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Abstract

Bacteria in the oligotrophic ocean live in a world where the bulk
concentrations of the dissolved organic compounds important in metabolism are
exceedingly low (10-8 to 10-13 M) yet recent measurements show bacteria generation
times as short as eleven hours. Clustering of motile bacteria around phytoplankton
cells that are exuding dissolved organic carbon might help explain this paradox.
The non-random association between bacteria and phytoplankton may have
important consequences to the exchange of nutrients and energy in the microbial
food web. While swarming of bacteria around phytoplankton cells in culture can be
observed under the microscope, there is no practical way to observe or sample
clusters in situ. A simulation model of each of the relevant biological and physical
processes was therefore developed to study the interactions between phytoplankton
and motile bacteria in fluids with relative motions due to phytoplankton sinking and
turbulent shearing.

A non-sinking phytoplankter in the upper mixed layer can be considered to
be a continuous point source of mass into a fluid with a steady linear velocity
distribution. Concentration distributions surrounding the phytoplankton cell are

distorted by the flow at distances greater than y/Ebi, where y is the molecular
diffusion coefficient and Eb is a characteristic shear rate. The distributions have
two distinct shapes depending on the number of principal axes of fluid strain that
are expansive and the relative magnitude of irrotational and rotational shears. For
irrotational flows a single expansive principal axis of strain results in tube-like
structures while two expansive axes results in disk-like structures. Approximate
analytical solutions, derived by neglecting diffusion along the expansive axes, agree
well with concentrations calculated by numerically convolving the exact
instantaneous source solution. The effect of fluid vorticity is generally to reorient
the distributions away from the principal axes of strain and to reduce the
asymmetry of the concentration distributions. The shape and structure of the
concentration distribution varies little until the vorticity approaches a critical value
defined by a kinematic condition for equilibrium orientation in the presence of
rotation. For larger values of vorticity the concentrations distributions gradually
become axisymmetric around the axis of rotation. Application of these results to
numerical simulations of isotropic turbulence suggests that tubes are more common
than disks and that vorticity exceeds the critical value throughout a significant
portion of the fluid.
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An analysis of published experiments on the pattern of bacterial swimming
shows that a chemotactic bacteria's approach to a continuous point source of
attractant can be described with a hyperbolic function of the temporal change in
chemoreceptor occupancy experienced by the bacteria. In motionless fluid, the
population density of chemotactic bacteria surrounding the source shows a
characteristic form resulting from a balance between random and chemotactic
bacterial motions. Near the source the population density decreases exponentially
with distance at a rate dependent on the swimming speed and a characteristic run
time of the bacteria. The population density approaches a uniform value at a
distance dependent on the attractant input rate and bacterial chemotaxis
sensitivity, but independent of the bacterial swimming speed. Peak bacterial
population density near the source therefore decreases with increasing bacterial
swimming speed in motionless fluids. When the source is in relative motion,
bacterial densities approach background levels at a distance where effective
chemotactic motion balances fluid motion. The bacterial population density
distribution near the source varies as in the motionless case according to the
swimming speed and characteristic run time.

Results of the simulation model of bacterial chemotaxis towards an exuding
phytoplankton indicate that bacteria may attain population densities orders of
magnitude above background levels in microzones occupying less than 0.1 percent of
the total fluid volume. The degree of clustering varies with phytoplankton
exudation rate, and bacterial swimming speed and chemotactic sensitivity, but it
does not depend directly on phytoplankton cell size. At turbulence intensities
expected in the upper mixed layer of the oceans (shear rate of .15 sec-1) as much as
twenty percent of the chemotactic bacteria population can be clustered around
exuding phytoplankton cells even though individual encounters last only seconds.
The time-averaged exudate concentration experienced by the chemotactic
population is as much as ten times higher than that experienced on average by
non-chemotactic bacteria. At shear intensities of .15 sec-' or phytoplankton sinking
speeds of 10 pam sec-1 the bacteria's ability to stay near a phytoplankter depends on
both the random and effective chemotactic components of bacterial motion, such
that an intermediate swimming speed of approximately 40 pm sec-' maximizes the
time-averaged exudate exposure. Unsteady turbulent mixing in the oceanic surface
layer disperses clusters during bursts of mixing but intervening calm periods are
long enough to allow clusters to reform. The bacteria in a cluster may take up as
much as seventy percent of the exuded photosynthate assuming diffusion limited
bacterial uptake, but the spatial distribution of bacteria does not significantly affect
competition for limiting nutrients between phytoplankton and bacteria.
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Chapter 1.

Introduction and Summary of Thesis Research

- 7-



Recent measurements of bacterial biomass, growth rates and heterotrophic

activity have forced microbial ecologists to reevaluate the coupling between organic

matter production and heterotrophic activity. Bacterioplankton were originally

regarded primarily as either dormant (Stevenson 1978) or as remineralizers attached

to detrital organic material (Steele 1974). Free-living bacteria were thought to have

population densities below that of phytoplankton and have the slow growth rates

consistent with the dilute nature of the dissolved organic compounds important to

metabolism, which typically have concentrations in the nanomolar range (Williams

1976, Mopper and Lindroth 1982, Carlucci et al. 1984). With advances in

techniques for measuring bacterioplankton biomass and productivity came the

discoveries that bacterial biomass approaches phytoplankton biomass (Williams

1981), that bacteria generation times may be as short as ten hours (Hagstrom et al.

1979, Fuhrman and Azam 1980) and that bacterial secondary production can be 10 -

50 percent of primary production (Fuhrman and Azam 1982, Williams 1984, Scavia

et al. 1986). Bacterioplankton are now recognized as an important component of

the planktonic food web (Fenchel 1988).

The major sources of the reduced organic material metabolized by free-living

bacterioplankton in oligotrophic waters are phytoplankton and zooplankton

exudation, sloppy feeding by zooplankton, and dissolution of detrital material

(Williams 1981). The relative importance of these sources is a matter of some

controversy. Measurements of in situ exudation, expressed as a percentage of the

primary productivity rate, have varied widely (Sharp 1977, Jones and Cannon

1986), and many in situ exudation measurements exceed those performed on

phytoplankton in culture. In addition, Jumars et al. (1989) have pointed out that

the in situ exudation measurements often do not discriminate between

phytoplankton exudation and phytoplankton releases associated with grazing, either

from damaged phytoplankton (Lampert 1978) or from dissolution of fecal pellets

- 8-
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(Jumars et al. 1989). Nonetheless, it is generally accepted that in marine systems 5

- 30 percent of the carbon fixed through photosynthesis is lost from phytoplankton

cells. Since bacterial productivity has been measured to be 10 - 50 percent of

primary productivity, it seems likely that the loss of organic material from

phytoplankton cells is a major source of nutrition to free-living marine bacteria.

Reduced carbon released by phytoplankton is introduced to the bacterioplankton

from a finite number of concentrated sources. The concentrated nature of the

source and the observation that some bacterioplankton are motile has prompted the

hypothesis that chemotactic bacteria may be clustered around phytoplankton cells

that are releasing dissolved organic carbon into the fluid (Bell and Mitchell 1972).

Bell and Mitchell (1972) used capillary chemotactic assays to demonstrate that

some motile marine bacteria are attracted to algal exudate. Chemotaxis to the

small chain alcohols, sugars, and amino acids known to be in algal exudate

(Hellebust 1965) has been observed repeatedly for marine and freshwater bacteria

(Chet and Mitchell 1976, Geesey and Morita 1979, Gallucci and Paerl 1994, Hazen

et al. 1984). In addition, swarming of bacteria around phytoplankton cells can be

observed in mixed cultures of phytoplankton and bacteria, but at present there is no

way to observe bacterial clusters in situ. While the chemotaxis assays demonstrate

the possibility of clustering, an assessment of clustering in the upper mixed layer

must also account for the effects of fluid motion resulting from sinking of

phytoplankton cells or from turbulent shearing of the fluid.

The objective of the following thesis research is to develop a better

understanding of the physical and biological processes affecting the clustering of

motile bacteria around phytoplankton cells. The primary tool in the analysis of

bacterial clustering is a simulation model of bacterial chemotaxis surrounding a

phytoplankton cell. Concentration distributions surrounding the phytoplankton cell

are simulated for the fluid motions expected either from sinking of the

- 9-
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phytoplankton or from turbulent shearing of the fluid. Bacterial chemotactic

swimming is simulated using models of chemotaxis developed from experiments on

enteric and photosynthetic bacteria (e.g., MacNab and Koshland 1972, Brown and

Berg 1974, Armitage and MacNab 1987). The relative motion of the bacteria is also

affected by the relative motion of the fluid.

Previous investigations of clustering have relied on order of magnitude estimates

of the physical processes (Mitchell et al. 1985) or have focused on the short-term,

transient response of chemotactic bacteria (Jackson 1987, 1989). While these

studies have provided necessary background information, they have not adequately

simulated the effects of turbulent shear on exudation distributions or bacterial

movement. The simulation model presented here relies on new information

developed as part of the thesis research describing analytically the exudate

concentration distributions surrounding phytoplankton in fluids with the shearing

motion expected in the mixed layer. The study then extends Jackson's analysis of

the initial response of a bacteria population by simulating behavior over periods

long enough to quantify the population density and time-averaged exudate exposure

of the chemotactic bacteria population. These two parameters are critical in

assessing the ecological implications of non-random interactions between

phytoplankton and chemotactic bacteria. The population density and time-

averaged exudate exposure are examined for the range of phytoplankton exudation

rates, marine bacteria chemotaxis abilities, and fluid motion conditions expected in

the mixed layer. The utility of chemotactic behavior is examined by comparing

time-averaged exudate exposures for populations of chemotactic and non-

chemotactic bacteria. The calculated bacterial population densities are used to

estimate clustering effects on the exudate spatial distributions, on the bacteria

population's effect, on the phytoplankton's uptake of inorganic nutrient, and on the

flow of carbon through the microbial food web.
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The first phase of the research asked the following question: How does shearing

fluid motion around individual phytoplankton cells affect exudate concentration

distributions? While much is known about how shearing motion modifies the mass

transfer rate from particles (Batchelor 1979, 1980), there is little information on

concentration distributions surrounding sources of mass or heat in shearing flows.

Concentration distributions are known only for the simple case of two-dimensional

simple shear (Frankel and Acrivos 1968), and numerical solutions have also been

reported for this type of flow (Csanady 1966, Okubo and Karweit 1969). No

analytical solutions are available for a general shearing flow, although

concentrations at points in space can be calculated by summing the contributions of

many instantaneous point sources, for which analytical solutions are available for a

general linear velocity distribution (Foister and Van de Ven 1980).

Chapter 2 describes the concentration distributions that might be expected

around a phytoplankton cell assumed to be a continuous point source of mass into a

fluid with a steady linear velocity distribution. For the shear rates expected in the

upper mixed layer, phytoplankton that exude dissolved organic carbon and have cell

radii less than 30 pm can be considered point sources of mass, and their exudation

rate can be considered steady if the time scale for variation exceeds a few seconds.

In analyzing the concentration distributions, the general linear velocity distribution

is divided into irrotational and rotational flow cases. For the irrotational case,

approximate analytical solutions are derived in the region where advection

dominates the mass transfer by neglecting diffusive transport along the axes where

fluid moves directly away from the phytoplankton. The shear pattern is specified

with a characteristic shear strength that determines the spatial scale of the

concentration distributions and a symmetry factor that determines the shape of the

concentration distributions. Qualitatively, the analytical solutions predict
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concentration distributions having either tube or disk like shapes depending on the

sign of the symmetry factor.

Rotational effects are analyzed by systematically varying the strength of

rotational motion, while fixing the alignment of the rotation axis, the shear

intensity, and the shear symmetry factor. Concentration distributions along axes

defining the equilibrium orientation of an instantaneous pulse are calculated by

summing the contributions of many instantaneous point sources. Rotation effects

on the concentration distributions are found to be minor until the rotation rate

approaches a critical value equal to the rate necessary to give imaginary

eigenvectors for the velocity gradient tensor. When the rotation axis is aligned with

a principal axis of strain, the critical rotation rate is simply one-half the difference

in the principal strain rates perpendicular to the rotation axis. As the rotation rate

increases beyond the critical value, concentration distributions approach an

axisymmetric configuration with a characteristic shear strength equal to the strain

rate along the rotation axis.

An examination of exudate distributions surrounding phytoplankton in the

upper mixed layer must also account for the unsteadiness in shear intensity

characteristic of turbulent flows. Lumley (1972) has hypothesized that each shear

rate in homogeneous, isotropic turbulence lasts for a time corresponding to the large

scale motions. In the upper mixed layer this time is long compared to the time it

takes for the establishment of a steady concentration distribution which scales with

the inverse of the shear rate. The time history of exudate concentration

distributions in turbulent shearing can therefore be seen as a collection of steady

state distributions separated by short transition periods. The equations developed

for steady shearing are appropriate for the relatively long period after the short

transition to a new shearing rate.
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The research described in Chapter 3 examines whether regions of strongly

rotational flow are concentrated in disk or tube like structures for flows assumed to

have homogeneous, isotropic turbulence. Recent turbulence theory is often based on

a conceptualization of turbulence as a collection of coherent structures (Liu 1989).

The thesis research contributes to our understanding of how these coherent

structures are distorted by shear and rotation. Recent numerical simulations of

turbulence have shown that regions of strong rotation are concentrated in tube

shaped structures (Kerr 1985, Ashurst et al. 1987), yet predictions based solely on

the irrotational component of the flow predict that disk shaped structures should be

more common than tubes (Townsend 1951). It is shown in Chapter 3 how strong

rotation can modify the distortion of fluid elements from that predicted by the

irrotational component of the flow. In locations where the flow is strongly

rotational and has a positive strain rate along the rotation axis, fluid elements will

be distorted into tubes regardless of the irrotational shear pattern. Results from

numerical simulation show that this situation occupies at least 25 percent of the

fluid volume (Ashurst et al. 1987), tipping the balance from one favoring disks

(based on the irrotational shear component only) to that where tube shaped

structures are expected to be most common.

Any investigation of bacterial clustering inevitably asks the question: How do

bacteria find the phytoplankton? Experiments on the peritrichously flagellated

bacteria Esherichia coli have shown that chemotactic bacteria move in a directed

fashion towards higher concentrations of attracting compounds by regulating the

switching rate between directions of flagellar rotation (Block et al. 1982). Counter-

-clockwise rotation (looking towards the cell) results in smooth straight runs, while

clockwise rotation results in a tumbling reorientation of the cell with little net

movement. Directed motion is accomplished by adjusting the length of runs depen-

ding on the temporal change in attractant sensed by the bacteria as it runs

- 13 -



through spatial gradients of attractant. While this description of chemotactic

swimming pattern is based on experiments performed with enteric and

photosynthetic bacteria (e.g., MacNab and Koshland 1972, Brown and Berg 1974,

Armitage and MacNab 1987) these bacteria possess the same peritrichous or polar

flagellation observed for many isolates of heterotrophic marine bacteria (e.g.,

Baumann and Baumann 1978). Furthermore, the small cell size of both marine and

enteric bacteria prevents these bacteria from directly measuring spatial gradients of

attractant (Berg and Purcell 1977). Considering the similarity in morphologies and

the limits to the ways in which bacteria can respond to chemical cues, it seems

reasonable to expect that marine bacteria have chemotactic swimming patterns

similar to that already described for enteric or photosynthetic bacteria.

In an effort to better understand the balance between the physical and biological

process involved in bacterial clustering, a theoretical analysis of clustering was

conducted that is based on a simpler, deterministic description of the bacterial

population response. Keller and Segel (1971) first proposed that the response of a

chemotactic population can be modelled as the sum of an effective chemotactic

velocity dependent on the spatial gradient of chemoattractant and a random

diffusion coefficient. From this deterministic description of chemotactic behavior,

predictions of the distribution of chemotactic bacteria have been made for

chemotaxis in a uniform flow with plane source of attractant (Lapidus 1980), or for

chemotaxis and bacterial growth in motionless fluid with a plane source of

attractant (Lauffenburger et al. 1982). The deterministic description of chemotaxis

has also been used in analyzing chemotaxis experiments that measure directly the

bacteria population density (e.g., Dahlquist et al. 1972).

In Chapter 4 an analysis of published experiments on the pattern of chemotactic

movement (Brown and Berg 1974, Dahquist et al. 1976) is used to relate the

deterministic and stochastic descriptions of chemotactic behavior. It is shown that

- 14 -



the model of run time regulation for E. coli (Brown and Berg 1974) results in an

effective chemotactic velocity that is a hyperbolic function of the temporal change

in chemoreceptor occupancy. Measurements of each of the parameters in the

equation for effective chemotactic velocity are available in the literature, allowing

for quantitative predictions of the bacterial population density for a given flux of

chemoattracting compound.

Analytical solutions for the population density distribution are derived using the

deterministic model of chemotaxis. The analytical solutions predict that the

population density near the phytoplankton cell decreases exponentially with

increasing distance at a rate related to an average run length for the bacteria. The

bacterial population density approaches a uniform value at a distance directly

related to a normalized exudation flux, but unrelated to the swimming speed of the

bacteria. In motionless fluid these two results lead to the prediction that the

maximum population density, which is achieved at the phytoplankton cell surface,

decreases with increasing bacterial swimming speed.

A scaling analysis is used to predict the bacterial population density distribution

in cases where the fluid surrounding the phytoplankton is in relative motion due to

either sinking of the phytoplankton cell or through shearing of the fluid. Near the

phytoplankton cell the population density decreases exponentially as in the

motionless case, but it is shown that for cases with fluid motion the distance where

population densities approach background levels depends on the exudation rate of

the phytoplankton. Comparison of results from the simulation model of bacterial

clustering with predictions that utilize the derived relationship for effective

chemotactic velocity show that in moving fluids the density approaches background

levels at a distance where the effective chemotaxis velocity towards the

phytoplankton is equal to the fluid velocity away from the phytoplankton. This

result leads to the conclusion that for moving fluids the peak population density

- 15 -
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near the phytoplankton is maximized for an intermediate swimming speed that

provides enough effective velocity to overcome fluid motions while minimizing the

random component of bacterial motion.

In the final phase of the study the simulation model of bacterial motion around

phytoplankton was utilized to address these questions regarding the ecological

implications of bacterial clustering in the oceanic mixed layer:

1. How much of the chemotactic population is in a cluster at any given time?
Is this fraction high enough so that phytoplankton grazers might also be
important bacteria grazers?

2. How much of an advantage in terms of time-averaged exudate exposure does
a population of chemotactic bacteria receive relative to a non-chemotactic
population?

3. How much of the dissolved organic carbon released by the phytoplankton is
taken up by the bacteria in a cluster?

4. Does the spatial distribution of chemotactic bacteria affect the spatial
distribution of exudate surrounding the phytoplankton?

5. Assuming that bacteria and phytoplankton are competitors for inorganic
nutrients, does the spatial distribution of chemotactic bacteria affect the
flux of these nutrients to the phytoplankton?

The simulation model predicts that the bacterial population density near a

phytoplankton cell may be orders of magnitude above background levels for the

exudation rates, bacterial swimming speeds, and fluid motions expected in the

mixed layer. Both the fraction of the bacteria population in a cluster and the time-

averaged exudate exposure are found to vary with phytoplankton exudation rate,

bacterial swimming speed and chemotactic sensitivity. However, these parameters

do not depend directly on phytoplankton cell size as has been hypothesized in earlier

modelling studies of marine bacterial chemotaxis (Jackson 1987). At turbulence

intensities expected in the upper mixed layer of the oceans (shear intensity of 0.15

sec-i) as much as twenty percent of the chemotactic bacteria population can be

A
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clustered at any given time, even though individual encounters between

phytoplankton and bacteria last only seconds. At these shear intensities the

fraction clustered is found to increase for faster bacteria swimming speeds when the

exudation rates and chemotaxis sensitivities are held constant. The fractions

clustered do not appear high enough, however, to represent a significant link in the

microbial food web between bacteria and phytoplankton grazers.

The time-averaged exudate exposure is found to be highest for the intermediate

swimming speed of 40 pm sec-1, a finding that is consistent with the analysis of the

run and tumble chemotaxis model described in Chapter 4. At this intermediate

swimming speed the time-averaged exudate concentration experienced by the

chemotactic population is as much as ten times higher than that experienced on

average by non-chemotactic bacteria. The large differences in time-averaged

exudate exposure between chemotactic and non-chemotactic populations occurs

over the entire range of shear intensities simulated.

A simulation of unsteady shearing is accomplished by randomly selecting

individual shear rates from a log-normal distribution, with mean and variance

matched to oceanographic measurements of wind or convectively driven shearing in

the upper mixed layer. The simulation predicts that bursts of intense shearing, with

intensities more than five times the mean value, are strong enough to completely

disperse clusters. However, between the bursts are periods where the shearing is

below the mean value, and the simulation shows that these intervening calm periods

last long enough for clusters to reform. By the end of the calm period the fraction

clustered exceeds that expected for steady shearing at the mean value for both

swimming speeds simulated (V = 12 and 40 pm sec-1). The reformation rate of the

cluster and the time-averaged exudate exposure are higher for a swimming speed of

40 pm sec-1, as compared with a swimming speed of 12 pm sec-1. The unsteadiness

- 17 -
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of the shearing results in a time-averaged exudate exposures that are twenty to

seventy-five percent higher than the corresponding values for steady shearing.

The calculated bacterial population densities are used to estimate clustering

effects on the exudate distribution surrounding a phytoplankton and on the competi-

tion for limiting nutrients between phytoplankton and bacteria. Small clustered

fractions are found to be capable of a cumulative uptake that is a significant

percentage of the phytoplankton exudation rate. Approximately thirty percent of

the material released by the phytoplankton can be taken up by a bacterial cluster of

only fifty cells when the bacteria's exudate uptake is assumed to be at the maxi-

mum diffusion limited rate. At the assumed bacterial population density of 106 cells

ml,-1 fifty bacteria represents only five percent of the bacteria population. However,

the simulation results indicate that the spatial distribution of bacteria does not

significantly affect the uptake of limiting inorganic nutrient by the phytoplankton.

The simulation model indicates that for the range of conditions expected in the

oceanic mixed layer, clustering can be important to the ecology of heterotrophic,

free-living bacteria. Because of shearing motions and phytoplankton sinking,

free-living bacteria spend a relatively small fraction of their lifetime in bacterial

clusters, and individual encounters last only seconds, nonetheless chemotactic

behavior significantly improves exposure to exuded organic carbon, as compared

with the exudate exposure of non-chemotactic bacteria. Exudate uptake by the

bacteria in a cluster can be a significant percentage of the phytoplankton exudation

rate, and this uptake can modify the exudate concentrations experienced by

non-chemotactic cells.
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Chapter 2.

Concentration Distributions Around Continuous Point Sources in
a Fluid with a Steady Linear Velocity Distribution

Abstract

Concentration distributions resulting from continuous point sources in a fluid with a
steady linear variation in velocity are distorted by the flow at distances greater than
7/Ebi, where y is the molecular diffusion coefficient and Eb is a characteristic shear
rate. The distributions have two distinct shapes depending on the number of
principal axes of fluid strain that are expansive and the relative magnitude of
irrotational and rotational shears. For irrotational flows a single expansive
principal axis of strain results in tube-like structures, while two expansive axes
result in disk-like structures. Approximate analytical solutions, derived by
neglecting diffusion along the expansive axes, agree well with concentrations
calculated by numerically convolving the exact instantaneous source solution. The
effect of fluid vorticity is generally to reorient the distributions away from the
principal axes of strain and to reduce the asymmetry of the concentration
distributions. The shape and structure of the concentration distribution varies little
until the vorticity approaches a critical value defined by a kinematic condition for
equilibrium orientation in the presence of rotation. For larger values of vorticity
the concentration distributions gradually become axisymmetric around the axis of
rotation. Application of these results to numerical simulations of isotropic
turbulence suggests that tubes are more common than disks and that vorticity
exceeds the critical value throughout a significant portion of the fluid. Fluid
shearing motions may modulate the chemosensory association of aquatic
microorganisms in a turbulent mixed layer of the ocean.
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1. Introduction

In this article we consider the concentration distribution resulting from a

continuous point source of soluble mass into an incompressible fluid with a steady

velocity that is a homogeneous linear function of the distance from the point of

input and which may be either irrotational or rotational. Of particular interest are

the qualitative and quantitative features of the concentration distribution far

enough from the source to be affected by the fluid motion but sufficiently close that

the assumptions of steady homogeneous shear are valid for real flows. The analysis

presented here will be applicable to mass transfer from a finite-sized particle as long

as the Peclet number based on the particle diameter and the shear rate is small

(Batchelor 1979).

In general we seek solutions to the advection-diffusion equation, given here in

the steady-state form as

ac 82C
x= (1.1)

where C is the dissolved constituent concentration, x is the position vector from the

point of mass input, and y is the molecular diffusion coefficient. The boundary

conditions are

C - 0 as r -4

47rr2y d = F as r -4 0 (1.2)

where F is the steady mass input rate and r = (xixi)l is the distance from the point

source. The general linear form for the relative fluid velocity U is

Uj = Gjjxj = (Eij + Qij)xj (1.3)
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where the velocity gradient tensor G is split into symmetric and anti-symmetric

parts, E and 0 respectively, subject to the continuity constraint for an

incompressible fluid Eii = Gii = 0. The elements of the velocity gradient tensor G

are assumed to be constant in time and space.

Little previous work has been done on the concentration distributions for

continuous point sources in flows with general linear velocity distributions.

Analytical solutions are available for a continuous point source in a uniform stream

(Carslaw and Jaeger 1959) and numerical solutions for continuous sources in two-

dimensional shear flows have been presented (Csanady 1966, Okubo and Karweit

1969). In contrast, the problem of diffusion of instantaneous sources in isotropic

turbulence has a long theoretical and experimental history. The diffusion of heat

spots in irrotational sheared flow was investigated by Townsend (1951a) whose

equations for heat spot dispersal agreed well with experiments using hot wire

anemometry. The problem of diffusion of instantaneous sources in simple sheared

flows was solved first by Novikov (1958) and again by Elrick (1962). Lumley (1972)

investigated the effects of vorticity on the dispersal of point sources in two

dimensional shearing flow. The instantaneous source solution for a general linear

flow was given by Batchelor (1979) and by Foister and Van de Ven (1980).

In the following sections we examine first solutions for both instantaneous and

continuous point sources in flows with linear velocity distributions. A numerical

solution for a continuous source based on a convolution of the exact instantaneous

source solution is described. Next, the simple case of irrotational shearing is

analyzed, for which analytical solutions exist for instantaneous pulses (Townsend

1951a) and approximate analytical solutions for continuous sources are also possible.

We then analyze the effects of rotation by examining how the relative magnitude of

the strain and vortical components affect the shape of a particular concentration

contour. In the discussion section we consider the assumption that the velocity

- 24 -



gradient tensor is steady and homogeneous and give a qualitative picture of the

shape of concentration contours from point sources in isotropic turbulence. We

conclude with the application of our results to the problem of chemosensing by

aquatic microorganisms.
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2. General Solutions for Instantaneous and Steady Point Sources

For diffusion of continuous sources in general linear flows, a solution technique

for the concentration field was presented by Batchelor (1979) as a convolution

integral of the instantaneous source solution. These analytical solutions for

instantaneous point sources can be integrated to yield concentration distributions

for all linear flow fields described by Eq. 1.3. In some special cases the form of the

instantaneous point source solutions can be used as a basis for approximate

analytical results. In addition we will show that for any velocity gradient G the

instantaneous source solution has a simple form related to the dimensions and

orientation of the instantaneous pulse. With this in mind we will first present in

some detail the instantaneous point source solution.

Instantaneous Source Solution

The solution for an instantaneous point source can be given by the generalized

Gaussian

C(x,t) = B(t) exp [-Ipq XpXq (2.1)

where I is the second moment tensor of the concentration distribution defined as

(Tennekes and Lumley 1972)

Ipq(t) = ff f xpxq C(x,t)dxidx 2dx3  (2.2)
-CD

The generalized Gaussian is a solution for the instantaneous point release provided

that the second moment tensor satisfies the following ordinary differential equation.
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S - IpjGqj - IqjGpj = 27Spq (2.3)

The concentration term B(t) is found using the instantaneous source boundary

condition, which gives

B(t) = M (2.4)

where M is the source strength for the instantaneous pulse and I is the determinant

of the second moment tensor I.

Eq. (2.3) is invariant to an exchange of indexes for Ipq, therefore the second

moment tensor will be symmetric for all time for any G since the boundary

condition, given as Ipq N 27Spqt as t -4 0 is also symmetric (Batchelor 1979). All

symmetric matrices have principal axes that are real and orthogonal, thus I can be

transformed according to Ai = Ipq(pI) (") where (i) is the unit position vector in

the original coordinate system for the ith eigenvector of I. The generalized Gaussian

solution can now be more simply given as

C(x,t) = B(t) exp I (2.5)

with x now defined as the position vector relative to point of mass release in the

coordinate system formed by the principal axes for I. The concentration term B(t)

can now be specified with the following simple form.

B(t) = M27r)3/2(A ) (2.6)

The diffusing instantaneous pulse has an orientation defined by (i) and

dimensions along each axes given by Aj. The time evolution of A is determined by
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the solution to the ordinary differential equation (Eq. 2.3). This analysis is valid for

all linear flow fields, although it will be shown that when the relative velocity

includes a rotational component the principal axes of the pulse will be functions of

time and will not coincide with the principal axes of strain.

Steady Concentration Distributions

The concentration for any location x surrounding the point of input for a

continuous source can be given by convolution of the instantaneous source solution

(Eq. 2.1 and 2.4) as

C(x) = F exp(-JINXpXq)dt (2.7)
0

where the steady source strength F replaces the instantaneous source strength M.

Concentration distributions for general velocity gradient tensors were calculated

using a numerical integration of Eq. 2.7, obtained by summing the contributions of

a finite number of instantaneous pulses. The time evolution of the second moment

tensor I (Eq. 2.3) for each instantaneous pulse was solved with an explicit finite

difference method. The time step of the finite difference approximation was limited

to be no more than 0.5 per cent of the minimum time scale of the velocity gradient

tensor G. Sensitivity analysis was conducted to determine the minimum number of

pulses necessary for the numerical convolution and the evolution of the second

moment tensor I was compared with the analytical solution for irrotational shear,

Eq. 3.2 (Townsend 1951a). The concentration distribution was compared with the

analytical solution for motionless diffusion C=F/4ryr (Carslaw and Jaeger 1959).
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3. Point Sources in Steady Irrotational Shear

In the special case where the rotational, antisymmetric component of the rate of

strain tensor is zero (1 = 0), the velocity gradient tensor given as G = E will be

symmetric. Rotating to the principal axes for the velocity gradient tensor we

simplify G as

Ej = Gpq 6p) $( j (3.1)

where Ei is the extension rate along the symmetric tensor's ith principal axis, whose

unit position vector is ( i). For irrotational shearing whose velocity gradients are

steady in time, the second moment tensor of an instantaneous pulse, I, is given as

(Townsend 1951)

Iij(t) = 6i[ (exp 2Ejt -1) (3.2)

and the concentration distribution for the instantaneous pulse is given by Eq. 2.1.

The transformation to the principal axis for G, defined by (i, also diagonalizes

I(t), so that 6( i) = C( i). The principal axes of strain are also the principal axes for

the second moment tensor of the instantaneous pulse, thus the orientation of the

pulse is constant in time. The dimensions of the pulse increase exponentially with

time along expansive axes (Ei > 0) and approach a constant along compressive axis,

that is Ii = for t > 4 and Ei < 0. The concentration distribution for a

continuous release is then given by the convolution of the instantaneous source as

C(x) = F(E [E2x E 1 -1)] exp -Eix 1ixi dt (3.3)

0
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The form of the solution to Eq. 3.3 depends on the signs and magnitudes of the

shear components. To simplify the specification of these components we adopt the

following conventions, noting that EEi = 0 from continuity, and (EiEi) # 0 for

sheared flows. Because of the flow field's symmetry about the origin we choose,

with no loss of generality, the principal axes so that El > E2 > E 3, which requires

that El > 0 and E 3 < 0. The shear tensor can then be completely specified with

two parameters, given as

Eb = JEIEi|

S = 2 -1 < s <1 (3.4)

where Eb specifies the strength of the shearing while s is a symmetry factor such

that s = 1 gives an axisymmetric plane with expansive flow while s = -1 gives an

axisymmetric plane with compressive flow.

Qualitative Features of the Continuous Point Source Solution

Two distinct concentration distributions result for continuous sources depending

on the number of expansive axes. When the flow is compressive along two axes

(s <0) concentration gradients along these axes are steeper than along the single

expansive axis, giving concentration contours distorted by the flow into tube-like

structures (Figure la). A structure similar to the tube results when the flow is zero

along x 2 (s = 0) and is referred to as a diffusive tube since the transport in the x 2

direction is diffusive. When the flow is expansive along x, and x 2 (s> 1) the

distribution becomes flattened along the compressive x 3 axes giving disk-like

concentration contours (Figure 1b). For both tubes and disks the concentration

distributions are oriented along the principal axes of strain since these axes are also

the principal axes of the instantaneous pulses. .Near the source where the relative
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Figure 1. Qualitative features of concentration distributions for continuous point
sources in steady homogeneous shear flows. The dark sphere at the origin
has a radius of (Y /Eb)1 that indicates the size of the diffusive region
unaffected by the fluid motion. The lighter shading indicates concentration
contours distorted by the shearing flow. The arrows indicate the fluid
streamlines.
(a)Tube: E1 > 0, E 2 andE 3 <0.
(b) Disk: Principal strain rates E1 and E 2> 0, E 3< 0.
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fluid velocity is small, the concentration contours are spherical (Figure 1). The

shape and orientation of concentration distributions for instantaneous point sources

show a similar behavior (Townsend 1951) . This similarity is not surprising because

in shearing flows elements of the second moment tensor grow exponentially in time,

thus only a narrow range of times contribute to the convolution integral giving the

concentration distribution for a continuous source (Eq. 3.3).

