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Abstract
Wireless networks are everywhere around us and form a big part of our day-to-day lives.
In this dissertation, we address the key challenges and opportunities of modern wireless
networks. First, perhaps our biggest expectation from modern wireless networks is faster
communication speeds. However, state-of-the-art Wi-Fi networks continue to struggle in
crowded environments – airports and hotel lobbies. The core reason is interference – Wi-
Fi access points today avoid transmitting at the same time on the same frequency, since
they would otherwise interfere with each other. This thesis describes OpenRF, a novel
system that enables today’s Wi-Fi access points to directly combat this interference and
demonstrate significantly faster data-rates for real applications. In addition, it presents
MoMIMO, which demonstrates how the natural mobility of mobile users can be used to
further mitigate interference.

Second, can we use the ubiquitous Wi-Fi infrastructure around us to deliver new ser-
vices, beyond communication? In particular, this dissertation focuses on indoor position-
ing, a service that has grabbed the attention of the academia and industry. While GPS
has revolutionized outdoor navigation, it does not work indoors. Past work that has ex-
plored this problem is either limited in accuracy with errors of several meters, or advocates
complete overhaul of the infrastructure with massive antenna-array access points that do
not exist on consumer devices. Inspired by radar systems, we present Ubicarse, the first
purely-software indoor positioning system for existing Wi-Fi devices that achieves tens
of cm in positioning accuracy. Further, we build on this design to develop LTEye, which
reveals new insights on how location impacts the performance of commercial AT&T and
Verizon LTE cellular networks in the indoor space. Finally, we demonstrate how the tools
we develop for indoor positioning open up new connections betweenwireless networking
and robotics, to improve communication and security in multi-robot networks.

Thesis Supervisor: Dina Katabi
Title: Professor of Computer Science and Engineering
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CHAPTER 1

Introduction

Wireless networks form an important role in our everyday lives. Billions of users world-

wide today rely on wireless networks, be it on their laptops, smartphones, wearables or

tablets. As a result, pushing the limits of wireless networks will benefit the host of appli-

cations that we enjoy today and impact our day to day lives.

Yet, there remain key challenges that limit modern wireless networks. We can summa-

rize these along two broad axes:

• Combating Interference: The first axis is a classic problem of every wireless net-

work: wireless interference. Interference is at the core of wireless problems that ev-

eryday users face, particularly in crowded hotels and airports. In particular, wireless

spectrum is a shared resource. As a result, if wireless nodes transmit at the same

time and frequency, their signals interfere. To mitigate this, today’s wireless net-

works adopt a simple strategy – they force users to take turns on the medium, so that

each user in the network receives their packet, one at a time [2]. Consequently, users

experience increasingly lower speeds, as more andmore users join the network [141].

• New Services: The second axis is both a challenge and an opportunity – Using the

wireless infrastructure around us not just for communication, but also to provide

new services. Among these services, a key service that has grabbed the attention of

both the academia and industry alike is indoor positioning. While GPS has revo-

lutionized outdoor navigation, it does not work indoors [142]. As a result, there is

a massive interest in using wireless technologies like Wi-Fi [188, 82, 142] and cellu-

33



34 CHAPTER 1. INTRODUCTION

lar [5, 109] systems for positioning in the indoor space. Such a service opens up a

range of applications: For instance, a user can find her way around in a mall or mu-

seum using a mobile phone, just as she can outdoors with GPS today. Businesses like

Wal-Mart and retail stores can use it to flash the most relevant offers to customers as

they walk along different aisles. Finally, teams of robots can find their way around

to pick up different products in a warehouse.

Unfortunately, past work that has that looked into these challenges suffers from one of

two major shortcomings: (1) either, it requires complete overhaul of Wi-Fi infrastructure,

i.e. replacing all Wi-Fi access points with new hardware that does not even exist on the

market; (2) or, it does not provide satisfying performance. For instance, state-of-the-art

systems that combat wireless interference [141, 63, 62] require developing newWi-Fi hard-

ware following new standards that do not exist today. Unfortunately, it will take decades

before these standards can be developed and make it to real networks. Consequently, cur-

rent networks simply force users to take turns on the wireless medium [2].

Indeed, the dilemma remains the same for indoor positioning. State-of-the-art sys-

tems require large multi-antenna arrays that are extremely bulky [188, 82]: a row of six-

teen antenna elements, each separated by tens of centimeters. Such solutions simply do

not exist on consumer devices – both access points, and mobile devices. Yet, alternative

solutions that work with today’s network infrastructure fail to deliver adequate perfor-

mance [142, 168, 104]. These require the cumbersome process of collecting signal finger-

prints, i.e. exhaustively measuring wireless signals in every room and every floor of the

deployment space. To make matters worse, these solutions begin to unravel if the envi-

ronment changes in any way. For instance, if people move or even if furniture is relocated,

they quickly loose their accuracy [111]. As a result, such solutions fail to work reliably in

practice.

Ideally, we would like to address both these challenges: combating interference and in-

door positioning, while achieving high performance without overhauling our infrastruc-

ture. This dissertation addresses this precise need. It presents multiple systems that are

designed either as purely-software modifications or simple low-cost hardware that can be

readily plugged in to existing wireless infrastructure. Underlying these systems are novel

algorithms that can bothmeasure and control howwireless signals interact with the environ-

ment, using simple commodity wireless hardware. Specifically, wireless signals emitted by
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a transmitter bounce off walls and obstacles spawning multiple copies of the signal. These

copies combine at the receiver to either reinforce or cancel each other. This thesis presents

novel systems that intelligently control signals at a commodityWi-Fi transmitter, so that all

copies of interfering signals effectively cancel out each other. Further, it demonstrates how

measuring and separating these signal copies at the receiver can help identify and track

the location of the transmitting device (e.g. a mobile phone). Finally, the ability to measure

and control wireless signals opens up new connections between networking and the field

of robotics – where wireless communication is innate. Specifically, we discover new ways

in which cheap, commodity Wi-Fi radios on robots can emulate virtual “sensors” to enable

better navigation, communication and security in multi-robot systems.

The rest of this dissertation describes systems that control and measure wireless signals

on commercial wireless hardware to advance three broad goals: 1) Combating wireless

interference (Chapters 2-4); 2) Achieving accurate indoor positioning (Chapters 5-7); (3)

Opening up new connections between wireless networking and robotics (Chapters 8-10).

The following sections briefly introduce these systems and present their core contributions.

� 1.1 Combating Interference

The first part of this dissertation deals with combating wireless interference in today’s

wireless LANs. Our work builds on MIMO interference management techniques [63, 99,

141] that rely on multiple antennas on Wi-Fi access points to cancel interference at clients.

Unfortunately, prior to this dissertation, deploying these techniques would require com-

plete overhaul of today’s Wi-Fi infrastructure: both new hardware and standards that take

decades to develop.

In contrast, our work presents novel systems that require neither. At their heart are

novel mechanisms that can intelligently control how wireless signals combine over the air

at the transmitters, so that any interfering signals cancel out at wireless receivers. These

mechanisms are designed to be compatible within the constraints of existing Wi-Fi hard-

ware and standards. We first present a software-only end-to-end architecture to cancel

interference on today’s multi-antenna Wi-Fi access points running commercial Wi-Fi ra-

dios. We further demonstrate that we can combat interference, even for single-antenna

devices, by exploiting their natural mobility. Our solutions have been implemented and
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evaluated in wireless testbeds to demonstrate significant gains in performance compared

to state-of-the-art.

Contributions. Our work makes the following key contributions:

• MIMO interference management on today’s wireless LANs: OpenRF [SIGCOMM ’13],

the first purely software system to bring MIMO interference cancellation techniques

to commercial Wi-Fi devices. At its core are new algorithms that manipulate wireless

signals at Wi-Fi transmitters to cancel interference at receivers, within the constraints

of today’s Wi-Fi hardware. OpenRF demonstrated that such techniques bring mas-

sive gains to today’s mobile applications for the first time. Fig. 1-1 shows OpenRF

in action, where videos sent using OpenRF experience 4× fewer glitches and delays,

compared to 802.11n Wi-Fi.

• Interference alignment by motion: MoMIMO [MOBICOM ’13] brings MIMO interfer-

ence management (e.g., interference alignment and nulling), hitherto restricted to

multi-antenna devices [63, 99], for the first time to single-antenna devices. At its

heart is a novel technique that demonstrates how a movement of just an inch or less

of a wireless device can achieve interference alignment to dramatically reduce in-

terference. MoMIMO develops new wireless models that understand how signals

add up differently across spatial locations. Using these models, MoMIMO shows

that by intelligently moving a wireless antenna, one can seek local positions where

interference adds up to zero. Such antennas can easily be connected to the external

ports of today’sWi-Fi access points. Further, one can leverage the natural mobility of

handheld devices themselves, advising users on how best to move them, when they

experience interference. MoMIMO was implemented on software radios as well as

commodity Wi-Fi devices and demonstrated 1.98× gain in throughput over 802.11n

Wi-Fi.

� 1.2 Indoor Positioning

The second part of this dissertation presents newways to achieve accurate indoor position-

ing using Wi-Fi and cellular signals from today’s mobile devices. Specifically, it addresses

the main culprit that impedes positioning in the indoor space, as opposed to outdoors: the
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Figure 1-1: OpenRF.OpenRF clients see fewer glitches in videos compared to 802.11 (video screenshots, right).

It has shorter frame delays over time (left) even with competing clients under identical conditions and hard-

ware.

fact that wireless signals bounce off walls and objects causing an effect called multipath.

Multipath creates ambiguity at the receiver on where the signal originated from, hence

hampering its ability to localize the transmitter. Past solutions attempted to resolve this

issue in two ways: 1) elaborately fingerprinting the environment to create a database of

how the signal may look like for each possible location of the transmitter [142, 104], or 2)

expensive infrastructure unavailable on cellphones, like large arrays of antennas [188, 82].

In contrast, this dissertation presents new solutions that require neither (see Fig. 1-2).

At the heart of our approach is a novel method to combat multipath by measuring wire-

less signals vary as a receiving device moves. Specifically, as the receiving device moves,

it records different combinations of the wireless signals (i.e., different multipath). Using

these different observations, one can invert the effect of multipath and identify the true

direction of the source. This approach allows us to transform our commodity wireless

devices (e.g. Wi-Fi tablets or access points) into personal radars that perform indoor posi-

tioning to within 30 cm.

Specifically, this dissertation presents two systems that tackle the indoor positioning

problem from two perspectives: from that of the wireless infrastructure and user device.

The first systemproposes simple hardwaremodifications that can be plugged in to existing

wireless infrastructure (e.g. Wi-Fi access points or LTE femtocells) to achieve accurate

indoor positioning. Our approach requires no modification to user devices and can track

them continuously as they move through the deployment space. The second is a software-
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only localization system that runs on a user device connected to existing unmodified Wi-

Fi infrastructure. This system provides an on-demand localization service that a user can

invoke, whenever they twist their device. Experiments reveal tens of centimeters accuracy

for both systems in indoor environments, without requiring specialized infrastructure or

elaborate fingerprinting prior to deployment.

Contributions. Our work delivers two key contributions:

• LTE radio analytics made easy and accessible: LTEye is an indoor positioning system

that achieves tens of centimeters accuracy in positioning without requiring exhaus-

tive fingerprinting of indoor environments. LTEye is deployed using simple hard-

ware modifications on wireless infrastructure (e.g. Wi-Fi access points or LTE fem-

tocells). In particular, LTEye was deployed on commercial LTE networks, whose

performance and interference patterns in the indoor space remains less understood,

even by cellular operators given the advent of small cells that users themselves can

deploy. Indoor positioning can play a crucial role given that it can link mobile user

locations with their cellular performance. By detecting user performance over space,

one can quickly identify problems and adopt remedies for impacted users. LTEye is

the first open-source system to throw light into the LTE radio layer, without opera-

tor support. LTEye contains new mechanisms to infer user performance over space

(see Fig. 4), without access to their encrypted data. LTEye was built and deployed

on the MIT campus and found serious deficiencies in production AT&T and Verizon

networks, including high inter-cell interference and inefficient usage of expensive

licensed spectrum.

• Accurate Wi-Fi indoor positioning with zero startup cost: Ubicarse1 is an accurate in-

door localization system that runs in software on commodity Wi-Fi devices using

existing Wi-Fi infrastructure. Ubicarse is inspired by a radar technique called Syn-

thetic Aperture Radar (SAR). Traditional SAR systems mount receiving antennas on

aerial or ground vehicles to resolve multipath and geo-locate transmitters highly ac-

curately. In contrast, Ubicarse transform a handheld device to a personal radar to

localize Wi-Fi signals. Indeed, doing so is quite natural; users can readily move their

1The Spanish word Ubicarse derives from the Latin root ubi and signifies to locate or situate oneself with
precision.
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Figure 1-2: Ubicarse vs. Current Indoor Positioning Systems. Current indoor positioning systems (logos)

need new infrastructure or fingerprinting. Ubicarse needs neither

devices, much like how vehicles move radars in SAR. However, bringing SAR from

complex radars to handheld devices is not simple. SAR vehicles move antennas

along highly controlled trajectories like perfect lines or circles. It is impossible to ask

users tomove their devices with such precision. Ubicarse’s core contribution is a new

formulation of SAR that localizes handheld devices even as users move their mobile

devices along unknown paths. Ubicarse is not limited to localizing RF devices; it

combines RF localization with stereo-vision algorithms to localize common objects

with no RF source attached to them. We implement Ubicarse on a HP SplitX2 tablet

and empirically demonstrate a median error of 39 cm in 3-D device localization and

17 cm in object geotagging in complex indoor settings.

� 1.3 New connections between wireless and robotics

The final part of this dissertation explores new connections between wireless communi-

cation and robotics. Wireless networks and robotics have a long history. Any multi-robot

system requires wireless networks to communicate, be it for manufacturing, agriculture,

mining or search-and-rescue. Yet, wireless communication is traditionally viewed as a

blackbox in robotics, simply to exchange messages.

This dissertation reveals the benefits of cracking the blackbox open – it addresses the

important problems pertaining to navigation and security in robotics, simply using off-the-

shelfWi-Fi radios as sensors. Specifically, we present algorithms that actively measure how

wireless signals from a transmitter reflect around obstacles before they reach the receiver.
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These algorithms form the basis for two novel systems. First, we make the observation

that robots can learn how to avoid obstacles by sensing how radio waves reflect around

them. This enables a novel system where robots that can navigate to improve signal qual-

ity by following the wireless signals emitted by their targets, akin to how moths navigate

towards a lamp, following visible light. Second, we observe that signals from a wireless

transmitter carry unique information that is dependent both on the transmitter’s hard-

ware, its location and its environment (e.g. the location of obstacles around it). As a result,

they can be used to extract fingerprints that remain unique to specific transmitters. We

demonstrate how this primitive enables a natural authentication mechanism for robots to

secure against the Sybil attack, where a malicious robot can disrupt a multi-robot network

by pretending to be a large number of fake clients.

Contributions. We present the following contributions to advance network throughput

and security in multi-robot systems:

• Multi-Robot Communication: Multi-robot swarms are teams of robots collaborating

on a common objective, e.g. to survey the most area after an earthquake, or score

maximum goals in RoboCup soccer. While doing so, robots must maintain connec-

tivity to each other. Traditionally, robotic networks used simplistic models to do

this. For instance, the popular disk model [33, 80] assumes that two robots will al-

ways be connected if they are within a specific distance. This model is known to be

impractical, both within the networking and robotics communities [113]. However,

robotic systems retain the model since it involves simple constraints that maintain

the closed-form solutions of robotic optimizations. In other words, past work trades-

off performance for simplicity. In contrast, we develop a new approach achieves the

best of both worlds. At its heart are new data-driven models based on the physics of

wireless signals. These models calculate a mapping between a robot’s current posi-

tion and the signal strength that it receives along each spatial direction, for its wireless

links to every other robot. We show that this information can be used to design a

positional controller that adapts to wireless signals in real-world environments, yet

retains a simple mathematical structure. Experiments show that our method out-

performs state-of-the-art approaches [33, 80, 95, 159] both in convergence time (3.4×
faster) and variability of performance (4× smaller variance).
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• Multi-Robot Security: Wireless communication enables wide-ranging services in

multi-robot tasks such as aerial surveillance and unmanned delivery. However, ef-

fective coordination between multiple robots requires trust, making them particu-

larly vulnerable to cyber-attacks. Specifically, such networks can be gravely dis-

rupted by the Sybil attack, where even a single malicious robot can spoof a large

number of fake clients. We propose a new solution to defend against the Sybil at-

tack, without requiring expensive cryptographic key-distribution. Our core con-

tribution is a novel algorithm implemented on commercial Wi-Fi radios that can

“sense” spoofers using the physics of wireless signals. We derive theoretical guaran-

tees on how this algorithm bounds the impact of the Sybil Attack on a broad class

of multi-robot coordination problems. We experimentally validate our claims us-

ing a team of AscTec quadrotor server robots and iRobot Create ground clients, and

demonstrate spoofer detection rates over 96%.

� 1.4 Organization

The rest of this dissertation is organized as follows. Chapter 2 presents an overview of

our systems to combat interference. In Chapter 3, we describe OpenRF in greater detail

and how it brings multi-antenna interference management to commodity Wi-Fi radios.

The chapter presents the first study of the benefits of these techniques on today’s network

protocols and real applications. Chapter 4 describes how MoMIMO enables interference

management techniques like interference alignment and nulling by motion. In doing so,

it brings multi-antenna interference management, for the first time, to single-antenna de-

vices.

Next, Chapter 5 is an overview of our systems to achieve accurate indoor position-

ing. Chapter 6 describes LTEye, the first open platform to monitor and analyze LTE radio

performance at a fine temporal and spatial granularity. The chapter presents empirical in-

sights and analytics from commercial AT&T and Verizon base stations. Chapter 7 presents

Ubicarse and describes how it achieves indoor localization with tens of centimeters of ac-

curacy on commodity mobile devices, with no specialized infrastructure or fingerprinting.

Chapter 8 is an overview of systems that open up new connections between wireless

networking and robotics. In Chapter 9, we describe a simple and efficient approach for
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robots in a multi-robot Wi-Fi network to distribute themselves to maintain high commu-

nication quality. In Chapter 10, we describe our system to secure multi-robot networks

against the Sybil attack, and provide analytical bounds on the effect of adversaries, without

requiring expensive cryptographic protocols. We perform a detailed experimental evalua-

tion on a swarm of aerial and ground robots, equipped with off-the-shelf Wi-Fi radios.
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Combating interference

It is well known that wireless spectrum is a limited and valuable resource. In the last U.S.

spectrum auction, a mere 10 MHz of spectrumwas sold for $6 Billion. The main reason for

this is interference. Specifically, multiple users cannot transmit concurrently on the same

spectrum because their signals will interfere and receivers cannot decode them. Hence,

users need to share spectrum between them, making it a scarce resource. Interference is

therefore the fundamental challenge of wireless networking. Traditionally, the wireless

community designed protocols that avoid interference. They made users take turns in the

air, slowing traffic to send only one packet at any time. Only recently did the commu-

nity realize how a better understanding of wireless signals can limit interference, without

losing network speeds. Unfortunately, in doing so, they require a complete overhaul of

wireless infrastructure – both new hardware and newWi-Fi standards.

This dissertation elevates this approach by developing new mechanisms that actively

control how signal copies combine in the air to eliminate interference altogether. These

mechanisms are designed to be implemented on commodity Wi-Fi radios employing ex-

isting standards, either purely in software or with simple hardware modifications.

We begin with a system that can be integrated purely in software to combat interference

from multi-antenna access points. This system actively controls interfering signals trans-

mitted by each antenna of commercial Wi-Fi radios in access points to cancel out at re-

ceiver. Further, we present a system that can cancel interference even from single-antenna

devices. Our key idea is to exploit mobility of wireless devices to control the signals they

43



44 CHAPTER 2. COMBATING INTERFERENCE

emit. We demonstrate how moving these devices just by an inch or less can dramatically

reduce the interference they cause at wireless receivers. The following sections elaborate

the key challenges that each of these systems address, their high-level ideas and relation

to prior work.

� 2.1 Bringing Interference Management to Today’s WLANs

Despite demonstrating significant throughput gains, multi-antenna interference manage-

ment has not made it into real networks. Deploying these innovations requires adoption

from Wi-Fi chip manufacturers. Yet, manufacturers hesitate to undertake major invest-

ments without a better understanding of how these designs interact with real networks

and applications.

In chapter 3, we present OpenRF [87] that aims to breaks this stalemate: It proposes the

first system to demonstrate multi-antenna interference management in today’s networks

with commodity Wi-Fi cards and actual applications. OpenRF enables access points to

cancel their interference at each other’s clients, while beamforming their signal to their

own clients. OpenRF draws from software defined networking [116, 23] to separate PHY-

layer actions at the data plane from quality-of-service requirements at the control plane.

Such a design enables the key benefit of self-configurability: network administrators can

deploy it without needing to understand MIMO or physical layer techniques. OpenRF’s

preliminary results demonstrate significant performance gains in TCP throughput as well

as reduced delays and stalls for higher-layer video applications.

OpenRF’s design. OpenRF’s key contribution is a self-configuring design to enable multi-

antenna (MIMO) interference management on commodity access points. Architecturally,

OpenRF borrows from a software-defined networking design of wired networks (e.g.

OpenFlow [116]), in that it separates the control plane from the data plane and exposes

functions that have traditionally been deeply hidden in the network stack, to higher layers.

As illustrated in Fig. 2-1, the data plane is controlled by theOpenRF interface, which resides

on access points and shields other components from how signal processing techniques are

implemented at the device level. Analogous to the OpenFlow interface [116], the OpenRF

interface operates over a table of (FlowID, Actions) tuples. In contrast to OpenFlow en-

tries, where an action may identify which port to transmit the flow on, here, an action
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Figure 2-1: Architecture of OpenRF. OpenRF provides an interface to physical-layer MIMO signal process-

ing, e.g., interference nulling, interference alignment, and beamforming. The OpenRF Controller coordinates

network devices through this interface.

specifies the relative power used to transmit the flow on each of the access point’s anten-

nas. This is typically referred to in MIMO terminology as the pre-coding vector of the flow.

Just as forwarding steers a flow’s packets toward a particular route in the wired network,

pre-coding steers the wireless signal and creates a beam that propagates along a particu-

lar spatial direction, allowing the system to null interference at an unwanted receiver and

focus the power on the desired receiver.

The control plane in our design is managed by the OpenRF Controller. It is configured

with per-flow quality of service requirements (e.g., a desired rate), as well as which PHY

actions are supported by the OpenRF interface. It also periodically takes as input chan-

nel measurements from the access points. Using this information, the controller maps

the quality-of-service requirements into signal-layer actions like interference nulling [63],

beamforming [166], or alignment [99]. The controller then fills up the OpenRF table with

these actions mapped to various flows, so that the needs of each flow can be satisfied.

Chapter 3 delves into this design in greater detail. Further, it describes how OpenRF

ensures that the whole network stack operates reliably, while performing MIMO interfer-

ence management. Specifically, it details how OpenRF accounts for TCP and application

burstiness and the resulting dynamism in the interference patterns. Finally, it implements

OpenRF by modifying the iwlwifi driver for the Intel 5300 Wi-Fi card, and demonstrates

performance gains over 802.11n Wi-Fi [2] in a 20-node testbed.
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� 2.2 Interference Management by Motion

Traditional MIMO interference management techniques leverage multiple antennas on

wireless devices to improve throughput. Unfortunately, several Wi-Fi devices: wearables,

webcams, sensors, etc., have single-antennas, and are therefore left out from these benefits.

In chapter 4, we present MoMIMO [10] that aims to bring these MIMO benefits to

single-antenna devices. Specifically, MoMIMO shows that MIMO techniques can be

applied simply by moving a single antenna by about an inch. In other words, a device

can cancel unwanted signals from an interferer just by intelligently sliding its receive

antenna. Our approach recognizes that since indoor settings are rich in multipath, even

a small perturbation in a device’s location, can significantly alter the received wireless

channel. Its key contribution is a novel algorithm that studies how the wireless channel

varies as the antenna moves, to achieve interference management goals. Preliminary

results demonstrate that our approach provides a 2× improvement in throughput over

traditional Wi-Fi for both single and multi-antenna devices.

MoMIMO’s key idea . We investigate whether a receiver can perform interference align-

ment, a MIMO interference management technique, by simply adjusting the position of

one of its antennas. Our intuition is that this may be possible due to two reasons. First,

indoor settings are rich in multipath. Hence, at any point in space, the perceived channel

is a combination of many channels that correspond to the various paths that the signal

traverses. Even a small shift in the antenna location would cause some of these paths to

become shorter and others longer, leading to a significant change in the resulting channel.

Second, channels are continuous functions over space.1 This means that the receiver can

gradually slide its antenna, measure the channels, and keep moving the antenna in the

direction that increases the alignment between the senders.

To test this intuition, we usedUSRP radios to experimentwith the scenario in Fig. 2-2. In

this setup, we have two single-antenna interferers and a two-antenna receiver. We mount

one of the receive antennas on an iRobot Create robot to emulate a sliding antenna. We

measure the channels and gradually adjust the position of one of the receive antennas,

1The channel is a linear combination of multiple continuous waveforms [172], and, hence, is continuous
over space and time.
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Figure 2-2: Interference Alignment by motion. Consider two single-antenna interferers I1 and I2 and a two-

antenna receiver Rx. Initially, the two interferers are not aligned in the antenna space of Rx. Then, Rx slides

one of its receive antennas so that I1 and I2 are aligned in the antenna space.

moving it in the spatial direction that increases the alignment between the interferers, as

in Fig. 2-2(b). The experiments have confirmed our intuition: alignment can indeed be

performed by sliding the receiver’s antenna. What is perhaps even more surprising is that

the required antenna displacement was typically an inch or less. Multiple experiments

in two campus buildings in both line-of-sight (LOS) and non-line-of-sight (NLOS) scenar-

ios showed that in 84% of the settings, the required antenna displacement was less than

one inch. The implications of our results are two-fold: First, they show for the first time

that interference alignment can be achieved via motion. Second, the fact that the required

displacement is of the order of one inch, means that motion-based interference alignment

can be readily incorporated into existing wireless devices outfitted with the recent sliding

antennas available on the market.2

Chapter 4 validates, through signal propagation models and experimental results that

interference alignment bymotion can be performedgeneral indoor environments. It shows

how the required antenna displacement for interference displacement is only an inch or

two, given the significant variation in wireless channels (from combining constructively

to combining destructively) due to the presence of reflecting surfaces in the environment

(e.g., walls and furniture). The chapter describes how the process of sliding antennas to

2Recent USB Wi-Fi adapters have sliding antennas whose positions can be manually adjusted to improve
the SNR [174].
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seek positions of interference alignment, and related techniques like interference nulling,

can be automated using a Stochastic Hill Climbing algorithm. Finally, it implements

MoMIMO on USRP N210 software radios and Atheros Wi-Fi cards outfitted with mov-

able antennas, and provides experimental results that demonstrate its performance gains

over 802.11n Wi-Fi.

� 2.3 Relation to Prior Work

Recent years have seen multiple cross-layer designs [193, 176, 134] to combat interfer-

ence. A large number of these systems perform MIMO interference management, e.g.,

Interference Alignment and Cancellation [63], Beamforming [14], SAM [166], and oth-

ers [141, 61, 98, 29]. These systems design interference management techniques that focus

on specific topologies or traffic patterns. Further, they have been demonstrated on soft-

ware radios and require modifications to Wi-Fi hardware and standards. In addition, they

require multi-antenna senders.

Our work builds on these systems but differs on two dimensions:

• First, OpenRF is the first system that deploys physical-layer MIMO techniques (i.e.,

nulling, alignment, beamforming) on commodity Wi-Fi cards. In doing so, it is the

first cross-layer design that is demonstrated using a fully operational network stack

with real applications. OpenRF is a general architecture that applies the right set of

MIMO techniques to any topology or traffic pattern. OpenRF leverages a modified

802.11n physical layer and medium-access protocol that runs on today’s wireless

LANs.

• Second, MoMIMO is the first system to demonstrate that interference alignment and

nulling can be performed purely by moving the receive antennas by just about one or

two inches. Consequently, MoMIMO can provide the throughput benefits of MIMO

interference management to single-antenna devices.

Our work also relates multiple other systems that improve wireless throughput using

other strategies that complement our own.

• OpenRF also relates to solutions to improve quality-of-service in enterprise wireless

LANs through: frequency management [143, 24, 123, 124, 198], load balancing [39,
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154, 196, 75, 164] and leveraging custom data-plane hardware [108, 17]. OpenRF

complements this work by adding new MIMO cross-layer techniques to the toolbox

available for managing enterprise WLANs.

• MoMIMO is also related to prior work demonstrated that mobility improves the per-

formance of wireless network along different axes: network capacity [66], channel

quality in robotic networks [13, 73, 103], beamforming [26] and energy consump-

tion [190]. MoMIMO builds on this past work but differs from it by being the first to

show that motion enables MIMO-type interference alignment and nulling.
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CHAPTER 3

MIMO Interference Management on

Today’s Wireless LANs

Recent years have witnessed the boom of cross-layer wireless designs like SAM [166],

Jello [193], MegaMIMO [141], WhiteRate [134], TIMO [61], SoftPHY [176], and many oth-

ers [98, 167, 29, 63]. Instead of treating the physical layer as a black box, these systems

jointly optimize network protocols and physical-layer signal processing. Collectively, they

have created a rich literature of cross-layer designs that are implemented in software ra-

dios and have shown large throughput gains. Unfortunately, hardly any of these ideas

have made it into Wi-Fi chips or real networks. Indeed, a form of stalemate exists: The

research community is waiting for cross-layer innovations to be implemented in Wi-Fi

hardware so that they may be used in operational networks. Yet, Wi-Fi chip manufactur-

ers cannot make expensive hardware investmentswithout better understanding how these

designs interact with real applications and real networks. The situation evokes a similar

picture from 10 years ago, when Internet protocols were developed and demonstrated in

small testbeds and the ns simulator, but were not adopted by switch manufacturers. Wired

networks broke this cycle by building innovations in commodity hardware and directly

deploying them in operational networks. OpenFlow, Ethane, and the body of work that

led eventually to software defined networks (SDNs) have pioneered this path. We believe

that, similarly, cross-layer research needs to start targeting commodity Wi-Fi cards, actual

applications, and today’s networks.

51
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Figure 3-1: Architecture of OpenRF. OpenRF provides an interface to physical-layer MIMO signal process-

ing, e.g., interference nulling, interference alignment, and beamforming. The OpenRF Controller coordinates

network devices through this interface.

In this chapter, we take the first step towards this goal. We present OpenRF, a cross-

layer architecture for MIMO interference management. OpenRF resides on Access Points

(APs) and enables them to control MIMO signal processing at the physical layer. Specifi-

cally, OpenRF provides the following capabilities:

• It enables commodity Wi-Fi APs to perform three MIMO interference management

techniques: interference nulling [63], coherent beamforming[141] and interference

alignment[98].

• It is self-configuring. Network administrators need not understand MIMO sig-

nal processing and when to apply a particular interference management technique.

OpenRF automatically infers the interference layout of the network, and dynamically

applies the right combination of interference nulling, alignment, or beamforming,

wherever they are beneficial.

• It translates high-level quality of service requirements of downlink traffic to low-

level physical-layer MIMO techniques. For instance, an administrator may request

OpenRF to guarantee a minimum rate to real-time applications in the network (e.g.,

remote desktop or VOIP). OpenRF employs MIMO signal processing to control in-

terference across APs and deliver the desired rate.

• Finally, OpenRF is fully compatible with commodity 802.11n cards that implement

transmit beamforming, an 802.11n optional feature. We have built OpenRF as a patch
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to the iwlwifi driver for Intel 5300 cards, providing researchers and network admin-

istrators the ability to deploy it in their networks to experience the benefits of cross-

layer MIMO, or experiment with new physical-layer MIMO designs.

Architecturally, OpenRF borrows from the SDN design, in that it separates the control

plane from the data plane and exposes functions that have traditionally been deeply hid-

den in the network stack, to higher layers. As illustrated in Fig. 3-1, the data plane is

controlled by the OpenRF interface, which resides on access points and shields other com-

ponents from how signal processing techniques are implemented at the device level. Anal-

ogous to the OpenFlow interface, the OpenRF interface operates over a table of (FlowID,

Actions) tuples. In contrast to OpenFlow entries, where an action may identify which port

to transmit the flow on, here, an action specifies the relative power used to transmit the

flow on each of the AP’s antennas. This is typically referred to in MIMO terms as the

pre-coding vector of the flow. Just as forwarding steers a flow’s packets toward a particu-

lar route in the wired network, pre-coding steers the PHY signal and creates a beam that

propagates along a particular spatial direction, allowing the system to null interference at

an unwanted receiver and focus the power on the desired receiver.

The control plane in our design is managed by the OpenRF Controller. It is configured

with per-flow quality of service (QoS) requirements (e.g., a desired rate), as well as which

PHY actions are supported by the OpenRF interface. It also periodically takes as input

channel measurements from the APs. Using this information, the controller maps the QoS

requirements into PHY actions like nulling, beamforming, or alignment. The controller

then fills up the OpenRF table with these actions mapped to various flows, so that the

needs of each flow can be satisfied.

A key challenge in OpenRF is the need to ensure the whole network stack operates re-

liably, while performing MIMO interference management. In other words, OpenRF has

to account for TCP and application burstiness and the resulting dynamism in the interfer-

ence patterns. Another challenge stems from the interaction between physical layer tech-

niques and the 802.11 protocol. In particular, PHY techniques achieve gains by enabling

concurrent transmissions using intelligent interference management. However, the 802.11

protocol is designed under the assumption that transmitters in the same interference re-

gion should not transmit concurrently. This assumption manifests itself in its handling of

end-to-end reliability and related functions such as carrier sense, acknowledgments and
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retransmissions. OpenRF has to ensure concurrent transmissions at the PHY-layer with-

out compromising 802.11’s reliability. In §3.3 and §3.4 we explain these challenges in detail

and we describe how OpenRF addresses them.

We have built a prototype of OpenRF on Intel 5300 Wi-Fi adapters. We patched the

iwlwifi driver to enable nulling, alignment, and beamforming, separately and combined.

We deployed a 20-node network, where six of the nodes act as APs and the rest are clients.

We compared the performance of the networkwith andwithout OpenRF. Our results show

the following.

• In a network of 20-nodes, and for a random setup of TCP and UDP flows, the aggre-

gate performance gain in terms of throughput of UDP and TCP flows are 1.7× and

1.6× respectively.

• We also evaluate the impact of OpenRF on the quality of real-time applications. In

particular, we evaluate rich applications (multimedia) over Remote Desktop, which

is increasingly common in the enterprise. Our results show that OpenRF reduces the

percentage of screen glitches in a VNC Remote Desktop client by 6×. It also reduces

the 90th percentile delay for VNC by 4×.
• Commodity 802.11n cards can perform beamforming to improve the average SNR at

the receiver by 3 dB. Beamforming also leads to a flatter receiver SNR profile across

OFDM bins. These reasons cause the bit-rate adaptation algorithm to jump to the

next rate 80% of the time, thereby enhancing throughput. The cards can also perform

interference nulling and interference alignment to reduce the average interference-

to-noise ratio (INR) at the receiver by 12 dB and 11 dB respectively. This enables

concurrent transmissions provided the interference is below 10-15 dB.

Contributions: OpenRF is the first system that deploys physical-layer MIMO techniques

(i.e., nulling, alignment, beamforming) on commodity Wi-Fi cards. OpenRF dynamically

applies the right set of these MIMO techniques to suit any topology or traffic pattern. It

is also the first cross-layer design that is demonstrated using a fully operational network

stack with real applications. As such, it takes cross-layer design all the way from the phys-

ical layer to the application layer, and opens up an opportunity for these technologies to

make impact on today’s networks.
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Figure 3-2: Example Topology. We show how a 2-antenna AP can precode its signal to a 1-antenna client.

� 3.1 MIMO Primer

In this section, we provide a brief introduction to basic MIMO interference management

techniques. To understand these techniques, it is important to know the following funda-

mental properties of MIMO transmissions [98, 199]:

• An n-antenna node receives signals in n-dimensional space. For example, a 1-antenna

client receives a signal at only one antenna; so it receives signals in one-dimension.

Similarly, a client with two antennas receives a signal on both of its antennas. So, the

received signal is a vector in a 2-D space.

• An n-antenna node transmits signals in n-dimensional space. For e.g., a 3-antenna AP

transmits a 3-D vector.

• n-antenna receivers can decode up to n concurrent signals.

• A transmitter can use precoding to change how its signal is received at a particular node. To

do so, it multiplies the transmitted signal by a pre-coding matrix P . The pre-coding

matrix can be chosen to null (i.e., cancel) the signal at a particular receiver, beamform

the signal, or align it along some space. Below, we explain how these three MIMO

techniques leverage precoding.

� 3.1.1 Interference Nulling

Interference nulling allows a transmitter to completely cancel (i.e., null) its signal at a re-

ceiver. For example, suppose a 2-antenna AP wants to null its signal x at a 1-antenna re-

ceiver as shown in Fig. 3-2(a). Say the AP sends x on both of its antennas. Let the channels

from the two transmitting antennas to the receiver’s antenna be h1 and h2. The receiver

obtains the signal h1x+ h2x. So, how can the AP precode its signal so that the received

signal is zero?
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Figure 3-3: Interference Alignment at a 2-Antenna Receiver. The AP uses interference alignment to rotate

the interfering signal i2 along i1, making the two interferers seem as if there were one.

Say, the AP pre-multiplies the signal at its first antenna by a constant p1 and second

antenna by another constant p2. The new received signal is now h1p1x + h2p2x, which

needs to be 0. Clearly, this can be solved easily, for example, by setting p1 = −h2 and

p2 = h1.
1 Thus, the AP can now safely transmit without causing any interference at this

client.

We can generalize nulling for a multi-antenna client by using a precodingmatrix P such

thatHP = 0, whereH is the channel matrix from transmitter to receiver [98, 63].

� 3.1.2 Coherent Beamforming

Coherent beamforming helps an APmaximize its signal at a receiver, i.e., increase the SNR.

Let us revisit the example in Fig. 3-2, where this time, the 2-antenna APwants to beamform

its signal at the 1-antenna receiver. As before, the received signal is h1x+ h2x. So, can the

AP further increase the power of the received signal?

Fortunately, the AP can indeed do so by applying precoding once again, this time so

that the signals from the two antennas add up constructively. In other words, received

signal, h1p1x+ h2p2x, needs to be maximized. Since h1p1 and h2p2 are complex numbers,

to maximize their sum we need to choose p1 and p2 to align the two complex numbers so

that they have identical phases. This can be done by choosing (p1, p2) = (h∗1, h
∗
2).

In general, a multi-antenna AP can beamform its streams coherently at a single-antenna

client using a precodingmatrixH∗/||H∗||, whereH∗ is the conjugate transpose of the chan-

nel matrix. [141, 199].

1One still needs to normalize to ensure the power after pre-coding sums up to the transmit power bud-
get. For clarity however we ignore normalization, assuming that the transmitter always normalizes its signal
before transmission.
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� 3.1.3 Interference Alignment

Suppose a 2-antenna receiver receives two signals - a desired signal along ~x and an inter-

fering signal along~i1. As mentioned before, these signals can be represented as vectors in

a 2-D space, as in Fig. 3-3. Since a 2-antenna receiver can decode two concurrent signals,

it can discard the interfering signal, to obtain its desired signal. However, if another inter-

ferer joins the network, the receiver can no longer decode, since the 2-D space has a third

vector~i2, as in Fig. 3-3. How can the transmitter of~i2 avoid interfering at the receiver?

Interestingly, the transmitter of ~i2 can leverage interference alignment and precode its

transmission to rotate the vector ~i2 and align it along the same direction as ~i1. In effect,

the receiver now obtains only two vectors, the desired signal along vector ~x, and the sum

of interferences~i1 +~i2 along a different direction, as shown in Fig. 3-3. Thus, it can easily

decode by treating the unwanted interference~i1 +~i2 as one signal from a single antenna,

and projecting ~x orthogonal to the interference.

In general, a multi-antenna AP can align its signals along the vector space V using

a precoding matrix P , such that, V ⊥HP = 0, where (.)⊥ denotes the orthogonal vector

space [98, 63].

Note that since all the above techniques leverage MIMO precoding, they can be com-

bined in different ways by a transmitter that has a sufficient number of antennas.

� 3.2 OpenRF’s Design Principles

OpenRF provides a general framework for applying MIMO PHY techniques in an En-

terprise WLAN. It resides at the APs and can perform interference nulling and coherent

beamforming without modifications to the clients. It can also perform interference align-

ment by patching the client’s driver as explained in §3.4.3.
OpenRF is compatible with commodity 802.11n cards that implement transmit beam-

forming, an 802.11n optional feature.2.

OpenRF’s design is based on the realization that cross-layer interference management

techniques can be decoupled into two classes: coherence techniques and interference tech-

niques. Coherence techniques aim to maximize the signal strength at a receiver, e.g., co-

2The Transmit Beamforming feature allows OpenRF to set precoding vectors (ormatrices) on 802.11n cards,
with certain restrictions, as explained in §3.4.3.
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Figure 3-4: OpenRF Flow Table. OpenRF defines flows based on packet headers, similar to OpenFlow.

herent beamforming (See §3.1.2). In contrast, interference techniques allow APs to trans-

mit additional concurrent streams, provided these streams do not interfere with existing

parallel transmissions. Interference techniques include nulling, and alignment (See §3.1.1
and §3.1.3). Interestingly, coherence techniques can be performed completely locally, as

they only involve a single AP transmitting to its own clients. In contrast, interference

techniques need APs to synchronize with other APs, so that they do not interfere at each

other’s clients, while they transmit concurrently on the shared wireless medium. Thus,

OpenRF’s first policy is: only interference techniques need to be coordinated (i.e., scheduled) by

the central controller. This rule reduces coordination complexity.

Second, just like OpenFlow steers a flow’s packets toward a particular route, OpenRF

steers the signal of each flow along a particular spatial direction. This is done by precod-

ing the signal before transmission. However, unlike OpenFlow, OpenRF does not directly

assign a precoding vector (or precoding matrix) to each flow. This is because MIMO APs

need to combine transmitting flows coherently to their clients, along with canceling inter-

ference at other APs’ clients. Fixing the precoding vector for a particular flow would also

fix the set of flows that can be concurrently transmitted with that flow. However, due to

traffic burstiness, the set of flows which need to be combined together changes frequently

depending on which flows have pending packets in the queue. Thus, instead of assign-

ing a precoding vector per flow, OpenRF assigns to each flow an interference vector and a

coherence vector. Now suppose the APs consider a set of flows for concurrent transmis-

sion depending on which flows currently have pending packets in the queue. At each AP,

OpenRF can now combine, in real time, the relevant coherence and interference vectors,

to produce a precoding vector that enables transmitting the desired flow coherently, while

nulling any interference that may affect other flows. Hence, OpenRF’s second policy is to

perform late binding of interference and coherence decisions.

In the following section, we explain the above policies and their implementation in

greater detail.



SECTION 3.3. OPENRF’S ARCHITECTURE 59

� 3.3 OpenRF’s Architecture

OpenRF is architecturally similar to SDN in that it separates the control and data planes,

and exposes functions that have traditionally been deeply hidden in the network stack to

higher layers. The data plane is controlled by an open interface that is managed in software

by a controller. In this section, we describe the architecture of both the OpenRF Interface

and the OpenRF controller.

� 3.3.1 OpenRF Interface

The OpenRF Interface operates over a table indexed by flows, which describes how the AP

handles different flows in the network. Flows are identified based on fields in the packet

header, such as destination IP address, port number etc. (Fig. 3-4). Additionally, OpenRF

maintains for each flow, a coherence vector, which specifies the direction along which the

signal is received coherently at the client, and an interference vector which specifies the

direction that we need to be orthogonal to in order to avoid interference at this client.

The concept of an interference vector and a coherence vector (or more generally an

interference matrix and a coherence matrix) is best explained via an example. Consider

the scenario in Fig. 3-5, where a 3-antenna AP wishes to beamform its signal to its client,

Alice, while nulling interference at Bob, the client of a different nearby AP. Let the channels

to Alice be ha1, ha2, and ha3, and the channel to Bob be hb1, hb2, and hb3, as shown in the

figure. We can express these channels as two 3-dimensional vectors, ~ha and ~hb.

Now, any pre-coding vector that the AP computes must satisfy the following two con-

ditions:

• Interference Condition: To null to Bob, the AP has to pre-code its signal such that

it falls in the pink-colored plane orthogonal to Bob’s channel vector, as shown in

Fig. 3-5. Specifically, let ~p be the pre-coding vector that the AP applies to its signal.

Then to null to Bob, we need ~hb · ~p = 0.

• Coherence Condition: The AP also wants to beamform its signal to Alice. In the

absence of the nulling constraint, beamforming requires the AP to align its trans-

mission with Alice’s channels, i.e., ~p = ~h∗a. However, this pre-coding vector creates

interference at Bob as it does not satisfy the nulling condition ~hb · ~p= 0, thereby mak-

ing concurrent transmissions to Alice and Bob infeasible. Thus, the AP’s best option
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Figure 3-5: Computing the precoding vector. Suppose an AP needs to beamform its signal to Alice, while

nulling interference at Bob. Then the precoding vector~p is the projection of coherence vector ~h∗
a onto the plane

orthogonal to interference vector ~hb.

is to pick a pre-coding vector that satisfies the nulling condition but is as close as

possible to ~h∗a. To do so, the AP projects ~h∗a on the plane that nulls the signal to Bob,

as shown in Fig. 3-5.

In the above example, Bob’s interference vector is his channel ~hb, whereas Alice’s co-

herence vector is the conjugate transpose of her channel ~h∗a. The AP can keep these vectors

in the OpenRF table along with the entries of Alice and Bob. Whenever it wants to null to

Bob and beamform to Alice, it uses these vectors to compute the required precoding vector

~p and applies it to the transmitted signal. The AP may also combine nulling to Bob with

beamforming to a client other than Alice, say, Charlie. To do so, it only needs to combine

Bob’s interference vector with Charlie’s coherence vector. These decisions can be made in

real-time depending on which clients have packets pending at the AP.

While the above example deals with single-antenna receivers, it can readily be gener-

alized to typical multi-antenna MIMO systems that leverage MIMO multiplexing. In the

following section, we formalize our definitions of the coherence and interference vectors

and the computation of the precoding vector. Note that as we generalize to multi-antenna

MIMO clients, the vectors become matrices.

� 3.3.2 Formalizing the Precoding Computation

Suppose an n-antenna AP needs to transmit k independent MIMO streams Xk×1 to an

m-antenna client, where k ≤ m. Let Hm×n be the channel matrix, where m ≤ n. The AP

applies a precoding matrix Pn×k so that the received signal: Y =HPX.
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The AP can choose the precoding matrix P to satisfy certain interference and coherence

conditions. We define:

• Coherence Matrix: The coherence matrix Ci for flow i identifies the space along

which the signal should be transmitted to increase the SNR at the client. For coher-

ent beamforming to a single antenna client, we define Ci = H∗
i /||H||, where H is

the channel matrix to the client. More generally, we define Ci = Eigk(H
∗H), where

Eigk(M) denotes the k eigen vectors ofM with the largest eigen values.

• Interference Matrix: The interference matrix Ii for flow i identifies the space to

which the signal should be orthogonal in order to avoid interference at the client. For

interference nulling Ii = Hi. For interference alignment where the client is aligned

along the direction (or, more generally, space) specified by the vector (or, matrix)

Vi, Ii = V ⊥
i Hi.

Note that the above matrices allow for beamforming, and nulling/alignment to MIMO

clients that receive multiple streams.

Computing the Precoding Matrix: Now that we have defined coherence and interference

matrices, we need to explain how OpenRF computes the precoding matrix, in real-time,

for an arbitrary set of concurrent flows. Assume that the OpenRF controller (described

in §3.3.3) has already populated the interference and coherence matrices for a set of flows

in the OpenRF table. Suppose the controller decides that the AP needs to transmit a flow

1, while concurrently canceling any interference caused to concurrent flows: 2,3, . . . , n.

Let C1 be the coherence matrix of flow 1 in the OpenRF table, and I2, . . . , In be the

interference matrices of flows 2, . . . , n. OpenRF first computes the combined interference

matrix I by concatenating these interference matrices, i.e. I = [I2 . . . In]
T . The matrix I

denotes the space that the signal should be orthogonal, to avoid interference at all of flows:

2, . . . , n. Intuitively, OpenRF now needs to project its coherence space C1, orthogonal to

the interference space I . This can be interpreted as a standard geometric problem, similar

to Fig. 3-5, but generalized to n-dimensional space. OpenRF computes the solution as the

precoding matrix: P = I⊥(I⊥)∗C1, where I⊥ denotes the null-space of matrix I .
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� 3.3.3 OpenRF Controller

The OpenRF controller has two components: a central component that coordinates all APs,

and a local component residing on each AP that adapts to real-time changes to channels

and traffic patterns. We refer to this local component as the local agent. As argued in §3.2,
OpenRF’s key design principle is that the central controller manages only interference

spaces across APs, and delegates managing the coherence space to the local component

at each AP.

To schedule concurrent transmissions across APs, we divide time into slots. Having

short slots corresponding to the size of a packet can cause excessive overhead. Hence,

OpenRF leverages 802.11n’s aggregate frames, which combine multiple MAC-layer pack-

ets into a single PHY-layer frame from the perspective of medium access. This allows us

to set the slot size corresponding to the size of an aggregate frame, which in our system

defaults to 5 ms.

The central controller designates some slots for scheduling edge clients where two or

more APs interfere.3 Other slots are scheduled locally, by the local agent at each AP. This

limits coordination overhead across APs to only these centrally scheduled slots, which we

call the interference slots.

Once the central controller assigns the interference slots, the local agents on the APs

abide by the following contract: (1) Any flow that suffers interference from other APs (i.e.

flows to edge clients) can only be transmitted in its own interference slot. (2) Interfering

APs that wish to concurrently transmit during this slotmust perform the interference man-

agement technique recommended by the central controller, i.e., interference alignment or

nulling. The local agents, however continue to have the flexibility to schedule any flow

locally based on the dynamic traffic patterns, in any slot, provided the flow does not suffer

from interference.

To illustrate the above rules, let us consider the simple example in Fig. 3-6. Here, AP-

1 has two clients Alice and Bob, AP-2 has two clients Charlie and Dave. The pale blue

circles show the interference range of each AP. For simplicity, we assume that all channels

support the same rate and that there are no QoS requirements. Suppose the controller

assigns every alternate slot as interference slots for edge client Charlie. During such a

3Edge clients can be identified by checking if the SNR based on the channel matrices of APs is above a
nominal threshold.
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Figure 3-6: Illustrative Example. In this example, there are two 3-antenna APs: AP-1 and AP-2, and four

clients.

slot AP-1 and AP-2 follow these policies: (1) AP-1’s contract is to null its signal to Charlie

during all of his interference slots. However AP-1 is free to transmit concurrently to either

Alice or Bob, depending on who has traffic. (2) AP-2’s contract is that it can transmit to

Charlie concurrently to AP-1 only in its designated slots (We explain how to selectively

enable concurrent transmissions in 802.11 in §3.4). However, AP-2 is free to transmit to

David, in either slot, concurrently with AP-1.

