty in Arti�cial Intelligence (UAI), 2103.

[5] D. P. Bertsekas. Nonlinear Programming. Athena Scienti�c, second edition, 1999.

[6] R. Bhatia. Positive De�nite Matrices. Princeton University Press, 2007.

[7] A. Borodin and E. M. Rains. Eynard Mehta Theorem, Schur Process, and their
Pfa�an Analogs. Journal of Statistical Physics, 121:291�317, Nov. 2005. doi:
10.1007/s10955-005-7583-z.

[8] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt, a Matlab toolbox
for optimization on manifolds. Journal of Machine Learning Research, 15:1455�
1459, 2014. URL http://www.manopt.org.

[9] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen. Compressing
neural networks with the hashing trick. CoRR, abs/1504.04788, 2015.

[10] M. Courbariaux, Y. Bengio, and J. David. Low precision arithmetic for deep
learning. CoRR, abs/1412.7024, 2014.

[11] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. de Freitas. Predicting pa-
rameters in deep learning. CoRR, abs/1306.0543, 2013.

[12] J. Gillenwater, A. Kulesza, and B. Taskar. Discovering diverse and salient threads
in document collections. In Proceedings of the 2012 Joint Conference on Empir-
ical Methods in Natural Language Processing and Computational Natural Lan-
guage Learning, EMNLP-CoNLL '12, pages 710�720, Stroudsburg, PA, USA,
2012. Association for Computational Linguistics.

63

http://www.manopt.org

[13] J. Gillenwater, A. Kulesza, and B. Taskar. Near-optimal MAP inference for
Determinantal Point Processes. In Advances in Neural Information Processing
Systems (NIPS), 2012.

[14] J. Gillenwater, A. Kulesza, E. Fox, and B. Taskar. Expectation-Maximization
for learning Determinantal Point Processes. In Advances in Neural Information
Processing Systems (NIPS), 2014.

[15] A. Granas and J. Dugundji. Fixed-point theory. Springer, 2003.

[16] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan. Deep learning
with limited numerical precision. CoRR, abs/1502.02551, 2015.

[17] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and connections
for e�cient neural networks. CoRR, abs/1506.02626, 2015.

[18] B. Hassibi, D. G. Stork, and S. C. R. Com. Second order derivatives for network
pruning: Optimal brain surgeon. In Advances in Neural Information Processing
Systems 5, pages 164�171. Morgan Kaufmann, 1993.

[19] T. He, Y. Fan, Y. Qian, T. Tan, and K. Yu. Reshaping deep neural network
for fast decoding by node-pruning. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on, pages 245�249, May 2014.

[20] G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural
network. CoRR, abs/1503.02531, 2015.

[21] J. B. Hough, M. Krishnapur, Y. Peres, and B. Virág. Determinantal processes
and independence. Probability Surveys, 3(206�229):9, 2006.

[22] B. Kang. Fast determinantal point process sampling with application to cluster-
ing. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger,
editors, Advances in Neural Information Processing Systems 26, pages 2319�2327.
Curran Associates, Inc., 2013.

[23] C.-W. Ko, J. Lee, and M. Queyranne. An exact algorithm for maximum entropy
sampling. CORE Discussion Papers 1993006, Université catholique de Louvain,
Center for Operations Research and Econometrics (CORE), 1993.

[24] A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements in Gaus-
sian processes: theory, e�cient algorithms and empirical studies. Journal of
Machine Learning Research (JMLR), 9:235�284, 2008.

[25] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical
report, 2009.

[26] A. Kulesza. Learning with Determinantal Point Processes. PhD thesis, University
of Pennsylvania, 2013.

64

[27] A. Kulesza and B. Taskar. k-DPPs: Fixed-size Determinantal Point Processes.
In International Conference on Maachine Learning (ICML), 2011.

[28] A. Kulesza and B. Taskar. Learning Determinantal Point Processes. In Uncer-
tainty in Arti�cial Intelligence (UAI), 2011.

[29] A. Kulesza and B. Taskar. Determinantal Point Processes for machine learning,
volume 5. Foundations and Trends in Machine Learning, 2012.

[30] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical
evaluation of deep architectures on problems with many factors of variation. In
Proceedings of the 24th International Conference on Machine Learning, ICML
'07, pages 473�480, 2007.