Concentration Distributions

The importance of diffusive and advective transport in the region surrounding

the point source can be compared by defining the characteristic quantities

XO =[]

O F Ebi ()

where the length xo is the distance from the source where diffusive and advective

dispersal are of the same magnitude, and the concentration Co is the concentration

that would result at r = xo in the complete absence of motion.

For distances from the source small relative to the characteristic length xo the

transport from the source is purely diffusive. In this region the dimensionless

concentration is inversely proportional to the dimensionless distance from the source

(Carslaw and Jaeger 1959).

C = COI r- (3.6)
-1

This limiting behavior is observed in the exact solutions for r < xo (Figure 1(a),

2.2(b)).
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Beyond the diffusive region (r > xo), the effects of anisotropic shearing distort

the concentration into tube and disk like structures. Along the expansive x, axis for

tubes (-1 < s < 0) the concentrations decrease as (x 1/xo)-1 (Figure 2(a)); for an

axisymmetric disk the concentrations decrease along either expansive axis as

(r/xo)-2 (Figure 2(a), (b)). For non-axisymmetric disks and diffusive tubes (0 < s <

1) the concentrations decrease along expansive axes at rates between the two

bounding functions (Figure 2(a), (b)). For both tubes and disks concentrations

along compressive axes fall off sharply in the region where the mass transport is

primarily advective (r > xo) (Figure 2(b), (c)).
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Figure 2. Normalized concentration C/C0 vs. normalized position x/x 0 (see Eq. 3.5
for characteristic scales xO and C 0 ). Symbols give numerical solution of
convolution integral (Eq. 2.4), while the solid lines give the approximate
analytical solutions (Sec 4.). The dashed line gives the motionless diffusion
analytical solution.

(a) Distributions along the line (x 1/x 0, 0, 0) for (left to right): s=1.0 (*)
s=0.75 (X), s=0.5 (@), s=0.0 (0), s= -1.0 (A).
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Figure 2. Normalized concentration C/C0 vs. normalized position x/x 0 (see Eq. 3.5
for characteristic scales x 0 and C 0 ). Symbols give numerical solution of
convolution integral (Eq. 2.4), while the solid lines give the approximate
analytical solutions (Sec 4.). The dashed line gives the motionless diffusion
analytical solution.
(b) Distributions along the line (10, x 2 /x 0 , 0) for (left to right): s= -1.0 (A),

s=0.O (El) (solid line on right gives approximate analytical solution for
x 2> x 1); and along the line ( 0, x 2 /x 0 , 0) for (left to right): s=0.5 (@),
s=0.75 (X), s=1.0 (*).
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Figure 2. Normalized concentration C/C 0 vs. normalized position x/x 0 (see Eq. 3.5
for characteristic scales x0 and C 0 ). Symbols give numerical solution of
convolution integral (Eq. 2.4), while the solid lines give the approximate
analytical solutions (Sec 4.). The dashed line gives the motionless diffusion
analytical solution.
(c) Distributions along the line (10, 0 , x 3 /x 0) for (left to right): s= -1.0 (A),

s=O.O (E), s=0.5 (@), s=0.75 (X), s=1.0 (#).
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4. Approximate Analytical Solutions in the Sheared Region

The qualitative and quantitative features of the concentration distributions and

the convolution integral from which they arise suggest that approximate analytical

equations can be developed for the sheared region (r > xo). We assume that in this

region the flux of material away from the source is due entirely to advection along

the expansive axes. Along compressive axes, no net flux from the source occurs as

the advective flux towards the source is balanced by the diffusive flux. In the

sheared region we expect that the times contributing to the convolution integral will

be greater than 1/Ei, where Ei is the strain rate along compressive axes.

Examination of Eq 3.3 with this assumption suggests that concentrations along a

compressive axis will be approximately Gaussian with a variance of Ei/y.

Approximate analytical solutions for the concentration distributions can then be

found for each of the shear patterns described earlier by writing a flux equation

using the assumed form of the concentration distribution.

Tube

For a tube El=Eb, E 2,E 3<0. The assumed concentration distribution is

C(x) = Ccexp E2x+( E i x

where Cc is the concentration along the expansive x1 axis. The flux equation is

given as

F = 2 fui(x)C(x)dx 2dx 3 = 2EixCc(x)fjexp [-x+Efx dx2 dx3  (4.2)
-O -M
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which after integration gives the tube centerline concentration as

Cc(x 1) = j X0 5 s+2) (4.3)

The centerline concentration is independent of the rate of strain but is

dependent on the symmetry factor s. For an axisymmetric tube (s = -1) the

centerline concentration is equal to one half the corresponding concentration for a

continuous point source in a motionless fluid. Comparison with the numerically

derived solution for an axisymmetric tube shows that the concentration distribution

given by Eqs. 4.1 and 4.3 agrees well with this approximate analytical solution in

the region where advective effects are dominant (Figure 2).

Diffusive Tube

In the two-dimensional pure shear flow, Ei=(Eb,O,-Eb), instantaneous pulses

elongate exponentially along x, and diffusively along x 2. The continuous source

solution should have a similar character for which, unlike the tube, the length scale

in the x 2 direction should grow diffusively as x, increases. With moments for

instantaneous pulses growing exponentially along x1 , we expect a logarithmic

increase along x, for the length scale in the x 2 direction. Applying this

instantaneous source analysis to the continuous source concentration distribution

gives the following equation for the concentration C(x)

C(x) = C,(xi) exp [ -Ebx - EbX1 (4.4)
271 n [EbX1] -2 1

where again Cc gives the concentration along the x, axis. Equating the integral of

the concentration distribution over x 2 and x 3 with the flux from the continuous
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source as in Eq. 4.2 gives the following equation for the centerline concentration of a

diffusive tube distribution.

CC(x1) = CO X0 1 (4.5)
1 In Ebx[xI [bEx]]

The approximate analytical solution agrees well with the concentration distribution

along the diffusive tube centerline (Figure 2(a)). In the x 2 direction the

concentration distribution deviates from that predicted by Eq. 4.4 in the region

x2 >x1 (Figure 2(b)), but the deviation is insignificant to the flux analysis since the

concentration in this region is several orders of magnitude below the centerline

value. By assuming that x2>x1 and X3=0 the convolution integral (Eq. 3.3) can be

integrated directly to give

C=Co exp(-x2/xo) (4.6)

which agrees well with the exact numerical solution in the region where x2>X1

(Figure 2(b)).

Disk

An analogous flux analysis for a disk requires that the flow be axisymmetric in

the xr-x 2 plane, that is E1 = E 2 = -E 3 = jEb and s = 1. In this case the flux

equation can be written as

F = jEbl Cd(l) exp E x dx 3  (4.7)

-ODi
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where Cd is the concentration in the axisymmetric xI-x 2 plane and 1 = (xI + xi is

the distance from the source in the xI-x 2 plane. Integrating across x3 gives the

following equation for the concentration distribution.

C(x) = 2(2 ) Co[ 2exp E xi (4.8)

For non-axisymmetric disks (0 < s < 1) our flux analysis is indeterminate

because we are unable to state a priori the shape of concentration contours in the

xI-x 2 plane. We can, however, find the concentration distribution along either

expansive axes by direct integration of Eq. 3.3 with x1 = 0 or x2 = 0 to give the

following equation.

C(xi,0,0) = ( ) Co (E 2/E 1P (EbIEl) (49)
7r)x 2- Eb/ I

K2TJ

Exchange of indices gives the equation for x 2, the second expansive axis. This

approximate analytical solution also agrees well with the concentration distributions

derived numerically for several axisymmetric and non-axisymmetric disks (Figure 2)

in the region where advective transport dominates diffusive transport. Comparison

with the previous equations shows that in the sheared region for both tubes and

disks the concentration decreases along an expansive axis i as xi Ei/Eb

Although the shape of a concentration contour in the xI-x 2 plane can not be

written a priori for a non-axisymmetric disk, by assuming that the transport from

the source is purely advective we can write a general relation for the outward flux

across the contour in the x1,x 2 plane (C = C7) as
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X2(max) x,(max)
Flux = F + FX= Cz E 1 f -(x 2)dx2 + {E 2 f (xl)dx] (4.10)

x2 (min) xi(min)

with the integration limits given by the particular concentration contour according

to Eq. 4.9. The unknown function f and its inverse f-1 give the shape of the contour

in the xi-x 2 plane such that C(x1,f(xi),0) = Cz. The flux equation 4.10 has already

been integrated in the x3 direction using the assumed concentration distribution for

disks given earlier for axisymmetric disks. Eq. 4.10 can be integrated, noting that

Eb = El + E 2 = -E 3, to give the following relation for the area of the concentration

contour in the xI-x 2 plane.

ArealC>C _ F = 2(11 O (4.11)
-3 =0 (27ryEb)iCz z

For a given intensity of shear Eb and and a flux rate F, the area of a contour is

independent of the asymmetry of the shearing, though the shape of the contour will

be affected by changes in the symmetry factors. The volume of a contour is also

approximately independent of the symmetry factors since the concentration

distributions are flattened along the compressive x3 direction and the strength of the

shearing in this direction is unaffected by changes in the symmetry factor.
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5. Continuous Point Sources in Steady Rotational Shear Flows

In this section we describe the shape and orientation of the concentration

distributions when the flow includes both rotational and irrotational components.

As in the irrotational case we expect that the convolution of the instantaneous

source solution receives contributions from only a narrow range of times, since the

linear increase in velocity with distance from the source leads to length scales for a

pulse that increase exponentially with time. We therefore use the behavior of

instantaneous pulses in rotational shear to gain insight into the continuous point

source solution.

To examine the deformation of instantaneous pulses we use a kinematic model

justified by the earlier observation that the eigenvalues of a pulse in any linear flow

field are always real and orthogonal. The deformation of the pulse can be seen as

the superposition of an extensional motion that changes the length scales of the

pulse together with an angular motion that reorients the pulse. The extensional

motion depends only on the components of the rate of strain tensor along the

principal axes of the pulse and increases pulse dimensions along expansive principal

axes. The angular motion changes the orientation of the pulse and has

contributions from both the irrotational and rotational components of the flow (see

Appendix A), but the shear contribution is zero when the pulse is aligned with the

principal axes of strain.

The presence of rotation turns the pulse away from the principal axes of strain

so the extension rates along the principal axes of the pulse vary in time. Using the

example of two-dimensional shear Lumley (1972) showed that for rotation rates

weak relative to the shearing, instantaneous pulses rotate to an equilibrium

orientation where the angular motion is zero. Extension rates along the equilibrium

orientation axes are equal to a weighted average of the extension rates along the

principal axes of strain. The difference between the extension rates along the two
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equilibrium orientation axes perpendicular to the vorticity vector decreases as the

rotation rate increases (Lumley 1972), and approaches zero as the rotation rate

approaches a critical value for the existence of the equilibrium orientation.

Batchelor (1979) also investigated the effects of rotation on mass dispersal in

shear flows, but looked at the other extreme where the rotation rate is strong

relative to the shear component. For strongly rotational flows the concentration

distribution is the same as that resulting from an axisymmetric, irrotational flow

with an axis of symmetry along the rotation axes. The extension rate along the axis

of symmetry for the equivalent irrotational flow is the component of the rate of

strain tensor in the direction of the rotation vector for the strongly rotational flow.

These two bounding cases for instantaneous sources indicate qualitatively how

the rotation affects the concentration distribution around continuous point sources.

Vorticity rotates the concentration distribution away from the principal axes and

towards the rotation axes, approaching an axisymmetric distribution as the rotation

rate becomes strong relative to the shear component. For weak rotation, the

continuous source concentration distribution should be aligned with the equilibrium

orientation of an instantaneous pulse, and from this perspective the shape of the

distribution should be similar to those described for irrotational shearing with

extension rates given in the equilibrium orientation.

To analyze the effects of rotation we examine how changing the strength of the

rotation component changes the dimensions of a concentration contour when viewed

from the equilibrium orientation. This analysis is done initially with a simple

specification of rotation, where the rotation axis is aligned with a principal axis of

strain. The criteria for weak rotation, which requires that an equilibrium

orientation exists, is given for this simple rotational case and later for a general

velocity gradient tensor. We then look at a more general rotational shearing flow

where the rotation axes is not aligned with the principal axes of strain. In both
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examples we look at the shape of the distributions for rotation rates beyond the

critical value for the existence of the equilibrium orientation and compare the

results with the theory given by Batchelor (1979) for strong rotation.

Concentration Distributions with Rotation along a Principal Axis of Strain

The effects of rotation were examined by determining how the size and shape of

a particular concentration contour varies with increasing rotation rate.

Concentrations distributions were calculated using the convolution integral for a

series of velocity gradient tensors, each with an identical shear component, and with

rotation components that varied in intensity but not in orientation. In this first

case the rotation axis is aligned with a principal axis of strain so that it is possible

to give simple equations giving the angular location of the equilibrium orientation

relative to the principal axes of strain and the extension rates along the equilibrium

orientation.

The rotational shearing flows analyzed have a fixed shear component (s = -0.6)

and a vorticity component of varying intensity w that is aligned with x 2 such that

W! = -fijkfjk = Wgi2. With rotation only around the x 2 axes the equilibrium

orientation can be found by determining the directions in which the angular

component of the motion is zero (see Appendix A). The equilibrium orientation

turns from the principal axes around the x 2 axes by an angle a given by

a = . sin-1[ Ej E (5.1)

giving the following condition for weak rotation

-1 < E E3 1 (5.2)
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By substituting the terms describing the irrotational shear (Eb and s) into Eq. 5.2,

the vorticity can be normalized to the critical value for the existence of an

equilibrium orientation as

W* = W2/Wcrit = Eb(2 Is) (5.3)

The extension rates along the two rotated axes of the equilibrium orientation, x/

and x-, are given as functions of the normalized rotation rate and the irrotational

strain component assuming that the rotation is weak (w*<1).

E'/Eb = - + 1- )( s (5.4)

E / S= - (1 -s )1- ) (5.5)

The difference between the extension rates E' and E decreases with increasing

vorticity although the effect is not pronounced until the normalized rotation rate

approaches unity (Figure 3). Above the critical rotation rate (w* > 1) the extension

rates are calculated for a = 450 giving E- = E". The extension rate along x' (E)

is unaffected by vorticity since the rotation axis is aligned with x 2 (Batchelor 1979).

The irrotational shear component (s = -0.6) gives a concentration distribution that

is a non-axisymmetric tube with the tube centerline aligned with x1. In the limit of

strong rotation the concentration distribution is an axisymmetric disk (s = 1.0) with

an axis of symmetry along x 2. The characteristic shear rate for the strong rotation

limit (EI), calculated according to Eq. 3.5 using the extension rates along the

rotated axes (El), is less than the characteristic shear rate for the irrotational shear

case (Ef/Eb = 0.3).
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Concentration distributions were calculated along the equilibrium orientation

using Eq. 5.1 to determine its location relative to the principal axes of strain. The

rotation angle a varies from 0.0 to 45.0 degrees as the normalized vorticity

approached 1.0. For rotation rates above the critical value (w* > 1) the

concentrations were calculated at a = 450*. Normalized concentrations and

distances were calculated using Eq. 3.5 based on the constant irrotational shear

component. The distance to a constant concentration level in the sheared region

(C/Co = 0.01) was then calculated along each equilibrium orientation axes for

various values of normalized vorticity.

The shape of the concentration distributions approaches the expected

axisymmetric pattern as the rotation rate becomes strong relative to the shear rate

(w* > 1), but the effect of the rotation on the distributions is small for most of the

weak rotation region (w* < 1). For normalized rotation rates, w*, below approxi-

mately 0.95, the dimensions of the concentration contour (C/Co = 0.01) change

little from the irrotational pattern (Figure 4), with the length scale for the long axis

of the distribution being more than ten times the other two dimensions. The

orientation of concentration distribution does change significantly since the

equilibrium orientation axes x" and x/ rotate around x 2 by 33.20 at w* = 0.9. As

the vorticity intensity is increased past the critical value, the dimensions of the

concentration contour change quickly and by w* = 2.0 the long axis of the contour

is only twice the length for the other axes in the plane perpendicular to the rotation

vector. At higher rotation rates the distribution approaches the limiting

axisymmetric distribution predicted by Batchelor (1979).

As anticipated the effect of rotation is to turn the concentration distribution

away from the principal axes of strain while reducing the asymmetry of the

distributions. At high rotation rates the distribution approaches an axisymmetric

distribution with the axis of symmetry along the rotation axes. The critical
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rotation rate for the existence of an equilibrium orientation is the key parameter in

describing the shape of the distributions. The shape of the distribution changes

little for rotation rates much below this critical value, but changes rapidly as the

rotation is increased above the critical value. In the next section we give the

criteria for this critical rotation rate for a general velocity gradient tensor.

The General Condition for Weak Rotation

In the previous section the placement of the rotation vector along a principal

axis of strain allowed us to calculate the equilibrium orientation of an instantaneous

pulse and the critical rotation rate using the simple kinematic model of the pulse's

behavior in rotational shear. For a general vorticity vector, however, no simple

geometrically based relationship for the critical rotation is possible. Nonetheless we

can use information on the velocity gradient tensor to determine the critical

rotation rate.

As shown by Lumley (1972) for weak rotation, the equilibrium orientation axes

and the eigenvectors of the velocity gradient tensor form a set of right and left

eigenvector pairs. For an equilibrium orientation to exist we know that it must be

real, since the principal axes of the pulse must always be real. This in turn requires

that the extension rates along the equilibrium orientation be real, since our solution

must have no imaginary part. Because the equilibrium orientation and the

eigenvectors of the velocity gradient tensor form an eigenvector pair, then the

eigenvalues of the velocity gradient tensor must be real if the extension rates along

the equilibrium orientation are real. For an equilibrium orientation to exist we

must therefore require that the velocity gradient tensor have three real eigenvalues.

It is this condition that we will use to give the specification of the critical rotation

rate for the existence of an equilibrium orientation.
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The characteristic polynomial giving the eigenvalues of G is y3 + ay + b = 0,

where a = R2 - JE2, b = - (E1E 2E 3 + E1wiw0/4), E2 = iEjE, and R2 = (wiew)/4.

The roots of the polynomial are the eigenvalues of the velocity gradient tensor G.

The condition that all the roots of the polynomial are real can then be used to give

the following condition for weak rotation

E2- 2R2> 3*21/3 ElE2E3 + Eii 1 2/3 (5.6)

For rotation rates less than that indicated by Eq. 5.6, an instantaneous pulse will

rotate to a stable orientation and subsequent deformation of the pulse will be

determined by the components of the rate of strain tensor in the equilibrium

orientation. At rotation rates above the critical value, the velocity gradient tensor

will have one real eigenvalue with two imaginary eigenvalues that are complex

conjugates, giving an oscillatory behavior to the solution for an instantaneous pulse.

The orientation of the pulse will oscillate around an orientation given by the

eigenvectors corresponding to the real part of the velocity gradient's eigenvalues at

a frequency equal to the rotation rate. At high rotation rates (w* > 1) the behavior

of the pulse will be independent of the rotation rate and the pulse will deform in an

axisymmetrically fashion with an axis of symmetry aligned with the vorticity

vector.

Concentration Distributions for a General Rotation Vector

With specification of the critical rotation rate for a general velocity gradient

tensor, we can now analyze rotational effects on continuous sources for any

combination of shear and rotation components. As in the simple example we

examine the changes in the shape of a concentration contour (C/Co = 0.01) as

rotation intensity is increased. The shear component is fixed (s = -0.6) with a
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vorticity vector of constant direction, given as (0,w,w), and a variable intensity w.

Vorticity is normalized to the critical value which is calculated using Eq. 5.6 for

s = -0.6 so that Wcrit = 0.73Eb. The irrotational limit is the same as in the earlier

case giving a tube-like distribution for irrotational strain, but the strong rotation is

now an axisymmetric disk (s = 1.0) with E'/Eb = 0.5. An analysis of the velocity

gradient tensor in the coordinate system formed by the equilibrium orientation is

used to calculate the extension rates along the equilibrium orientation (Appendix

B). The concentration distribution is expected to change from an non-axisymmetric

tube to an axisymmetric disk as the vorticity becomes strong relative to the critical

value for the existence of the equilibrium orientation.

The extension rates along the equilibrium orientation and the shape of the

distribution with varying rotation intensity follow the anticipated pattern. The

difference between extension rates decreases with increasing rotation rate, but the

effect of rotation is minor until the rotation intensity approaches the critical value

(Figure 5). The asymmetry of the distribution remains nearly unchanged until the

vorticity intensity approaches the critical value (Figure 6). Increases in vorticity

from this point change dramatically the shape of the distribution and the ratio of

length scales is reduced to below 2.0 by the time the vorticity is twice the critical

value. As in the previous example, further increases in vorticity give distributions

that approach the limiting strong rotation case as predicted by Batchelor (1979).

The limiting length scale in this case is slightly larger than the first case because the

strength of the axisymmetric shearing is stronger (Ef/Eb = 0.5 vs. 0.3).
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6. Discussion

We have found that beyond a diffusive zone extending a distance xo = 7/Ebi

from a source of continuous mass input flows with linear velocity distributions have

two characteristic concentration distributions depending on the number of expansive

principal axes and the relative magnitudes of the shear and vorticity components.

For irrotational shears expansive flow along a single axis gives tube-like structures

while two expansive axes gives disk-like structures, with both of these distributions

oriented along the principal axes of strain. Concentrations in the sheared region

(r > xo) for all irrotational shearing flows decrease along expansive axes as xiEi/Eb

where Ei is the shear rate along the ith principal axis of strain; along compressive

axes the concentration distributions are Gaussian with a variance of 7/Ei. The

analytical solutions for the sheared region of irrotational flows, derived for all cases

except non-axisymmetric disks by neglecting diffusive transport along the expansive

axes and assuming zero transport along compressive axes, agree well with the

concentrations distributions determined numerically by convolving exact

instantaneous source solutions.

The effect of rotation on the concentration distributions in shearing flows is

generally to reorient the distribution away from the principal axes of strain and to

reduce the asymmetry of the distribution. Rotational shearing flows can be divided

into weak and strong rotation cases by comparing the rotation rate to a critical

value defined by a kinematic condition for the existence of an equilibrium

orientation for an instantaneous pulse. Weakly rotating flows have concentration

distributions similar to that predicted by the irrotational component of the flow,

and are aligned with the equilibrium orientation of an instantaneous pulse, which

moves away from the principal axes and towards the rotation axis as the rotation

rate increases. The concentration distributions for strongly rotating flows approach

a limiting axisymmetric pattern with an axis of symmetry along the rotation vector
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and a shear rate along the rotation vector given by the irrotational component of

the flow in that direction. The transition between these two limiting cases occurs

rapidly as the rotation rate increases beyond the critical rotation value.

The general features of the concentration distributions along expansive axes for

shearing flows are similar to the concentration distributions downstream from the

source for either simple streaming flows or streaming flows with simple shear. For

all tube-like distributions (1 < s < 0) in irrotational shear the concentration

decreases along the single expansive axis as xi'. Similarly, the concentration

distribution downstream of a continuous source in a simple uniform flow decreases

as xi' (Carslaw and Jaeger 1959). For flows with both a uniform flow and a simple

shear component Okubo and Karweit (1969) calculated concentration distributions

for a continuous point source by numerically convolving an exact instantaneous

source solution. Near the source where diffusive transport dominates, the

concentration decreases as xi', and far downstream from the source (x1> Uo/G12 )

where shear effects are important, the concentration again decreases as xi'. As

would be predicted by our analysis of a simple shearing flow (W/We = 1.0) the

concentration distribution in the sheared region is oriented 45 degrees from the

principal axes of strain.

Continuous Sources in Homogeneous Turbulence

Our analysis of concentration distributions in flows with linear velocity

distributions assumes that the velocity gradient tensor is both homogeneous in space

and steady in time. In turbulent flows the assumption that the velocity gradient

tensor is homogeneous is satisfied if the region of interest is smaller than the

smallest scale of the turbulent motion, the Kolmogorov microscale (V3/)*. Since

the shear rate Eb is of order (e/v)l, the Kolmogorov time scale, the requirement

that the distance from the mass source be less than the Kolmogorov length scale
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yields the following limitation on the dimensionless distance from the source,

(Ebxixi/y)l < (v/7)l. For small molecular weight dissolved compounds in water

the Schmidt number (v/7) is of order 1000 which limits the range of interest to

dimensionless distances of approximately 30. For typical organic compounds with

larger molecular weights (1500 g/mole) the region of interest may be as much as

three times higher.

A second assumption in our analysis is that the velocity gradient tensor is steady

in time. The time scale for establishment of a steady state concentration

distribution is 1/Eb ~ (v/E)'. Our steady state analysis is therefore appropriate if

the time scale of variation in the shear rate is long relative to the Kolmogorov time

scale. Lumley (1972) has hypothesized that the shearing lasts for a time equal to

the Lagrangian integral time scale. The ratio of the Lagrangian integral time scale

to the Kolmogorov time scale has been estimated to be of order RI (Corrsin 1963)

where RA is the Reynolds number calculated using the Taylor microscale A. There

is, however, some doubt about this hypothesis (Monin and Yaglom 1975), though

recent particle tracking experiments show Lagrangian integral time scales in excess

of Kolmogorov time scales (Sato and Yamamoto 1987). Unfortunately the Reynolds

numbers of these experiments are not high enough to be a true test. Nonetheless,

numerical models of turbulent processes in large Reynolds number flows have used

the assumption that the shearing lasts at least as long as the Kolmogorov time scale

(Pearson et al. 1984) and we believe the hypothesis is a reasonable one.

Recent numerical simulations of homogeneous turbulence examining correlations

between shear and vorticity (Kerr 1985) and alignment between components of

shear and vorticity (Ashurst et al. 1987) can be used in conjunction with our

analysis to give a qualitative description of the shape of continuous point source

concentration distributions in isotropic turbulence. Ashurst et al. (1987) examined

the velocity gradient tensor at 16,384 uniformly distributed points in space for
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isotropic turbulence with RA = 82.9. To characterize the strain component they

define a normalized principal strain rate nearly equivalent to our symmetry factor s

(Eq. 3.4) as P = EW6/(EjE1)1 f s.

In locations with viscous dissipation below the median rate they found that

positive and negative values for P are equally likely and 75% of the P values are

between P = 0.5 and P = -0.5. The flow is strongly rotational (average w/wcrit = 7)

when there are two positive principal strain rates (0>0) and the viscous dissipation

is below the median value. For the majority of these locations (A 20% of total) the

vorticity is aligned with the axes of the intermediate principal strain rate (E 2),

resulting in concentration distributions for point sources that are axisymmetric

tubes aligned with the vorticity vector. Extension rates along the vorticity vector

are significantly below the average shear rate because of the relatively weak

dissipation and the particular alignment of vorticity vector. In locations with weak

dissipation and two compressive axes (f < 0) the rotation is not aligned with either

compressive axes, thus these locations also have tube-like concentration

distributions.

Ashurst et al. report that locations with viscous dissipations above the median

value have two positive principal axes (P > 0). The high viscous dissipation regions

have an average vorticity level near the average for the entire fluid, thus we expect

some concentration distributions shaped as non-axisymmetric disks in weakly

rotating locations (# > 0, w < Wcrit). However, Kerr (1985) discovered regions of

high vorticity in vortex tubes associated with regions of strong shear and with the

single compressive strain axis perpendicular to the vortex tube axes. Neither Kerr

nor Ashurst et al. give the relative magnitude of the shear and vorticity components

in the vortex tubes so we cannot determine whether the flow is strongly or weakly

rotational. With the observed alignment of strain and vortical components,

however, a strongly rotational vortex tube results in tube-like concentration
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distributions aligned with the vorticity vector while weakly rotational flow results in

disk-like concentration distributions.

Summarizing the results for the entire turbulent fluid, we expect that tube-like

concentration distributions are more common than disks even though regions with

P > 0 occupy a majority of the fluid (Ashurst et al. report 75%). The

preponderance of locations with two positive principal strain rates is consistent with

a similar analysis by Townsend (1951b). Of interest, however, is the relative

strength of the vorticity and its alignment with a positive principal strain rate,

which results in axisymmetric tube-like concentration distributions for strong

rotation even though the irrotational shear alone would result in disk-like

distributions. Strongly rotational axisymmetric tubes occupy at least half of the

locations with viscous dissipation below the median rate (F 20% of total volume).

Axisymmetric tube-like concentration distributions are also expected in strongly

rotational vortex tubes with strain rates significantly above the median level. Disk-

like concentration distributions are found only in locations where viscous dissipation

is above the median value and the rotation is weak relative to the shear (<50% of

total volume). Flatness factors for shear and vorticity are significantly above

uncorrelated levels (Kerr 1985), so that median levels of fluid motion, and

consequently the distortion of concentration distributions by fluid motion, are below

estimates based on average conditions.

Ashurst et al. (1987) explain the tendency toward positive P values and the

alignment of vorticity with the intermediate principal strain as a result of

interaction between strain and vorticity in an axially stretching vortex tube. They

analyze coupled equations for E and 0 developed from the Euler equation neglecting

transport terms in the vorticity equation and transport and pressure terms in the

shear equation (Vieillefosse 1982). Numerical solutions to these equations for

various strongly rotating shear flows (w* > 1.7). show P values approaching 1.0
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within the characteristic time scale 1/Eb (Ashurst et al. 1987). This behavior is

attributed to coupling between shear and rotational motions. However it may be

shown using the same equations with w = 0 that P approaches positive values even

in irrotational shear, though the rate of increase in fi does depend on the strength of

the vorticity. Vorticity aligned with the strongest principal strain increases

monotonically, but the relative magnitudes of the principal strain rates adjust so

that the vorticity is aligned with an intermediate principal strain. The applicability

of this analysis may be limited, however, since the equations for vorticity and shear

neglect viscous and transport effects. In addition the shear equation neglects

pressure terms which are known to redistribute turbulent energy between the

velocity terms (Tennekes and Lumley 1972).

Applications to Chemosensing

We now consider the application of our results to the problem of chemosensing

by aquatic organisms in turbulent fluids. Azam and Ammerman (1984)

hypothesized that concentration distributions of organic compounds exuded by

marine single-celled algae (10-5 m diameter) (Jackson 1987) are detected by motile

bacteria (10-6 m diameter) that actively cluster around the algae to improve their

access to the food source. Such a non-random interaction between algae and

bacteria may also have important consequences to the cycling of carbon in the

microbial food web and is a controversial topic in marine ecology (Williams 1984,

Williams and Druffel 1988).

Estimates of the importance of bacterial clustering require information on the

expected turbulent motions and the relevant biological rate processes such as the

rate of algal exudation, the chemical detection threshold of the motile bacteria, and

the swimming speed of the motile bacteria. The mixing intensity varies both

temporally and spatially in the marine upper mixed layer, with a maximum near the
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surface and a minimum at the thermocline. An upper limit on Eb is approximately

1.0 sec-' based on measurements of viscous dissipation rates in the marine upper

mixed layer (Dillon and Caldwell 1980, Oakey and Elliot 1980, Shay and Gregg

1984). Using experimental measurements of velocity flatness factors (van Atta and

Antonia 1980) to account for intermittency effects, we estimate a median value for

Eb of approximately 0.2 sec-1, significantly lower than the maximum value.

Estimates of the rate of algal exudation are problematic because of the difficulty in

quantifying the exuded fraction of the algal photosynthesis rate and the composition

of the exuded material. Based on assumed typical values for algal photosynthesis

rate, fraction of photosynthate exuded, and molecular weight of exuded compound,

an exudation rate of approximately 10-17 mole cell-Isec-1 has been estimated

(Mitchell et al. 1985). The minimum concentration of exudate that can be detected

by bacteria is in the micromolar to nanomolar range depending on the particular

compound (Chet and Mitchell 1976), and typical bacterial swimming speeds are

0.4-1.0 x 10-4 mt sec- 1 (Azam and Ammerman 1984). The separation distance

between phytoplankton cells is approximately 10-3 m and the estimated time

between algae encounters by bacteria through either bacterial swimming or fluid

shearing is approximately 50-500 seconds. The Peclet number, defined with the

algal cell diameter d as P = Ebd2/7 will be small, thus the algae can be considered

point sources of exudate.

Mitchell et al. (1985) combined physical scaling arguments with estimates of the

biological rates processes to estimate the ability of marine bacteria in the upper

mixed layer to cluster around algal cells. Based on the estimate of exudation rate

given above they estimated that in a motionless fluid the spherical zone surrounding

an algal cell with concentrations above the detection threshold (10-8 mole liter-') is

approximately 1000 Am in diameter and establishment of this zone by motionless

diffusion (,y = 1.5 x 10-9 m2sec-1) takes approximately 100 seconds. They stated
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that clustering is favored only if the characteristic time for the turbulent shearing

motion, the Kolmogorov time scale, is greater than 100 seconds. Estimates of the

Kolmogorov time scale were based on the measurements for the marine mixed layer

referenced earlier and range from 1-10 seconds in the upper mixed layer to 100

seconds at the thermocline, values which are consistent with our estimates of

characteristic shear rates. Mitchell et al. conclude that the intensity of fluid

motions in the upper mixed layer prevent bacteria from clustering around algal

cells.

Our analysis shows that turbulent fluid motions reduce but do not eliminate the

region around algal cells where bacteria can detect the exuding organic compounds.