In the following paragraphs, we explain how the central controller and local agent

function.

Local Agent. The goal of the local agent is to dynamically schedulewhich flow anAPmust

transmit to during each time slot. The local agent takes as input the list of interference slots,

and the QoS requirements of different flows. The controller then employs the following

algorithm described in Alg. 1, inspired by deficit round robin scheduling. At a high level

the algorithm maintains a credit counter, ci, for each flow i. In general, the credit counter

of a flow is large, if it has not been scheduled for an extended period. Now at any time

slot, the local agent picks the flow f whose credit counter is the highest. It then measures

the number of bytes b it could send for this flow in this slot. Finally, it updates the credit

counters, by reducing the credit of this flow, based on b, and redistributing this equally
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among all other flows. In effect, this ensures that the medium is shared fairly between all

flows.

However, to support OpenRF, we need the following additional modifications: First,

consider an interference slot, where other APs null interference for flow f , belonging to

this AP. In such a slot, the AP always picks flow f , if f has pending packets in the queue.

Second, the local agent enforces two kind of QoS requirements: a proportional alloca-

tion of throughput, and fixed reservation of throughput. These requirements are config-

ured by the network manager, for flows identified by their packet headers. Note that we

do not consider delays in our current system. Proportional allocation requires the flows

of an AP to achieve throughputs proportional to some set of weights: {wi, for all flows i}.
This can naturally be incorporated into the local agent’s algorithm. Specifically, instead

of redistributing credit equally between flows, we redistribute it proportionally based on

weights {wi} (Alg. 1, Line 13). This ensures that flows are allocated precisely according to

these weights.

Now that we know how to allocate throughput proportionally, how dowe enforce fixed

reservations? In this scenario, we have two kinds of flows: Quality of Service (QoS) flows,

which have fixed throughput requirements, and Best Effort (BE) flows, must have equal (or

more generally, proportional) throughput between them to ensure fairness. Interestingly,

the local agent can translate the problem of fixed reservations to proportional allocation

with dynamic weights. In particular, the agent computes ei, the expected number of bytes

that it hopes to send during time span t for a flow. For QoS flows, ei is simply qosi ∗ t,
where qosi is the throughput requirement. In contrast, all BE flows must achieve equal

throughput in this time, so ei is the mean of the throughput achieved for all BE flows

during time span t. (Alg. 1, Line 11) The agent now applies proportional allocation by

resetting the weightswi, in every time slot, to ei/bi, where bi is the number of bytes sent so

far for flow i. In effect, this biases the weights to ensure that bi is as close as possible to ei,

hence satisfying the QoS requirements.

Central Controller. The central controller assigns interference slots that serve flows to

edge clients in the network. The controller takes as input the network state, i.e. channel

state information, the list of clients and their flows. Similar to the local agent above, the

central controller uses credit counters to decide the number and list of interference slots,
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1 Pseudo-code for the Local Agent Algorithm

1: function LOCALAGENT(t, qos, slots)
2: ⊲ t: Slot, qos: QoS needs, slots: Interference Slots
3: if t ∈ slots then ⊲ t an interference slot
4: f = Flow for slot t (if flow has packets to send)
5: else f = arg[maxi(di)] ⊲ f : Flow with most deficit
6: end if

7: df = df − b ⊲ df : deficit, b: no. of bytes sent
8: bf = bf + b ⊲ bf : no. of bytes sent so far by f
9: for each flow i do
10: ⊲ ei: Expected no. of bytes for QoS or BE flows
11: ei = qosi ∗ t, if QoS (or) avgk∈BE(bk), if BE
12: wi = ei/bi ⊲ wi: weight for flow i
13: di = di + b ∗wi/

∑

kwk ⊲ Update deficits
14: end for

15: return f
16: end function

while accounting for QoS, BE or proportional throughput requirements for different flows

in the network.

The controller applies the following heuristic algorithm for each AP i in the network:

First, it uses credit counters, similar to the local agents, to pick flow fi for AP i. After

choosing fi, the controller iterates over all other APs (besides AP i), and checks if any of

these APs may potentially interfere with fi. For such APs, the controller decides how they

should manage interference so that they can concurrently transmit with fi. In particular,

it prescribes interference nulling if fi is to a single-antenna client, and interference align-

ment, otherwise.4 Next, these APs are informed that the present slot is an interference slot

allotted to fi.

At this point, the controllermust update the credit counters based on the throughput for

the set of flows{fi}. But recall that unlike the local agent, the central controller cannot ob-
tain the number of bytes that have been sent in a slot. In other words, the controller needs

to determine the throughput that each flow will achieve. Fortunately, this can be done

fairly accurately by calculating the effective channel of each client, which is the product

of the client’s channel and the AP’s precoding matrix, and then estimate the throughput

using the ESNR algorithm [69].

Finally, the Central controller, unlike the local agent, can leverage its global view of

4Sometimes, the AP may not have enough antennas to simultaneously null/align to multiple flows. In
such cases, this AP is not permitted to transmit to any of its clients during this interference slot.
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Figure 3-7: Interference Nulling. Here, AP-1 and AP-2 transmit concurrently to their respective clients: client-

1, and client-2, by nulling interference at each other’s clients.

the network to ascertain whether a flow’s fixed throughput requirement can be satisfied.

Whenever a new QoS flow joins the network, the controller performs the following admis-

sion control algorithm: It runs the above central controller algorithm with the new through-

put requirement factored in. It then admits this flow as a QoS flow only if the AP achieves

the requisite throughput requirement of this flow, at the end of the algorithm.

� 3.4 Integration with 802.11 protocol

To implement OpenRF on commodity Wi-Fi cards, it must be integrated with the 802.11

protocol. Unfortunately, the 802.11 protocol was not designed with MIMO interference

management techniques in mind. This causes subtle interactions between PHY-layer in-

terference management and 802.11’s MAC, as described below.

� 3.4.1 Ensuring Reliability

End to end reliability is essential for the correct operation of TCP and most applications.

WLANs achieve reliability using 802.11’s carrier sense, acknowledgments and retransmis-

sions, which together provide an abstraction of a reliable communication channel to higher

layers of the network stack. Unfortunately, these three reliability mechanisms do not lend

themselves naturally to concurrent transmissions in the same interference region, which

are essential for most PHY-aware techniques to achieve throughput gains.

(a) Carrier Sense: Consider the example in Fig. 3-7, where we have two APs, each trans-

mitting streams to their own clients, while nulling interference at each other’s clients. If

carrier sense is disabled on the two APs, OpenRF will enable these APs to transmit con-
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Figure 3-8: Collision of MAC-Layer ACKs. In Case (a), packets are of equal length, causing ACKs to repeat-

edly collide with each other. In Case (b), packets are of unequal lengths causing ACKs repeatedly to collide

with packets. In contrast, OpenRF ensures that the system recovers from any MAC-layer ACK collisions.

currently in the same interference region and correctly deliver packets to their own clients

(as described in the previous section). However, in the presence of carrier sense, one of the

APs will begin transmitting before the other, causing the other AP to carrier sense the sig-

nal and abstain from concurrently transmitting. Thus, to provide concurrent transmissions

at the physical layer, we need to make the two APs carrier sense only when appropriate.

Of course, one option is to deactivate carrier sense altogether; but that would lead to severe

collisions with uplink traffic.

To ensure that the two APs in Fig 3-7 transmit concurrently, despite carrier sense,

OpenRF synchronizes their packets so that they start precisely at the same point and there-

fore effectively do not carrier sense each other. But how do we ensure that the two APs
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start exactly at the same time? Recall that 802.11 nodes decide at what time to transmit

as follows: If the node senses the medium as idle, it picks a random slot between 0 and

CWmin, and transmits starting from that slot. Hence, if we convince two nodes to pick ex-

actly the same slot, theywill never sense each other and will transmit concurrently starting

from that slot. One way to achieve this is to setCWmin to zero, causing both APs to always

transmit concurrently at the 0-slot. However, this alone is not enough, as always picking

the zero slot gives the APs unfair access to the medium compared to other nodes in the

network.

To recover fair medium access, we leverage the AIFS parameter in 802.11e/n standards.

Instead of applying the same DIFS period to all types of traffic, 802.11e/n allows differ-

ent traffic classes to replace the standard DIFS waiting period by a different waiting time

referred to as the arbitrary inter frame spacing (AIFS). This enables different classes of

traffic to have varying levels of priority. In particular, we leverage AIFS as follows: When-

ever two APs have to transmit concurrently, we set their AIFS period to a fixed value

of DIFS + CW def
min/2, where CW def

min is the default value for CWmin. In addition, we set

CWmin to zero, so that both APs always send concurrently, precisely after AIFS. Together,

these two mechanisms ensure that the two APs transmit concurrently in slot zero, but as

their AIFS is longer than DIFS, it will look to other nodes as if they picked the middle slot

CW def
min/2, which is precisely what we need for average fairness. Note that APs can send

flows that are not meant to be transmitted concurrently with other APs, independently

using standard AIFS and contention windows.

(b) MAC ACKs and Transmission: The above solution allows us to synchronize the two

access points and make them transmit their data packets concurrently. However, since

802.11’s acknowledgments are transmitted immediately after a packet, they will invariably

cause collisions. Specifically there are two scenarios as shown in Fig. 3-8: (1) The concur-

rent packets span the same length on the wireless medium, in which case, their ACKs will

collide as shown in Fig. 3-8(a). (2) The concurrent packets span different lengths on the

medium, which causes ACKs to collide with data packets as shown in Fig. 3-8(b). In either

case, APs do not receive acknowledgments for their data packets, and therefore they will

end up retransmitting the packets again and again, eliminating any potential gain.

There are a variety of solutions to mitigate this, which are not compatible with the

802.11 standard. For example, onemay propose that since the APs have multiple antennas,
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they may jointly decode the colliding ACKs. Unfortunately, joint decoding is not possible

with the current 802.11 standard. Alternatively, one may propose applying interference

nulling to ACKs on the uplink, similar to the downlink data packets. However, coordina-

tion between disparate clients is relatively difficult compared to the APs, since the clients

are not connected to a wired backend.

To address the above problem, we leverage 802.11n block aggregation. Specifically,

block aggregation allows you to bond multiple MAC-layer packets (MPDUs) to the same

destination that span equal time durations of up to 5 ms on the medium as shown in

Fig. 3-8(c). Note that packets may have different lengths and may be sent at different

rates leading to blocks of sizes below 5 ms. So, we ensure blocks span precisely 5 ms

by suffixing dummy MPDUs at the end of the block if necessary. Using block aggregation

greatly reduces the number of ACKs in the system, since the client issues only a single block

acknowledgment for all MPDUs in a block. However, the two block ACKs of concurrently

transmitted blocks will continue to collide. Fortunately, when a block ACK is lost, the

access point does not retransmit the entire block once again. Instead, the 802.11 standard

specifies that the AP issues a short block acknowledgment request for the block ACK[2]. By

sending this block acknowledgment request using standard best effort with default AIFS

and contention windows, OpenRF can ensure that their is no concurrency of the block

requests, therefore the block acknowledgments do not collide as shown in Fig. 3-8(c).

In summary, the above mechanisms ensures that packets that are transmitted concur-

rently are still acknowledged correctly, providing the expected level of reliability to TCP

and higher-layer applications. Furthermore, the only overhead we incur to ensure reliabil-

ity is the loss of up to one block ACK at most every 5 ms, which is relatively low, compared

to the gains from concurrency.

� 3.4.2 Working with Unmodified Clients

PHY-aware techniques such as interference nulling, interference alignment and beamform-

ing, all require knowledge of the channels from APs to their clients. To this end, one

possible approach is to require clients to measure their channels and provide this infor-

mation as feedback to the APs. However, this approach has two problems: First, it in-

curs high overhead. Second, many clients may not have the capability to measure these

channels in the first place. For example, a single antenna client cannot measure the chan-
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Figure 3-9: Interference Alignment. In this example, we have three AP-client pairs. AP-1 and AP-3 align

their interfering signal to enable the 2-antenna client to decode AP-2’s signal.

nels simultaneously from a 2-antenna AP. One might wonder if it suffices for the AP to

transmit two individual packets: the first packet on its first antenna and the second on

its second antenna. While this would allow the client to measure the channel from each

transmit antenna separately, such measurements will be separated by at least hundreds of

microseconds. However channels required for performing nulling or beamforming must

be measured at nearly the same time, and can at most be separated by a few OFDM sym-

bols [141].5 So how can we perform nulling, alignment or beamforming at APs, without

requiring clients to send their channel state information?

To address this problem we use the principle of channel reciprocity[63]. Reciprocity

states that the channel in the forward direction is the same as the channel in the reverse

direction, up to some calibration constant. In effect, APs can now use packets sent from

the clients to measure the reverse channel, and then use those measurements to infer the

forward channel needed for interference management. However, the AP still needs to

know the calibration constant to derive the forward channel from the reverse channel.

Fortunately, this calibration constant only depends on the transmitter. It can be cali-

brated a priori by the having each AP measure the forward and reverse channels to any

other AP and thereby infer the calibration constant.6

5If not, the channels would be severely distorted by an accumulated phase difference owing to the fre-
quency offset between the clocks of the AP and client, as well as phase noise [141].

6The reason the calibration constant depends only on the transmitter, is that all interference management
techniques rely only on the ratio of the channels from the transmit antennas, and not their absolute values [61].
As a result constant factors that depend only on the receivers are canceled out.
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� 3.4.3 Overcoming Limitations of the 802.11n standard

Interference Alignment with today’s MIMO clients. Implementing interference align-

ment with today’s 802.11 nodes is quite challenging. In particular, consider the example

in Fig. 3-9, where we have a 2-antenna client receiving its desired signal from AP-1. Two

other access points, AP-2 and AP-3 align their transmissions together at this client to col-

lapse their interfering signals into one stream. In principle, the client in Fig. 3-9 can decode

his desired signal by projecting the signal it received from AP-1 orthogonal to the common

direction of the two interferers (See Fig. 3-3). This is the standard approach for decoding

multiple streams, and, in particular, interference alignment. The client should now ignore

the interfering signal, since it does not need it, and in fact, cannot decode it. This mech-

anism has been used in several past designs implementing alignment on software radios

[63, 98]. Unfortunately, current 802.11 standards enforce fate sharing between the differ-

ent MIMO streams received by a MIMO receiver. Specifically, the client in Fig. 3-9 is not

designed to ignore the interfering stream and simply accept the desired stream that it was

able to decode correctly (802.11 applies a single convolutional code across all streams. So,

errors in one stream percolate to all streams). So how can OpenRF support interference

alignment despite this major limitation?

Our solution to this challenge is counter-intuitive. The only way to implement inter-

ference alignment on off-the-shelf MIMO nodes is to convince the receiver that one of his

antennas is not functional! Specifically, the driver can issue a command to deactivate one

of the client’s antennas. Suppose we now align the two interfering streams along antenna

1, by setting the direction of alignment Vi (see §3.3.2) as the unit vector along the axis cor-

responding to antenna 1 . We then ask the client to deactivate antenna 1 (Fig. 3-10).7 Then,

effectively, the client will not see the interfering stream altogether, and it will only ob-

serve its desired stream, which can now be decoded. This effectively tricks the client into

performing interference alignment by ignoring the fate sharing between MIMO streams.

Therefore, our approach allows AP-2 to transmit to its own client, even while AP-1 and

AP-3 are concurrently transmitting to their own clients, thereby increasing concurrency in

the network.

It has to be Unitary! Past literature, as well as our discussions so far, assumes that we

7More generally, for better performance, the client dynamically deactivates the antenna with poorest chan-
nel to the desired AP.
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Figure 3-10: Enabling Alignment for Today’s clients. OpenRF implements alignment for the client by align-

ing all interfering signals: i1 and i2, along antenna 1. The client disables antenna 1 to decode desired signal x

on antenna 2.

can set the precoding vectors to arbitrary values according to the desired PHY-technique.

However, the 802.11n compressed transmit beamforming feature requires the matrix of

precoding vectors to be unitary. For example, an AP with 3 antennas, applies 3 precoding

vectors which forms a 3×3 matrix. This matrix has to be unitary. To ensure this, after

computing precoding vectors, OpenRF uses geometric transforms to express the ultimate

precoding matrix, used by the device, as a unitary matrix.

� 3.5 Implementation

We implemented OpenRF by modifying the iwlwifi driver for Intel Wi-Fi cards on Ubuntu

10.04 LTS. We built our solution over the University of Washington’s 802.11 CSI tool [67].

Our APs also use the transmit beamforming feature of the Intel 5300 Wi-Fi cards.8

To support the OpenRF Interface, we made the following modifications to the driver:

First, we implemented the OpenRF table (Sec. §3.3.1) as a debugfs file that interfaces be-

tween user and kernel modes. Second, OpenRF uses the 802.11 CSI tool to calculate the

reciprocal channels from the clients, which are used to maintain the coherence and inter-

ference spaces in the OpenRF table for various flows at this AP. Finally, we employ the

transmit beamforming feature to set precoding vectors for various flows in real-time, us-

ing the coherence and interference spaces as in §3.3.2.
To support the OpenRF Controller at each AP, we first employ block aggregation to

8While we chose to implement OpenRF on Intel cards, OpenRF’s design is compatible with any 802.11n
card that supports the transmit beamforming feature[2].
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Figure 3-11: Floor map for our testbed. Our 20-node testbed includes 6 APs (blue squares) and 14 clients (red

circles).

implement time slots spanning 5 ms. We use NTP over the wired Ethernet backbone to

synchronize the block aggregation slots across APs in the network. We observed that this

was sufficient to synchronize blocks spanning 5 ms each, within tens of microseconds. We

intercept packets from the higher layers into per-flow queues at the driver and apply the

local controller algorithm as described in §3.3.3. Our controller and scheduler algorithms

are implemented using high resolution timers to minimize waste of airtime. The central

controller is implemented on a Linux workstation, and coordinates APs in the network

over the Ethernet backbone using the algorithm described in §3.3.3.
Finally, our implementation fully complies with 802.11n and handles concurrent trans-

missions, carrier sense, and ACKs as in §3.4.
We deployed OpenRF on a network of 20 nodes, each containing an Intel Wireless-N

series card connected to a PC or laptop. Our network has six 3-antenna APs, spread out

on a single floor of a large building as shown in Fig. 3-11. Each AP is a Linux PC running

hostapd, and implementing our patched iwlwifi driver. We deploy 14 clients, including

seven single-antenna, five 2-antenna and two 3-antenna wireless nodes. We randomize

the locations of the clients on the floor across different experiments (a candidate set of

client locations is shown in Fig. 3-11). All APs in the network share the same wireless

channel, potentially causing interference at some clients, that are at the edge of their AP’s
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communication range.

(a) Interference Nulling

(b) Coherent Beamforming

(c) Interference Alignment

Figure 3-12: MIMO Interference techniques. We plot the SNR or INR of the client and CDF of total through-

put for TCP flows with and without (a) Interference Nulling. (b) Coherent Beamforming. (c) Interference

Alignment.

� 3.6 Results

We compare OpenRF in various settings with a standard 802.11n baseline that uses block-

aggregation but does not perform interference nulling, coherent beamforming or interfer-

ence alignment.
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� 3.6.1 PHY-aware techniques on Commodity Cards

First, we evaluate how effectively commodity Wi-Fi cards can perform common PHY-

aware techniques, like, interference nulling, coherent beamforming and interference align-

ment. We evaluate how these techniques impact TCP flows generated using iperf [170] in

our 20-node network in Fig. 3-11. We use a mix of both long and short lived TCP flows.

Each client has one long lived flow. Additionally, short flows are generated according to a

Poisson arrival process, with mean inter-arrival time of 1s, and have a Pareto file size with

mean of 125KB and shape parameter of 1.5 [133, 36].

We use the OpenRF Controller to identify scenarios corresponding to different MIMO

interference management techniques, applied in this network. We repeat the experiment

across randomly chosen client locations. In each case, we compare our system’s perfor-

mance with 802.11, by replaying identical traffic patterns.

Experiment 1: (Interference Nulling) We consider scenarios reported by the controller

where two single-antenna clients obtain signals from two APs as shown in Fig. 3-7. To

mitigate interference, the controller applies interference nulling on the APs, so that they

null any unwanted interference at neighboring clients. We measure the interference-to-

noise ratio (INR) at each client from its unwanted AP, with and without OpenRF’s nulling,

across experiments. We also measure the total throughput of the TCP flows per client, with

OpenRF’s interference nulling and standard 802.11.

Results 1: The plot in Fig. 3-12(a) shows that the INR reduction from Interference Nulling

is an average of 12 dB. This is a substantial reduction in INR, and it is sufficient for enabling

concurrent transmissions in common wireless networks. This is because the operational

SNR of 802.11 is in the range of 5 - 25 dB [141]. Furthermore, clients that experience inter-

ference are often near the boundaries of the communication range of two Access Points.

Such clients receive low SNR from their interfering APs, which still severely disrupts sig-

nals from their own AP. In fact, our results in Fig. 3-12(a), demonstrate that performing

Interference nulling for such clients leads to a considerable gain in total throughput of

TCP flows per client by a factor of 1.7×.
One might wonder why the reduction in INR in commodity cards using Interference

nulling is below that of typical software radios [98, 63]. This is because, the channel state

information reported by 802.11 is only provided for 30 OFDM sub-carriers, and each 3× 3
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transmit beamforming matrix is allotted only 24 bits [2]. While these settings reduce the

overhead from explicit feedback, they also limit the INR reduction possible. However, as

shown above, this reduction suffices to enable big gains for real WLANs.

Experiment 2: (Coherent Beamforming) In this experiment, we consider scenarios where

the controller performs coherent beamforming from an AP to a single-antenna client. For

each set of client locations, we measure the increase in SNR at the client, with 802.11 and

OpenRF’s beamforming. We also measure the total throughput of TCP flows to this client

with OpenRF and standard 802.11.

Results 2: The plot in Fig. 3-12(b) shows the SNR from AP to client, with and without

coherent beamforming. We observe that coherent beamforming provides a mean increase

of 3 dB in the SNR of the desired signal. This is very significant, since we observed this

was sufficient to enable 802.11’s rate adaptation algorithm[69] to adapt to a higher rate

compared to standard 802.11, under identical circumstances, in 80% of our experiments.

In fact, our results for TCP flows, shown in Fig. 3-12(b) demonstrate a mean gain of 1.4×
in the throughput of OpenRF’s beamforming, compared to 802.11.

Besides the gain in SNR, the gain in throughput is facilitated by another interesting

phenomenon. Quite often, some OFDM sub-carriers in the 802.11 channel profile of a

single antenna experience low SNR due to fading. However, coherent beamforming from

all three transmit antennas across sub-carriers ensures that fading of any single OFDM

bin is extremely unlikely. Thus, channel profiles using diversity, are significantly more

flat, when compared to standard 802.11. This is especially beneficial, since 802.11 uses the

same modulation and coding scheme across OFDM bins.

Experiment 3: (Interference Alignment) In this experiment, we consider scenarios re-

ported by the controller where a 2-antenna client is receiving its desired signal from its AP.

However, the client also receives undesired interference from two other 3-antenna APs

(Fig. 3-9). To mitigate this, we perform interference alignment, so that the two interfering

APs align their signals along one of the client’s antennas. This ensures that any residual

interference on the client’s other antenna is minimized. The client now decodes its desired

signal, interference-free, from its other antenna (See §3.4.3).
For each client, we then measure the total INR received from both antennas, as well as

how much residual INR leaked into the second antenna meant for the desired signal. We
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also evaluate the gain in the total throughput of the concurrent TCP flows made possible

due to OpenRF’s alignment, compared to standard 802.11.

Results 3: Fig. 3-12(c) plots the residual INR leaking into the direction of the desired signal,

against the total INR. Our results show that the residual INR is 11 dB below the total INR.

This is a significant reduction, as clients receiving signals at the boundary of three APs are

likely to obtain low INRs from the interfering APs. Yet, these INRs are still comparable

to the SNR of the desired signal. In fact, the total throughput of TCP flows for the client

under OpenRF’s Interference Alignment experiences a 1.5× gain compared to standard

802.11.

Figure 3-13: Effect of Channel on Interference Alignment. The gain of interference alignment is highly

dependent on the condition number of the channel matrix. OpenRF only employs interference alignment

when the log of the condition number is below 0.6.

Interestingly, OpenRF’s controller algorithm does not apply Interference Alignment for

multi-antenna clients in all scenarios resembling Fig. 3-9. In some cases, the controller

may choose not to apply alignment, as the channel matrix from an interfering AP to the

client was ill-conditioned. In fact, for any MIMO system to provide multiplexing gains,

it is imperative that the channel matrix is well-conditioned [199]. This constraint natu-

rally extends to interference alignment. Specifically, Fig. 3-13 plots the ratio of total and

residual INR for different condition numbers of the channel. Note that when the log of

the condition number exceeds 1.2, the total and residual INRs are nearly equal, providing

virtually no gain. As OpenRF’s controller has channel state information, it accounts for
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this by applying alignment only when channel matrices are well-conditioned, i.e. the log

of the condition numbers are below 0.6.

� 3.6.2 Application performance

In this experiment, we evaluate the impact of OpenRF on application performance. Specifi-

cally, we consider the problem of accessing rich multimedia applications over remote desk-

top, which is increasingly common in the enterprise.

Experiment. Once again, we consider scenarios reported by the controller where two

single-antenna clients obtain signals from two APs as shown in Fig. 3-7. In this experi-

ment, our clients run a remote desktop session over their wireless links, using VNC [84], a

commonly used open-source platform for remote desktop. In particular we play a 1080p

HD-video over remote desktop from the remote AP. We implement the VNC server on the

access points to eliminate any potential delays or loss of throughput over the wired link.

Our experiment proceeds as follows: We start a VNC session from client-1 to AP-1 at t= 0.

We then start a parallel VNC session from client-2 to AP-2 at t = 30 seconds, and gather

traces for both sessions until t = 60 seconds. We repeat this experiment under identical

conditions for 802.11 and OpenRF. We measure the following quantities:

• Updates per second: The VNC protocol works by clients requesting updates for a cer-

tain number of pixels for a frame. The server responds with any changes to these

pixels. In our experiment, we play a clip of Psy’s Gangnam style, a rich and dynamic

HD-video requiring frequent updates. We note that updates at a frequency of 15-20

per second are sufficient to avoid perceivable glitches.

• Response delay: Measures the mean delay between a request and its corresponding

response. If the response time is high (over 200 ms), the video has visible outages.

Results. Fig. 3-14 plots the traces for the two clients for both OpenRF and 802.11.

First, we notice that with 802.11, the VNC flow ceases to provide a comfortable remote

desktop experience once the two APs transmit concurrently. In particular, due to heavy

contention between the two large VNC flows, we observe that the number of updates per

second, varies dramatically in the range of 2-22 updates per second for each flow, with a

mean of 12.2. This means that the user experiences several glitches in the video. More

importantly, we observe on several occasions that the response delay is over 200 ms, with
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the 90th percentile response delay being 270 ms. Thus, the user experiences frequent and

visible outages in the remote desktop application.

(a) No. of Updates Per Second

(a) Response Time

(a) Snapshot of HD Video

802.11 OpenRF

Figure 3-14: Performance of Video over Remote Desktop. Trace for 802.11 and OpenRF of: Row (1) - number

of updates per second; Row (2) - response time(ms); Row (3) - snapshot of the HD video at the same frame.

In contrast, OpenRF provides updates for both clients in the range of 14-22 updates per

second, with a mean of 17.6 for the clients, even when they are transmitting concurrently.

This is because OpenRF benefits from PHY-aware cross-layer techniqueswhich enable con-

current transmissions and therefore eliminate the need for contention for medium-sharing

between the access points. As a consequence, OpenRF enhances user experience by ensur-
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ing fewer glitches9 in the video by a factor of 6×, compared to standard 802.11. In addition,

the 90th percentile delay of OpenRF is 67 ms, which is well below the required 200 ms, and

is 4× lower than that of standard 802.11.

� 3.6.3 Reservation

We study how OpenRF’s reservation policy enhances application-level quality of experi-

ence.

Experiment. We consider scenarios reported by the OpenRF controller where a single-

antenna client is at the edge of the communication range of the two APs, and therefore

requires interference nulling from one of the APs. We reserve a throughput of 17 Mbps

for a large VNC flow destined to this client from its APs. We then begin transmitting

concurrent long-lived TCP flows, from either AP to up to five other clients in the network

and report the VNC performance as a function of the number of concurrent flows.

(a) Throughput Reservation (b) Response Delay

Figure 3-15: Reservation with VNC. Plots the mean and standard deviation of the following quantities, for

OpenRF and 802.11, across number of concurrent flows: (a) Throughput of VNC flow and total network

throughput (b) Response Delay of the VNC flow.

Results. The plot in Fig. 3-15(a) shows the throughput of the VNC flows, as well as

the total network throughput, across the number of concurrent flows for both 802.11 and

OpenRF. We observe that OpenRF reserves throughput at a mean value of 17.2 Mbps for

the VNC flow, as required by the flow. More importantly, it does this while continuing to

provide the same gains in total network throughput by exploiting PHY-aware cross layer

9We quantify glitches based on the number of times there were fewer than a fixed threshold of 14 updates
per second.
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techniques to enable concurrent transmissions of flows between the two APs.

In contrast, with 802.11, the performance of the VNC flow decays with an increasing

number of contending flows. Furthermore, the network throughput is lower, as the APs

do not manage interference, and therefore must share the medium between them.

In addition, Fig. 3-15(b) depicts the delay of the VNC flows, with 802.11 and OpenRF.

As expected, OpenRF maintains the required user quality of experience by keeping VNC

response delays at a low mean of 63 ms, despite concurrent transmissions, while with

802.11, the delays progressively deterioratewith an increasing number of concurrent flows.

� 3.6.4 Large scale measurement

Finally, we study how OpenRF performs under dynamic traffic patterns, dynamic chan-

nels, flow arrivals and departures for the full 20-node network.

Experiment. We place our AP and client nodes in randomly chosen locations

(Fig. 3-11). Our clients are a combination of seven single-antenna, five 2-antenna and two

3-antenna nodes. We conduct our experiments with a variety of TCP and UDP best effort

flows generated using iperf. In particular, our network allows a combination of TCP (≈ 60

%) and UDP (≈ 20 %) flows as well as uplink TCP and UDP traffic (≈ 20 %).10 UDP flows

are long lived flows. TCP flows are generated using a mix of both long and short lived

TCP flows. Each client has one long lived flow. Additionally, short flows are generated ac-

cording to a Poisson arrival process, with mean inter-arrival time of 1s, and have a Pareto

file size with mean of 125KB and shape parameter of 1.5. We assign TCP flows between

uplink and downlink, according to the desired traffic ratios. We compare our system with

standard 802.11 by replaying identical traffic patterns.

Results. Figure 3-16 plots the total throughput of all TCP and UDP flows per client,

for 802.11 and OpenRF. In particular, we obtain a mean gain of 1.6× for all TCP flows and

1.7× for all UDP flows in the network. More importantly, we note that every client in our

system achieves higher throughput on average, compared to 802.11. In fact, our results

demonstrate that the OpenRF controller is truly self-configuring and correctly employs

the right combination of PHY-aware techniques to suit dynamic network topologies and

traffic patterns in real-time.

10These ratios are based on the traffic mix on our local network.
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(a) TCP (b) UDP

Figure 3-16: Performance. Plots the mean and standard deviation of throughput of TCP and UDP flows for

all clients in the network

� 3.7 Related Work

Related work falls into three categories:

Cross-Layer Designs: OpenRF is related to past work on the cross-layer wireless de-

signs [193, 176, 134], particularly to systems that perform MIMO interference manage-

ment, e.g., Interference Alignment and Cancellation [63], Beamforming [14], SAM [166],

and others [141, 61, 98, 29]. However, these systems use techniques that focus on specific

topologies or traffic patterns. In contrast, OpenRF is a general architecture that applies the

right set of MIMO techniques to any topology or traffic pattern. Furthermore, unlike past

work implemented on software radios, OpenRF leverages amodified 802.11n MAC, which

employs carrier sense over interference and coherence slots to support MIMO techniques

in today’s wireless LANs. Thus, OpenRF tackles new challenges such as interference man-

agement in the presence of bursty TCP traffic, cooperative MIMO techniques across APs

in an enterprise, compliance and integration with 802.11 standards, and implementation

using commodity Wi-Fi cards.

Software Defined Networks: Our work is inspired by the large body of work designing

software defined networks for wired LANs, including OpenFlow [116], and Ethane [23].

While we borrow the design principle of separating the data and control plane, unlike

OpenFlow which remains at Layer-2, OpenRF provides MIMO interference management

techniques that impact the physical layer. Such techniques cannot be built simply using

OpenFlow.
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Recently, there have been several proposals bringing software defined networking to

wireless LANs. For e.g., OpenRoads [196], OpenWiFi [75] and Odin [164] abstract the

higher layers of the network stack to provide applications such as seamless mobility, load

balancing, etc. Our work is complementary to this work, and further enhances the control

plane through MIMO interference management techniques.

Perhaps the closest related work to our system is OpenRadio[17], which provides a pro-

grammable data plane for wireless base stations supporting multiple technologies such as

LTE, WiFi, or WiMAX. OpenRadio deals purely with managing the data plane on a sin-

gle wireless device, by re-using physical layer blocks to implement different technologies.

Our system complements OpenRadio by coordinating multiple wireless APs in a network

to manage interference from the control plane.

Enterprise WLAN Architectures: DenseAP [123], Dyson [124], CENTAUR [154], and

DIRAC [198] have proposed architectures to better manage enterprise wireless LANs.

OpenRF complements this work by adding new MIMO cross-layer techniques to the tool-

box available for managing enterprise WLANs.

Recent systems have proposed improving network management by budgeting fre-

quency channels [143, 24], time [39], or leveraging antenna arrays [108]. In contrast, our

system enables multiplexing shared spectrum across interfering APs through MIMO in-

terference nulling and alignment. This complements the above schemes, enabling more

efficient use of spectrum per channel. In addition, OpenRF can accommodate networks

moving towards channel bonding [38] leading to larger chunks of channels shared across

APs.

Finally, Trinity [155] proposes profiling users based on mobility and channel coherence

for enabling distributed MIMO and diversity. However, unlike OpenRF, it uses custom

hardware (WARP boards) and does not study how these PHY layer techniques interact

with real-life traffic patterns and application-layer requirements.

� 3.8 Discussion

This chapter introduces OpenRF, the first system that enables the deployment of physical-

layer MIMO techniques on commodity Wi-Fi cards. It is also the first cross-layer design

that is demonstrated using a fully operational network stack with real applications. While
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our current implementation of OpenRF demonstrates interference nulling, interference

alignment and beamforming, we believe OpenRF can be extended to support other PHY-

aware techniques such as multi-user MIMO and frequency diversity schemes [167], when

future wireless cards support them.



CHAPTER 4

Interference Alignment By Motion

Recent advances in MIMO technology have demonstrated the practicality of interference

alignment and its throughput gains [63, 166, 99, 87]. These systems leverage the MIMO

capability of the transmitter to precode the signal and align it along a particular spatial

direction at the receiver. In contrast, this chapter investigates a simple question: Can

we perform interference alignment with single-antenna transmitters? Furthermore, can

interference alignment be performed purely by the receiver without cooperation from the

senders? A positive answer to these questions could extend the gains of interference align-

ment to scenarios with single antenna systems, such as sensors, hence improving the over-

all throughput of these networks. Furthermore, the ability to do alignment purely at the

receiver eliminates the need to send feedback from the receiver to the senders to inform

them about the direction along which they should align their signals.

Motivated by the above questions, we investigate whether a receiver can perform inter-

ference alignment by simply adjusting the position of one of its antennas. Our intuition is

that this may be possible due to two reasons. First, indoor settings are rich in multipath.

Hence, at any point in space, the perceived channel is a combination of many channels that

correspond to the various paths that the signal traverses. Even a small shift in the antenna

location would cause some of these paths to become shorter and others longer, leading

to a significant change in the resulting channel. Second, channels are continuous func-

tions over space.1 This means that the receiver can gradually slide its antenna, measure

1The channel is a linear combination of multiple continuous waveforms [172], and, hence, is continuous
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Figure 4-1: Interference Alignment by motion. Consider two single-antenna interferers I1 and I2 and a two-

antenna receiver Rx. Initially, the two interferers are not aligned in the antenna space of Rx. Then, Rx slides

one of its receive antennas so that I1 and I2 are aligned in the antenna space.

the channels, and keep moving the antenna in the direction that increases the alignment

between the senders.

To test this intuition, we usedUSRP radios to experimentwith the scenario in Fig. 4-1. In

this setup, we have two single-antenna interferers and a two-antenna receiver. We mount

one of the receive antennas on an iRobot Create robot to emulate a sliding antenna. We

measure the channels and gradually adjust the position of one of the receive antennas,

moving it in the spatial direction that increases the alignment between the interferers, as

in Fig. 4-1(b). The experiments have confirmed our intuition: alignment can indeed be

performed by sliding the receiver’s antenna. What is perhaps even more surprising is that

the required antenna displacement was typically an inch or less. Multiple experiments in

two campus buildings in both line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios

showed that in 84% of the settings, the required antenna displacement was less than one

inch. The implications of our results are two-fold: First, they show for the first time that

interference alignment can be achieved via motion. Second, the fact that the required dis-

placement is of the order of one inch, means that motion-based interference alignment can

be incorporated into recent sliding antennas available on the market.2

To gain insight into these empirical results, we have extended past signal propagation

models to incorporate the effects of multipath on interference alignment. Our results re-

veal that the presence of a reflector near the receiver creates significant spatial diversity,

causing the channel to change dramatically (from combining constructively to combining

over space and time.
2Recent USB Wi-Fi adapters have sliding antennas whose positions can be manually adjusted to improve

the SNR [174].
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destructively) within an inch or two. Since the receiver is typically situated on some plat-

form which serves as a reflecting surface (e.g., a table, the floor, etc.), it is likely that it

experiences reflections from at least one nearby reflector, enabling motion based interfer-

ence alignment.

We introduce MoMIMO, a technique that enables MIMO interference management

through mobility. Besides motion-based interference alignment, our study of MoMIMO

reveals several other interesting capabilities:

• First, MoMIMO also provides interference nulling. Specifically, a single-antenna re-

ceiver can slide its antenna position to cancel an unwanted interference signal from

a single-antenna transmitter, hence enabling single-antenna nodes to exploit MIMO

nulling.

• Second, the process of sliding antennas to seek positions of interference alignment or

nulling can be automated using a Stochastic Hill Climbing algorithm, as described

in §4.5.
• Third, both uplink and downlink traffic benefit from motion-based MIMO tech-

niques. This stems from the reciprocity of wireless channels, which ensures that

motion-based alignment or nulling on the downlink, causes interference alignment

or nulling on the uplink (see §4.6).

We implemented MoMIMO on an indoor network of USRP N210 software radios. To

emulate a sliding antenna, we mounted the antennas on an iRobot Create robot. We con-

ducted our experiments at a bandwidth of 20 MHz in the 2.4 GHz Wi-Fi band, both in

line-of-sight and non-line-of-sight scenarios. Our results show the following:

• MoMIMO reduces the interference-to-noise ratio (INR) of undesired signal by an

average of 22 dB for interference alignment and 15 dB for interference nulling.

• In a network of multiple transmitter-receiver pairs that use a combination of align-

ment and nulling, MoMIMO achieves an average throughput gain of 1.98× over

802.11n in networks with both single-antenna and multi-antenna nodes.

• MoMIMO’s Stochastic Hill Climbing algorithm requires a mean displacement of the

receive antenna of 0.44 inches for interference alignment and 1.17 inches for nulling.3

3Alignment is easier to satisfy because many options exist for the direction along which two senders may
be aligned, which provides extra flexibility for the choice of channels.
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Figure 4-2: Interference Nulling. The transmitter cancels its signal at Rx2 by precoding it, while Rx1 can still

receive its signal x.

• Due to reciprocity, MoMIMO’s interference alignment and nulling on the downlink

also reduces the INR on the uplink to below the noise floor (i.e., the mean INR on the

uplink is below 0 dB).

• MoMIMO is robust to sudden channel changes in otherwise static environments. It

adopts a fail safe mechanism that falls back to 802.11n if the channel changes signifi-

cantly, and recovers its gains once the channel is stable.

Contributions. This chapter presents three main contributions: (1) It is the first to demon-

strate the feasibility of interference alignment and nulling purely via motion. Furthermore,

it reveals that the required displacement is about one inch, and hence can potentially be

supported by sliding antennas similar to those used in recent products [174]. (2) It presents

a stochastic hill climbing algorithm that automatically repositions the antenna to achieve

interference alignment or nulling. (3) We implements our design and demonstrate large

throughput gains over real wireless channels.

� 4.1 Background

We briefly introduce interference nulling and alignment.

(a) Interference Nulling: Interference nulling enables a MIMO node to transmit signals,

and at the same time cancel them out at particular receiver (other than its own). Consider

the example in Fig. 4-2; it consists of a two-antenna transmitter Tx and two single-antenna

receivers Rx1 and Rx2. Let h1 and h2 denote the wireless channels from the two transmit

antennas of Tx to the single antenna of Rx2. Suppose the transmitter wants to send a signal
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Figure 4-3: Interference Alignment. q’s transmitter performs precoding in order to align q along the same

direction as p in the antenna space of the receiver.

x to Rx1 without interfering at Rx2. The transmitter can then send αx on its first antenna

and βx on its second antenna. Then, Rx2 would receive: y = (αh1 + βh2)x. Hence, the

transmitter can null its signal to this receiver, simply by picking α = −h2 and β = h1. This

process of encoding the transmitted signal across multiple antennas (i.e. multiplying by α

and β) is referred to as precoding, and is used in both nulling and alignment.

(b) Interference Alignment: Recall the following basic properties of MIMO systems [172,

99]:

• An N -antenna receiver receives signals on each of its N antennas. These signals can

be represented as one vector in an N dimensional space.

• An N -antenna receiver can decode up to N independent signals.

Suppose a 2-antenna receiver receives two signals – a desired signal x and an interfering

signal p. As mentioned above, these signals can be represented as vectors in a 2-D space,

and the MIMO receiver can decode them. However, let’s say another interferer joins the

network, so that the 2-D space has a third vector q, as in Fig. 4-3(a). Unfortunately, the

receiver can now no longer decode. So, how can the transmitter of q avoid interfering at

the receiver?

The transmitter of q can precode its transmission to rotate the vector q and align it

along the same direction as p; this technique is called interference alignment.4 In effect, the

receiver now obtains only two vectors, one vector is the desired signal x, and the other is

the sum of interferences p and q, as shown in Fig. 4-3(b). Now, the receiver can eliminate

4Specifically, to align the vector q along the vector p, the transmitter uses a precoding matrixM , such that,
p⊥qM = 0, where p⊥ denotes the vector space orthogonal to p [99, 63].
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(c) Scaling Motion-based Alignment

Figure 4-4: MoMIMO enables concurrent transmissions. The figure shows three examples: (a) Nulling: Rx1

slides its antenna to null interference fromTx2, and Rx2 slides its antenna to null interference fromTx1. Hence,

the network supports 2 concurrent transmissions. (b) Alignment: Rx1 slides its antenna to align interference

from Tx2 and Tx3. Similarly, Rx2 and Rx3 slide their antennas to align their interferers. Thus, the network can

support 3 concurrent streams. (c) Scaling Alignment: Rx1 slides one of its antennas to align interference from

Tx2, Tx3 and Tx4. Similarly, Rx2, Rx3, and Rx4 each slide one of their antennas to align their interferers. Thus,

the network supports 4 concurrent streams.

all interference by projecting the received signal on a direction orthogonal to the direction

of the aligned interference.

� 4.2 Scope of MoMIMO

MoMIMO enables wireless nodes to perform techniques such as interference alignment

and nulling by sliding one of their antennas by an inch or two. MoMIMO applies to both

single antenna and multi-antenna nodes, i.e., MoMIMO enables both single and multi-

antenna nodes tomanage interference in amanner that increases the number of concurrent

streams beyond what is available purely by the number of antennas on these nodes.

MoMIMO is not meant for mobile or hand-held devices, but is instead targeted for
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relatively static environments, with stable interference patterns. Examples of such scenar-

ios include: (1) A home Wi-Fi access point that suffers interference from the neighboring

apartment. (2) A sensor network collection point suffering from interference. (3) Wireless

as a replacement for wires at homes and offices, e.g., a Wi-Fi link used to connect a TV to a

DVD player [158], wireless surveillance cameras [22], etc. (4) Flyways in Data centers [68].

� 4.3 MoMIMO in a Network

We begin by presenting examples that illustrate how MoMIMO can provide significant

throughput gains for wireless networks. We explain when nodes may use motion-based

alignment and when they use motion-based nulling. For this section, we assume that it

is possible to find locations that satisfy the desired interference alignment or interference

nulling, by using small position adjustments of an inch or two. We will validate this as-

sumption both empirically in §10.5 and analytically in §4.4.

� 4.3.1 Motion-Based Interference Nulling

Consider two co-located single-antenna transmitter-receiver pairs: Tx1-Rx1 and Tx2-Rx2

(Fig. 4-4(a)). Say these nodes are initially at positions where they interfere strongly (i.e.

the interference to noise ratio (INR) from Tx1 to Rx2 and Tx2 to Rx1 is high). In such a

scenario, 802.11 permits only one of Tx1 and Tx2 to transmit at any given time, i.e., the

maximum number of concurrent streams is one.

Recall that because Tx1 and Tx2 are single-antenna transmitters, they cannot perform

standard interference nulling to each other’s receivers. This is because standard inter-

ference nulling requires a node to precode its signal across multiple transmit antennas as

discussed in §7.1.
In contrast, MoMIMO can leverage motion-based nulling to send two concurrent

streams that do not interfere with each other. Specifically, each receiver makes small ad-

justments to its antenna position by one or two inches until the signal from the interfering

transmitter is nulled (i.e. below the noise floor). In this example, Rx1 adjusts its antenna

until it nulls Tx2’s interference. Similarly, Rx2 adjusts its antenna until it nulls Tx1. Now

that there is no interference between the two streams, Tx1 and Tx2 can transmit concur-

rently to their respective receivers.
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Reciprocity. We now have the receive antennas at positions where Tx1 and Tx2 can trans-

mit concurrently, without interference. But what happens when Rx1 and Rx2 need to

transmit their acknowledgments concurrently to Tx1 and Tx2? Interestingly, we notice

that there is no need for any new adjustments in antenna positions, i.e. the ACKs do not

interfere at Tx1 and Tx2. This is because reciprocity in wireless channels also leads to

reciprocity in motion-based nulling (details in §4.6). Thus, once receivers performmotion-

based nulling, they not only receive their desired signals concurrently, but also deliver

ACKs to their transmitters, interference-free.

Multiplexing Gains. MoMIMO’s motion-based interference nulling, can enable two con-

current streams in this setting, i.e., a 2×multiplexing gain over 802.11.

� 4.3.2 Motion-Based Interference Alignment

Consider three co-located transmitter-receiver pairs: Tx1-Rx1, Tx2-Rx2 and Tx3-Rx3, as

shown in Fig. 4-4(b). The transmitters have only one antenna each, while the receivers are

two-antenna nodes. Once again, these nodes are in positions where they interfere strongly

with each other. Therefore, 802.11 permits only one of Tx1, Tx2, and Tx3 to transmit pack-

ets at a given point in time; hence, the maximum number of concurrent streams is one.

Recall that since Tx1, Tx2, and Tx3 have only one antenna each, they cannot align their

interfering signals along a common spatial direction at each receiver. This is because such

alignment requires the transmitter to precode its signal across multiple transmit antennas as

explained in §7.1.
In contrast, MoMIMO leverages motion-based alignment to send three concurrent

streams that do not interfere with each other. Let’s consider the two-antenna receiver Rx1,

which receives its desired signal from Tx1 and unwanted interference from both Tx2 and

Tx3. To mitigate this interference, Rx1 performs motion-based alignment by adjusting one

of its antennas so that the signals from its two interfering transmitters, Tx2 and Tx3, are

aligned in its 2-D space (see Fig. 4-4(b)). Now Rx1 obtains only two signal vectors in this

2-D space: the signal from its desired transmitter (Tx1) and the sum of the interference

from the unwanted transmitters Tx2 and Tx3. Thus, as in standard interference alignment

(see §7.1), the receiver can eliminate all interference by projecting its received signal along

a direction orthogonal to that of the aligned interference. Similarly, Rx2 can decode its
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Figure 4-5: MoMIMO in heterogeneous networks. The two single antenna pairs perform nulling as in

Fig. 4-4(a). Rx3 slides one of its antennas to align Tx1 and Tx2; similarly, Tx3 slides one of its antennas to

align ACKs from Rx1 and Rx2. Tx3 also precodes its signal to null at Rx1. The network can support 3 concur-

rent streams.

desired signal concurrently by adjusting one of its antennas to align interference from Tx1

and Tx3; while, Rx3 adjusts one of its antennas to align interference from Tx1 and Tx2.

Reciprocity. We now have the receive antennas at positions where Tx1, Tx2 and Tx3 can

transmit concurrentlywithout interference. Suppose the receivers want to sendACKs back

to their respective transmitters, concurrently. These ACKs may still interfere with each

other at the transmitters. For example, Rx1’s ACK would cause interference at Tx2 and at

Tx3. To address this issue, Rx1 can precode its transmission using standard interference

nulling, such that it is nulled at Tx2. Fortunately, nulling the ACK at Tx2 also automatically

nulls the ACK at Tx3 as well. This desirable phenomenon is due to channel reciprocity and

will be further explained in §4.6. Hence, Rx2 and Rx3 can perform a similar procedure so

that the receivers concurrently deliver ACKs to their transmitters, interference-free.

Multiplexing Gains. MoMIMO’s motion-based interference alignment can enable three

concurrent streams in this setting, i.e., a 3× gain over 802.11. We note that even if the

receivers employed uplink multi-user MIMO (as in [166]) instead of standard 802.11,

the maximum number of concurrent streams would be two, still 1.5× less than that of

MoMIMO.

Scaling. MoMIMO’s interference alignment scales beyond the setting in Fig. 4-4(b). For

e.g., in a setup with four single-antenna transmitters and four 3-antenna receivers (shown

in Fig. 4-4(c)), it can enable four concurrent streams, i.e., a 4× gain over 802.11.
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� 4.3.3 Combining Alignment and Nulling

MoMIMO’s throughput gains can be generalized to heterogeneous networks that require

combining both motion-based alignment andmotion-based nulling. Consider the scenario

in Fig. 4-5, with two pairs of single-antenna nodes, and one pair of two-antenna MIMO

nodes. Note that in 802.11n, only one of Tx1, Tx2, and Tx3 can transmit packets at any

given time.