[31] Y. LeCun and C. Cortes. MNIST handwritten digit database.
http://yann.lecun.com/exdb/mnist/, 2010. URL http://yann.lecun.com/

exdb/mnist/.

[32] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In Advances
in Neural Information Processing Systems, pages 598�605. Morgan Kaufmann,
1990.

[33] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha�ner. Gradient-based learning applied
to document recognition. In Proceedings of the IEEE, pages 2278�2324, 1998.

[34] C. Li, S. Jegelka, and S. Sra. E�cient sampling for k-determinantal point pro-
cesses. preprint, 2015.

[35] H. Lin and J. Bilmes. Learning mixtures of submodular shells with application to
document summarization. In Uncertainty in Arti�cial Intelligence (UAI), 2012.

[36] R. Lyons. Determinantal probability measures. Publications Mathématiques de
l'Institut des Hautes Études Scienti�ques, 98(1):167�212, 2003.

[37] O. Macchi. The coincidence approach to stochastic point processes. Advances in
Applied Probability, 7(1), 1975.

[38] D. Maclaurin, D. Duvenaud, and R. P. Adams. Gradient-based hyperparameter
optimization through reversible learning. In Proceedings of the 32nd International
Conference on Machine Learning, July 2015.

[39] Z. Mariet and S. Sra. Fixed-point algorithms for learning determinantal point
processes. In F. R. Bach and D. M. Blei, editors, Proceedings of the 32nd Inter-
national Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, volume 37 of JMLR Proceedings, pages 2389�2397. JMLR.org, 2015.

[40] Z. Mariet and S. Sra. Diversity networks. CoRR, abs/1511.05077, 2015. URL
http://arxiv.org/abs/1511.05077.

65

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1511.05077

[41] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhad-
ran. Low-rank matrix factorization for deep neural network training with high-
dimensional output targets. In IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2013, Vancouver, BC, Canada, May 26-
31, 2013, pages 6655�6659. IEEE, 2013.

[42] J. Snoek, R. Zemel, and R. P. Adams. A determinantal point process latent
variable model for inhibition in neural spiking data. In C. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K. Weinberger, editors, Advances in Neural
Information Processing Systems 26, pages 1932�1940. Curran Associates, Inc.,
2013.

[43] S. Sra and R. Hosseini. Conic geometric optimization on the manifold of positive
de�nite matrices. SIAM Journal on Optimization, 25(1):713�739, 2015.

[44] S. Srinivas and R. V. Babu. Data-free parameter pruning for deep neural
networks. CoRR, abs/1507.06149, 2015. URL http://arxiv.org/abs/1507.

06149.

[45] Z. Yang, M. Moczulski, M. Denil, N. de Freitas, A. J. Smola, L. Song, and
Z. Wang. Deep fried convnets. CoRR, abs/1412.7149, 2014.

[46] A. L. Yuille and A. Rangarajan. The concave-convex procedure. Neural Comput.,
15(4):915�936, Apr. 2003.

[47] T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J. R. Wakeling, and Y.-C. Zhang.
Solving the apparent diversity-accuracy dilemma of recommender systems. Pro-
ceedings of the National Academy of Sciences, 107(10):4511�4515, 2010.

[48] A. Çivril and M. Magdon-Ismail. On selecting a maximum volume sub-matrix
of a matrix and related problems. Theoretical Computer Science, 410(4749):4801
� 4811, 2009.

66

http://arxiv.org/abs/1507.06149
http://arxiv.org/abs/1507.06149

	Introduction
	Determinantal Point Processes
	Formal definition
	L-ensembles
	Quality and diversity
	DPPs algorithms
	k-DPPs

	Positive definite matrices
	Contributions
	Thesis organization

	The Picard iteration
	Introduction
	Problem setup: learning the DPP Kernel

	The Picard iteration
	Convergence Analysis
	Generalized Picard iteration
	Picard iteration for feature matrices
	Pseudocode
	Iteration cost and convergence speed

	Experimental results
	Baby registries dataset
	Implementation details
	Synthetic tests
	Baby registries experiment

	Diversity networks
	Introduction
	Related work
	Diversity and redundancy reduction
	Neuronal diversity via Determinantal Point Processes
	Fusing redundant neurons

	Experimental results
	Pruning and reweighting analysis
	Performance analysis
	Influence of the bandwidth on the pruning procedure
	Discussion and Remarks

	Conclusion