At even the highest shear rates (Eb = 1.0 sec-1) the concentration contours are

approximately spherical within 3 x 10-5 m of the source. Beyond this distance the

fluid motions distort the concentration contours into disk and tube-like

distributions, with tubes more common than disks. In addition to the spatial

variability in viscous dissipation recognized by Mitchell et al., the temporal

intermittency of dissipation results in periods when the intensity of fluid shearing is

significantly below maximum or time average values. During these periods of

relative calm, the size of the region where concentration distributions are unaffected

by fluid motion will be larger than predicted by average conditions (xo = 7 x 10- 5m

for Eb = 0.2 sec-1) and the relative fluid motion between bacteria and algae will be

reduced. Bacteria are able to find and cluster around algae in these calm periods

since the encounter time for bacteria is less than the duration of the calm periods

and bacteria swimming speeds (5 x 10 -5 m sec-1) are large relative to fluid velocities

when r < x0 . The quantitative results of our analysis of concentration distributions

can provide the basis for estimates of successful chemosensing by aquatic

microorganisms.
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Appendix A. Kinematic analysis of the behavior of point sources in shearing fluids

In this appendix we examine the extensional and angular fluid motions in

shearing fluid motion by writing the general linear velocity distribution given by

Eq. 1.3 in spherical polar coordinates (r,0). The principal axes of strain are used

as the fixed coordinate system with El, E2, and E 3 the principal strain rates, and

with # = 0 along the x3 axis and 0 = pr, 0= 0 along the x, axis. With this

specification the three velocity components are

ur = r sin2o(Eicos20+E 2sin20) + E3cos2 ] (A 1)

uo = jr sin# [sin20(E 2-Ei) + W 3] - +r cos# [wicos 0+ W2sin0] (A 2)

U = +r sin2#(Eicos 2O + E 2sin 2O - E3) + +r (w 2 cos0 - wisin0) (A 3)

with w the vorticity vector relative to the principal axes of strain.

The velocity term ur gives the extensional component of the flow, while the

terms uo and uo give angular components of the flow. Since w does not appear in

the equation for ur the extensional motion depends only on the irrotational

component of the flow. The angular velocities uo and u depend on both w and the

principal strain rates El, E 2, and E3 , but in irrotational flow (w = 0) the angular

velocities are zero along the three principal axes of strain that form the coordinate

system. The extension rate along each coordinate axis is given by the corresponding

principal strain rate.

In rotational shear the angular motion of point sources will depend on the

balance between the irrotational and rotational components of the flow. For

vorticity aligned with the coordinate axes, the equilibrium orientation can be found

by finding the directions in which the angular velocities are zero. For example we

take the vorticity vector wl = W612 and find the position vector for the equilibrium
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orientation axis x1' (0 = 0, # = jir+a) where a is the rotation angle that results

from the presence of vorticity. The angular velocity uO is identically zero but

setting the angular velocity u to zero, U = -jr sin2a(Er-E 3) + +rw = 0,

determines the position of x1 ' relative to the principal axes of strain as

a = isin-1 E1 ] (A 4)

The equilibrium orientation axis x3 ' rotates around x 2 by the same angle (0 = 0,

0 = a). For vorticity along x2, the direction of the third equilibrium orientation

axes (x2 ') is unchanged from its direction in irrotational shear (0 = fir, # = jr).

The condition for weak rotation, abs < 1 (Eq. 5.2), is the maximum

vorticity intensity that gives zero angular velocity for a real vector. For vorticity

along a principal axis of strain at the critical rate the equilibrium orientation axes

rotate around the vorticity vector by an angle of 450. The extension rate along each

equilibrium orientation axis (Ei') is given by Eq. A 1 as ur/r where 0 and # specify

the direction of each equilibrium orientation axis relative to the principal axes of

strain. Vorticity along the x2 axis gives E1' = EIcos 2a + E3sin 2a and E 3' =

Elsin 2a + E3 cos2a where a is given by Eq. A 4. Substituting A 4 into the equations

for the extension rates gives

E1' = E1+E3 + -E W/(E-E3) (A 5)
E1+E 3 E1-E 3E3'= E E -E -[w/(EI-E3)2 (A 6)

Vorticity at the critical rate gives equal extension rates along x1 ' and x3 '.
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Appendix B. The velocity gradient tensor in the equilibrium orientation

In this appendix we give the form of the velocity gradient tensor when the

coordinate system is defined by the equilibrium orientation of an instantaneous

pulse. This specification allows us to calculate how the extension rates along the

equilibrium orientation vary with the intensity of a general rotation vector, without

requiring that we know the orientation of the principal axes of strain relative to the

equilibrium orientation. This is consistent with the emphasis placed on the shape

rather than the absolute orientation of concentration distributions in shearing flow.

To find the form of the velocity gradient tensor we first use the definition of an

equilibrium orientation to give a condition on the evolution of the second moment

tensor of an instantaneous pulse, I. Using the governing equations for the

deformation of an instantaneous pulse (Eq. 2.3) together with an assumed form of

the velocity gradient tensor G we then prove that the condition on I is satisfied.

An equilibrium orientation is the set of three asymptotic, orthogonal, and real

eigenvectors for the second moment tensor I of an instantaneous pulse, eigenvectors

that will exist for weakly rotating flows (criteria given by Eq. 5.6). This definition

requires that I defined relative to the equilibrium orientation have the following

evolution in time

I D +0 as t (B 1)
pp 1qq

This condition comes from requiring that the angle between the eigenvectors of I

and the corresponding position vectors of the equilibrium orientation approach zero

as time increases.

Since the trace of the velocity gradient tensor is zero, the criteria for an

equilibrium orientation need only be specified for two distinct forms of G. As in the
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irrotational case we require that G1 > G 2 2 > G 33. Concentration distributions in

flows with G11 > G 2 2 > 0 are disks, distributions in flows with G 2 2 = 0 are diffusive

tubes, and distributions in flows with 0 > G 2 2 > G33 are tubes. Generalization of

the irrotational case is based on the kinematic analysis giving the deformation of the

pulse as dependent on the extension rates along the axes of the pulse, which are

equal to Gii if the velocity gradient tensor is defined in the principal axes of the

pulse. If the velocity gradient tensor is defined relative to the equilibrium

orientation which is the asymptotic orientation of the pulse, then Gii gives the

asymptotic extension rates of the instantaneous pulse. Seen from the equilibrium

orientation, the asymptotic behavior of a pulse in weakly rotating flows is analogous

to the behavior of a pulse in irrotational shear seen from the principal axes of strain.

The forms of the velocity gradient tensors in the equilibrium orientation for disks,

diffusive tubes, and tubes are given below.

Disk

To determine the velocity gradient tensor in the equilibrium orientation for a

disk, we assume that the pulse is sufficiently distorted by the rotational shear so

that I1>I22>133. The condition given by Eq. B 1 requires that the tensor I relative

to the equilibrium orientation have the following asymptotic form.

(IH 122 (22 (B 2)

(I (I22 133

We will show that this condition will be met if the velocity gradient tensor in the

equilibrium orientation is upper triangular, as
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El -W3 W2

0 E2 -W1 (B 3)
.0 0 E3 .

where EI, E2 and E3 are the extension rates along the equilibrium orientation axes.

Note that since the velocity gradient tensor is upper triangular, El, E 2 and E3 are

the eigenvalues of the velocity gradient tensor G

With the assumed upper triangular form of the velocity gradient tensor G we

can then solve solve the ordinary differential equation for the moment tensor I

which is given as

dl - GpjIqj - GqjIpj = 278 pq (B 4)

Integrating the differential equations for the diagonal elements of I gives

Iii = Sij [exp(2Ej t) - 1] (B 5)

The differential equations for the off-diagonal elements are

at-- (E 2+E 3)123 + W1133 0

t- (E1+E3)I13 + W3123 -W2133 = 0
d 12  (E1+E 2)I 12 + W3122- W2123 + W1I 13 = 0 (B 6)

where the symmetry of the tensor gives only three independent equations.

Substituting the solutions for the diagonal elements gives solutions for the

off-diagonal elements that are sums of exponentials with leading terms of
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I23 ~ A exp(E 2+E 3)t

113 N B exp(E1 +E 3)t

I12 ~ C exp(EI+E 2)t (B 7)

where the constants A,B, and C are constants of order [7/(GijGij)i]. Examination

of Eq. B 7 and B 5, with the specification that E 1 > E2 > E3 and E 2 > 0 shows that

the elements of I satisfy the condition given by Eq. B 2 in the limit of large times.

An orthogonal coordinate system with an upper triangular velocity gradient tensor

G gives the asymptotic orientation of an instantaneous pulse in a weakly rotating

shear flow.

Diffusive Tube

When G22=O the diagonal element of the second moment tensor I22 will not increase

exponentially as was found for the case when G 22>0. Nonetheless the condition for

an equilibrium orientation will be satisfied if the velocity gradient tensor G is upper

triangular as

El -w W2

0 0 -2] (B 8)

0 0 E3

where E1 = -E 3 from continuity of an incompressible fluid.

With the above form of the velocity gradient tensor the differential equation for

Ipq can be integrated. The diagonal elements 1I and 133 are unchanged from the

disk (Eq. B 5). Likewise, the off-diagonal elements I12, 123, and '23 evolve in time as

in the previous case (Eq. B 7) with the specification E2 =0. The asymptotic

evolution of the I22 can be found using the asymptotic value for I23 (123 - 0 17/E2 as

t-*u) which gives
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I22 cx 2-yt [1 + (0 1/-E 3)2]

Examination of Eqs. B 6, B 7, and B 9 with the specification that E1>0 and E 3< 0

shows that the elements of the second moment tensor I meet the criteria for an

equilibrium orientation in the limit of large times. Diffusive tube concentration

distributions will deform asymptotically according to the upper triangular velocity

gradient tensor given by Eq. B 8.

Tube

If the diagonal elements of the velocity gradient tensor G 22 and G3 3 are negative,

then the moments I22 and I33 will asymptotically approach a constant value. The

condition for an equilibrium orientation (Eq. B 1) therefore requires that I have the

following asymptotic form

(Il I22 0 (B 10)
(Il 0 133]

As in the analysis for the disk we solve the ordinary differential equation for I using

a proposed form of the velocity gradient tensor, which can be given as

El -W 3 W 2

0 E2 E +E (B 11)
0~~ E 2++TE3

Comparison of the velocity gradient tensors (Eqs. B 11 and B 4) shows that the

elements of the tensor I will evolve in time as in the previous case, except for '23,

which evolves according to the differential equation
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dI,- (E 2+E 3)1 2 3 + E E3(E31 33 - E21 2 2) = 0 (B 12)

Substituting the asymptotic values for 133 and I22 in B 12 with the specification that

E2 < E 3 < 0 gives

I23 ~ exp(E 2+E3)t -4 0 as t-ft (B 13)

The elements of the tensor I have the form required by Eq. B 10. Velocity gradient

tensors of the form given by Eq. B 11 give instantaneous pulses with an asymptotic

orientation aligned with the coordinate axes. The asymptotic extension rate of

these pulses will be given by the diagonal components of the velocity gradient tensor

as defined by Eq. B 11.
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Chapter 3.

Strong Rotation Produces Vortex Tubes in Homogeneous,
Isotropic Turbulence

Abstract

Regions of concentrated vorticity have been observed to be primarily in
tube-shaped structures in contrast to predictions based on measurements of the
irrotational shearing component of turbulent flows. Rotational effects can modify
the deformation of fluid elements to produce tube-shaped structures whenever the
rotation is above a critical value and the extension rate along the rotation axis is
positive. An analysis of numerical turbulence results indicates that these conditions
are satisfied throughout a significant fraction of the fluid, lending support to the
observation that vortex tubes are more common than vortex sheets.
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Recent results from numerical simulations of turbulence (Siggia 1981, Kerr 1985,

Rogers and Moin 1987, Ashurst et al. 1987) show areas of intense vorticity concen-

trated in vortex tubes, in contrast to earlier predictions that vortex sheets should be

more common. Townsend (1951) showed that an irrotational shearing motion

having two positive principal strain rates imposed on a vorticity distribution weak

relative to the shear would concentrate the vorticity into sheets of finite thickness.

Skewness measurements indicated that locations having two positive principal strain

rates were more frequent than those with a single positive principal strain

(Batchelor and Townsend 1947), thus Townsend predicted that vortex sheets were

more common than vortex tubes. In this note we show how the effects of strong

rotation can modify the deformation of fluid elements. Tube-shaped structures are

produced, even in locations with two positive principal strain rates, if the rotational

component of the motion is above a critical intensity and if the extension rate along

the rotation axis is positive. The critical rotation intensity has been identified as

that necessary to produce imaginary eigenvectors for the velocity gradient tensor

(Bowen and Stolzenbach 1989). An analysis of the results of numerical turbulence

simulations shows that in a significant fraction of the fluid the rotation rate is

indeed above the critical value and extension rates along the rotation axes are

positive. The frequency of these strongly rotational locations is high enough so that

vortex tubes rather than vortex sheets are expected to predominate.

The deformation of a fluid element in a linear flow fields can be analyzed by

following the temporal variation in a moment of inertia tensor, Jij(t) that specifies

the size and shape of the element. For an initially spherical element of radius r, the

initial condition for the moment tensor is Jij(O) = r2Iij, where I is the identity

matrix. The components of the moment tensor JIj vary in time for a linear flow
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field according to (Vieillefosse 1984)

dL= Gi1 Jjj + GjJ (1)

where Gij is the velocity gradient tensor Gij = 6ui/Sxj which we assume is

homogeneous in space and steady in time. Linear velocity distributions deform fluid

elements into ellipsoids whose dimensions change in time according to the rates of

strain along each axis of the ellipsoid. In flows that are essentially irrotational each

dimension of the ellipsoid changes exponentially according to the corresponding

principal strain rate (Eq. 1, Gij = 0, i j j). Therefore, tube-shaped fluid elements

result only when two principal strain rates are negative. Because of the

conservation of angular momentum in the fluid element vorticity increases along the

tube's axis as its cross-sectional area decreases, while vorticity decreases in the

other two directions. Townsend (1951) showed that a stationary solution

representing a vortex tube could result in which the production of vorticity from

axial stretching is balanced by diffusion of vorticity away from the tube axis.

Strong rotation spins the fluid element around the vorticity axis, averaging the

ellipsoid's extension rate in the plane perpendicular to the rotation axis, but not

affecting the extension parallel to the axis. Batchelor (1979) showed that mass

transfer in the limit of strong rotation is equivalent to that for an irrotational,

axisymmetric shear with a principal strain rate along the symmetry axis equal to

the extension rate along the rotation axis. Concentration distributions surrounding

continuous point sources in the region where the mass transfer is advection

dominated also show this behavior in the limit of strong rotation (Bowen and

Stolzenbach 1989). Since the deformation of a fluid element is equivalent to the

advection dominated dispersal of an instantaneous source, we expect that the results
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for mass transfer and concentration distribution in shear flows with strong rotation

can be applied to our analysis of fluid element deformation.

The assertion that tubes are produced by strongly rotational flows with positive

extension rates along the rotation axis can be proven with a perturbation analysis

presented by Batchelor (1979) for mass transfer in linear flows, with the additional

constraint that transport by molecular diffusion coefficient is small relative to

advection. Following Batchelor we choose a coordinate system with X3 aligned with

the vorticity vector. The shear component, which may have one or two positive

principal strain rates, is split into two parts, so that the velocity gradient tensor is

given as G = E(O)+E(')+f, with the following individual elements.

S E33 0 0 [ 0 E 12 E 13  0 -Q 0
E 0 = 0 -+E 3 3 0 E(')= E21 0 E23 1= Q 0 0 (2)

0 0 E33 E3 1 E32 0 0 0 0

E(O) defines an irrotational shearing that is axisymmetric about the vorticity axis

x3 . Assuming that the rotation component 0 is strong relative to the shearing

component ECl), the moment tensor can be solved with the following perturbation

scheme (Batchelor 1979)

F(0) E) (1) rE) 2
Jij(t) = t. Jj (t) + -M Jij (T) + 0 (3)

E=(E2 2 2
where T = ft, E' = (E1 2 + E23 + E1 3)i and E' is assumed to be small relative to Q.

(0)
The term tJij(t) represents the moment tensor for the irrotational, axisymmetric

flow that produces a tube-shaped element elongated along x3 when E 3>0. In the

strongly rotational case the fluid element will deform into a tube along x3 if each of

the elements of the perturbation matrix JP1 ) in the xI-x 2 plane approach zero as
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time increases. Because of the symmetry of the perturbation tensor J) and the

antisymmetry of the vorticity tensor (see Eq. 2.37, Batchelor 1979) this condition is

(1) (1)
satisfied if J 12(T) -4 0 and J11(T) -+ 0 as T -. cD. The equations for these components

read

( 1) (1)
dJ 1 E33j 2E (0)=-+ J12 + 2 J (4a)

(1)dJ1 ) 1 E 3  (1) (1)
0 = -T + E Ji + 2J1 2  (4b)

(0)
Since T and E 33 are always greater than zero and J11 approaches zero, Eq. 4a shows

(1) (0)
that J 12 approaches zero as time increases which in turn ensures that J1I

approaches zero (Eq. 4b). Thus spherical fluid elements deform into tubes when the

extension rate along the rotation axis is positive and the rotation is strong, even if

two principal rates of strain are positive.

While the preceding analysis gives the behavior of fluid elements in the limit of

strong rotation, we still need an estimate of the level of rotation that is required to

modify deformations from that of irrotational flow. Bowen and Stolzenbach (1989)

analyzed the effects of rotation on concentration distributions around continuous

point sources by systematically varying the strength of rotation for a fixed

irrotational shear component. Their findings can be applied to the deformation of

fluid elements because they examined the shape of concentration distributions over

distances from the source where the mass transport was advection dominated. The

shape of distributions for an instantaneous source will be qualitatively similar to

that described for a continuous source since the convolution of the instantaneous

source selects only a narrow range of times in advectively dominated regions (Bowen
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and Stolzenbach 1989). Rotation effects on concentrations distributions were found

to be minor until the rotation rate approaches a critical value shown to be equal to

the rotation rate required to give imaginary eigenvectors for the velocity gradient

tensor (Bowen and Stolzenbach 1989). Concentration distributions quickly

approach an axisymmetric configuration when the rotation exceeds the critical

value, and are essentially axisymmetric whenever the vorticity is more than twice

the critical value. For a general velocity gradient tensor the critical vorticity is

specified as

wiwi = 2EiEi - 3*24/3 E1E 2E3 + Eiwiwi 2/3 (5)

where El, E2 and E 3 are the principal strain rates and wi specifies the vortical

component as Wi = -EijkGjk. In the special case where the vorticity vector lies

along a principal axes of strain, the critical vorticity is the difference in the two

principal strain rates perpendicular to the vorticity axes.

In addition to the strength of vorticity, we must also determine the extension

rate along the vorticity axis to predict the deformation of fluid elements in

rotational shearing. Batchelor (1980) has shown that the average extension rate

along the vorticity axis is related to the velocity gradient skewness so that flows

with a preponderance of locations having two positive principal strain rates also

have positive extension rates along the vorticity axis. Betchov (1956) showed that

shearing flows which are characterized by a negative velocity derivative skewness

produce vorticity through stretching of fluid elements, and he hypothesized that

vorticity production is confined to the locations having two positive principal

strains.. Using coupled equations for shear and rotation developed from the Euler

equation, Vieillefosse (1984) predicted that in an isolated element of fluid the

velocity
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gradient tensor evolves towards higher shear and rotation rates. The shear

component evolves to a pattern having two positive principal strain rates and the

vorticity vector becomes aligned with one of the positive principal strains. Each of

these analyses provide theoretical support for the view that strong rotation is

localized and is associated with a shearing pattern having two positive principal

strain rates and a vortex axis aligned with a positive principal axes of strain. We

now examine the results of numerical simulations of turbulence to compare vorticity

intensities to the critical value given earlier to see if vortex tubes or sheets are

produced through the combined effects of shear and rotation.

Ashurst et al. (1977) examined alignment of the vortex vector to the principal

axes of strain for numerical simulations of isotropic free shear and turbulent shear

from an imposed large scale shearing. For both flows they found that vorticity is

most often oriented along the principal axes having a strain rate of intermediate

magnitude. Approximately 75 percent of all locations have two positive principal

strain rates, which is consistent with measurements of velocity gradient skewness for

these cases (Kerr 1985). In regions containing relatively strong shearing motions

there are always two positive principal strain rates. These regions also have high

levels of vorticity, based on correlations between shear and vorticity intensity (Kerr

1985). For the shear flow case, more than 40 percent of the locations characterized

by the highest levels of shear (locations constituting the top 1/64th of the

dissipation rate distribution) have a vorticity axes within 18 degrees of the

intermediate strain, which is always positive. Although Ashurst et al. do not give

the relative magnitude of shear and rotation for these high shear locations, the

maximum vorticity is more than three times the critical vorticity (Eq. 5) as

estimated from the maximum dissipation rate (Ashurst, personal communication).

High vorticity in these regions produces vortex tubes because of the alignment

between shear and rotation, even though there are two positive strain rates.

- 79 -



In the isotropic flow case approximately 25 percent of all locations have the

vorticity vector within 18 degrees of the intermediate strain, which is positive

(Ashurst et al. 1987). The average vorticity for this fraction of the fluid is nearly

seven times the critical rotation rate estimated from Eq. 5. Strongly rotational

flow, with expansive shear along the rotation axis, therefore occupies at least 25

percent of the total fluid volume, and rotational effects produce vortex tubes in

these locations. Vortex tubes are also expected in all locations having a single

positive principal strain rate (25 percent of all locations), since the vorticity axes is

always oriented along the single positive principal strain (Ashurst et al. 1987).

In summary, because of rotational effects, vortex tubes are expected in at least

half the fluid, even though a majority of the fluid has an irrotational shear

component with two expansive axes. High shear locations have strong vorticity

which is aligned with the smaller positive strain to produce vortex tubes. These

predictions are consistent with the graphical displays of concentrated vorticity,

showing primarily vortex tubes with a positive strain rate along the vortex tube and

a second positive strain rate perpendicular to the tube axis (Kerr 1985, Ashurst et

al. 1987).
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Chapter 4.

Microbial Chemotaxis Towards a Continuous Point
Source of Attractant

An analysis of published experiments on the pattern of bacterial chemotactic
swimming shows that the approach velocity to a continuous point source of
attractant can be described with a hyperbolic function of the temporal change in
chemoreceptor occupancy experienced by the bacterium. In a motionless fluid, the
population density of chemotactic bacteria surrounding the point source shows a
characteristic form reflecting the balance between random and directed chemotactic
motions. Near the source, the population density decreases exponentially with
distance at a rate dependent on the bacterial swimming speed and a characteristic
time scale. The population density approaches a uniform value at a distance
dependent on the mass flux of chemoattractant and bacterial chemotaxis sensitivity,
but independent of the bacterial swimming speed. In a moving fluid bacterial
densities approach background levels at a distance where effective chemotactic
motion towards the source balances fluid motion away from the source. Near the
source, where the concentration gradients saturate the bacteria's effective
chemotactic response, bacteria population densities decrease exponentially with
increasing distance. Results from a Monte-Carlo simulation of a chemotactic
population indicate that the decrease in population density near the source is related
to the minimum bacterial run length.
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1. Introduction

Descriptions of bacterial motion in the presence of spatial gradients of attracting

chemicals can be divided into two groups: 1) stochastic descriptions of an individual

bacterium's swimming pattern, and 2) deterministic descriptions of the chemotactic

bacteria's population response. The deterministic descriptions of population

response are useful because of their simplicity. Analytical relations can be derived

that balance random and directed components of bacterial swimming with physical

processes such as fluid motion. Analyses of this sort have been found to be good

predictors of population response (Keller 1971, Dahlquist et al. 1976). The

analytical relationships can then be used predictively by relating the deterministic

description of chemotactic behavior to measurable quantities describing the

stochastic swimming pattern.

In this paper we use a deterministic description of chemotaxis first proposed by

Keller and Segel (1971) to develop analytical solutions for the population density

distribution of chemotactic bacteria surrounding a continuous point source of

attractant. Parameters in the deterministic description are related to the behavior

of individual bacteria as described by Brown and Berg (1974) in order to understand

how differences in swimming characteristics such as swimming speed or chemotactic

sensitivity affect the population distribution around the source. Analytical solutions

are developed initially for a motionless fluid, but the effects of fluid motion through

movement of the source or shearing of the fluid are also analyzed with scaling

estimates. The problem considered has applications to the clustering of chemotactic

bacteria around individual phytoplankton cells that are exuding dissolved organic

carbon. Non-random interactions between phytoplankton and bacteria resulting

from chemotactic behavior may have important consequences to the ecology of

marine systems (Bowen et al. 1989).
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Keller and Segel (1971) first proposed that the response of a chemotactic

population can be modelled as the sum of an effective chemotactic velocity

dependent on the spatial gradient of chemoattractant and a random diffusion

coefficient. The derived average response arose from a one-dimensional version of

the "run and tumble" swimming pattern as observed for the enteric bacteria

Salmonella typhimurium and Escherichia coli (e.g. MacNab and Koshland 1972,

Berg and Brown 1972). Bacterial motion is seen as a succession of straight,

constant velocity runs separated by short tumbles that alter the direction of the

succeeding run. Directed motion is accomplished by adjusting the length of each

run depending on the gradients of chemoattractant experienced by the moving

bacteria.

Keller (1971) used the deterministic description of chemotaxis to analyze the

movement of bacteria placed at the end of a capillary tube containing an attracting

organic compound. Consumption of the attracting chemical by the bacteria

produced spatial gradients of the attractant that in turn resulted in directed

chemotactic movement away from the initial bacteria position. A band of bacteria

was observed to move along the capillary at a constant speed. The deterministic

description of the population response predicted this behavior and the predicted

band speed agreed satisfactorily with observations. The width of the band was

found to be related to the relative strengths of the chemotactic and random

components of bacterial motion.

Dahlquist et al. (1976) used the deterministic description of bacterial chemotaxis

to analyze the movement of bacteria placed in a capillary tube with prescribed

spatial gradients of attractant. The population average velocity was calculated by

measuring the flux of bacteria of known population density across a fixed location

along the capillary. By using equations that related the population average velocity

to the bacteria's swimming speed and run duration (Lovely and Dahlquist 1975),
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Dahlquist et al. (1976) were able to predict that the duration of a run is linearly

related to the spatial gradient of attractant in the direction of the run. They also

also showed that gradients sensed by the bacteria are related to changes in the

number of attractant molecules bound to bacterial chemoreceptors. These

predictions agree well with models of individual behavior based on microscopic

observations of individual bacteria in temporal gradients of chemoattractant (Brown

and Berg 1974).

Other chemotactic systems analyzed with a deterministic description of behavior

include the chemotactic motion in a uniform flow with a plane source of attractant

(Lapidus 1980), or chemotaxis and bacterial growth in motionless fluid with a plane

source of attractant (Lauffenburger et al. 1982). Lauffenburger et al. (1982) showed

that populations with superior motility properties can outgrow bacteria that would

dominate through superior growth kinetics if there were no motility effects. Lapidus

(1980) showed that the population density distribution near a source in a uniform

flow could also be affected by bacterial chemotaxis given a sufficiently strong

chemotactic response.

Studies of bacterial clustering around phytoplankton cells that are exuding

organic carbon have been based on Monte-Carlo simulations utilizing the stochastic

description of chemotactic swimming (Jackson 1987, 1989, Bowen et al. 1989).

These Monte-Carlo simulations can easily incorporate additional characteristics of

the run and tumble chemotactic pattern that have been observed from more recent

observations of individual chemotactic bacteria. Experiments have shown that

bacteria temporally average concentration signals over several seconds (Segall et al.

1986) and are limited in how quickly they can respond to sudden changes in

chemoattractant concentration (Segall et al. 1982).

In this paper we will utilize the analytical relationships derived from the

deterministic description of chemotaxis to
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interpret the results of our own Monte-Carlo simulation of bacterial chemotaxis

around individual phytoplankton cells (Bowen et al. 1989). The simulation model

results indicate that the bacterial population density near the source decreases at a

rate related to the minimum run length of the bacteria. The simulation also

indicates that the size of the region where chemotactic behavior concentrates

bacteria can be predicted from the deterministic description of chemotaxis.

Population densities approach background levels at a distance where effective

chemotactic velocities balance fluid motions.

2. Effective Chemotactic Velocity in Motionless Fluid

Bacteria cluster around point sources by adjusting the duration of runs

depending on the concentration gradients experienced as they move through the

fluid. For a motionless fluid, a continuous addition of mass results in the following

concentration distribution around the point source

C(r) -C = F (2.1)

where C is the chemoattractant concentration, r is the distance from the source, C

is the background concentration, F is the steady mass input rate, and D is the

molecular diffusion coefficient for the chemoattractant compound (Carslaw and

Jaeger 1959). The bacteria's effect on concentration distributions through

consumption are assumed to be negligible. The description of chemotactic

swimming pattern is based on observations of E. coli in temporal gradients of

attractant (Brown and Berg 1974). The duration of a run is related to the temporal

gradient in chemoreceptor occupancy according to

T = To exp a K C (2.2)
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where T is the run duration, To is the average run duration when there is no

chemotactic signal, a is a sensitivity factor, Kd is the chemoreceptor affinity, and

the overbar indicates temporal averaging of the derivative. If the temporal

averaging effects can be considered negligible, then the temporal gradient term in

Eq. 2.2 can be specified according to the speed and direction of the bacteria and the

spatial derivative of the chemoattractant concentration as

T e a Ke dCdr )a K F
To= I (Kd+C) 2 ar ~di j I (Kd+C)2 47r~i Vcs#(23

where V is the bacterial swimming speed and # is the angle between the bacterial

heading and the direction to the source. The effective chemotactic velocity of a

bacteria population can be related to the description of individual behavior by

integrating the effective motion of the bacteria over all possible swimming paths, as

1
f T(u)udu

Ve=V (2.4)
I T(u)du

-1

where u = cos# (Lovely and Dahlquist 1975). In relating the run length and the

effective chemotactic velocity in this way we have assumed that tumbles are

instantaneous and that the choice of direction after tumbling is independent of the

direction travelled (Lovely and Dahlquist 1975). Eq. 2.3 can been simplified by

assuming that the concentration experienced by the bacterial is significantly less

than the chemoreceptor affinity Kd, a reasonable assumption for the fluxes expected

from phytoplankton cells and the range of chemoreceptor affinities measured for

chemotactic bacteria (Bowen et al. 1989). Performing the integration of Eq. 2.4

with the description of run duration (Eq. 2.3) results in the following equation for
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the effective chemotactic velocity Ve

= coth 2 2 (2.5)

where ro is a "chemotactic length" defined as

ro - ( FVa) (2.6)

Of interest is the fact that the chemotactic length depends not only on the

concentration signal and the chemotaxis sensitivity but on the bacterial swimming

speed V.

The normalized effective velocity described by Eq. 2.5 has a hyperbolic character

that varies linearly with the argument (ro/r)2 in the region where rro and

approaches a uniform value when rro. A similar hyperbolic relationship has been

derived by Dahlquist et al. (1976) based on experiments on the chemotactic bacteria

Salmonella typhimurium in spatial gradients of chemoattractant. Their description

of chemotaxis assumes that the run duration varies linearly rather than

exponentially with the attractant gradient. In fact, the strengths of the attractant

signal are small enough in the experiments of Brown and Berg (1974) that it is

impossible to distinguish between the exponential (Eq. 2.2) and linear relationships;

later models of E. coli have adopted the assumption that the run time varies linearly

with the strength of the gradient (Block, Segall, and Berg 1982). A linear variation

in run duration leads to the following equation for the effective velocity

= r (2.7)
ro+3r2I
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Because of its simplicity and its relevance to recent observations of chemotactic

bacteria, this relationship for effective velocity will be used to predict the

population density distribution around the continuous point source.

3. Population Density Distributions in Motionless Fluid

The steady state distribution of bacteria around a continuous point source in

motionless fluid results from a balance between the diffusive and effective

chemotactic components of the bacterial motion according to

Db = -Ve n (3.1)

where n is the bacterial population density and Db is the diffusion constant

describing the random motion of the bacteria as (Dahlquist and Lovely 1975)

Db = V2Tc (3.2)Db=3(1-7)(.2

where y is the cosine of the angle between successive bacterial headings, and Tc is a

characteristic time scale. These equations lead to the following differential equation

for the population density.

dn = 3(1-7) [r ] dr (3.3)
n VTc r8+3r2I

Integrating this equation results in the following equation for the bacterial

population density surrounding the continuous point source.

3 r 0
n(r) = no { exp -tan-[-.] ] } VTP (3.4)
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where no is the background population density and Tc' is the characteristic time

scale that includes the term dependent on the angle between successive run

directions (Eq. 3.2). This complicated function has simple, asymptotic forms in the

regions both near and far from the source. Near the source (rcro) the population

density decreases exponentially according to

n(r) = no exp - (3.5)

whereas far from the source (rro) the population density approaches the uniform

background value no as

n(r) = no exp (3.6)

The "inner length scale" 1 defines the balance between random and chemotactic

motion near the source where the chemotactic response is maximized, while the

length scale rc gives the distance where chemotactic behavior begins to elevate

bacterial population densities. These two scales are related to the concentration

field and the characteristics of the bacteria swimming pattern in the following way

1= VT ) rc = F a (3.7)

Notice that although the relationship for effective velocity did depend on the

swimming speed, the distance where chemotaxis begins to influence population

densities, the "cluster size" rc, does not depend on the swimming speed, reflecting

the balance between effective chemotactic and random motion at the edge of the

cluster. In the region where the effective velocity relationship is unsaturated (r>ro)
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(Eq. 2.7), the hyperbolic function for effective chemotactic velocity varies linearly in

the signal strength according to

V2F a
Ve = 12 7rDKdr (3.8)

In a motionless fluid, the effective chemotactic motion is balanced by the diffusive

component of the bacteria's swimming motion. A characteristic diffusion velocity

can be scaled as Vd = Db/r, (see Eq. 3.2). Equating the diffusive velocity Vd and

the chemotactic velocity Ve, both of which depend on V2 (Eq. 3.2 and 3.8), leads to

the conclusion that the cluster size rc does not depend on the bacterial swimming

speed V.

4. Simulation Model Results - The Cluster Size in Moving Fluids

A Monte-Carlo simulation model of bacterial chemotaxis was developed to

predict bacterial population densities surrounding continuous sources in fluids with

relative motions due to sinking of the source or shearing of the fluid (Bowen et al.