In contrast, MoMIMO can exploit both motion-based alignment and nulling to deliver

three concurrent streams. To begin with, recall that Tx1, Tx2, Rx1 and Rx2 form a topology

similar to the one in Fig. 4-4(a). Thus, to enable concurrent transmissions, Rx1 can simply

slide its antenna to null Tx2, and Rx2 can similarly slide its antenna to null Tx1, as in §4.3.1.
We still need to make sure that Tx3 can transmit concurrently without interfering with

the ongoing transmissions. To this end, we exploit interference alignment, as in §4.3.2.
Specifically, Rx3 slides one of its antennas to align Tx1 and Tx2’s signals. In addition, Rx3

precodes its transmission using standard interference nulling, such that it is nulled at Tx1;

by reciprocity, Rx3’s transmission is automatically nulled at Tx2 as explained in §4.6. Sim-

ilarly, Tx3 slides one of its antennas to align the ACKs from Rx1 and Rx2; it also precodes

its transmission such that it is nulled at Rx1 (and, hence, Rx2).

Multiplexing Gains. In this setting, 802.11n can send 1.33 concurrent streams on aver-

age assuming fair time-sharing between streams.5 In contrast, MoMIMO’s motion-based

alignment and nulling enables three concurrent streams, i.e. a 2.25× gain over 802.11n.

Note that using interference alignment and nulling without motion in this setup will only

enable two concurrent streams at any time. Hence, MoMIMO can still achieve a 1.5× gain

over advanced techniques that leverage standard nulling and alignment, e.g. n+ [99].

Finally, we note that in this section, we have assumed that it is feasible to find nearby lo-

cations that achieve the desired alignment and nulling. In §10.5, we revisit these topologies

and provide extensive measurements that span line-of-sight and non-line of sight scenar-

ios in multiple buildings, all of which confirm the gains of MoMIMO.

5In any time slot, Tx1, Tx2 or Tx3 sends 1, 1, or 2 streams respectively. Thus, on average, 802.11n sends
1+1+2

3
= 1.33 streams.
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Figure 4-6: Interference Alignment. We wish to align the signals received from the two interferers I1 and

I2 along the same direction. The goodness of alignment is determined by the residual interference; it is the

projection of an interferer along a direction orthogonal to the desired alignment, and denoted as horth.

� 4.4 MoMIMO Analysis

In this section, we extend signal propagation models to capture how multipath effects

enable motion-based alignment. We also give insights for why the required displacement

is relatively small and is about one or two inches.

In order to quantify alignment, we need to pick a metric that reflects the goodness of

alignment. So, how do we choose this metric? Suppose, a receiver Rx wants to align a

given interferer I along a particular direction ~v in its antenna space. If the interferer is

perfectly aligned with ~v, then its projection along ~v⊥ (i.e. the direction orthogonal to ~v)

is zero. In contrast, if the interferer is poorly aligned with ~v, its projection on ~v⊥ is large.

In fact, the larger this projection is, the worse the alignment is. In the rest of this section,

we analytically quantify the goodness of alignment in terms of residual interference after

alignment [64, 136]. This quantity, which we denote horth is defined as the projection of the

interference along the direction orthogonal to that of the desired alignment.

Consider the setup in Fig. 4-6, where we wish to slide antenna 1 of the receiver Rx to

align the signal ~h1 from I1 along the same direction as the signal ~h2 from I2. Let htr denote

the channel from interferer It to receive antenna r. We then write the residual interference

after alignment horth as:

horth = ~h1.~h
⊥
2 (4.1)

= (h11, h12).(−h22, h21) (4.2)

= −h11h22 + h12h21 (4.3)
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Figure 4-7: Specifying Reflectors. We specify the location of reflector i with respect to interferer It by: θt1,i,

the angle of departure of the signal from interferer It and φt1,i, the angle of arrival of the reflected signal at

receive antenna 1.

where ~h⊥2 denotes the vector orthogonal to ~h2.
6

Let’s study how the value of these channels htr and the resulting horth change as a func-

tion of reflectors in the environment. Say that we have n reflectors in the environment.

Then the channel between any interferer It and receive antenna r is the sum of the chan-

nel along the direct path between the two, htr,0, plus the channels along all the reflected

paths, htr,i, for all reflectors i = 1, . . . , n. We can use standard propagation models [172] to

express these channels as a function of path length. Specifically, the channel on the direct

path htr,0 is:

htr,0 =
1

dtr,0
e−2πj

dtr,0f

c (4.4)

where dtr,0 is the length of the direct path between interferer It and receive antenna r, c is

the speed of light, and f is the frequency of the transmitted signal.

Similarly, the channel along the ith reflected path as:

htr,i =
γi
dtr,i

e−2πj
dtr,if

c
+jπ (4.5)

where γi is the reflection coefficient of the reflector, and dtr,i is the total distance traversed

by the reflected signal – i.e., dtr,i is the sum of the two segments of a reflected path, the

segment from the interferer It to the reflector and the segment from the reflector to the

receive antenna r.

6Note that, in practice, ~h⊥
2 is a unit vector. We ignore normalization of ~h⊥

2 for simplicity.
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Thus, the channel from interferer It to receive antenna r is:

htr = htr,0 +

n
∑

i=1

htr,i =
1

dtr,0
e−2πj

dtr,0f

c +

n
∑

i=1

γi
dtr,i

e−2πj
dtr,if

c
+jπ

=
n
∑

i=0

γi
dtr,i

e−2πj
dtr,if

c
+αi

Where γ0 = 1, α0 = 0, and αi = jπ for i = 1, . . . , n.

We can substitute these channels in Eqn. 4.3 that defined horth to understand how reflec-

tors impact the residual interference after alignment. As we substitute, remember that we

are only sliding antenna 1 on the receiver, while antenna 2 is fixed. Therefore, we consider

channels h12 and h22 to antenna 2 to be constants, for the rest of our analysis.

horth = −h22h11 + h12h21

= −h22
n
∑

i=0

γi
d11,i

e−2πj
d11,if

c
+αi + h12

n
∑

i=0

γi
d21,i

e−2πj
d21,if

c
+αi

=
∑

t={1,2}

n
∑

i=0

γt1,i
dt1,i

e−2πj
dt1,if

c
+αi

Where γ11,i = −h22γi and γ21,i = h12γi, are constants.

The above equation computes the residual interference after alignment for a particular

position of the receive antenna. We are interested in how horth changes as the receive

antenna slides by (δx, δy), which we denote by horth(δx, δy). To derive horth(δx, δy), we

express the location of reflector i based on two angles for any interferer It and receive

antenna r: the angle of departure (θtr,i) and angle of arrival (φtr,i), as shown in Fig. 4-7.

Given these values, we can show that horth(δx, δy) is:

horth(δx, δy) =
∑

t={1,2}

n
∑

i=0

γt1,i

d̃t1,i
e−2πj

d̃t1,if

c
+αi (4.6)
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Where d̃t1,i is given by:

d̃t1,i =
√

(2ct1,isin
2βt1,i − dt1,0 − δx)2 + (ct1,isin(2βt1,i)− δy)2 (4.7)

ct1,i =
dt1,0sinφt1,i

sinφt1,i − sinθt1,i
(4.8)

βt1,i = (φt1,i − θt1,i)/2 (4.9)

The proof for the above equations follows from the geometry of the reflectors in Fig. 4-7. It

is provided below:

Proof of Eqn. 4.7: In this section, we derive the length of reflected paths from Eqn. 4.7

given the position of an arbitrary reflector. Recall from §4.4 that any reflector i can be spec-

ified in terms of two angles θt1,i and φt1,i. Consider a transmitter It and receive antenna

R1 separated by a distance dt1,0. We can write the position of the reflector in terms of ct1,i,

its distance from the transmitter, and βt1,i its angle to the axis ItR1 (Figure 4-8). First, it is

easy to see that βt1,i =
φt1,i−θt1,i

2 . Now, by using sine-rule on ∆PItR1, we have:

PIt = dt1,0
sin(φt1,i)

sin(φt1,i + θt1,i)
(4.10)

Using sine rule on triangle PItQ:

ct1,i = PIt
sin
(

φt1,i+θt1,i
2

)

sin
(

φt1,i−θt1,i
2

) =
dt1,0sin(φt1,i)sin

(

φt1,i+θt1,i
2

)

sin(φt1,i + θt1,i)sin
(

φt1,i−θt1,i
2

)

=
dt1,0sin(φt1,i)

2cos
(

φt1,i+θt1,i
2

)

sin
(

φt1,i−θt1,i
2

) =
dt1,0sin(φt1,i)

sin(φt1,i)− sin(θt1,i)

Now suppose the receive antenna R1 is initially at the origin (0,0). Then the transmitter is

at a coordinate (-dt1,0, 0). Let us denote I
′
t as the symmetric point of the transmitter about

the reflector. Note that since PIt = PI
′
t, PIt + PR1 = PI ′t + PR1 = I ′tR1. Hence the length

of the reflected path to any receive antenna coordinate R1 is I
′
tR1.

Clearly ∠I ′tItR1 = π/2 − (
φt1,i−θt1,i

2 ) = π/2− βt1,i. From ∆QItS we have SIt = SI ′t =

csinβt1,i. Hence I ′tIt = 2ct1,isinβt1,i. Hence the coordinate of I ′t is (2ct1,isin
2βt1,i − dt1,0,

2ct1,isinβt1,icosβt1,i) = (2ct1,isin
2 (βt1,i)− dt1,0, csin (2βt1,i)).

Thus the length of the reflected path when the receive antenna is moved to any position

(δx, δy) is:
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Figure 4-8: Reflected Path. We consider a transmitter It and receive antenna R1. Signals arrive at R1 from the

direct line-of-sight path and a path due to reflector specified by the tuple (θt1,i, φt1,i), where θt1,i denotes the

angle of departure of the signal from interferer It and φt1,i denotes the angle of arrival of the signal at receive

antenna R1

d′t1,i =
√

(2ct1,isin
2 (βt1,i)− dt1,0 − δx)2 + (ct1,isin(2βt1,i)− δy)2

where, ct1,i = dt1,0sinφt1,i/(sinφt1,i − sinθt1,i) and βt1,i = (φt1,i − θt1,i)/2. �
Eqn. 4.6 shows how sliding a receive antenna impacts alignment, or more precisely, the

residual interference orthogonal to the desired alignment. As Eqn. 4.6 is fairly complex, in

the following sections, we extract insights from it considering specific scenarios.

� 4.4.1 Impact of a Reflector on Motion-Based Alignment

We first consider the case of single randomly positioned non-absorbent reflector (i.e.,

γi = 1). Of course in reality, an indoor scenario would have many absorbent reflectors.

However, studying this simplified case allows us to understand the trends that control

how a reflector impacts alignment. Later in §4.4.2, we use these insights to understand the

impact of many absorbent reflectors.

Recall that our objective is to understand, given that the receive antenna is at an ar-
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(a) Displacement across φ11 and φ21 (b) Displacement across θ11 and θ21
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Figure 4-9: Displacement (in inches) to position of alignment (a): Across φ11 and φ21, with fixed arbitrary

θ11 and θ21. We cap the maximum at 5 inches for ease of viewing. (b) Across θ11 and θ21, with φ11, φ21 = 90◦.

Geometry restricts θ11, θ21 ≤ 90◦. (c) With 10 reflectors placed at random locations across φmax, the largest

angle of arrival among the good reflectors with respect to any interferer.

bitrary initial position, how much displacement is needed to move it to a location that

achieves alignment (i.e., minimizes |horth|2, the residual interference after alignment). To

compute this displacement, we numerically compute |horth|2 using Eqn. 4.6. Recall that

the impact of the reflector on the signal from each interferer It is defined by the angle of

arrival (φt1) and the angle of departure (θt1) of the signal, as shown in Fig. 4-7. Since we

have two interferers and one reflector, in this example, we have four parameters: θ11, θ21,

φ11 and φ21, which determine this displacement.

Fig. 4-9(a) plots the mean displacement from an arbitrary initial position of the receive

antenna to a position that achieves alignment by minimizing |horth|2 locally.7 The figure

shows that the displacement is small when either φ11 or φ21 is large. Specifically, when

either φ11 or φ21 is between 90◦ and 180◦, the required mean displacement varies between

7Our analysis of horth also reveals that these points of local minima, on average, decrease |horth|2 below
the noise floor, provided the environment has reflectors close to the receiver, that are behind it with respect to
either sender.
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about 0.6 inches and 1.2 inches. We note that this displacement and the results in Fig. 4-9(a)

are based on Eqn. 4.6 for f = 2.5 GHz, which is the typical carrier frequency of 802.11.

Hence the displacements of 0.6 and 1.2 inches correspond to distances of λ/8 and λ/4

respectively. The required displacements are even smaller at higher frequencies, where

the wavelength is shorter, for e.g., in the 5 GHz Wi-Fi band.

So what does φ11 or φ21 > 90◦, mean in terms of the physical location of the reflector?

Recall from Fig. 4-7 that φt1 denotes the angle along which reflected signal arrives at at the

receiver from interferer It. Thus, if φt1 > 90◦, then this reflector is behind the receiver with

respect to interferer It. Hence, we arrive at the following insight:

Insight 1: Reflectors which are behind the receiver with respect to the interferer (i.e. φ11

or φ21 > 90◦) enable a displacement on the order of 1 or 2 inches to a position that enables

alignment. We call such reflectors good reflectors.

Note that it is common for most receivers in wireless networks to be placed on some

platform (e.g. a table, the floor, etc.), which is usually behind the receiver with respect to

at least one interferer, and hence serves as a good reflector.

One may wonder if the displacement to a position of alignment depends on either θ11

or θ21, given that φ11 or φ21 are fixed at values ≥ 90◦. In fact, we observe that the angles of

departure have no impact on the displacement, once we fix the angles of arrival. In partic-

ular, Fig. 4-9(b), demonstrates that the required mean displacement is constant versus θ11,

θ21, for the case when φ11 and φ21 are both fixed at 90◦.

� 4.4.2 Motion-Based Alignment with Multiple Reflectors

While our discussion so far focused on a single reflector, the natural question to ask is how

does the displacement to a position of alignment change, given a large number of reflectors

in the environment. To this end, we extend our analysis to multiple absorbent reflectors.

In particular, we pick multiple reflectors with random angles of departure and arrival and

an absorption coefficient chosen randomly between [0.2,0.6] [93]. We use our model in

Eqn. 4.6 to evaluate how these reflectors affect the mean displacement required from an

arbitrary location to reach a position that achieves alignment by locally minimizing |horth|2.
We consider a scenario with 10 randomly positioned reflectors with different angles

of arrival and departure. We consider the following three cases: (1) Only one of these

reflectors is a “good reflector” with respect to either interferer I1 or interferer I2. (2) Two
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reflectors are “good reflectors” with respect to either interferer. (3) Three reflectors are

“good reflectors” with respect to either interferer.

Fig. 4-9(c) plots the mean displacement needed to reach a position of alignment,

i.e. minimize |horth|2. We plot this quantity across the largest angle of arrival, φmax =

maxt∈{1,2},iφt1,i, among all the good reflectors with respect to either interferer. The figure

reveals the following insight:

Insight 2: As long as at least one good reflector exists in the environment, i.e. one reflector

is behind the receiver with respect to either interferer, the mean displacement needed to

reach a position of alignment, is in the vicinity of λ/8 to λ/4, i.e. around 1 or 2 inches, for

2.4-2.5GHz transmissions.

While our analysis so far has focused on interference alignment, it can readily be ex-

tended to interference nulling. In particular, we can consider nulling as a special case of

alignment where horth is the projection along the direction of the receive antennawhere the

signal needs to be nulled (i.e., one of the axes in the antenna space). Hence, the analysis of

horth is similar.

� 4.5 Stochastic Hill Climbing

In this section, we present a Stochastic Hill Climbing algorithm that automatically adjusts

the receive antenna to seek positions of interference alignment or nulling. To find these

positions, the algorithm minimizes the Interference to Noise Ratio (INR) from the interfering

transmitter(s). For interference nulling, INR is the ratio of the power of the interfering

transmitter to the power of noise. For interference alignment, we define the INR as fol-

lows. Let (α,β) denote the direction along which the projected power from the interfering

signals is minimum. Recall that the received signal must be projected along this direction,

to decode the desired signal. Thus, we define the INR for alignment as the ratio of the

power of the interfering signals projected along this direction, to the noise power σ2. For

a systemwith two single-antenna transmitters and a two-antenna receiver, the INR can be

computed based on the wireless channels as:

INR =
1

σ2
min
α,β
|h11α+ h12β|2 + |h21α+ h22β|2
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where hij is the channel from transmitter i to receive antenna j in Fig. 4-6. The solution of

this minimization problem has a closed form (Proof provided below):

INR =
1

2σ2
(

|h11|2 + |h21|2 + |h12|2 + |h22|2
)

−

1

σ2

√

∣

∣

∣

∣

|h11|2 + |h21|2 − |h12|2 − |h22|2
2

∣

∣

∣

∣

2

+ |h11h∗12 + h21h∗22|2 (4.11)

Proof of Eqn. 4.11: Consider two transmitters and a single two-antenna receiver. Let hij

denote the channel from transmitter i to receive antenna j. Our goal is to minimize the

interference to noise ratio (INR) for alignment, given by:

INR =
1

σ2
min
α,β
|h11α+ h12β|2 + |h21α+ h22β|2

where |α|2 + |β|2 = 1 and σ2 is the noise power.

Without loss of generality, we can choose α to be a positive real, and β =
√
1− α2ejθ,

where θ ∈ [−π,π]. Hence, our goal is to minimize:

|h11α+ h12β|2 + |h21α+ h22β|2

=(|h11|2 + |h21|2)α2 + (|h12|2 + |h22|2)|β|2

+2Re{αβ∗(h11h∗12 + h21h
∗
22)}

=(|h12|2 + |h22|2) +α2(|h11|2 − |h12|2 + |h21| − |h22|2)

+ 2α
√

1− α2Re{(h11h∗12 + h21h
∗
22)e

−jθ}

We choose θ = π +∠(h11h
∗
12 + h21h

∗
22), so as to minimize the third term. Hence, we need

to minimize:

(|h12|2 + |h22|2) + α2(|h11|2 − |h12|2 + |h21| − |h22|2)

−2α
√

1−α2|h11h∗12 + h21h
∗
22|

Let A = (|h11|2 − |h12|2 + |h21|2 − |h22|2), B = |h11h∗12 + h21h
∗
22| and C = (|h12|2 + |h22|2).
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Hence, we wish to minimize:

INR =
1

σ2
(Aα2 − 2Bα

√

1− α2 +C) (4.12)

To do so, we set its derivative with respect to α to zero, i.e.

2Aα− 2B
√

1− α2 + 2Bα2/
√

1−α2 = 0

2Aα
√

1− α2 − 2B(1− 2α2) = 0

A2α2(1− α2) = B2(1− 2α2)2

α4(A2 + 4B2)− α2(A2 + 4B2) +B2 = 0

The above equation is quadratic in α2. Solving, we have:

α =

√

1

2
− A

2
√
A2 + 4B2

Substituting α in Eqn. 4.12:

INR =
1

σ2

(

A

(

1

2
− A

2
√
A2 +4B2

)

− 2B

√

1

4
− A2

4(A2 + 4B2)
+C

)

INR =
1

σ2

(

(A/2 +C)− A2

2
√
A2 + 4B2

)− 2B2

√

1

A2 +4B2

)

INR =
1

σ2

(

(A/2 +C)− 1

2

√

A2 + 4B2

)

Substituting for A, B and C in the above equation, we have:

INR =
1

2σ2

(

|h11|2 + |h21|2 + |h12|2 + |h22|2
)

−

1

σ2

√

∣

∣

∣

∣

|h11|2 + |h21|2 − |h12|2 − |h22|2
2

∣

∣

∣

∣

2

+ |h11h∗12 + h21h∗22|2

Which precisely corresponds to Eqn. 4.11. �

Because channels are continuous functions over space, the INR profile is continuous

and smooth. In other words, an incremental movement in any given direction would lead

to a gradual increase or decrease in INR. Hence, to minimize the INR, a receiver can slide

its antenna gradually until it reaches a local minimum.
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We leverage this intuition in designing our stochastic hill climbing algorithm to reduce

the INR (pseudo-code in Alg. 2). At a high level, our algorithm proceeds as follows: the

receiver continuously monitors the INR from its interferer(s) (using Eqn. 4.11). Initially, it

picks an arbitrary direction, and slides one of its antennas in that direction. Specifically,

it slides the antenna either forward or backward, depending on which of those decreases

the INR. It continues to move the antenna along that direction until the INR reaches a

local minimum (in that direction). Then, it rotates the antenna either clock-wise or counter

clock-wise about a small arc (of radius a fewmm), whichever decreases the INR. Again, the

receiver keeps rotating that antenna until the INR reaches a local minimum. The receiver

repeats the above process, switching between translations and rotations, until it reaches a

local minimum (in both translation and rotation). If the INR at the local minimum is below

the noise floor, the algorithm terminates. Otherwise, the receiver moves the antenna to a

random location and repeats the process again.

In practice, across all experiments in §10.5, the stochastic hill climbing algorithm con-

verges to an INR below the noise floor in an average of 3 tries.

2 Pseudo-code for Stochastic Hill Climbing

mode = +1 ⊲ 1: Translate, -1: Rotate
direction = +1 ⊲ 1: Forward, -1: Reverse
attempts= 0
⊲ Loop while INR is above 0 dB
while INR > 0 dB do

switchmode
case +1: TRANSLATE(direction); ⊲ In Translate Mode
case −1: ROTATE(direction); ⊲ In Rotate Mode

end switch
prev INR = INR ⊲ Previous INR of sender
INR = GETINR() ⊲ Update INR based on channels
if INR > prev INR then ⊲ If INR increased

direction = −direction ⊲ Switch direction
attempts = attempts+1

end if
if attempts == 2 then ⊲Hit a minimum

mode = −mode ⊲ Switch modes
attempts = 0

end if
if At local minimum with INR > 0 dB then

⊲Move to Random Location
end if

end while
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� 4.6 Reciprocity

In this section, we show howMoMIMO leverages channel reciprocity to allow concurrent

uplink transmissions (such as ACKs). Consider two wireless nodes i and j. Let hij and

hrevij denote the forward channel from i to j and reverse channel from j to i, respectively.

Then reciprocity [63] states that:

hrevij = tihijrj (4.13)

Where ti and rj are fixed constants that depend purely on nodes i and j respectively.

Eqn. 4.13 has an interesting consequence for interference nulling. Specifically, when

MoMIMO adjusts j’s receive antenna so that hij ≈ 0, this also results in hrevij ≈ 0. Hence,

nulling the downlink channel from interferer i to receiver j bymotion, also nulls the uplink

channel from j to i.

Reciprocity can also be exploited for interference alignment. Consider two single-

antenna nodes I1 and I2 causing interference at a two-antenna receiver Rx, as shown in

Fig. 4-6. MoMIMO moves one of Rx’s receive antennas to a position of interference align-

ment, so that (Eqn. 4.3):

h11h22 − h21h12 ≈ 0 (4.14)

Now, suppose the two-antenna receiver Rx needs to send a single stream on the uplink

without interfering with I1 or I2. It precodes its signal by (−hrev12 , h
rev
11 ) so that the effective

uplink channel at interferer I1: −hrev12 h
rev
11 + hrev11 h

rev
12 = 0, is nulled. Interestingly, because

the receive antenna is in a position of alignment at the downlink, this precoding also nulls

the effective uplink channel at I2. Specifically, from Eqn. 4.13 and 4.14, the effective uplink

channel at I2 is:

−hrev12 h
rev
21 + hrev11 h

rev
22 = −t1h12r2t2h21r1 + t1h11r1t2h22r2

= t1t2r1r2(h11h22 − h21h12) ≈ 0

Thus, MoMIMO’s interference alignment and nulling by motion provides not only con-

current downlink transmissions, but by leveraging precoding and reciprocity, also enables
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(a) Testbed in Bldg. 1 (b) Testbed in Bldg. 2

Figure 4-10: Testbed topology. The figure depicts the cropped floor plans of two buildings where the experi-

ments were conducted. The redmarks on the floor plans depict locations for wireless nodes. Different random

subsets of these locations for the transmitters and receivers are picked for different experiments.

concurrent uplink transmissions.

� 4.7 Experimental Setting

We describe our experimental environment, which is used to illustrate the gains of

MoMIMO.

Implementation. Nodes in our experiments are equipped with USRP-N210 software ra-

dios [41] and RFX 2400 daughter-boards. They communicate in the 2.4 GHzWi-Fi band us-

ing 20 MHz signals. We implement OFDM directly in the USRP Hardware Driver (UHD).

We use various 802.11 modulations (BPSK, 4QAM, 16QAM, and 64QAM), coding rates,

and choose between them using the effective-SNR bitrate selection algorithm [69]. Our im-

plementation periodically measures the channels by listening to packets from the desired

and interfering transmitters. It tracks the INR of the interfering signals for interference

alignment or nulling.

To emulate sliding antennas, the antenna of each USRP is mounted on an iRobot Create

robot, controlled by an ASUS EEPC 1015PX netbook. We implement stochastic hill climb-

ing in a fully distributed manner using iRobot Create’s Open Interface. Each receiver mea-

sures INR for interference alignment or nulling in real-time from the software radio(s), and

automatically maneuvers the robot to minimize INR from any interferer(s). It also queries

the robot sensors to ensure that the robot does not move beyond 2 inches from its initial

position as it seeks to minimize its INR.
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Tested Environments. We evaluate MoMIMO in indoor settings, in line-of-sight (LOS)

and non-line-of-sight (NLOS) scenarios, and in two different buildings.

Ourmain experimentswere conducted in Building 1 depicted in Fig. 7-8(a), which hosts

a computer science department. The building is built mostly of flat reinforced concrete

slabs and columns. The enclosure of the exterior walls is of metal and brick. The interior

walls are gypsumwith steel sheet metal studs. The rooms are standard offices with several

desks, chairs, cabinets, and computer workstations.

We also ran experiments in Building 2, which is constructed in 1963, and has thick

concrete interior walls. We performed our experiments in a large classroom connected to

a long corridor with the layout as shown in Fig. 7-8(b). The classroom consists of several

desks and chairs.

Metrics. To evaluate MoMIMO’s effectiveness at achieving interference alignment and

nulling, we measure the interference to noise ratio (INR). In the case of nulling, the INR is

computed as the total received interference power after running the stochastic hill climbing

algorithm. In the case of alignment, the INR is measured after running the stochastic

hill climbing algorithm by projecting the interference signals orthogonal to the desired

alignment direction, and computing the interference power after projection. In both cases,

an INR less than 0 dB means that MoMIMO has reduced the interference below the noise

level.8

Other metrics of interest include the throughput, which wemeasure using the effective-

SNR metric as described in [69], and the required antenna displacement for nulling or

alignment, which we measure as the distance from the initial location of the antenna to its

location after running the stochastic hill climbing algorithm.

� 4.8 Empirical Results

We evaluate the performance of MoMIMO in the testbed environment described in §4.7.

8To be able to evaluate the INR accurately, packets sent by the interferer contain a header with twenty
known OFDM symbols. This allows us to measure INR up to an accuracy of -13 dB by averaging the wireless
channel across these repeated symbols. While this allows us to accurately measure the residual interference,
in practice, pushing the INR below -3 dB is unnecessary. Thus 2-3 known OFDM symbols are sufficient for
this accuracy.
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Figure 4-11: INR before and after applying MoMIMO’s alignment or nulling. The figure depicts the CDF

of motion-based alignment in (a), (b) and nulling in (c), (d). Our experiments are performed in line-of-sight

scenarios in (a), (c) and non-line-of-sight scenarios in (b), (d).

� 4.8.1 Microbenchmarks

We first investigate whether local antenna adjustments, using our stochastic hill climbing

algorithm, can indeed deliver interference alignment and nulling. To do so, we quantify

the INR after MoMIMO’s alignment and nulling, and check whether it can be reduced

below the noise level, i.e., 0 dB.

Interference Alignment. We experiment with the setup in Fig. 4-6, which consists of two

single-antenna interferers and a 2-antenna receiver. We place these nodes randomly in our

testbeds in both line-of-sight (LOS) and non-line of-sight (NLOS) scenarios. The two inter-

ferers concurrently transmit packets back-to-back. The receiver estimates the total power

received on both of its antennas; this power constitutes the initial INR. The receiver then

runs stochastic hill climbing until the two received signals are aligned. Subsequently, it

computes the final INR as the projection of the received signals along the direction orthog-

onal to the desired alignment as described in §4.5. We repeat this experiment 20 times,

each time placing the interferers and receiver at different locations in our topology.

Figs. 4-11(a) and 4-11(b) show the cumulative distribution functions (CDFs) of both the

initial and final INRs in these experiments for LOS and NLOS scenarios. The figures show

an average INR reduction of about 22 dB in both LOS and NLOS scenarios. Note that the
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median residual INR is −0.5 dB and −2.5 dB, in LOS and NLOS respectively, which is

below the noise floor, thereby enabling significant throughput gains.

The CDFs also show that in a few percent of the runs, the INR after alignment may

be above the noise level by a few dBs. These runs correspond to cases of very strong

interference, over 25 dB, and hence the few dB of residual INR. Even in these scenarios,

the reduction in INR is large and exceeds 20 dB. Overall, the figure shows that motion-

based alignment produces similar accuracy to multi-antenna alignment [99], but requires

only single antenna transmitters.

Interference Nulling. We place a single-antenna interferer and a single-antenna receiver

randomly in our testbed, in both LOS and NLOS scenarios. The interferer transmits a

stream of packets back-to-back. The receiver slides its antennas following the stochastic

hill climbing algorithm in order to null the signal from the interferer. Upon convergence,

it computes the final INR. We repeat this experiment 20 times, each time placing the nodes

in different locations in our testbed.

Figs. 4-11(c) and 4-11(d) show the CDFs of the initial and final INRs in these exper-

iments for both line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. The figure

shows that after MoMIMO nulling, the median residual INR is −0.3 dB in LOS and NLOS,

and median reduction in INR is about 15 dB. Our results show that motion-based nulling

effectively cancels interference and brings it to the noise level.

In comparison with the alignment experiments, we note that the initial INR for nulling

is much lower. This is because in alignment, the initial INR is due to two interferers,

whereas here it is due to only one interferer.

� 4.8.2 Throughput Comparison

We assess the throughput benefits of MoMIMO against two baselines: standard 802.11n

and n+ [99]. We compare against n+ to show that MoMIMO delivers gains even when

compared with a system that employs advanced MIMO techniques.

For this experiment, we use the heterogeneous network topology in Fig. 4-5. We note

that other topologies like those in Fig.4-4(b) and 4-4(c) show a bigger gain for MoMIMO,

as explained in §4.3. However, we chose to present empirical results for the heterogeneous

network topology because it is more complex than the others and requires combining both
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Figure 4-12: Total Network Throughput. Total network throughput of all three schemes: 802.11n, n+, and

MoMIMO.

motion-based nulling and alignment.

Recall from §4.3 that the heterogeneous network in Fig. 4-5 has two single-antenna

transmitter-receiver pairs and one 2-antenna transmitter-receiver pair. For this network,

MoMIMO uses sliding antennas to null the signal of Tx1 at Rx2 and that of Tx2 at Rx1. It

also needs to align the signals of Tx1 and Tx2 at Rx3. In this case, MoMIMO can deliver 3

concurrent streams. In contrast, 802.11n has to budget the wireless medium between the

three Tx-Rx pairs which yields an average of 1.33 concurrent streams, while n+[99] can

enable 2 concurrent streams.

For each run of our experiments we pick a random subset of the nodes in the testbed to

represent the nodes in the heterogeneous network in Fig. 4-5. We consider a single long-

lasting flow from each sender to its receiver. We repeat the experiment at 20 randomly

chosen locations. At each location, we record throughputs for MoMIMO, 802.11n and n+.

For each of the MoMIMO runs, the network initially uses 802.11n with each pair trans-

mitting in a different time slot. During this phase, the nodes do not transmit concurrently;

instead they measure the channel and run stochastic hill climbing. Once stochastic hill

climbing reaches the desired nulling and alignment, we allow the nodes to transmit con-

currently.

Fig. 4-12 shows CDFs of the obtained throughput in MoMIMO as well as those of

802.11n and n+. On average, MoMIMO achieves a throughput gain of 1.98× over 802.11

and 1.31× gain over n+. In comparison, the expected throughput gains for this heteroge-

neous network as reported in §4.3.3 are 2.25× over 802.11n and 1.5× over n+. Thus, our

experimental gains are close to the expected ones. Note that both MoMIMO and n+ suffer

from a slight performance dip in comparison to their theoretical gains; this is due to small
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residual interference power after alignment and nulling.

� 4.8.3 Reciprocity

Reciprocity enablesMoMIMO to performmotion-based alignment/nulling on the forward

path and still enjoy alignment and nulling on the reverse path, thereby enabling ACKs to

be transmitted concurrently without interference. In this section, we evaluate how elimi-

nating interference by applying MoMIMO on the forward path translates into eliminating

interference on the reverse path.

Here, we use the same experiments described in §4.8.1 for both alignment and nulling.

The difference however is that after we align/null along the forward path, we reverse the

direction of the transmission, i.e., make the receiver transmit and the previous transmitter

receive. For the case of alignment and as described in §4.6, the receiver also precodes

the ACK to null it at one of the aligned senders. Our objective is to show empirically

that this naturally leads to nulling the signal at the other sender. Hence we measure the

corresponding reciprocal INR. For nulling we simply want to show that nulling in the

forward direction leads to nulling in the reverse direction. Hence we measure the reverse

INR.

Fig. 4-13 plots the CDFs of the reverse INRs for both alignment and nulling. Each CDF

is taken over 20 different runs with different node locations. The figure shows that indeed

applying stochastic hill climbing in the forward direction virtually eliminated the INR in

the reverse direction as well, reducing it below the noise level (i.e., below 0 dB).
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position for interference alignment across bandwidth.

� 4.8.4 Displacement

Next, we would like to quantify the amount of displacement by which MoMIMO needs to

slide the antennas to achieve alignment or nulling. To do so, we measure the displacement

between the initial and final positions of the receive antennas in the throughput experi-

ments in §4.8.2.
Fig. 4-14 plots the CDFs of this displacement for both alignment and nulling. As ex-

pected, since we restricted the motion of the antennas to within a 2 inch radius, the max-

imum displacement across all experiments is 2 inches. Further, the figure shows that

MoMIMO’s stochastic hill climbing algorithm needs a mean displacement of 0.44 inches

for interference alignment and 1.17 inches for interference nulling. Alignment is easier to

satisfy as many options exist for the direction along which two senders may be aligned,

which provides extra flexibility for the choice of channels.

� 4.8.5 Impact of Channel’s Bandwidth

Our previous experiments use a bandwidth of 20 MHz, the common setting for 802.11. In

this experiment, we evaluate how channel bandwidth impacts MoMIMO’s performance.

As in §4.8.1, we consider two single-antenna interferers and a two-antenna receiver. The

receiver performs stochastic hill climbing bymoving one of its antennas to align the signals

from the two single-antenna interferers. Upon convergence, we fix the initial position of

the receiver and repeat the experiment for different channel bandwidths: 2MHz, 4MHz,

8MHz, 16MHz, and 20MHz. For each channel width, we repeat this experiment in 10
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randomly chosen locations in our testbed.

Fig. 4-15 plots the mean and standard deviation of the INR at the receiver as a func-

tion of the bandwidth, averaged over all our experiments. The plot reveals that the INR

rises by an average of 5 dB as the bandwidth is increased from 2MHz to 20MHz. This is

expected because a receiver perceives greater frequency diversity across OFDM subcarri-

ers with increased bandwidth. Nevertheless, even at 20MHz, the mean INR across these

experiments was around -2 dB, which is well below the noise floor. Thus, even though

the performance of MoMIMO is impacted by an increase in bandwidth due to frequency

diversity, MoMIMO continues to provide a significant reduction in INR.

� 4.8.6 Performance with Off-the-Shelf 802.11 Senders

Now, we evaluate how MoMIMO performs with off-the-shelf 802.11 senders. Specifically,

since the Stochastic Hill Climbing algorithm only uses the power of the interferer to move

the receiver; in principle, it should work even with off-the-shelf 802.11 interferers. To

validate this, we use commodity Atheros AR9285 wireless cards as the interfering senders

and run the Stochastic Hill Climbing algorithm on USRP-N210 receivers.

Fig. 4-16 plots the CDF of the resulting INR reduction from the interfering 802.11

senders to the USRP-N210 receivers. The CDF is taken across different runs that span

both line-of-sight and non-line-of-sight scenarios. The plot shows that, on average, the

Stochastic Hill Climbing algorithm reduces the INR of the 802.11 interferer by about 23 dB.

Thus, we conclude that, even with off-the-shelf 802.11 cards, the Stochastic Hill Climbing

algorithm can significantly reduce interference and hence enables throughput gains.

� 4.8.7 Performance in Dynamic Environments

In this experiment, we study how MoMIMO responds to changes in the wireless chan-

nel. MoMIMO nodes incorporate a fail-safe mode that responds to channel changes by

defaulting to 802.11n and re-running the stochastic hill climbing algorithm. Specifically,

during the periods in which the receive antenna is still moving and has not reached

a nulling/alignment position, as well as in which the nulling/alignment position has

changed, the nodes fall back to 802.11n and do not transmit extra concurrent streams be-

yond what is allowed by 802.11n. Note that this behavior is natural in MoMIMO since,

once the nulling does not hold, the receiver immediately starts hearing the interference.
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Figure 4-16: Performance with real 802.11 senders. CDF of the net reduction in INR from the commodity

802.11 card to the USRP-N210 receiver across experiments

Similarly, if the alignment does not hold, the receiver sees the interference signal in the

whole 2-D space as opposed to along a single direction. Thus, if the channel changes

enough to disturb alignment or nulling, the receiver can detect this effect in real-time and

fall back to standard 802.11n.

To assess MoMIMO’s fail safe mechanism, we repeat the experiment in §4.8.2, which

uses the heterogeneous network. We focus on the two-antenna receiver (Rx3 from Fig. 4-5),

which slides its antenna to align the signals from the two single-antenna interferers Tx1

and Tx2. We consider a scenario where the interferers (Tx1 and Tx2) are inside an office

with an open door and the receiver is outside the office. Before starting the experiment,

the receiver runs the stochastic hill climbing algorithm to align the two single-antenna

transmitters. Our experiment spans 30 seconds. At t = 15.4 seconds, we close the door so

that the interferers (Tx1 and Tx2), and the receiver are no longer in line-of-sight of each

other. We track the INR of alignment at the receiver for the full duration of 30 seconds. We

also measure the receiver’s throughput obtained based on the effective SNR [69] metric.

Fig. 4-17(a) plots a trace of the measured INR over time. The trace depicts a distinct

spike of about 8 dB in INR at t = 15.4 seconds, when the door is closed. However the

stochastic hill climbing algorithm responds quickly, reducing the INR to around 0 dB by

t= 16.6 seconds. Note that the delay of 1.2 seconds was partly due to the limitations of the

iRobot Create which is programmed to move at an average speed of 20mm/s for accurate

maneuverability.

Fig. 4-17(b) plots the throughput of the MIMO receiver over time, under identical set-
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Figure 4-17: Performance of Interference alignment in Dynamic Environments. The plot shows a trace of

the INR and throughput for 30 seconds, where at t= 15.4s, the channels change from line-of-sight to non-line-

of-sight.

tings for 802.11 and MoMIMO. At t = 15.4 seconds, the spike in INR caused by the change

in channel triggers MoMIMO’s fail-safe mechanism. Hence, MoMIMO ceases concurrent

transmissions, and falls back to 802.11n’s throughput levels (around 17 Mb/s on average).

During this period, stochastic hill climbing moves the antenna but without activating con-

current transmissions. Once stochastic hill climbing causes the INR to fall close to the

noise level MoMIMO switches on concurrent transmissions. By t = 16.6 seconds, the av-

erage throughput is around 24 Mb/s, restoring MoMIMO’s original gains over 802.11n for

the new channel.

� 4.9 Related Work

Related work falls in the following two categories:

(a) MIMO Interference Management: Recent years have witnessed advances in MIMO

interference management from both the theoretical [112, 21] and the empirical research

communities [166, 63, 99, 151, 61, 141, 153]. Past systems implementing interference align-

ment [99, 63, 87] typically require multi-antenna senders that are aware of channel state

information. Blind interference alignment [119], does not require channel state informa-

tion at the transmitter, but needs symbol-level time synchronization between transmitters

and receivers. Some theoretical work proposes interference alignment for single-antenna

nodes either in frequency [163], or in time [122]. In contrast, MoMIMO is the first system to
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demonstrate that interference alignment and nulling can be performed purely by moving

the receive antennas by just about one or two inches.

(b) Exploiting Motion to Improve Wireless Performance: Prior work demonstrated that

mobility improves the performance of wireless network. For instance, Grossglauser and

Tse [66] show that a wireless network of freely moving nodes has a higher capacity than

a network with stationary nodes. Also, research from the robotics community [13, 73,

103] has leveraged mobility to improve the quality of wireless channels. For example,

in [13, 73], robots improve their connectivity by maintaining a line-of-sight path to their

access points. Other work observes that a robot can improve its throughput by sampling

different locations in the environment, and choosing the one that maximizes its throughput

(due to a higher SNR) [103]. Furthermore, recent work has leveraged node movement

to improve beamforming [26] and energy consumption [190]. Additionally, some recent

products allow the user to manually slide the antenna to avoid dead spots and improve

the SNR [174].

MoMIMO builds on this past work but differs from it by being the first to show that mo-

tion enables MIMO-type interference alignment and nulling. Said differently, past work

uses motion to improve the SNR but does not show that motion enables MIMOmultiplex-

ing gains.

� 4.10 Discussion

In this chapter, we introducedMoMIMO, a technique that demonstrated, for the first time,

that interference alignment and nulling can be achieved, even with single-antenna trans-

mitters, by simply moving the receive antenna. We also showed that the amount of an-

tenna displacement needed is fairly small (∼ one inch); hence, MoMIMO can be achieved

by sliding antennas.

This chapter focused on demonstrating the feasibility and potential gains of MoMIMO.

Important topics for future work include: 1) designing a medium access protocol that

leverages the synergy between motion and interference alignment as demonstrated by

MoMIMO; and 2) studying MoMIMO’s gains in different classes of dynamic environ-

ments, e.g. static vs. mobile clients.

We believeMoMIMOpresents a newparadigm for interferencemanagement, especially
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in settings of long-lived interference patterns such as home networks and data-center fly-

ways. Further, we envision that future systems may exploit motion-based interference

alignment and nulling to enable new applications at the intersection of networking and

robotics, where mobility is already innate.



CHAPTER 5

Indoor Positioning

Beyond communication, my research enables new services, particularly indoor positioning

and navigation. Imagine a world where you can walk into a building you’ve never visited

before, and find your location, simply using the wireless infrastructure around you. Such a

systemcan get the best offers on the shoes you are browsing at amall; or, fetch a description

of the painting in front of you at a museum. This vision has motivated much work both in

academia and industry. Apple recently acquired WifiSlam, and Google and Microsoft are

developing in-house solutions.

Despite massive interest in this space, ubiquitous and accurate indoor positioning is a

difficult problem yet to be achieved. The main culprit is that wireless signals bounce off

walls and objects causing an effect called multipath – a major problem known to any wire-

less engineer. Multipath creates ambiguity at the receiver on where the signal originated

from, hence hampering its ability to localize the transmitter.

Past solutions attempted to resolve this issue in two ways: 1) elaborately fingerprinting

the environment to create a database of how the signal may look like for each possible

location of the transmitter, or 2) expensive infrastructure unavailable on cellphones, like

large arrays of antennas. This dissertation presents new systems that require neither. Our

work spans both Wi-Fi and LTE cellular networks.

Underlying our solution is a new way to actively measure wireless signals to invert the

effect of multipath. Specifically, we leverage the fact that as a wireless receiver moves,

it perceives different wireless signals, as the signal copies along multiple paths combine

119
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differently at each receiver location. By intelligently processing these observations, one

can extract the copy of the signal along the direct path and identify the actual direction

of the transmitter. We show how this approach can be implemented on commodity Wi-Fi

receivers (e.g., Wi-Fi devices, access points or LTE femtocells) to achieve accurate indoor

positioning.

The rest of this section presents two systems that achieve indoor positioning from differ-

ent perspectives: from that of thewireless infrastructure and user device. The first achieves

accurate indoor positioning using simple hardware modifications that can be plugged in

to existing wireless infrastructure. This approach requires no modification to user de-

vices and can track them continuously as they move through the deployment space. We

demonstrate the system specifically in the context of LTE networks, and show how it can

help shine light into the performance of today’s LTE networks in the indoor space. The

second is a system that runs directly on a user device connected to pre-existing Wi-Fi in-

frastructure that does not need to be modified in any way. This system is a software-only

localization service that a user can run on demand, whenever they twist their device. We

demonstrate how both systems achieve tens of centimeters accuracy in indoor environ-

ments, without the need for specialized infrastructure or elaborate fingerprinting prior to

deployment.

Below, we detail the key challenges and high-level ideas underlying these systems and

how the relate to prior work.

� 5.1 LTE Radio Analytics Made Easy and Accessible

Despite the rapid growth of next-generation cellular networks, researchers and end-users

today have limited visibility into the performance and problems of these networks. As

LTE deployments move towards femto and pico cells, even operators struggle to fully

understand the propagation and interference patterns affecting their service, particularly

indoors.

In chapter 6, we present LTEye [89], the first open platform to monitor and analyze LTE

radio performance at a fine temporal and spatial granularity. LTEye accesses the LTE PHY

layer without requiring private user information or provider support. It provides deep

insights into the PHY-layer protocols deployed in these networks. At the heart of LTEye
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(a) LTEye Sniffer Prototype (b) Wireless Channels

Figure 5-1: LTEye. (a) Prototype of the rotating antenna on a LTEye sniffer. (b) Depicts the measuredwireless

channels from a transmit antenna to the mobile and static antennas respectively

is a novel system design that uncovers not just the performance of users, but also where

they are located, so that users with poor performance can be actively assisted. To do so,

LTEye brings techniques from the world of radar systems to cellular signals – it builds a

passive rotating antenna design using 3-D printers that sniff wireless signals from nearby

cellphones to localize them. These antennas can be readily attached to LTE femtocells or

low-cost beacons in indoor environments. Our approach uses these moving antennas to

employ a new form of synthetic aperture radar (SAR), that can operate over cellular sig-

nals for the first time. This enables businesses and end-users to localize mobile users and

capture the distribution of LTE performance across spatial locations in their facility. As

a result, they can diagnose problems and better plan deployment of repeaters or femto

cells. LTEye’s analytics enable researchers and policy makers to discover performance

deficiencies, stemming from inefficient spectrum utilization, inter-cell interference. An ex-

perimental evaluation of LTEye threw light into the PHY-layer performance and problems

of production AT&T and Verizon base stations - a hitherto unexplored territory.

LTEye’s Technique. LTEye leverages Synthetic Aperture Radar (SAR) to localize LTE sig-

nals highly accurately. However, past work on SAR require both transmitters and receivers

to share a common reference clock. For e.g., SAR devices on airplanes or satellites both

transmit signals and receive their reflections to image the topography of the ground[50].

Unfortunately, when performing SAR between independent transmitters and receivers, the

measured wireless channel varies both due to position and due to carrier and sampling

frequency offset between the transmitter and receiver, as well as any phase noise. As a
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result, LTEye cannot perform SAR in its standard form.

To overcome this challenge, LTEye leverages mobility: It operates as a 2-antennaMIMO

receiver, with one static antenna and another movable antenna. The movable antenna

may be mounted on a rotating arm attached to the device, which is the approach taken

in our implementation (see Fig. 5-1(a)). LTEye uses its MIMO capability to perform SAR

over communication signals, but without frequency offset estimation. Our key idea is that

instead of applying the SAR equations to the wireless channel of the moving antenna [50],

we apply SAR equations to the ratio between the channel of the moving antenna to that

of the static antenna (see Fig. 5-1(b)). Taking the ratio of the two channels eliminates any

effect of frequency offset since both MIMO antennas experience the same offset relative to

the sender. However, since the ratio is between two antennas, one moving and the other

static, it preserves how antenna displacement changes the channel of the moving antenna.

This allows SAR to safely retrieve the location of the wireless signal source from the ratio,

modulo frequency offsets.

� 5.2 Accurate Indoor Positioning with Zero Start-up Cost

Recent years have seen the advent of new RF-localization systems that demonstrate tens of

centimeters of accuracy. However, such systems require either deployment of new infras-

tructure, or extensive fingerprinting of the environment through training or crowdsourc-

ing, impeding their wide-scale adoption.

In chapter 7, we present Ubicarse [88], an accurate indoor localization system for

commodity mobile devices, with no specialized infrastructure or fingerprinting. Ubicarse

leverages achieves by enabling handheld devices to emulate powerful radar solutions.

It does this using a novel algorithm that builds upon Synthetic Aperture Radar that

traditionally uses highly-controlled antenna mobility to perform radar imaging. Ubicarse

brings such techniques to commodity handheld devices, where users can simply twist

their devices to perform positioning, even along arbitrary and unknown paths. Ubicarse

is not limited to localizing RF devices; it combines RF localization with stereo-vision

algorithms to localize common objects with no RF source attached to them. We implement

Ubicarse on commercial tablets and initial results demonstrate few tens of cm in accuracy

in 3-D location of mobile devices, and object geo-tagging.
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Figure 5-2: Twisting the Mobile Device. The user twists the device about its vertical (z) axis, as shown in

the figure on the left. The red circles indicate antenna locations. On the right, we depict the top view of a

candidate device trajectory as measured by a Vicon motion capture system.

Ubicarse’s Technique. Ubicarse is an indoor geo-location system that enables mobile de-

vices to locate themselves with high accuracy. Past work on localization uses large antenna

arrays, that provide high accuracy, but are too bulky to mount on mobile devices. At first,

it might seem that one can use Synthetic Aperture Radar (SAR) to directly mimic an an-

tenna array on a handheld device. Unfortunately, SAR in its existing form is unsuitable

for handheld devices. To understand why this is the case, note that a moving antenna

performs SAR by collecting signal snapshots as it moves along its trajectory, and jointly

processing these snapshots to emulate a large antenna array traced out by that trajectory.

Therefore for SAR to mimic a particular antenna array geometry, it must first know the

position of the moving antenna at every point along its trajectory. Satisfying this require-

ment is relatively easy in radar systems where the speed and trajectory of the antenna

movement are finely controlled [50]. Unfortunately, when a user moves her handheld de-

vice, neither its speed nor its trajectory can be accurately controlled. To get a feel for the

accuracy required, in 802.11a/n, even a small error of 2 cm in the relative position of the

moving antenna leads to an error of 60 degrees in identifying the direction of the source.

One might consider using motion sensors (accelerometer, gyroscope, compass) present

in mostmobile devices to estimate antenna positions as it moves. Unfortunately, since SAR

requires sub-centimeter accuracy in the device position along its trajectory, commercial

motion sensors are virtually unusable to measure such fine-grained translation [127] and
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can at best be used to measure orientation from their gyroscopes.1 Requiring the user to

rotate the device on a perfect arc with zero translation of the device center would preclude

measuring this translation but is impractical to enforce.