1989). The steady-state density distribution of a chemotactic bacteria population

was determined by time-averaging instantaneous distributions for a variety of

exudation fluxes, chemotaxis sensitivities, swimming speeds, and fluid motion

conditions. Bacteria moving out of the simulation region by random swimming or

fluid motion were reflected back in at random positions on the region's boundary so

that steady population densities could be simulated. The model simulated the

effects of shearing or uniform fluid motions on both the concentration distributions

surrounding the source and the movement of the bacteria. A more thorough

description of the simulation model has been provided elsewhere (Bowen et al.

1989).
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The steady-state population distributions for chemotaxis in moving fluids were

qualitatively similar to the analytical relations presented earlier for motionless

fluids. Near the source the population density decreased exponentially at a rate

dependent on the bacterial swimming speed (Fig. 1). The population density

approached a uniform value as the distance from the source increased (Fig. 1).

However, the distance where the density approached background levels, the cluster

size rc, varied with the bacterial swimming speed (Fig. 1), in contrast to the

prediction for motionless fluids (Eq. 3.7).

The increase in the cluster size with increasing swimming speed for both sinking

and shearing motions suggests that at the edge of the cluster there exists a balance

between fluid motions and effective chemotactic swimming. For the uniform flow

case, the characteristic velocity for the fluid motion is simply the phytoplankton fall

velocity ws. If we assume that at the edge of the cluster the concentration gradients

are approximately those expected for the motionless case, then the effective

chemotactic velocity can be specified with Eq. 3.8. Equating the phytoplankton fall

velocity with the effective chemotactic velocity results in the following prediction

for the cluster size rc.

[V2 F a 1/2
rc = J2rDKdws (4.1)

In a shearing fluid the velocity opposing chemotactic motion increases linearly

with the distance from the source as Vf = Eb r, where Vf is the fluid velocity and

Eb is a characteristic shear intensity. Equating this velocity with the effective

chemotactic velocity provides the following estimate of the cluster size in a
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Figure 1. Simulated bacterial population densities versus the distance from the continuous
point source
(a) Weak shearing motion (Eb = 0.05 sec- 1), at the maximum normalized

exudation rate (F/4iLDKd = 1140 gm sec), for a range of swimming speeds.
(b) Uniform motion from a sinking source (ws = 10 gm sec-1), at the

maximum normalized exudation rate (F/47tDKd = 1140 gm sec), for a
range of swimming speeds.
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shearing fluid

V2 F a 1/3
rc= I 127rDKdyb J (4.2)

Both relationships predict the overall trend in the cluster size, with increased

cluster sizes for stronger exudation, faster bacterial swimming, and weaker fluid

motion. Calculations of cluster sizes for simulations of chemotaxis in a uniform flow

showed that the cluster size did not increase as quickly as predicted by Eq. 4.1

(Figure 2a), although the scaling analysis did predict the cluster size to an order of

magnitude. Variations in the cluster size for the shear case more closely followed

the scaling relationship given by Eq. 4.2 (Fig. 2b), but the scaling relationship

underestimated the cluster size for the slowest swimming speed. In this case the

cluster was probably too small to be affected by fluid motion, so the bacteria's

random motion rather than fluid motions balanced effective chemotactic motion at

the edge of the cluster. Cluster sizes were overpredicted for the highest levels of the

scaling parameters in both the shear flow and uniform flow cases (Fig 2). This

effect may be due to the assumption that the concentration distribution was

described by motionless fluid equation (Eq. 2.1). Cluster sizes smaller than

predicted by the scaling estimates could result if the concentrations decreased more

rapidly than estimated through the effects of uniform streaming or fluid shearing.

5. Simulation Model Results - Distributions near the Source

Differences in the density distributions near the phytoplankton for differing

swimming speed suggest that population densities in this region are determined

solely by the bacteria's random motion. In the motionless case the decrease in

population density near the source was related to a characteristic time scale Tc.
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Figure 2. Cluster size vs. the scaling parameters Z = F*V2 (3ws)-l for fluid motions
from a sinking source (a) and X = F*V 2 (3 Eb)-1 for fluid motions from
shearing (b). F* is the normalized exudation rate F/4nDKd, V is the bacterial
swimming speed, Eb is the characteristic shear rate, and ws is the sinking speed
of the source. The cluster size is determined from the population density
distributions. The solid lines represent Z1/2 and X1'/, which are the predicted
cluster sizes (Eq. 4.1 and 4.2).
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(Eq. 3.7). When there are no concentration gradients of attractant, the appropriate

time scale in quantifying a bacterium's random motion is its average run time, To,

i.e., Tc = To (Lovely and Dahlquist 1975). In the general case, however, where

chemotactic behavior may result in runs either much shorter or much longer than

To (Eq. 2.2), we must consider other time scales that quantify the chemotactic

swimming pattern. Bacteria are known to average concentration signals over a few

seconds (Segall et al. 1986), represented here in the simplest way by a single

averaging time scale Tm. In addition, bacteria are limited in how quickly they can

respond to sudden changes in concentration (Segall et al. 1982), represented by the

response latency time Tmin. A sensitivity analysis of the three time scales To, Tm

and Tmin was performed to determine which parameter best characterizes the

bacteria's random motion near the source.

The simulation model of bacterial chemotaxis was utilized to perform the

sensitivity analysis of the three time scales To, Tm and Tm in. The model of run time

regulation was based on Eq. 2.2. The response latency Tmin was incorporated into

the chemotaxis model by restricting the minimum run time to be no shorter than

Tmin. Temporal concentration gradients were calculated by comparing the current

concentration to a concentration time-averaged over a time Tm. Bacterial

population densities were simulated for a range of swimming speeds and

characteristic time scales To, Tm, and Tmin.

The sensitivity analysis of the average run time To, the averaging time scale Tm

and the response latency time Tmin indicates that the chemotactic motion near a

continuous source is dependent on the minimum run length of the bacteria. In all

cases the population density near the source decreased exponentially as n =

np exp(-r/). The inner length scale I was determined from a linear regression of the

logarithm of population density versus distance for the distribution near the source.
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The inner length scale 1 increased with increasing swimming speed in all cases (Fig.

3) but there were marked differences in the inner length scale's variation with

changing time scales. Changes in the average run time To had little effect on the

calculated inner length scale (Fig. 3a), and changes in the averaging time T. had

only a minor effect (Fig. 3b). Changes in the response latency had the largest effect

on the inner length scale, and results from the different swimming speeds showed a

consistent linear relationship between the length scale V*Tmin and the inner length

scale (Fig 3c). However, the response latency clearly does not explain all the

variation in the inner length scale. Variations in the length scale over a factor of

two were observed for identical values of swimming speed V and response latency

Tmin (Fig. 3c). Nonetheless, the random motion of the bacteria near the source can

best be parameterized with the length scale V*Tmin, which represents the minimum

run length of the chemotactic bacteria.

6. Discussion

We have found that the population densities of chemotactic bacteria surrounding

a continuous point source reflect balances between three transport process: 1)

random bacterial swimming, 2) directed chemotactic swimming, and 3) relative

fluid motion. Fluid motions affect chemotactic clustering by limiting the size of the

bacterial cluster. At the edge of the cluster directed chemotactic motions begin to

overcome fluid motions and population densities exceed background levels. The

cluster size is maximized when the fluid is motionless, and in this case the bacterial

swimming speed does not influence the size of the cluster. Fluid motions do not

influence the variation in population density near the source, where characteristic

velocities for chemotaxis and random motion are maximized. The random motion

of bacteria near the source is related to both the swimming speed and the response

latency time of the bacteria.
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Figure 3. Sensitivity analysis for the time constants in the model of bacterial chemotaxis.
The average run time To, the concentration averaging time scale Tm, and the re-
sponse latency time Tmin were independently varied over a factor of ten around
the standard conditions used by Bowen et al. (1989), To = 1.0 sec, Tm = 0.6 sec,
Tmin = 0.2 sec. The inner length scale is determined from a linear regression of
the logarithm of the bacterial population density versus distance for the distribu-
tion near the phytoplankton. The bacterial swimming speed V varies from 12 to
80 tm sec- 1, the shear strength Eb varies from 0.05 to 0.20 sec- 1, and the exu-
dation strength F*=F/47rDKd varies from F* = 1140 gm sec to F* = 300 gm
sec. In each plot the dashed lines show best fit lines when the data from each
swimming speed is analyzed separately.
(a) Inner length scale [versus the length scale VTO.
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The simulation model results reveal the importance of the response latency time

Tmin in determining the population density of the chemotactic bacteria. The

response latency used in the simulation model (0.2 sec) was taken directly from data

on enteric bacteria, although Segall et al. (1982) have pointed out that the measured

value seems large considering the small time necessary to transmit signals across a 1

/Lm bacterial cell. Segall et al. (1982) speculated that the response latency could be

a result of the time-averaging of concentration signals. They also speculated that

there may be no adaptive pressure for shorter adaptive times. This is clearly not

the case for clustering around point sources. Shorter response latencies improve the

ability of the bacteria to stay near the source without compromising its ability to

overcome fluid motions, since the effective chemotactic velocity is not related to a

characteristic time scale (see Eq. 2.7). There would seem to be a strong selectove

pressure for marine bacteria to minimize their response latency time. Therefore, the

response latencies of marine bacteria may be shorter than those of enteric bacteria.

The analytical results presented can be applied to analyze how differences in

bacterial swimming speeds might affect the clustering of bacteria in aquatic

environments. Enteric bacteria swimming speeds range from 12-30 Pm sec-1 (e.g.

Berg and Brown 1972, MacNab and Koshland 1972), while marine bacteria

swimming speeds range from 30-80 pm sec-1 (Azam and Ammerman 1984, Armitage

and MacNab 1987). Our results suggest that the higher swimming speeds of marine

bacteria may reflect differences in the fluid environment. In the ocean's upper

mixed layer convective and wind-induced mixing result in shearing motions of an

intensity favoring swimming speeds above that for enterics (Bowen et al. 1989), as

revealed by simulations of time-averaged nutrient exposures. The results of this

study provide the explanation for this finding; faster swimming speeds provide more

effective chemotactic motion enabling chemotactic bacteria to overcome the fluid

motions that limit bacterial clustering.
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Chapter 5.

Simulating Bacterial Clustering Around Phytoplankton Cells in
a Turbulent Ocean

Abstract

Simulations of bacterial chemotaxis towards a phytoplankton cell that is exuding
dissolved organic carbon indicate that it is possible for bacteria to attain population

densities orders of magnitude above background levels in microzones that occupy

less than 0.1 percent of the total fluid volume separating each phytoplankton cell.

The degree of clustering was found to vary with the intensity of fluid motions, the

bacterial swimming speed and chemotactic sensitivity, and the phytoplankton

exudation rate, but it did not depend directly on phytoplankton cell size. The

simulation results indicate that at turbulence intensities expected in the upper

mixed layer of the oceans (shear rates of approximately 0.15 sec-1) as much as

twenty percent of the chemotactic bacteria population could be clustered around

exuding phytoplankton cells at any given time, even though individual bacteria stay

in a cluster less than a minute. In turbulent shearing, a bacterium's ability to stay

near a phytoplankton cell depends on both the random and directed chemotactic

components of bacterial motion, such that intermediate bacterial swimming speeds

of approximately 40 pan sec-1 maximize the bacteria population's time-averaged

exudate exposure, which could be as much as ten times higher than for a

non-chemotactic bacteria population. According to our simulations, unsteady

turbulent mixing in the oceanic surface layer should disperse clusters during bursts

of mixing, but intervening calm periods are long enough to allow clusters to reform.

Bacteria in a cluster could take up as much as seventy percent of the exuded

photosynthate if bacterial uptake is assumed to be diffusion limited, but the spatial

distribution of bacteria does not significantly affect phytoplankton and bacteria

competition for inorganic nutrients.
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Introduction

The observation that most marine bacterial isolates are motile (Baumann et al.

1978) has lead to speculation regarding the microscale spatial distribution of

bacteria and the ecological implications of non-random interactions between

phytoplankton and motile bacteria. Upon the discovery that some marine bacteria

exhibit chemotactic behavior when exposed to algal exudate, Bell and Mitchell

(1972) hypothesized that chemotactic bacteria actively congregate around

phytoplankton cells to improve their exposure to the organic carbon exuded by

phytoplankton. Chemotactic behavior has been observed repeatedly for marine and

freshwater bacteria (Chet and Mitchell 1976, Geesey and Morita 1979, Gallucci and

Paerl 1984, Hazen et al. 1984, Azam, personal communication), indicating that

some bacteria have the capability of clustering around phytoplankton cells in

motionless fluid. Azam and Hodson (1981) observed that glucose uptake by marine

bacteria remains unsaturated even when glucose concentrations are orders of

magnitude above background levels. This capacity was attributed to a multiphasic

uptake system which would be of little value to the bacteria unless higher than

ambient concentrations of substrate are actually experienced in situ. Furthermore,

Azam and Ammerman (1984) showed that the bacterial turnover of dissolved

organic carbon excreted by phytoplankton is more rapid than that for organic

carbon added to the medium in a dispersed form. This accelerated turnover of

phytoplankton exudate was attributed to the clustering of bacteria in microzones

where exuded carbon concentrations are significantly above bulk average values, and

provides strong, indirect evidence that bacterial clustering can increase the dissolved

organic carbon exposure of a chemotactic bacteria population.

The clustering of bacteria may have ecological implications in addition to

enhancing the chemotactic bacteria's exudate exposure. Since bacteria and

phytoplankton are generally considered to be competitors for inorganic nutrients in
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oligotrophic marine systems (Bratbak and Thingstad 1985, Lancelot and Billen

1985, Wheeler and Kirchmann 1986), clustered bacteria may actually depress the

growth rate of exuding phytoplankton cells. High bacterial population densities

near a phytoplankton may locally reduce nutrient concentrations, and therefore

reduce the phytoplankter's uptake of limiting nutrients. This competition for

limiting nutrients has been given as evidence that phytoplankton do not exude a

significant fraction of their productivity (Jumars et al. 1989), although the function

and significance of phytoplankton exudation continues to be an area of active debate

(e.g., Bjornsen 1989, Wood and Van Valen 1989, Sharp 1984, Fogg 1983).

Carbon flow through the microbial food web might also be affected by clustering.

Clustered bacteria may take up a significant fraction of the carbon exuded by

phytoplankton, decreasing the average exudate concentration experienced by

non-chemotactic bacteria, and further increasing the competitive advantage to the

chemotactic population. While the relative importance of various sources of

bacterial secondary production are still a matter of debate, in part because of the

recent measurements of elevated dissolved organic concentrations in the ocean

(Sugimura and Suzuki 1988), it is generally recognized that the release of DOC from

phytoplankton is a major source of bacterial nutrition (Fenchel 1988). Therefore,

uptake of exudate by clustered bacteria may be a significant fraction of total

bacterial secondary production.

Bacterial clustering may also affect the fate of bacterial production. Water

column enclosure experiments indicate that in certain instances a majority of

bacterial production is lost to respiration and is not passed to the metazoans

(Ducklow et al. 1986), but in general the fate of bacterial production, the "link

versus sink" question (Banse 1984), may depend on the fraction of the bacteria

population that is in a cluster. Dense clusters of bacteria surrounding a

phytoplankter may be grazed with the phytoplankter by metazoans (microbial food
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web as a link) while the production of non-clustered bacteria is passed first to

microflagellates, then to ciliates, and then finally to metazoans (Williams 1984). In

this longer food web much of the original bacterial production is lost to respiration

(microbial food web as a sink).

Because of the difficulty in observing bacterial clusters in situ, our current

understanding of the degree of bacterial clustering in the oceans relies primarily on

order of magnitude estimates (Mitchell et al. 1985) and numerical simulations of

chemotaxis (Jackson 1987, Jackson 1989). Using estimates of algal exudation rates

and bacterial chemotaxis capabilities, and scaling arguments for the effects of

turbulent motion on concentration distributions, Mitchell et al. (1985) predicted

that clustering is possible only at the thermocline where sinking speeds and

turbulence intensities are minimized. According to their scaling arguments,

shearing fluid motions in the mixed layer prevent the formation of significant

microzones of elevated exudate concentration where bacteria might congregate.

They also hypothesized that directed bacterial swimming speeds (1 - 2 pm sec-1) are

too slow to follow phytoplankton sinking at more than 10 pm sec-1, thus preventing

cluster formation. They did not consider, however, the case in which a bacterium

uses directed, chemotactic motion to lengthen its stay near a phytoplankton cell,

even though fluid motions from phytoplankton movement or turbulent mixing

eventually transport the bacterium to other phytoplankton cells.

Using numerical simulations, Jackson (1987, 1989) predicted the short term (<

100 seconds) response of individual bacteria placed within 100 pm of either a

motionless or a sinking phytoplankton cell. He found that chemotactic bacterial

populations could not swim toward a phytoplankton smaller than approximately 2

pm and that increases in bacterial swimming speed above that measured for enteric

bacteria (12 pm sec-1) did not appreciably improve the approach towards a sinking

phytoplankter. Jackson (1989) did find, however, that chemotactic behavior
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in marine bacteria could lengthen the cells' exposure to elevated concentrations of

phytoplankton exudate, even if their limited swimming speed prevents them from

following the sinking phytoplankton cell.

None of the studies discussed above considered the effects of shearing fluid

motion expected in the oceanic mixed layer. We expect that shearing motions in

the ocean's mixed layer have a profound effect on bacterial clustering by altering

both the exudate concentration distribution surrounding a phytoplankter and the

motion of chemotactic bacteria relative to the phytoplankton cell. In addition,

analyzing the short-term behavior of bacteria does not allow for predictions of the

bacteria population density distribution or time-averaged exudate exposure.

Assessing the full potential for bacterial clustering to exist in the ocean, and the

ecological implications of bacterial clustering requires prediction of these parameters

for the fluid motions expected in the mixed layer.

As suggested above, clusters could exist and be important even if a bacterium

spends only a few seconds with each phytoplankter before fluid motion and random

swimming move it away. Fluid motion associated with turbulent shear or

phytoplankton sinking or swimming continually sweeps bacteria past phytoplankton

cells where exudate concentrations are highest. Chemotactic bacteria would respond

to the concentration gradients with a directed motion that temporarily counteracts

the unsteady fluid and random swimming motions moving bacteria away from the

phytoplankton. Elevated bacterial densities occur whenever the fraction of time

spent by a bacterium in microzones surrounding phytoplankton exceeds the volume

fraction of the microzones, regardless of the duration of an individual visit. With

this conceptual model of bacterial behavior we can identify three distinct processes

that must be quantified to estimate the importance of bacterial clustering: the

exudation flux of individual phytoplankton cells, the response of motile marine
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bacteria to concentration gradients of phytoplankton exudate, and the effects of

fluid motions on the concentration distributions of exudate.

We have used a Monte-Carlo model to simulate bacterial clustering. Phyto-

plankton exudation rates, bacterial chemotaxis abilities, and fluid motions motion

parameters were extracted from the literature and used to establish a matrix of

possible conditions in the oceanic mixed layer. Bacterial population density

distributions and time-averaged exudate exposures were then estimated by

simulating multiple encounters between phytoplankton and bacteria for the shearing

fluid motions characterizing the oceanic mixed layer. The model was also used to

examine the effects of time-varying shear intensity characteristic of the turbulent

ocean. The advantage of chemotactic behavior was examined by comparing time-

averaged exudate exposures for chemotactic and non-chemotactic bacteria.

Bacterial population density distributions were then used to estimate clustering

effects on the exudate spatial distributions, inorganic nutrient flux to

phytoplankton, and carbon flow through the microbial food web. The simulation

model indicates that although shear mixing and phytoplankton sinking limit the

time a bacterium spends near each phytoplankter, chemotaxis in the turbulently

mixed upper layer may nonetheless increase the time-average exudate concentration

experienced by a bacterium by more than an order of magnitude.
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Components of the Model

Phytoplankton Exudation of Organic Carbon - Although considerable effort has

been expended to measure phytoplankton exudation of organic carbon (see Fig. 1),

only a few measurements include the necessary information to calculate an exudate

flux per phytoplankton cell. This parameter together with a description of the fluid

motion is necessary to model the exudate concentration distributions surrounding

the phytoplankter, which constitutes the chemotactic signal to the bacteria.

Measurements of carbon release by phytoplankton in situ are often presented only as

an exudation rate per unit volume of water or as the percentage of an unspecified

carbon fixation rate. Exudation measured on cells from laboratory cultures usually

include the necessary cell number information, but the specific activities of added

inorganic carbon, which are needed to calculate carbon fixation rates, are rarely

reported. Exceptions include Nalewajko et al. (1976) and Blaauboer et al. (1982);

they measured exudation rates for freshwater phytoplankton and found them to

vary from 10-15 g C cell-' sec-I for an in situ measurement in a eutrophic lake to

10-18 g C cell-' sec-1 for a log-phase population in culture (Table 1).

Measurements of exudation by marine phytoplankton in culture show that a

relatively small fraction of fixed carbon is exuded, with most measurements under

15 percent (Fig. 1a). Higher exudate fractions come from stationary phase cells

(Mague et al. 1980), cells in the dark (Sharp 1977, Zlotnik and Dubinsky 1989), or

cells exposed to varying light intensity (Wood et al. 1989) or extreme temperatures

(Zlotnik and Dubinsky 1989). In situ measurements, which contain cells of varying

light and nutrient histories, are generally higher than culture values and show a

broader range. Exudation percentages calculated by averaging the measurements

for each location range from 0 to 50 percent, with a majority of the values in the 10

to 30 percent range (Fig. 1b). Exudate flux per cell can be estimated from these

values by combining them with estimates of phytoplankton carbon content and
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Figure 1. Histograms of the published measurements of exudation by marine
phytoplankton. Each data point represents the fraction of primary
productivity exuded from: a) a single-species laboratory culture, or b) an
in situ measurement of marine phytoplankton exudation. For measurements
having a range of values, the average of the maximum and minimum
exudation percentage is plotted. Measurements taken from: Nalewajko et al.
1976, Sharp 1977, Mague et al. 1980, Blaauboer et al. 1982, Wolter 1982,
Fogg 1983, Lancelot and Billen 1985, Sondergaard et al. 1985, Jones and
Cannon 1986, Wood et al. 1989, Zlotnik and Dubinsky 1989.
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Table 1. Phytoplankton Exudation Measurements

Exudation Rate Measured on a Per Cell Basis

Species Conditions 1  PER 2  Exudation Reference
(g C/cell /sec)

Mallomonas caudata Fr/IS 50 1.4x10-15  Blaauboer et al. 1982
Dinobryon divergens Fr/IS 20-25 1.9x10- 15  Blaauboer et al. 1982
Anabaenaflos-aquae Fr/Cu 8.2 1.8x10-1 8  Nalewajko et al. 1976
Chlorella pyrenoidosa Fr/Cu 3.4 4.1x10- 18  Nalewajko et al. 1976

Exudation Rate Normalized by Cell Carbon

Exudation (day- 1)

microflagellates Ma/IS 45 0.73 Wolter 1982
nannoflagellates Ma/IS 40 0.36 Wolter 1982
nannoflagellates yr 2 Ma/IS 10 0.25 Wolter 1982
Chaetoceros sp. Ma/IS 28 0.60 Wolter 1982
Skelotonema costatum Ma/IS 10 0.36 Wolter 1982
Detonula sp. Ma/IS 6 0.10 Wolter 1982

1 Fr -Freshwater, Ma - Marine, Cu - Culture Measurement, IS - In Situ Measurement
2 Exudate Release as a Percentage of Primary Production
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growth rate. While this method sacrifices the detail of direct measurements of

carbon fixation rate, it seems reasonable considering the variability in measure-

ments of the percentage of fixed carbon that is exuded (Fig. 1).

Carbon content per cell was estimated using an allometric relationship between

carbon content and cell radius (Mullin 1966),

F = b aIn 28 f (1)m

where F is the exudate flux (mol cell-' sec-1) b is an empirical constant, ap is the

phytoplankton radius, it is the growth rate, f is the fraction of productivity exuded,

and m is the exudate's molecular weight. The product of the growth rate and

fraction exuded, IL f, can be compared with measurements of exudation rate

normalized by cell carbon, which were found to vary between 0.1 and 0.7 day-'

(Table 1). For phytoplankton cells ranging from 1-10 pam radius, and specific

exudation rates ranging from 0.05 to 0.7 day-', we estimate the exudate flux per cell

to vary from 1.0x10- 18 to 2.4x10- 15 g C cell-' sec-1, values consistent with the few

direct measurements (Table 1). Assuming that the exudate is composed of small

molecular weight compounds such as glycollate, an assumption that is consistent

with HPLC analysis of phytoplankton exudate (Fogg 1983), we estimate that

exudate fluxes range from 2.7x10 20 to 6.5x10- 17 mol cell-' sec-1.

The variability in exudate fraction has received much attention (Sharp 1977,

Fogg 1983, Wood et al. 1989) and discussion continues regarding the importance of

exudation in the overall nutrition of marine bacterioplankton. While experimental

biases have no doubt affected some in situ measurements, even recent measurements

of exudation, conducted with full knowledge of possible experimental artifacts, show

that a significant fraction of primary productivity is lost as dissolved organic carbon
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(Wood et al. 1989). As pointed by Jumars et al. (1989), however, many of the in

situ measurements of exudate release may be due in part to losses through grazing,

either by lysis of damaged cells or through incomplete digestion and subsequent loss

from sinking fecal pellets. The relative importance of each of these sources of

dissolved organic carbon is at present undetermined, and considering procedural

difficulties it seems reasonable to simulate a broad range of exudate flux per

phytoplankton cell that combines variations in phytoplankton cell size,

phytoplankton growth rate, and percent of productivity exuded.

Chemotactic Ability of Marine Bacteria - Detailed descriptions of marine

bacterial swimming patterns are not available, but isolates from collections of

heterotrophic marine bacteria have morphologies similar to species whose

chemotactic behavior has been studied. Chemotactic swimming patterns have been

described for the uni-flagellated marine photosynthetic bacteria Rhodobacter

(Armitage and MacNab 1987) and the peritrichously flagellated enteric bacteria

(e.g., MacNab and Koshland 1972, Berg and Brown 1972) and will be used in this

study to simulate marine bacteria swimming patterns. Some descriptive

information on the morphology of marine bacteria is available. All 788 strains in a

culture collection of North Pacific bacteria are motile and most of the isolates are

straight rods with with 1-3 polar flagella (Baumann and Baumann 1978). A smaller

number of isolates possess peritrichous flagellation. Swimming speeds of

chemotactic marine bacteria, both heterotrophic and photosynthetic, have also been

measured, and they differ from that of the enteric bacteria. Peritrichously

flagellated enteric bacteria swim at speeds ranging from 12 to 30 Am sec-1 (MacNab

and Koshland 1972, Berg and Brown 1972), while Azam and Ammerman (1984)

observed heterotrophic marine bacteria swimming speeds of 20 to 40 /Lm sec- 1, and

the medially flagellated photosynthetic marine bacteria Rhodobacter swims as fast

as 80 pan sec-1 (MacNab and Armitage 1987). A coastal pseudomonad has been
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observed to move upstream against a uniform flow of approximately 100 ftm sec'

(Walsh and Mitchell 1978), but it is impossible to determine the exact bacterial

swimming speed in this case because of possible wall effects and the uncertainty

regarding the actual swimming pattern of the bacteria.

Capillary chemotaxis assays have shown that marine bacteria are attracted to a

variety of small chain alcohols and sugars (Table 2). The minimum concentration

in the capillary eliciting a chemotactic response ranges from 10-4 to 10-8 M, while

the maximum response occurs at millimolar concentrations, as determined by

counting the number of bacteria that swim into the capillary after a prescribed time

period. Enteric bacteria respond to the same groups of organic compounds (Table

2) and threshold concentrations are also as low as 10-8 M. For enteric bacteria, the

concentration in the capillary eliciting a maximum response has been shown to be

an estimate of the chemoreceptor affinity Kd (Mesibov et al. 1972). Affinities

measured this way range from 10-2 to 3x10-6 M (Table 2). Although the thresholds

shown are useful for comparisons between organisms, it is the chemoreceptor affinity

that must be quantified to describe chemotactic motion. Measurements from

marine bacteria predict affinities in the millimolar range (Table 2), but considering

the dilute nature of organic material in the ocean it seems likely that chemoreceptor

affinities for marine bacteria are at least as low, and probably lower, than those for

enteric bacteria.

Both the peritrichously flagellated bacteria such as Esherichia coli (e.g., Berg

and Brown 1972) and Salmonella typhimurium (e.g., MacNab and Koshland 1972)

and the medially flagellated Rhodobacter (Armitage and MacNab 1987) swim in a

"run and tumble" pattern controlled by the direction of flagellar rotation. Constant

velocity runs are interrupted by a tumbling reorientation of the bacteria and

directed motion is accomplished by lengthening runs made in favorable directions.
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Table 2. Chemoreceptor Affinity Measurements

Organism Compound Threshold Max.Resp. Reference
Conc. (M) Conc. (M)

Escherichia coli galactose 10-8 3x10-6  Mesibov et al. 1973
glycero galctoside 4x10- 7  10-5
fucose 7x10-5  10- 3

methyl aspartate 3x10-7  10-4
methyl aspartate 1.6x10- 4  Berg and Tedesco 1975
amino isobutyrate 3.1x10-3
L-leucine .98x10-2
glutamate 10-5 2.3x10- 3 Brown and Berg 1972

Salmonella typhimurium serine 10-6 10- 3  Dahlquist et al. 1976

coastal pseudomonad methionine 10-7 10-3 Chet and Mitchell 1976
leucine 10-8 10-2
cysteine 10-8 10-2
proline 10-7 10-2
glutathione 10-6 10-3
glucose 10-7 10-3
fructose 104 10-3
galactose 10-6 10-3
ribose 10- 7  10-3

Aeromonas hydrophila amino acids 10- 3  10-1 Hazen et al. 1984
carbohydrates 10 -4 10-2

marine vibrio L-arginine 10-6 1 0 -4 Geesey and Morita
1979
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Brown and Berg (1974) have proposed the following equation to describe the run

duration T,

T = Toexp a[ Kd (2)e1 (Kd + C)2-d--(2

where To is the average run time when no concentration gradients are present, a is a

sensitivity factor, C is the chemoattractant concentration and the overbar indicates

an effective temporal averaging. Temporal gradients are sensed by the bacterium

by making comparisons of time averaged receptor occupancy (Segall et al. 1986), so

that concentration signals are averaged over an adaptation time scale (Tm). The

response latency time (Tm in) is the minimum time required to change direction of

flagellar rotation after an abrupt change in attractant concentration. For E. coli,

Tm has been observed to be approximately 4 seconds and Tmin approximately 0.2

seconds (Block et al. 1982, Segall et al. 1982). Experiments with enteric bacteria

have shown that they can maintain a constant heading for no more than a few

seconds because of contact from water molecules, an effect which can be quantified

with a Brownian rotation coefficient (Berg 1983).

A parameter relating the exudation flux to the bacteria's chemotactic sensitivity

can be derived from the model of bacterial run time regulation (Eq. 2). In

motionless fluid the exudate concentration above background, C(r) - C,, is given as

(Carslaw and Jaeger 1959)

C(r) - C = F (3)

where D is the molecular diffusion coefficient, and r is the distance to the center of

the phytoplankton. Since the range of exudate fluxes specified earlier results in
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concentrations well below the range of chemoreceptor affinities Kd, we can simplify

Eq. 2 as

T ep a -dC dr ep a F VCS 4= exp =exp [ =exp V cos#~ (4)

where V is the bacterial swimming velocity and # is the angle between the bacterial

heading and the direction to the phytoplankton. The concentration gradient term

in Eq. 2 is specified by spatially differentiating Eq. 3 and assuming that temporal

averaging effects are negligible. By combining each of the parameters in Eq. 4

except for the swimming velocity, which influences run distance independently from

the run time, we can define a normalized exudation flux F* as

F* = Fa (Am sec) (5)

This single parameter incorporates both the signal strength and the sensitivity of

the bacterial response and therefore is useful in quantifying the expected response of

the chemotactic bacteria surrounding an exuding phytoplankter. With a

chemotactic sensitivity factor a = 660 sec (Brown and Berg 1974), the normalized

exudation rate is expected to vary from F* = 1.4x10- 3 to 1.14x10 3 Pm sec for the

range of exudation fluxes and chemoreceptor affinities specified earlier.

Since the range of normalized exudation rates is based on chemotactic abilities of

enteric bacteria and the exudate fluxes from a limited range of phytoplankton cell

sizes, it is useful to consider how this estimate might vary for different sized

phytoplankton and motile bacteria. Assuming that selective pressures have

optimized bacterial chemotactic sensitivities, then the sensitivity parameter a

should scale with the diffusion limited chemoattractant uptake rate, which means

that it varies linearly with the bacteria cell radius. Since marine bacteria are
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typically smaller than enteric bacteria (Bratbak 1985), the value of a used is

probably an upper limit and may be too high for marine bacteria. However, the

range of chemoreceptor affinities used (Kd = 10-4 - 3x10-6 M), also taken from

enteric bacteria measurements, may underestimate the affinities of marine bacteria.

As an estimate of the maximum chemoreceptor affinity we examine the range of

bacterial uptake affinities and thresholds for chemotaxis by open-ocean

cyanobacteria.

Uptake affinities for cyclic AMP are as low as 10-12 M (Ammerman and Azam

1982) and Willey (1988) has measured threshold concentrations for a

cyanobacterium's chemotaxis towards nitrogen compounds as low as 10-10 M . As

pointed out by Jackson (1987), however, chemotactic behavior will begin to be

limited when the background concentration of chemoattractant approaches the

chemoreceptor affinity. With background concentrations of low molecular weight

sugars and amino acids of one to one hundred nM (Mopper and Lindroth 1982,

Billen et al. 1980) we expect the minimum chemoreceptor affinity to be in the range

of 10-6 to 10-8 M. By combining these estimates we see that an upper bound for

normalized exudation for the phytoplankton cell sizes considered (1-10 pm) is no

more than ten times the maximum value given earlier. Higher normalized

exudation rates might be found for larger phytoplankton cells (Eq. 1) if the growth

rate and fraction of productivity exuded were comparable to those used to estimate

exudate flux (Eq. 1). However, considering the uncertainty associated with each

parameter value it seems reasonable to use the previously calculated maximum

exudation F* = 1140 Am sec as our limiting value.