Ubicarse addresses this challenge by developing a new formulation of SAR that is

translation-resilient. Specifically, we allow the user to twist her mobile device about its

vertical axis, as shown in Fig. 5-2. Even if the twisting involves unknown trajectories (that

include translation), we can accurately compute SAR knowing only the rotation estimate

from the gyroscope. To do so, we exploit the MIMO capability of modern wireless cards.

Suppose themobile device has two antennas. The distance between these antennas is fixed

independent of how the user moves her device. Thus, whenever the user translates the de-

vice, the relative position vector of both its antennas remains the same. In contrast, as the

device rotates, the relative position vector of the antennas, also rotates. Leveraging these

observations, we develop a new SAR formulation that operates on relative wireless chan-

nels to estimate the direction of the access point’s signal. These relative wireless channels

depend purely based on the device’s orientation and have no dependency on its exact po-

sition or translation. As a result, Ubicarse’s formulation of SAR can be performed without

prior knowledge of precise device trajectories.

Chapter 7 details Ubicarse’s core algorithms in greater detail. It further describes how

Ubicarse can combines RF localization with stereo-vision algorithms to localize common

objects with no RF source attached to them. Finally, it implements Ubicarse on aHP SplitX2

tablet and empirically demonstrates its accuracy in both 3-D device localization and object

geotagging in complex indoor settings.

� 5.3 LTEye and Ubicarse in the context of Prior Indoor Posi-

tioning Literature

Prior to Ubicarse, RF localization past work has had three main approaches for indoor

localization: The first require deploying specialized infrastructure to perform accurate in-

door localization, e.g. acoustic [154, 107], RFIDs [179, 178], specialized access points [82],

and antenna arrays [188]. The second mandates signal fingerprinting [16, 150, 197] either

1This is because accelerometers report the net acceleration of the device including gravity, which must be
subtracted out and the result integrated twice to obtain translation.
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in a training phase or via crowdsourcing [142, 195, 104]. The third advocate modeling the

wireless signal instead ofmeasurements [97, 28, 65], but at the expense of accuracy. In other

words, past work forces a trade-off in either deployment effort (e.g. new infrastructure, or

fingerprinting) or compromises on accuracy (several meters).

In contrast to these systems, our work proposes systems that achieve tens of centimeter

of accuracy without requiring fingerprinting or new infrastructure. Our approach emu-

lating large antenna arrays using only simple, commodity wireless devices. Specifically,

our approach explores two aspects of the indoor positioning design space: Do we want

to deploy indoor position at the infrastructure or user devices? LTEye explores the for-

mer, by proposing simple hardware modifications to wireless infrastructure (LTE femto-

cells or receivers) without modifying user devices. Ubicarse considers the latter, running

a software-only system on user devices that can be run on demand when users twist their

tablets, using existing unmodified Wi-Fi infrastructure.

In addition, we believe that Ubicarse and LTEye complement solutions that perform in-

door positioning using other technologies (besidesWi-Fi or LTE), when such infrastructure

is available. These systems include those that employ acoustic beacons [70, 135, 139, 154],

cameras or light sensors [185], infrared [183], RFIDs [179, 178] and bluetooth bea-

cons [140, 12]. We believe such technologies can complement our work and further im-

prove accuracy, wherever the infrastructure they require is available.

LTEye and Ubicarse bring techniques from the world of radar systems to wireless de-

vices. They are most closely related to past work on RF-based localization that employs

synthetic aperture radar (SAR) [179, 50]. Our solutions build on this past work but dif-

fers in that it extends SAR to operate over communication signals exchanged between an

RF transmitter and a receiver. This contrasts with the current approach for SAR, which

is limited to backscatter and radar signals, where the transmitter and receiver are a single

nodewith no Carrier Frequency Offset (CFO) or Sampling Frequency offset (SFO). In addi-

tion, Ubicarse proposes a new formulation of SAR that applies to Wi-Fi devices manually

twisted by users. Unlike past work on SAR where radar devices are rotated mechanically

along regular and completely known trajectory, Ubicarse’s formulation of SAR functions

despite arbitrary and unknown trajectories of handheld devices.

Finally, we note that LTEye is also related to past measurement studies [77, 76, 157]

and tools [145, 169, 42, 51] that analyze LTE cellular networks. Such studies focus on the
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higher layers of the stack, e.g., TCP throughput, transfer delay, and power usage. In con-

trast, LTEye focuses on the LTE radio layer; it provides fine-grained temporal and spatial

information and does not require traces from the provider.



CHAPTER 6

LTE Radio Analytics Made Easy and

Accessible

Cellular service has become an integral part of our life. Yet as users and researchers, we

have little visibility into the performance and real problems of these networks. Even the

little information we have is primarily from trace analysis sanctioned by mobile opera-

tors [76, 77]. The lack of open and transparent access into the operation and inefficiencies

of the cellular physical layer limits our ability as researchers to contribute effectively to the

development of these networks. It also limits the ability of policy makers to independently

verify operators’ claims of spectrum needs, and make informed decisions on licensed vs.

unlicensed spectrum.

The need for increased visibility into the cellular PHY-layer is further emphasized by

three recent trends. First, cellular deployment is moving towards small, femto, and pico

cells [156], many of which will be deployed by a user to cover her home or small business.

As a result, cellular operators no longer have full control over their LTE deployments, and

struggle to understand the propagation and interference patterns affecting their service,

particularly in indoor settings. Open, cheap, and ubiquitous radio monitoring can help

deal with the challenging propagation patterns introduced by small cells. Second, the rise

of LTE-based M2M applications motivates a more open access to LTE signal-based ana-

lytics. For example, Walmart, Home Depot, or Disneyland may leverage LTE signals and

recent RF-based localization techniques to track how clients navigate their space and ob-
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tain business analytics. Also, oil and gas companies that deploy LTE-supported seismic

sensors [31] can leverage access to LTE radio propagation to better plan their sensor net-

work and debug connectivity problems. Third, the FCC plans to repurpose certain bands

(e.g., 3.5 GHz) for multi-tier spectrum sharing, including LTE small cell deployments [43].

Operating in a shared spectrum naturally fits with an open model for signal monitoring

and analysis, where all the entities sharing the spectrum can better understand the prob-

lems and cooperate to find solutions.

All of these reasons motivate a more open access to the cellular PHY layer, particularly

LTE. In this chapter, we ask the following question: Can we access the cellular PHY-layer

of today’s LTE deployments, without support from mobile operators? Specifically, can we

do this without requiring access to private user data or encrypted LTE channels? If such

a service exists, it could enable better deployment of femto cells and repeaters, more busi-

nesses built over LTE networks, better informed spectrum policies, more efficient sharing

of newly released bands, and an overall rise in transparency in an industry that is a major

part of the world economy.

We introduce LTEye, an open platform for monitoring and analyzing the LTE PHY

layer. LTEye is a passive sniffer that runs on off-the-shelf software radios (e.g. USRPs).

It does not require provider support, and hence can serve end users, researchers, policy

makers, or mobile broadband providers. LTEye extracts per-user analytics purely from the

LTE control channels that contain meta-deta on uplink and downlink transmissions, with-

out accessing private data or system parameters from encrypted data channels. Specifi-

cally, it tracks individual users based on their temporal PHY-layer IDs, without requiring

or exposing their private information. It then intelligently links these IDs across control

messages to generate transmission records for each user. Each record reports the transmis-

sion’s resource utilization, modulation and coding rate, and frame loss rate. LTEye also

records the wireless channel it perceives from base stations and mobile users within radio

range. These channels are used to accurately monitor the 3-dimensional physical location

of the users. LTEye maintains these records in a database called LTEyeDB. It processes the

records to generate two dimensions of fine-grained analytics: temporal analytics, to track

LTE performance over time, and spatial analytics, to characterize LTE service across spatial

locations.

We implemented LTEye on USRP software radios [41]. We deployed LTEye in four
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locations in our campus to compare the temporal performance of twomajor LTE providers:

AT&T and Verizon. Our results revealed several inefficiencies in these networks. First,

both providers deploy a Frequency Division Duplexing scheme, which uses independent

equally sized frequency bands for uplink and downlink traffic. However, LTEye reported

that for both providers, the average utilization of downlink resources (25.2% - AT&T, 58.2%

- Verizon) far exceeded that of uplink resources (0.6% - AT&T, 2.6% - Verizon). While it is

expected that the downlink is higher in demand, our results reveal that the LTE uplink is a

remarkable 20 to 40 times less utilized than the downlink. LTEye’s analytics can therefore

help policy makers encourage operators to adopt revised LTE standards that allow more

prudent allocation of resources to the uplink and downlink1, without relying on data from

providers themselves to make the case.

Second, LTEye localized certain spots in our campus, where Verizon cellphones suffer

poor link quality and often switch to 3G, despite reporting high signal power from the

LTE base station. To investigate this, we moved our LTEye sniffers to these spots and

found that they experienced high inter-cell interference (about 27 dB) from as many as five

different base stations. To make matters worse, many of these base stations used over-

lapping channel estimation pilots, significantly impacting the decodability of these trans-

missions. These results help end-users identify poor placement of femto cells that cause

such interference. Further, they benefit cellular providers themselves because they reveal

interference problems that end-users face in indoors, hitherto inaccessible to providers. In-

terestingly, some of these PHY-layer inefficiencies may be unknown even to the operators

as they are part of the PHY-layer implementations adopted by the base station vendors.2

LTEye also benefits researchers by providing deep insights into the PHY-layer proto-

cols deployed by cellular providers. While the LTE standard spells out much of the PHY

layer, the choice of rate adaptation algorithm is still left to individual operators. To gain

insights into this algorithm, we analyzed LTEyeDB records of an AT&T base station in our

locality. We found that even for static users with completely coherent channels and sta-

ble SNRs, the modulation and coding scheme changes significantly even between adjacent

transmissions. More interestingly, the average modulation and coding of frames sent to

a user changes, based not only on her wireless channels, but also on the network state as

1E.g. Asymmetric Carrier Aggregation [83] in LTE Advanced (3GPP Release 10) allows downlink resources
to exceed the uplink.

2We confirmed this privately with some base station vendors.
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a whole. Specifically, if the network is scarcely utilized, the base station transmits to the

user conservatively at low modulation on average, even if the wireless link is stable and

supports much higher modulation. In contrast, as network utilization increases, under

identical SNRs, the base station steadily increases its modulation to support more aggres-

sive data rates to the user. Such analytics on the performance and design choices of today’s

cellular operators help researchers design better LTE protocols.

LTEye enables businesses and network administrators to continuouslymonitor the spa-

tial locations of mobile users, and build a geographic heatmap of LTE coverage and perfor-

mance within their facility. However, accurately localizing mobile users purely based on

their LTE signals is a challenging task. This is because past work on accurate indoor local-

ization proposes two classes of solutions that are ill-suited to LTE networks: First, localiza-

tion using antenna arrays [188, 82] requires large bulky arrays, owing to the relatively low

frequencies of LTE signals. Second, recent localization techniques using synthetic aperture

radar (SAR) are less bulky, but are limited to signals transmitted and received by the same

node (e.g. radar [50] or RFID backscatter [179] systems) and therefore do not apply to LTE

signals. LTEye provides the best of both these solutions by extending SAR localization

techniques to operate over communication signals as opposed to backscatter or radar sig-

nals. It also introduces a novel technique to handle errors due to multipath by identifying

the shortest (or most direct) path.

Our evaluation of LTEye’s spatial analytics in large indoor environments reveals a me-

dian accuracy in 3D localization of mobile users of 61 cm in line-of-sight and 85 cm in

non-line-of-sight settings. Further, we visualize the LTE performance of the mobile users

across locations, helping building managers find optimal locations for relays or femtocells.

Contributions: This chapter presents the following contributions:

• We present LTEye, the first open platform to monitor and analyze per-user LTE PHY

performance at fine temporal and spatial granularity.

• LTEye employs a new technique to identify and track individual users at the LTE

PHY layer in a robust manner, without help from operators, and without requiring

or exposing private user information.

• LTEye develops an innovative technique for accurate localization of users based on

their LTE signals. This involves extending synthetic aperture radar (SAR) to oper-

ate over communication signals as opposed to backscatter and radar signals, and a
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Figure 6-1: Resource Grid. The Re-

source Grid is divided into multiple Re-

source Blocks.

Figure 6-2: Physical Channels. Physical

Channels are mapped to well defined Re-

source Elements in the Grid.

novel technique for identifying the shortest and most direct path in the presence of

multipath.

• LTEye’s evaluation on AT&T and Verizon LTE deployments reveal deep insights on

the inefficiencies, utilization patterns, and differences between these providers. LT-

Eye also provides heat maps to characterize LTE performance across indoor loca-

tions, without GPS support.

� 6.1 LTE Primer

In this section, we briefly introduce LTE concepts relevant to this chapter. LTE networks are

divided into multiple geographical regions called cells. Each cell contains a cellular base

station that serves multiple mobile users. We focus on Frequency Division Duplexing,

the mode of LTE most widely used by cellular operators. This LTE mode uses different

dedicated carrier frequency bands for uplink and downlink transmissions. Hence, each

base station uses a pair of frequency bands to communicate with users in its cell.

(a) Radio Resources. LTE’s uplink and downlink transmissions are based on OFDM.

While medium access and resource sharing is largely distributed in typical OFDM-based

systems such as Wi-Fi, LTE centralizes much of resource allocation at the base station.

Specifically, base stations divide radio resources into multiple frames over time, each con-

taining ten subframes, spanning 1 ms each. Resources in each sub-frame are divided both

along time and frequency as a 2-D time-frequency grid, as in Fig. 6-1. Each cell in the



132 CHAPTER 6. LTE RADIO ANALYTICS MADE EASY AND ACCESSIBLE

Downlink LTE Channels

Name Description

PBCH Physical Broadcast Channel: Carries general information
about the cell, like number of antennas on the base station
and total bandwidth.

PDCCH Physical Downlink Control Channel: Sends downlink control
messages, e.g. for resource allocation on uplink/downlink.

PDSCH Physical Downlink Shared Channel: Holds downlink data
meant for users in resource blocks indicated by the PDCCH.

PHICH Physical Hybrid-ARQ Channel: Contains positive or nega-
tive acknowledgments for uplink data.

Uplink LTE Channels

PUCCH Physical Uplink Control Channel: Holds control information
from users to base stations, e.g. ACKs, channel reports and
uplink scheduling requests.

PUSCH Physical Uplink Shared Channel: Mainly carries uplink data
in resource blocks indicated by the PDCCH.

Table 6-1: LTE Channels. Details the name and function of PHY-layer channels, as defined in LTE stan-

dards [6].

grid, called a resource element corresponds to one OFDM sub-carrier (15 KHz) over the

duration of one OFDM symbol (66.7 µs).

The key task of an LTE base station is to allot both uplink and downlink resources

between different users along both time and frequency. It allocates resources to users at

the granularity of resource blocks, each spanning 0.5 ms (i.e., half a sub-frame) by 180 kHz

(i.e., 12 sub-carriers). To combat frequency-selective fading, the assignment of resource

blocks to users both on the uplink and downlink is not fixed, but hops from transmission

to transmission.

(b) Physical Layer Channels. As LTE centralizes PHY-layer control, base stations need

to transmit both data and control information to the users. To this end, LTE partitions

network resources into well defined channels, each responsible for different types of in-

formation. These channels are mapped to well-known resource elements of the grid, as

shown in Fig. 6-2.

Broadly, LTE base stations use four main channels on the downlink: (1) A data channel

to send users their downlink data. (2) A control channel to allocate network resources. (3)

A broadcast channel for new users to learn system parameters. (4) A hybrid-ARQ channel

to send ACKs to the users. Similarly, the mobile users on the uplink are allocated data and

control channels to transmit their uplink data and control messages. Table 6-1 describes

these channels in greater detail.

We point out here that the downlink control channel bears rich information on the LTE
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PHY-layer. Specifically, it contains multiple downlink control information messages in which

the base station allocates resource blocks to specific users for every transmission on either

the uplink or downlink. In addition, the control information also specifies the modulation

and coding to be used in these blocks. Upon hearing a control message, a user accesses the

relevant data channel to send (receive) her uplink (downlink) transmission.

(c) PHYUser Identifier. The LTE PHY refers to eachmobile user using a temporary unique

ID called the Cell Radio Network Temporary Identifier (C-RNTI). The C-RNTI reveals no

private information about the user. It is local to the users’s serving cell, and is assigned

when she enters the cell via a higher-layer connection establishment procedure[7].

A user continues to have the same C-RNTI as long as she is in the same cell and is not

idle for more than the pre-configured tail timer value. The timer value is typically a few

seconds to tens of seconds (12 sec in the measurement result of [76]). Hence, the C-RNTI

assigned to a user may change quite often if it transmits sporadically.

� 6.2 LTEye

LTEye is an open platform to analyze LTE radio performance. Its design aims to satisfy the

following key attributes:

• Provider-Independent: LTEye does not require any information or support from mo-

bile providers. Thus, LTEye allows end-users, policy makers and third parties to

make a fair assessment and comparison of the service quality of different providers,

without relying on information furnished by the providers themselves.

• Off-the-Shelf: LTEye must be built on low-end off-the-shelf components, such as

standard laptops and software radios. This makes LTEye more accessible to end-

users and easy to be deployed in large numbers.

� 6.2.1 System Architecture

LTEye operates as a passive 2-antenna MIMO receiver. LTEye’s architecture is a pipeline

of two components: (1) the LTE Logger, and (2) the Data Analyzer. (see Fig. 6-13)

(a) LTE Logger: The LTE Logger sniffs on the LTE control channels to generate trans-

mission records. The logger begins by listening to the broadcast channel to gather system
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Field Description Format

Time Transmission Time 32-bit timestamp
C-RNTI PHY-layer ID 16-bit Sequence
UL/DL Uplink or Downlink 0/1
nrb Number of Resource Blocks 0 to NRB

alloc Bit-Map of Resource Blocks NRB bits
MCS Modulation and Coding Scheme 5 bits

isAcked Acknowledgment ±1 (ACK/NACK)
UE-channel Channel from user (if U/L) NscNrx Complex Floats
BS-channel Channel from Base Station NscNtxNrx Complex Floats
SNR, SINR SNR and SINR of Base Station Floating Point

Table 6-2: Fields of LTEyeDB. Where NRB : Number of resource blocks, Ntx: Number of

base-station antennas, Nrx: Number of sniffer antennas, Nsc: Number of OFDM sub-carriers.

parameters. It then sniffs the downlink control channel and performs LTE decoding, i.e.,

it demodulates the OFDM symbols, applies de-interleaving, de-scrambling and convolu-

tional decoding to extract the actual bits of the downlink control messages.

The logger reads each of these control messages to populate LTEyeDB, a database of

LTE information records tagged with their transmission time. Each transmission record

consists of several fields retrieved from the control messages, as listed in Table 6-2. Many

of these fields help characterize network performance and utilization, both for the user

over time, and for the network as a whole, if viewed in aggregate. In addition, notice two

important fields in the records: (1) Each record is indexed by the user’s C-RNTI (i.e. her

PHY-layer user ID), which are key to link multiple records belonging to the same user.

(2) Records maintain the uplink channels seen by the LTEye sniffer over time. In §6.4, we

show how these channels are essential to localize users.

(b) Data Analyzer: The data analyzer processes the records in LTEyeDB to extract fine-

grained analytics on both cellular base-stations and individual mobile users. It extracts

two types of analytics: temporal analytics which describe LTE PHYmetrics as functions of

time (e.g., the per-user resource allocation over time), and spatial analytics which describe

position-dependent RF metrics (e.g., the user location and the observed multipath effects).

Sections §6.3 and §6.4 discuss both types of analytics in detail.

� 6.3 Enabling Temporal LTE Analytics

In this section, we describe some of the challenges in obtaining temporal analytics, without

access to private user information or system parameters in encrypted data channels.
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Figure 6-3: Mapping C-RNTI.Mapping C-RNTI from old logs to the current log.

Uniquely Identifying Users: To extract per-user temporal analytics, LTEye needs to

uniquely identify each user (i.e mobile device) served by the base station. We do not know

the phone numbers of users, but can instead use the series of C-RNTIs (i.e. PHY-layer user

IDs) assigned to them. One option is to require LTEye to sniff the LTE channel continu-

ously for an extended time to catch each user at the time she joins the cell and capture

her C-RNTI assignment. Unfortunately this option has two limitations: First, the C-RNTI

assignment is often transmitted from higher layers in the encrypted downlink data chan-

nel [7]. Second, low-end off-the-shelf equipment is unlikely to be able to continuously

monitor and decode the LTE channel in real-time [15]. Instead, LTEye sniffers should be

able to periodically sniff the channel and obtain representative snapshots of the system.

Hence, we need LTEye to uniquely identify all users, including those who joined the cell

even when LTEye is not sniffing (i.e., LTEye did not hear their C-RNTI assignment).

To address this problem, we observe that a user’s C-RNTI is used to scramble her con-

trol information on the downlink control channel. Specifically, recall from §7.1 that the

control channel transmitted by the base station consists of multiple downlink control in-

formation messages, for different users. At the end of each message is a 16-bit sequence,

which is the XOR of the checksum of the control message with the user’s C-RNTI. Tra-

ditionally, a user de-scrambles this sequence by her C-RNTI to retrieve the checksum and

validate correctness of the control information. In contrast, LTEye performs the opposite op-

eration to retrieve the C-RNTI: It decodes each control message in the log including their

corresponding scrambled checksums. For each of these packets, LTEye reconstructs the

expected checksum and XORs them with the scrambled checksum to recover the C-RNTI.

Of course, it is important to verify if the control messages and C-RNTIs that are decoded

are actually correct. To do this, LTEye convolutionally re-encodes the retrieved control in-



136 CHAPTER 6. LTE RADIO ANALYTICS MADE EASY AND ACCESSIBLE

formation message and compares it against the original coded control message to obtain

the number of bit errors. It then discards control messages and C-RNTIs that report bit

errors beyond a few bits.3 Hence, our solution enables LTEye to map a C-RNTI to a user

even if it was assigned when LTEye is not sniffing the channel.

Tracking User IDs: LTEye’s second challenge is to map C-RNTIs between logs. Recall

from §7.1 that a user’s C-RNTI may be re-assigned if she is idle beyond a few seconds.

Further, the same C-RNTI can map to multiple users over time. Hence, while the C-RNTI

is a natural PHY-layer user ID, LTEye must recognize when a user’s C-RNTI changes to

find the list of C-RNTIs mapped to her.

LTEye addresses this challenge by formulating it as a matching problem. The goal of

this problem is to map C-RNTIs in the current (most recent) log produced by the LTE

logger with the C-RNTIs in prior logs as shown in the bi-partite graph in Fig. 6-3. In

addition, the graph has two additional nodes: EXIT and NEW, which account for C-RNTIs

in the old log that have “exit” the system, and C-RNTIs in the current log that are “new”

to the cell, respectively. The weights in this graph must capture the similarity between

the users associated with each pair of C-RNTIs. Specifically, we associate with each C-

RNTI #i an RF fingerprint fi that includes metrics such as the user’s location (extracted

by our localization method described in §6.4), its SNR and multi-path characteristics. We

can then assign a weight to each edge (i, j) in the graph by the similarity metric between

these fingerprints sim(fi, fj). In §6.4.3, we design effective RF fingerprints and similarity

metrics based on spatial analytics.

Given the graph and weights, we can now solve this matching problem using the stan-

dard Hungarian Algorithm[86].4 The resulting matching either maps a C-RNTI to a user

in a prior log, or identifies her as a new user.

Extracting System Parameters: LTEye needs to reverse-engineer several PHY parameters,

otherwise available to users via encrypted data channels. For e.g., the LTE standard al-

lows several possible formats for downlink control information, each spanning multiple

lengths [8]. Exhaustively searching for each of the possible format-length pairs in all down-

link control messages is highly expensive. Fortunately, operational LTE base stations use

only a small subset of these formats for all users (only three possible formats for AT&T and

3In our experiments, LTEye correctly retrieved 99.5% of C-RNTIs across locations.
4We modify the algorithm to allow multiple C-RNTIs to map to NEW/EXIT simply by replicating these

nodes. Edges at NEW/EXIT are weighted by a minimum threshold similarity.
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(a) Signal Direction Notation (b) Multipath (Layout)

(c) Multipath Profile

Figure 6-4: Spatial Analytics. (a) Definition of (φ, θ) in 3-D space. (b) Depicts an example layout of a

transmitter and receiver in two rooms separated by a wall. The signal has three main paths: Path 1 is the

strongest, and reflects from the ceiling through a window. Path 2 is the direct path penetrating a wall. Path

3 is the weakest reflecting at the farthest wall. The figure labels (φ, θ) for each path. (c) Simulated multipath

profile for (b) has peaks for each path at expected (φ, θ). The height of the peaks (in shades of red) corresponds

to the relative power of the corresponding paths.

Verizon). As a result, LTEye learns the possible list of formats and lengths using the first

few control messages to greatly reduce the search-space of formats for subsequent control

information.

� 6.4 Enabling Spatial LTE Analytics

The core of LTEye’s spatial analytics is the ability to localize an LTE source. To this end,

LTEye performs the following functions:

• Extracts the multipath profile of an LTE signal: First, LTEye extracts the multipath pro-

file of a signal, which measures the power received along each spatial angle, i.e.,
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along each signal path. Fig. 6-4(c) is an example multipath profile, where the signal

traverses three paths causing three local maxima in the graph.

• Identifies the direct path from the source: Once LTEye has the multipath profile, it is

natural to try to identify which path is in direct line of sight to the source (e.g., path

2 in Fig. 6-4(b)). Finding the direct path is an important step in localizing the source.

Note that in some cases the direct path may be completely blocked and absent from

the multipath profile. Our objective is to identify the direct path provided it exists in

the multipath profile.

• Localizes the source of the LTE signal: Once LTEye finds the direct path to the source,

it can localize the source to within a specific spatial direction. We can then deploy

multiple LTEye sniffers to locate the source at the intersection of the direct paths as

seen from these sniffers.

Past work on RF-based localization takes two approaches to build multipath profiles:

The first approach, shown for Wi-Fi, uses an antenna array to steer its beam spatially and

identify the power along each spatial direction [188]. However, LTE runs at much lower

frequencies than Wi-Fi (700 MHz as opposed to 2.4 GHz), and hence an LTE antenna array

will be 4 to 5 times more bulky than a comparable Wi-Fi array. The second approach uses

synthetic aperture radar (SAR) [179], which uses a single movable antenna to emulate a

virtual array of many antennas. As the antenna moves, it traces the locations of antenna

elements in a virtual array.

SAR has traditionally been used in radar and RFID localization as it assumes backscat-

ter signals where the transmitter and receiver are the same node and therefore have no

carrier frequency offset (CFO) relative to each other. Hence, changes in the channel as

the antenna moves are a function only of the antenna’s location. In contrast, LTE signals

are exchanged between an independent transmitter and receiver, with non-zero CFO. As

the antenna moves, the channel changes both due to CFO and antenna movement. One

option is to estimate and correct the CFO. Unfortunately this solution is fragile since any

residual error in CFO estimation accumulates over the duration of movement and causes

large localization errors. In the following section, we explain how we perform SAR over

LTE signals without CFO estimation to realize the three functions in the beginning of this

section.
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Figure 6-5: Prototype. Prototype of the rotating antenna on a LTEye sniffer.

� 6.4.1 SAR over LTE Signals Using Channel Ratios

LTEye operates as a 2-antenna MIMO receiver, with one static antenna and another mov-

able antenna. The movable antenna may be mounted on a rotating arm attached to the

device, which is the approach taken in our implementation (see Fig. 6-6(a)). The advan-

tage of this approach is that it provides the 3-D spatial direction (i.e. both the azimuthal

angle φ and polar angle θ) of the various signal paths as shown in Fig. 6-4(a). Alternatively,

the antenna may slide back and forth on an arm fixed to the body of the device.

LTEye uses its MIMO capability to perform SAR over communication signals, but with-

out frequency offset estimation. Our key idea is that instead of applying the SAR equations

to the wireless channel of the moving antenna [50], we apply SAR equations to the ratio

between the channel of the moving antenna to that of the static antenna. Taking the ratio

of the two channels eliminates any effect of frequency offset since both MIMO antennas

experience the same offset relative to the sender. However, since the ratio is between two

antennas, onemoving and the other static, it preserves how antenna displacement changes

the channel of themoving antenna. This allows SAR to safely retrieve themultipath profile

of the signal from the ratio, modulo frequency offsets.

Next, we mathematically show the validity of the above technique. Suppose that the

receiver, placed at the origin, wants to measure the power of the signal P (θ,φ) received

from an independent transmitter along a spatial direction specified by the polar angle θ

and azimuthal angle φ (see Fig. 6-4(a)). According to the SAR formulation, this quantity
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can be measured as: [45, 131]:

P (θ,φ) = |h(θ,φ)|2, where h(θ,φ) =
∑

t

af (t, θ, φ)h(t) (6.1)

Here, h(t) is the wireless channel to themoving antenna at time t, assuming zero frequency

offset between the transmitter and receiver. The quantity af (t, θ, φ) captures the relative

motion of the transmitter and receiver, and is independent of the wireless channels. For

e.g., if the antenna moves along a straight line (i.e., linear SAR) af (t, θ, φ) is defined as:

af (t, θ, φ) = e−j
2πf
c
x(t)cos(φ), where x(t) is the antenna location at time t, and f is the fre-

quency of the signal [179]. Similarly, if the antenna rotates with radius r (i.e., circular SAR)

af (t, θ, φ) = e−j
2πf
c
rcos(φ−φ0(t)), where φ0(t) is the angular position of the antenna at time t

(see Fig. 6-6(b)).

Past work on SAR require both transmitters and receivers to share a common reference

clock. For e.g., SAR devices on airplanes or satellites both transmit signals and receive

their reflections to image the topography of the ground[50]. Consequently, the measured

channel h̃(t) at the moving antenna is independent of frequency offset, i.e., h̃(t) = h(t).

Unfortunately, when performing SAR between independent transmitters and receivers,

the measured wireless channel h̃(t) varies both due to position and due to carrier and

sampling frequency offset between the transmitter and receiver, as well as any phase noise.

In particular, we denote:

h̃(t) = h(t)ejψ(t) (6.2)

Where ψ(t) denotes the phase accumulated due to any carrier frequency offset, sam-

pling frequency offset or phase noise between the reference clocks of the transmitter and

receiver until time t. Thus, the key challenge to measure the power of the signal along any

spatial direction, P (θ,φ), as in the SAR Eqn. 6.1, is to eliminate this accumulated phase.

To resolve this challenge, LTEye is built on receivers that have at least two antennas:

a static antenna, and a mobile antenna that moves along a known path. Let h̃1(t) and

h̃2(t) denote the measured wireless channels from a given transmit antenna to a mobile

and static antennas respectively (see Fig. 6-6(c)). As both antennas are connected to the

same reference clock, they both accumulate the same phase ψ(t) until time t. Hence, from
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Eqn. 6.2, we have:

h̃1(t) = h1(t)e
jψ(t), h̃2(t) = h2(t)e

jψ(t) (6.3)

where h2(t) ≈ h2 is relatively constant over a short duration since antenna-2 is static.

Hence, the ratio of the wireless channels is: h̃r(t) =
h̃1(t)

h̃2(t)
= 1

h2
h1(t) ; that is, the channel

ratio is a constant multiple of the moving antenna channel without the phase accumula-

tion from frequency offset or phase noise. Thus, we can perform SAR as in Eqn. 6.1 by

substituting the channel ratio h̃r(t) for the value of h(t). Hence, LTEye allows a wireless

receiver to perform SAR over LTE signals without frequency offset or phase noise estima-

tion.

Finally, we make a few important observations:

• The above approach readily extends to OFDM / OFDMA. Specifically, let h(θ,φ)

=
∑

f

∑

t af (t, θ, φ)hr,f (t)/hr,f (0) in Eqn. 6.1, where the quantity h̃r,f (t) on subcarrier

f of the OFDM signal is the ratio of the frequency (Fourier) Domain channels h̃1(t)

and h̃2(t) measured on that subcarrier.5

• Our solution is resilient to movement of the transmitter that can be neglected rela-

tive to the movement of the rotating antenna. LTEye’s rotation speed is chosen to

deal with typical dynamism in indoor settings, e.g. walking speeds. However, one

can easily detect and exclude fast moving transmitters by checking if the channel of

the static antenna h̃2(t) is coherent over a rotation of the moving antenna, using the

coherence metric in §6.6.3.
• While this chapter applies our solution to LTE, our technique can be extended to

apply to Wi-Fi and other such technologies.

� 6.4.2 Identifying the Direct Signal Path

In this section, we describe how LTEye separates the direct path from the reflected paths in

a multipath profile reported by SAR so as to localize the transmitter. Intuitively, the direct

path is the shortest path among all paths traversed by the signal (even if the direct path

is completely blocked, the shortest path is the path closest to the direct path). Thus, one

5Note that this is robust to frequency hopping by LTE users.
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(a) Circular SAR (b) Channel Notation

Figure 6-6: SAR. (a) Circular Synthetic Aperture Radar (b) Depicts h̃1(t) and h̃2(t), the measured wireless

channels from a transmit antenna to the mobile and static antennas respectively

may identify the direct path (or the path closest to the direct path) by measuring the delay

difference between the various paths in the multipath profile of the signal.

Directly measuring time delays (e.g. by correlating with known pilot signals), how-

ever is not sufficiently accurate. Specifically, LTE receivers have a channel bandwidth of

10 MHz. However, electromagnetic waves travel at the speed of light. Hence an error

of even one time sample for a 10 MHz sampling rate (i.e., each time sample spans 0.1µs)

translates to an error in path lengths of 30 m.

Belowwe explain howLTEye canmeasure sub-sample delay differences between the signal

paths. The key idea is to exploit that delay in time translates into phase rotation in the

frequency domain. Since LTE signals use OFDM, a time delay of the signal translates

into phase rotation in the OFDM subcarriers. Yet, different OFDM subcarrier rotate at

different speeds – i.e., higher OFDM frequencies rotate faster than lower frequencies. In

fact, the phase rotation of a particular OFDM subcarrier fi as a result of a delay τ is ψi =

2πfiτ . Thus, for each subcarrier, the difference in delay between two paths, p and q, for a

particular subcarrier is:

τ =
ψp,i −ψq,i

2πfi
(6.4)

One may also average across subcarriers to improve robustness to noise. Multiple sub-

carriers can also resolve ambiguity if |ψp,i−ψq,i|> 2π by correcting discontinuities in ψp,i−
ψq,i across frequencies. Thus, to identify the shortest path in a multipath profile, LTEye

does the following:
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• First, it computes the phase of the channel for each subcarrier for each path sep-

arately. This can be done using the fact that the SAR formulation defines h(θ,φ),

which provides not just the power, but also the phase of the channel component

along each spatial direction (see Eqn. 6.1). Hence, we can simply measure the phase

of this path as ψ = arg[h(θ,φ)], for each OFDM subcarrier.

• Second, it computes the delay difference between each pair of paths using the

Eqn. 6.4 above. It then identifies the shortest path as the one with least delay.

Once the direct path is found, the source is localized along this path. Complete localiza-

tion can be performed using multiple LTEye receivers and intersecting their direct paths.

If the direct paths do not intersect, the best estimate is the point minimizing total distance

(or equivalently, delay) to all LTEye receivers. This point can be found using a simple

geometric optimization omitted for brevity.

Next, we show how themultipath profile reported by SAR allows us to compute unique

RF fingerprints for the users.

� 6.4.3 Measuring RF Fingerprints with Multipath Profiles

As described in §6.3, LTEye tracks the different C-RNTIs (PHY-layer user IDs) assigned to

mobile users between logs. To this end, LTEye employs RF fingerprints [189, 179] to map

C-RNTIs between logs. LTEye defines a user’s fingerprint as the set of observedmultipath

profiles at each LTEye sniffer (See §7.3). The key advantage of this fingerprint is that it cap-

tures the user’s location, multipath, and SNR, as perceived from LTEye sniffers. To mea-

sure similarity of two fingerprints, we employ dynamic time warping (DTW[144]), a tech-

nique that has recently been applied to capture similarity of two multipath profiles[179].

Given any two multipath profiles, DTW returns a cost function that varies inversely with

their similarity. Hence, LTEye defines the similarity metric between two RF fingerprints as

the inverse of the total DTW cost function[179] between each pair of profiles in the finger-

prints.

One might wonder if LTEye’s fingerprint matching algorithm scales, given that a cell

may serve a large number of users. Fortunately, while LTE cells can serve hundreds of

users, we observed that only a small fraction of these users (about 4%) are re-assigned C-

RNTIs between two logs.6 Further, while capturing C-RNTI reassignments is essential to

6This is on average 1-2 users for AT&T and 3-4 users for Verizon.
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track individual users over time, it does not alter aggregate radio analytics in a statistically

significant way, given that 96% of users in a cell retain their C-RNTI between logs.

� 6.5 Implementation

We implemented LTEye on USRP N210 software radios[41] and WBX daughter-boards.

The USRPs receive in the 700MHz frequency range at a bandwidth of 10 MHz on up-

link and downlink channels corresponding to either AT&T (734-744MHz) or Verizon (746-

756MHz). We implement an OFDMA receiver for LTE signals that interfaces directly with

the USRP Hardware driver (UHD).

To obtain temporal analytics, we decode the downlink control channel in a pipeline

of two modules: The first module in C++ performs synchronization, channel estimation

and QPSK demodulation. It logs the demodulated soft bits received over one second into

a file, and repeats this process every three seconds. The second module in MEX (C++)

and Matlab reads the file and performs descrambling, de-interleaving and convolutional

decoding. It validates the downlink control informationmessages by only admitting those

passing the convolutional decoder with very high confidence, as described in §6.3. It then
processes the control messages to get per-user LTEyeDB records for uplink and downlink

traffic, as in §6.2.1.
To obtain spatial analytics, we build prototype LTEye sniffers, each containing two US-

RPs connected to an external clock. We mount the antenna of one of the USRPs on a light-

weight rotating arm fabricated by a 3D printer, with an adjustable radius of 15-30 inches,

as shown in Fig. 6-6. The arm is driven by an off-the-shelf stepper motor rotate at 30-120

rotations per minute.7 We use an Arduino UNO board to rotate the stepper motor accu-

rately at a constant speed and provide real-time feedback on the position of the rotating

antenna. We implement a C++ module to use these positions and channel measurements,

as in §6.4, to localize the users.

We evaluate LTEye’s spatial analytics using five LTEye sniffers in multiple indoor

testbeds, in both line-of-sight and non-line-of-sight settings. We employ ten Samsung

Galaxy Note LTE smart phones as users. Unless specified otherwise, each user commu-

nicates over LTE with a mix of varying traffic patterns including browsing activity, file

7We plan to support higher torque in future iterations of the device.
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transfer, Skype calls, and video streaming.

� 6.6 Results on Radio Analytics

In this section, we perform an extensive evaluation of LTEye’s temporal and spatial ana-

lytics:

• We compare temporal analytics of two LTE providers and highlight their PHY-layer

inefficiencies in §6.6.1 and §6.6.2.
• We provide insights on the LTE rate adaptation algorithm in §6.6.3.
• We apply LTEye’s spatial analytics to two applications: detecting cheaters in an exam

hall in §6.6.4 and visualizing a spatial heatmap of LTE performance in §6.6.5.
• We perform micro-benchmarks to evaluate the accuracy of LTEye’s localization and

RF fingerprints in §6.6.6 and §6.6.7.

� 6.6.1 Comparing Temporal Analytics of Providers

End-users can deploy LTEye sniffers to compare the providers in their locality in terms of

usage patterns, quality of service and congestion. In this experiment, we compare aggre-

gate temporal analytics of two providers in our campus: AT&T and Verizon.

Setup. We place LTEye sniffer in four locations in the MIT campus, each listening to

the AT&T and Verizon base stations that serve that location. We populate LTEyeDB over

the duration of a representative weekday from 9:00am to 9:00pm. To reduce processing

overhead, LTEye’s logger collects traces for a duration of one second, every three seconds.

It validates these traces by only accepting control information with low bit error rate as

reported by the convolutional decoder. We then measure the following metrics for each

one-second trace: (1) Number of Active Users; (2) Mean Utilization of the Uplink and

Downlink; (3) Mean Link Quality measured as the number of bits per resource element

(bits/RE) in the uplink and downlink. We average each of these quantities over oneminute

intervals and plot them over time of day at a representative location (Fig. 9-14). We also

estimate the mean value of these metrics across locations over one week to infer aggregate

trends (Table 6-3).

Number of Active Users. Fig. 9-14(a) measures the number of active mobile users in a
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Figure 6-7: Temporal Analytics. The plots show the following metrics for AT&T (above) and Verizon (below),

measured every minute over a typical working day from a representative base station: (a) Number of Active

Users per second; (b) Percentage of Utilized Resource Elements on the Uplink (red) and Downlink (blue); (c)

Mean Number of Bits per Resource Element on the Uplink (red) and Downlink (blue).

representative AT&T and Verizon cell over different times of the day. We observe that for

both providers, the number of users in themorning increases steadily, and peaks at around

12:00 pm, after which the number begins to decrease. The increase in activity at around

noon may be attributed to a greater number of subscribers who access LTE outdoors as

they leave for lunch. Across locations, we observe that Verizon has a greater number of

active users on average at 87.7, while AT&T has 23.4 active users through the day (see

Table 6-3).

Network Utilization. Fig. 9-14(b) plots the utilization of a representative AT&T and Veri-

zon cell, over different times of the day. Specifically, wemeasure the percentage of resource
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Metric
AT&T Verizon

Mean Std-dev Mean Std-dev
Number of Users 23.37 7.90 87.66 44.75

% Downlink Utilization 25.20 17.35 58.18 20.58
% Uplink Utilization 0.59 0.47 2.60 1.06

Downlink MCS (bits/RE) 4.56 0.26 5.23 0.30
Uplink MCS (bits/RE) 3.25 0.22 3.61 0.18

Table 6-3: Aggregate Statistics. Tabulates mean and standard deviation of statistics over four locations for

AT&T and Verizon.

elements used by uplink and downlink traffic. Two trends emerge: First, both providers

often achieve high downlink utilization (over 80%) through the day. AT&T achieves such

high utilization sporadically through the day (for 2% of the day), while Verizon is heavily

utilized for a more significant fraction of the day (for 18% of the day). Second, the utiliza-

tion of the uplink is significantly lower than the utilization of the downlink, both for AT&T

and Verizon.

Specifically, the mean downlink utilization (25.2% - AT&T, 58.2% - Verizon), far exceeds

uplink utilization (0.6% - AT&T, 2.6% - Verizon) even when averaged across locations.

While it is expected that the downlink is higher in demand, our results reveal that the LTE

uplink is an unprecedented 20 to 40 times less utilized than the downlink. This exposes

the practical limits of Frequency Division Duplexing mode of the LTE standard used by

both AT&T and Verizon, which provides independent equally sized uplink and downlink

frequency bands. Hence, our results can help policy makers encourage operators to adopt

revised LTE Advanced standards that permit unequal allocation of resources to the uplink

and downlink (e.g., via asymmetric carrier aggregation[83]) without relying on data from

providers themselves to make the case.

Link Quality. Fig. 9-14(c) measures the average quality of channels in the network for a

representative AT&T And Verizon cell measured over different times of the day. In par-

ticular, we measure the mean number of bits transmitted per resource element (bits/RE),

capturing the modulation and coding scheme (MCS) on the uplink and downlink. Our

results show that the mean quality on the downlink (5.2 - Verizon, 4.6 - AT&T) exceeds

that of the uplink (3.6 - Verizon, 3.3 - AT&T). As mentioned earlier, this is because users

are limited in transmit power and number of MIMO antennas, when compared to the base

station. Further, the mean link quality of Verizon is marginally higher when compared to

AT&T.
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Figure 6-8: PHY-Layer Inefficiencies. (a) Measures the utilization of the control channel for AT&T and Ver-

izon, across different number of symbols allotted to the control channel. (b) Plots the percentage of data

allotted to different downlink resource blocks for AT&T and Verizon. (c) CDF of measured Signal-to-Noise

Ratio (SNR) and Signal to Interference Plus Noise Ratio (SINR) at spots of high inter-cell interference.

� 6.6.2 Identifying PHY-Layer Problems and Inefficiency

Cellular Providers and independent researchers can use LTEye to diagnose problems and

inefficiencies at the LTE-PHY layer. In this experiment, we identify such deficiencies by

analyzing the LTEyeDB database populated for both AT&T and Verizon. In particular, we

consider the traces gathered over four locations in our campus served by different base

stations over one week, as explained in §6.6.1. Interestingly, many of these PHY-layer

inefficiencies may be unknown even to the operators as they are part of the PHY-layer

implementations adopted by the base station vendors.8

Unnecessary Control Overhead. As explained in §7.1, the LTE resource grid on the down-

link is divided into three main PHY-layer channels: the broadcast channel, the control

channel and the data channel. The control channel occupies the first 1-3 symbols of each

LTE sub-frame resulting in a control overhead ranging from 7% to 21% of all downlink

resources. Ideally, an LTE base station should adapt the number of control symbols used

in each sub-frame depending on the amount of control traffic that is required to be sent.

In practice, we discovered that the control overhead of AT&T base-stations was 10%,

8We confirmed this privately with some base station vendors.
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Figure 6-9: Insights into Rate Adaptation. (a) Trace of Downlink MCS for a user over time; (b) Channel

Coherence metric of a USRP placed at the user’s location over time; (c) Mean downlink MCS (bits/resource

element) across demand, with and without another high-demand user.

while that of Verizon base-stations was 21%. This is because, unlike AT&T, Verizon al-

ways uses three control symbols in each sub-frame, regardless of the amount of control

traffic they contain. One might wonder if this is because Verizon’s control channels are

significantly more utilized, warranting the additional overhead. Fig. 6-8(a) plots the con-

trol overhead of both AT&T and Verizon, as well as howmuch of this overhead is utilized.

Clearly, the overhead of Verizon is significantly larger, despite having only a marginally

higher control traffic (7.5%) than AT&T (6.1%). As a result, we estimate that Verizon can

gain as much as 10% of additional downlink resources for data, just by adapting its control

overhead to control-traffic demand.

Inefficient Resource Allocation. In this experiment, we analyze the downlink resource al-

location mechanism of LTE base-stations during periods of high network utilization (over

80%). Fig. 6-8(b) plots the percentage of downlink data transmitted in each resource block

across users, measured for both AT&T and Verizon. For AT&T, the graph remains flat

across resource blocks, indicating that on average, a user is equally likely to get any of

the downlink resource blocks. For Verizon however, we observe a peculiar dip around

resource blocks 22-27. To investigate this, we noticed that Verizon avoids these resource

blocks completely on subframes 0 and 5. This is because a few symbols in these resource
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blocks are dedicated for the broadcast channel. As a result, Verizon avoids allocating these

resource blocks completely, leading the remaining symbols in these resource blocks to lie

completely unused, even during peak hours of demand.

(a) Classroom Testbed (b) NLOS Testbed & Heatmap

Figure 6-10: Spatial Analytics Testbed. (a),(b): Depicts our two testbeds a large exam hall and a floor of

a large building. LTEye sniffers are denoted as blue squares and candidate phone locations as red circles.

Further, the red circles in (b) are colored in shades of red, based on observed link quality from the base station;

Inter-Cell Interference. One of the key benefits of LTEye is to provide insight into why

users obtain poor performance. During the course of our experiments, LTEye localized

users at certain spots that achieved poor link quality on the downlink (the lowest QPSK

rate), but high quality on the uplink. To investigate this, we moved our LTEye sniffers

and testbed mobile phones to these locations. Surprisingly, our phones at these spots re-

ported very high RSSI9 from the base station, yet often switched to 3G. We then used

our LTEye sniffers at these spots to measure the signal-to-noise ratio (SNR) as well as the

signal-to-interference plus noise ratio (SINR) on the downlink. Fig. 6-8(c) reports the CDF

of these quantities across these locations. The figure demonstrates that these locations suf-

fer from significant interference, with a mean SINR of 1.3 dB and a minimum of -1.2 dB,

despite a high mean SNR of 29 dB. We realized the source of about 27 dB of interference

is from neighboring Verizon base stations sharing same downlink spectrum. Specifically,

our sniffer could sense as many as five distinct base station cell IDs at a single location.

This is problematic as it affects pilot reference signals (known as cell-specific reference sig-

nals) that are critical for channel estimation. Base stations transmit these pilots in one of

9The phone reported a receive signal strength (RSSI) of around -85 to -95 dBm, where the noise floor is at
-120 dBm.
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three different subsets of resource elements depending on their cell ID.10 Given that five

base stations are observed at a given location, some of these pilots will inevitably collide,

significantly impacting the decodability of signals from those base-stations. Hence, these

observations emphasize the need for effective placement and power control of base sta-

tions and small cells. They further highlight the importance of careful assignment of cell

IDs to neighboring cells, to avoid interference between their pilots.
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Figure 6-11: Spatial Analytics. (a),(b): CDF of the error in 3D localization on each dimension in line-of-sight

and non-line-of-sight scenarios respectively; (c),(d): Plots the measured SINR using USRPs and observed link

quality from the downlink control channel across phone locations.

� 6.6.3 Insights into LTE Rate Adaptation

While the LTE standard describes much of the PHY-layer protocol and procedures, the rate

adaptation algorithm is still left to the choice of individual operators. In this section, we

show how LTEye can shed light on some interesting aspects of this algorithm for an AT&T

base-station in our locality.

10For 2-antenna base stations, reference signals on both antennas occupy one of three subsets of REs, based
on cell ID modulo 3 [6].
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We consider a single user device that downloads a random bitfile over a 1 Mbps TCP

link from a server (we control TCP rate by throttling the bandwidth at the server using

tc[3]). We conduct our experiment during periods of low network utilization, where the

mobile device in our testbed is the sole active user of the network. The user device is

placed at a static high SNR location, which should support the highest modulation and

coding on the downlink.

Fig. 6-9(a) plots the user’s modulation and coding scheme for one second on the down-

link. Surprisingly, the graphs indicate that the rate adaptation algorithm hops over a wide

range of modulation, during the experiment. One possible explanation is that the base sta-

tion is responding to loss of downlink packets. However, the control channel indicated no

packet loss on the downlink over the entire experiment. A second explanation is that the

wireless channel is not actually coherent over the duration of one second, even though the

phone is static. To investigate this, we place a USRP at the user’s location and estimate a

channel coherence metric11 capturing the base station’s SNR over two seconds, assuming

the channel was estimated only once at time 0 (see Fig. 6-9(b)). We observe that the chan-

nel is indeed coherent throughout the experiment. Hence, the rate adaptation algorithm is

fairly complex, involving aggressive modulation exploration.

Next, we repeat the above experiment for different downlink demands (i.e. TCP

throughput) under identical SNR, and plot the mean downlink modulation (in bits per

resource element) as shown by the blue line in Fig. 6-9(c). Interestingly, as the downlink

demand increases, the observed modulation also increases as well. In other words, the

base station avoids transmitting packets to the user at high modulation (i.e. avoids risking

higher loss probability), unless it is forced to, since the user demands high throughput.

Finally, we repeat the above experiment, this time adding a second user device (User-2)

to the network, while first user (User-1) downloads a file at different TCP throughputs,

as before. We allow User-2 to download a large bitfile containing random strings via six

simultaneous TCP connections so as to saturate the LTE downlink demand. Interestingly,

we now observe that packets to User-1 are sent at higher modulation, across demands (see

the red line in Fig. 6-9(c)). To understand why this is the case, note that by sending data to

User-1 at higher modulation, the base station consumes less downlink resources per bit for

11Given an initial channel h(0) and current CFO-adjusted channel h(t), channel coherence metric is
10 log10 |h(t)|2/|h(t)− h(0)|2
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User-1’s data. This relieves more network resources that the base station can now assign to

User-2 to serve its high demand. Therefore, base stations transmit packets at conservative

modulation, only when this does not impact overall network throughput.
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Figure 6-12: Accuracy of θ and φ. Plots CDF of error in measured spatial angles in line-of-sight (LOS) and

non-line-of-sight (NLOS).

� 6.6.4 Detecting Cheaters in a Large Exam Hall

LTEye can enable new applications customized to the need of a particular community of

users. For example, many modern exams follow an open book/material policy and allow

students access to computers during the exams. However, students are asked to abstain

from using the Internet to chat and collude online. Enforcing this policy over Wi-Fi is

relatively easy by monitoring the Wi-Fi channels, turning the access point off, or even

jamming the signal. However cheaters can still use their cellular service to chat with an

accomplice. In this experiment, we demonstrate how LTEye’s spatial analytics can help

localize such cheaters in a large exam hall that accommodates up to 300 students.

Setup. We consider a large 24m × 17m exam hall as shown in Fig. 6-10(a) that seats up to

300 students. The exam hall has multiple chairs on a platform that slopes upwards from

the podium. We place two LTEye sniffers on ledges close to the walls, as shown by the
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blue squares in the figure. The sniffers localize the 3-D location of ten LTE cellphones, cor-

responding to ten active cheaters accessing the Internet, placed among twenty randomly

chosen locations (the red circles in the figure).

Results. Fig. 6-11(a) plots a CDF of the error in each dimension of the estimated 3D-

location of each cellphone. We observe a mean error in localization of 34 cm along each

dimension and 61 cm in 3D displacement between the measured and actual location. Note

that our errors are in 3-D space unlike past work [188, 179] and the experiments were

performed in a large 24m × 17m area. LTEye identified the cheater’s seat among the 300

seats in the room with 95% accuracy. Note that a random guess has an accuracy of just

1/300. Even when LTEye makes an error, it reports a seat adjacent to the cheater, which

is sufficient to visually identify the cheater in most proctored situations. Note that the

cellphones are predominantly in line-of-sight to the LTEye sniffers, due to the nature of

the exam hall. In §6.6.5, we estimate the error in localization for non-line-of-sight scenarios

as well.

� 6.6.5 Visualizing LTE Performance over Space

As end-users, we have limited visibility into how LTE performance varies in different parts

of our home or work place. In this experiment, we address this issue by synergizing LT-

Eye’s temporal and spatial analytics to visualize the performance of a cellular provider

across spatial locations.

Setup. We deploy five LTEye sniffers on a 60m×34m floor of a large building, denoted by

the blue squares in Fig. 6-10(b). We place ten phones in each of thirty randomly chosen lo-

cations shown as red circles in the figure. Note that several phones are in non-line-of-sight

relative to all LTEye sniffers. We emphasize that for each client device, 3D-localization is

performed using the spatial angles from at most three LTEye sniffers. The localization error

can be further improved by incorporating spatial angles from additional LTEye sniffers.

Results. Fig. 6-11(b) plots the CDF of localization error along each of the three dimensions

for phones that are in non-line-of-sight relative to all LTEye sniffers. Our results show a

mean error in localization of 43.7 cm along each dimension and 84.6 cm in net 3-D dis-

placement. Our algorithm to identify the direct line-of-sight path from §6.4.2 is crucial

to localize phones in non-line-of-sight. Of course, the algorithm hinges on the fact that



SECTION 6.6. RESULTS ON RADIO ANALYTICS 155

the line of sight path is, at the very least, observable in the multipath profile produced by

SAR (See §7.3), even if it is not the most dominant path. Our experiments revealed that

the line-of-sight path was always observed in the multipath profile of every phone in our

large indoor testbed, including those furthest away from each LTEye sniffer in Fig. 6-10(b).

Of course, while this may not generalize to every environment, our observations show the

benefits of better penetration of signals in the 700 MHz frequency range throughwalls and

obstacles, compared to Wi-Fi signals at 2.4 GHz or 5 GHz, and the higher transmit power

of LTE devices in general.

Fig. 6-11(c) measures the mean and variance of Signal to Interference plus Noise Ratio

(SINR) observed by a USRP placed in each of the thirty phone locations. The locations are

sorted by mean SINR for ease of visualization. Fig. 6-11(d) plots the mean and variance

of link quality for each phone (as bits per resource element) at the same locations, mea-

sured from LTEyeDB based on the downlink control channels. We observe that the link

quality and SNR follow similar trends, showing that LTEye can effectively characterize

the performance of the LTE network across spatial locations.

Fig. 6-10(b) visualizes the spatial distribution of link quality across phone locations,

denoting positions of high quality as circles with darker shades of red, and low quality

with lighter shades of red. The figure indicates that the link quality is strongest at locations

to the bottom right, and weakest along locations to the top left. In fact, we found that

placing an LTE relay at the top-left part of the floor significantly improves LTE service

across the floor.

� 6.6.6 Measuring Accuracy of Observed Spatial Angles

In this experiment, we measure the accuracy of the polar angle θ and azimuthal angle φ,

that are key primitives to LTEye’s localization algorithm in §6.4, across spatial locations.

Setup. We consider an LTEye sniffer placed in one of five possible locations (denoted by

blue squares) in a floor of a large building, as in Fig. 6-10(b). The LTEye sniffers are elevated

on ledges close to the walls.12 We place ten phones in several randomly chosen locations

in both line-of-sight and non-line-of-sight, spanning the full range of spatial angles. We

find the ground truth of the spatial angles by noting the actual 3D positions of the phones

12LTEye cannot tell apart up from down as the rotating antenna path is symmetric. Placing sniffers on
ledges removes this ambiguity.
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and the sniffer on a scaled high-resolution building floorplan.

Results. Fig.6-12(a)-(d) plot the CDF of error in θ and φ in line-of-sight (LOS) and non-

line of sight (NLOS) locations. The figures show a low median error in both φ (LOS: 6.9◦,

NLOS: 7.8◦) and θ (LOS: 7.2◦, NLOS: 9.9◦) across locations. Note that the accuracy can be

further improved with multiple LTEye sniffers, particularly, in cases where the deviation

in angles is large. Note that our algorithm to find the path of minimum delay was crucial

for the accuracy of spatial angles in non-line-of-sight.

� 6.6.7 Tracking C-RNTIs using RF Fingerprints

In this section, we evaluate LTEye’s RF fingerprinting to map C-RNTIs assigned to the

same phone. We consider the setup in §6.6.6 above and populate LTEyeDB across sev-

eral experiments spanning ten minutes each. We track the correct C-RNTI mapping by

constantly listening on the uplink from multiple USRPs placed close to each phone to rec-

ognize the high power signals that are sent during connection establishment. We also

measure the inferred C-RNTI mapping from RF-fingerprints (See §6.3 and §6.4.3).

Results. Wemeasure two quantities: (1) Precision: The percentage of new C-RNTIs which

were correctly mapped to old C-RNTIs. (2) Recall: The percentage of correctly retrieved

C-RNTIs-mappings among all actual C-RNTI mappings. Our algorithm achieves a high

mean precision of 98.4± 1.3% and mean recall of 96.7± 1.4%, demonstrating the effective-

ness of LTEye’s C-RNTI matching algorithm. Note that we leveraged RF fingerprints to

track C-RNTIs of users in §6.6.4 and §6.6.5 above.

� 6.7 Related Work

(a) LTE Sniffing Equipment: Devices such as Wavejudge, ThinkRF and IntelliJudge [145,

169] are wireless protocol sniffers to capture RF signals. They are mainly tools for wire-

less development and interoperability testing that provide visibility into the interaction

between the PHY and protocol layers. Unlike LTEye, these devices need inputs from the

cellular provider and do not perform localization or provide spatial analytics.

(b) Open LTE Implementations: There have been efforts in developing open source im-

plementations of LTE protocols, notably OpenAirInterface [42], and OSLD [51]. These

initiatives enable running LTE base stations on software radios; they do not extract spatial



SECTION 6.7. RELATED WORK 157

or temporal analytics.

(c) LTEMeasurement Studies: Many recent LTE studies have been conducted using traces

collected on participating smartphones or from inside LTE networks. Findings from these

studies include: (1) The available bandwidth of LTE networks is highly variable and TCP

is not able to fully utilize the bandwidth [77]; (2) LTE is significantly less power efficient

than Wi-Fi [76]; (3) LTE latency is more consistent (less variable) than Wi-Fi [157]. Such

studies focus on the higher layers of the stack, e.g., TCP throughput, transfer delay, and

power usage. In contrast, LTEye focuses on the LTE radio layer; it provides fine-grained

temporal and spatial information and does not require traces from the provider.

(d) Cellular Location-Specific RF Measurements: Cellular operators need location-

specific RF measurements to troubleshoot performance problems and plan future deploy-

ments. They typically obtain coarse location information by mapping a user to her serving

cell. Operators then rely on drive tests to refine the spatial measurements. Drive tests

are costly and constitute a big part of the network operating expenditure [78]. Further,

they are increasingly inadequate as operators move toward femto cells, and need indoor

coverage data. To reduce the cost and improve the spatial measurements, recent LTE re-

leases propose mechanisms known as MDT [5]. MDT techniques localize a mobile phone

either using in-network time measurement or by collecting location information using the

phone’s GPS. It is well-known however that in-network localization in cellular networks is

not accurate (at hundreds of meters [109]) as time-delay measurements are only available

for the serving cell of a mobile user. Even the E911 service using positioning reference sig-

nals can only guarantee 150m accuracy 95% of the time [94]. GPS measurements cannot be

invoked often as they drain the user’s battery. They also cannot capture indoor location.

(e) RF-based Localization Techniques: Our work is related to past work on RF-based lo-

calization. This problem has received much recent interest resulting in highly accurate

systems. ArrayTrack [188] and PinPoint [82] are an antenna-array based indoor location

systems that tracks wireless clients at fine granularity. Chen et. al.[74] build antenna ar-

rays using software radios synchronized with a reference signal. PinIt [179] is an RFID

localization system that combines SAR with a deployment of reference RFIDs to achieve

highly accurate localization.

Our design builds on this past work but differs in that it introduces two innovative
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Figure 6-13: LTEye’s Architecture: Contains the LTE Logger and Data Analyzer.

localization techniques. First, we extend SAR to operate over communication signals ex-

changed between a transmitter and a receiver. This contrasts with the current approach for

SAR, which is limited to backscatter and radar signals, where the transmitter and receiver

are a single node with no Carrier Frequency Offset (CFO) or Sampling Frequency offset

(SFO). Second, we introduce a new technique that when combined with SAR or standard

antenna arrays, estimates the delay difference between the various paths traversed by the

signal to identify the shortest path. In particular, we measure these delays in time based

on phase offsets in the frequency domain. Hence, LTEye can resolve differences in delay

below one time sample, unlike past work that estimates these delays via correlation in

time [82].

� 6.8 Discussion

We presented LTEye, the first open platform to provide fine-grained temporal and spatial

analytics on LTE radio performance, without private user information or provider support.

LTEye employs a novel extension of synthetic aperture radar to communication signals to

accurately localize mobile users, despite the presence of multipath. We empirically eval-

uate LTEye on software radios and provide deep insights on the LTE PHY and highlight

shortcomings such as inter-cell interference and inefficient spectrum utilization.



CHAPTER 7

Accurate Wi-Fi Indoor Positioning

with Zero Startup Cost

Recent years have witnessed a major interest in developing accurate RF-based localiza-

tion systems that enable users to navigate indoor spaces much like what GPS provides for

outdoor environments [142, 107, 188]. Many advances have beenmade, leading to localiza-

tion solutions that deliver an accuracy of tens of centimeters [188, 82, 179]. Unfortunately,

none of these solutions have actually reached today’s users. This is because past work

that provides accurate RF-localization falls in one of two categories: 1) It either requires

the deployment of new infrastructure (specialized access points [82], antenna arrays [188],

acoustic beacons [107], etc.), or, 2) it needs exhaustive fingerprinting of the environment

to learn the spatial distribution of signal strength, either in a training phase [168, 104] or

via crowdsourcing [142, 28] to achieve meter accuracy at best. Ideally, we would like to

achieve tens of centimeters accuracy for RF localization of mobile devices, without any

fingerprinting or specialized infrastructure.

In principle, if mobile devices can be outfitted with a large antenna array [188, 82], they

could accurately identify the spatial direction of incoming RF signals. Thus, they could

localize themselves relative to the locations of neighboring Wi-Fi access points without re-

quiring fingerprinting or modified infrastructure. In fact, public databases of access point

locations are already available for a large number of buildings [184]. Of course, it is in-

feasible to mount a large antenna array on a small low-power handheld device. But what

159
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Figure 7-1: Twisting the Mobile Device. The user twists the device about its vertical (z) axis, as shown in

the figure on the left. The red circles indicate antenna locations. On the right, we depict the top view of a

candidate device trajectory as measured by a Vicon motion capture system.

if today’s mobile devices could somehow emulate the localization capability of a large

antenna array?

We present Ubicarse an indoor geo-location system that enables mobile devices to in-

deed emulate a large antenna array. At first, it might seem that one can use Synthetic

Aperture Radar (SAR) to mimic an antenna array on a handheld device. Unfortunately,

SAR in its existing form is unsuitable for handheld devices. To understand why this is the

case, note that a moving antenna performs SAR by collecting signal snapshots as it moves

along its trajectory, and jointly processing these snapshots to emulate a large antenna array

traced out by that trajectory. Therefore for SAR tomimic a particular antenna array geome-

try, it must first know the position of themoving antenna at every point along its trajectory.

Satisfying this requirement is relatively easy in radar systems where the speed and trajec-

tory of the antenna movement are finely controlled. Unfortunately, when a user moves

her handheld device, neither its speed nor its trajectory can be accurately controlled. To

get a feel for the accuracy required, in 802.11a/n, even a small error of 2 cm in the relative

position of the moving antenna leads to an error of 60 degrees in identifying the direction

of the source.

One might consider using motion sensors (accelerometer, gyroscope, compass) present

in mostmobile devices to estimate antenna positions as it moves. Unfortunately, since SAR

requires sub-centimeter accuracy in the device position along its trajectory, commercial

motion sensors are virtually unusable to measure such fine-grained translation [127] and
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can at best be used to measure orientation from their gyroscopes.1 Requiring the user to

rotate the device on a perfect arc with zero translation of the device center would preclude

measuring this translation but is impractical to enforce.

Ubicarse addresses this challenge by developing a new formulation of SAR that is

translation-resilient. Specifically, we allow the user to twist her mobile device about its

vertical axis, as shown in Fig. 7-1. Even if the twisting involves unknown trajectories (that

include translation), we can accurately compute SAR knowing only the rotation estimate

from the gyroscope. To do so, we exploit the MIMO capability of modern wireless cards.

Suppose the mobile device has two antennas. The distance between these antennas is

fixed independent of how the user moves her device. Thus, whenever the user translates

the device, the relative position vector of both its antennas remains the same. In contrast,

as the device rotates, the relative position vector of the antennas, also rotates. Leveraging

these observations, we develop a new SAR formulation that operates on relative wireless

channels to estimate the direction of the access point’s signal, purely based on the device’s

orientation with no information required on its exact position or translation. We analyti-

cally demonstrate that Ubicarse’s translation-resilience holds under the same assumptions

made for standard SAR and antenna arrays, both in single path and in the presence of

multipath effects. We also implement the system and demonstrate a localization accuracy

of the mobile device within few tens of centimeters, with no specialized infrastructure or

fingerprinting.

Ubicarse is not limited to localizing RF devices; it can also localize common objects that

have no RF source attached to them. Specifically, we leverage the camera available on

most mobile devices to enable a user to learn the location of an object of interest by simply

snapping photographs of the object from multiple perspectives. At first, it might seem

that this application can be satisfied simply by tagging the object in the photograph with

the position of the mobile device, obtained from RF-based localization. Such an approach

however would yield poor tagging accuracy, particularly when the user cannot get too

close to the object, for e.g., tagging a broken overhead lamp to report it to the facilities

department.

To achieve high-precision geotagging, Ubicarse exploits the synergy between its WiFi-

1This is because accelerometers report the net acceleration of the device including gravity, which must be
subtracted out and the result integrated twice to obtain translation.
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based localization capability and stereo vision algorithms used for 3-D reconstruction.

Specifically, today’s vision algorithms can accurately localize an object with respect to the

set of camera coordinates from which the object was imaged [171], but it cannot find the

coordinates of the object with respect to a global reference. In contrast, Ubicarse’s SAR

localization can identify the global positions of the device’s camera accurately, but has no

information about the object. Therefore, by combining the two methods, we can localize

an object to within tens of centimeters in global coordinates – a promising step towards a

future where we can tag or search for objects in the physical world using only our mobile

devices, much the way we currently search for information on the web.

We implemented Ubicarse on a HP SplitX2 Tablet equipped with Intel 5300 wireless

cards and Yei Technologymotion sensors. We build on the 802.11 CSI tool [67] to obtain the

wireless channels on the tablet. We conducted our experiment in a large university library,

with books arranged in multiple shelves and racks that emulate the complex multipath

characteristics of large warehouses and departmental stores, where indoor localization has

been of particular interest. Our experiments reveal the following:

• Translation Resilient SAR: Ubicarse’s SAR is resilient to unknown translations.

We move the device along complex trajectories including several random walks

and curves. We use Ubicarse to localize the direction of access point placed at dis-

tances from 2 to 12 m without knowledge of the trajectory of the movement. Our

results show a median error in angle of 3.4◦ across trajectories, demonstrating the

translation-resilience of Ubicarse’s SAR.

• Device Localization: We ask a population of users to twist the tablet to localize

themselves relative to the access points in the environment. The results show that

Ubicarse localizes the tablet with a median error of 39 cm in full three dimensional

space. Thus, Ubicarse achieves its goal of accurate localization without requiring

either new infrastructure or signal fingerprinting.

• Object Localization: We integrate Ubicarse with the VisualSFM computer vision

toolkit [186] and evaluate its object geotagging capability. We use Ubicarse to local-

ize books in the library relative to the access points, by taking a few pictures of them.

Our results show a median error of 17 cm in full 3-D space, which, surprisingly, is

superior to Ubicarse’s device localization. Indeed we show that a joint optimization

of Ubicarse and vision has an interesting side-effect: we can significantly refine Ubi-
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carse’s device (i.e. camera) location estimates simply by studying the relative cam-

era locations output by vision algorithms, corresponding to pictures snapped from

different perspectives. In doing so, we show that Ubicarse’s localization accuracy

improves to a median of 15 cm from ground truth.

Contributions Ubicarse is an indoor localization system that achieves tens of centimeters

of accuracy on commodity mobile devices, with no specialized infrastructure or finger-

printing. Ubicarse achieves this through a novel formulation of Synthetic Aperture Radar

that is translation resilient, making it practical to deploy on handheld devices. Further,

Ubicarse uses the cameras on mobile devices to help users geo-tag objects around them to

within tens of centimeters. We implement Ubicarse on commodity tablets and experimen-

tally validate its accuracy in complex indoor settings.

� 7.1 Primer on Synthetic Aperture Radar

Synthetic Aperture Radar has been widely used in aircrafts and satellites to map the to-

pography of the Earth’s surface [50]. Recent systems [179, 178] have also leveraged SAR

for RFID localization.

SAR’s primary goal is to allow a single-antenna wireless receiver to isolate and analyze

the multiple signal paths emanating from a wireless transmitter. Specifically, it computes a

multipath profile, which measures the relative signal power received from the transmitting

source along different spatial directions (see Fig. 7-2). To do this, SAR leverages a simple

principle: a moving receiver antenna snapshots the wireless signals at different spatial lo-

cations. Combined, these channel snapshots mimic a multi-antenna array (Fig. 7-2). Thus,

one can simply apply standard antenna array equations [131] on the signals received at

each antenna position to compute the multipath profile. For instance, one can apply equa-

tions for a linear antenna array [188] if the receive antenna moves on a line, or a circular

antenna array [45], if the receiver rotates about a circle.

To understand SAR more formally, lets examine a special case of SAR for a received

single path.2 We focus on emulation of a circular antenna array, a scenario that is partic-

ularly relevant for this chapter. Let’s suppose the receive antenna rotates about the origin

along a circle, taking n snapshots of the wireless channel from a source along a direction

2We explicitly deal with the more general multipath case in §7.3.2
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Figure 7-2: Circular SAR.Depicts a single antenna moving in a circle of radius r to emulate a circular antenna

array. Gray antennas depict points where channel snapshots were taken. At snapshot i, the antenna is at an

azimuthal angle φi. The multipath profile for a line-of-sight transmitter T has a sharp peak at the direction of

the source αT .

αT as shown in Fig. 7-2. From basic channel models, we can write the the wireless channel

hi measured by the receiver at the ith snapshot (where i = 1, . . . , n) as the complex num-

ber [172]:

hi =
1

d
e

−j2π
λ

(d+rcos(αT−φi)) (7.1)

Where (r,φi) is the antenna’s polar coordinates at snapshot i (Fig. 7-2), d is its distance

to the source, and λ the signal wavelength.

At this point, SAR computes the relative signal power along each spatial direction to

generate a multipath profile. To do this, it needs two inputs: The measured channel snap-

shots hi along the antenna trajectory, and the positions (r,φi) of the antenna along this

trajectory. It then finds the relative power P (α) along direction α as:
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Notice that the above multipath power profile P (α) is maximum precisely if α = αT ,

i.e. along the true direction of the source. This is because the terms hie
+j2π

λ
rcos(α−φi) are

identical in phase, and therefore add up constructively when α = αT (see Eqn. 7.1), and
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tend to add up destructively as α deviates from αT . Therefore, the multipath profile can

be used to accurately ascertain the physical direction of a transmitter, a property crucial

for indoor localization.

SAR makes an important assumption: It assumes accurate knowledge of the position

of the device at different points in time relative to some fixed origin in space (e.g. its

initial location). Clearly, from Eqn. (7.2), in order to compute P (α) one must know the

polar coordinates (r,φi) of the antenna positions. To get a feel for the accuracy in position

required, in 802.11a/n, even a small error of 2 cm in the relative position of the moving

antenna leads to an error of about 3 m in localization, when the transmitting source is 6 m

away. The assumption of accurately known antenna trajectories is valid in radar systems

where the speed and trajectory of the movement are finely controlled. In the following

sections, we describe how this assumption poses an important challenge to our system,

where users cannot be expected to move their devices along accurately known trajectories.

� 7.2 Overview of Ubicarse

Ubicarse enables accurate indoor localization of commercially available mobile devices

with no prior infrastructure or fingerprinting. At the heart of Ubicarse’s device localization

is the ability to perform SAR using today’s off-the-shelf Wi-Fi cards and motion sensors

(i.e. chips containing accelerometers, magnetometers and gyroscopes). In its traditional

form, SAR assumes that channel models have a clear dependence on both the position

and orientation of the antennas (see Eqn. (7.1) and Fig. 7-2). Therefore computation of an

accurate multipath profile requires precise knowledge of how the antennas are located in

space. However, users of Ubicarse cannot be expected to move their devices along precise

trajectories. Consequently, Ubicarse must rely on the device’s motion sensors to infer its

position and orientation over time. Unfortunately, applying SAR using commodity mo-

tion sensors is challenging for the following reasons: (1) They are virtually unusable to

measure device translation at fine granularity [127], as necessitated by SAR; (2) While the

orientation they measure is accurate for short time intervals, the accuracy reduces over

time due to integration drift [56].

In §7.3 and §7.4, we describe how Ubicarse resolves the above challenges to accurately

perform SAR even if a user twists her device along unknown trajectories to obtain multi-
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path profiles. In §7.5, we explain how Ubicarse uses these multipath profiles to accurately

localize the mobile device. In §7.6, we show how Ubicarse integrates with vision algo-

rithms to accurately geotag objects of interest in the environment, enabling a new class of

mobile applications.

� 7.3 Translation-Resilient SAR

In this section, we describe how Ubicarse performs SAR even if the user moves her device

along complex unknown trajectories. Specifically, we address the challenge that commod-

ity motion sensors only provide accurate orientation information and do not provide ac-

curate translation data that is crucial to perform SAR (see §7.1). Therefore, Ubicarse must

perform SAR in a manner resilient to any device translation the user causes as she twists

her device, yet correctly obtains the multipath signal profile.

To achieve this goal, Ubicarse leverages the MIMO capability of modern wireless cards.

In particular, we consider mobile devices with just two MIMO antennas that measure the

wireless channels from any single antenna of a wireless access point. As the user twists her

device, the two antennas sample the wireless channel at each point in the device trajectory.

The channel snapshots emulate a virtual array of antennas, where the number of virtual

antennas depend on the number of channel samples. The main challenge however, is to

perform SAR using the channel samples gathered from the two moving physical MIMO

antennas, using only the orientation of the device and without its translation information.

Ubicarse’s key idea to achieve this is as follows: Instead of performing SAR by plug-

ging in the wireless channels measured at the antennas, Ubicarse feeds into SAR a quantity

we call the relative wireless channel between the two physical antennas. Unlike channels on

individual antennas that depend on the absolute antenna positions, the relative channel

only depends on the relative position vector between the two antennas. Recall that the

distance between the two antennas on a device is fixed, regardless of how the user moves

her device. Thus, whenever the user translates her device, the relative position vector

of both its antennas remains the same. In contrast, as the device rotates, the relative po-

sition vector of the antennas, also rotates. Hence, by plugging in relative channels into

the SAR formulation, Ubicarse obtains multipath profiles with no information on device

center translation.
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Figure 7-3: Ubicarse’s SAR. Shows polar coordinates (in green) of the device at an offset ∆xi and ∆yi along

the x and y-axis and orientation φi. Note that ∆d = ∆yi/ sinαT . The origin of the system (0,0) is at the

transmitter.

� 7.3.1 Description of Translation Resilient SAR

We explain howUbicarse satisfies two properties: 1) It is translation-resilient; 2) It correctly

estimates SAR profiles.

Translation-Independence. We begin by presenting our solution for line-of-sight sce-

narios (i.e. free-space scenarios), where the signal from the transmitter arrives along one

dominant path. For simplicity, we assume that both the transmitter and our device lie on a

two-dimensional plane (extension to 3D is described in §7.3.3). We consider a transmitting

source T placed at the origin and a two-antenna receiver device, as shown in Fig. 7-3. As

the user twists the receiving device, it takes n different snapshots at the wireless signals,

each at different orientations and positions. The two antennas of the device are separated

by a distance of r (typically, 6 to 20 cm).3 Denote the initial polar coordinates of the first

receive antenna as (d,αT ) relative to the transmitter where d is the distance between the

transmitter and receiver. Note here that the main goal of SAR is to estimate αT which

captures the direction of the transmitting source relative to the device.

As the user moves the device, its antenna coordinates at any snapshot i (where i =

1, . . . , n) depend on two quantities: 1) The translation of the device along the x and y axes

at the snapshot relative to its initial location denoted by∆xi and∆yi. 2) The orientation of

the device φi, relative to the x-axis is shown in Fig. 7-3. Hence, our goal is to perform SAR

3Ubicarse assumes that the distance between the two antennas on the device is known. This is typically
available from the manufacturer’s specification for a given device.
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purely based on orientation φi, with no information on translation along the x and y axes:

∆xi,∆yi.

Though our goal is to perform SARwithout knowledge of the translation (∆xi and∆yi),

clearly if the device is translated by a large distance with respect to the source, the angle

of arrival itself (the quantity that we are interested in estimating) will change. Therefore

in our system we assume that during SAR computation, the source is at a far distance

compared to the movement of the tablet (a standard assumption for SAR and antenna

arrays in general [188, 50]). The form of translation independence we seek in the current

SAR formulation is robustness to local translations of the device center as the person twists

the tablet as shown in Fig. 7-1. To achieve this goal, we first need to characterize the

wireless channel of the source’s signal measured at the antennas in each snapshot taken

by the receiving device. We can apply simple geometry to write the polar coordinates

of the two antennas as: (d+ ∆yi
sinαT

, αT ) and (d+ ∆yi
sinαT

+ r cos(αT − φi), αT ) (as shown in

Fig. 7-3) where the polar angle αT is the same for the two antennas under our far distance

assumption. From basic wireless channel models [172], we can write the wireless channels

h1,i and h2,i measured at the receive antenna 1 and 2 during its ith snapshot as:

h1,i =
1

d+ ∆yi
sinαT

e
−j2π

λ
(d+

∆yi
sinαT

) ≈ 1

d
e

−j2π
λ

(d+
∆yi

sinαT
)

(7.3)

h2,i =
1

d+ ∆yi
sinαT

+ r cos(αT − φi)
e

−j2π
λ

(d+
∆yi

sinαT
+r cos(αT−φi)) (7.4)

≈ 1

d
e

−j2π
λ

(d+
∆yi

sinαT
+r cos(αT−φi)) (7.5)

Where λ denotes the wavelength of the wireless signal. Note that the approximations

hold assuming ∆xi,∆yi ≪ d, i.e. the source is far relative to the movement of the device,

as in standard SAR [50].

We now define the relative wireless channel at the ith snapshot ĥi = h2,ih
∗
1,i, where (.)∗

denotes the complex conjugate. Intuitively, the relative wireless channel captures the rela-

tive phase between channels of the two antennas. Mathematically, the relative channel is
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given by:

ĥi = h2,ih
∗
1,i =

1

d2
e

−j2π
λ

(d+
∆yi

sinαT
+r cos(αT−φi))e

+j2π
λ

(d+
∆yi

sinαT
)

(7.6)

=
1

d2
e

−j2π
λ

r cos(αT−φi) (7.7)

Interestingly, note that the relative channel is independent of device translation (∆xi

and ∆yi) and is dependent only on the orientation φi. In fact, we observe that the rel-

ative wireless channel ĥi is identical in form to the wireless channel of a single antenna

rotating about a circle of radius r as discussed in Eqn. 7.1 of §7.1 (barring a constant factor

1
de

j2πd
λ ). Intuitively, this stems from the fact that relative to the frame of reference of the

first antenna, the second antenna simply appears to move around a circle.

As a result, we can simply “plug-in” the relative channels into standard circular SAR

equations (Eqn. 7.2 from §7.1) to derive the multi-path profile of the transmitter’s signal as

follows:

P (α) =

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ĥie
+j2π

λ
r cos(α−φi)

∣

∣

∣

∣

∣

2

(7.8)

Hence, even if the user twists the device in arbitrary ways, causing both rotation and

translation to the device, its two antennas never translate relative to each other, and can

therefore emulate a circular antenna array.

We make the following important observations on computing the multipath profile as

in Eqn. 7.8 above:

• The complexity of our algorithm is O(n ∗ log(m)) where n is the number of channel

snapshots, and m is the desired resolution in angle of arrival. The complexity is

logarithmic inm since one can first perform SAR at a low resolution, and repeat SAR

iteratively at higher resolutions only at angles of highest power.

• Note that the wireless channels used in the above equations must capture both mag-

nitude and the phase of the received signal. Our implementation therefore uses the

channel state information (CSI) measured by a wireless card that are complex num-

bers, unlike received signal strength (RSS).

• The above solution can be readily extended to OFDM systems (like 802.11n), by av-

eraging the power-profile computed for each OFDM sub-carrier.



170 CHAPTER 7. ACCURATE WI-FI INDOOR POSITIONING WITH ZERO STARTUP COST

• Our system only requires wireless channels measured from a single antenna at the

802.11 access point and two antennas at the client. If channels from more than one

antenna on a Wi-Fi access point are available, the power profiles can be measured

from each individual antenna, and the results averaged.

Correctness of Multipath Profile. One might wonder if the multipath profiles generated

by the above technique are indeed correct. Specifically, do the power profiles indicate a

sharp peak at precisely the direction of the source αT to help localize the source? Indeed,

it is easy to observe from Eqn. 7.7 and 7.8 that P (α) achieves a maximum value of 1/d4,

when α = αT , since all components ĥie
+j2π

λ
r cos(α−φi) add up constructively in phase, just

as in a circular antenna array. As α deviates from αT , these components gradually begin

to add up destructively. Of course, the precise shape of P (α) over α depends on how the

user physically re-orients the device, i.e. the distribution of orientations φi. In fact, one can

show that if we expect the user to simply twist the device randomly, so that φi’s at least

span a semi-circle (i.e. an angle of π)4, the following lemma holds:

Lemma 7.1 Suppose the orientation φi ∼ U(γ − π/2, γ + π/2), at snapshot i = 1, . . . , n is uni-

formly distributed for some constant γ, the expected value of the multipath power profile E[P (α)]

in line-of-sight, at each α ∈ [0,2π] over the distribution of {φ1, . . . , φn} is given by:

E[P (α)] =
1

d4

[

J0(κ)
2 +

1− J0(κ)2
n

]

(7.9)

Where, κ =
4πr sin

(

αT−α
2

)

λ
(7.10)

And J0(κ) is the Bessel-function of the first kind[20]. �

Proof of Lemma 10.1: In this section, we derive the expected value of SAR multi-path

power profiles for line-of-sight scenarios as stated in Lemma 10.1. We consider the sce-

nario in Fig. 7-3, where a transmitting source T is in line-of-sight relative to a two-antenna

receiver device. By substituting the relative wireless channel from Eqn. 7.7 into the multi-

4Our algorithm requires the user to twist the device by an angle of at least π (i.e. a semicircle). We then
sample the channels gathered by the device such that the resulting distribution of orientations resembles a
uniform distribution over some interval of π.
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path power profile from Eqn. 7.8, and simplifying terms we get:

ĥi = h2,ih
∗
1,i =

1

d2
e

−j2πrcos(αT−φi)

λ (7.11)

Thus, the multi-path power profile (See Eqn. 7.8) is:

P (α) =
1

d4

∣

∣

∣

∣

∣

1

n

n
∑

i=1

e−jκ sinψi

∣

∣

∣

∣

∣

2

=
1

d4

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ei

∣

∣

∣

∣

∣

2

(7.12)

Where κ =
4πr sin

(

αT−α

2

)

λ , is independent of device orientation, ψi = φi − αT+α
2 and ei =

e−jκ sinψi .

At this point, our goal is to evaluate the expected value of P (α) over the device ori-

entation between snapshots. To do this, let us consider the case where the snapshots

are taken at random device orientations spanning an angle of π (i.e. a semi-circle) so

that φi ∼ U(γ − π/2, γ + π/2) is chosen uniformly at random. Since γ depends on φ0,

we choose φ0 such that, ψi ∼ U(−π/2, π/2) is also a uniformly distributed random vari-

able. Under these assumptions, let us look at the distribution of the quantity ei = e−jκsinψi .

Specifically, the mean and variance of ei is given by E[ei] =
1
π

∫ π/2
−π/2 e

−jκsinψdψ = J0(κ)

and Var[ei] = E[|ei|2] − |E[ei]|2 = 1 − J0(κ)2 respectively, where J0(·) is the well-known

Bessel-function of the first kind[20].

Next, we look at 1
n

∑n
i=1 ei. Applying central limit theorem for large n, this quantity is

normally distributed with mean J0(κ) and variance 1−J0(κ)2

n . Specifically, the variance of

this distribution:

Var

[

1

n

n
∑

i=1

ei

]

= E





∣

∣

∣

∣

∣

1

n

n
∑

i=1

ei

∣

∣

∣

∣

∣

2


−
∣

∣

∣

∣

∣

E

[

1

n

n
∑

i=1

ei

]∣

∣

∣

∣

∣

2

1− J0(κ)2
n

= d4E[P (α)]− J0(κ)2

P̃ (α) = E[P (α)] =
1

d4

[

J0(κ)
2 +

1− J0(κ)2
n

]

Which desired expected SAR profile, as in Lemma 10.1. �

Notice that as the number of snapshots n increases, the first term dominates and the

expected power profile resembles a squared Bessel function J0(κ)
2. Visually, this function

resembles a squared sinc-function with a sharp peak when κ= 0, i.e. α= αT . Fig. 7-3 plots

the expected profile for a line-of-sight source at αT = −30◦. The profile indeed resembles
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Figure 7-4: Multipath Scenarios. Depicts the path lengths dk’s and direction of the sources αk’s for a simple

multipath scenarios. The corresponding power profile reveals peaks at the desired αk values.

the squared Bessel function with a clear peak at α = −30◦.

� 7.3.2 Extending to Multipath Scenarios

While our discussion so far has considered a source at line-of-sight (i.e. free-space sce-

narios), in this section, we focus on multipath scenarios (i.e. non-free space scenarios).

Specifically, we show that Ubicarse continues to be resilient to translation in these sce-

narios, while generating correct multipath profiles, indicating the direction of the various

paths of the signal.

Assume that the device receives signals from m distinct paths, of length d1 . . . , dm, ar-

riving along directions α1, . . . , αm, as in Fig. 7-4. Hence, SAR’s goal is to infer the set of

signal directions α1, . . . , αm based on the wireless channels and device orientation.

Suppose the device captures n snapshots of the wireless channels as the user twists it.

As before, we denote by (∆xiand∆yi), the translation of the device along the x and y axes

and by φi, the orientation of the device relative to its initial position and orientation during

the ith snapshot. We then express the wireless channels on the two receive antennas as:

h1,i ≈
m
∑

k=1

sk
dk
e

−j2π
λ

(dk+
∆yi

sinαk
)

(7.13)

h2,i ≈
m
∑

k=1

sk
dk
e

−j2π
λ

(dk+
∆yi

sinαk
+r cos(αk−φi)) (7.14)

Where sk is a constant complex number that refers to the attenuation and phase shift
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along signal path k (k = 1, . . . ,m) and λ is the wavelength of the signal, as before.

We can then compute the relative wireless channels ĥi = h2,ih
∗
1,i that we plan to feed

into SAR as:

ĥi =
m
∑

k=1

sk
d
e

−j2π
λ

(d+
∆yi

sinαk
+r cos(αk−φi))

m
∑

k=1

sk
d
e

+j2π
λ

(d+
∆yi

sinαk
)

=
m
∑

k=1

sk
dk
e

−j2π
λ

r cos(αk−φi)





sk
dk

+
∑

l 6=k

sl
dl
e

+j2π
λ

(
∆yi
sinαl

−
∆yi

sinαk
)



 (7.15)

Notice that the first term of the relative channel in Eqn. 7.15 above is nearly identical

to Eqn. 7.7 in the line-of-sight scenario, and is independent of any translation ∆xi,∆yi be-

tween channel snapshots. Unfortunately, the second term indeed depends on translation.

However, two observationswork in our favor: First, if the device’s translation remains con-

stant between snapshots, the second term reduces to a constant multiplier, which merely

scales the profile. Second, even if the device translation varies between snapshots, any

variance (i.e. noise) caused by the second term drops significantly when summing over a

large number of snapshots.

Surprisingly, these observations can help us show that by performing SAR over several

snapshots, Ubicarse is resilient to device translation in multipath scenarios. Further, this

property holds regardless of how the device is actually translated by the user as she twists

the device. Of course, we stress that this translation cannot be unbounded, and must be

relatively small compared to the distance of the device from the transmitting source, a

standard assumption made by SAR and antenna array systems [188, 50]. More formally,

for a device that is twisted randomly by the user over an angle of π or more, the following

lemma holds:

Lemma 7.2 Suppose the orientation φi ∼ U(γ − π/2, γ + π/2), at snapshot i = 1, . . . , n is uni-

formly at random for some constant γ, the expected value of the multipath power profile E[P (α)]
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in multipath scenarios, at each α ∈ [0,2π] over the distribution of {φ1, . . . , φn} is given by:

E[P (α)] =

(

m
∑

k=1

[

s2k
d2k

+Ek

]

J0(κk)

)2

+
1

n
Var[ĥie

j2πr cos(α−φi)

λ ]

Where, κ =
4πr sin

(

αT−α
2

)

λ
,Ek = E





∑

l 6=k

sksl
dkdl

e
j2π∆yi(

1
sinαl

−
1

sinαk
)

λ





And J0(κ) is the Bessel-function of the first kind[20]. �

Proof of Lemma 7.2: We derive the expected SAR power profiles in multipath scenarios

as in Lemma 7.2. Recall the relative wireless channel between two antennas of the receiver

at snapshot i is given by Eqn. 7.15, such that the multipath profile P (α), depends on the

sum of terms of the form gi = ĥie
j2πr cos(α−φi)

λ (Eqn. 7.8). Each term is:

gi =
m
∑

k=1

Dke
−j2π

λ
r(cos(αk−φi)−cos(α−φi)) =

m
∑

k=1

Dke
−jκk sinψi,k

Where similar to Appendix 7.3.1, κk =
4πr sin

(

αk−α

2

)

λ and Dk =

sk
dk

[

sk
dk

+
∑

l 6=k
sl
dl
e

+j2π
λ

(
∆yi
sinαl

−
∆yi

sinαk
)
]

, depend only on translation, while ψi,k = φi − αk+α
2

depends only on orientation. As a result,Dk and e
−jκk sinψi,k are independent, and we can

write: the expectation E[gi] =
∑m

k=1E[Dk]E[e−jκk sinψi,k ] =
∑m

k=1

[

s2
k

d2
k

+Ek

]

J0(κk),

assuming that φi’s are chosen uniformly at random. Here we denote Ek =

E

[

∑

l 6=k
sksl
dkdl

e
j2π∆yi(

1
sinαl

− 1
sinαk

)

λ

]

.

Finally, let us look at the summation 1
n

∑n
i=1 gi. Applying central limit theorem for large

n, this quantity is normally distributed with mean
∑m

k=1

[

s2
k

d2
k

+Ek

]

J0(κk) and variance

V ar[gi]
n . Specifically, the variance of this distribution is:
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E[P (α)] =

(

m
∑

k=1

[

s2k
d2k

+Ek

]

J0(κk)

)2

+
1

n
Var[ĥi.e

j2πr cos(α−φi)

λ ]

Which desired expected SAR profile, as in Lemma 7.2. �

Over a large number of snapshots n, the expected multipath profile resembles the

squared sumof Bessel functions (which resemble sinc functions) with peaks corresponding

to the different multipath directions scaled by their relative signal power. In other words,
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Figure 7-5: Generalizing to 3-D.Depicts the definition of α and β, respectively the azimuthal and polar angle

from which the signal arrives.

by inspecting the peaks of the profile P (α) one can infer the different multipath directions

α1, . . . , αm. Fig. 7-4 plots the profile for a non-line-of-sight source with two paths along

−30◦ and −120◦. Notice that we indeed observe distinct peaks at each of the two angles,

scaled by their relative signal strength.

� 7.3.3 Generalizing to Three Dimensions

Our above solution can be readily generalized to three-dimensions. Such a generalization

is particularly important, since it is difficult to restrict users of Ubicarse to perfectly rotate

their devices in a two dimensional plane. To better understand our solution, consider a

two-antenna receiver device, as before and a signal path arriving from azimuthal angle α

and polar angle β, as shown in Fig. 7-5. Suppose the user twists the device about a given

axis.5 Let φi be the current azimuthal angle of the second receive antenna relative to the

first and θi denote the polar angle, during the ith snapshot. From basic geometry, we can

derive the difference between the path lengths to the two antennas is r cos(α− φi) sin(β −
θi), where r is the separation between the two antennas. As a result, we can derive the

power-profile along the direction (α,β) by slightly modifying Eqn. 7.8 as:

P (α,β) =

∣

∣

∣

∣

∣

1

n

n
∑

i=1

ĥie
+j2π

λ
r cos(α−φi) sin(β−θi)

∣

∣

∣

∣

∣

2

(7.16)

5In principle, the user can twist the device about any axis, provided the axis of rotation is not parallel to
the line joining the two antennas, i.e. so that the relative rotation of the two antennas is non-zero.
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Notice that the SAR power profile equation indeed resembles the expression for circular

SAR in 3-D [45], as before. Further, note that much like standard circular antenna ar-

rays [45], even if the user rotates the device entirely on a 2-D plane (e.g., the xy-plane), the

above expression returns the angle-of-arrival in a 3-D space.

� 7.3.4 Robustness to Frequency Offsets

Recall that a wireless receiver (e.g., the user’s tablet) experiences a carrier frequency offset

(CFO) and sampling frequency offset (SFO) with respect to a wireless transmitter (e.g., an

access point) [141]. The CFO and SFO cause an additional phase rotation, independent of

the antenna movement, which unless eliminated can accumulate over time, causing errors

in the SAR output. Fortunately, since the two antennas on themobile device experience the

same offsets with respect to the source, taking the relative channel eliminates that effect.

Consequently, Ubicarse’s SAR is robust to frequency offsets as well.

� 7.4 Active Drift Compensation

In this section, we address the following challenge: The error in orientation reported by

motion sensors accumulates gradually over time, leading to significant errors in SAR. This

is because gyroscopes measure angular velocity and any systematic error in this velocity

integrates over time and leads to a drift in orientation [56]. However, over time windows

of a few seconds, this drift can be approximated as an unknown but linear shift in orien-

tation [128]. Ubicarse leverages this property to actively estimate and correct for drift in

real-time, just as the user twists her device.

Ubicarse resolves orientation drift by making a key observation: A linear drift in orien-

tation leads to a constant shift in SAR multipath profiles generated by Ubicarse. Specifi-

cally, suppose we perform SAR over two different time windows to obtain two multipath

profiles. Let’s say that the gyroscope incurred a drift of δ between these intervals. Re-

call from Eqn. 7.8 that any multipath profile P (α) depends on angles of the form α− φi,
where φi is the orientation of the device during the ith snapshot. Consequently, if each φi

is shifted by an offset δ between the two time windows, then α is also shifted by the same

value δ between them. In other words, any accumulation of drift δ between the two inter-

vals effectively results in a shift of precisely δ between the two multipath profiles. Hence,
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Figure 7-6: Drift in Orientation. The figure (above) plots the drift error over time for 10 seconds. The ac-

cumulated drift is 10◦ between two 5s intervals. The 3-D multipath profiles corresponding to these intervals

(below) indicate a shift of precisely 10◦ (profiles zoom-in over a small range for clarity).

by estimating the shift δ between the two multipath profiles, we can accurately estimate,

and therefore correct for the gyroscope drift between the two intervals.

To illustrate this in an example, Fig. 7-6 depicts the orientation in drift of 10◦ between

two 5 second intervals during one of our experiments. We observe that the corresponding

multipath profiles are also shifted by about 10◦. We can then directly estimate and actively

correct for this drift in real-time by applying phase correlation [53], a standard technique

from computer graphics to estimate shifts between two (noisy) images by calculating their

phase difference in the 2-D Fourier domain.

Finally, note that since Ubicarse performs drift correction in real-time, it does not rely on

predetermined characteristics of the gyroscope and is thus general to different hardware

configurations.

� 7.5 Accurate Device Localization

In this section, describe how Ubicarse leverages SAR multipath profiles to accurately lo-

calize the device. Ubicarse first obtains these profiles by asking the user to twist the device
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about its vertical axis. It then issues beacon frames to multiple neighboring access points,

to elicit response frames and estimate channels from these access points. It then simultane-

ously performs SAR to these access points and obtains multipath profiles. In the absence of

multipath, each profile contains a single peak towards the direction of the corresponding

access point. Ubicarse can then apply standard triangulation [96] to localize itself relative

the access points. In principle, Ubicarse needs to perform SAR to a minimum of three

surrounding access points to localize the device.

Localization under Multipath. In practice, SAR profiles may contain multiple peaks ow-

ing to multipath. As a result, there exists an inherent ambiguity in the direction of these

access points relative to the device. Ubicarse addresses this challenge using the following

two key observations.

First, as noted in [188], the multipath peaks in an antenna-array profile can be differ-

entiated from the direct path peak using the following observation: The direct peak in

a profile persists even as the receiving device’s position is slightly perturbed, whereas

multipath peaks change significantly or disappear altogether (Fig. 9 in [188]). In fact, as

Ubicarse explicitly requires a user to twist the device to perform SAR, such perturbations

are inherent to our system and this is a fact that we exploit.6 Therefore, by performing

SAR on two different segments of the device’s trajectory (emulating two antenna arrays at

slightly different locations), one can compare the resulting multipath profiles to eliminate

peaks that do not persist between these profiles.

Second, often devices are surrounded by more than three access points. This leads

to an over-constrained optimization problem for triangulation, which can be formulated

as a least-square fitting problem [96]. Notice that the peaks corresponding to the direct

path to each of many different access points agree on a unique location for the device,

and therefore lead to a good fit. In contrast, multipath peaks of the access points indicate

conflicting locations for the device leading to poor fits. Therefore, by selecting the set of

peaks to access points that achieve the best fit in the optimization problem (i.e. agree the

most geometrically), Ubicarse can identify the set of direct paths to these access points.

Obtaining Global Device Orientation. One of the key benefits of Ubicarse is the ability

to not just find the device’s global position, but also its global orientation, relative to the

6Notably however, the direct path peak does experience a shift due to drift as discussed in §7.4, although
the peak’s magnitude remains the same, and its shift is consistent.
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Figure 7-7: Object Geotagging. Point cloud of library shelving and VSFM reconstruction with camera

positions and anchored camera positions. Anchored camera positions are those camera positions with both

Ubicarse localization coordinates in the global frame and relative coordinates in the coordinate frame of the

3D reconstruction. These anchor points are used in Equation (7.17) to find a suitable transform to a the global

frame.

access points’ frame of reference. Notice that global orientation is not available from the

device’s gyroscope, which only measures angular velocity, and therefore can only be used

to find relative orientation between two time intervals.7 The key reason Ubicarse can read-

ily estimate device orientation is that it computes the angle-of-arrival of signals from the

access points. In particular, Ubicarse knows the angle of the access point, relative to the

axis of its own body . But after performing localization, Ubicarse also knows the direc-

tion of this access point relative to the global x-axis. Hence, by simply subtracting the two

angles, Ubicarse can compute its orientation ψ relative to the world’s x-axis.

� 7.6 Application to Object Geotagging

In this section, we show how Ubicarse’s accurate indoor localization of mobile devices

opens the door to a new class of applications: precision geotagging of indoor objects with

no RF source attached to them. This would enable users to catalog and share the location

of objects of interest they observe around them, i.e., products in a warehouse or artifacts

in a museum. To enable this application, we leverage the fact that in addition to Wi-Fi

chips and gyroscopes, most wireless devices also have cameras on them. Today, vision

7While the device’s compass can be used to compute global orientation, such compasses are fairly inaccu-
rate [79] and easily misled by any surrounding magnetic fields.
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toolkits can be applied to overlapping photos taken from these cameras to produce 3D

pointclouds, or relative 3D positions, for imaged objects [171].