The Effects of Fluid Motion - The microscale fluid motions experienced by a

phytoplankter distort exudate concentration distributions by augmenting diffusive

transport of exudate in the directions where fluid moves away from the

phytoplankton. Irrotational shearing motion moves fluid towards the

- 118 -



phytoplankton along one or two principal axes of shear and away from the fluid

along the other axes (Fig. 2). A characteristic shear strength Eb can be defined as

Eb = 0.5 I EI where Ej is the velocity gradient along the ith principal axis. In a

turbulent fluid the characteristic shear strength is related to the rate at which the

fluid's viscosity dissipates mixing energy according to Eb ~ 0.5 (E/v)l sec-1,avg

where Eb is the time averaged shear strength, E is the viscous dissipation rate,avg

and v is the fluid's kinematic viscosity. Oceanographic measurements of viscous

dissipation rate vary with depth and meteorological forcing, ranging from E = 10-2

cm 2sec- 3 near the surface under strong forcing to E = 10-6 cm 2sec-3 at the

thermocline, or where shallow, temporary thermoclines limit vertical transport of

mixing energy (Denmann and Gargett 1988). Many of the measurements of

dissipation in the mixed layer for wind or convective mixing are near 10-3 cm 2 sec-3

(Shay and Gregg 1986, Osborn and Lueck 1985a, 1985b), a value that we will use to

indicate "typical" conditions in the mixed layer. This dissipation rate corresponds

to an average shear strength of Eb = 0.15 sec-1.
avg

The relative motion around a phytoplankton may also include rotational and

uniform flow components. Rotation changes the position of fluid elements relative

to the shear axes but does not move elements to or from the phytoplankton. Uni-

form flow around the phytoplankter results when the cell sinks or swims through the

fluid. Sinking speeds of unicellular marine phytoplankton generally increase with

cell size, although diatoms are known to regulate their density (Gross 1948) and

reduced sinking speeds have been observed at the thermocline (Bienfang 1985). A

"typical" sinking speed for a diatom with a radius of 10 ptm is approximately 5 - 20

gm sec-1 (Smayda 1970, Bienfang 1980). This value is also is a reasonable estimate

for swimming speeds of phytoplankton in the size range simulated (1-10 pim).

Exudate concentration distributions surrounding phytoplankton cells neither

sinking nor swimming have two distinctive shapes depending on the pattern of the
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shearing and the orientation and strength of rotation (Fig. 2) (Bowen and

Stolzenbach 1989). In a central core of size s = (D/Eb) concentration

distributions follow the solution for motionless diffusion (Eq. 3). The size of the

diffusive core varies from 30 pm for the strongest shear rates in the upper mixed

layer (Eb = 1.0 sec-1) to 300 pm at the thermocline (Eb = 0.01 sec-1), thus the

phytoplankton cell is contained within the purely diffusive region. The

concentration distribution near the cell will be given by the motionless solution (Eq.

3). Beyond the diffusive core the concentration distributions are stretched along the

axes where fluid moves away from the phytoplankton (Bowen and Stolzenbach

1989), resulting in distinctive tube and disk shaped concentration distributions (Fig.

2).

Rotation modifies the distributions by reducing asymmetry in the plane

perpendicular to the rotation axes. Strongly rotational flows have axisymmetric

concentration distributions around the rotation axis (Batchelor 1979). Weak

rotation does not change the shape of concentration contours but reorients the

concentration contours away from the principal axes of shear (Bowen and

Stolzenbach 1989). Regardless of the relative magnitudes of shear and rotation,

however, exudate distributions surrounding phytoplankton in the oceanic mixed

layer have distinctive tube and disk like shapes.

Exudate concentration distributions for a sinking or swimming phytoplankton

have a character qualitatively similar to those resulting from shear flow (see Fig. 1,

Jackson 1989). Within a region of size la = D/ws where ws is the phytoplankton

velocity, contours are undistorted by the fluid motion and are spherical. For a

phytoplankter moving at 10 pm sec-1 the region undistorted by fluid motions is

approximately 100 pm. Beyond this region fluid motions distort concentration

contours so that the long axis of the contours is aligned with the direction where
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Figure 2. The fluid motion and concentration distributions surrounding a
phytoplankton in a sheared fluid. The dark sphere at the origin has a radius
of (D/Eb) 1 /2 that indicates the size of the region unaffected by fluid motion.
The lighter shading shows contours distorted by the shearing flow. The
arrows indicate the direction of fluid motion relative to the cell.
(a)Tube: Fluid moves away from the cell along the xi axis and towards the

cell along the x2 and x3 axes.
(b) Disk: Fluid moves away from the phytoplankton along the xj and x2

axes and towards it along the x3 axis.



fluid moves away from the source. Equations describing the distribution in this

region were given by Brenner (1963) and Acrivos and Taylor (1962) and later used

by Jackson (1989) to simulate the attraction of bacteria to falling phytoplankton.

An analysis of the effects of fluid motion must also account for the time varying

nature of turbulent shearing. Multiple measurements of energy dissipation rates at

a single location show a log-normal distribution with a high degree of unsteadiness

(Baker and Gibson 1987), thus phytoplankton in the mixed layer experience long

periods of relative calm punctuated by bursts of intense shearing motion. Because

of the skewness of the distribution towards high values, the most frequently occur-

ring dissipation rate may be an order of magnitude below the mean level (Baker and

Gibson 1987). The size and orientation of the shear distorted concentration con-

tours change with each new shear rate. The establishment time for concentration

distributions is on the order of Eb-1, so adjustment to a new shear pattern and

intensity occurs within seconds for expected shear rates in the mixed layer. It has

been hypothesized that each shear rate lasts for a time corresponding to the large

scale motions (Lumley 1972, Corrsin 1963), which are significantly longer than Eb-'

for motion in the upper mixed layer, although this question is still a matter of

debate (Monin and Yaglom 1975). Using this hypothesis regarding shear rate

duration, we expect that concentration contours around an exuding phytoplankton

in a turbulent ocean remain steady in size and orientation for a few minutes.
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Simulation Model

Bacterial population densities surrounding the phytoplankton were calculated by

simulating bacterial motion around a single phytoplankter and assuming that this

represents the average conditions around other phytoplankton cells. The radius of

the simulated region rs was related to the phytoplankton density by rs = 3/(47r)

ntp- , where ntp is the bulk average phytoplankton population density. The

number of bacteria in the simulation was ntb/ntp, where ntb is the bulk average

bacterial population density. The values of ntb and ntp for our simulation (see

Table 3) correspond to a simulation region of 620 pm radius that contains 1

phytoplankter and 1000 bacteria. These bulk average population densities of

phytoplankton and bacteria represent "typical" values in the oceanic mixed layer

(Beers et al. 1977, Fuhrman et al. 1980). Bacterial movement around a 10 psm

radius phytoplankton was simulated, but since the phytoplankton could be

considered to be a point source of exudate, the resulting concentration distribution

depended only on the fluid motion and the exudate flux per phytoplankter, F. The

relevance of phytoplankton cell size to the clustering of bacteria will be discussed in

more detail in the results section.

The model was used to simulate the time history of a constant number of

bacteria as they swim or are transported to the neighborhood of many phyto-

plankton cells. Bacterial cells transported out of the simulation region by fluid

motion or swimming were randomly placed back on the region's boundary. A test

procedure was used to check to see if fluid or swimming motion would bring the cell

back into the region in the following time step. If not, then another random location

on the boundary was selected and the test procedure repeated. In this way fluid and

random swimming motions can move bacteria to and from the phytoplankton while

the time history of a constant number of bacteria is being followed for long time

periods. Each bacterium moved independently of the other bacteria and bacteria
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Table 3. Model Parameters

Parameter Symbol Range of Values Used

exudation parameters

exudate fraction f 0.1 - 0.5
phytoplankton cell radius ap 1-10 gm

phytoplankton growth rate 0.25 - 0.7 day- 1

cell carbon allometric constant b 1.52x10-12 g C gm- 2 .2 8

# carbon atoms in exudate molecule n 3
molecular diffusion coefficient D 1000 pm2 sec-1

exudation rate F 1.0x10-1 8 - 2.4x10-15 g C cell-sec-1

Normalized Exudation Rate F* 1.4x10-3 - 1140 gm sec

chemotaxis parameters

bacterial swimming speed
chemoreceptor affinity
average run time
adaptation time scale
response latency time

rotational diffusion coefficient

chemotaxis sensitivity factor

viscous dissipation rate
characteristic shear rate

sinking or swimming speed

V 12.3 - 80 pm sec-1

Kd 3x10-6 - 1.0x10-4 mol liter-1
To 1.0 sec
Tm 0.6 sec
Tmin 0.2 sec

Dr 0.062 rad2 sec-1

a 660 sec

fluid motion parameters

E 10-2 - 10-6 cm2 sec-3

Eb 0.0 - 0.30 sec- 1

ws 5 - 20 pm sec- 1

other simulation parameters

phytoplankton population density ntp 1000 cells ml-1

bacteria population density ntb 106 cells ml-1

radius of simulation region rs 620 gm



striking the phytoplankton cell in the simulations were reflected back into the fluid,

thus adhesion to the phytoplankton surface was not modelled. The position,

heading, and current and cumulative exudate concentration exposure of each

bacterium was monitored with each time step of the model. For the steady shearing

cases, bacterial population density distributions were calculated by averaging the

instantaneous distributions over a time period long enough to filter out the

randomness inherent in the stochastic description of bacterial behavior. The

averaging of population densities began once the population average distance from

the phytoplankton reached a steady value. Non-chemotactic control cases were

simulated by setting the chemotactic sensitivity factor a to zero (see Eq. 2).

Exudate concentration distributions were simulated using approximate

analytical solutions for the advection dominated region (r>ls) (Bowen and

Stolzenbach 1989) with a central diffusive core (r<ls) (Eq. 3). A weighting function

matched these two distributions in the region where transport was affected by both

advection and diffusion. Concentration distributions for the sinking case used

analytical solutions for uniform flow (Acrivos and Taylor 1962) in the same manner

as Jackson (1989). The model assumed that bacterial uptake did not significantly

affect the exudate concentration distribution, an assumption that will be examined

in the results section. As a result of neglecting bacterial uptake, however, the bulk-

average exudate concentration was found to decrease with increasing levels of fluid

motion. To eliminate this bias when calculating time-averaged exudate exposures,

the background concentration for each level of fluid motion was adjusted to give a

bulk-average concentration equal to the motionless case. The magnitude of this

adjustment was never more than 2.3 percent of the concentration at the phytoplank-

ton cell surface and had no effect on the simulated bacterial population densities.

Bacterial swimming was simulated using the original Brown and Berg model

(1974) modified to account for the response latency (Block et al. 1982) and temporal
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averaging characteristics (Segall et al. 1986) quantified by more recent studies of

bacterial chemotactic behavior. Unlike the original Brown and Berg (1974) model,

where the temporal gradient of receptor occupancy is calculated and then

temporally smoothed, the model simulates the sensing of temporal gradients by

comparing instantaneous and time averaged receptor occupancy. The model uses a

single averaging time, Tm, as in earlier simulations (Jackson 1987, 1989), foregoing

the complexity of multiple time constants which have been used to describe

bacterial processing of concentration signals (Segall et al. 1986). The averaging

time used (Table 3) represents the minimum time necessary to average out random

fluctuations in exudate concentrations in order to determine temporal gradients

(Jackson 1987). The probability that a run ends during a given time step is linearly

related to the calculated run time (Eq. 2), which is restricted to be no less than the

response latency time Tmin. Tumbles were considered to be instantaneous, and new

headings were chosen randomly, since chemotactic behavior has been shown to be

insensitive to turn angle distributions (Jackson 1987). The Brownian rotation rate

was taken from the measured value for E. coli (Berg 1983), since no measurements

are available for marine bacteria. Although the value for marine bacteria may be

higher since their cell sizes are generally smaller than enteric bacteria (Bratbak

1985), it is not known how the presence of bacterial flagella affects Brownian

rotation, so the use of the measured values for enteric bacteria seems reasonable.

The range of conditions in the mixed layer was simulated by varying three key

parameters: the bacterial swimming speed V, the strength of fluid motions from

phytoplankton movement, ws, or fluid shearing, Eb, and the normalized exudation

rate F* (Eq. 5). Each of the parameters was varied according to the ranges estab-

lished in the literature. A variety of shear patterns were simulated initially and the

results were found to be insensitive to these changes (data not shown), so all

subsequent simulations used a shear pattern giving axisymmetric tubes. Our
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simulations dealt mainly with the effect of shear rather than uniform motion

because the latter has been dealt with extensively by Jackson (1989).

To facilitate comparisons of time-averaged exudate exposures, the normalized

exudation, F*, was varied by fixing the phytoplankton exudation rate and adjusting

the chemoreceptor affinity Kd. The exudate concentration at the phytoplankton

surface (r = 10 jpm) was fixed at 5.2x10 7 M and the chemoreceptor affinity varied

from a minimum of 3x10 6- M, giving the maximum normalized exudation rate, F* =

1140 m sec. From this maximum the normalized flux was reduced by increasing

the chemoreceptor affinity until the fraction clustered approached zero and the

cumulative exudate exposure approached the non-chemotactic control. The

minimum F* simulated (100 p&m sec) was therefore larger than the minimum

possible considering the full range of exudation rates and chemoreceptor affinities.

In addition to the simulations of steady fluid motion, a number of simulations

were run with a shear rate that varied in time. The time averaged shear rate

(Ebavg = .15 sec-I) and the variance around the average (,2 = 1.5) were taken from

measurements of the turbulent motions due to convective or wind induced shearing

in the oceanic mixed layer (Osborn and Lueck 1985a, Shay and Gregg 1986).

Individual shear intensities were randomly selected from a log-normal distribution,

in keeping with measurements of energy dissipation in the oceanic mixed layer (e.g.,

Baker and Gibson 1987). Orientation of the principal axes of shear changed

randomly with each new shear rate, which remained steady for a time equivalent to

5 Eb-1, a duration consistent with theory (Lumley 1972). For each bacterial

swimming speed, initial bacterial density distributions were taken from the steady

shearing cases and simulations were run long enough to give many bursts of mixing

with intervening periods of relative calm fluid motion.
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Results and Discussion

General Characteristics of Bacterial Clusters - The simulation of bacterial

chemotactic motion in steady shearing revealed a characteristic bacteria population

density distribution surrounding the phytoplankton. Population densities were

highest near the phytoplankton, but decreased rapidly with increasing distance (Fig.

3). The density decrease varied with swimming speed over the range of shear

strengths and exudation rates, so that for weak fluid motion (Eb = 0.05 sec-1) and

high normalized exudation rates (F* = 1140 pm sec) (Fig. 3a), the maximum popu-

lation density was highest for the slowest bacteria swimming speed (V = 12 /m

sec-1). At the maximum cell density (O 1010 cells ml-1) bacteria were separated by

approximately 5 pm, a large distance relative to bacteria cell radii of 0.2 to 0.6 /m

(Bratbak 1985). The distance at which bacterial densities approached background

levels increased with weaker fluid motions (Fig. 3a, 3b) or stronger exudation rates

(Fig. 3c), but in all cases was less than 300 pm, so bacterial clusters never occupied

more than 10 per cent of the simulation region (rs = 620 pm). Motile bacteria

achieved high population densities with frequent, brief visits to a cluster since for all

swimming speeds and exudation rates a bacteria's average duration in a cluster was

less than one minute when shearing fluid motions were present.

Simulated distributions of bacterial population densities have a characteristic

form described by the following equation (Fig. 4)

n(r) = nb + np exp(- p) (6)

where nb is the background population density, np is the maximum density which

occurs at the phytoplankton cell surface (r = ap), and 1 is an inner length scale

describing the variation in density near the phytoplankter. Bowen et al. (1989)

have shown that a bacterial density distribution as described by Eq. 6 results when

- 128 -



10 0

10

10

10

106

10

10 10

0

06

1010

P5

A-1

P1

1

C

10'

108

10

106

10

D 100 200 300

0 100 200 300 4
Distance from Phytoplankton (4m)

(a)

400

(b)

(c)

00

Figure 3. Simulated bacterial population densities versus the distance from the center
the phytoplankton cell.
(a) Weak shearing motion (Eb = 0.05 sec- 1), at the maximum normalized

exudation rate (F* = 1140 ptm sec), for a range of swimming speeds.
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exudation rate (F* = 100 gm sec), for a ran e of swimming speeds.
(c) Intermediate shear strength (Eb = 0.10 sec- ), for a single swimming

speed (V= 40 gm sec- 1), over a range of normalized exudation rates.
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Figure 4. Parameterized bacterial population density distribution surrounding a
phytoplankton cell (log of population density vs. distance from cell center) .
Near the phytoplankton the population density decreases exponentially with
a peak density np at the phytoplankton surface. Far from the phytoplankton
the population density approaches a uniform background level nb. The sum
of these two limiting distributions defines the population density n(r).
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the bacterial motion near the phytoplankton is the sum of a saturated chemotactic

response and a random component of bacterial motion. For each simulation the

inner length scale 1 and peak density np was determined from a linear regression of

the logarithm of bacterial density versus distance for the distribution near the

phytoplankton. The background density nb was calculated by counting the cells

beyond a distance of 350 ,am from the phytoplankton and dividing by the volume of

this region. For all simulations it was found that population densities were constant

in this region except for random fluctuations. The fraction of the bacteria

population in a cluster, Cf, was calculated from the bacterial densities according to

Cf = 1 - nb/ntb.

Fraction of Population in a Bacterial Cluster for Steady Shearing - Addressing

the effects of bacterial clustering on carbon flow through the microbial food web

raises the following question: What percentage of the chemotactic population could

realistically be clustered around the phytoplankton at any given time and what are

the critical parameters that determine this percentage? If this percentage is large

the phytoplankton grazers may also be important grazers of bacteria. For

motionless fluid at the highest exudation rate (F*= 1140 pm sec) 70-90 per cent of

the bacterial cells are clustered, with the highest fraction at the slower swimming

speeds (Table 4). Reducing the normalized exudation flux by a factor of ten,

(F* = 100 Am sec), reduces the fraction clustered to approximately 5 per cent for

the entire range of swimming speeds simulated (Table 4).

Once fluid motions begin to reduce the fraction clustered, faster swimming

speeds result in higher clustered fractions (Table 4). At the slowest bacterial

swimming speed V = 12 pm sec-1) the fraction clustered is less than 5 per cent for

shear strengths expected in the mixed layer (Eb > 0.1 sec-1) whereas the fastest

swimming speed (V = 80 Am sec-1) has at least 5 percent clustered up to the highest

level of shear simulated (Eb = 0.3 sec-1) (Table 4). The fraction clustered is above
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Table 4. Fraction of Bacterial Population Clustered

Bacterial Swim- Normalized Exu- Phytoplankton

ming Speed, V dation Rate, F* Shear Strength Eb (sec- 1) Velocity, ws (pm sec- 1)
(pLm sec-1) (pm sec) 0.00 0.05 0.10 0.15 0.20 0.30 5.0 10.0 20.0

1140 0.95 0.82 0.23 0.05 0.01 0.00 0.72 0.02 0.01
570 0.61 0.40 0.12 0.02 0.01 0.00
300 0.10 0.08 0.03 0.01 0.00 0.00

12.3 200 0.05 0.02 0.01 0.01 0.00 0.00
100 0.04 0.01 0.01 0.01 0.00 0.00

1140 0.95 0.84 0.42 0.16 0.07 0.02 0.86 0.37 0.05
570 0.61 0.49 0.20 0.13 0.05 0.01

40.0 300 0.19 0.14 0.09 0.03 0.02 0.01
200 0.05 0.05 0.02 0.02 0.01 0.00
100 0.03 0.02 0.02 0.01 0.00 0.00

1140 0.83 0.46 0.35 0.20 0.12 0.05 0.68 0.41 0.10
570 0.34 0.34 0.18 0.10 0.06 0.02

80.0 300 0.10 0.10 0.06 0.05 0.03 0.01
200 0.05 0.06 0.04 0.03 0.02 0.00
100 0.03 0.04 0.02 0.01 0.00 0.00
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20 percent only for relatively weak shear strengths (Eb 0.10 sec-1), which occur

only under relatively calm conditions or near the thermocline. For shear strengths

more typical of the oceanic surface layers (Eb > 0.15 sec-1) only a small percentage

of the chemotactic bacteria are in a cluster at any given time, even though

population densities are orders of magnitude above background levels. Even if all

clustered bacteria are grazed with the phytoplankton, the fraction clustered is under

most circumstances too low to represent a significant source of reduced carbon to

grazers.

Enhancement of Exudate Exposure in Steady Shearing - How much of an

advantage in time-averaged exudate exposure does a population of chemotactic

bacteria receive by clustering, as compared to a non-chemotactic bacteria

population? The exudate exposure enhancement factor is defined as the time-

averaged exudate exposure of a chemotactic bacteria population divided by the

corresponding value for a non-chemotactic population. The modelling results

showed significant enhancement factors for nearly the entire range of simulated

shear strengths (Table 5). Enhancement factors were highest for conditions

maximizing the peak bacterial density np, i.e., weak shearing motions, high

exudation rates, and slow swimming speeds (Table 5). Chemotactic behavior may

increase average exudate exposure of the bacteria population by more than a factor

of 25 for these conditions.

At higher levels of fluid motion, where faster swimming is needed to overcome

fluid motion, the intermediate swimming speed (V = 40 jpm sec-1) gave the highest

enhancement of exudate exposure. Chemotactic motion continued to enhance

exposure by a factor of 30 percent up to the highest shear strength simulated

(Eb = 0.3 sec-1) for the intermediate swimming speed (Table 5). For bacteria

swimming in a run and tumble pattern, swimming provided both effective

chemotactic motion and random diffusive-like motion. Both these motion
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Table 5. Exudate Exposure Enhancement Factors

Bacterial Swim- Normalized Exu- Phytoplankton

ming Speed, V dation Rate, F* Shear Strength Eb (sec- 1) Velocity, ws (pm sec-1)

(pm sec- 1) (gm sec) 0.00 0.05 0.10 0.15 0.20 0.30 5.0 10.0 20.0

1140 25 22 6.6 1.9 1.3 1.1 17 1.3 1.0
570 15 11 3.6 1.4 1.1 1.0
300 2.5 2.3 1.6 1.2 1.1 1.0

12.3 200 1.8 1.3 1.2 1.1 1.0 1.0
100 1.4 1.2 1.1 1.0 1.0 1.0

1140 11 10 5.0 2.5 1.7 1.3 8.6 3.6 1.2
570 6.2 5.6 2.8 2.1 1.5 1.1

40.0 300 2.1 2.0 1.7 1.3 1.2 1.1
200 1.3 1.3 1.2 1.1 1.1 1.1
100 1.1 1.1 1.1 1.1 1.1 1.0

1140 4.8 3.2 2.5 1.9 1.6 1.2 3.7 2.5 1.4
570 2.3 2.4 1.8 1.4 1.3 1.1

80.0 300 1.3 1.4 1.3 1.2 1.2 1.1
200 1.2 1.2 1.2 1.1 1.1 1.1
100 1.1 1.1 1.1 1.1 1.0 1.0

H
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components increase with faster swimming speeds. The intermediate swimming of

40 /Lm sec-1 seemed to provide sufficient directed chemotactic motion to overcome

shearing motions while minimizing random motions that limited the ability of the

bacteria to stay near the phytoplankton cell. At the intermediate swimming speed,

exudate exposures of chemotactic bacteria were doubled (Table 5) at conditions

where the fraction clustered was only 13 percent (Table 4).

Simulations of Clusters in Unsteady Shearing - The implications of unsteady

shearing were investigated by simulating the time series of shear intensities expected

in a turbulent surface layer. The simulated shear pattern for the upper mixed layer

had several intervals of a few minutes each with Eb < 0.05 sec-1, a larger number of

intervals with Eb P 0.10 sec-1, and occasional short-lived bursts of strong shear (Eb

> 0.3 sec-1) (Fig. 5). As a surrogate for a time-averaged fraction clustered, which

assumes steady density distributions, the fraction of the population within 133 Am

of the phytoplankter was determined for each time. This region represents 1

percent of the fluid volume and is used as a rough estimate of the size of bacterial

dusters.

According to our simulations intense bursts of mixing dispersed clusters for

swimming speeds of V = 12 pim sec-1 and V = 40 pam sec- 1 but the response to the

subsequent calm periods differed between the two swimming speeds. The high shear

rates sweep nearly all clustered bacteria away from the phytoplankton during a

burst, decreasing the fraction clustered to less than 5 percent (Fig. 5). In

subsequent calm periods the clustered fraction increased more rapidly for the faster

swimming speed. During the long simulated calm period with Eb P 0.05 sec-1, the

fraction clustered for V = 40 pm sec- 1 approached the 49 percent clustered expected

for steady shearing (Table 4), but for V = 12 Am sec- 1 the fraction clustered

increased to only 10 percent (Fig. 5), far from the steady shear value of 40 percent

(Table 4). The fraction clustered during these calm periods, however, is several
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Figure 5. Simulation of time varying shear and the resulting clustering of the motile
bacteria population. The shear rate Eb has a log-normal distribution with an
average value Ebavg = 0.15 sec- 1 . Each shear value lasts a time equal to
5 Eb- 1 . The ordinate shows the fraction of the bacteria population within 133
gm of the exuding phytoplankton, a region occupying 1% of the total fluid
volume. Normalized flux F* = 570 pm sec.
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times that expected for a steady shear of Eb = 0.15 sec-1. Clustered fractions of 2

and 13 percent are expected for swimming speeds of V = 12 and V = 40 4 m sec-'

respectively (Table 4). For the slowest swimming speed, time varying shear limits

the fraction clustered by dispersing clusters before they reach steady-state levels.

Nonetheless, unsteadiness results in periods of weak mixing, during which the degree

of clustering exceeds the levels corresponding to time-average shear rates.

The changing shear intensities also affected the bacteria's cumulative exudate

exposure. For the steady state case (Eb = 0.15 sec-i) the exudate exposure

enhancement factor was 1.4 for the slow swimming speed (V = 12 pam sec-i) and 2.1

for the faster swimming speed (V = 40 pam sec-') (Table 5, F* = 570 ,m sec). The

unsteady shearing also showed higher enhancement factors for faster swimming

speeds (1.6 for V = 12 pam sec-', and 2.2 for V = 40 pm sec-i). These factors were

calculated using the steady shearing, non-chemotactic case to normalize exudate

exposure, indicating that unsteady shearing results in higher exudate exposures than

steady conditions. Unsteadiness increased cumulative exudate exposures by 15 and

6 percent for the swimming speeds of 12 and 40 pam sec-', thus unsteadiness seemed

to favor slower swimming speeds but the absolute cumulative exposure was highest

for a swimming speed of 40 pam sec-'. Chemotaxis provides a significant advantage

in exudate exposure, even though clusters are periodically dispersed by bursts of

strong mixing.

Clustering Around Moving Phytoplankton Cells - For a phytoplankton moving

at 10 um sec-', a reasonable velocity for sinking or swimming of phytoplankton of

1-10 pm radius (Smayda 1970), bacterial population density distributions showed a

form very similar to that for shearing flows (Fig. 6). Near the phytoplankton cell

surface, bacterial densities were orders of magnitude above background levels,

approaching 109 cells ml-1 for V = 40 /Lm sec-1 and F* = 1140 pam sec.
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Population densities decreased rapidly with increasing distance from the

phytoplankton, at rates similar to those for shearing flows (Fig 3). The size of the

cluster increased with increasing bacterial swimming speed or increasing normalized

exudation rate, just as in the shearing case. The fraction of the population in a

cluster seemed more sensitive to changing exudation rates, decreasing from 41 to 11

percent for V = 40 pan sec-' and from 39 to 17 percent for V = 80 pm sec-' as the

normalized exudation rate decreased from F* = 1140 pm sec to F* = 570 pim sec.

Simulations over a range of bacterial swimming speeds and phytoplankton

velocities showed results analogous to the shearing case, as the bacterial swimming

speed giving the highest exudate exposure enhancement increased with increasing

phytoplankton velocity (Tables 4 and 5). For the highest phytoplankton velocity

simulated (ws = 20 pm sec-i), exudate exposures and fractions clustered were

maximized for the fastest swimming speed (V = 80 pm sec-i). This differs from the

shearing case where exudate exposures were maximized for the intermediate

swimming speed, but in both cases chemotactic motions may increase exudate

exposures by an order of magnitude (Table 5).

Effects of Clustering on Exudate Distribution - The cumulative uptake of

dissolved organic carbon by clustered bacteria can affect the exudate concentration

surrounding the phytoplankton. In doing so, motile chemotactic bacteria gain an

additional competitive advantage over non-chemotactic strains by removing the

exuded carbon from the medium before it is available to the randomly distributed

non-chemotactic bacteria. An estimate of this effect was made by including a term

for bacterial uptake in the exudate transport equation. To simplify the analysis we

examined only the motionless case, which was a reasonable simplification since the

clustered region had diffusion dominated transport even in shearing flows.

Assuming that bacterial uptake is diffusion limited results in the following exudate
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concentration equation

d2C 2 dCd~c + 2d-- - 4ir ab[nb + np exp(-(r-ap)/)]C = 0 (7)

where ab is the bacterial cell radius. The first two terms give the radial change in

diffusive transport which must balance bacterial uptake, given by third term with

Eq. 6 used to represent the bacteria's population density distribution. If the

bacteria population is unclustered (np = 0, nb = nbt), then the exudate distribution

is the same as for diffusive transport with first order reaction (Carslaw and Jaeger

1959).

C = Co(r) exp[-r(47rabnbt)+] (8)

where Co(r) is the concentration expected from motionless diffusion without uptake

(Eq. 3). The term (47rabnbt) represents the inverse of a length scale where uptake

begins to affect the concentration distribution. For bacteria with a cell radius of 0.5

Am and a density of 1000 cells pl-1, this length scale is 400 pm, thus over most of the

simulation region unclustered bacteria do not significantly change the exudate

distribution.

No analytical solutions were available for the clustered case, but Eq. 7 can be

solved numerically to predict the clustered bacteria's effect on exudate

concentrations. The parameters describing the bacterial population density in Eq. 7

were taken from the model simulation for the motionless case, with a swimming

speed of 40 pm sec-, and exudation rates, F* = 300 and 200 pm see, giving 18 and 5

percent clustered respectively (Table 4). When 18 percent of chemotactic bacteria

were clustered, uptake in the cluster lowered the exudate concentration by a factor

of approximately three (Fig. 7a). The exudate concentration was depressed by
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approximately 30 percent when 5 percent of the chemotactic population was

clustered (Fig. 7a). Bacteria in the cluster took up a significant part of the exudate:

approximately 30 and 70 percent for 5 and 18 percent clustered respectively (Fig.

7b). Beyond the cluster (r > 115 pam), the concentration distributions for clustered

and unclustered cases decreased at similar rates but the cumulative uptake of the

bacteria population was nearly twice as high for the 18 percent clustered case (83

percent of exudate) as compared with the unclustered case (44 percent of exudate).

Bacterial uptake of DOC distribution could increase the chemotactic exudate

enhancement factor by lowering the background concentration of exudate. Using

the modified concentration distribution that accounted for bacterial uptake while

retaining the original bacterial distribution increased the calculated exudate

exposure enhancement factor from 2.1 to 5.7 for 18 percent clustered and from 1.3 to

2.0 for 5 percent clustered. A more complete analysis would also account for these

uptake effects in determining the chemotactic response and thus the distribution of

bacteria. It seems unlikely, however, that bacterial uptake effects would have

significantly altered the simulated bacterial population densities or time-averaged

exudate exposures. Far from the phytoplankton, there was a significant decrease in

concentration due to the cumulative uptake of the bacteria (Fig. 7a), but in this

region the bacteria moved randomly through swimming and fluid motion. Near the

phytoplankton, where chemotactic motions were important, the uptake effect was

smaller and in fact, the concentrations nearest the cell had steeper spatial gradients

in the case where uptake was considered. Likewise, since the majority of the

bacteria's exudate exposure occurred near the phytoplankton, where the depression

of exudate concentration through bacterial uptake was relatively small, we expect

that the simulated time-averaged exudate exposures accurately reflected the effects

of bacterial clustering. Even though the clustered population represented a minor
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portion of the total number of bacteria, their location in the region of highest

exudate concentration means that they could take up a majority of the material

exuded by the phytoplankton cell.

Effects of Clustering on Inorganic Nitrogen Distribution - As the bacteria in a

cluster take up exudate they may also take up inorganic nitrogen and therefore

lower the concentration of nitrogen near the phytoplankton. Estimating this effect

of clustering required calculation of the relative nitrogen fluxes into the

phytoplankton cell and the surrounding bacteria population. Bacterial biomass has

been measured to be approximately 5-20 per cent of phytoplankton biomass

(Williams 1981) and the C:N ratio for bacteria and phytoplankton are

approximately 3.5 and 7.0 respectively (Lancelot and Billen 1985). Since growth

rates of marine bacteria are no more than twice phytoplankton growth rates

(Williams 1981), we expect that the total flux of nitrogen into the bacterial

population will be comparable to the phytoplankton flux.

The inorganic nitrogen concentration distribution was predicted using an

analysis like that used for exudate distributions which accounted for both transport

and uptake effects on concentration distributions. Far from the phytoplankton the

nitrogen concentration was assumed to approach a uniform background. Uptake by

the phytoplankton was at the diffusion limited rate so as to maximize the potential

effect of bacterial competition for nutrients. The bacterial uptake was assumed to

saturate at a level giving a cumulative flux twice the phytoplankton flux. Even for

this unrealistically high estimate of bacterial uptake, the effects of clustering on the

flux of nitrogen to the phytoplankton were negligible. When 18 percent of the

chemotactic bacteria population was clustered, the flux of nutrients to the

phytoplakton was reduced by only 3 percent from the flux expected when the

bacteria were uniformly distributed around the phytoplankton cell. Bacteria take

up large amounts of exudate because they have high population densities in the
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regions of high concentration. However, because of phytoplankton uptake of

nutrients, the region where bacteria congregate has a concentration of nitrogen

below background levels. This tends to decrease the effects of clustering on the

distribution of inorganic nutrients. Clustered bacteria do not significantly alter the

uptake of inorganic nitrogen by the exuding phytoplankton.