In particular, these vision toolkits use multiple snapshots taken of a single scene from

different vantage points in order to reconstruct the 3D positions of objects in the image as a

point cloud. While these tools are impressively accurate at inferring relative distances and

orientations in the local coordinate frame of the camera, they cannot provide information

on the positions of the camera or photographed objects in the global frame that a user

cares about. For example, a vision-based reconstruction can accurately determine that the

biology magazine stack is one foot away from the physics magazine stack, but cannot

determine that these magazine stacks are located in shelf-5 of the mezzanine level room

in the NY public library. In contrast, Ubicarse’s core ability is that it can determine the

global position of the device’s camera at a given point in time. Hence we can synergize the

fine-grained relative distances of object-to-camera computed by the vision toolkit, with the

accurate global camera-position provided by Ubicarse. This allows for a joint optimization

problem that provides the global position of the objects of interest. Surprisingly, we show

that this joint optimization has an interesting side-effect: one can further refine Ubicarse’s

device localization by using the relative camera positions between the different snapshots,

that are output by the vision toolkit. This leads to an integrated system that capitalizes

upon the best of both technologies for device and object localization.

Vision Algorithms. To better understand how object localization works, we provide a

briefly introduce vision algorithms for 3-D imaging. The goal of these algorithms is to read

a set of 2-D images of the object snapped by the device’s camera frommultiple perspectives

to obtain two outputs:

• 3-D reconstruction of the object: obtained in the frame of reference of the device camera.

This reconstruction is a 3-D point cloud (Fig. 7-7), containing the (x, y, z) coordinates

of points on the object’s surface in a 3-D frame of reference whose origin is at the

camera’s initial position and axes along its initial orientation.

• Relative Camera Positions and Orientation: of the vantage points where the 2-D images

were taken, defined relative to the camera’s initial position and orientation.

At a high level, vision algorithms obtain these quantities in three phases: First, they iden-

tify salient features [11] (e.g. corners or distinctive textures) in each of the images. Next,
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these features are used to identify positions of the same object between these images. Fi-

nally, they apply advanced algorithms such as [171], which uses the distance of the same

features to the different camera positions from where the images were taken, to infer rela-

tive object positions and camera positions.

Accurate Object Localization. Once a 3D pointcloud of the imaged objects is constructed

via the vision algorithm, a suitable transformation must be found in order to map the

object locations into the (global) reference frame of the environment. To do this, we employ

Ubicarse’s translation-resilient localization inN different positions and orientations where

the snapshots were taken (assuming N is at least three). The N camera positions can

now serve as anchor points, points for which we have both global positions {xg1 , . . . , xgN }
provided by Ubicarse, and relative positions, {xp1 , . . . , xpN} in the coordinate frame of the

reconstructed point cloud. A relationship (or transformation) between the two coordinate

systems can be found via the following optimization problem that can readily be solved for

the unknown transformation (rotation R and translation t) that minimizes the following

error in fit (see Algorithm 3):

minR,t

N
∑

i=1

||xgi − (Rxpi + t)||2 (7.17)

In general the more anchor points you have, the more accurately you can find the trans-

formation. 8 The rotation R and translation t are now the key relationship between the

point cloud and global coordinate frames and in particular, it can be applied to any object

in the point cloud in order to find the global position of that object.

Refining Device Localization. Finally, we note that the above joint optimization has an

interesting side-effect: Ubicarse can leverage the relative camera locations output by vision

algorithms to greatly refine its own device localization. Specifically, visual algorithms excel

at finding relative camera locations, particularly when they observe a rich set features

at pixel resolution. Therefore, by applying the transformation to the camera positions

returned by VSFM we now have two sets of position estimates for the camera, both in the

global reference frame. In this way, one can accurately compensate for relative errors in

Ubicarse’s indoor positioning. Indeed, our results in §7.8.5 show that such an optimization

8 In practice, the above optimization also needs to account for camera calibration and scaling, whose details
we omit for brevity.
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greatly improves median localization accuracy by as much as 86% as compared to just

using Ubicarse alone.

3 Object Geo-tagging Algorithm. Finding the transformation, rotation R and translation
t, between local and global coordinates

1: function GETTRANSFORM(Xg, Xp)
2: ⊲ Xg = {xg1 , . . . , xgN}: Set of N positions in global frame
3: ⊲ Xp = {xp1 , . . . , xpN }: Set of N positions in local camera frame

4: C =
∑N
i=1(xgi −mean(Xg))(xpi −mean(Xp))

∗

5: ⊲Where (.)∗: conjugate transpose, and mean(.): average of elements
6: [U,S,V ] = svd(C) ⊲ Perform SVD of covariance matrix C
7: R = V U∗ ⊲ Rotation Matrix
8: t =mean(Xp)−R×mean(Xg) ⊲ Translation Vector
9: return R, t

10: end function

� 7.7 Implementation and Evaluation

We implemented Ubicarse on a HP SplitX2 Tablet running Ubuntu Linux equipped with Intel 5300

wireless cards and a Yei Technology motion sensor (i.e. an accelerometer, gyroscope and compass).

We build on the 802.11 CSI tool [67] to obtain the wireless channels on the tablet. We implement

Ubicarse’s translation resilient SAR completely in software (C++ andMatlab). For each experiment,

we allow users to twist their devices randomly along its vertical axis, spanning a wide range of

orientations. We configure the tablet to transmit beacon packets (10 times per second) to elicit

responses from nearby access points and measure their channels.9 We then combine this with

gyroscope readings from the motion sensor to perform SAR simultaneously to all access points, as

the user twists the device.

We implement Ubicarse’s object localization by integrating it with the VisualSFM (VSFM)

toolkit [186] for 3-D reconstruction of objects. We use the tablet’s built-in 5.7 Megapixel camera

to take images of objects of interest.

We conducted our experiment in a university library, with books arranged in multiple shelves

and racks that emulate the complex multipath characteristics of large warehouses and departmen-

tal stores, where indoor localization has been of particular interest, as shown in Fig. 7-8. We lever-

age five unmodified 802.11n access points in and around the library, as shown by red squares in

Fig. 7-8 to perform device localization and vary the tablet’s location between several randomly cho-

sen locations. The access points are configured to the 5 GHz Wi-Fi frequency band. We obtain the

locations of access points and tablet centers to sub-centimeter accuracy in a global coordinate frame

through direct measurements and using architectural drawings of the library. To perform object lo-

9The results in this chapter sample the wireless channels for a minimum of 25-30 packets over a semi-
circular arc of rotation.
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Figure 7-8: Library floorplan and testbed. APs are red squares; book shelves are shown as hashed rectangles.

calization, we capture images from multiple perspectives of different randomly chosen books in

the library. We then apply a joint optimization using VSFM’s reconstructed 3D point cloud and

Ubicarse’s device localization to locate the object.

Baseline: We compare Ubicarse against an angle-of-arrival scheme that treats the two antennas on

the device as a 2-antenna array. We chose this baseline, since it uses only 2-antennas like our system,

does not require specialized infrastructure or additional calibration input unlike other schemes,

leading to a fair comparison.

� 7.8 Results

We present four categories of results to evaluate Ubicarse: 1) Validating Translation Resilience of

Ubicarse’s SAR for different trajectories. 2) Computing Angle of Arrival in 3-D space. 3) Localizing

devices in 3-D. 4) Geotagging Objects of Interest.

� 7.8.1 Translation Resilient SAR

In this experiment, we demonstrate that Ubicarse’s new formulation of SAR is resilient to device

translation, as described in §7.3. Specifically, we consider different device trajectories, including

random motion of the antenna’s center on the order of half a meter.

Method: We perform our experiments in a mm-precision motion capture room [4] where the

mobile device was tagged with infrared markers to accurately track the motion of the antenna

centers for the purpose of evaluation. SAR was computed entirely using one YEI technologies
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Figure 7-9: Microbenchmarks. (a) Plots the different trajectories of antenna centers (b) Translation resilience

of SAR: Plots mean and Standard deviation of error in azimuthal angle for different trajectories. (c)-(d) CDF of

error in Angle of arrival (φ and θ), for Ubicarse, Ubicarse without drift correction and 2-Antenna Array. (e)-(f)

Error in azimuthal, polar angle versus distance from the access point.

gyroscopemounted on the tablet and channelmeasurements acquired from theWi-Fi card. A single

transmitting source was present and the experiment was conducted at distances of 2m to 12m from

the source across multiple line-of-sight locations (we consider non-line-of-sight in §10.5.1).
We moved the tablet in four different types of trajectories: (1) In-place rotation; (2) 2D random

trajectory within 0.5 m diameter; (3) A random handheld 3D twisting motion (i.e. including varia-

tions in polar angles) up to 0.3 m in diameter (4) A handheld semi-circular to-and-fro twist. For the

first two trajectories, we mount the device on a roomba robot for stable trajectories on a 2-D plane.
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Fig. 7-9(a) demonstrates actual trajectory traces from our experiments where these traces are

representative of each of the four classes of trajectories described above.

Results: Our results in Figure 7-9(b) show a mean error of 3.3◦ for the random 2-D trajectory,

3.4◦ even as the center of the antennas is translated randomly by the user in three dimensional

space and 3.3◦ if the user traces a simple semi-circular to-and-fro twist. Our results demonstrate

that Ubicarse’s translation resilient SAR correctly identifies the angle of arrival for the two cases to

within 1.6◦, 1.7◦ and 1.6◦ respectively on average as compared to the ideal case of rotation in place.

� 7.8.2 Angle of Arrival Estimation on a Tablet

We measure the accuracy of angle-of-arrival estimation in both the azimuthal angle (φ) and polar

angle (θ) obtained over each handheld twist of the device in line-of-sight (LOS) and non-line-of-

sight (NLOS) settings.

Method: We conduct our experiment in the university library as in §7.7. We place the device

at different distances from the access points. In NLOS settings, Ubicarse identifies the direct

path using the methods in §7.5. We compare our results against two important benchmarks: 1) A

2-antenna array composed of the two antennas on the device directly, as opposed to performing

SAR. 2) Ubicarse without the gyroscope drift compensation presented in §7.4.
Results: Fig. 7-9(c)-(d) shows that our method achieves a median of accuracy of 3.2◦ in the

azimuthal orientation of the device and 3.6◦ in polar angle. We observe that gyroscope drift can

cause angle inaccuracies of more than 18◦ in φ (29◦ in θ) and as large as 48◦ in φ (67◦ in θ) if

left uncompensated. As a result, Ubicarse’s drift compensation in §7.4 plays an important role in

achieving high accuracy. Fig. 7-9(c) also shows that the 2-antenna array has a poor median error

of 49◦ in azimuthal angle owing to the lack of resolution from using only two antennas. Note that

Figure 7-9(d) does not compare with the two antenna benchmark since two antennas alone are

insufficient to obtain 3-D information [131].

Fig. 7-9(e)-(f) depicts the error in φ and θ respectively, against the distance of the device to the

wireless access point. We observe that the error in these angles increases only marginally across

distances ranging from 2m to 16m.

� 7.8.3 Tablet Localization

In this experiment, we evaluate Ubicarse’s accuracy in device localization in the university library

setting.

Method: We gather aggregate results on device localization by in twenty five randomly chosen

locations where users twist a Ubicarse enabled tablet in the university library setting. Ubicarse’s

localization was performed to find relative position of the device with respect to commodity access

points whose locations were known with respect to the library floor plan. For device and object lo-
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Figure 7-10: Tablet Localization. Plots CDF of error in device localization.

calization we present results in the three-dimensional Euclidean space as well as global orientation

(in the X-Y plane) as given by the ψ angle described in §7.5.10 These experiments were conducted

both in line-of-sight (LOS) and non-line-of-sight (NLOS) settings during peak library hours with

pedestrian foot traffic. In particular, we classify locations as non-line-of-sight (NLOS) only when

the predominant (highest power) peak in the multipath profile is not the direct path to at least one

neighboring AP. Our localization technique explicitly handles multipath as described in section 7.5.

Results: Our results in Fig. 7-10 for localization using five surrounding access points demon-

strate a median device localization error of 39 cm, where along each dimension we demonstrate a

median error of 22 cm in x, 28 cm in y, and 18 cm in z and 6.09◦ in global device orientation (ψ).

Furthermore we show that Ubicarse still performs well in NLOS, incurring a small additional me-

dian error of 10 cm in x, 18 cm in y, and 2 cm in z and 7.7◦ in ψ as compared to the LOS case. Thus,

Ubicarse achieves its goal of accurate localization without requiring either new infrastructure or

signal fingerprinting.

Fig. 7-11 plots Ubicarse’s error in localization along x, y and z measured against the number of

randomly chosen access points used to triangulate the location of the device. We notice that the

error in localization reduces with increasing number of surrounding access points. This is because,

10In principle, Ubicarse can be used to find orientations along other planes as well. We omit these results
for brevity.
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Figure 7-11: Device Loccalization Accuracy. Ubicarse’s Device Localization Accuracy measured against the

number of wireless access points.

as described in §7.5, computing multipath profiles to an increasing number of surrounding access

points, can help mitigate ambiguity due to multipath. Further, redundant measurements from over

three APs reduces the noise in localization.

� 7.8.4 Object Geotagging

In this experiment, we evaluate Ubicarse’s object geotagging capabilities (See §7.6) to localize arbi-

trarily chosen books on a bookshelf in the library setting.

Method: We conduct our experiments in a library settingwith shelving that houses many books,

journals, and magazines, a picture of which can be found in Figure 7-7. This implementation emu-

lates similar applications in a warehouse, department store, or other such settings where a person

can catalog objects of interest. In particular we show that there is a distinct advantage to localizing

far away objects more accurately than simply using the camera’s location as a geotag. We com-

pare the object localization we achieve using Ubicarse plus VSFM against the accuracy of using the

camera’s location directly as a position tag for the book.

Results: Fig. 7-12(a)-(c) shows that the method of Ubicarse plus VSFM attains a median error

in distance of 17 cm, where along each dimension we find an error of 5 cm in x, 15 cm in y and 4

cm in z for localization accuracy of books on library bookshelves whose distance from the camera

varies from 1 to 3 m. Therefore simply using the camera’s position as a geotag for the books would

result in up to 3 m of inaccuracy.

Surprisingly, a comparison of Figures 7-12 and 7-10 reveals that a greater accuracy in object local-

ization can be obtained by a combination of Ubicarse with VSFM than using either method stan-

dalone. This is because these two methods are highly complimentary and a thoughtful integration

unlocks an effective method for localization refinement (see §7.6). We provide further results on this
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concept in the next section.
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Figure 7-12: Object Localization Accuracy. (a)-(c)Plots CDF of error in object geotagging. (d) Demonstrates

refinement of Device localization using object geo-tagging

� 7.8.5 Refined Tablet Localization using Vision

The previous section suggests that a method to achieve a fine-scaled object position fix is to in-

tegrate an accurate device localization method, Ubicarse, with visual toolkits like VSFM. In this

experiment, we study if this improvement applies both ways, i.e. if device localization can be

refined using inputs from vision toolkits.

Method. Our method for refinement of camera positions derives from the discussion in §7.6. We

transform the camera locations discovered by VSFM into the global coordinate system, using Algo-

rithm 3. We then output the transformed camera locations as the result of Ubicarse’s localization.

Results. Fig. 7-12(d) shows that a Ubicarse plus VSFM integration achieves a significant improve-

ment in localization performance with a median of 15 cm error from ground truth. We report a

median improvement in localization accuracy of 66 % in X, 16% in Y and 86% in the Z dimension.

Therefore, integration of Ubicarse with vision algorithms also serves to improve device localiza-

tion.
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� 7.9 Related Work

Related work falls under two broad categories:

Indoor RF Localization. RF localization have had three main approaches for indoor localiza-

tion: The first require deploying specialized infrastructure to perform accurate indoor localization,

e.g. acoustic [154, 107], RFIDs [179, 178], specialized access points [82], and antenna arrays [188].

The second mandates signal fingerprinting [16, 150, 197] either in a training phase or via crowd-

sourcing [142, 195, 104]. The third advocate modeling the wireless signal instead of measure-

ments [97, 28, 65], but at the expense of accuracy. In contrast to these systems, Ubicarse obviates the

need for new infrastructure or fingerprinting to achieve tens of centimeter of accuracy by emulating

large antenna arrays using only commodity mobile devices.

Ubicarse builds on past work in Synthetic Aperture Radar (SAR) that leverage precise mechani-

cally controlled antennamovements or advancedmotion sensing equipment for radar imaging [50]

and RFID localization [179, 178]. Unlike these systems, Ubicarse provides a new formulation of

SAR that is translation resilient, making it suitable for mobile devices held by users.

Several RF localization papers use mobile motion sensors as hints for localization, either cou-

pledwithWi-Fi signal strength for fingerprinting [187, 16, 142] or with GPSmeasurements [32, 177].

Instead, Ubicarse uses the device’s gyroscope only to measure its relative orientation to help emu-

late antenna arrays and achieves significantly improved accuracy.

Object Geo-tagging. There has been much work in computer vision on stereo-imaging and 3D-

reconstruction to localize objects relative to known camera locations or to find relative locations

of different objects in the same scene [11, 171]. Ubicarse builds on this work, coupled with RF

localization, to obtain object locations in the global frame.

Several solutions for indoor device and object localization have been proposed in the literature

that use specialized hardware, e.g. depth cameras [118] or odometry/laser-based simultaneous

localization and mapping [46], which are unavailable for today’s mobile devices, unlike Ubicarse.

� 7.10 Discussion

We presented Ubicarse, an indoor localization system to achieves tens of centimeters of accuracy

on commodity mobile devices, without requiring specialized infrastructure or fingerprinting.

Ubicarse’s provides a new formulation of SAR that allows mobile devices to emulate an antenna

array; where this formulation is tolerant to unknown translation of the antenna center of up to

half a meter. We implement Ubicarse on a commodity tablet and demonstrate tens of centimeter

accuracy in both device localization and object geotagging in complex indoor settings. We

believe evaluating our system on a wide-range of mobile devices, particularly smartphones, is an
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important task for future work.



CHAPTER 8

New connections between wireless

and robotics

Wireless networks and robotics have a long history. Any multi-robot system requires wireless net-

works to communicate, be it for manufacturing, agriculture, mining or search-and-rescue. Tradi-

tionally, robotics employs wireless networking to simply exchange messages.

This dissertation reveals the benefits of cracking the blackbox open. It tackles important prob-

lems in robotic by effectively using commercial Wi-Fi radios as sensors. We describe algorithms

that effectively sense how wireless signals from a transmitter reflect around obstacles before they

reach the receiver.

These algorithms are at the heart for two novel systems. First, we make the observation that

robots can learn how to avoid obstacles by sensing how radio waves reflect around them. This

enables a novel system where robots that can navigate to improve signal quality by following the

wireless signals emitted by their targets, akin to howmoths navigate towards a lamp, following vis-

ible light. Second, we observe that signals from awireless transmitter carry unique information that

is dependent both on the transmitter’s hardware, its location and its environment (e.g. the location

of obstacles around it). As a result, they can be used to extract fingerprints that remain unique to

specific transmitters. We demonstrate how this primitive enables a natural authentication mecha-

nism for robots to secure against the Sybil attack, where a malicious robot can disrupt a multi-robot

network by pretending to be a large number of fake clients.

We describe the main challenges and core ideas behind both these systems below and highlight

their relation to prior work.

191
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� 8.1 Adaptive Multi-Robot Communication Using Signal Di-

rectionality

Multi-agent robotic systems perform many complex tasks through coordination, such as cooper-

ative search of an environment, consensus, rendezvous, and formation control [33, 80, 129]. As

cooperation is at the core of multi-robot tasks, the performance of these systems directly hinges on

the robots’ ability to communicate reliably. To maintain certain communication guarantees, these

systems need a mapping of communication quality to robot placement. Producing such a mapping

however is quite challenging [113]. State-of-the-art approaches to do so, either assume models that

are mathematically simple such as the Euclidean disk model [33, 80], yet known to be impractical,

or require stochastic sampling along directions counter-productive to the overall coordination goal

of the robots [95, 159].

Chapter 9 presents two key contributions: i) we introduce a novel method for capturing the

spatial variation of wireless signals in the local environment without sampling along counter-

productive directions, or requiring prior information about the environment; and ii) we use this

model to derive a robotic controller that can guide robots to navigate to locations so as to satisfy the

heterogeneous communication demands of other robots in the network. The controller is formu-

lated to maintain the structural (quadratic) simplicity of the Euclidean disk model while adapting

to signals measured in real-world environments.
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Figure 8-1: Multi-robot Network. Picture of a network of two robot routers satisfying the demands of three

clients in an environment with an occluding obstacle whose position is unknown.

Our Approach: Consider a team of robot routers that want to optimize their locations to sat-

isfy the diverse communication demands of clients in a multi-robot network (the classic commu-

nication coverage problem, like in Fig. 8-1). Our approach first calculates a mapping between a

robot’s current position and a profile of signal strength that it receives along each spatial direction,

for every wireless link with other robots. We then design a controller that uses the profile to find

directions of movement that yields better communication quality. Such a profile also helps esti-



SECTION 8.1. ADAPTIVE MULTI-ROBOT COMMUNICATION USING SIGNAL DIRECTIONALITY 193

mate the confidence with which the controller can improve signal power by navigating the robot

along any of these directions. The confidence can then be used to control the speed of the robot,

thereby improving stability and convergence time. Furthermore, the controller can leverage the en-

tire profile of signal strength across directions, to optimize communication with multiple robots by

choosing a direction of movement corresponding to a strong signal that strikes trade-offs between

competing communication demands of different pairs of robots. Interestingly, we show that such

optimizations can be formulated in terms of simple quadratic costs, similar in spirit to the disk

model. Further, they can be made independent of environment-dependent parameters, or even

robot positions.

A key question remains: how do we calculate the signal strength along each spatial direction?

The naive approach would use directional antennas, a type of antenna that receives signals only

from a cone in space. Unfortunately, directional antennas are bulky and have low spatial resolu-

tion [125] (about 60◦), making them ill-suited for small agile robots. To address this problem, we

employ a new form Synthetic Aperture Radar (SAR), a technique that leverages movement to em-

ulate a high-resolution directional antenna [50]. In order to achieve this, we derive a method for

implementing SAR using off-the-shelf wireless cards using single-antenna devices that compacy

robots can carry, a challenging task since these devices are not intended for this purpose.

Chapter 9 details our algorithm to enable a robotic receiver to find the profile of signal strength

across spatial directions for each sender of interest. It describes a new form of synthetic aperture

radar (SAR) using standard Wi-Fi packets exchanged between two independent sintgle-antenna

nodes. It then details an optimization that leverages this directional signal profile to position robotic

routers to satisfy heterogeneous communication demands of a network of robotic clients, while

adapting to real-time environmental changes. Finally, it implements and experimentally evaluates

our design to demonstrate gains in comparison to state-of-the-art approaches: the disk-model and

stochastic sampling.

Relation to prior work. Prior work employs two broad strategies to improve communication

quality in multi-robot networks: On the one hand, there is the Euclidean disk model which as-

sumes that the signal quality of a link is a function of distance between the communicating vehi-

cles. This model is deterministic and simple, and hence when incorporated in a robotic controller,

yields simple positional optimizations for a wide range of collaborative tasks [33, 129, 80]. Un-

fortunately, the Euclidean model is too simplistic and fails to represent wireless signals in realistic

environments [113]. On the other hand, there are stochastic sampling methods [191, 113, 47] that

measure the wireless signal strength in a robot’s vicinity to fit parameters for intricate probabilistic

communication models. While such methods are not oblivious to wireless channels, they require

exploratory sampling [101] along directions that may be counter-productive to the overall coordi-

nation goal. We introduce a system that combines the best of both methods: Like the disk model,
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Figure 8-2: Sybil Attack on Coverage. A server robot provides locational coverage to legitimate clients when

no attack is present. In a Sybil attack, an adversary spoofs many fake clients to draw away coverage from the

legitimate clients.

we do not require prior knowledge of the environment and its obstacles, or a model of channel’s

distribution. Like the stochastic methods, our approach accurately captures actual signal charac-

teristics and hence can help multi-robot systems satisfy their desired communication demands in

real-world environments.

� 8.2 Guaranteeing Spoof-Resilient Multi-Robot Networks

Multi-robot networks rely on wireless communication to enable a wide range of tasks and appli-

cations: coverage [132, 33, 148], disaster management [110], surveillance [18], and consensus [130]

to name a few. For these multi-robot systems to perform their tasks optimally, transmitted data

is often assumed to be accurate and trustworthy; an assumption that is easy to break. A particu-

larly challenging attack on this assumption is the so-called “Sybil attack”, where a malicious agent

generates (or spoofs) a large number of false identities to gain a disproportionate influence in the

network. These attacks are notoriously easy to implement [152] and can be detrimental to multi-

robot networks. An example of this is coverage, where an adversarial client can spoof a cluster of

clients in its vicinity in order to create a high local demand, in turn denying service to legitimate

clients (Figure 8-2). Indeed, traditional network security approaches such as key passing or crypto-

graphic authentication are difficult to maintain due to the highly dynamic and distributed nature of

multi-robot teams where clients often enter and exit the network, leaving them largely vulnerable

to attack [72, 146].

Chapter 10 addresses the challenge of guarding against Sybil attacks in multi-robot networks.

Our core contribution is a novel algorithm that analyzes the received wireless signals to detect the

presence of spoofed clients spawned by adversaries. We call this a “virtual spoofer sensor” as we

do not use specialized hardware nor encrypted key exchange, but rather a commercial Wi-Fi card

and software to implement our solution. These sensors can defend against the Sybil attack, without

requiring expensive cryptographic key-distribution.
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Key Idea. At a high level, our virtual sensor leverages the rich physical information already

present in wireless signals. At a high level, as wireless signals propagate, they interact with the

environment via scattering and absorption from objects along the traversed paths. Carefully pro-

cessed, these signals can provide a unique signature or “spatial fingerprint” for each client, mea-

suring the power of the signal received along each spatial direction (Fig. 10-2). Unlike message

contents such as reported IDs or locations which adversaries can manipulate, spatial fingerprints

rely on physical signal interactions that cannot be exactly predicted [60, 113]. We show how these

derived fingerprints can be readily integrated into a wide variety of multi-robot controllers. Fur-

ther, we derive analytical bounds that provably limit the ill-effects of spoofers on the performance

of these controllers. In particular, we demonstrates this capability in the context of the well-known

locational coverage algorithm [33, 148].

Chapter 10 describes our virtual sensor for spoofing detection which provides performance

guarantees in the presence of Sybil attacks and is applicable to a broad class of problems in dis-

tributed robotics. It shows that the influence of spoofers is analytically bounded under our system

in a coverage context, where each robotic node providing coverage remains within a bounded ra-

dius of its position in the absence of an attack. Our theoretical results are validated extensively

through experiments in diverse settings.

Relation to prior work. Although a vast body of literature is dedicated to cybersecurity in general

multi-node networks (e.g., a wired LAN, see Table 7 in [182])) and wireless networks [81, 194,

189, 192] the same is not true for multi-robot networks [72, 146], leaving them largely vulnerable

to attack. This is because many characteristics unique to robotic networks make security more

challenging; for example, traditional key passing or cryptographic authentication is difficult to

maintain due to the highly dynamic and distributed nature of multi-robot teamswhere clients often

enter and exit the network. Unlike past work, our solution has three attributes that particularly

suit multi-robot networks. (1) It captures physical properties of wireless signals and therefore does

not require distributed key management. (2) It relies on cheap commodity Wi-Fi radios, unlike

hardware-based solutions [189, 194]. (3) It is robust to client mobility and power-scaling attacks.
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CHAPTER 9
Adaptive Multi-Robot

Communication Using Signal
Directionality

There are many projects on today’s frontier that are pushing the capabilities of multi-agent sys-

tems. Swarm robotic systems perform many complex tasks through coordination, such as co-

operative search of an environment, consensus, rendezvous, and formation control [33, 80, 129].

Google’s Project Loon [92], Facebook’s Connectivity Lab [91], and other similar projects [30, 52, 120]

envision using a network of controllable routers to provide wireless communication infrastruc-

ture in remote areas of the world. At their core, these systems rely on coordination between

agents [34, 160, 121, 165], making reliable communication of primary importance. Beyond sim-

ply maintaining connectivity, reliable communication may mean supporting heterogeneous and

possibly time-varying communication rates amongst different pairs of agents. For example, some

agents may need to use the network for transmitting video while others may simply wish to trans-

mit status information.
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Figure 9-1: Multi-robot Network. Picture of a network of two robot routers satisfying the demands of three

clients in an environment with an occluding obstacle whose position is unknown.
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We focus on problems where an auxiliary team of robot routers can be deployed to establish reli-

ablewireless communication to a teamof client agents who are performing an independent task. As

depicted in Figure 9-1, we wish to control the positions of robot routers to establish communication

links that are capable of supporting variable demanded rates to the client agents. The problem of

providing wireless communication coverage amongst multi-robot systems requires tight feedback

between spatial positioning of the robots and sensing of the communication quality. The richer the

information on signal quality, the more effective the control. A key realization makes this problem

very challenging: Robotic tasks leverage mobility in Euclidean space and thus require knowledge

of how position effects communication. However, the relationship of signal quality with spatial

position is notoriously hard to predict due to complex interactions with the environment such as

multipath, where the signal is reflected and/or attenuated by multiple objects in the environment

before arriving at a receiver [113, 60, 101]. Past literature employs two broad strategies to address

this challenge. On the one hand, there is the Euclidean disk model which assumes that the signal

quality of a link is a function of distance between the communicating vehicles. This model is deter-

ministic and simple, and hence when incorporated in a robotic controller, yields simple positional

optimizations for a wide range of collaborative tasks [33, 129, 80]. Unfortunately, the Euclidean

model is too simplistic and fails to represent wireless signals in realistic environments [113]. On

the other hand, there are stochastic sampling methods [191, 113, 47] that measure the wireless sig-

nal strength in a robot’s vicinity to fit parameters for intricate probabilistic communication models.

While such methods are not oblivious to wireless channels, they require exploratory sampling [102]

along directions that may be counter-productive to the overall coordination goal. Further, they of-

ten assume the knowledge of parameters based on the structure and material composition of the

environment.

Actual Wifi Signal Propagation 

True signal strength  

profile 

(a) 

Attenuated Signal 

Obstacle 

Legend 
       Client Agent 

     Robot Router 

Figure 9-2: Wi-Fi Signal Propagation. Schematic drawing of a true signal strength profile in the local envi-

ronment of a robotic router. Large lobes indicate directions of high signal strength.

Our objective is to i) present a novel method to capture the spatial variation of wireless sig-

nals in the local environment without sampling along counter-productive directions, or requiring
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information about the environment or the channel’s distributions and ii) derive a control formula-

tion that maintains the structural (quadratic) simplicity allowed by the Euclidean disk model while

accounting for wireless channel feedback.

First, we introduce an innovative approach for mapping communication quality to robot place-

ment. We calculate a mapping between a robot’s current position and the signal strength that it

receives along each spatial direction, for every wireless link with other robots (see Figure 9-2). This is

in contrast to existing methods [191, 47], which compute an aggregate signal power at each position

but cannot distinguish the amount of signal power received from each spatial direction. Our ap-

proach combines the best attributes of both the Euclidean disk model and the stochastic sampling

methods: Like the disk model, we can compute our mapping without knowledge of the environ-

ment and its obstacles, or a model of the channel’s distribution. Like the stochastic methods, our

approach uses feedback from the actual wireless signals and hence can help multi-robot systems

satisfy their desired communication demands in a real-world implementation. A naive approach

to achieve this would be to mount directional antennas atop the routers; but these antennas are

bulky and prohibitive for small agile platforms [125]. Instead, we present a novel algorithm based

on Synthetic Aperture Radar (SAR) [50], where a single omnidirectional antenna emulates a high-

resolution directional antenna. This chapter presents the first such algorithm for implementing

SAR using off-the-shelf wireless cards in a non-radar setting, a challenging task since these devices

are not intended for this purpose.

Second, we construct an optimization for positioning a team of robot routers to provide commu-

nication coverage over client vehicles using the directional information provided by our mapping.

Being able to measure the profile of signal strength across spatial directions in real-time yields a

much more capable controller. For example, the direction that improves signal strength the most is

immediately attainable from these profiles (see Figure 9-2 for a schematic interpretation). Therefore

as a direct consequence, the controller has access to the gradient of communication quality for each

of its “links”, or neighbors to which it communicates. While in the favorable scenario, there is a

single recommended direction of movement, in real-world implementations it is possible for there

to be multiple such directions due to multipath or even noise that may be affecting the wireless

link. This information is important for gauging the confidence with which the controller can im-

prove signal quality by navigating the robot along any of the recommended directions. To this end,

we present a method for computing a confidence metric from the data and show that this metric

can accurately and automatically identify the three scenarios of strong single-peak, multi-peak, or

noisy peak in actual experimental data. Our control algorithm leverages the gradient directions and

their associated confidences to automatically tune the speed of the robot, improving both stability

and convergence time. Finally, our controller optimizes communication with multiple robots by

choosing a direction of movement corresponding to a strong signal that strikes trade-offs between



200 CHAPTER 9. ADAPTIVE MULTI-ROBOT COMMUNICATION USING SIGNAL DIRECTIONALITY

competing demands.

The result of a tight integration between our wireless signal quality mapping and positional

controller yields algorithms for router placements that do not rely on environment-dependent pa-

rameters, obstacle maps, or even client positions. The overall solution presented is adaptive to

variable communication quality demands by the clients, as well as changes in the wireless chan-

nels due to natural fluctuations or a dynamic environment.

We implement our method in a multi-robot testbed that has two robotic routers serving three

robotic clients. We conduct our experiments in different indoor environments without providing

the robotic controller the environment map or the clients’ positions. We observe the following: 1)

Our system consistently positions the robotic routers to satisfy the robotic client demands, while

adapting to changes in the environment and fluctuations in the wireless channels; 2) Compared

to the disk model [33, 80] and the stochastic approach [95, 159] under identical settings, our

system converges to accurately satisfy the communication demands, unlike the disk model, while

significantly out-performing the stochastic method in terms of empirical convergence rate (see

Fig. 9-14 in Sec. 9.4.5).

Contributions: We present a method to enable a robotic receiver to find the profile of signal

strength across spatial directions for each sender of interest. To this end, we perform synthetic

aperture radar (SAR) techniques using standard Wi-Fi packets exchanged between two indepen-

dent nodes with single omni-directional antennas. We derive a quantitative metric, the confidence,

that can accurately and automatically identify the presence of multipath or noise for each commu-

nication link. This provides valuable information to the controller in gauging the effectiveness of

each recommended direction of movement in improving communication quality. We develop an

optimization that leverages the directional signal profiles and their confidences, to position robotic

routers to satisfy heterogeneous (and possibly variable) communication demands of a network of

robotic clients, while adapting to real-time environmental changes. Finally, we provide aggregate

empirical data to show that our method outperforms existing Euclidean disk or Stochastic sam-

pling methods both in convergence time (3.4× faster) and variability of performance (4× smaller

variance).

� Organization

Section 9.1 presents a formulation of the router placement problem for achieving communication

coverage for clients with heterogeneous demands. The following sections describe each component

of our solution to the problem:

• Section 9.2 derives a new method for measuring rich directional information from wireless

channel feedback.
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• Section 9.3 presents an algorithm for finding a configuration of routers that balances the net-

work, i.e. maximizes the signal quality of the weakest link for a fair network.

• In Section 9.3.2 we derive a confidence metric using channel feedback, that captures the ef-

fects of multipath and noise.

Finally, Section 9.4 experimentally evaluates our approach against the disk model and stochastic

sampling methods.

� 9.1 Problem Statement

We consider a mobile network with two classes of members, n robotic clients (or clients) whose

positions are not controlled, and a team of k robotic routers whose mobility we control. Our goal is

to position the robotic routers to provide adaptive wireless communication coverage to the clients,

while allowing variable communication quality demands for all clients, and where exact client po-

sitions are unknown. For each client j ∈ [n] = {1, . . . , n}, we define demanded communication qual-

ity qj > 0, and achieved communication quality ̺ij to each router i (where i ∈ [k]), both expressed

in terms of Effective Signal to Noise Ratio (ESNR) that has a direct mapping to rate in Mb/s [67].1 Ad-

ditionally, let every client j be given an importance αj > 0. We allow all quantities in this section

(ie. qj , ̺ij , αj) to be time dependent though we omit this dependency henceforth for simplicity.

We define the notion of service discrepancy for each pair of robots (i, j) to be the difference be-

tween the demanded and achieved communication quality scaled by the importance of the client.

wij = max(αj(qj − ̺ij)/qj,0) (9.1)

Physically, this is the fraction of the client’s communication demand that remains to be satisfied,

scaled by αj . Denote by ci ∈ R
d the position of the ith robot router and by pj ∈ R

d the position of

the jth client and Ct = {c1,t, . . . , ck,t} is the set of all router positions at time t. In this chapter we

give explicit treatment to the case for d = 2 although all concepts are extensible to d = 3.

� 9.1.1 Problem Formulation

Given a cost g in terms of signal quality, communication demands, and agent positions, we wish

to position each robotic router to minimize the largest discrepancy of service between routers and

clients. However, the true form of this function g has an intricate dependence on the position of

the client, router, and the environment. Thus an inherent challenge to solving this problem is ap-

proximating the influence of spatial positioning on communication quality that generalizes across

environments. Our goal is to 1) find fij : [−π,π]→ R (a relation capturing directional information

1ESNR is a continuous signal quality measure that has a one-to-one mapping to the maximum data rate
supported by a link [67]. We work with ESNR values rather than rates since the latter are discretized (non-
continuous).
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about the signal quality between i and j), and an approximation g̃ of g, which is a cost, charac-

terizing the anticipated communication quality for the router-client pair (i, j) at a proposed router

position ci, and 2) use this cost to optimize router positions to minimize the service discrepancy to

each client. Formally,

Problem 1 Find i) a mapping fij : [−π,π] → R that maps spatial direction to wireless signal strength
directly from channel measurements, and ii) a cost

g̃(ci,Ct,wij , fij) > 0 (9.2)

that is independent of the environment and satisfies the following properties:

• Property 1: All link costs g̃ are quadratic.
• Property 2: Minimization of a link cost g̃ over ci directly relates to increasing signal quality for client
j and optimization over all link costs g̃ allows trade-offs between clients with competing demands.

• Property 3: The link costs g̃ are independent of client positions pj .

Given a known number k of routers, client demands qd, and the mapping fij for all links in the network,
position routers to minimize the worst-case link. Specifically, we aim to find a position for the routers that
minimizes the maximum service discrepancy by solving for C in the following problem:

Ct+1 = arg min
ci∈C
{max

j
min
i
g̃(ci,Ct,wij , fij)} (9.3)

Intuitively, the solution to this optimization problem favors a “fair” network. Specifically, the

solution aims to minimize the “worst service discrepancy” among clients in the network, at any

point in time. The worst service discrepancy is given mathematically by the bracketed expression

in Equation (9.3) and can be understood intuitively as follows: 1) The service discrepancy of a

router-client link captures the difference between the measured quality of the link and the client’s

demanded communication quality (see Equation (9.1)). 2) Each client is served by a router that

offers the minimum service discrepancy to it, at any given time (the innermost min over i in Equa-

tion (9.3) above). 3) The worst service discrepancy, is the maximum service discrepancy among all

clients to their chosen routers in the network (the inner max over j in Equation (9.3)). Notice that

the client with the worst service discrepancy may change at any point in time, depending on the

configuration of the routers. The optimal configuration of the routers (given by the outer argmin

term), is therefore the configuration that best satisfies communication demands across the entire

network.

� 9.1.2 Problem Scope

We specify that our aim in this chapter is to position mobile routers to establish a communication

network whose links have high enough ESNR to support given client communication demands, qd.

In other words, we are interested in providing the infrastructure to support the requested quality

of communication. This is in contrast to solving for routing protocols that would optimize the

communication traffic over the infrastructure to ensure successful message passing from a sending

node to a receiving node. While this is another common metric of connectivity, it is often times
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treated as a layer on top of an existing communication infrastructure and is an out-of-scope problem

with a vast body of dedicated literature (See [49] for an example of routing in robotic networks).

Finally, we assume throughout that router-router links are high capacity and that router-client links

are the limiting factor that must be optimized.

We dedicate the next sections of this chapter to 1) Developing a method that computes fij as

the profile of signal qualities along each direction θ for each link (i, j) found directly from channel

measurements; and 2) Developing an optimization framework that utilizes this directional infor-

mation to handle trade-offs between competing client demands, and position all routers to jointly

minimize the maximum service discrepancy across links in the network.

� 9.2 Directional Power Profile of a Wireless Link

In this section, we develop the first component of the solution of Problem 1; namely, we derive

a method to calculate f(θ), the mapping to capture the signal strength from a robotic client to its

router along each direction θ, where this mapping can be updated often, roughly once every 6cm

of motion.2

Figure 9-3: Directional Power Profiles. (a)/(c) LOS and NLOS topologies annotated with signal paths. (b)/(d)

f(θ) of the signal in LOS and NLOS. (e) Shows how θ is defined in SAR. (f) Shows h(ti), the forward channel

from transmitter to receiver and hr(ti), the reverse channel from receiver to transmitter at time ti.

Before we explain how we compute f(θ), we describe this function to help understand what it

captures. Assume we have a robotic client and router, where the router moves along some trajec-

tory. We will define the direction θ relative to the tangent to the router’s trajectory at each point.

Consider the scenario in Fig.9-3(a), where the robotic client is in line-of-sight at−50◦ relative to the

2For simplicity, we denote fij(θ) as f(θ) as we consider only the single link between robotic router i and
client j for the rest of this section.
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robotic router, which is moving along the horizontal axis. In this case, one would expect f(θ) to

have a single dominant peak at −50◦, as shown in Fig.9-3(b). Now consider the more complex sce-

nario in Fig.9-3(c), where the environment has some obstacles and one of these obstacles obstructs

the line-of-sight path between the router and its client. In this case, f(θ)would show two dominant

peaks at 20◦ and −30◦ that correspond to the two reflected paths from surrounding obstacles, as

shown in Fig.9-3(d).

Advantage over SamplingMethods: Onemay estimate f(θ) by sampling the signal power similar

to stochastic techniques [191, 95, 159]. In this case, one has to move the router along each direction,

compute the power in all these new positions relative to the first, and draw the profile f(θ). Unfor-

tunately, this approach leads to much wasted exploration. This is because the signal power does

not change reliably when the robot moves. For example, if the robot moves for 5 or 10 centime-

ters, it is very likely that the resulting change in the signal power is below the variability in noise.

Hence, measurements of power over short distances are likely to be marred by noise or phenomena

that affect the signal strength locally such as deep fades [199] (due to reflections of the signal at the

receiver interfering constructively or destructively). To obtain reliable measurements of changes in

the signal power, the robot has to move significantly along potentially counter-productive paths.

To address this limitation, our approach relies on the channel phase as opposed to the power.

Specifically, at any position the wireless channel can be expressed as a complex number h(t) [141].

The magnitude of this complex channel captures the signal power (more accurately, its square-

root). The phase of the channel has traditionally been ignored by robotic systems. However, the

phase changes rapidly with motion. For Wi-Fi signals at a frequency of 5 GHz, the phase of the

channel rotates by π every 3 cm. This far exceeds any rotation due to noise variability. Thus, by

measuring channels as complex numbers and tracking changes in its phase as the robot moves,

we reliably estimate signal variation without much exploration. In the next section, we explain

how to use a technique called synthetic aperture radar (SAR) to extract the received signal strength

along each direction from changes in channel phase. Note that SAR does not need exploration in

all directions; the robot can move along its path without extra exploration or sampling. SAR uses

the resulting variations in channel phase over distances of a few centimeters to find f(θ).

� 9.2.1 Synthetic Aperture Radar (SAR)

Synthetic Aperture Radar (SAR) enables a single antenna mounted on a mobile device to estimate

the strength of the signal received along every spatial direction. As explained in Section 9.7.2, SAR

employs a single moving antenna to emulate a multi-antenna array and compute the directional

profile of signal strength f(θ) (See Figure 9-4). Therefore, we can leverage the natural motion of

a robotic router to implement SAR and measure f(θ) for each of its robotic clients using a single

omni-directional antenna. To do so, the robotic router measures the channel h(t) from its client as it
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moves along any straight line. The straight line path over which the router acquires data is on the

order of half a wavelength (centimeters); assuming the source is stationary and the router either

moves at a known constant velocity or its position is known for the traversal time window, then a

sufficient amount of usable channel data can be collected. This means every few centimeters the

router can have an updated measurement of f(θ), for all values of θ.

Figure 9-4: Emulating a Directional Array. Schematic representation of our method for emulating a direc-

tional antenna array with a single omni-directional antenna attached to a mobile off-the-shelf platform.

Specifically, Let h(t) for t ∈ {t0, . . . , tm} be the m+ 1 most recent channel measurements, cor-

responding to the robot whose displacement from its initial position is d(t0), d(t1), . . . d(tm). SAR

computes the received signal strength across spatial directions f(θ) as:

f(θ) =
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, (9.4)

where λ is the wavelength of the Wi-Fi signal. The analysis of this standard SAR equation may be

found in [162]. At a high level, the terms e−j
2π
λ
d(t)cosθ in Eqn. 9.4 project the channels h(t) along the

direction of interest θ by compensating for incremental phase rotations introduced by the robot’s

movement to any path of the signal arriving along θ.

Note that SAR finds the signal power from every angle θ simply by measuring the channels,

without any prior tuning to the given direction. Of course, the resolution at which θ is available

depends on the number of channel measurements. In fact, moving by around a wavelength (about

6 cm) is sufficient to measure the full profile of f(θ).

Therefore, SAR is a natural choice for autonomous robotic networks since it exploits the mobility

of the robots to compute f(θ). Further, it only requires the robot to move along a small straight line

along any arbitrary direction, and does not require it to explore directions counter-productive to

the overall coordination goal. Note that SAR requires only the relative position of the robotic router

d(t) and both the magnitude and phase of the channel h(t). It does not require the topology of the
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environment nor the exact location of the transmitter.

� 9.2.2 Algorithm for Performing SAR on Independent Wireless Devices

A key challenge in adapting SAR to multi-robot systems is that all past SAR-based solutions [50,

179, 9] are for radar-like applications, where a single device transmits a radar signal and receives its

reflections off an imaged object, e.g., an airplane. However, in our scenario the transmitter and re-

ceiver are completely independent wireless devices (i.e., the robotic client and router, respectively).

This means that the transmitter robot and the receiver robot have different frequency oscillators. In

practice, there is always a small difference between the frequency of two independent oscillators.

Unfortunately, even a small offset ∆f in the frequency of the oscillators introduces a time varying

phase to the wireless channel.

For instance, let h(t0), h(t1), . . . , h(tm) be the actual wireless channel from the robotic client to

the robotic router at times t0, t1, . . . , tm. The channel observed by the router from its client ĥ(t0),

ĥ(t1), . . . , ĥ(tm) are given by:

ĥ(t0) = h(t0), ĥ(t1) = h(t1)e
−2π∆f (t1−t0), . . . ,

ĥ(tm) = h(tm)e−2π∆f (tm−t0). (9.5)

Hence, the phase of the channels are corrupted by time-varying values due to the frequency

offset between the transmitter and the receiver. Fortunately, we can correct for this offset using the

well-known concept of channel reciprocity [141]. Specifically, let hr(t) denote the reverse channel

from the robotic router to its client, as shown in Fig. 9-3(f). Reciprocity states that the ratio of the

forward and reverse channels stays constant over time, subject to frequency offset, i.e. hr(t) = γh(t),

where γ is constant. Further, the frequency offset in the reverse direction∆r
f is negative of the offset

in the forward direction, i.e. ∆r
f = −∆f . Thus, the observed reverse channels ĥr(t0), ĥr(t1), . . . ,

ĥr(tm) are given by:

ĥr(t0) = hr(t0), ĥ
r(t1) = hr(t1)e

2π∆f (t1−t0), . . . ,

ĥr(tm) = hr(tm)e2π∆f (tm−t0). (9.6)

Multiplying Eqn. 9.5 and 9.6 and using hr(t) = γh(t), we have ĥ(t)ĥr(t) = h(t)hr(t) = γh(t)2 ⇒
h(t) =

√

ĥ(t)ĥr(t)/γ. Hence we re-write Eqn. 9.4 as:

f(θ) =

∣

∣

∣

∣

∣

∑

t

√

ĥ(t)ĥr(t)e−j
2π
λ
d(t)cosθ

∣

∣

∣

∣

∣

2

, (9.7)

where the constant scaling γ is dropped for simplicity. Hence, to measure f(θ), the router and client

simply need to measure their channels at both ends. In practice, the router and client transmit back-

to-back packets with a small gap δ ≈ 200µs to obtain ĥr(t+ δ) and ĥ(t), respectively. The router
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collects these values and approximates ĥ(t)ĥr(t) as ĥ(t)ĥr(t+ δ)e−j2∆f δ . The router computes this

10 times per second (an overhead of just 0.1%). Algorithm 4 summarizes our above approach to

compute the signal strength profile fij(θ) for a general wireless link (i, j).

We note the following important points about Algorithm 4: 1) It requires as input the relative

displacement of the robot router d(t) from its initial position at t = 0. In particular, if the robot

moves at a known constant velocity v for the duration of SAR (i.e., corresponding to a total dis-

placement of few cm), the algorithm only requires this velocity v, since it can readily compute the

relative displacements as: d(t) = vt. 2) While the algorithm requires the client to be static, this re-

quirement is only necessary for the duration that the router performs SAR (i.e., corresponding to a

total router displacement of few cm). We note that i) the assumption of static channels is also neces-

sary for stochastic sampling based methods since the channels and (thus sampled signal strengths)

change otherwise and must be re-sampled and ii) the time scales are largely different between our

proposed method and existing sampling methods; specifically, because our method allows for the

attainment of rich channel data after a comparatively short measurement period, changes in the

environment can be quickly adapted to.

In the following section, we explain how we leverage the signal strength profiles fij(θ) on each

link (i, j) output by Algorithm 4 to control the position of multiple robotic routers to meet the

clients’ communication demands.

4 Algorithm for finding directional signal strength profile for a wireless link (i, j)

⊲ Input: Wireless Channels on the forward link hij(t), and reverse link hrji(t) and robotic router’s
displacement from its initial position di(t) at times t = t0, . . . , tm on link (i, j)

⊲Output: A vector of directional signal strength values fij ∈ R
l for l discrete directionality angles

in [0, π]
for t ∈ {t0, . . . , tm} do

h̃ij(t)←
√

hij(t)hrji(t)

end for
for θ ∈ {0, π

l−1 ,
2π
l−1 , . . . , π} do

fij(θ)←
∣

∣

∣

∑

t h̃ij(t)e
−j 2π

λ
di(t)cosθ

∣

∣

∣

2

end for

� 9.3 Communication Coverage Controller

In this section, we target the problem of placing a team of mobile router vehicles at locations such

that they providewireless coverage to client vehicles, eachwith different communication demands.