Comparison of Results with Previous Studies - The simulation results for

clustering in moving fluids showed trends predicted by earlier investigations of

marine bacteria chemotaxis. We agree with Mitchell et al. (1985) that fluid

motions, from both turbulent shearing and phytoplankton sinking, limit bacterial

clustering in the oceanic mixed layer. However, we find that clustering can occur

for the shear intensities and phytoplankton sinking speeds expected in the oceanic

mixed layer because even transient association of bacteria with phytoplankton can

result in significant enhancement of bacterial exposure to exudate. Thus the

assumption made by Mitchell et al. that clustering is precluded whenever bacteria

cannot remain with a phytoplankton is unnecessarily restrictive. Our results also

showed the strong dependence on exudation rates as seen by Jackson (1987) for the

transient behavior of marine bacteria surrounding exuding phytoplankton in

motionless fluid. When fluid motion effects are present, our results showed higher

time-average exudate exposures for higher exudation rates and faster swimming

speeds (Table 5), as seen by Jackson (1989) for his short-term analysis of sinking

phytoplankton cells. Our simulations showed slightly higher rates of bacterial

chemotaxis than Jackson because of differences in the assumed values of Kd

(Jackson used 104 M while we used a range from 10-3 to 3x10- 6 M), which results in

higher normalized exudation rates F* (Eq. 5). The standard conditions used by

Jackson for computations of chemotaxis towards a a sinking phytoplankton in low

Peclet number flow (Jackson 1989) are equivalent to a normalized exudation rate F*

of 350 pam sec (see Eq. 5), while our simulations span a range of values from 100 to
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1140 Am sec. In addition, our simulation results did not predict variations in

clustering due solely to the size of the phytoplankton cell as seen by Jackson (1987).

Bacterial density distributions calculated for a motionless fluid with constant

normalized exudation rate (F* = 200 pm sec) but varying phytoplankton cell sizes

showed no differences for phytoplankton cell sizes of 2, 10 or 20 Pm (Fig. 8). This

result was not a reflection of differences in the respective models of chemotactic

motion, as equivalent results were obtained using the unmodified Brown and Berg

(1974) chemotaxis model implemented by Jackson (1987). We believe that given a

sufficient chemotactic signal, as quantified by the normalized exudation F*,

Jackson's model would show bacteria approaching a 2 pm phytoplankter. The

inability of bacteria to approach picoplankton as observed by Jackson (1987) should

only be attributed to the lower assumed exudation rates of these cells. We agree

that algal cell size strongly influences clustering by affecting exudation rate, but we

find no limit based solely on the physical size of the phytoplankton cell.

Summary

In summary we believe that a small but not inconsequential fraction of the

chemotactic bacteria population may be clustered around exuding phytoplankton

cells in the ocean's upper mixed layer. Although the fraction clustered may be

relatively small for shear levels in the mixed layer, increases in exudate exposure

through chemotactic behavior can be significant, giving chemotactic bacteria a

competitive advantage over non-chemotactic bacteria. The advantage in exudate

exposure occurs both from the extra time spent by chemotactic bacteria in areas of

high exudate concentration and from the resulting reduction in average exudate

concentration experienced by non-chemotactic bacteria due to uptake in the cluster.

The cumulative exudate exposure of chemotactic populations may be an order of

magnitude higher than that predicted by bulk average conditions, therefore
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additions of labelled DOC added in bulk may seriously underestimate bacterial

activity by ignoring the effects of clustering. In fact, there is evidence showing

turnover of labelled DOC increasing by an order of magnitude when the label is

introduced through phytoplankton exudation rather than added in bulk to the

sample (Azam and Ammerman 1984).

While clustering may have important consequences to the uptake and

distribution of exudate, its effect on the spatial distribution of bacteria is less

dramatic. Unsteady shearing and uniform fluid motions limit clusters to less than

15 percent of the motile population for a majority of conditions expected in the

mixed layer. Therefore, it seems unlikely that clustering significantly affects the

fate of bacterial secondary production in the microbial food web. According to our

simulations, bursts of intense shearing motion almost completely disperse clusters of

bacteria, but they do not prevent cluster formation and the accompanying enhance-

ment of exudate exposure. Unsteady shearing actually results in occasional periods

when the degree of clustering is well above that expected for the corresponding

mean shear rate.

The picture that emerges from our simulations of bacterial motion is one in

which chemotactic bacteria are transported to the phytoplankton cell primarily by

fluid motion and random swimming rather than by directed chemotactic motion.

Shearing motions typical of the upper mixed layer (Eb = 0.15 sec-1) exceed any

directed bacterial swimming motions, for bacteria swimming at 40 Pm sec-1, in at

least 90 percent of the volume occupied by a phytoplankter (1 pl for typical

phytoplankton densities). Once the bacterium is brought near the cell, chemotactic

motions are effective in keeping the bacterium near the phytoplankton thereby

increasing its time-averaged exudate exposure. Near the phytoplankton, fluid

motions are weakest and concentration gradients steepest, conditions which can
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increase a bacterium's residence time near the phytoplankter by several orders of

magnitude. In the region where significant chemotactic response occurs, exudate

concentration distributions are not distorted by fluid motion. As a result, the

degree of bacterial clustering and the level of exudate exposure enhancement is

relatively insensitive to the concentration distribution in the region where fluid

motion distorts the concentration distributions, i.e. whether a disk or tube shaped

exudate concentration distribution is formed. Random swimming and fluid motions

end the association between the bacterium and the phytoplankton cell within a

minute for the conditions expected in the mixed layer, transporting the bacterium

to other phytoplankton where the chemotactic process is repeated.
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The following appendix is provided as validation for the model of chemotactic

bacterial motion used in Chapter 5. The exudate concentration distribution

surrounding the source was modelled by matching two asymptotic solutions. Near

the source the concentration followed that for a continuous input into a motionless

fluid. Far from the source the distribution was assumed to approach the

approximate analytical solutions developed in Chapter 2. The asymptotic solutions

were matched in the region where the transport is affected by both diffusion and

advection. The calculated exudate concentration was compared to an exact solution

calculated by numerically convolving the instantaneous point source solution

(Figures A.1, A.2, and A.3).

Initially, the model of bacterial motion was validated by simulating the motion

of bacteria in motionless and shearing fluid around a phytoplankton that is not

exuding. In the first numerical simulation, a population of bacteria were placed

near the phytoplankton cell. The bacteria cells moved randomly away from the

phytoplankton, with the average distance of the bacteria population increasing as

(V2Tot)+, where V is the bacterial swimming speed, To is the average run time, and

t is the time since bacterial addition (Figure A.4). Eventually the bacteria

population reached a uniform density, although the calculated population density in

the slowest swimming speed case (V=12 Am sec-i) showed a significant level of

random fluctuation (Figure A.5). A second validation step consisted of comparing

the results of the simulation model for the motionless case against a previous

simulation presented by Jackson (1987) (see Chp. 5 for reference). The simulated

transient behavior of the chemotactic population agreed well with the corresponding

simulation presented by Jackson (1987) (Figure A.6).

The calculated bacterial population densities had a characteristic form that

showed an exponential decrease in density near the source (see Chapter 4). The
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population densities decreased as exp(-r/l), where r is the distance from the source

and I is a characteristic length scale. This exponential behavior was seen in

motionless fluid, in fluid with shearing motion, and in fluid with a uniform flow due

to sinking or swimming of the phytoplankton. The characteristic length scale I was

found to be linearly related to the bacterial swimming speed, V, and the minimum

run time of the bacteria, Tmin (Figure A.7).

The sensitivity of the model results to the form of the concentration distribution

was analyzed by simulating the motion of bacteria in a moving fluid with an

exudate concentration distribution described by the motionless result (see Chapter

5). Bacterial movement was also simulated for a variety of shear patterns giving

disk and tube shaped exudate concentration distributions. It was found that the

simulated bacterial population densities were insensitive to the pattern of shearing

motion for all bacterial swimming speeds simulated (Figure A.8). At the

intermediate swimming speed (V = 40 pam sec-1), it was found that the calculated

densities were not sensitive to the degree of distortion in the exudate distributions

in the advection dominated region. Population densities for bacterial movement in

the presence of shearing fluid motions, but with exudate distributions described by

the motionless result, were identical to the case where the shearing motion distorted

the exudate distribution into a tube (Figure A.9). There was a significant

difference, however, for the fastest simulated bacterial swimming speed (V = 80 pm

sec-1) (Figure A.10).
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Figure A. 1. Validation of the approximate analytical solutions for concentration
distributions surrounding a continuous point source in a shear flow. The solid
line is obtained by numerical convolution of the exact solution for an
instantaneous point source (Batchelor 1979). The symbols represent
concentrations calculated using approximate analytical solutions for the sheared
region (Bowen and Stolzenbach 1989) and the motionless diffusion solution
(Carslaw and Jaeger 1959) for the central diffusive core. In the region where
transport is due to both diffusion and advection, the two solutions are matched
with an empirically determined weighting function. Concentrations are calculated
along lines emanating from the source with orientations given in polar coordinates
such that 0 = 00, = 900 lies along the xi axis, 0 = 900, 0 = 900 lies along the x2
axis, and 0 = 00, $= 00 lies along the x3 axis. The shear strength Eb is 0.05 sec- 1

in (a) and 0.5 sec- 1 in (b). The shear tensor symetry factor s is fixed at -1, thus
the principal strain rates are: E1 = Eb, E2 = -1/2 Eb, E3 = -1/2 Eb-
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Figure A.2. Validation of the approximate analytical solutions for a non-axisymmetric
tube-shaped concentration distribution. Concentrations are calculated using the
matched approximate analytical solution described in A. 1 (symbols) and the
convolution of the exact instantaneous solution (lines). Orientation of each line is
as described in A.1. The shear strength Eb is 0.05 sec- 1 in (a) and 0.5 sec- 1 in
(b). The shear tensor symetry factor s is given as s = - 0.5 so that E1 = Eb , E2 =
-1/4 Eb, E3 = -3/4 Eb-
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Figure A.3. Validation of the approximate analytical solutions for an axisymmetric
disk-shaped concentration distribution. Concentrations are calculated using the
matched approximate analytical solution described in A. 1 (symbols) and the
convolution of the exact instantaneous solution (lines). Orientation of each line is
as described in A.1. The shear strength Eb is 0.05 sec-1 in (a) and 0.5 sec- 1 in
(b). The shear tensor symetry factor s is given as s = 1.0 so that El = 1/2 Eb , E2
= 1/2 Eb, E 3 = - Eb-
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Figure A.4. Validation of the model of bacterial motion when the fluid is motionless and
without exudate concentration gradients. 2000 cells were placed at r = 11 pm ini-
tially, where r is the distance from the center of the phytoplankton which has a ra-
dius of 10 pm. The solid lines are fitted by linear regression. The linear relation-
ship indicates a constant random diffusion coefficient. The slopes for the three
swimming speeds are 16.0 for V = 12.3 gm sec- 1, 51.0 for V = 40.0 pm sec- 1,
and 100.4 for V = 80 pm sec- 1. If the random motion difusion coefficient Ds is
assumed to be determined by Ds = 1/3 V To (Dahlquist and Lovely 1975), where
To is the average run time, then the predicted slopes are 17.0 for V = 12.3 ptm
sec- 1, 56.6 for V = 40.0 pm sec-1, and 113.1 for V = 80 pm sec- 1 .

-163-



0 2 4 6 8 10 12 14

Time 1/ 2 (sec1 /2)

-164-

A

~I)

I

250

200

150

100

50
A V = 12.3 gm s

- V = 40 m sec-

V = 80 gm sec1
0

DC-1



Figure A.5. Validation of the model of bacterial motion when the fluid is motionless and
without exudate concentration gradients. The model simulates the random motion
of 2000 cells placed randomly in the simulation region. The exudate flux from
the phytoplankton is set equal to zero, so no directed chemotactic motion is possi-
ble. Time averaged bacteria population density distributions are calculated for the
three swimming speeds. Although random fluctuations in density are apparent for
each swimming speed, the population density is essentially uniform throughout
the simulation region.

-165-



2500

V =12 m sec 1

V =40 gm sec-

2000

-. --

V =80 gm sec 1 -

1500
0 100 200 300 400 500 600

Distance from Source (pm)

-166-



A

Figure A.6. Transient behavior of a population of 3500 bacterial cell distributed
randomly in a spherical simulation region with a radius of 100 gm. The
phytoplankton cell radius is 10 jm. The average distance for each time step is
calculated by finding the linear average of the distance to the center of the
phytoplankton for the population of 3500 bacteria cells. The normalized flux
values F* are calculated using parameter values taken from Jackson (1987). The
solid line shows the transient response of the population due to chemotactic
behavior as computed by the model described by Bowen et al. (1989), while the
dashed line shows the corresponding results from Jackson's model (see Figure 3,
Jackson 1987). The fluid is motionless.
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Figure A.7. Inner length scales for model runs with sinking motion and shearing motion.
V is the bacterial swimming speed and Tmin is the response latency. Runs

differ in shear strength, sinking speed, and normalized exudation rate. The
open symbols indicate results for shearing motions, while the closed symbols
indicate results from sinking fluid motions.
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Figure A.8. Sensitivity of calculated bacterial population density distributions to the pat-
tern of the shearing motions. The bacterial swimming speed V varies from V =
12 grm sec- 1 to V = 80 pm sec- 1. The normalized exudation rate F* is constant at
F* = 1140 Pm sec. The solid lines show the calculated population density distri-
butions when the shearing pattern is characterized by an axisymmetric compres-
sive flow in the x2-x3 plane. This shearing pattern gives axisymmetric tube-
shaped concentration distributions. The dashed lines show the calculated popula-
tion density distributions when the shearing pattern is characterized by an axisym-
metric expansive flow in the x2-x3 plane. This shearing pattern gives axisymmet-
ric disk-shaped concentration distributions. (a)Shear strength Eb =.15 sec-1. (b)
Shear strength Eb = 0.3 sec-1.
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Figure A.9. Sensitivity of the calculated bacterial population density distributions to
the variations in the exudate concentration distributions at the intermediate
swimming speed V = 40 prm sec-1. Bacterial motion is dependent on chemo-
tactic swimming and shearing fluid motion. The solid lines show the bacterial
population denstities when the concentration distribution is a tube distorted by
the shearing flow. The dashed lines show the density distribution when the
exudate concentration distribution is described by the motionless diffusion so-
lution. The shear strength Eb varies from Eb = .15 sec-I to Eb = .30 sec- 1.
(a) Normalized exudation rate F* at the maximum value F* = 1140 pm sec.
(b) Normalized exudation F* reduced by a factor of two from the maximum
value (F* = 570 gm sec).
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Figure A.10. Sensitivity of the calculated bacterial population density distributions to the
variations in the exudate concentration distributions at the maximum swimming
speed V = 80 gm sec-1. Bacterial motion is dependent on chemotactic swimming
and shearing fluid motion. The solid lines show the bacterial population densti-
ties when the concentration distribution is a tube distorted by the shearing flow.
The dashed lines show the density distribution when the exudate concentration
distribution is described by the motionless diffusion solution. The shear strength
Eb varies from Eb =.15 sec- 1 to Eb= .30 sec- 1 . (a) Normalized exudation rate
F* at the maximum value F* = 1140 gm sec. (b) Normalized exudation F* re-
duced by a factor of two from the maximum value (F* = 570 gm sec).
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Appendix B. Computer Codes
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Computer codes are given for the bacterial clustering model and the program

used to calculate the exact solution for a continuous point source into a fluid with a

linear velocity distribution. The main program for the bacterial clustering model is

called BCMD3. The main program calls the following subroutines:

CHTAX - chemotaxis subroutine
SHEAR - simulates shearing fluid motion
CONC1 - calculates exudate distributions
RMAL - generates a random number N(0,1)from a normal distribution
RANDOM - generates a random number from a uniform distribution
PTOC - converts from polar to cartesian coordinates
CTOP - converts from cartesian to polar coordinates
GEN2 - randomly places bacteria in a spherical region
SUMMRY - prints summary statistics
TIMAV - calculates a time-averaged population density distribution
HISTO - assembles histograms
PRNPOS - prints the positions of a bacterial population
READPO - reads the positions of a bacterial population

Additional documentation is available in the computer code. The main program for

the calculation of concentration distributions surrounding a steady source in a fluid

with a linear velocity distribution is called EXC1.FOR. See Chapter 2 for a

description of this calculation. The main program has the following subroutines:

EIGSRT - sorts the eigenvalues
JACOBI - uses the Jacobi method to find eigenvalues
ROT - transforms the shear tensor after a change in coordinates
LUDCMP - solves a system of equations through matrix decomposition
LUBKSB - back substitutes to solve a linear system of equations
LUINV - finds the inverse of a matrix
LUDET - finds the determinant of a matrix
SETPL1 - determines the timing of each instantaneous pulse

The following subroutines were taken from the book "Numerical Recipes, The Art of

Scientific Computing", by Press, W.H., B.P. Flannery, S.A. Teukolsky, and W.T.

Vetterling, Cambridge University Press, 1986: EIGSRT, JACOBI, LUDCMP,

LUBKSB, LUINV, and LUDET.
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C

c program BCMD3
C SIMULATES THE MOVEMENT OF BACTERIA

C INTRODUCES BACTERIA IN IN THE BACKGROUND

C CONCENTRATION MODEL IS PULSE MODEL

C

C NBAC # BACTERIA IN PHYCO R<RB (# ADDED)

C C NEW CONCENTRATION

C CON OLD CONCENTRATION

C NCELLS # OF BACTERIA IN PHYCOSPHERE BACKGROUND
C RB PHYCOSPHERE RADIUS

C A PHYCO BAC DIRECTION

C XP AVERAGED CONCENTRATION

C X PHYCO BAC POSITION

C EE SHEAR TENSOR

C V SWIMMING SPEED

C TNOT AVERAGE RUN TIME

C TTNOT AVERAGE TWIDDLE TIME

C TM CONCENTRATION AVERAGING TIME

C ALP CHEMOTAXIS SENSITIVITY

C XKD CHEMORECEPTOR AFFINITY

C XKMN MINIMUM VALUE FOR KRUN

C XKMX MAXIMUM VALUE FOR KRUN

C

C DM DIFFUSION COEFF

C DRC IDENTITY MATRIX

C RAV AVERAGE POSITION OF PHYCO BAC EACH TIME

C RMIN MIN RAD FOR PLACEMENT OF NBAC BACTERIA

C RMAX MAX RAD FOR PLACEMENT OF NBAC BACTERIA
C NCHFL GIVES CHEMOTAXIS TYPE

C CZ BACKGROUND CONCENTRATION

C MAXIN MAX # OF BACTERIA IN PHYCO
C

C CSUM CUMULATIVE CONCENTRATION EXPOSURE

C NTT1 HOW LONG EACH BAC HAS BEEN IN THIS TIME

C NT1 HOW MANY TIMES BAC HAS BEEN THROWN OUT OF

VOLUME

C

C NT2 HOW MANY TIMES BAC HAS ENTERED PHYCO (C

CRITERIA)

C NTT2 TOTAL TIME SPENT IN PHYCO (C CRITERIA)

C CSUM2 CUMULATIVE CONCEN

C

C NT3 HOW MANY TIMES BAC BAC ENTERED PHYCO (Ri
CRITERIA)

C NTT3 TOTAL TIME SPENT IN PHYCO (Ri CRITERIA)

C CSUM3 CUMULATIVE CONCEN

C

C NT4 HOW MANY TIMES BAC ENTERED PHYCO (R2

CRITERIA)
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C NTT4 TOTAL TIME SPENT IN PHYCO (R2

CRITERIA)

C CSUM4 CUMULATIVE CONCEN

C

C F1 F2 F3 C AND 2 R CRITERIA

C SUBROUTINES

C SETPL1 FINDS TIME STEPS FOR EACH INSTANTANEOUS PULSE

C GEN2 PLACES BACTERIA RANDOMLY IN SPHERICAL REGION

C CONC1 CALCULATES CONCENTRATIONS USING SUPERPOSITION

C PTOC CONVERTS POLAR TO CARTESIAN

C CTOP CARTESIAN TO POLAR

C CHTAX CHEMOTAXIS SUBROUTINE

C SHEAR MOVEMENT IN SHEAR FIELD

C

PROGRAM BCMD

DIMENSION X(3500,3),A(3500,2)

DIMENSION C(3500),CON(3500),XP(3500)

DIMENSION NUMOUT(3500),ROLD(3500)

DIMENSION EE(3,3)

DIMENSION TAVC(50) ,TAVD (50)

DIMENSION CSUM(3500),CSUM2(3500),CSUM3(3500),CSUM4(3500)
INTEGER*2 NTT1(3500),NT1(3500),NT2(3500),NTT2(3500),NT3(3500)

INTEGER*2 NTT3(3500),NT4(3500),NTT4(3500)

COMMON /CONN/ DRC(3,3),DM,N1,N2

INTEGER*4 L

INTEGER SUMII, SUMIO, SUMOI, SUMOO, IT

CHARACTER*1 EXIN(3500),TESTTCON,T

CHARACTER*8

BACHA(24),BACHB(24),BACHC(24),BACPOS(24),BACOUT(24)

CHARACTER*1 RORT (3500)

CHARACTER*8 XL

CHARACTER*8 BACTIM(24)

CHARACTER*12 FNAM1 (24) ,BOUT,SUMFIL

DATA T/' '/
DATA BACHA/'CAO1.DAT','CA02.DAT','CA03.DAT','CA04.DAT',

*ICA05.DAT','CA06.DAT','CAO7.DAT','CAO8.DAT','CA09.DAT',

*ICA1O.DAT','CA11.DAT','CA12.DAT','CA13.DAT','CA14.DAT',

*ICA15.DAT','CA16.DAT','CA17.DAT','CA18.DAT','CA19.DAT',

*'CA20.DAT','CA21.DAT','CA22.DAT','CA23.DAT','CA24.DAT'/

DATA BACHB/'CB01.DAT','CB02.DAT','CB03.DAT','CB04.DAT',
*ICB05.DAT','CB06.DAT','CB07.DAT','CB08.DAT','CB09.DAT',

*'CB10.DAT','CB11.DAT','CB12.DAT',I'CB13.DAT','CB14.DAT',

*ICB15.DAT','CB16.DAT','CB17.DAT','CB18.DAT','CB19.DAT',

*ICB20.DAT','CB21.DAT','CB22.DAT','CB23.DAT','CB24.DAT'/

DATA BACHC/'CCO1.DAT','CCO2.DAT','CCO3.DAT','CCO4.DAT',
*ICCO5.DAT','CCO6.DAT','CC07.DAT','CCO8.DAT','CCO9.DAT',

*'CC1O.DAT','CC11.DAT','CC12.DAT','CC13.DAT','CC14.DAT',
*ICC15.DAT','CC16.DAT','CC17.DAT','CC18.DAT','CC19.DAT',

*'CC20.DAT','CC21.DAT','CC22.DAT','CC23.DAT','CC24.DAT'/

DATA BACPOS/'CP01.DAT','CP02.DAT','CP03.DAT','CPO4.DAT',
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*'CP05.DAT','CP06.DAT','CP07.DAT',ICP08.DAT',I'CP09.DAT',
*ICP10.DAT','CP11.DAT','CP12.DAT','CP13.DAT',ICP14.DAT',

*'CP15.DAT',ICP16.DAT','CP17.DAT','CP18.DAT','CP19.DAT',

*'CP20.DAT','CP21.DAT','CP22.DAT','CP23.DAT','CP24.DAT'/

DATA BACOUT/'CS01.DAT','CS02.DAT','CS03.DAT','CSO4.DAT',
*'CS05.DAT','CS06.DAT','CS07.DAT','CS08.DAT','CS09.DAT',

*'CS10.DAT','CS11.DAT','CS12.DAT','CS13.DAT','CS14.DAT',

*'CS15.DAT','CS16.DAT','CS17.DAT','CS18.DAT','CS19.DAT',

*'CS20.DAT','CS21.DAT','CS22.DAT','CS23.DAT','CS24.DAT'/

DATA BACTIM/'CT01.DAT','CTO2.DAT','CT03.DAT','CT04.DAT',
*'CT05.DAT','CT06.DAT','CT07.DAT','CT08.DAT','CT09.DAT',

*'CT1O.DAT','CT11.DAT','CT12.DAT','CT13.DAT','CT14.DAT',

*'CT15.DAT','CT16.DAT','CT17.DAT','CT18.DAT','CT19.DAT',

*'CT20.DAT','CT21.DAT','CT22.DAT','CT23.DAT','CT24.DAT'/

DATA XPI /3.1415926/

DATA MAXIN/3500/

DO 10 I=1,3

DO 10 J=1,3

DRC (I, J) =0.0
10 IF(I.EQ.J)DRC(IJ)=1.0

DM=1000.

N1=3

N2=3

WRITE(*,*)' GIVE INPUT FILENAME'

READ (*, ' (A12) ') SUMFIL

OPEN(9,FILE=SUMFIL)

WRITE(*,*)' GIVE SUMMARY FILENAME'

READ (*, ' (A12) ') SUMFIL

OPEN(10,FILE=SUMFIL)

WRITE(*,*)' GIVE LABEL IDENTIFIER (a8)'

READ (*, ' (A8) ' ) XL

READ ( 9, *) NRS, NRUN

NPOS=NRS-1

DO 15 NR=1,NRUN
15 READ(9,1998)FNAM1(NR)

CLOSE(9)
DO 8000 NR=NRSNRUN

C
C INITIALIZE RUN

C

NDIV=0

NDIV1=0

SUM=0.0

JOUT=0
TOUT=0.0

MTOUT=0

COUT=0.0

NTAV=0

DO 18 J=1,50
TAVC(J)=0.0
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18 TAVD(J)=0.O

OPEN(2,FILE=BACOUT(NR))

OPEN(3,FILE=BACHA(NR))

OPEN(4,FILE=BACHB(NR))

C UNIT 5 IS FOR BACTERIA POSITION

OPEN(6,FILE=BACHC(NR))

OPEN(12,FILE=BACTIM(NR))

OPEN(9,FILE=FNAM1(NR))

READ (9, *)VOLPHY,F1,F2,F3

RB=(0.75*VOLPHY/XPI)**(1./3.)*1000.

WRITE(*,*)' RADIUS PHYCOSPHERE=',RB

READ (9, *) NBAC, NBAC1

READ(9,*)V,TNOT,TMALPTTNOTXKD,DRNCHFL

READ (9, *)XKMN,XKMX

READ (9, *)DTT,AR,CZ

C

C CALCULATE CHEMOTAXIS PARAMETERS

C

FR=EXP (-DTT/TM)

IF(NCHFL.LE.5)THEN

ALZ=ALOG(TNOT)

ELSE

ALZ=TNOT

ENDIF

C

C RUN LENGTH, ROTATIONAL FACTOR

C
RAD=DTT*V

FAC=SQRT(12.*DR*DTT)

C

READ (9, *)NTNTCZ

READ(9,*)L,JOUTF

RMIN=RANDOM (L)

READ (9, *) RMIN,RMAX,RMIN1, RMAX1

READ(9,'(I5,A12)')NINF1,BOUT
IF (NINF1.NE. 0)

*OPEN(11,FILE=BOUT,ACCESS=ISEQUENTIALI,FORM='BINARY')

DO 1222 I=1,3

READ(9,*)EE(I,1),EE(I,2),EE(I,3)

1222 CONTINUE

READ (9, *)VS,FLUX
FLUX1=FLUX

FLUX=(FLUX1-CZ)*4.*XPI*AR*DM

READ (9, *)NSF,NSI
READ (9, *)NPFNPI

READ(9,*)NTF,NTI,ICDCONFCONL,IDD,DISF,DISL

C

C ENTER 1 FOR MOTIONLESS DIFFN C W/SHEAR MOTION

C
READ(9,*)IMDC
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C

C CALCULATE SHEAR FACTORS

C

IF (VS.LE. 0.0) THEN
EB=0.5*(ABS(EE(1,1))+ABS(EE(2,2))+ABS(EE(3,3)))

IF(EB.GT.0.0)THEN

SYM=2.*EE(2,2)/EB

XN=SQRT(DM/EB)

ELSE

SYM=-1.

XN=1.E9

ENDIF

CN=FLUX/16./ATAN(1.0)/DM/XN

ELSE

EB=VS

SYM=999.
XN=DM/VS

CN=FLUX/16./ATAN(1.0)/DM/XN

EE(1,1)=VS

EE(2,2)=999.
ENDIF

EB1=EB

IF(IMDC.EQ.1)THEN

EB1=0.0

SYM=-1.

XN=1.E9
CN=FLUX/16./ATAN(1.0)/DM/XN

ENDIF

WRITE(*,*)' EBSYMXNCN',EBSYMXN,CN

IF (NINF 1.NE. 0) THEN

NBAC=NBAC+NBAC1

WRITE(*,*)'CALLING READPO'

CALL READPO(NBACX(1,1),X(1,2),X(1,3),A(1,1),

*A(1,2) ,CXPNTT1,CSUM)
WRITE(*,*)NBAC,' CELLS INITIALLY IN PHYCOSPHERE'

C

C FINDING INITIAL CONCENTRATIONS AND INITIALIZING

C
RUNFAC=TNOT/(TNOT+TTNOT)

IF(NINF1.NE.2)THEN

DO 2028 I=1,NBAC

NTT1(I)=0

CSUM(I)=0.0

2028 CONTINUE

ENDIF

DO 2029 I=1,NBAC
NT1(I)=0

NT2(I)=0

NTT2(I)=0

NT3(I)=0
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NTT3 (I) =0

NT4 (I) =0

NTT4 (I) =0

IF(RANDOM(L) .LE.RUNFAC) THEN

RORT(I)='R'

ELSE

RORT(I)='T'

ENDIF

2029 CONTINUE

DO 2039 I=1,NBAC

CSUM2(I)=0.0

CSUM3(I)=0.0

CSUM4(I)=0.0

ROLD(I)=SQRT(X(I,1)*X(I,1)+X(I,2)*X(I,2)+X(I,3)*X(I,3))

EXIN(I)='Y'

IF(ROLD(I) .LE.F2)NT3(I)=1

IF(ROLD(I) .LE.F3)NT4(I)=1

IF(ROLD(I) .LE.F1)NT2(I)=1

2039 CONTINUE

C
ELSE

C

C FIND THE INITIAL POSITIONS AND DIRECTIONS

C AND INITIALIZE CONCENTRATIONS

C
NSTART=1

CALL GEN2 (XNSTARTNBACRMIN,RMAX,L,MAXIN)

IF(NBAC1.GT.0)

*CALL GEN2 (XNBAC+1,NBAC+NBAC1, RMIN1,RMAX1,L,MAXIN)

NBAC=NBAC+NBAC1

WRITE(*,*)NBAC,' CELLS INITIALLY IN PHYCOSPHERE'

C

C FINDING INITIAL CONCENTRATIONS AND INITIALIZING

C

RUNFAC=TNOT/(TNOT+TTNOT)

DO 202 I=1,NBAC

NTT1(I)=0

NT1(I)=0

NT2(I)=0

NTT2(I)=0

NT3(I)=0

NTT3(I)=0

NT4(I)=0

NTT4(I)=0

IF (RANDOM(L) .LE.RUNFAC) THEN

RORT(I)='R'

ELSE

RORT(I)='T'

ENDIF

A(I, 1) =XPI*2. *RANDOM(L)
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A(I,2)=ACOS (2.*RANDOM(L) -1.)

202 CONTINUE

CALL CONC1 (NBAC,X,FLUX,C,CON,CZEB1,SYM,XN,CN,AR,MAXIN)

C

C STEPPING BACTERIA

C

NCH=0

CALL CHTAX (NCHNBAC, X, A, C, CON, XPDTT,ALZALP,XKD,RAD,

*AR, L, FR, TTNOT, RORT, XKMN, XKMX,MAXIN,MAXIN)

IF(EB.NE.0.0)CALL SHEAR(NBAC,X,EE,DTT,AR,MAXIN)

C

C MOVED BACTERIA FIND CONCENTRATION

C
CALL CONC1 (NBAC,X,FLUXCCONCZEB1,SYMXNCNARMAXIN)

C

C INITIALIZE BACTERIA

C

IF(NCHFL.EQ.2 .OR. NCHFL.EQ.4 .OR. NCHFL.EQ.5)THEN

DO 204 I=1,NBAC

204 XP(I)=CON(I)/(CON(I)+XKD)

ELSE

DO 205 I=1,NBAC

205 XP(I)=XKD/(XKD+C(I))/(XKD+C(I))*(C(I)-CON(I))/DTT

ENDIF

DO 203 I=1,NBAC

C (I)=CON(I)

CSUM(I)=0 .O

CSUM2(I)=0.O

CSUM3(I)=O.O

CSUM4 (I)=0. 0
ROLD(I)=SQRT(X(I,1)*X(I,1)+X(I,2)*X(I,2)+X(I,3)*X(I,3))

EXIN (I)='Y'

IF (ROLD (I) . LE.F2)NT3 (I)=1

IF (ROLD (I) . LE.F3)NT4 (I)=1

IF (ROLD (I) . LE. F1) NT2 (I)=1

203 CONTINUE

C

C END INITIALIZATION

C

ENDIF

C

C CALCULATE THE OUTER RADIUS

C
ROUT=RB*EXP (EB*DTT*1.1) +RAD*1 .1

IF (SYM.EQ. 999.) ROUT=RB+VS*DTT*1. 1+RAD*1 .1

WRITE(*,*)' OUTER RAD',ROUT

IF (NSF.LE.NT)

* WRITE(2,920)NRXLNRNR,NR,NRNR

C
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C START THE TIME LOOP

C

WRITE(*,*)' STARTING TIME LOOP'

WRITE(*,*)' RUN STEP SUMII SUMIO SUMOI SUMOO

AVDISI

*N AVDISOU'

DO 100 IT=1,NT

C

C FIND CONCENTRATIONS

C

C WRITE(*,*)' CALLING CONC'

CALL CONC1(NBAC,XFLUX,CCONCZEB1,SYMXNCN,AR,MAXIN)

C

C PRINT THE POSITION OF EACH POINT

C

IF((IT.GE.NPF).AND.(MOD(IT-NPF,NPI).EQ.0))THEN

NPOS=NPOS+1

WRITE(*,*)' PRINTING POSITIONS'

OPEN(5,FILE=BACPOS(NPOS),ACCESS='SEQUENTIAL',FORM='BINARY')

CALL

PRNPOS(NBAC,X(1,1),X(1,2),X(1,3),A(1,1),A(1,2),C,XP,NTT1,

* CSUM)

CLOSE(5)

ENDIF

C

C ADVANCE CONCENTRATION AND DURATION

C

DO 135 IN=1,NBAC
IF(IT.GE.NTCZ) CSUM(IN)=CSUM(IN)+C(IN)

IF(EXIN(IN).EQ.'Y')THEN

NTT1(IN)=NTT1(IN)+1

ELSE

NTT1(IN)=1

ENDIF

135 CONTINUE

C

C CHEMOTAX

C

C WRITE(*,*)' CALLING CHTAX'

NCH=NCHFL

CALL CHTAX(NCH,NBAC,X,A,C,CON,XPDTTALZ,ALP,XKD,RAD,AR

*, L, FR, TTNOT, RORT, XKMN, XKMX,MAXINMAXIN)

C

C ADVECT IN SHEAR FLOW

C

C WRITE(*,*)' CALLING SHEAR'

IF(EB.NE.0.0)CALL SHEAR(NBAC,X,EE,DTT,AR,MAXIN)

C

C START CRITTER LOOP

C
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C WRITE(*,*)' START CRITTER LOOP'

SUMIO=0

SUMII=0

SUMOI=0

SUMIO=O
SUMOO=O
NOUT=0

RSUMIN=0.0

RSUMOU=0 .0
DO 50 IN=1,NBAC

R=SQRT (X(IN, 1) *X(IN, 1) +X(IN, 2) *X (IN, 2) +X (IN, 3) *X (IN, 3))

C

C CHECK FOR BACTERIA OUT OF BOUNDS

C

IF(R.GT.RB) THEN

RSUMOU=RSUMOU+R

IF(EXIN(IN).EQ.'Y')THEN

NT1 (IN) =NT1 (IN) +1

SUMIO=SUMIO+1
IF(IT.GE.JOUTF)THEN

JOUT=JOUT+1

TOUT=TOUT+FLOAT(NTT1(IN))*DTT

MTOUT=MAXO(MTOUT,NTT1(IN))

COUT=COUT+CSUM(IN)/FLOAT(IT)

ENDIF

EXIN(IN)='N'

ELSE

SUMOO=SUMOO+1
ENDIF

A(IN, 1)=XPI*2.*RANDOM(L)

A(IN,2)=ACOS(2.*RANDOM(L)-1.)

NOUT=NOUT+1

NUMOUT (NOUT)=IN

ELSE
RSUMIN=RSUMIN+R

IF(EXIN(IN).EQ.'N')THEN

SUMOI=SUMOI+1
EXIN(IN)='Y'

ELSE

SUMII=SUMII+1
ENDIF

ENDIF

C

C

C

C ACCOUNT FOR ROTATIONAL DIFFUSION

C

A(IN,1)=A(IN,1)+(RANDOM(L)-0.5)*FAC

A(IN,2)=A(IN,2)+(RANDOM(L)-0.5)*FAC

C
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C DO STATISTICS

C

IF((MOD(IT-NSFNSI).EQ.0).AND.(IT.GE.NSF))THEN

WRITE(*,*)' DOING STATISTICS'

SUMR=0.0

SUMF1=0.0

SUMF2=0.0

SUMF3=0.0

CYSUM=0.0

CZSUM=0.0

DO 5000 IN=1,NBAC

CYSUM=CYSUM+C(IN)
IF(IT.GE.NTCZ)CZSUM=CZSUM+CSUM(IN)

RA=SQRT(X(IN,1)*X(IN,1)+X(IN,2)*X(IN,2)+X(IN,3)*X(IN,3))

SUMR=SUMR+RA
IF (RA.LE .F2) SUMF2=SUMF2+1.

IF (RA.LE.F3) SUMF3=SUMF3+1.

IF (RA.LE.F1) SUMF1=SUMF1+1.
5000 CONTINUE

CYSUM=CYSUM/FLOAT(NBAC)

IF(IT.GE.NTCZ)CZSUM=CZSUM/FLOAT(IT-NTCZ+1)/FLOAT(NBAC)

RAV=SUMR/FLOAT (NBAC)

SUMF1=SUMFl/FLOAT (NBAC)

SUMF2=SUMF2/FLOAT(NBAC)

SUMF3=SUMF3/FLOAT (NBAC)

TIM=FLOAT(IT)*DTT

IF(IT.GE.NTCZ)THEN

WRITE (2, 998) TIM, RAV, SUMF1, SUMF2, SUMF3, CYSUM, CZSUM

ELSE

WRITE(2, 998)TIM,RAV,SUMF1,SUMF2,SUMF3,CYSUM
ENDIF

ENDIF

C

C FIND THE TIME AVERAGES

C
IF((MOD(IT-NTF,NTI).EQ.0).AND.(IT.GE.NTF))THEN

WRITE(*,*)' FINDING TIME AVERAGES'

NTAV=NTAV+1

DISINC=(DISL-DISF)/FLOAT(IDD-1)

CONINC=(CONL/CONF)**(1./FLOAT(ICD))

DO 350 IN=1,NBAC

R=SQRT(X(IN,1)*X(IN,1)+X(IN,2)*X(IN,2)+X(IN,3)*X(IN,3))

DO 300 I=1,IDD
IF(R.LE.DISINC*FLOAT(I-1)+DISF)THEN

TAVD (I) =TAVD (I) +1.

GOTO 310

ENDIF

300 CONTINUE

310 DO 330 I=1,ICD-1
IF(C(IN).GE.CONF*CONINC**(I))THEN
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TAVC(I)=TAVC(I)+1.

ENDIF

330 CONTINUE

IF(C(IN).GE.CONL)TAVC(ICD)=TAVC(ICD)+1

350 CONTINUE

ENDIF

C

C END TIME LOOP

C
NOUT=MAX0 (1, SUMIO+SUMOO)

IF(MOD(IT,1O) .EQ.1)WRITE(*,970)NR,NRUN,ITNT,SUMIISUMIOSUMOI,

*SUMOORSUMIN/FLOAT(SUMII+SUMOI),RSUMOU/FLOAT(NOUT)

100 CONTINUE

WRITE(*,*)' END TIME LOOP'

C

C PRINT SUMMARY STATISTICS

C

WRITE(*,*)' CALLING SUMMRY'

CALL SUMMRY(NRNBAC,VOLPHY,F1,F2,F3,V,TNOT,TM,ALP,TTNOT,XKD,

*NCHFL, XKMN, XKMX, EB, SYM, FLUX1, AR, CZ, CSUM, CSUM2, CSUM3, NTT1, X, XP,

*NTT2,NT3,NTT3,COUTJOUTTOUT,MTOUT,DTT,C,NTNT2,NT4,NTT4,CSUM4,

*NT1,RBNTCZ)

C

C FIND HISTOGRAMS

C
WRITE(*,*)' CALLING HISTO'

WRITE(3,900)NRNR,NR,F1,NR,F2,NRF3

900 FORMAT(1X,I2,'CON ',12,'TOTL ',3(I2,'C',E9.4,1X))
WRITE(4,890)NR,NRNR,NRNR,NR,NR,NR

890 FORMAT(1XI2,'PHY ',12,'#PHY ',12,'F1 ',12,'#IN1 ',12,'F2

',12,
*I#IN2 ',12,'F3 ',12,'#IN3 ')
WRITE(6,880)NRNRNRNRNR,NR,NR,NR

880 FORMAT(1XI2,'TMPHY ',12,'#PHY ',12,'TF1 ',12,'#TM1 ',12,'TF2

*12,'#TM2 ',12,'TF3 ',12,'#TM3 ')

CALL HISTO(CSUMCSUM2,CSUM3,CSUM4,NT1,NT2,NT3,NT4,NTT1,NTT2,

*NTT3,NTT4,NBACDTTNT)

C

C PRINT TIME AVERAGES

C

WRITE(*,*)' CALLING TIMAV'

IF(NT.GE.NTF)CALL TIMAV(NR,TAVD,TAVC,ICD,IDD,CONF,CONL,DISF,

*DISL, AR, NTAV, NBAC, XL)

C

C CLOSE OUTPUT FILES

C

CLOSE(2)
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CLOSE (3)
CLOSE (4)

CLOSE (6)
CLOSE (9)
CLOSE (12)

C

8000 CONTINUE

110 FORMAT(4F7.2,5E11.4)

320 FORMAT(F7.2,14F8.1)

920 FORMAT(' TIME ',12,'AV',A8,' ',12,'F1 '12,'F2 ',12,'F3 ',12,
*'INCN ',12,'AVCN ')

940 FORMAT(' TIME ',12,'TOT')

950 FORMAT(1X,F10.4,1X,E12.5,1X,E12.5)
970 FORMAT(I2,' OF',I2,1X,I6,' OF',I6,4I6,2F10.2)

980 FORMAT(F8.3,1X,4I5)

998 FORMAT(2F10.3,3F7.4,2E12.5,F10.2)

1998 FORMAT(A12)

125 FORMAT(E11.4,1X,10F8.2)

STOP

END
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SUBROUTINE CHTAX(NCHFLNBACX,A,C,CON,XP,DTT,ALZ,ALP,XKD,RAD,

* ARL,FRTTNOTRORT,XKMN,XKMXMAX1,MAX2)

DIMENSION X(MAX1,3),A(MAX1,2)

DIMENSION C(MAX1) ,CON(MAX1) ,XP(MAX1)

CHARACTER*1 RORT (MAX1)

ITM=ITM+1

TIME=FLOAT (ITM) *DTT

XPI=4.*ATAN(1.)

STP=RAD*ALZ /DTT

TM=-DTT/ALOG(FR)

XKNOT=EXP (-ALZ)

IF(TTNOT.LE.DTT)THEN

XPTT=1.0

ELSE

XPTT=DTT/TTNOT

ENDIF

DO 50 IN=1,NBAC

C

C TWIDDLERS

C
IF(RORT(IN).EQ.'T')THEN

IF(NCHFL.EQ.4 .OR. NCHFL.EQ.2 .OR. NCHFL.EQ.5)THEN

XPONE=C (IN) / (C (IN) +XKD)
XP(IN)=(1.-FR)*XPONE+FR*XP(IN)

ENDIF

IF(RANDOM(L) .LE.XPTT) THEN

C

C RUN

C

RORT (IN)=' R'

CALL PTOC(RADA(IN,1),A(IN,2),AA,BB,CC)

C WRITE(*,*)' R,RADA',AABB,CC

X(IN, 1) =X(IN, 1) +AA

X(IN,2) =X(IN, 2) +BB

X (IN, 3)=X (IN, 3)+CC

ELSE

C

C TUMBLE

C CHOOSE NEW ANGLES

C

A(IN, 2) =ACOS (2. *RANDOM(L) -1.)

A (IN, 1) =2. *RANDOM (L) *XP I

ENDIF

C

C RUNNERS

C
ELSE

C

C CALCULATE RUN LENGTH
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C

IF (NCHFL.EQ. 0) THEN
C

C UNBIASED RANDOM WALK

C

XX=ALZ

IF(XX.GT.20.) XX=20.

IF(XX.LT.-20.)XX=-20.

XPT=DTT/EXP (XX)

C

C BROWN & BERG (EXACT DPDT THEN TIME AVERAGED)
c and now with a maximum (10/15)

C

ELSEIF(NCHFL.EQ.1)THEN

DPDT=XKD/(XKD+C(IN))/(XKD+C(IN))*(C(IN)-CON(IN))/DTT

XP (IN) = (1. -FR) *DPDT+FR*XP (IN)
XX=ALZ+ALP*XP(IN)
IF(EXP(-XX).GT.XKMX)XX= -ALOG(XKMX)
IF(XX.LT.-20.)XX=-20.
XPT=DTT/EXP (XX)

C
C B&B W/ DIFFERENT DPDT CALCULATION
C AND NOW A MAXIMUM AS WELL (6/29)
C

ELSEIF(NCHFL.EQ.2)THEN
XPONE=C(IN)/(C(IN)+XKD)
XP(IN)=(1.-FR)*XPONE+FR*XP(IN)

DPDT=(XPONE-XP(IN))/TM
XX=ALZ+ALP*DPDT
IF(EXP(-XX).GT.XKMX)XX= -ALOG(XKMX)
IF(XX.LT.-20.)XX=-20.
XPT=DTT/EXP (XX)

C
C BLOCK WITH OLD DPDT (EXACT DPDT THEN TIME AVERAGED)
C

ELSEIF(NCHFL.EQ.3)THEN
DPDT=XKD/(XKD+C(IN))/(XKD+C(IN))*(C(IN)-CON(IN))/DTT
XP (IN) = (1. -FR) *DPDT+FR*XP (IN)

XKR=XKNOT*(1.-ALP*XP(IN))
IF(XKR.LT.0.0)XKR=0.0

XPT=DTT*XKR

C

C NEW CHEMOTAXIS FROM BLOCK WITH UPPER AND LOWER LIMITS

C

ELSEIF(NCHFL.EQ.5)THEN

XPONE=C (IN) / (C (IN) +XKD)
XP(IN)=(1.-FR)*XPONE+FR*XP(IN)

DPDT=(XPONE-XP(IN))/TM

IF(DPDT.GE.0)XKR=XKNOT+(XKMN-XKNOT)*(1.-EXP(ALP*DPDT*XKNOT/

-193-

I



3

* (XKMN-XKNOT)))

IF (DPDT . LT. 0) XKR=XKNOT+ (XKMX-XKNOT) * (1 . -EXP (ALP*DPDT*XKNOT/

* (XKMX-XKNOT)))

XPT=DTT*XKR

C

C NEW CHEMOTAXIS FROM BLOCK ET AL. '83

C

ELSEIF(NCHFL.EQ.4)THEN

XPONE=C (IN) / (C (IN) +XKD)

XP(IN)=(1.-FR)*XPONE+FR*XP(IN)

DPDT=(XPONE-XP(IN))/TM

XKR=XKNOT* (1 -ALP*DPDT)

IF(XKR.LT.0.0)XKR=0.0

XPT=DTT*XKR

C

C SIMPLE CHEMOTAXIS

C

ELSEIF(NCHFL.EQ.6)THEN

IF (ALP.EQ. 0.0) THEN

RAD1= (-RAD) *C (IN) / (1.+C (IN))

ELSE

DPDT=XKD/ (XKD+C(IN) ) / (XKD+C(IN) ) * (C(IN) -CON(IN) ) /DTT
XP (IN) = (1. -FR) *DPDT+FR*XP (IN)

RAD1= (-RAD) *XP (IN) / (XP (IN) +ALP)

ENDIF

ELSE

RAD1=-RAD

ENDIF

C
C DECIDE WHETHER RUN ENDS
C

IF(NCHFL.LE.5)THEN

IF(RANDOM(L) .LT.XPT) THEN

C

C TUMBLE

C CHOOSE NEW ANGLES
C

A(IN,2)=ACOS (2.*RANDOM(L)-1.)

A (IN, 1)=2. *RANDOM (L) *XP I

RORT (IN)='T'

IF(RANDOM(L) .LE.XPTT) THEN

RORT (IN)='R'

CALL PTOC(RAD,A(IN,1),A(IN,2),AA,BBCC)

X (IN, 1)=X (IN, 1) +AA

X(IN, 2) =X(IN, 2) +BB

X(IN, 3) =X (IN, 3) +CC

ENDIF

ELSE

C

C RUN
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C

CALL PTOC(RAD,A(IN,1),A(IN,2),AABB,CC)

C WRITE(*,*)' RRAD,A',AABB,CC
X(IN,1)=X(IN,1)+AA

X (IN, 2) =X(IN, 2) +BB
X (IN, 3) =X(IN, 3) +CC

ENDIF

C

C SIMPLE CHEMOTAXIS

C

ELSE

CALL CTOP(X(IN,1),X(IN,2),X(IN,3),RR,TH,XPH)

CALL PTOC(RAD1,TH,XPH,AABB,CC)

X(IN,1)=X(IN,1)+AA

X(IN, 2) =X (IN, 2) +BB
X(IN,3)=X(IN,3)+CC

TH=ACOS(2.*RANDOM(L)-1.)

XPH=2. *RANDOM (L) *XP I
CALL PTOC(STP,THXPHAABB,CC)
X (IN, 1) =X (IN, 1) +AA
X(IN,2)=X(IN,2) +BB

X(IN, 3)=X(IN,3)+CC

ENDIF
ENDIF

C

C REFLECT IF NECESSARY
C

R=SQRT(X(IN,1)*X(IN,1)+X(IN,2)*X(IN,2)+X(IN,3)*X(IN,3))

C
C TUMBLE WITH REFLECTION
C

IF (R.LT.AR) THEN
CALL CTOP(X(IN,1),X(IN,2),X(IN,3),DIST,A1,A2)

R=2.*AR-DIST

CALL PTOC(R,A1,A2,X(IN,1),X(IN,2),X(IN,3))

A(IN,2)=ACOS(2.*RANDOM(L)-1.)

A(IN, 1) =2. *RANDOM(L) *XPI
ENDIF

50 CONTINUE

RETURN

END
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C

C SUBROUTINE SHEAR

C MOVES BACTERIA IN SHEAR FLOW

C

SUBROUTINE SHEAR(NBACX,EEDTT,AR,MAX)

DIMENSION X(MAX,3),EE(3,3),U(3),UE(3)

C

C FIND MAXIMUM SHEAR RATE

C

C

C MOVE FOR SINKING EE(1,1)=VS

C

IF(EE(2,2) .EQ.999.)THEN

VS=EE(1,1)

NMAX=0

NMAX1=0

DO 5 N=1,NBAC

R=SQRT(X(N,1)*X(N,1)+X(N,2)*X(N,2)+X(N,3)*X(N,3))

AR1=AR/R

C
C LIMIT STEP TO .01(R-AR)

C

NS=IFIX(100.*DTT*VS/(R-AR))

NS=MAXO (NS, 1)

NS=MINO (NS, 10)

IF (NS.EQ.10)NMAX=NMAX+1

C WRITE(*,*)' NS=',NS

DO 5 IT=1,NS

R=SQRT (X(N, 1) *X(N, 1) +X(N,2) *X(N,2) +X(N, 3) *X(N, 3))

IF(R.LE.AR)THEN

NMAX1=NMAX1+1

CALL CTOP(X(N,1),X(N,2),X(N,3),R,XTH,XPH)

R=2.*AR-R

CALL PTOC(R,XTH,XPHX(N,1),X(N,2),X(N,3))

ENDIF

AR1=AR/R

X(N,1)=X(N,1)-VS*DTT/FLOAT(NS)*.75*(AR1-AR1**3)/R/R*

*X(N,1) *X(N,3)

X(N,2)=X(N,2)-VS*DTT/FLOAT(NS)*.75*(AR1-AR1**3)/R/R*

*X(N,2)*X(N,3)

X(N,3)=X(N,3)+DTT/FLOAT(NS)*VS*(1.-.75*AR1-.25*AR1**3-.75*

*(AR1-AR1**3)/R/R*X(N,3)*X(N,3))

5 CONTINUE

IF(NMAX1.GT.0)WRITE(*,*)' #NS10 #COLL',NMAX,NMAX1

RETURN

ENDIF

C

C MOVE FOR SHEAR

C

EMAX=EE(1,1)
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DO 10 I=1, 3
DO 10 J=1,3

10 EMAX=AMAX1(EMAXEE(I,J))

C

C LIMIT TIME STEP TO .5% CHAR TIME

C
NS=IFIX (200 .0*DTT*EMAX)

IF (NS .LT. 1)NS=1

C WRITE(*,*)' SHEAR STEPS=',NS

C WRITE(*,*)' NBAC,DT',NBACDT

DT=DTT/FLOAT (NS)

C
C START TIME LOOP

C

DO 200 I=1,NS

DO 100 N=1,NBAC

C

C FIND NORMALIZED DISTANCE

C

ARR=AR/SQRT(X(N,1)*X(N,1)+X(N,2)*X(N,2)+X(N,3)*X(N,3))

IF (ARR.GT. 0.5) THEN
C

C DO DISTURBANCE VELOCITY FOR SHEAR

C

SUM=0 . 0
DO 20 J=1,3

DO 20 K=1,3
20 SUM=SUM+EE(J,K) *X(N,K) *X(N,J)

DO 25 J=1,3
25 UE (J)=X (N, J) *2.5* (ARR**7-ARR**5) *SUM/AR/AR

FAC=ARR**5

ELSE

FAC=0.0

DO 28 J=1,3

28 UE(J)=0.0

ENDIF

C WRITE(*,*)' I=',I

C

C FIND VELOCITY

C

DO 35 J=1,3
35 U(J)=0.0

DO 40 J=1,3

DO 40 K=1,3
40 U(J)=U(J)+EE(J,K)*X(N,K)

C

C MOVE BACTERIA

C

DO 50 J=1,3

50 X(N,J)=X(N,J)+(U(J)*(1-FAC)+UE(J))*DT
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100 CONTINUE

200 CONTINUE

RETURN

END
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SUBROUTINE CONC1(NBAC,XFLUX,C,CON,CZEB,SYXN,CN,AR,MAXIN)

DIMENSION X(MAXIN,3) ,C(MAXIN)

DIMENSION CON(MAXIN)
COMMON /CONN/ DRC(3,3),DMN1,N2

C

C ZERO CONCENTRATIONS AND MOVE C TO CON

C

DO 65 IP=1,NBAC

CON(IP)=C(IP)

65 C(IP)=CZ

C

C DO SINKING CONCENTRATIONS EB=SINKING VELOCITY VS

C

IF(SY.EQ.999.)THEN

DO 67 IP=1,NBAC

R=SQRT(X(IP,1)*X(IP,1)+X(IP,2)*X(IP,2)+X(IP,3) *X(IP,3))

67 C(IP)=C(IP)+CN*XN/R*EXP((X(IP,3)*EB-R*EB)/2./DM)

RETURN

ENDIF

C

C FIND CONCENTRATIONS FOR MOTIONLESS DIFFUSION

C

IF(EB.EQ.0.0 )THEN

DO 70 IP=1,NBAC

R=SQRT(X(IP, 1)*X(IP,1)+X(IP,2)*X(IP,2)+X(IP,3)*X(IP,3))

70 C(IP)=C(IP)+CN*XN/R

RETURN

ENDIF

C

C APPROXMIMATE ANAYLTICAL SOLUTION

C

C TUBE

C
IF(SY.LT.O.0)THEN

C WRITE(*,*)' XN=',XN

DO 75 IP=1,NBAC
X1=ABS (X(IP, 1))

R1=SQRT(X(IP,2)*X(IP,2)+X(IP,3)*X(IP,3))

R1=AMAX1 (R1,AR)

R=SQRT(X(IP,1)*X(IP,1)+X(IP,2)*X(IP,2)+X(IP,3)*X(IP,3))

IF(X1.LT.AR) THEN

FAC=(-SY) *(SY+2.) *.5

AA=CN*XN/AR*FAC

ELSE

AA=CN*XN/X1*(XN/(X1+XN) - Xl/(Xl+XN)*.5*SY*(SY+2.))

ENDIF

BB=EB/2./DM*(.5*SY*X(IP,2)*X(IP,2)-(l.+.5*SY)*X(IP,3)*X(IP,3))

C(IP)=C(IP) + CN*XN/R * EXP((-R/XN)**3) + (l.-EXP((-R/XN)**3))

**AA*EXP(BB)*(1+XN/(Xl+XN)*(AR/Ri-i))
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75 CONTINUE

RETURN

ENDIF

C

C DISK

C

IF(SY.EQ.1.0) THEN

DO 77 IP=1,NBAC

R1=SQRT(X(IP,1)*X(IP,1)+X(IP,2)*X(IP,2))

R11=AMAX1 (R1,AR)

X3=AMAX1 (ABS (X(IP,3) ) ,AR)
R=SQRT(X(IP,1)*X(IP,1)+X(IP,2)*X(IP,2)+X(IP,3)*X(IP,3))

AA=(CN*XN/R11*XN/(R1+XN) + Ri/(R1+XN)*CN*SQRT(2./ATAN(1.))*XN*

*XN/R11/R11)*0.75

BB=EB/2./DM*X3*X3

C(IP)=C(IP) + CN*XN/R * EXP((-R/XN)**3) + (1.-EXP((-R/XN)**3))

**AA*EXP(-BB)*(i+XN/(R1+XN)*(AR/X3-1))

77 CONTINUE

RETURN

ENDIF

C

C CAN'T DO NON-AXISYMMETRIC DISKS

C
WRITE(*,*)' CANT DO NON-AXISYMMETRIC DISKS, SYM=',SY

STOP

END
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C

C FUNCTION RMAL

C

C GENERATES A NUMBER FROM A NORMAL DISTRIBUTION

WITH

C MEAN =0 AND VARIANCE=1.0

C
FUNCTION RMAL(L)

INTEGER*4 L

X=0.0
DO 10 I=1,12

10 X=X+RANDOM(L)

RMAL=X-6 .0

RETURN

END

C

C FUNCTION RANDOM

C

C GENERATES A RANDOM NUMBER BETWEEN 0 AND 1

C

C NEEDS A SEED WHICH GETS UPDATED

C

FUNCTION RANDOM(L)

INTEGER*4 L

DOUBLE PRECISION DL

DL=DMOD(16807.ODO*DBLE(L),2147483647.ODO)

L=IDINT (DL)

RANDOM=SNGL (DL*4 . 6566128752458D-10)

RETURN

END

C

C SUBROUTINE PTOC

C

C CONVERTS FROM POLAR(RTHETAPHI) TO

C CARTES IAN

C

SUBROUTINE PTOC (R, THETA, PHI, A, B, C)

REAL PHI

A=R*COS(THETA)*SIN(PHI)

B=R*SIN(THETA)*SIN(PHI)

C=R*COS (PHI)

RETURN

END

C

C CONVERTS FROM CARTESIAN TO POLAR

C (RADIUS, ANGLE W/XAXISANGLE W/ZAXIS)

C
SUBROUTINE CTOP(X1,X2,X3,R,THETA,PHI)

REAL PHI

R=SQRT(Xl*X1+X2*X2+X3*X3)

-201-



2

PHI=ACOS(X3/R)

THETA=ACOS(X1/R/SIN(PHI))

IF(X2.LT.0.0)THETA=-THETA

RETURN

END
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SUBROUTINE GEN2 (XNSTART,NBAC,RMIN,RMAX,L,MAX)

DIMENSION X(MAX,3)

INTEGER*4 L

10 I=NSTART
20 IF(I.GT.NBAC-NSTART+1)RETURN

X(I, 1)=2 .*RMAX* (RANDOM(L) -0.5)

X (I, 2) =2. *RMAX* (RANDOM (L) -0. 5)

X(I,3)=2 .*RMAX* (RANDOM(L) -0.5)

R=SQRT(X(I,1)*X(I,1)+X(I,2)*X(I,2)+X(I,3)*X(I,3))

IF(R.LT.RMIN) GOTO 20

IF(R.GT.RMAX) GOTO 20

I=I+1

GOTO 20

END
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SUBROUTINE

SUMMRY(NR,NBACVOLPHYFlF2,F3,VTNOT,TM,ALPTTNOT,XKD,

*NCHFL,XKMN,XKMXEB, SYMFLUX1,AR,CZ,CSUMCSUM2,CSUM3,NTT1,X,XP,

*NTT2,NT3,NTT3,COUTJOUTTOUT,MTOUT,DTT,C,NTNT2,NT4,NTT4,CSUM4,

*NT1,RB,NTCZ)

DIMENSION X(3500,3),C(3500)

DIMENSION XP(3500)

DIMENSION CSUM(3500),CSUM2(3500),CSUM3(3500),CSUM4(3500)
INTEGER*2 NTT1(3500),NT2(3500),NTT2(3500),NT3(3500)

INTEGER*2 NTT3(3500),NT4(3500),NTT4(3500),NT1(3500)

C

C WRITE SUMMARY

C
WRITE(10,*)' RUN ',NR,' FINAL # BACTERIA',NBAC

WRITE(10,'('' RB Fl F2 F3'',4F9.1,)')RB,Fl,F2,F3

WRITE(10,'('' V,TNOT,TM,ALP'',4F10.3)')V,TNOT,TMALP

WRITE(10,*)' TTNOTXKDNCHFL',TTNOT,XKD,NCHFL

WRITE(10,*)' XKMN, XKMX',XKMN,XKMX

WRITE(10,*)' EB=',EB,' S=',SYM

WRITE(10,*)' FLUX,CELL SIZE,BCKGND',FLUX1,AR,CZ

SUMC=0.0

SUMC2=0.

SUMC3=0.

SUMC4=0.
NSUM=0
AVEN2=0.
NBC2=0

NBC3=0

NBC4=0

AVEN3=0.

AVEN4=0.

MAXNTT1=0

SUMRA=0.0

SUMXP=0.0

SUMPH1=0

SUMPH11=0

SUMPH2=0
SUMPH22=0
SUMPH3=0

SUMPH33=0
SUMST=0.0
SUMAR=0.0
ARST=AR+1.0

DO 650 I=1,NBAC

NT11=NT1(I)+1

SUMC=SUMC+CSUM(I)/FLOAT(NT-NTCZ+l)

SUMC2=SUMC2+CSUM2 (I)

SUMC3=SUMC3+CSUM3 (I)
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SUMC4=SUMC4+CSUM4 (I)

NSUM=NSUM+NTT1(I)

MAXNTT1=MAX0 (MAXNTT1,NTT1 (I))

RA=SQRT(X(I,1)*X(I,1)+X(I,2)*X(I,2)+X(I,3)*X(I,3))

IF(RA.LE.ARST)SUMST=SUMST+1.0

IF (RA. LE .2 . *AR) SUMAR=SUMAR+1 .0

SUMXP=SUMXP+ABS (XP (I))

SUMRA=SUMRA+RA

SUMPH1=SUMPH1+FLOAT(NTT2 (I))

SUMPH11=SUMPH11+FLOAT (NT2 (I))

SUMPH2=SUMPH2+FLOAT (NTT3 (I))

SUMPH22=SUMPH22+FLOAT(NT3(I))

SUMPH3=SUMPH3+FLOAT (NTT4 (I))

SUMPH33=SUMPH33+FLOAT(NT4(I))

AVEN2=AVEN2+FLOAT(NT2(I))/NT11

IF(NT2(I).GT.0)NBC2=NBC2+1

AVEN3=AVEN3+FLOAT(NT3(I))/NT11

IF(NT3(I).GT.0)NBC3=NBC3+1

AVEN4=AVEN4+FLOAT(NT4(I))/NT11

IF(NT4(I).GT.0)NBC4=NBC4+1

650 CONTINUE

IF(NCHFL.EQ.2 .OR. NCHFL.EQ.4 .OR. NCHFL.EQ.5) THEN

SUMXP=0.0

DO 670 I=1,NBAC
DPDT= (C (I) / (C (I) +XKD) -XP (I)) /TM

SUMXP=SUMXP+ABS (DPDT)

670 CONTINUE
ENDIF

WRITE(10,*)' PHYCOSPHERE STATISTICS'

WRITE(10, *)' AVERAGE RADIUS',SUMRA/FLOAT(NBAC)

WRITE(10,*)' AVERAGE DURATION (sec) ',FLOAT(NSUM/NBAC)*DTT
WRITE(10,*)' MAXIMUM DURATION (sec) ', FLOAT(MAXNTT1)*DTT

WRITE(10,*)' AVERAGE CONCENTRATION ',SUMC/FLOAT(NBAC)
WRITE(10,*)' AVG DPDT*ALP ISUMXP*ALP/FLOAT(NBAC)

WRITE(10,*)' R1 TIME TO, TIME IN',FLOAT(NBAC*NT)/SUMPH11*

*DTT, SUMPH1/SUMPH11*DTT
WRITE(10,*)' VIS/PHY % EXPSR',AVEN2/FLOAT(NBC2),SUMC2

*/FLOAT(NT)/SUMC*100.

CFCT2=SUMPH2/FLOAT(NBAC*NT)*(RB/F2)**3

WRITE(10,*)' R2 TIME TO, TIME IN',FLOAT(NBAC*NT)/SUMPH22*

*DTTSUMPH2/SUMPH22*DTT
WRITE(10,*)' CON FACT (Ri)',CFCT2

WRITE(10,*)' VIS/PHY % EXPSR',AVEN3/FLOAT(NBC3),SUMC3

*/FLOAT(NT)/SUMC*100.

WRITE(10,*)' R3 TIME TO, TIME IN',FLOAT(NBAC*NT)/SUMPH33*

*DTT, SUMPH3/SUMPH33*DTT
CFCT3=SUMPH3/FLOAT(NBAC*NT)*(RB/F3)**3

WRITE(10,*)' CON FACT (R2)',CFCT3

WRITE(10,*)' VIS/PHY % EXPSR',AVEN4/FLOAT(NBC4),SUMC4

*/FLOAT(NT)/SUMC*100.
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WRITE(10,*)' % STUCK, % W/I

2*AR , SUMST*100 . /FLOAT (NBAC) , SUMAR*

*100./FLOAT(NBAC)

WRITE(10,*)' '
WRITE(10,*)' EXITING BACTERIA STATISTICS'

IF(JOUT.GT.0)THEN

CV=COUT/FLOAT(JOUT)

TV=TOUT/FLOAT(JOUT)

WRITE(10,*)' AVERAGE DURATION (sec)',TV

WRITE(10,*)' AVERAGE CONCENTRATION ',CV

ENDIF

WRITE(10,*)' MAXIMUM DURATION (sec)',MTOUT*DTT

WRITE(10,*)'

RETURN

END
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SUBROUTINE TIMAV(NRTAVD,TAVC,ICDIDD,CONF,CONL,DISF,

*DISLAR,NTAVNBACXL)

DIMENSION TAVC(50),TAVD(50)

CHARACTER*8 XL
XPI=4.*ATAN(1.)