Specifically, using as input the channel feedback fij(θ) derived in the previous section, we aim to

find a function g̃ that can be optimized over router positions such that:
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Ct+1 = argmin
C
{max

j
min
ci∈C

g̃(ci,Ct,wij , fij)}. (9.8)

Where Ct are current router positions and wij are the current service discrepancies.

Our focus in this section is to find communication link costs g̃ that have the three desirable

properties 1, 1, 1 from Section 10.1.

We show how to capitalize the rich spatial information provided by fij(θ), to derive a cost g̃

for each link possessing these three desired qualities. The resulting cost can then be optimized to

complete our objective of robot router placement that best satisfies the communication demands of

the clients.

� 9.3.1 A Generalized Distance Metric

We turn attention to the derivation of a quadratic cost whose minimization will improve signal

strength. We derive a generalized distance that encodes the direction of steepest descent and the

confidence around this direction. We begin with the case where all positions are known and extend

to the position independent case in Section 9.3.5.

Consider a single router-client pair (i, j) located at positions (ci, pj). A Euclidean disk model

approach similarly assigns distance, in the Euclidean sense, to be the cost of each communication

link in the network. However, this disk model approach does not use fij(θ) at all. Instead, it relates

improving communication quality between the router and client to reducing the Euclidean distance

between them, i.e. edges in the network take the cost g̃ := dist(pj , ci). The appeal of such a cost is

in its simple quadratic form that can be easily optimized. Unfortunately, the cost is oblivious to the

actual wireless channel at the client and fails to capture the current service discrepancy which can

be large even at small distances (say, due to obstacles).

Our system avoids this pitfall, while retaining simplicity, by incorporating real-time channel

feedback into a generalized distance metric. Intuitively, we employ a distance metric that effec-

tively “warps” space so that the shortest distance for enabling better communication between two

robots is not the straight line path between them, but rather the path along the θmax, the direction

of maximum signal strength from the mapping fij(θ). The advantage of using this distance metric

as compared to a Euclidean distance metric becomes clear when an attenuating obstacle blocks the

straight line communication path as shown in Figure 9-5.

Importantly, the recommended heading direction ~vθmax may exhibit variation due to noise or

multipath on the wireless link. To account for these effects, while not over-fitting to noise, we

leverage the entire fij signal profile to design a confidence metric σij in the recommended heading

direction. The exact form of the confidence metric is derived in the following section. The purpose

of this confidence metric is to incorporate second-order information from fij that captures the pres-
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Figure 9-5: Euclidean vs. Mahalanobis Distance. Schematic depiction of the use of channel feedback for

assigning cost to communication links in the network where edge cost is shown as circular contour lines.

On the left, a Euclidean distance metric assigned lowest cost to the straight-line direction, whereas using the

Mahalanobis distance (right) skews the distance contours to identify the direction about ~vθmax as the lowest

cost. The amount of skew in the contour lines is determined by the confidence metric derived in Section 9.3.2.

ence of noise, or multipath, and can be used to alter the behavior of the controller accordingly (see

Section 9.3.2). By using a Mahalanobis distance metric for assigning costs to each communication

edge in the network, we can encode both the recommended heading direction and its confidence.

The mathematical definition of the Mahalanobis distance is:

Mahalanobis Distance Given a positive definite matrix M ∈ R
d×d, a vector x ∈ R

d, and a vector

y ∈ R
d, the Mahalanobis Distance between x and y is:

distM (x, y) =
√

(x− y)TM(x− y) (9.9)

Euclidean distance is a special case of the Mahalanobis distance (see Fig. 9-8(a)) withM = I where

I is the identity matrix of appropriate dimension.

Here, M = QΛQT is a positive-definite matrix, where Q consists of orthogonal eigen-vectors

and Λ contains their corresponding eigen-values. By a careful construction of the matrixM , we can

encode channel feedback as a quadratic Mahalanobis distance cost for each communication link in

the network. This construction requires both the recommended descent direction ~vθmax from fij(θ),

and the confidence metric σij that is also computed from fij(θ) in the following section.

� 9.3.2 Confidence Metric from Channel Feedback

We design a parameter σij that is derived from the mapping fij(θ) and that we refer to as a confi-

dence in the recommended heading direction ~vθmax . Intuitively, σij captures the“variance” of fij(θ)
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around θmax. We define σij mathematically as the ratio of two quantities, σf ij and σN ij . We define

F =
∑

θ∈{−90,...,90}
f(θ) (9.10)

σf ij =
∑

θ∈{−90,...,90}
(θ− θmax)

2 f(θ)

F
(9.11)

σNij =
∑

θ∈{−90,...,90}
(θ− θmax)

2F

L
(9.12)

σij =
σf ij
σNij

(9.13)

where L is the total number of θ values that make up the plot fij(θ). The term σf ij is the variance

of the plot fij around its maximum θ = θmax and σNij is a normalization factor (it is the variance

around θmax in the case that the mass under the fij(θ) curve was distributed evenly over the θ val-

ues). The ratio of these two quantities, σf ij/σNij , characterizes the amount signal strength (mass

under the fij(θ) curve) that is concentrated under the peak direction θmax versus the remaining

parts of the curve. A ratio of σf ij/σNij = 1 would mean that the fij(θ) plot does not provide evi-

dence that the max direction θmax is of much significance and that indeed the plot is entirely noise.

On the other hand a ratio σf ij/σNij < 1 indicates that a significant portion of the signal strength

curve in fij(θ) is concentrated around the max θmax and thus this peak is considered to have “high

confidence.” Lastly, the case where σf ij/σNij > 1 indicates the presence of high signal strength in

other parts of the fij(θ) curve other than the θmax direction which suggests the presence of multi-

path. These three scenarios are demonstrated empirically in Figure 9-6 where three actual fij(θ)

plots are automatically identified as being single peak “high confidence”, multiple peak “noise”,

and multiple peak “multipath” scenarios respectively, by computing the ratio σij for each plot. The

figure demonstrates a graphic depiction of this ratio where areas of the fij(θ) plot above and below

the uniform variance line determine the confidence value (compare with Equations in (9.10)).

We define these three cases below for reference:

Confidence Confidence in the direction of highest signal strength θmax. We define three cases cap-

tured by our confidence metric σij =
σf ij

σNij
:

• High confidence peak: σij < 1

• Noise: σij ≈ 1

• Multipath: σij > 1

See Figure 9-6 for examples of these regions identified automatically from actual experimental data.

Experimental results in the basement of the Stata Center building on theMassachusetts Institute

of Technology campus show that the regions of high confidence, noise, and multipath defined

above can be identified automatically from data using the confidence metric from Eq. (9.13) (see
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Figure 9-6: Directional Power Profiles. These plots show directional signal strength profiles from actual

experiments. They demonstrate how the confidence metric identifies cases of high confidence, low confidence,

and multipath automatically from the fij signal strength profile. The dotted red line is the variance,σNij , of

a uniform signal strength profile fNij(θ) = 1/L centered around θmax. Comparing the variance (bottom row)

σf ij to σNij indicates which of the three cases are occurring in the fij plot (top row): high confidence θmax

(σf ij < σNij ), low confidence (noise) θmax (σf ij ≈ σNij ), or multipath around θmax (σf ij > σNij ).

Figure 9-7a). As expected, areas of the environment with no significant occlusions to the client

agent show strong evidence of high confidence profiles. Areas such as corridors with potential

occlusions due to walls and corners show a much higher incidence of multipath, about 90% in the

worst case.

An important observation from the data in Figure 9-7a is that even in line-of-sight regions of the

environment (relative to the position of the client) there may be significant multipath present due

to reflections from nearby concrete walls and this may cause the direction profile to have peaks in

heading directions that are non-intuitive. Therefore this data suggests that metrics relying solely

on the geometry of the environment, including visibility graphs, do not adequately capture the

complexities of wireless signal quality in general environments.

� 9.3.3 Construction of Communication Link Costs

Our objective here is to construct the Mahalanobis distance matrix Mij for each communication

link (or edge) in the network using fij(θ). Specifically,

Problem 2 (Computation ofMij) For each communication link (i, j) in the network where i ∈ [k] and
j ∈ [n], find a heading direction ~vθmax , a confidence metric σ, and a construction ofMij such that setting the
edge costs g̃ from Equation (9.8) to g̃ := dist2Mij

(pi, cj) satisfies Properties 1-1.

The direction along which the signal strength is maximum, θmax, is characterized by a peak in

the fij(θ) plot and we define ~vθmax to be the unit vector along this recommended heading direction
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Figure 9-7: Confidence Metric and Control Actions. Figure (a) shows data collected for a one-link system of

one router and one client where the client is stationary at the top right corner of a basement environment and

a mobile router is driven in a lawnmower pattern throughout the environment through line-of-sight and non-

line-of-sight regions. Each colored data point represents an acquired directional signal profile (two example

profiles are shown) and the color of the data point is the result of automatic mode detection from the data

using the confidence metric from Eq. (9.13) where red=noise, yellow=multipath, and green=high confidence

peak. In (b) the resulting edge cost contours ( Equation (9.14)) and actual control command at each point in

the environment is shown. Confidence values have a direct effect on velocity (as indicated by arrow length)

where confident directions are pursued more aggressively.

θmax. Using this direction alone does not provide enough information for effective position control

of the routers however, due to the fact that this direction may experience corruption due to noise or

multipath. In the previous section we showed that the presence of multipath or noise in the fij(θ)

plot can be identified via the computation of a confidence metric σij . Now, we encode the quantity

σij into our controller such that ~vθmax directions of high confidence are followed more aggressively

(larger displacements along these directions), and the opposite is true of ~vθmax directions with low

confidence. Figure 9-7b shows the effect of the confidence value on the commanded displacements

made by the controller in an actual implementation.
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Figure 9-8: Euclidean vs. Mahalanobis Level Sets. These plots show the level sets of a Euclidean distance

function and a Mahalanobis distance function.
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Specifically, for the three categories of σij we desire the following behaviors for the routers: 1)

σij < 1: Indicates a high confidence in ~vθmax due to a sharp peak in fij . The robot is moved at higher

speeds; 2) σij ≈ 1: Indicates that fij is noisy, so the robot moves slowly; 3) σij > 1: Indicates that

fij has multiple significant peaks owing to multi-path. We study this last case in Sec. 9.3.4., and

particularly the opportunity it presents for making trade-offs between clients.

We use the heading direction and confidence to design a cost function g̃ that locally captures

the cost of communication in the spatial domain. We express this cost as a Mahalanobis distance.

The square of the Mahalanobis distance is a cost function (paraboloid) with ellipsoidal level sets

(Fig. 9-8). We design our cost by orienting these level sets so that the direction of steepest descent

is along ~vθmax . We then skew the ellipsoidal level sets using the confidence σij , so that a higher

confidence translates to a steeper descent which leads to larger router displacements (speed) in the

descent directions with high confidence.

Algorithm 5 provides a calculation of the matrix Mij from Problem (2). We simply set one of

the eigen-vectors of Q to the heading direction ~vθmax . To skew the ellipsoid, we set the ratio of

the eigen values {λ1, λ2} in Λ to the confidence σ2
ij , i.e. λ2/λ1 = σ2

ij , where λ1 is the eigen-value

corresponding to ~vθmax . For example, in Fig. 9-8(b), where σij ≈ 1 (i.e. poor confidence), the level

sets are nearly circular, leading to a shallow descent in cost; while Fig. 9-8(c), where σij < 1 (i.e high

confidence), the level sets are skewed, leading to a steep descent in cost along ~vθmax . In other words,

the cost function has an elegant geometric interpretation, akin to Euclidean distance, but is derived

directly from channel measurements. Further, the cost function g̃ := dist2Mij
(pi, cj) from Eqn. 9.9 is

quadratic, a desirable property for optimizations.

5 Algorithm for constructingMij from channel feedback.

⊲ Input: Directional signal strength map fij for every link (i, j) from Algorithm 4
⊲ Output: A matrix Mij for defining communication edge costs in Equation (9.8) using Maha-

lanobis distance from Problem 2.
Qij = [~vθmax ,~vθmax⊥

] ⊲ a set of orthonormal basis vectors defined using ~vθmax

σij =
σf ij

σNij
⊲ confidence in the ~vθmax direction

Λ = diag([ 1
σ2
ij

,1]) ⊲ Construct a diagonal matrix using confidence

Mij = QijΛQ
T
ij

� 9.3.4 Network Trade-offs

In this section, we show how our optimization framework readily extends to amulti-agent scenario

and study the different trade-offs. We show that via the setting of two parameters, both set auto-

matically from wireless channel data, the resulting positional controller can be made to greedily

optimize one client’s needs or alternatively, strike trade-offs between multiple clients. First, we fo-

cus on managing service discrepancies specified by wij . The quantity wij aims to bias the controller

by assigning higher weight to users with larger service discrepancies. To do this, we scale the cost
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function g̃ = dist2Mij
(pi, cj) by the square of the discrepancyw2

ij to optimize yield the network cost:

rM (P,C) = max
pj∈P

min
ci∈C
{w2

ijdist
2
Mij

(pi, cj)} (9.14)

Second, we highlight the subtle role played by the confidence σij in managing network trade-

offs. For instance, consider a scenario with two clients: 1 and 2, where client-1 demands greater

communication quality (as specified by wij ’s). Suppose client-1 has a highly confident ~vθmax as

shown in Fig. 9-9(a) (i.e σij < 1). As expected, the robotic router is directed towards client-1 as

shown in Fig. 9-9(c). In the more interesting scenario in Fig. 9-9(b), client-1’s confidence is poor

due to multiple peaks in the signal profile fij (i.e σij > 1). Here, the router strikes a trade-off

and services client-2 instead, as this may potentially benefit client-1 as well due to the multipath

recognized in client-1’s fij(θ) map. The intuition behind this is simple. Equation 9.14 above, scales

the ellipsoidal cost function based on the discrepancies wij ’s. However, recall that the ellipsoidal

cost function is steep (or shallow) depending on whether the confidence is high (or low) and this is

attained by setting the ratio of eigenvalues λ2/λ1 ofMij (See Line 5 in Algorithm 5). In extremely

low confidence scenarios such as Figure 9-9(b), the higher value of discrepancy of client-1 is masked

by its low value of confidence. Hence, this balances the trade-off in favor of client-2, despite having

a lower discrepancy.
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Figure 9-9: Trade-offs between Clients. (a)− (b) show the fij(θ) map for the high demand client; (c)− (d)

show the optimized router direction

Algorithm 6 demonstrates how the cost in Equation (9.14) can be used to find an updated set of
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router positions when both client and router positions are known at the current iteration.

The optimization in Equation (8) in Algorithm 6 is equivalent to a k-center optimization prob-

lem where the distance metric is a Mahalanobis distance. This is a generalized router placement

problem similar to that studied in [57] for Euclidean distances. Thus the returned solution from this

algorithm is the optimal placement of routers corresponding to the optimal assignment of routers

to clients, given the channel feedback at the current iteration t.

6 Algorithm for router placement with known client positions.

⊲ Input: Directional signal strength map fij(θ) for every link (i, j), demand qj , relative impor-
tance αj > 0 for client j, current quality of each link ρij , and current router and client positions
P = {p1, . . . , pn}, C = {c1, . . . , cn}

⊲ Output: A configuration of optimal router positions C∗, |C∗| = k, given the current channel
feedback for all links in the network.

for all links (i, j) in the network with ρij > 0, i ∈ [k],j ∈ [n] do

wij = max(αj
qj−ρij
qj

,0)

Mij = result of Algorithm 5
end for
Compute:
C∗ = argminC{maxpj∈P minci∈C w

2
ij(pi − cj)TMij(pi − cj)}

Return C∗

� 9.3.5 A Position-Independent Solution

A simple relaxation to the cost from the previous section frees the optimization of using client posi-

tions, while maintaining its simple structure and desirable properties developed above. Consider a

user specified step-size γ > 0, that encodes the maximum permissible displacement for each router

and denote ci,t to be the current router position. We replace client positions pj in Equation (9.14)

with “virtual” positions p′ij :

p′ij = ci,t + γwij~vθmax . (9.15)

Intuitively, a client is no longer directly observed but rather estimated to be along the relative

direction ~vθmax and at a distance of γwij with respect to the ith router. As before, ~vθmax is the heading

direction associated with the maximum strength signal direction θmax. As a client’s demand is

better satisfied by router i, the service discrepancy wij tends to 0 and the client is perceived as

being closer to router i. The observation here is that routers better equipped to service a particular

client as reflected by the wij term, will view the client as “closer” and those routers with a weaker

signal to the same client will view this client as farther away. This results in a natural method of

assigning client nodes to routers by effectively sensing over the wireless channels.
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� 9.3.6 Controller for Router Positioning

We now present an algorithm for achieving router positions that minimize the edge costs g̃ derived

in the previous sections. Particularly we formulate g̃ from Equation (9.3) to be

g̃(ci,Ct,wij , fij) = (p′ij − ci)TMij(p
′
ij − ci) (9.16)

Where the dependence of g̃ on Ct, wij and fij are captured indirectly by p′ij andMij via Equa-

tion (9.15) and Algorithm 5 respectively. This choice of edge costs satisfy Properties 1-1. Namely,

having a quadratic form, allowing optimization over the entire network with competing demands,

and being independent of client positions. As described in Section 10.1, minimization of these edge

costs by Equation (9.3) results in the optimization of a network-wide metric, ie. minimizing the

worst-case client service discrepancy.

The resulting optimization framework can be shown to exhibit other desirable properties rel-

ative to the instantaneous wireless channels over the network. An important remark is that we

do not make assumptions on how the wireless channels may change over time, nor do we make

assumptions on the underlying signal quality function in areas of the environment that are not

currently being sensed by the routers. Unfortunately, this impairs our ability to prove certain de-

sirable controller attributes such as convergence, that would require some additional assumptions

on the signal quality such as a guarantee that this function is smooth, and can be strictly improved

at every iteration. Such assumptions would be invalidated by small-scale fading alone [101, 60] , in

real wireless systems. However, by relying solely on instantaneous channel feedback, we retain the

important ability to adapt quickly to changes in the wireless environment due to dynamic obsta-

cles, for example. Based on current channel feedback, we highlight our controller’s network-wide

properties. The following properties, and convergence to client demanded rates, are demonstrated

extensively in actual implementations in the next section of the chapter:

Property 1 The assignment of routers to clients is optimal based on the current feedback over wireless links
in the network.

This can be seen from the observation that Line 10 from Algorithm 7 is the classic k-center solu-

tion [57, 44] under the Mahalanobis distance metric. A k-center solution will assign clients to their

closest routers. In this case “closest” is defined in the signal quality sense where routers serve the

clients to whom their signal strength is greater than the signal strength between any other router

in the network to the same client. An example of this property in an actual hardware implementa-

tion can be seen in Section 9.4.3-9.4.4 where routers choose clients based on the strengths of their

relative wireless links.

Property 2 Stability of router positions to solutions that satisfy client demands over the network.



SECTION 9.4. EXPERIMENTAL RESULTS WITH MOTION CAPTURE SUPPORT 217

Our final cost takes the form:

rM (C) = max
j∈{1,...,n}

min
ci∈C
{dist2Mij

(ci,t + γwij~vθmax , ci)} (9.17)

By expanding the squared per-link cost dist2Mij
(ci + γwij~vθmax , ci) from Eqn. 9.14:

(ci − ci,t)TMij(ci − ci,t)− 2γwijλθij~v
T
θmax

(ci − ci,t) + γ2w2
ijλθij (9.18)

we note that as wij → 0 the first term in Eqn. (9.18) favors stable solutions where ci = ci,t, ie. the

router reaches a static solution when all of its assigned clients have zero service discrepancy. In the

case where it is not possible to satisfy all client demands, for example if there are not enough routers

k to provide communication coverage to the clients, Algorithm 7 returns the solution with the

lowest service discrepancy that is within a user specified tolerance of optimal. Extensive empirical

validation of this property in actual hardware implementations is shown in Sections 9.4.3-9.4.5.

Property 3 Adaptation of router positions to changes in the wireless channels and/or client demand.

The Equation (9.18) shows that for nonzero discrepancy, ie. wij 6= 0, the cost for edge (i, j) is also

nonzero. Thus a change in the client demands qj , or in the quality of the wireless link ρij due to

moving occlusions or changes in the environment, will equally change the weighting wij on the

link (see Equation (9.1)). If the change in link quality ρij is sufficient, ie. if wij > 0, the routers

following Algorithm 7 will update their positions until a new solution is found (see Property 2).

Empirical validation of this property in an actual implementation is demonstrated in Section 9.4.6.

An algorithm for finding router placements in the most general case of unknown client positions

is presented as Algorithm 7 below.

� 9.4 Experimental Results with Motion Capture Support

We evaluated our system on a five-node testbed with two routers and three clients. Each node was

an ASUS 1015PX netbook equipped with an Intel 5300 Wi-Fi card mounted on an iRobot Create

robot. We implemented SAR by modifying the iwlwifi driver on Ubuntu 10.04. We used the 802.11

CSI tool[67] to obtain channel information (ĥ(t) in Eqn. 9.7). The routers communicated with

a central laptop emulating the base for control information and human input. Our first set of

experiments were performed in a roomwith a Vicon motion capture system to measure the relative

displacement of the robotic routers. Sec. 9.5 describes results in complex indoor environments

without motion capture support. Our testbed contains obstacles to simulate both line-of-sight and

non-line-of-sight scenarios.

� 9.4.1 Measuring the Direction of Maximum Signal Strength

We first provide a microbenchmark to demonstrate that our system indeed provides the direction

θmax that results in maximum improvement in client service quality. We consider two representa-
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7 Algorithm for router placement with unknown client positions.

⊲ Input: Directional signal strength map fij(θ) for every link (i, j), demand qj , relative impor-
tance αj > 0 for client j, current quality of each link ρij , step-size γ > 0, tolerance tol > 0 and
current router positions C = {c1, . . . , cn}

⊲ Output: A configuration of router positions C∗, |C∗| = k, and the achieved service discrepancy
w∗.

δ = inf
while δ > tol do

for all links (i, j) in the network with ρij > 0, i ∈ [k],j ∈ [n] do
p′ij = ci,t + γwij~vθmax ⊲ compute virtual client j position as perceived by router i

wij = max(αj
qj−ρij
qj

,0)

Mij = result of Algorithm 5
Compute:
C∗ = argminC{maxpj∈P minci∈C(p

′
ij − ci)TMij(p

′
ij − ci)}

C = C∗ ⊲ Update router positions
for all links (i, j), i ∈ [k],j ∈ [n] do

wij = max(αj
qj−ρij
qj

,0) ⊲ Compute updated wij
end for
δ = max(i,j)(wij) ⊲ Store max

end for
end while
w∗ = minj∈[n]maxi∈[k]wij
Return C∗,w∗

tive examples of a single robot router-client pair placed in i) line-of-sight configuration where the

strongest signal path is also the shortest Euclidean distance path, and ii) non-line-of-sight config-

uration where the shortest Euclidean path between the router and client is obstructed by a cement

column. These configurations are depicted in Figure 9-10(a). We measure the power profiles of

signals from the robot router from different directions using the solution described in Sec. 9.2. We

also compute the average service quality of the client (measured in terms of Effective Signal-to-

Noise Ratio or ESNR) along various spatial directions by iteratively moving the robot router and

exhaustively sampling the signal quality along each physical direction, at a total of 1800 samples

(100 samples, about 1m, along each ten degree arc).

Results: Fig. 9-10(b) and (c) plots the power profile obtained by our system, as well as the service

quality observed when moving along the different spatial directions. We note that the direction

of maximum signal power measured by our system actually leads to maximum increase in ser-

vice quality in both line-of-sight and non-line-of-sight settings. Notice that while the plots in both

Fig. 9-10(b) and (c) capture similar trends, they are not identical. Specifically, the profiles output

by our system isolate signal power arriving from individual spatial directions, and therefore have

sharp peaks that are easy to discern and less prone to error. In contrast, the average service qual-

ity of the client varies much more gradually along different directions, and therefore needs to be

sampled much more extensively to obtain accurate trends (for more details, see Sec. 9.2). This
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Figure 9-10: Direction of Maximum Signal Strength. We validate our computed direction of signal strength

for two representative configurations of (a) line-of-sight and non-line-of-sight settings. (b) Power profiles

indicating direction of maximum signal strength. (c) Service quality (average ESNR) measured along each

spatial direction.The horizontal dotted line indicates the ESNR at the initial position.

demonstrates that our system captures the direction of maximum signal strength with a higher ac-

curacy, and without the need for exhaustive exploration, when compared to pure sampling-based

approach.

� 9.4.2 Visualizing the Gradient Field of Signal Strength

In this experiment, we visualize the gradient field of the directions of maximum signal strength

θmax, on a wireless link. We consider a single client, serviced by a robot router that is: 1) In direct

line-of-sight (LOS) as shown in Fig. 9-11(a). 2) In possible non-line-of sight (NLOS) scenarios due

to obstacles as shown in Fig. 9-11(b). We drive the robot router in a lawn-mover pattern and get

θmax at regular intervals.

Results: Fig. 9-11(a) and 9-11(b) depict the gradient field with the arrows indicating θmax in

LOS and NLOS, respectively. The gradient field in LOS accurately directs the robot router towards

the client regardless of its initial position. In NLOS, the robot is directed away from obstacles so

that controller can route around obstacles to improve signal strength. We stress that θmax is found

locally at the router purely via wireless channels and its own position, without prior knowledge

of the environment. Further, the plots are not static and naturally change over time, especially in

dynamic settings. Thus our system obtains instantaneous θmax values locally in real-time.

Fig. 9-11(c) and 9-11(d) plot fij(θ), the power profile of the signal along different directions, for a

candidate location in line-of-sight and non-line-of-sight scenarios, respectively. Clearly, the power

profile in line-of-sight is dominated by a single peak at θmax, directed along the line-of-sight path to
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the client. In contrast, the power profile in non-line-of-sight close to an obstacle has two significant

peaks, each corresponding to reflected paths along walls or other objects in the environment.

� 9.4.3 Controlling Router Trajectory to satisfy Client Demands

We evaluate how a single robotic router finds a trajectory to satisfy the demands of three clients

(specified in terms of effective signal-to-noise ratio or ESNR) using θmax on each link. We consider

the candidate non-line-of-sight setting in Fig. 9-12(a). The router is unaware of exact client positions

or the layout of the environment.

Results: Fig. 9-12(a) depicts the trajectory of the robotic router in blue. The colored arrows denote

the recommended ~vθmax directions for each client at every control point. The figure shows how the

robot performs non-zero control actions until it eventually satisfies network demands. Fig. 9-12(b)

tracks the ESNR of the clients across time (dotted lines). The plot shows that the ESNR demands of

each client (solid lines) are satisfied upon convergence. Note that the whenever the robot decides

to follow the ~vθmax of a client at a control point (vertical line), the client’s ESNR increases. This

validates our claim that following a heading direction based on ~vθmax indeed improves the ESNR of

the corresponding client.

� 9.4.4 Aggregate System Results

We evaluate our full system with two robot routers serving three clients with different ESNR de-

mands. We perform the experiment in line-of-sight (LOS) and non-line-of-sight (NLOS) settings

as shown in the inset maps of Fig. 9-13(b) and 9-13(d) respectively. We repeat the experiment five

times in each setting and plot the results.

Results: Fig. 9-13(a) and 9-13(b) plot the mean and variance of ESNR over time across experiments

for each client (dotted colored lines) in LOS and NLOS. Clearly, each client’s ESNR demand (solid

lines) is satisfied at the converged position across experiments. Fig. 9-13(c) and 9-13(d) plot the

corresponding aggregate link rate across time, which follows the same trend as the ESNR [67].3

The inset plots in Fig. 9-13(c) and 9-13(d) depict the final converged position of the routers (blue

dots) in LOS and NLOS. The results show that our system consistently satisfies client demands

while adapting to real-time changes in wireless channels, even in the presence of obstacles.

� 9.4.5 Comparison with Existing Schemes

We test our method against two other popular approaches to the communication problem in

robotics: 1) Euclidean Disk Model as used in[33, 80], where communication constraints are in

terms of Euclidean distance; 2) Stochastic Gradient Approach, where we implement the Simul-

taneous Perturbation method (SPSA)[159] for estimating the gradient of signal power by sampling

3Note that the data-rate is capped by 60 Mb/s causing the plot to appear flat at times unlike ESNR.
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Figure 9-11: Gradient Field Visualization. Gradient field of θmax and power profile for (a) Line-of-sight and

(b) Non-Line-of-Sight.

Figure 9-12: Non-Line-of-Sight Robot Router Trajectory. (a) Depicts testbed with robot router servicing

three clients in a candidate non-line-of-sight setting. The blue line depicts the trajectory, and colored arrows

indicate instantaneous θmax for the corresponding clients. (b) Plots the ESNR across time (as dotted lines) for

each client through the experiment. Solid lines denote client demands.

Figure 9-13: Aggregate ESNR and Rate Measurements. Aggregate results obtained over 5 runs show de-

mands are consistently met even in the presence of obstacles as demonstrated by the candidate converged

solutions.
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the ESNR (which provides greater granularity than RSSI), along randomized directions, similar to

the approach utilized by [95]. For the generation of each direction in the SPSA method we use a

Bernoulli random variable (as in [159]) and diminishing step sizes satisfying the conditions stated

in [159] for convergence. Our largest step size was allowed to be the same maximum vehicle ve-

locity of vc for all experiments. We consider a robotic router and three clients, each with an ESNR

demand of 20 dB. We repeat the experiment five times in the non-line-of-sight environment in Fig.

9-14(b)-(d). In each instance, we measure rmax, the maximum ratio of ESNR demand versus the

ESNR achieved among all three clients. In particular, rmax is below one at the converged position

(i.e. all client demands are satisfied), and above one otherwise.

Results: Fig. 9-14(a) plots the aggregate mean and variance of rmax across time, for all the three

approaches. Fig. 9-14(b)-(d) show a candidate trajectory adopted by the robotic router for the three

schemes. The plots demonstrate while the disk model converges quickly to a solution, ignorance of

the wireless channels leads to solutions not meeting client demands; especially in non-line-of-sight

settings. In contrast, the stochastic gradient approach (in blue), which sample the instantaneous

ESNR, eventually satisfies network demands. However, the convergence is often laborious as the

router often traverses counter-productive directions (see Fig. 9-14 (c)). Indeed such techniques are

noisy at low signal power, as even a large change in distance translates to a small change in signal

power (a well-studied problem, e.g. in [27, 188, 82]). Fig. 9-14(c) shows that this leads to areas at

non-line-of-sight or far distances from the client, where the robot easily gets lost.

Our method leverages full channel information, including signal power and phase, to find the

signal direction as opposed to just its magnitude. The result is an algorithm that converges to posi-

tions that satisfy network demands without the counter-productive exploration of a pure sampling

approach.

� 9.4.6 Robustness to Dynamic Obstacle Positions

We evaluate how our system adapts to changes in the environment without an a priori known map.

Consider two robotic routers and three clients in an environment with an obstacle located initially

as shown in Fig. 9-15(a). We allow the robot routers to navigate to their converged positions. At

t = 120 sec, we move the obstacle to a different location as in Fig. 9-15(c), and let the routers re-

converge.

Results: Fig. 9-15(b) and Fig. 9-15(c) depict the converged position of the routers before and after

the obstacle was moved. Fig. 9-15(d) plots the data-rate across time for each client. The plot shows

that our system satisfies client demands at the initial position. It also recovers from the sharp fall

in rate at one client and successfully re-converges after the obstacle is moved.
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Figure 9-14: Comparison Plots comparing our method against the Euclidean disk model and a stochastic

gradient descent method based on ESNR. Ourmethod both converges to a position that meets communication

demands, and converges quickly along an efficient path.

� 9.5 Experimental Results without Motion Capture Support

In this section, we evaluate our system in a large complex indoor environment with concrete walls

and columns without any motion capture support (see Fig. 9-16). Instead, we use a constant veloc-

ity assumption to infer the relative displacements, d(t) (see Algorithm 4) , of the Wi-Fi antenna on

the router. The requirements for obtaining d(t) as described in Section 9.2, are that the robot router

moves at a constant known velocity over the time window required for computing SAR. Thus in

our experiment we command the iRobot Create platform to move with a known constant velocity

between control actions.

� 9.5.1 Gradient Field in Complex Environments

In this experiment, we measure the gradient field capturing the direction of maximum signal

strength across spatial locations in the above testbed without Vicon support. We place a robotic

router and client and line-of-sight (LOS) and non-line-of-sight (NLOS) as in Fig. 9-16. We trace the

router’s gradient field towards the client starting from multiple initial positions.

Results: Fig. 9-16 (a) and (b) plot of candidate trajectories (from gradient field) in LOS and NLOS

across initial locations. The plots show that our system successfully navigates towards the client to

satisfy its demands, without knowledge of the environment or client location.
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Figure 9-15: Effect of Moving an Obstacle. These plots show the result of disturbing the wireless channels

via movement of a line-of-sight obstructing obstacle. Actual testbed snapshots are shown on the right.

Figure 9-16: Complex Environments. Trajectories using measured ~vθmax directions satisfy a client’s demand

in line-of-sight and non-line-of-sight settings in complex indoor environments.

� 9.5.2 Full-Scale Experiment in Complex Environments

We implement a full-scale experiment of two routers and five clients in the complex indoor envi-

ronment described in Sec. 9.5.1 above with no motion capture support. Clients in this case are static

Asus EEE Seashell series netbooks and routers are AscTec Atom boards mounted on mobile iRobot

Create platforms.

Clients are positioned in two clusters along orthogonal hallways, ie. a non-convex environment.

Routers are placed in the initial positions as shown in the floorplan in Figure 9-17(a). For these ini-

tial router positions, Client 1 and Client 2 are both out of direct line-of-sight as they are obstructed

by a concrete wall.

The relative displacement of the Wi-Fi antenna, required by Algorithm 4 to obtain a direc-

tional signal strength profile, is measured by assuming the router moves at a constant velocity

(see Sec. 9.2.2).

Before calculating the next waypoint, each router is commanded to move at constant velocity
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Figure 9-17: Full-scale Experiment in Complex Indoor Environments. Full-scale experimental setup with

initial (a) and final (b) configurations for a two-router five-client network configuration.

for a period of 24 seconds which is equivalent to two wavelengths in displacement. The com-

manded waypoint from the control Algorithm 7 is then provided as a heading/distance pair which

is actuated by the router using dead reckoning.

Results:Figure 9-17(a) depicts the initial configuration of the network of routers and clients. The

dotted lines indicate which cluster of clients each router is assigned to by the controller. These

assignments are optimized by the controller based on the observed ESNR values as described in

Algorithm 7. Figure 9-17(b) show the converged positions of the routers indicating that all client

demands are satisfied at these positions. In particular, Figure 9-18 demonstrates the trajectories

traversed by Router 1 and Router 2 (left top and left bottom respectively) and the corresponding

ESNR curves for each router’s assigned clients on the right column. The ESNR curves are averaged

over a window of 24 seconds as the router moves along its trajectory, and the solid blue squares

indicate the times where a control action was given. As shown by ESNR curves in Figure 9-18, all

client demands are satisfied at the final router configuration.

� 9.6 Trade-off: Local vs. Global Optimality

Our primary focus in the body of this chapter has been on developing a closed-loop controller

that uses instantaneous feedback on wireless channels to position routers. This real-time feedback

allows for routers to repair communication links on the fly as needed, for example in the case of

dynamic obstacles that may occlude a link. However, here we point out that it is also possible

to use the methods presented in this chapter to obtain a static directional map of signal strength,

or gradient field, throughout the environment. In fact, the richness of directional profiles derived

here would allowmapping to a level of accuracy that was previously unattainable for small mobile
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Figure 9-18: Router Trajectories. Router trajectories resulting from execution of commanded waypoints from

Algorithm 7. These paths were executed via dead reckoning for Router 1 (a) and Router 2 (c). Corresponding

measured ESNR curves for Router 1’s clients (b) and Router 2’s clients (d) respectively.

platforms. Such a gradient field (as in Figure 9-11) can be used to plan router placements that are

globally optimal, in contrast to the local solutions provided here. However, it is important to point

out that in this case the ability to adapt to changes in the environment, for example if obstacles or

clients move in the environment), is lost since this would invalidate a static map. Therefore this is

a trade-off that would have to be evaluated carefully for each situation.

� 9.7 Related Work

Related work falls under two broad categories.

� 9.7.1 Multi-Robot Coordination

Our work is related to past chapters on multi-robot coordination to achieve a collaborative task

while supporting specific communication demands [95, 191, 113, 47]. Past work on this topic fall

under two classes of approaches.

Euclidean Disk Model: The first class employs Euclidean disk assumptions where signal qual-

ity is assumed to be deterministic and mapped perfectly to the Euclidean distance between the

communication nodes. A Euclidean metric allows for quadratic cost for the edges of the network

and enables a geometric treatment of an otherwise complex problem. In reality, signal strength

suffers from large variations over small displacements [101, 60] that these models simply do not

capture. Yet, the simplicity afforded by these models has led to significant contributions including

i) multi-agent coordination for coverage and flocking [147, 114], ii) assignment of routers to clients
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for attaining a prescribed level of connectivity [57, 44] or throughput [35], and iii) connectivity

maintenance based on graph theoretic approaches [117, 37].

Stochastic SamplingMethods: Recently, efforts have focused on giving the communication qual-

ity over each link in the network a more realistic treatment by sampling the signal strength and

building closed-loop controllers using this feedback. Such stochastic sampling methods either sup-

plement theoretical models for signal strength with a stochastic component based on the collected

samples [113, 101], or, use the collected samples to design stochastic gradient controllers [173, 95].

These chapters have studied stochastic sampling patterns for i) acquiring sufficient signal strength

(RSS) samples [102, 101], ii) co-optimizing communication quality and other higher level tasks like

motion planning or message routing [191, 48], iii) used router mobility to escape “deep fades” or

null points where connectivity may be lost [175] or to map out the signal strength and resulting

connectivity regions of the environment [173]. Unfortunately these works necessitate at least one

of the following prohibitive requirements: i) motion of the routers along counter-productive paths

to collect sufficient RSS samples, ii) assumptions of a known environment map, static surround-

ings, and known positions of communicating agents, or iii) previously acquired signal strength

maps.

In comparison to these papers, we introduce a system that captures the magnitude of the signal

arriving from different directions, as opposed to only its total magnitude at a particular position.

This allows us to combine the best of both the disk model and stochastic sampling methods: Like

the diskmodel, we do not require prior knowledge of the environment and its obstacles, or a model

of channel’s distribution. Like the stochastic methods, our approach accurately captures actual sig-

nal characteristics and hence can help multi-robot systems satisfy their desired communication

demands in real-world environments. Figure 9-19 provides an illustrative example of how our sys-

tem out-performs the Euclidean disk model and stochastic sampling, particularly in the presence

of obstacles.

� 9.7.2 Angle of Arrival Systems

Our method builds upon a rich body of literature in wireless networking that estimates actual

angle-of-arrival of each of the reflected paths of a signal at a receiving device. Past work has em-

ployed two classes of hardware to estimate angle-of-arrival:

Antenna Arrays: Past literature has leveraged arrays of antennas to estimate angle-of-arrival for

localization [179, 82, 188] and tracking [137]. These use stationary multi-antenna receivers to locate

the transmitter with sub-meter accuracy. Unfortunate for the robotics community, many of these

techniques require bulky, specialized hardware such as customized software radios, and are thus

difficult to place on small, agile, mobile platforms that are ubiquitous for robotics applications.

Synthetic Aperture Radar: Understanding how to attain this directional information using a mov-
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Figure 9-19: Comparison with Past Work. Compares our method against the Euclidean disk model and

a stochastic sampling. The figures depict the actual router (blue) and client (red) separated by an obstacle

(black). The black lines indicate the different paths of the signal. (a) Our method estimates the actual signal

power arriving from different angular directions, much like a high-resolution directional antenna would. This

provides a sharpened peak in the direction of maximum signal strength. (b) The Euclidean Disk model guides

the router along the shortest Euclidean path, which is greatly attenuated by the obstacle. (c) Stochastic meth-

ods measure the signal strength by moving the router and sampling at various positions (blue circles). The

signal strength does not vary significantly between locations due to the lack of spatial resolution, ie. at each

sample location the signal strength is a combination of signals arriving from all angular directions. This leads

to much less discernible peaks when contrasted with (a) (Note that the polar plot of signal power, shown here

as dotted lines, have peaks in the same angular directions as our method though less sharp ). This method

guides the router towards the direction of the best sample, which often may not be the actual direction of

maximum signal strength, as shown.

ing platform is the subject of Synthetic Aperture Radar (SAR) [50]. SAR allows even a single-

antenna mounted on a flying aircraft or satellite to emulate a multi-antenna array. Unfortunately,

most SAR applications [50, 179, 178] are geared towards radar-type problems (eg. imaging, RFID

applications) where signals are transmitted and processed by the same node. Therefore, they can-

not be used to analyze the direction of arrival of the signal from a distinct transmitter (e.g. Wi-Fi

devices).

For an adaptive communication network of small router robots, we need a light-weight, single-

antenna system that can perform SAR using two-way transmissions (unlike radar) on off-the-shelf

Wi-Fi devices. In this regard, we develop a system that builds upon synthetic aperture radar meant

for robotic routers and clients equipped with standard Wi-Fi cards.

� 9.8 Discussion

In this chapter, we present a framework to satisfy real-time variable communication demands for

a changing network. We develop a solution enabling a robotic receiver to find the profile of sig-

nal strength across spatial directions for each sender of interest. While our technique retrieves

these spatial signal profiles in real time, we note that it faces an important limitation: it assumes

access to wireless channels from both the transmitter and the receiver. Developing a system that

can work with unmodified transmitters remains an open challenge. Our system integrates the sig-
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nal profiles with a controller that optimizes communication quality while maintaining quadratic

edge costs, and thus has natural extensions to many communication-aware coordination problems

such as coverage[33], consensus[129], formation control[80], etc. We believe our system provides

the necessary robustness to bring the benefits of these important contributions to practical robotic

systems.
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CHAPTER 10
Guaranteeing Spoof-Resilient

Multi-Robot Networks

Multi-robot networks rely on wireless communication to enable a wide range of tasks and appli-

cations: coverage [132, 33, 148], disaster management [110], surveillance [18], and consensus [130]

to name a few. The future promises an increasing trend in this direction, such as delivery drones

which transport goods (e.g., Amazon Prime Air [1]) or traffic rerouting algorithms (e.g., Google

Maps Navigation) that rely on broadcasted user locations to achieve their goals. Effective coor-

dination, however, requires trust. In order for these multi-robot systems to perform their tasks

optimally, transmitted data is often assumed to be accurate and trustworthy; an assumption that is

easy to break. A particularly challenging attack on this assumption is the so-called “Sybil attack.”

In a Sybil attack a malicious agent generates (or spoofs) a large number of false identities to gain

a disproportionate influence in the network.1 These attacks are notoriously easy to implement [152]

and can be detrimental to multi-robot networks. An example of this is coverage, where an adver-

sarial client can spoof a cluster of clients in its vicinity in order to create a high local demand, in

turn denying service to legitimate clients (Figure 10-1). Although a vast body of literature is ded-

icated to cybersecurity in general multi-node networks (e.g., a wired LAN), the same is not true

for multi-robot networks [72, 146], leaving them largely vulnerable to attack. This is because many

characteristics unique to robotic networks make security more challenging; for example, traditional

key passing or cryptographic authentication is difficult to maintain due to the highly dynamic and

distributed nature of multi-robot teams where clients often enter and exit the network.

This chapter addresses the challenge of guarding against Sybil attacks in multi-robot networks.

We focus on the general class of problems where a group of server robots coordinate to provide

some service using the broadcasted locations of a group of client robots. Our core contribution

is a novel algorithm that analyzes the received wireless signals to detect the presence of spoofed

1Please refer to [40, 126] for a detailed treatment of this class of cyber attacks.
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Figure 10-1: Sybil Attack on Coverage. A server robot provides locational coverage to legitimate clients when

no attack is present. In a Sybil attack, an adversary spoofs many fake clients to draw away coverage from the

legitimate clients.

clients spawned by adversaries. We call this a “virtual spoofer sensor” as we do not use special-

ized hardware nor encrypted key exchange, but rather a commercial Wi-Fi card and software to

implement our solution. Our virtual sensor leverages the rich physical information already present

in wireless signals. At a high level, as wireless signals propagate, they interact with the environ-

ment via scattering and absorption from objects along the traversed paths. Carefully processed,

these signals can provide a unique signature or “spatial fingerprint” for each client, measuring the

power of the signal received along each spatial direction (Fig. 10-2). Unlike message contents such

as reported IDs or locations which adversaries can manipulate, spatial fingerprints rely on physical

signal interactions that cannot be exactly predicted [60, 113].

Using these derived fingerprints, we show that a confidence weight, α ∈ (0,1) can be obtained

for each client in the network. We prove that these confidence weights have a desirable property

where legitimate clients have an expected confidence weight close to one, while spoofed clients will

have an expected confidence weight close to zero. A particularly attractive feature of confidence

weight α is that it can be readily integrated as a per-client weighting function into a wide variety

of multi-robot controllers. More importantly, the analytical bounds on these weights can provably

limit the ill-effects of spoofers on the performance of these controllers. This chapter demonstrates

this capability in the context of the well-known locational coverage algorithm [33, 148].

We provide an extensive experimental evaluation of our theoretical claims using a heteroge-

neous team of air/ground robots consisting of two AscTec Hummingbird platforms and ten iRobot

Create platforms. We conduct our experiments in general indoor settings with randomly placed

clients and demonstrate a spoofer detection rate of 96%. For the case of coverage we find that the

converged positions of the service robots is on average 3 cm from optimal even when more than

75% of total clients in the network are spoofed.

Contributions: We develop a virtual sensor for spoofing detection which provides performance

guarantees in the presence of Sybil attacks and is applicable to a broad class of problems in dis-
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Figure 10-2: Spatial Fingerprints: A quadrotor server measures the directional signal strength of each client

(here, simplified to 2-D). The blue client has one line-of-sight peak; the other, 2 signal paths.

tributed robotics. We show that the influence of spoofers is analytically bounded under our system

in a coverage context, where each robotic node providing coverage remains within a radius of its

position in the absence of an attack. Our theoretical results are validated extensively through ex-

periments in diverse settings.

� 10.1 Problem Statement

This chapter focuses on problems where the knowledge of agent positions facilitates some collabo-

rative task. Specifically, it assumes two groups of agents, “clients” requiring some type of location-

based service such as coverage or goods delivery and “servers” whose positions are optimized in

order to provide the service to its clients. Let P := {p1, . . . , pc} denote the client positions in R
3.

LetX := {x1, . . . , xm} be the positions of the servers in R
3 and the notation [m] = {1, . . . ,m} denote

their indices. We consider the case where a subset of the clients, S ⊂ P (with s := |S|) are “spoofed”
clients.

Spoofed Client A single malicious client may generate multiple unique identities, eachwith a fab-

ricated position. Each generated, or “spawned” identity is considered a spoofed client. By spoofing

multiple clients, the malicious client gains a disproportionate influence in the network. All clients

which are not spoofed are considered legitimate clients.

Threat Model: Our threat model considers one or more adversarial robot clients with one Wi-

Fi antenna each. The adversaries can be mobile and scale power on a per-packet basis. We only

consider adversarial clients.2 Adversarial clients perform the “Sybil Attack” to forge packets em-

2The case of adversarial server robots is left for future work although many of the concepts in the current
chapter are extensible to this case as well.
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ulating s non-existent clients, where s can exceed the number of legitimate clients. More formally:

Sybil Attack Define a network of client and server positions as P ∪X , where a subset S of the

clients are spoofed, such that P = S ∪ S̃. We assume that set P is known but knowledge of which

clients are spoofed (i.e., in S) is unknown. This attack is called a “Sybil Attack.”

To counter the Sybil attack, this chapter has two objectives. First, we find a relation capturing

directional signal strength between a client i and a server l. We seek amapping Fil : [0,
π
2 ]× [0,2π] 7→

R such that for any 3D direction (θ,φ) defined in Fig. 10-4, the value Fil(θ,φ) is the power of the

received signal from client i along that direction. Using this mapping, or “fingerprint”, our first

problem is to derive a confidence weightwhose expectation is provably bounded near 1 for legitimate

clients and near 0 for spoofed clients. Further, we wish to find these bounds analytically from

problem parameters like the signal-to-noise ratio of the received wireless signal. We summarize

this objective as Problem 1 below:

Problem 1: Spoofer Detection. Let Fi be the set of fingerprints measured from all clients j ∈ [c] and

servers l ∈ [m] in the neighborhood,Ni, of client i.3 Here, a neighborhood of client i, Ni, are all agents that
can receive Wi-Fi transmissions sent by client i. Using Fi, derive a confidence weight αi(Fi) ∈ (0,1) and a

threshold ωi(σ
2
i ) > 0 where σ2

i represents error variances such as the signal-to-noise ratio that are assumed

to be given. Find ωi(·) to have the provable property of differentiating spoofed clients whereby spoofed clients
are bounded below this threshold, i.e., E[αi] ≤ ω, and legitimate clients are bounded above this threshold

E[αi] ≥ 1−ω.
Our second objective is to apply our spoofer detection method to multi-robot control problems.

We consider the well-known coverage problem in [33, 148]. We show that by integrating the con-

fidence weight from Problem 1, we can analytically bound the error in performance caused by

spoofed clients in the network. We consider the coverage problemwhere an importance function is

defined over an environment and where the positions of the clients correspond to peaks in the im-

portance function. Here, servers position themselves to maximize their proximity to these peaks,

to improve their coverage over client robots. If CV = {x∗1, . . . , x∗m} is the set of server positions

optimized by the coverage controller with zero spoofers, we wish to guarantee that server posi-

tions optimized with spoofers present, CVα
, is “close” to CV . We state this second objective more

specifically as Problem 2 below:

Problem 2: Sybil-resillience in Multi-Robot Coverage. Consider a locational coverage problem where

an importance function ρ(q)> 0 is defined over an environmentQ⊂R
3 and q ∈ Q. Specifically, consider an

importance function that can be decomposed into terms, ρi(q), depending on each client’s position, i ∈ [c] (for

3Detecting if a client i is spoofed becomes easier given more servers communicating with i (i.e., a larger
neighborhood Ni). But even with a single server, this determination can be made. A theoretical treatment of
this point is given in Sec. §10.3 and experimental results (§10.5.1) use as little as one server.
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Figure 10-3: Example Signal Fingerprint: (a) A

server (×) receives a client signal on 2 paths: direct

along 40◦ attenuated by an obstacle (shaded) and re-

flected by a wall along 60◦. (b) is a corresponding

fingerprint: peak heights at 40◦ and 60◦ correspond

to their relative attenuations.