TAVNSM=0.0

DO 8880 I=1,IDD

8880 TAVNSM=TAVNSM+TAVD (I)

TAVN=0.0

IF(ICD.LT.IDD)THEN

WRITE (12,900)NR,XLNR,XLNR

900 FORMAT(' DIS ',12,'TVN',A8,' ',12,'TVC',A8,' CON',I2,'TVC')
DO 1500 I=1,ICD
CTAV=CONF*(CONL/CONF)**(FLOAT(I)/FLOAT(ICD))

CTAV=-ALOG10(CTAV)

DTAV=DISF+FLOAT(I-1)/FLOAT(IDD-1)*(DISL-DISF)

IF(I.EQ.1)THEN

DTAV1=AR

ELSE

DTAV1=DISF+FLOAT(I-2)/FLOAT(IDD-1)*(DISL-DISF)

ENDIF

DDVOL=4./3.*XPI*(DTAV**3-DTAV1**3)/1.E9*FLOAT(NTAV)

TAVN=TAVN+TAVD(I)

1500 WRITE(12,890)DTAV,TAVN/TAVNSMTAVD(I)/DDVOLCTAV

*,TAVC(I)/FLOAT(NTAV)/FLOAT(NBAC)

DO 1510 I=ICD+1,IDD
890 FORMAT(5E12.5)

DTAV=DISF+FLOAT(I-1)/FLOAT(IDD-1)*(DISL-DISF)

IF(I.EQ.1)THEN

DTAV1=AR

ELSE
DTAV1=DISF+FLOAT(I-2)/FLOAT(IDD-1)*(DISL-DISF)

ENDIF

DDVOL=4./3.*XpI*(DTAV**3-DTAV1**3)/1.E9*FLOAT(NTAV)

TAVN=TAVN+TAVD (I)

1510 WRITE(12, 890)DTAV,TAVN/TAVNSM,TAVD(I) /DDVOL
ELSE

WRITE (12, 880)NR,NR,NR

880 FORMAT(' CON ',12,'TAVC DIS ',12,'TVN ',12,'TVC')

DO 1600 I=1,IDD
DTAV=DISF+FLOAT(I-1)/FLOAT(IDD-1)*(DISL-DISF)

IF(I.EQ.1)THEN

DTAV1=AR

ELSE

DTAV1=DISF+FLOAT(I-2)/FLOAT(IDD-1)*(DISL-DISF)

ENDIF

DDVOL=4./3.*XPI*(DTAV**3-DTAV1**3)/1.E9*FLOAT(NTAV)

CTAV=CONF*(CONL/CONF)**(FLOAT(I)/FLOAT(ICD))

CTAV=-ALOG10(CTAV)
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TAVN=TAVN+TAVD (I)

1600 WRITE(12, 890)CTAVTAVC(I) /FLOAT(NTAV) /FLOAT (NBAC) ,DTAV,
*TAVN/TAVNSM, TAVD (I) /DDVOL
DO 1610 I=IDD+1,ICD

CTAV=CONF* (CONL/CONF) ** (FLOAT (I)/FLOAT (ICD))
CTAV=-ALOG10 (CTAV)

1610 WRITE(12, 890)CTAVTAVC(I) /FLOAT(NTAV) /FLOAT(NBAC)
ENDIF

RETURN

END
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SUBROUTINE HISTO(CSUM,CSUM2,CSUM3,CSUM4,NT1,NT2,NT3,NT4,NTT1,

*NTT2,NTT3,NTT4,NBACDTT,NT)

DIMENSION CSUM(3500),CSUM2(3500),CSUM3(3500),CSUM4(3500)
DIMENSION XMXC(4),XMNC(4),XMXT(4),XMNT(4),XH(4)

DIMENSION XINCC(4),XINCN(4),XINCT(4)

INTEGER*2 NT1(3500),NT2(3500),NT3(3500),NT4(3500),NDIV(4)

INTEGER*2 NTT1(3500),NTT2(3500),NTT3(3500),NTT4(3500)

INTEGER*2 NHC(4,50),NHN(4,50),NHT(4,50),MNN(4),MXN(4)

C

C INITIALIZING
C

DO 20 I=1,4

XMXC(I)=0.0

XMNC (I) =1.E9

MXN(I)=0

MNN(I)=9999

XMXT(I)=0.0

XMNT (I) =1.E9
DO 20 J=1,50

NHC(I,J)=0

NHN(I,J)=0

NHT(I,J)=0

20 CONTINUE

C

C CONCENTRATION HISTOGRAMS

C

DO 50 I=1,NBAC

XMXC(1)=AMAX1(XMXC(1) ,CSUM(I))

XMXC(2)=AMAX1(XMXC(2) ,CSUM2 (I))

XMXC(3)=AMAX1(XMXC(3) ,CSUM3(I))
XMXC(4)=AMAX1(XMXC(4) ,CSUM4 (I))

XMNC(1)=AMIN1 (XMNC(1) ,CSUM(I))

XMNC(2)=AMIN1 (XMNC (2) ,CSUM2 (I))
XMNC(3)=AMIN1(XMNC(3) ,CSUM3(I))

XMNC(4)=AMIN1 (XMNC(4) ,CSUM4 (I))

50 CONTINUE

YMXC=XMXC(1)

YMNC=XMNC(1)

DO 58 J=2,4
YMNC=AMIN1 (YMNC, XMNC (J))

YMXC=AMAX1 (YMXC, XMXC (J))

58 CONTINUE

DO 60 J=1,4
XMNC (J) =YMNC

XMXC(J)=YMXC

XINCC(J)=(YMXC-YMNC)/50.

60 CONTINUE

DO 100 I=1,NBAC
NN=IFIX((CSUM(I)-XMNC(1))/XINCC(1))+1
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NN=MINO (NN, 50)

NHC(1,NN) = NHC(1,NN)+1
NN=IFIX((CSUM2(I)-XMNC(2))/XINCC(2))+1

NN=MINO(NN,50)

NHC(2,NN) = NHC(2,NN)+1
NN=IFIX((CSUM3(I)-XMNC(3))/XINCC(3))+1

NN=MINO (NN, 50)

NHC(3,NN) = NHC(3,NN)+1
NN=IFIX((CSUM4(I)-XMNC(4))/XINCC(4))+1

NN=MINO(NN,50)

NHC(4,NN) = NHC(4,NN)+1

100 CONTINUE

C

C PRINT CONCENTRATION HISTOS
C

DO 120 I=1,50
XXH=XMNC(1)/FLOAT(NT)+FLOAT(2*I-1)*.5*XINCC(1)/FLOAT(NT)

WRITE(3,890)XXH, (NHC(J,I),J=1,4)

120 CONTINUE

890 FORMAT(1X,E9.4,415)

900 FORMAT(4(1X,E9.4,I5))

C

C TIME HISTOGRAMS
C

DO 150 I=1,NBAC
XMXT (1)=AMAX1

XMXT (2)=AMAX1

XMXT (3) =AMAX1

XMXT (4) =AMAX1
XMNT(1)=AMIN1

XMNT (2) =AMIN1
XMNT (3)=AMIN1

XMNT(4)=AMIN1

150 CONTINUE
DO 160 J=1,4

(XMXT (1) , FLOAT (NTT 1
(XMXT (2) ,FLOAT(NTT2

(XMXT (3) , FLOAT(NTT3

(XMXT(4) ,FLOAT(NTT4

(XMNT(1),FLOAT(NTT1

(XMNT (2) , FLOAT (NTT2

(XMNT (3) ,FLOAT (NTT3

(XMNT(4) ,FLOAT(NTT4

XINCT(J)=(XMXT(J)-XMNT(J))/50.

160 CONTINUE

DO 200 I=1,NBAC

NN=IFIX((FLOAT(NTT1(I))-XMNT(1))

NN=MINO (NN, 50)

NHT(1,NN) = NHT(1,NN)+1
NN=IFIX((FLOAT(NTT2(I))-XMNT(2))

NN=MINO (NN, 50)

NHT(2,NN) = NHT(2,NN)+1

NN=IFIX((FLOAT(NTT3(I))-XMNT(3))

NN=MINO (NN, 50)
NHT(3,NN) = NHT(3,NN)+1
NN=IFIX((FLOAT(NTT4(I))-XMNT(4))

NN=MINO(NN,50)

NHT(4,NN) = NHT(4,NN)+1

(I))) 

(I))) 

(I))) 

( I))) 

(I)))

( I)))

(I) ))

(I)))

/XINCT (1)) +1

/XINCT (2) )+1

/XINCT (3) )+1

/XINCT (4) )+1
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200 CONTINUE

C

C PRINT TIME HISTOS

C

DO 220 I=1,50

DO 210 J=1,4
210 XH(J)=(XMNT(J)+FLOAT(2*I-1)*.5*XINCT(J))*DTT

WRITE(6,900) (XH(J),NHT(J,I),J=1,4)

220 CONTINUE

C

C ENTRY HISTOGRAMS

C

DO 250 I=1,NBAC

MXN(1)=MAXO (MXN(1) ,NT1 (I)+1)

MXN (2)=MAX0 (MXN (2) , NT2 (I) )

MXN(3)=MAXO (MXN(3) ,NT3(I))

MXN(4)=MAXO(MXN(4) ,NT4(I))

MNN(1)=MINO (MNN(1) ,NT1(I)+1)

MNN(2)=MINO (MNN(2) ,NT2 (I))

MNN(3)=MINO (MNN(3) ,NT3(I))

MNN(4)=MINO(MNN(4),NT4(I))

250 CONTINUE

DO 260 J=1,4

NDIV(J)=MINO(50,MXN(J)-MNN(J))

XINCN(J)=FLOAT(MXN(J)-MNN(J))/FLOAT(NDIV(J))

260 CONTINUE

DO 300 I=1,NBAC

NN=IFIX(FLOAT(NT1(I)+1-MNN(1))/XINCN(1))+1

NN=MINO(NN,50)

NHN(1,NN) = NHN(1,NN)+1
NN=IFIX(FLOAT(NT2(I)-MNN(2))/XINCN(2))+1

NN=MINO (NN, 50)
NHN(2,NN) = NHN(2,NN)+1
NN=IFIX(FLOAT(NT3(I)-MNN(3))/XINCN(3))+1

NN=MINO (NN, 50)

NHN(3,NN) = NHN(3,NN)+1

NN=IFIX(FLOAT(NT4(I)-MNN(4))/XINCN(4))+1

NN=MINO(NN,50)

NHN(4,NN) = NHN(4,NN)+1
300 CONTINUE
C

C PRINT ENTRY HISTOS

C

DO 360 I=1,50

DO 350 J=1,4
350 XH(J)=FLOAT(MNN(J))+FLOAT(I-1)*XINCN(J)

WRITE(4, 900) (XH(J),NHN(J,I),J=1,4)

360 CONTINUE

RETURN
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END
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SUBROUTINE PRNPOS(NBAC,X1,X2,X3,A1,A2,C,XPNTT1,CSUM)

DIMENSION Xl (NBAC) ,X2 (NBAC) ,X3 (NBAC) ,Al (NBAC) ,A2 (NBAC)

DIMENSION C (NBAC) , XP (NBAC) , CSUM (NBAC)

INTEGER*2 NTT1(NBAC)

WRITE (5)NBAC,XlX2,X3,AlA2,C,XP,NTT1,CSUM

RETURN

END
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SUBROUTINE READPO(NBAC,X1,X2,X3,A1,A2, C,XP, NTT1,CSUM)

DIMENSION Xl (NBAC) ,X2 (NBAC) ,X3 (NBAC) ,Al (NBAC) ,A2 (NBAC)

DIMENSION C(NBAC) ,XP(NBAC) ,CSUM(NBAC)

INTEGER*2 NTT1(NBAC)

READ (11)NBACXl,X2,X3,Al,A2,C,XPNTTlCSUM

REWIND (11)

CLOSE (11)

RETURN

END
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C program EXCON1

C

C USES ADVECTION OF MOMENTS TO SOLVE A-D

C EQUATION STEADY STATE SOLUTION ONLY

C

C MODIFIED CHANGES
C 7/88 ADDED ROTATION AROUND X3

C 8/12/88 ADDED CALCULATION OF EIGENVECTORS AND VALUES

C 8/15/88 CHANGED PRINTOUT OF EIGENVECTORS

C ADDED ROTATION WITH X1 AND X3 COMPONENTS

C 8/17/88 ADDED PRINTOUT OF Ill 112 122
C 8/18 CHANGED TO EXPLICIT FINITE DIFFERENCE METHOD
C
C 11/8 CHANGED TO MULTIPLE RUN SETUP

DIMENSION

XI(3,3,600),E(3),X(5,3,100),C(5,100),DT(600),DIST(5,100)
DIMENSION C1(100),DME(3),XEIG(3,100),DTMT(600),DN(5,100)
DIMENSION A(3,3),INDX(3),V(3),B(3),E1(3),TIME(600),XN(3)

DIMENSION FIR(5,3),DRC(3,3),EE(3,3)

DIMENSION EVC1(3,3),EVL1(3),CEIG(100)
DIMENSION EI(3,3),XIN(3,3),XIOL(3,3),AL(3,3),TP(3,3)
DIMENSION XFI(5),XLAST(5),A1(5),A2(5)
REAL*8 AJ(3,3),EVC(3,3),EVL(3)
CHARACTER*1 TABTESTINTR,MTCEIGSFIL

CHARACTER*12 FNAM1, EIGFIL, INFILE, SUMFIL
DATA EIXINXIOL/27*0./

DATA XIXC/7400*0.0/

DATA DTTIME/1200*0.0/

DATA EVCEVLAJNROT/21*0.ODO,0/

DATA NNPP/3,3/

DATA E1/3*1./

DATA DRC,EE/1.,0.,0.0.1.,0.,0.,0.,1.,9*0.0/
DATA TAB/' '/

C
WRITE(*,*)' LAST MODIFIED 11/09/88'

C
990 FORMAT(A1)

XPI=4.*ATAN(1.0)

BB=1/(8.*ATAN(1.0))**1.5

C WRITE(*,*)'DM (UM**2/S)'
C READ(*,*)DM

DM=1000.

WRITE(*,*)' ENTER INPUT FILENAME'
READ(*,970)INFILE

970 FORMAT(A12)

C

C UNIT 9 INPUT FILE

C

OPEN (8, FILE=INFILE)
READ (8, *) NRUN
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READ (8, *)NPUL

READ (8, 990) EIG
READ (8, 970) EIGFIL

OPEN(2,FILE=EIGFIL)

READ (8, 990) SFIL

READ(8,970)SUMFIL

OPEN(4,FILE=SUMFIL)

WRITE(*,*)' ENTER CONC AT A=10'

READ (*, *) FLUX

WRITE(*,*)' ENTER 1 FOR NORMALIZED DIST AND CONC'

READ(*,*)NORM

FLUX=FLUX*40000.*XPI

BB=BB*FLUX

DO 2000 NR=1,NRUN

DO 222 I=1,3

READ (8, *) EE (1,1) ,EE (I,2) , EE (1,3)

222 CONTINUE

EBAR=1.

C EBAR=0.5*(ABS(EE(1,1))+ABS(EE(2,2))+ABS(EE(3,3)))

DBAR=SQRT(DM/EBAR)

CNOT=SQRT(EBAR)/4./XPI/(DM)**1.5

C

c unit 4 for the all the output data
C

IF(SFIL.EQ.'Y')WRITE(4,*)'NR=',NR,' EBAR=',EBAR

READ (8, *) XMIN, XMAX, EMAX

CALL SETPL1 (TIMEDTEMAX,DMXMINXMAX,NPUL)

READ (8, *) NP, NAXIS

DO 12 I=1,NAXIS

12 READ(8,*)XFI(I),XLAST(I),A1(I),A2(I),(FIR(I,J),J=1,3)

READ (8, 970) FNAM1

OPEN(3,FILE=FNAM1)

C

C DO EXPLICIT STEPPING WITH MOMENTS

C
WRITE(*,*)' PULSE STEPS'

DO 1048 I=1,3

DO 1048 J=1,3
1048 EMAX=AMAX1(EMAXABS(EE(I,J)))

WRITE(*,*) 'EMAX=',EMAX

DO 50 I=1,NPUL

C

C TRANSFER XI TO XIOL

C
IF(I.EQ.1)THEN

DO 24 J=1,3

DO 24 K=1,3

24 XIN(J,K)=0.0

ENDIF

IF(I.GT.1)THEN
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DO 25 J=1,3
DO 25 K=1,3

25 XIN(J,K)=XI(J,K,I-1)
ENDIF

C

C ADDED INTERNAL LOOP TO LIMIT TIME STEP TO .01*EMAX
C

NS=IFIX(DT(I)/.0051*EMAX)

IF(NS.LT.1)NS=1

IF(MOD(I,10).EQ.0)WRITE(*,*)I,NS

DO 35 II=1,NS

C

C INITIALIZE

C

DO 30 J=1,3

DO 30 K=1,3
EI(JK)=0.0

30 XIOL(J,K)=XIN(J,K)
DO 35 J=1,3

DO 35 K=1,3

C

C EI = SHEAR TIMES OLD MOMENT
C

DO 32 L=1,3
32 EI(J,K)=EI(JK)+EE(KL)*XIOL(JL)+EE(J,L)*XIOL(K,L)

C

C UPDATE NEW MOMENT
C

35 XIN(J,K)=XIOL(JK)+DT(I)/FLOAT(NS)*(DRC(J,K)*2*DM+EI(J,K))

DO 50 J=1,3

DO 50 K=1,3
50 XI(J,K,I)=XIN(J,K)

C

C

C

C FIND EIGENVALUES AND VECTORS'
C TRANSFER XI TO DUMMY MATRIX
C

IF(EIG.EQ.'Y')THEN

DO 600 J=1,NPUL

DO 51 K=1,3

DO 51 L=1,3

51 AJ (K, L) =DBLE (XI (K, L, J))
CALL JACOBI(AJ,3,3,EVLEVC,NROT)
CALL EIGSRT(EVLEVC,3,3)

DO 52 K=1,3
EVL1(K)=SNGL(EVL(K))

XEIG (K, J) =EVL1 (K)
DO 52 L=1,3

52 EVC1(KL)=SNGL(EVC(KL))
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600 CONTINUE

C

C

C FIND FINAL EIGENVECTORS AND TRANSFORMED SHEAR TENSOR

C

WRITE(*,*)' NORMALIZED EIGEN VECTORS'

DO 520 J=1,3

ED=SQRT(EVC1(1,J)*EVC1(1,J)+EVC1(2,J)*EVC1(2,J)+EVC1(3,J)*

* EVC1(3,J))

EVC1 (1,J)=EVC1 (1,J) /ED

EVC1 (2, J) =EVC1 (2, J) /ED
EVC1 (3,J) =EVC1 (3, J) /ED

520 WRITE(*,*)J,' ',EVC1(1,J),EVC1(2,J),EVC1(3,J)

DO 525 I=1,3

DO 525 J=1,3

525 AL(I,J)=EVC1(J,I)
DO 530 I=1,3

DO 530 J=1,3

TP(I,J)=AL(I,1)*AL(J,1)*EE(1,1)+AL(I,2)*AL(J,1)*EE(2,1)+AL(I,3)*

1AL(J,1)*EE(3,1)+AL(I,1)*AL(J,2)*EE(1,2)+AL(I,2)*AL(J,2)*EE(2,2)+

2AL(I,3)*AL(J,2)*EE(3,2)+AL(I,1)*AL(J,3)*EE(1,3)+AL(I,2)*AL(J,3)

3*EE(2,3)+AL(I,3)*AL(J,3)*EE(3,3)

530 CONTINUE

WRITE (*, *)' TRANSFORMED SHEAR MATRIX'

DO 535 J=1,3
WRITE(2,*)TP(J,1),TP(J,2),TP(J,3)

535 WRITE(**)TP(J,1),TP(J,2),TP(J,3)

ENDIF

C

C START LOOP FOR AXIS

C
DO 1500 NX=1,NAXIS
Al(NX)=A1(NX)/180.*XPI

A2 (NX) =A2 (NX) /180. *XPI
DO 60 I=1,NP
DIST(NXI)=XFI(NX)*(XLAST(NX)/XFI(NX))**(FLOAT(I-1)/(NP-1))

X(NX,1,I)=(DIST(NX,I))*COS(Al(NX))*SIN(A2(NX))+FIR(NX, 1)

X(NX,2,I)=(DIST(NXI))*SIN(Al(NX))*SIN(A2(NX))+FIR(NX,2)

X(NX,3,I)=(DIST(NX,I))*COS(A2(NX))+FIR(NX,3)

60 CONTINUE

C

C ZERO CONCENTRATIONS

C
DO 65 IP=1,NP

65 C(NX,IP)=0.0

C

C CALCULATE THE CONCENTRATION
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C CONTRIBUTION FROM EACH PULSE

C

DO 80 K=1,NPUL

DO 70 I=1,3

DO 70 J=1,3
70 A(I,J)=XI(I,J,K)

C WRITE(*,*)A,N,NPP,INDX,D
CALL LUDCMP(A,N,NPPINDX,D)

C

C ADD THIS CONCENTRATION TO EACH POINT

C

DO 75 IP=1,NP

B (1) =X (NX, 1, IP)
B(2)=X(NX,2, IP)
B (3) =X (NX, 3, IP)
CALL LUBKSB(A,NNPPINDXB)

ARG=X(NX,1, IP)*B(1)+X(NX,2,IP)*B(2)+X(NX,3,IP)*B(3)
DTMT(K)=A(1,1) *A(2,2) *A(3,3)

C WRITE(*,*)K,DTMT(K)

C WRITE(*,*)BARG
C WRITE(*,*)A(1,1),A(2,2),A(3,3),D
75 C(NX,IP)=C(NX,IP)+BB*DT(K)/SQRT(ABS(A(1,1)*A(2,2)*A(3,3)))*

* EXP(-.5*ARG)

80 CONTINUE
1500 CONTINUE
C

C PRINT CONCENTRATIONS
C

IF(NORM.NE.1)THEN

DBAR=1.

CNOT=1.
ENDIF

DO 85 NX=1,NAXIS
DO 85 I=1,NP

DIST(NX,I)=SQRT(X(NX,1,I)**2+X(NX,2,I)**2+X(NX,3,I)**2)

DN (NX, I) =DIST (NX, I) /DBAR
85 C(NXI)=C(NXI)/CNOT

DO 90 I=1,NP

IF(SFIL.EQ.'Y')

*WRITE(4,1989) (DN(NXI),C(NX,I),NX=1,NAXIS)
90 WRITE(3,1989) (DN(NXI),C(NX,I),NX=1,NAXIS)
1989 FORMAT(5(ell.4,1x,e11.4,2x))
2989 FORMAT(5(f7.1,1x,f7.2,lx,f7.1,lx))

X1END=SQRT (ABS (A ( 1, 1))
X2END=SQRT (ABS (A(2,2)))
X3END=SQRT (ABS (A(3,3)))
DO 1990 I=1,3

1990 IF(A(II).LT.0.0) WRITE(*,'('' A'',I1,'' <0'')')I

WRITE(*,*)' D=',D
WRITE(*,*) 'RUN',NR
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WRITE(*,*)' Xl MOMENT',X1END

WRITE(*,*)' X2 MOMENT',X2END

WRITE(*,*)' X3 MOMENT',X3END

2000 CONTINUE

STOP

END

SUBROUTINE EIGSRT(DV,NNP)

REAL*8 D(NP),V(NP,NP)

DO 13 I=1,N-1

K=I

P=D(I)

DO 11 J=I+1,N

IF(D(J) .GE.P)THEN

K=J
P=D'(J)

ENDIF
11 CONTINUE

IF (K.NE.I) THEN

D(K)=D(I)

D (I) =P

DO 12 J=1,N

P=V(JI)

V(J, I)=V(J,K)

V(JK)=P

12 CONTINUE

ENDIF

13 CONTINUE
RETURN

END

SUBROUTINE JACOBI(AN,NP,D,VNROT)

PARAMETER (NMAX=1000)

REAL*8 A(NPNP),D(NP),V(NPNP),B(NMAX),Z(NMAX)

DO 12 IP=1,N

DO 11 IQ=1,N
V(IPIQ)=0.

11 CONTINUE

V(IP,IP)=1.

12 CONTINUE

DO 13 IP=1,N

B(IP)=A(IP,IP)

D(IP)=B(IP)

Z(IP)=0.

13 CONTINUE

NROT=0

DO 24 I=1,50

SM=0.

DO 15 IP=1,N-1
DO 14 IQ=IP+1,N

SM=SM+ABS (A(IP, IQ))

14 CONTINUE
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G=V(J, IP)

H=V (J, IQ)
V(J,IP)=G-S*(H+G*TAU)

V(J,IQ)=H+S*(G-H*TAU)

19 CONTINUE

NROT=NROT+1

ENDIF
21 CONTINUE

22 CONTINUE

DO 23 IP=1,N

B(IP)=B(IP)+Z(IP)

D(IP)=B(IP)

Z(IP)=0.

23 CONTINUE
24 CONTINUE

PAUSE '50 iterations should never happen'
RETURN

END

C TESTING ROT

C
C
C DIMENSION T(3,3)
C DATA T /1.,0.,0.,0.,1.,0.,0.,0.,1./
C WRITE(*,*)' ENTER T ROW BY ROW'

C DO 5 I=1,3
C5 READ(*,*) (T(I,J),J=1,3)

C WRITE(*,*)' ENTER THETA'
C READ(*,*)THETA

C CT=COS(THETA)*COS(THETA)

C CS=COS(THETA)*SIN(THETA)

C ST=SIN(THETA)*SIN(THETA)

C WRITE(*,*)' C2,CS,S2',CT,CSST
C CALL ROT (T,THETA)
C DO 11 I=1,3
C WRITE(*,10) (T(IJ),J=1,3)

C 10 FORMAT(3F10.5)

C 11 CONTINUE
C STOP
C END

C
C FINDS A NEW TENSOR BASED ON ROTATION MATRIX AND OLD TENSORT
C WITH ROTATION MATRIX DEFINED AS IN VON SCHWIND
C A(I,J)=COS(XIP,XJ), MUST GIVE ANGLES FROM X3
C
C DATE MODIFICATION

C
C 8/15/88 ADDED ROTATION WITH X1 AND X3 COMPONENTS
C 8/17/88 FIXED EARLIER MISTAKES,ANG=0.0 FOR NOW
C

SUBROUTINE ROT(T,ANG,THETA)
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DIMENSION T(3,3),TP(3,3),AL(3,3)

CT=COS(THETA)

ST=SIN(THETA)

CA=COS(ANG)
SA=SIN(ANG)
AL(1,1)=CT

AL(2,2)=CT

AL(3,3)=1

AL(1,3)=0.

AL(2,3)=0.

AL(3,1)=0.

AL (3,2) =-AL (2,3)
AL(2,1)=ST

AL(1,2)=-ST

C WRITE(*,*)AL

DO 65 I=1,3
DO 65 J=1,3
TP(I,J)=AL(I,1)*AL(J,1)*T(1,1)+AL(I,2)*AL(J,1)*T(2,1)+AL(I,3)*

1AL(J,1)*T(3,1)+AL(I,1)*AL(J,2)*T(1,2)+AL(I,2)*AL(J,2)*T(2,2)+

2AL(I,3)*AL(J,2)*T(3,2)+AL(I,1)*AL(J,3)*T(1,3)+AL(I,2)*AL(J,3)

3*T(2,3)+AL(I,3)*AL(J,3)*T(3,3)

C WRITE(*,*)' I,JTP',I,J,TP(I,J)

65 CONTINUE

DO 70 I=1,3

DO 70 J=1,3
70 T(IJ)=TP(I,J)

RETURN

END

C
-C TESTING MATRIX INVERSIONS
C

C DIMENSION A(100,100),INDX(100),VV(100),B(100),AINV(100,100)
C 1 WRITE(*,*)' ENTER PHYSICAL AND LOGICAL DIMENSIONS'
C READ(*,*)NP,N
C WRITE(*,*)' ENTER A ROW BY ROW'
C DO 5 I=1,N
C5 READ(*,*) (A(I,J),J=1,N)
C WRITE(*,10)((IJ,A(I,J),J=1,N),I=1,N)
Clo FORMAT(2I5,F1O.2)
C1l FORMAT(215,E12.5)
C CALL LUDCMP(A,N,NPINDXD)
C

C SET UP THE IDENTITY MATRIX
C

C DO 16 I=1,N
C DO 15 J=1,N
C 15 AINV(IJ)=0.0

C 16 AINV(II)=1.0

C WRITE(*,11) ((IJ,AINV(I,J),J=1,N),I=1,N)
C DO 20 J=1,N
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C CALL LUBKSB(ANNPINDX,AINV(1,J))

C 20 CONTINUE

C WRITE(*,11) ((I,J,AINV(I,J),J=1,N),I=1,N)

C GOTO1
C END

SUBROUTINE LUDCMP (A,N,NP, INDX,D)

PARAMETER (NMAX=100, TINY=1 .E-20)

DIMENSION A(NPNP) ,INDX(N) ,VV(NMAX)

D=1.

DO 12 I=1,N
AAMAX=0.

DO 11 J=1,N

IF(ABS(A(I,J)).GT.AAMAX) AAMAX=ABS(A(I,J))

11 CONTINUE

IF(AAMAX.EQ.0.) PAUSE 'SINGULAR MATRIX'

VV (I)=1. /AAMAX

12 CONTINUE

DO 19 J=1,N

IF (J.GT.1) THEN

DO 14 I=1,J-1

SUM =A(IJ)

IF(I.GT.1)THEN

DO 13 K=1, I-1

SUM=SUM-A(I,K) *A(K,J)

13 CONTINUE

A(I, J)=SUM

ENDIF

14 CONTINUE
ENDIF

AAMAX=O.

DO 16 I=J,N

SUM=A(I,J)

IF(J.GT.1)THEN

DO 15 K=1,J-1

SUM=SUM-A(I,K) *A(K,J)

15 CONTINUE

A(I,J) =SUM
ENDIF

DUM=VV(I) *ABS (SUM)

IF (DUM.GE.AAMAX)THEN

IMAX=I

AAMAX=DUM

ENDIF

16 CONTINUE
IF (J.NE. IMAX) THEN

DO 17 K=1,N

DUM=A (IMAX, K)

A(IMAXK) =A(JK)

A(J,K)=DUM
17 CONTINUE

-224-



11

D=-D
VV(IMAX) =VV(J)

ENDIF

INDX (J) =IMAX

IF(J.NE.N)THEN

IF (A(J,J) .EQ.0. )A(J,J) =TINY

DUM=1./A(J,J)

DO 18 I=J+1,N

A(I,J)=A(IJ) *DUM

18 CONTINUE

ENDIF

19 CONTINUE

IF(A(NN) .EQ.0.)A(NN)=TINY

RETURN

END

SUBROUTINE LUBKSB(A,N,NPINDX,B)

DIMENSION A(NP,NP),INDX(N),B(N)

II=0

DO 12 I=1,N

LL=INDX(I)

SUM=B(LL)
B(LL)=B(I)

IF (II.NE.0)THEN

DO 11 J=II,I-1

SUM=SUM-A(I,J) *B(J)

11 CONTINUE

ELSEIF(SUM.NE.0.)THEN

II=I

ENDIF

B(I)=SUM

12 CONTINUE

DO 14 I=N,1,-1

SUM=B(I)

IF(I.LT.N)THEN

DO 13 J=I+1,N

SUM=SUM-A(I,J) *B(J)

13 CONTINUE
ENDIF

B(I)=SUM/A(I,I)

14 CONTINUE

RETURN

END

SUBROUTINE LUINV(A,N,NP,INDX,D,Y)

DIMENSION A(NPNP),Y(NP,NP),INDX(NP)

DO 12 I=1,N
DO 11 J=1,N

Y(I,J)=0.

11 CONTINUE

Y(I, I)=1.

12 CONTINUE
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CALL LUDCMP (A,N,NP, INDX,D)

DO 13 J=1,N
C CALL LUBKSB(A,NNPINDX,Y(1,J))

13 CONTINUE

RETURN

END

SUBROUTINE LUDET(A,N,NPINDX,D)

DIMENSION A(NP,NP),INDX(NP)

CALL LUDCMP (AN,NP, INDXD)

DO 11 J=1,N

D=D*A(J,J)

11 CONTINUE

RETURN

END

C

C PROGRAM TO SET POSITION OF PULSES

C
C MODIFIED VERSION TO RUN WITH EXMOMCON1

C
SUBROUTINE SETPL1 (TIMEDTEMAXDMXMINXMAX,N)

DIMENSION DT(600),TIME(600),VV(3)

C=1./FLOAT(N-1)*ALOG(XMAX/XMIN)

DO 10 I=1,N

DT(I)=(XMIN*EXP(C*FLOAT(I-1)))**2

C WRITE(*,*)DT(I)

10 CONTINUE

C
C FIND THE TIMES

C
IF(EMAX.NE.0.0)THEN

DO 20 I=1,N

TIME(I)=.5/EMAX*ALOG(1.+EMAX*DT(I)/DM)

C WRITE(*,*)TIME(I)

20 CONTINUE

ELSE

DO 30 I=1,N

TIME (I) =DT (I) *DT (1)/2. /DM

C WRITE(*,*)TIME(I)

30 CONTINUE
ENDIF

C

C FIND THE TIME STEPS

C

DO 40 I=N,2,-1

DT (I) =TIME (I)-TIME (I-1)

C WRITE(*,*)DT(I)

40 CONTINUE

DT (1) =TIME (1)

C WRITE(*,*)DT(1)

RETURN
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END
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