Figure 10-4: 3-D Angles: The figure depicts the no-

tation for the azimuthal angle φ and polar angle θ for

the direct path from a ground client to aerial server

robot (×) in 3 dimensions. More generally, the set of

all angles between client i and server l are denoted

as Φil, Θil respectively.

example, each client position corresponds to a peak), i.e., ρ(q) = ρ1(q)+ . . .+ ρc(q). Let CV = {x∗1, . . . , x∗m}
be the set of server positions returned by an optimization of ρ(q) overX , where there are zero spoofed clients

in the network. Under a Sybil attack, let CVα
= {x1, . . . , xm} be the set of server positions returned by an

optimization of an α-modified importance function ρ(q) = α1ρ1(q) + . . .+ αcρc(q) where the importance

weight terms αi satisfy the bounds stated in Problem 1. We wish to find an ε(P) > 0 such that the set CVα

is within a distance ε(P) to CV . CVα
is within a distance ε(P) to CV if ∀x ∈ CVα

there exists a unique

y ∈ CV where dist(x, y) < ε(P). Here, P is a set of problem parameters that we wish to find.

Intuitively, solutions to Problem 2 guarantee that under a Sybil attack, all server positions com-

puted using an α-modified coverage controller are within a computable distance ε(P) from their

optimal positions (i.e., in the absence of spoofers). Sec. §10.4 derives a closed-form for ε(P) and
shows the set P of problem parameters to be the number of spoofers, the footprint of the environ-

ment covered, and signal noise.

� 10.2 Fingerprints to Detect Malicious Clients

Here we construct a fingerprint, a directional signal strength profile for a communicating server-

client pair. Our choice of signal fingerprints havemany desirable properties that enable us to derive

a robust spoof-detection metric: they 1) capture directional information of the transmitted signal

source and thus are well-suited for flagging falsely reported client positions, 2) can be obtained for

a single server-client pair, unlike location estimation techniques such as triangulationwhich require

multiple servers to coordinate, 3) cannot be manipulated by the client, since the occurrence of each

signal path is due to environment reflections, 4) are applicable in complex multipath environments

where a transmitted signal is scattered off of walls and objects;since these scattered signals manifest

themselves as measurable peaks in the fingerprint, complex multipath contributes significantly to
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fingerprint uniqueness.

We construct fingerprints using wireless channels h, complex numbers measurable on any wire-

less device characterizing the attenuation in power and the phase rotation that signals experience

as they propagate over the air. These channels also capture the fact that wireless signals are scat-

tered by the environment, arriving at the receiver over (potentially) several different paths [199].

Fig. 10-3 is an example 2D schematic of a wireless signal traversing from a client robot to a server

robot arriving along two separate paths: one attenuated direct path at 40◦ and one reflected at

60◦. If the server robot had a directional antenna, it could obtain a full 3D profile of power of

the received signal (i.e., |h|2) along every spatial direction. We use such a 3-D profile as a “spatial

fingerprint” that can help distinguish between different clients.

Unfortunately directional antennas are composed of large arrays of many antennas that are too

bulky for small agile robot platforms. Luckily, a well-known technique called Synthetic Aperture

Radar [50] (SAR) can be used to emulate such an antenna using a commodity Wi-Fi radio. Its key

idea is to use small local robotic motion, such as spinning in-place, to obtain multiple snapshots

of the wireless channel that are then processed like a directional array of antennas. SAR can be

implemented using a well-studied signal processing algorithm called MUSIC [71] to obtain spatial

fingerprints at each server robot.

Mathematically, we obtain a spatial fingerprint for each wireless link between a server l and

client i as a matrix Fil : R×R→ R. For each spatial path represented as (θ,φ) (see Fig. 10-4), Fij

maps to a scalar value representing the signal power received along that path. More formally:

Fil(φ, θ) = 1/|Eign(ĥilĥ
†
il)e

√−1Sil(φ,θ)|2 (10.1)

Where ĥil is a vector of the ratio of wireless channel snapshots between two antennas mounted on

the body of the server l and Sil(φ, θ) =
2πr
λ

cos(φ−Bl) sin(θ−Gl), λ is the wavelength of the signal

and r is the distance between the antennas, Bl,Gl are the server’s angular orientation, Eign(·) are
noise eigenvectors, (·)† is conjugate transpose, and k is the number of signal eigenvectors, equal to

the number of paths.

While our above formulation is derived fromMUSIC [71], it varies in one important way: while

MUSIC uses a single-antenna channel snapshot hil, we use the channel ratio ĥil = h1il/h2il between

two antennas. This modification provides resilience to intentional power scaling by the sender

since scaling his transmit power by χ yields a measured ratio ĥil = χh1il/(χh2il); a value unaffected

by power scaling.

� 10.3 Constructing a Client Confidence Weight

Given a client fingerprint Fil(φ, θ) for each client i relative to a robotic server l, we wish to generate

a confidence weight αi ∈ [0,1] that approaches 1 for legitimate clients, and 0 otherwise. We achieve
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Symbol Meaning

m, c, s No. of servers, clients, spoofers
pi, xl Position of client i / server l
Fil, k Fingerprint of i at l, k peaks

ĥil M × 1 channel ratios of i to l
f(· ;µ,σ2) PDF of normal distribution

g(· ;µ,σ2) min(1,
√
2πf(x;µ,σ2))

κ Constant = ((
√
2+

√
π)/π)2

αi, βi confidence, honesty metric of i
γij Similarity metric of client i, j
SNR Signal-to-noise ratio
RSSI Received Signal Strength
σ2
θ , σ

2
φ Variance in peak shifts of Fil

σ̂2
θ , σ̂

2
φ σ2

θ , σ
2
φ plus measurement error

CVL
,CVα Coverage centroid of optimal, our system; error ~e

within ε
L(Q), ρ(q) Footprint, Mass function

Figure 10-5: Table of Most Common Notations

this by defining αi as the product of two terms βi and γij that go to 0 if a client reports a falsified

location or has the same fingerprint as another client j respectively. In particular, βi is termed the

honesty metric and is the likelihood (Eq. (10.2)) that client i is indeed along its reported direction

(φil, θil) with respect to each server l in its neighborhood. The second term γij is the similarity

metric - the likelihood that client i’s fingerprint as seen by server l is not unique compared to that

of a different client j of server l. Finally, αi is the product of 1) βi and 2) (1− γij) over all j 6= i,

which compares client i’s fingerprint with all other clients in its neighborhood and approaches 0 if

client i’s profile is not unique. Therefore if either the honesty term or similarity term goes to 0, the

weight αi for client i also approaches zero.

αi = βi
∏

j 6=i
(1− γij) where, βi =

∏

l∈Ni

L(i is at (φil, θil)|Fil)

γij =
∏

l∈Ni

L(i spoofs j|Fil, Fjl) (10.2)

Here, L(·) denotes an event likelihood, (φil, θil) is the reported direction of client i with respect to

server l, and the neighborhood Ni are servers communicating with client i.

Defining Honesty and SimilarityMetrics: The honesty metric βi and similarity metric γij are de-

rived using peak locations in client fingerprints. In practice however, peaks may have slight shifts

owing to noise. Thus, any comparison between peak locations must permit some variance due to

these shifts. Fortunately, noise in wireless environments can be modeled closely as additive white-

Gaussian [199]. As the following lemma shows, this results in peak shifts that are also Gaussian,

meaning that their variance is easy to model and account for. More formally, the lemma states that

shifts are normally distributed with zero mean and well-defined variance, based on the wireless

medium’s signal-to-noise ratio (SNR):
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Lemma 10.1 Let ∆θi,∆φi denote the error between the azimuthal and polar angle of the uncorrelated ith

path of a (potentially multipath) source and the corresponding angles of the (local) maximum in the finger-
print F (φ, θ), over several uniformly gathered packets (i.e., SAR snapshots) for θ ∈ (10◦,80◦). Then ∆θi
and∆φi are normally distributed with a mean 0, and expected variance σ2

φ and σ2
θ :

σ2
θ = σ2

φ =9λ2/(8Mπ2r2SNR)

Where, λ is the wavelength of the signal, SNR is the signal-to-noise ratio in the network4,M is the number
of packets per-rotation, and r is the distance between the antennas. �

Proof of Lemma 10.1: Cramer-Rao bounds calculate estimated performance for given geome-

tries of antenna trajectories in an algorithm-independent manner. It is well-known that algorithms

such as MUSIC achieve the Cramer-Rao bound (CRB) [54, 55, 161]. Using the result in [161], for

a sufficiently large number of packets M , the error in angle for the uncorrelated path i using the

Cramer-Rao bound has a mean 0 and variance σ2 where:

σ2 =
1

2SNR
Re
[

D∗D−D∗A(A∗A)−1A∗D
]−1

(10.3)

Where SNR is the signal to noise ratio in the network, A is the steering vector of the MUSIC

algorithm [71] and D is its derivative with respect to the angle. Let us consider the quadrotor

retrieves samples at a set of uniform angles {0,∆,2∆, . . . , (M − 1)∆}, where ∆ = 2π
M
. For the az-

imuthal angle, these values are given by:

A = [1, e
j
2πr cosφi sinθi

λ , . . . , e
j
2πr cos ((M−1)∆−φi) sinθi

λ ]
T

D =

[

0, . . . ,
2πr sinθi sin ((M − 1)∆− φi)

λ
e
j
2πr cos ((M−1)∆−φi) sinθi

λ

]

T

A
∗
A = M

D
∗
A =

M
∑

j=1

2πr sinθi

λ
sin ((j − 1)∆ − φi) → 0 , asM → ∞

1

M
D

∗
D =

[

2πr sinθi

λ

]2 M
∑

j=1

sin
2
((j − 1)∆ − φi) →

2π2r2 sin2 θi

λ2
, asM → ∞

Substituting these values in Eqn. 10.3, we have:

σ2
φ =

(2π2Mr2 sin2 θi/λ
2)−1

2SNR
=

λ2

4π2r2M sin2 θiSNR
(10.4)

Similarly, for the polar angle, we can write:

D =

[

0, . . . ,
2πr cos θi cos ((M − 1)∆ − φi)

λ
e
j
2πr cos ((M−1)∆−φi) sinθi

λ

]T

D
∗
A =

M
∑

j=1

2πr cos θi

λ
cos ((j − 1)∆− φi) → 0 , as M → ∞

1

M
D

∗
D =

[

2πr cos θi

λ

]2 M
∑

j=1

cos
2
((j − 1)∆− φi) →

2π2r2 cos2 θi

λ2
, asM → ∞

Again, substituting these values in Eqn. 10.3, we have:

σ2
θ =

(2π2Mr2 cos2 θi/λ
2)−1

2SNR
=

λ2

4π2r2M cos2 θiSNR
(10.5)

4For clarity, we drop dependence on i, l for SNR, σθ and σφ
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Note that these values for σ2
φ and σ

2
θ are defined for large values ofM . Applying the central-limit

theorem, it is well known that the average of any distribution over a large number of samples is

asymptotically normal [19]. As a result, the distributions of φi and θi are asymptotically normally

distributed with a mean of zero and variance given by Eqn. 10.4 and Eqn. 10.5. Assuming θ is

uniformly in (10◦,80◦), and using the corresponding expected values of 1/ sin2 θi and 1/ cos2 θi to

be 4.5, we have:

σ2
φ =

9λ2

8Mπ2r2SNR

σ2
θ =

9λ2

8Mπ2r2SNR

This proves the required lemma. �

The above lemma follows fromwell-known Cramer-Rao bounds [115, 55, 54] shown previously

for linear antenna movements in SAR [161] but readily extensible to circular rotations. Using

this lemma, we can define the honesty metric βi as the likelihood that the client is at its reported

location, subject to this Gaussian error and additional measurement error in reported locations.

Definition (βi) Let φFil
and θFil

denote the closest maximum in Fil(φ, θ) to (φil, θil). We denote σ̂2
φ

and σ̂2
θ as the variances in angles σ2

φ and σ
2
θ plus any variance due to measurement error of reported

locations that can be calibrated from device hardware. We define βi for client i as:

βi =
∏

l

g(φil − φFil
; 0, σ̂2

φ)× g(θil − θFil
; 0, σ̂2

θ) (10.6)

Where g(x;µ,σ2) = min(1,
√
2πf(x;µ,σ2)) is a normalized Gaussian PDF f(x;µ,σ2) with mean µ

and variance σ2. �

In practice, reported client locations are subject to measurement errors due to position sensor

inaccuracies. Our definition of βi above accounts for this by using the effective variances σ̂2
φ and σ̂2

θ

that are the sum of the variance in angles, σ2
φ and σ2

θ , in addition to the variances due to measure-

ment error.

Using Lemma 10.1 we define the similarity metric γij as the likelihood that two client finger-

prints share identical peaks:

Definition (γij) Let (Φil,Θil) and (Φjl,Θjl) denote the set of local maxima, ordered by non-

decreasing angle values, in fingerprints Fil and Fjl. We define γij for client i relative to client j

as:

γij =
∏

φi∈Φil,φj∈Φjl

g(φi − φj ; 0,2σ2
φ)
∏

θi∈Θil,θj∈Θjl

g(θi − θj ; 0,2σ2
θ) (10.7)
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Where g(·;µ,σ2) is from Definition. 10.3, and the factor of 2 in the variance accounts for computing

the difference of two normally distributed values. �

Defining the Confidence Weight: . We notice that Eqn. 10.2, 10.6 and 10.7 fully define αi for each

client i. In summary, the confidence weight is computed in three steps: (1) Obtain the client finger-

print using SAR on wireless signal snapshots. (2) Measure the variance of peak locations of these

client fingerprints using their Signal-to-Noise Ratio. (3) Compute the similarity and honesty met-

rics using their above definitions to obtain the confidence weight. Algorithm 8 below summarizes

the steps to construct αi for a given client i.

8 Algorithm to Compute Client Confidence Weight

⊲ Input: Ratio of Channels ĥil and SNR
⊲ Output: Confidence Weight, αi for client i
⊲ Step (1): Measure fingerprints for client i
for l = 1, . . . ,m do

for φ ∈ {0◦, . . . ,360◦};θ ∈ {0◦, . . . ,360◦} do

Find Fil(φ, θ) using a single spin to get ĥil (Eqn. 10.1)
end for

end for
⊲ Step (2): Measure variances in peak locations using SNR
σ2
θ = σ2

φ = Apply Lemma 10.1 SNR
⊲ Step (3): Find honesty, similarity and confidence weight
βi = Apply Defn. 10.3 using σ2

θ , σ
2
φ, peaks of Fil

for j = {1, . . . , c} \ {i} do
γij = Apply Defn. 10.3 using σ2

θ , σ
2
φ, peaks of Fil, Fjl

end for
αi = βi

∏
j 6=i

(1− γij)

We now present our main result that solves Problem 1 in the problem statement (Sec. §10.1). The
following theorem 10.3.1 and associated lemmas state that the expected αi’s of legitimate nodes

approach 1, while those of spoofers approach 0, allowing us to discern them under well-defined

assumptions: (A.1) The signal paths are independent. (A.2) Errors in azimuth and polar angles

are independent. (A.3) The clients transmit enough packets to emulate a large antenna array (in

practice, 25− 30 packets per second).5

Lemma 10.2 Let us define g(x; 0, σ2) as

g(x; 0, σ2) =

{√
2πf(x; 0, σ2), if f(x; 0, σ2) < 1√

2π
.

1, otherwise.
(10.8)

Where f(x; 0, σ2) is density function of the Gaussian distribution with mean 0 and variance σ2. Then if
the random variable u is uniformly distributed between and (0,2π) and the random variable n is normally

5This is a mild requirement since 25− 30 packets can be transmitted in tens of milliseconds, even at the
lowest data rate of 6Mb/s of 802.11n Wi-Fi.



SECTION 10.3. CONSTRUCTING A CLIENT CONFIDENCE WEIGHT 241

distributed with mean 0 and variance σ2, then their expectations obey the following:

E[g(u)] ≤ √σ
(√

2 +
√
π

π

)

(10.9)

E[g(n)] ≥ 1− σ (10.10)

Proof of Lemma 10.2: Notice that by the definition of the gaussian distribution
√
2πf(x; 0, σ2) < 1

occurs only if:

√
2π

1

σ
√
2π
e−

x2

2σ2 < 1 (10.11)

i.e., e−
x2

2σ2 < σ (10.12)

x >
√
2σ

√

ln
1

σ
:= S (10.13)

Let us first evaluate E[g(n)]. We can write this as:

E[g(n)] =

∫ S

−S
f(x; 0, σ2)dx+ 2

√
2π

∫ −S

−∞
[f(x; 0;σ2)]2dx

≥
∫ S

−S
f(x; 0, σ2)dx = erf

(

S

σ
√
2

)

(10.14)

≥ 1− erfc

(

S

σ
√
2

)

(10.15)

≥ 1− σ (From erfc(x) < e−x
2

, Eqn. 10.13) (10.16)

Where erf(·) is the well known Error function and erfc(·) is its complement. The error function is

related to the CDF of the normal distribution F (x; 0;σ2) as: F (x) = 1
2

(

1− erfc( −x
σ
√
2
)
)

. Similarly,

we can evaluate E[u(n)] as:

E[u(n)] =

∫ S

−S

1

2π
dx+ 2

√
2π

∫ −S

−2π

1

2π
f(x; 0;σ2)dx

≤ 2S

2π
+

1√
2π
F (−S,0;σ2)

≤ S

π
+

1√
2π

erfc(
S

σ
√
2
)

≤ S

π
+

1√
2π
e

−S2

2σ2 (from erfc(x) < e−x
2

)

≤ σ

π

[

√

2 ln
1

σ
+

1√
2

]

(using Eqn. 10.13) (10.17)

≤ √σ
(√

2 +
√
π

π

)

(if σ2 < 2π) (10.18)

Eqn. 10.16 and 10.18 together prove the lemma. �

Lemma 10.3 Assuming a network ofm routers, and a client iwhich reports either: 1) Its legitimate location
given by {(θil, φri)}; or 2) A fake (spoofer) location chosen uniformly at random. Then the corresponding
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values of βi, i.e. βlegit and βspoof have an expectation given by:

E[βspoof ] ≤





√

σ̂θσ̂φ

(√
2+
√
π

π

)2




m

(10.19)

E[βlegit] ≥ 1−mσ̂θσ̂φ (10.20)

Where, σ̂θ , σ̂φ are the variances defined in Lemma 10.1.

Proof of Lemma 10.3: Let us first evaluate the component of βlegit the confidence metric of a

genuine client-i. Let’s assume the direction of this client closest to its true location from the profile

is (φFil
, θFil

). Then, the following results hold:

E[Llegit(F1r |(φil, θil)]

= E[g(φFil
− φil; 0, σ̂2

φ)]E[g(θFil
− θil; 0, σ̂2

θ)]

= E[g(mil; 0, σ̂
2
φ)]E[g(nil; 0, σ̂

2
θ)]

≥ (1− σ̂θ)(1− σ̂φ) ≥ 1− σ̂thetaσ̂φ (10.21)

Wheremil, nil are normally distributed. We can write the analogous metric if the client is an adver-

sary as:

E[Lspoof (F1r |(φil, θil)]

= E[g(φFil
− φil; 0, σ̂2

φ)]E[g(θFil
− θil; 0, σ̂2

θ)]

= E[g(uil; 0, σ̂
2
φ)]E[g(vil; 0, σ̂

2
θ)]

≤
√

σ̂θσ̂φ

(√
2+
√
π

π

)2

(10.22)

Where uil, vil are uniformly distributed. Generalizing tom independent routers, we can write:

E[βspoof ] ≤





√

σ̂θσ̂φ

(√
2+
√
π

π

)2




m

(10.23)

E[βlegit] ≥ (1− σ̂θσ̂φ)m ≥ 1−mσ̂θσ̂φ (10.24)

Eqn. 10.23 and 10.24 prove the above Lemma 10.3. �

Lemma 10.4 Assume a network ofm routers serving a client j. We assume a new client i joins the network,
which does not report its location. Without loss of generality, this client: 1) either spoofs client-j, potentially
scaling power, or; 2) a randomly located legitimate client. Let γspoof , γlegit denote the second component γij
of the confidence metrics measured in either cases. Then the expected value of these confidence metrics are
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bounded by:

E[γspoof ] ≥ 1− 2mkσθσφ (10.25)

E[γlegit] ≤





√

2σθσφ

(√
2 +
√
π

π

)2




mk

(10.26)

Where, σθ , σφ are the variances defined in Lemma 10.1 that depend on signal-to-noise ratio and k is the
number of maxima in the fingerprint of client i.

Proof of Lemma 10.4: Let us first evaluate the component of γlegit the confidence metric of a

genuine client-i, in relation to router l and client-j. Let’s assume set of k directions of this client

Φlegit,r = {φlegit,1, . . . , φlegit,k}, Θlegit,r = {θlegit,1, . . . , θlegit,k} are uniformly at random. For the

moment, let’s consider γlegit pertaining to a legitimate client-i. Then, the following results hold:

E[Llegit(2 spoofs 1|F1r, F2r)]

=

k
∏

p=1

E[g(φlegit,p − φ1,p; 0,2σ2
φ)]E[g(φlegit,p − φ1,p; 0,2σ2

θ)]

=

k
∏

p=1

E[g(up; 0,2σ
2
φ)]

k
∏

p=1

E[g(vp; 0,2σ
2
θ)]

≤
√

2σθσφ
k

(√
2 +
√
π

π

)2k

(10.27)

Where up, vp are uniformly at random as well, and κ is a constant normalization factor to ensure

the likelihood is at most 1. We can write the analogous metric if client-i is an adversary as:

E[Lspoof (2 spoofs 1|F1r, F2r]

=

k
∏

p=1

E[f(φspoof,p − φ1,p; 0,2σ2
φ)]E[f(φspoof,p − φ1,p; 0,2σ2

θ)]

=
k
∏

p=1

E[f(mp; 0,2σ
2
φ)]

k
∏

p=1

E[f(np; 0,2σ
2
θ)]

≥ (1−
√
2σθ)

k(1−
√
2σφ)

k ≥ 1− 2kσθσφ (10.28)

Where mp, np are normally distributed. Assuming fingerprints from routers are independent, we

can write the expectations across routers in the two cases as:

E[γspoof ] ≥ (1− 2kσθσφ)
m ≥ 1− 2mkσθσφ (10.29)

E[γlegit] ≤





√

2σθσφ

(√
2 +
√
π

π

)2




mk

(10.30)

Eqn. 10.30 and 10.29 prove the above Lemma 10.4. �

Theorem 10.3.1 Consider a network withm servers and c clients. A new client i either: 1) spoofs s clients
reporting a random location, potentially scaling power, or; 2) is a uniformly randomly located legitimate
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client. Let αspoof , αlegit be the confidence weights in either case. Assume that the client obtains its signals
from servers along k paths (where the number of paths k is defined by Eqn. §10.1 in Sec. §10.2). Under
A.1-A.3, the expected αspoof , αlegit are bounded by:

E[αspoof ] ≤
[

√

σ̂θσ̂φκ
]m

[2mkσθσφ]
s

E[αlegit] ≥ 1− cmσ̂θσ̂φ
[√

2σθσφκ
]mk

(10.31)

Where κ=
(

(
√
2 +
√
π)/π

)2
, σθ , σφ, σ̂θ , σ̂φ are the variances defined in Lemma 10.1 that depend on signal-

to-noise ratio (the latter include measurement error in reported locations).

Proof of Theorem 10.3.1: Using Lemma 10.4, we can write:

E[1− γspoof ] ≤ 2mkσθσφ

E[1− γlegit] ≥ 1−
[√

2σθσφκ
]mk

Combining over s spoofers and c− s legitimate clients, we can write:

E[
∏

i6=j
1− γspoof ] ≤ [2mkσθσφ]

s
(

1− (c− s)
[√

2σθσφκ
]mk

)

≤ [2mkσθσφ]
s

E[
∏

i6=j
1− γlegit] ≥ 1− c

[√

2σθσφκ
]mk

Combining the above equations with Lemma 10.3, we can write:

E[αspoof ] ≤
[

√

σ̂θσ̂φκ
]m

[2mkσθσφ]
s

E[αlegit] ≥ 1− cmσ̂θσ̂φ
[√

2σθσφκ
]mk

Which proves the required lemma. �

A natural question one might ask is if the above lemma holds in general environments, where

its assumptions A.1-A.3 may be too stringent. Our extensive experimental results in Sec. 10.5

show that our bounds on α approximately predict performance in general environments. Further,

Sec. §10.5.1 shows that results from an anechoic chamber, which emulate free-space conditions

where the lemma’s assumptions can be directly enforced, tightly follow the bounds of Lemma 10.1.

In sum, one can adopt the above lemma to distinguish adversarial nodes from legitimate nodes,

purely based on α. However, an interesting alternative is to incorporate α directly into multi-robot

controllers to give provable service guarantees to legitimate nodes. The next section show how αi

readily integrates with robotic coverage controllers, in particular.

� 10.4 Threat-Resistant Distributed Control

This section describes how our spoof detection method from Sec. §10.3 integrates with well-known

coverage controllers from [33, 148, 149]. The area coverage problem deals with positioning server
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Figure 10-6: Coverage guarantee. An ε ball around the ground-truth centroid, CVlegitimate , is shown in green.

Theorem 10.4.1 finds ε(P) so that server positions remain in this ball in the presence of spoofed clients.

robots to minimize their Euclidean distance to certain areas of interest in the environment. These

areas are determined by an importance function ρ(q) that is defined over the environment Q ⊂ R
3

of size L(Q). For our coverage problem, the peaks of the importance are determined by client po-

sitions P , e.g., ρ(q,P ) = ρ1(q) + . . .+ ρc(q) where ρi(q) quantifies the influence of client i’s position

on the importance function. Using [33, 148, 149], server robot positions optimizing coverage over

ρ(q,P ) will minimize their distance to clients.

To account for spoofed clients, we modify the importance function ρ(q,P ) using the αi for each

client i ∈ [c] that is computed by Algorithm 8. E.g., we canmultiply each client-term in ρ(q,P ) by its

corresponding confidence weight: ρ(q,P )α = α1ρ1(q) + . . .+αcρc(q). Given the properties of these

weights derived in Theorem 10.3.1, i.e., αi is bounded near zero for a spoofed client and near one

for a legitimate client, the effect of multiplication by the α’s is that terms corresponding to spoofed

clients will be bounded to a small value (see Fig. 10-6); providing resilience to the spoofing attack.

For simplicity, we assume the importance function ρ(q) is static (from [33]) and α’s from Algo-

rithm 8 are computed once, at the beginning of the coverage algorithm. We note that our approach

readily extends to the adaptive case in [148, 149] when the importance function (and location of

clients) change, by having the service robots exchange their learned importance function. This in

turn can trigger a re-calculation of α values.

We now show that computed server positions are impacted by spoofers to within a closed-form

bound, that depends on problem parameters like signal-to-noise ratio. Theorem 10.4.1 below solves

Problem 2 of our problem statement (Sec. §10.1).

Theorem 10.4.1 Let X be a set of server robot positions and P = S ∪ S̃ be a set of client positions where S

is the set of spoofed client positions, and S̃ is the set of legitimate clients. The identities of the clients being
spoofed is assumed unknown. Let {α1, . . . , αc} be a set of confidence weights satisfying Theorem 10.3.1 and
assume a known importance function ρ(q,P ) = ρ1(q) + . . .+ ρc(q) that is defined over the environment

Q ⊂ R
3 of size L(Q). Define CV = {x∗1, . . . , x∗m} to be the set of server positions optimized over ρ(q, S̃),

i.e., where there are zero spoofed clients and CVα
to be the set of server positions optimized over ρ(q,P )α =

α1ρ1(q) + . . . + αcρc(q) where there is at least one spoofed client, ie. |S| ≥ 1. If {α1, . . . , αc} satisfy
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Theorem 10.3.1, we have that ∀x ∈CVα
there exists a unique y ∈CV , where in the expected case dist(x, y)≤

ε(m,s,σφ, σθ, κ)

ε = max
{

[
√

σ̂θσ̂φκ]
m[2mkσθσφ]

s, cmσ̂θσ̂φ[
√

2σθσφκ]
mk
}

L(Q)

andm,s,σφ, σθ, κ are problem parameters as in Theorem 10.3.1.

Proof: We make an important observation that E[αi] ≤ a if client i is a spoofed node, and

E[αi] ≥ b otherwise; hence:

ρ(q,P )α = a(ρ1(q) + . . .+ ρs(q)) + b(ρs+1(q) + . . .+ ρc(q))

is the maximal effect that the presence of spoofed clients can have on the importance function. In-

tuitively, all spoofed clients have a weight of at maximum a and all legitimate clients have a reduced

weight of at minimum b. Using this observationwe can bound the influence of the spoofed clients on

computed server control inputs (see Fig. 10-6). Specifically, recall from [33] that the position control

for each server is: ul = −2MV (CV − cl), whereMV =
∫

V
ρ(q)dq, CV = 1

Mv

∫

V
qρ(q)dq and V is the

voronoi partition for server l defined as all points q ∈ Q with dist(q, xl) < dist(q, xg) where g 6= l.

Using the importance function from above we canwrite CVα
= 1

MVα
(aCVS

+ bCVL
)whereCVS

is the

component of the centroid computed over spoofed nodes and CVL
is the component of the centroid

computed over legitimate nodes and MVα
is defined shortly. We rewrite CVS

as a perturbation of

the centroid over legitimate nodes as CVS
= CVL

+ ~v‖~e‖ where ~v is an arbitrary unit vector and the

magnitude of ~e can be as large as the length of the operative environment,‖~e‖ ≤ L(Q). Let the total

mass be T = MVs
+MVL

. We can write a similar expression for the mass MVα
using the bounds

a and b asMVα
= bT + (a− b)MVL

. Substituting these expressions into CVα
and simplifying gives

CVα
=

CVL
+b~v‖~e‖

bT+(a−b)MVL

. Combining this expression with the server control input:

ul = k ( [(a+ b)CVL
− pl] + b‖~e‖~v ) (10.32)

Where k = −2(bT + aMVL
). If (a+ b) = 1, this control input drives the server robot l to a neigh-

borhood of size ε = b‖~e‖ ≤ bL(Q) centered around the centroid CL defined over the legitimate

clients. So if b = max
{

[
√

σ̂θσ̂φκ]
m[2mkσθσφ]

s, cmσ̂θσ̂φ[
√

2σθσφκ]
mk
}

from Theorem 10.3.1 Equa-

tion (10.31), then:

ε = max
{

[
√

σ̂θσ̂φκ]
m[2mkσθσφ]

s, cmσ̂θσ̂φ[
√

2σθσφκ]
mk
}

L(Q)

then we have (a+ b) = 1 as desired, proving the lemma. �

� 10.5 Experimental Results
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Figure 10-8: Experimental Evaluation of α: (a) In

an anechoic chamber approximating our assumptions

A.1-A.3 (§10.3.1), α largely agrees with theory. (b) In a

typical multipath environment, experimental results

closely follow theoretical predictions. Data shows

that α = 0.5 is a good threshold value.
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Figure 10-9: Co-Aligned Clients: We vary the angle φ

between a legitimate and malicious client, relative to

a single server, and plot α in (a) an anechoic cham-

ber and (b) an indoor environment. The minimum

φ needed to distinguish the clients is only: (a) 3◦ in

freespace, (b) 0◦ in multipath settings.

Figure 10-7: Testbed Snapshot

This section describes our results from an experimental eval-

uation of our theoretical claims. Our aerial servers were

implemented on two AscTec Atomboard computing plat-

forms equipped with Intel 5300 Wi-Fi cards with two anten-

nas each, mounted on twoAscTecHummingbird quadrotors.

Our clients were ten iRobot Create robots, each equipped

with Asus EEPC netbooks and single-antenna Wi-Fi cards.

An adversarial client forged multiple identities by spawn-

ing multiple packets containing different identities (up to 75% of the total number of legitimate

clients in the system), and could use a different transmit power for each identity. The adversary

advertised identities by modifying the Wi-Fi MAC field, a common technique for faking multiple

identities [152].

Evaluation: . We evaluate our system in two environments: 1) An indoor multipath-rich envi-

ronment with walls and obstacles equipped with a Vicon motion capture system to aid quadrotor
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Figure 10-10: Experimental Results for Sybil Attack in Multi-Agent Coverage. Depicts the total distance of

converged quadrotor server positions (white ×) to two legitimate clients and six spoofed clients. We consider:

(a) an insecure system where each spoofed client creates a false peak in the importance function, (b) a ground

truth importance function, and (c) our system where applying α weights from Algorithm 8 recovers the true

importance function. (d) Depicts a ground-truth cost computed with respect to legitimate clients as Sybil

nodes dynamically enter the network. Our system (red dotted line) performs near-optimal even when spoofed

clients comprise more than twice the network.

navigation; 2) An anechoic chamber to emulate a free-space setting that is particularly challeng-

ing to our system. We estimated the average theoretical expected standard deviation to be σθ, σφ

of 0.7◦ (Lemma 10.1). After including the standard deviation in reported location, based on the

known errors of our localization framework, this increased the average σ̂θ, σ̂φ by 2◦(variances in

each experiment depend on measured SNR) We compare our system against a baseline that uses a

Received Signal Strength (RSSI) comparison (akin to [138]).

Roadmap: . We conduct three classes of experiments: (1) Microbenchmarks to validate our client

confidence metric, both in free-space and multipath indoor environments (Sec. §10.5.1). (2) Exper-
iments applying this confidence metric to quarantine adversaries (Sec. §10.5.2). (3) Application of

our system to secure the coverage problem against Sybil attacks (Sec. §10.5.3).
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� 10.5.1 Microbenchmarks on the Confidence Metric

This experiment studies the correctness of our system’s confidence metric α. Recall from theory

in §10.3 that α’s measured by a server robot distinguish between unique clients based on their di-

verse physical directions and the presence of multipath reflections. Thus, a free-space environment

(i.e., with no multipath) is particularly challenging to our system.

Method. To approximate free-space,we measuredα values in a radio-frequency anechoic chamber

which attenuates reflected paths by about 60 dB, for a legitimate and malicious client from one

server robot 12 m away. Next, in a 10 m x 8 m indoor room (a typical multipath case), we measured

α’s from one server for up to ten legitimate clients and ten spoofed clients.

Results. In Fig. 10-8, the values of α in the anechoic chamber tightly follow our theoretical bounds

in Theorem 10.3.1 (Fig. 10-9(c)). As expected, our results in indoor multipath environments exhibit

a larger variance but follow the trend suggested by theory. Further, we stress our confidence metric

by isolating the case of colinearity in both environments. In Fig. 10-9, we consider a spoofing

adversary initially co-aligned with a legitimate client, and measure α as the angle of separation, φ,

is increased from 0◦ to 20◦ relative to the server robot. In the anechoic chamber at φ close to 0◦, the

fingerprints of both the legitimate and adversarial nodes are virtually identical, each with precisely

one peak at 0◦. Consequently, α for the legitimate node is much below 1, indicating that is believed

to be adversarial (i.e., the term 1− γ in α approaches 0 in Eqn. 10.2). However, α for the legitimate

client quickly approaches 1, even if φ = 3◦ in the anechoic chamber. In fact, α is virtually identical

to 1 beyond 10◦, indicating that a single server robot can distinguish closely aligned legitimate and

adversarial clients even in free-space. Fig. 10-9(b) shows that multipath can distinguish clients even

at φ = 0◦, due to additional reflected paths that help disambiguate these clients.

� 10.5.2 Performance of Sybil Attack Detection

In this experiment, we measure our system’s classification performance on legitimate and spoofed

clients, in the presence of static, mobile, and power-scaling adversaries.

Method. This experiment was performed in the multipath-rich indoor testbed with walls and ob-

stacles. Each run consisted of one quadrotor server, and (randomly positioned) ten control clients,

or nine legitimate clients with an adversary reporting two to nine spoofed clients. Each Sybil attack

was performed under three modalities: (1) a stationary attacker with a fixed transmission power,

(2) a mobile attacker (random-walk and linear movements), and (3) an attacker scaling the per-

packet power by a different amount for each spoofed client, from 1 to 31 mW. The quadrotor server

classifies clients with an α < 0.5 as spoofed (see Fig. 10-8). The baseline RSSI classifier uses a 2 dB

thresholded minimum dissimilarity, a technique previously applied in static networks [138, 180].
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Results. For each modality, our performance against an RSSI

baseline over multiple network topologies is summarized here

Our System RSSI

TPR FPR TPR FPR

Static 96.3 3.0 81.5 9.1

Mobile 96.3 6.1 85.2 6.1

∆ mW 100.0 3.0 74.1 27.3

as true positive rates (TPR) and false positive rates

(FPR). In particular, our classifier is robust to power-

scaling Sybil attacks (where RSSI performs poorly)

since we use the ratio of wireless channels in comput-

ing α (Sec. §10.2). Our client classifier exhibits consis-

tent performance in both power-scaling andmobile sce-

narios with a TPR ≈ 96% and FPR ≈ 4%.

� 10.5.3 Application to Multi-Agent Coverage

We implement the multi-agent coverage problem from [33], where a team of aerial servers position

themselves to minimize their distance to client robots at reported positions pi,i ∈ [c]. We use an

importance function ρ(q,P ) = ρ1(q) + . . .+ ρc(q) defined in Sec. §10.4 where each client term is a

Gaussian-shaped function ρi(q) = exp(− 1
2 (q − pi)T (q − pi)) (Fig. 10-10(b)). An α-modified impor-

tance function is implemented as ρ(q,P )α = α1ρ1(q)+ . . .+αcρc(q)where the α terms are computed

using Algorithm 8 (Fig. 10-10(c)).

Method. This experiment was performed in the multipath-rich indoor testbed. For each experi-

ment we randomly place three clients in an 8 m x 10 m room with two AscTec quadrotor servers.

Fig. 10-10(a)-(c) shows one client-server topology where an adversary spoofs six Sybil clients. Upon

convergence, we measure the distance of each server from an optimal location in 3 scenarios: 1) a

naive system with no security, 2) an oracle which discards Sybil clients a priori, and 3) our system.

Results. Fig. 10-10(a)-(c) depicts the converged locations for a candidate topology in the above

three scenarios. We observe that by incorporating α weights in our controller, our system approxi-

mates oracle performance. Fig. 10-10(d) demonstrates the ability of our system to bound the service

cost to near optimal even as spoofers enter the network (comprising up to 300%).

Aggregate Results. Across multiple topologies and 12 runs, with no security the maximum dis-

tance from each quadrotor to an oracle solution is on average 3.77 m (stdev: 0.86). Our system

achieves a 0.02 m (stdev: 0.02) average from oracle.

� 10.6 Related Work

The problem of Sybil attacks has been studied in general multi-node, often static, networks, and

many tools have been developed for these settings. Past work falls under three categories: (1)

Cryptographic authentication schemes can be used to prevent Sybil attacks (Table 7 in [182]). These

require trusted central authorities and computationally expensive distributed key management, to



SECTION 10.7. DISCUSSION 251

account for dynamic clients that enter and leave the network [182]. (2) Non-cryptographic tech-

niques in the wireless networking community leverage wireless physical-layer information to de-

tect spoofed client identities or falsified locations [81, 194, 189, 192]. These rely on bulky and ex-

pensive hardware like large multi-antenna arrays, that cannot be mounted on small robotic plat-

forms. (3) Recent techniques have attempted to use wireless signal information like received signal

strength (RSSI) [180, 138] and channel state information [105]. Such techniques need clients to re-

main static, sincemobility can causewireless channels to fluctuate rapidly [10]. In addition, they are

susceptible to power-scaling attacks, where clients scale power differently to imitate different users.

In sum, the above systems share one or more of the following characteristics making them ill-suited

to multi-robot networks: (1) require computationally-intensive key management; (2) rely on bulky

and expensive hardware; (3) assume static networks. Indeed past work has highlighted the gravity

and apparent sparsity of solutions to cyber-security threats in multi-robot networks [72, 146, 25].

Unlike past work, our solution has three attributes that particularly suit multi-robot networks.

(1) It captures physical properties of wireless signals and therefore does not require distributed key

management. (2) It relies on cheap commodity Wi-Fi radios, unlike hardware-based solutions [189,

194]. (3) It is robust to client mobility and power-scaling attacks.

Finally, our system builds on Synthetic Aperture Radar (SAR) to construct signal finger-

prints [50]. SAR has been widely used for radar imaging [50, 85] and indoor positioning [89, 88,

179, 58]. In contrast, this chapter builds upon SAR to provide cyber-security to multi-robot net-

works. In doing so, it provides theoretical security guarantees that are validated experimentally.

These integrate readily with performance guarantees of existing multi-robot controllers, like the

well-known robotic coverage controllers [33, 148] as shown in Sec. §10.4.

� 10.7 Discussion

In this chapter, we develop a new system to guard against the Sybil attack in multi-robot networks.

We derive theoretical guarantees on the performance of our system, which are validated experi-

mentally. While this chapter has focused on coverage, it can be readily extended to secure other

multi-robot controllers against Sybil attacks, e.g., unmanned delivery [90], search-and-rescue [100],

and formation control [181]. We note for future work that our method of detecting spoofed clients

is applicable to servers as well, since they also communicate wirelessly. Since our approach is based

on the fundamental physics of wireless signals, we believe that it will easily generalize beyond Sybil

attacks to other Wi-Fi based security issues in robot-swarms such as packet path validation [106]

and detecting packet injection attacks to name a few.
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CHAPTER 11
Conclusion, Lessons Learned and

Future Work

In conclusion, this dissertation address the key challenges and opportunities of modern wireless

networks: combating wireless interference and providing a new indoor positioning service. Unfor-

tunately, past work that has that looked into these challenges either require complete overhaul of

wireless infrastructure, or do not provide satisfying performance. This dissertation addresses this

dilemma, presenting multiple systems that both combat interference and provide accurate indoor

positioning without needing overhaul of the infrastructure. It develops systems that manage wire-

less interference by manipulating wireless transmissions at the signal-level, even on commodity

Wi-Fi radios. Further, it enables novel indoor positioning services for bothWi-Fi and LTE networks,

that achieve high accuracy while requiring low deployment effort. Finally, it leverages these tools

to open up new connections between wireless networking and robotics, for improved communica-

tion and security in multi-robot networks. Specifically, we make the following contributions:

• Bringing Multi-Antenna Interference Management to Today’s Wireless LANs: OpenRFis the first

system that enables the deployment of physical-layer MIMO techniques on commodity Wi-

Fi cards. It is also the first cross-layer design that is demonstrated using a fully operational

network stack with real applications.

• Interference Alignment by motion: We describe MoMIMO, a technique that demonstrated, for

the first time, that interference alignment and nulling can be achieved, even with single-

antenna transmitters, by simply moving the receive antenna. We also showed that the

amount of antenna displacement needed is fairly small (∼ one inch); hence, MoMIMO can

be achieved by sliding antennas.

• LTE Radio Analytics made Easy and Accessible: We present LTEye, the first open platform

to provide fine-grained temporal and spatial analytics on LTE radio performance, without
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private user information or provider support. LTEye employs a novel extension of syn-

thetic aperture radar to communication signals to accurately localize mobile users, despite

the presence of multipath. We empirically evaluate LTEye on software radios and provide

deep insights on the LTE PHY and highlight shortcomings such as inter-cell interference and

inefficient spectrum utilization.

• Accurate indoor positioning with Zero Startup Cost: We design Ubicarse, an indoor localization

system to achieves tens of centimeters of accuracy on commodity mobile devices, without

requiring specialized infrastructure or fingerprinting. Ubicarse’s provides a new formulation

of Synthetic Aperture Radar that allows mobile devices to emulate an antenna array; where

this formulation is tolerant to unknown translation of the antenna center of up to half a meter.

We implement Ubicarse on a commodity tablet and demonstrate tens of centimeter accuracy

in both device localization and object geotagging in complex indoor settings.

• Adaptive Communication in Multi-Robot Systems Using Directionality of Signal Strength: We

present a novel method to position a team of robotic routers to satisfy the heterogeneous

communication demands of a network of robotic clients, while adapting to real-time envi-

ronmental changes. At the heart of this system is a new approach for routers to determine

the direction of movement that best improves its signal to any given client in the network.

We implement our design and demonstrate its empirical gains in a testbed of iRobot Create

robots equipped with commodity Wi-Fi radios.

• Guaranteeing Spoof-Resilient Multi-Robot Networks: We present a new approach that secures

multi-robot networks against the Sybil attacks that is applicable to a broad class of problems

in distributed robotics. We prove that the influence of spoofers is analytically bounded un-

der our system in a coverage context, where each robotic node providing coverage remains

within a bounded radius of its position in the absence of an attack. Our theoretical results

are validated extensively through experiments using aerial and ground robots in diverse set-

tings.

� 11.1 Lessons Learned

This dissertation presents contributions that span multiple topics in the field of wireless commu-

nication ranging from improving communication quality, new RF-based services and connections

with the field of robotics. Developing the systems in this thesis involved collaborations with experts

in diverse fields: security, robotics, control theory, and signal processing. Such inter-disciplinary

collaboration led to both important research contributions as well as several lessons learned:

Look at the Network as a Whole. Often, networking research tends to focus on layers – either the

physical layer, the MAC, congestion control, etc. However, looking at how layers inter-operate to
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achieve network objectives as a whole can be extremely valuable. For instance, prior to OpenRF,

there were several important solutions to combat interference that operated purely at the physical

layer. Yet, these failed to answer the questions that operators truly care about – Will TCP continue

to work? Howwill these systems impact the delays of video traffic? It is indeed these questions that

led us to design OpenRF, which demonstrated for the first time that one can combat interference

to achieve performance gains for the network as a whole: for real applications such as TCP file

transfers and video streaming.

A similar example can be seen in the context of cellular networks. LTEye observed inefficiencies

at the physical layer that may perhaps make sense in isolation, but not in the context of higher

layers. For instance, the physical layer allots equal resources for uplink and downlink traffic. Yet

in reality, downlink traffic far exceeds uplink traffic by an order of magnitude, leading to much

spectrum that lies wasted.

Bring solutions to real networks. Wireless research has benefited immensely from innovative

signal processing algorithms. The traditional approach has been to demonstrate these solutions

on software radios. Yet, bringing these solutions to real networks requires operating with the con-

straints of today’s Wi-Fi radios and standards.

OpenRF develops innovations in the context of bringing MIMO interference management tech-

niques to commercial wireless networks. Ubicarse, on the other hand, brings radar technologies

to commercial handheld devices. In both cases, new algorithms needed to be designed. OpenRF

required operation with existing Wi-Fi standards and the full Wi-Fi stack. Ubicarse needed new

formulations of radar algorithms that can handle trajectories of the user devices that are not me-

chanically controlled. Bringing solutions to real networks can be challenging, yet make high impact

in bridging wireless research with the networks of today.

Wireless radio as a “sensor”. Traditionally, wireless networking research has focused on commu-

nication. Yet, wireless radios can do much more – their signals capture physical properties of the

transmitter as well as the environment around them. In other words, wireless radios are effectively

“sensors”.

The research in this dissertation has exploited this observation in a variety of contexts: Robots

can sense how wireless signals reflect around obstacles to navigate effectively. Or they one can

sense a malicious transmitter that pretends to be multiple fake nodes. Indeed, both Ubicarse and

LTEye are essentially sensing different paths that wireless signals take through the environment to

isolate the true location of a wireless transmitter.

The enormous potential of wireless networking and robotics: . Wireless networking does not

live in an island – it serves real applications in a variety of contexts. However, the traditional

approach to design wireless protocols is to be generic – serve as many applications as possible
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while functioning efficiently. Yet, knowledge of the application concerned can lead to much more

efficient networks.

We discovered a particularly huge opportunity to do this in the context of robotic networks.

Robotic networks are by definition highly mobile with this mobility being highly controllable. This

allowed us to design new wireless communication protocols to exploit this mobility – both to im-

prove communication speeds, and open up new services. We believe we have only scratched the

surface in this endeavor and there are several more opportunities for wireless networking protocols

to be re-designed in the context of the applications they serve.

� 11.2 Future Work

Wireless communication is at an exciting time, expanding to a variety of applications creating

new challenges and opportunities. Indeed there remain several opportunities to draw on a deep

understanding of the wireless physical layer to advance next-generation mobile systems and ap-

plications. A particularly important direction that builds upon the work in this dissertation are in

the area of the Internet of Things and machine-to-machine communication. As diverse devices and

platforms connect to the Internet, the vision of Internet of Things is upon us. Wireless technologies

will play a crucial role in this vision, given that they are cheap, low-power, and most importantly -

mobile. Yet, building the Internet of Things requires innovation in several areas that we can explore:

� 11.2.1 Location as a Context

In the Internet of Things, device locations are important to identify context. For example, a televi-

sion can turn on automatically when the user sits on the couch; or, a factory robot can find different

parts based on their location. Themain challenge is to find simple and cheap solutions that leverage

existing infrastructure, without requiring extensive fingerprinting of the deployment space.

Solutions in this space, much like Ubicarse, must enlist wireless channels. Fortunately, in the

Internet of Things, wireless devices will be everywhere - many at fixed locations, like lamps and

thermostats. This creates new opportunities for collaborative indoor positioning. For instance,

consider systems that synchronize many distributed wireless devices to emulate large antenna

arrays. Antenna arrays are widely used in accurate positioning systems, but are restricted to be

small owing to practical limits on size and cost. In contrast, many low-cost wireless devices in the

Internet of Things can collaborate to form large antenna arrays. However, unlike typical antenna

arrays, such devices may not be arranged in regular shapes like lines or circles, which necessitates

new antenna array algorithms. Further, these devices may not be located at well-known positions,

which calls for means to “auto-calibrate” the system.
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� 11.2.2 Built-in Security

For any system to be truly secure, security must be an inherent aspect of system design and not

merely an after-thought. Finding robust and scalable security solutions for the Internet of Things is

challenging, given the sizable number of devices involved. A unique challenge of interest is spoof-

ing, where a single entity pretending to be a large number of devices can alter system behavior.

For example, consider Google’s Project Loon that plans to expand the Internet to a large number

of devices in remote areas using aerial routers that gravitate towards network demand. Malicious

clients can spawn thousands of devices, drawing away network coverage.

A promising solution to guard against such attacks relies on wireless signal characteristics.

LTEye demonstrates that wireless signals from a source contain information about its physical

location, as well as objects in the environment. When processed carefully, this information can

serve as unique fingerprints that map solely to a given device. Such a system would be invaluable

in detecting large groups of fake spawned devices, since these devices will map to the same

physical fingerprint.

� 11.2.3 Architecture Integrating Diverse Platforms

Diverse wireless technologies are point-solutions targeting specific applications. Seamless com-

munication between them requires new standards, much like what TCP/IP did for the Internet.

Designing a cohesive architecture that integrates different wireless platforms at the physical layer

for the Internet of Things is a major problem I plan to attack in the future.

Such an architecture must remain simple and scalable, given that the Internet of Things

will primarily contain a large number of small devices. Much like OpenRF, it must allow for

easy coordination, so that several simple devices can collaborate to perform complex tasks. For

example, low-power sensors can synchronize their transmissions and relay data to higher-power

Wi-Fi access points. The architecture must also be programmable at the level of sub-systems, as

opposed to individual entities. For instance, one should be able to program the heating system of

an entire room as opposed to commanding vents individually.
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