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ABSTRACT

A semi-analytical investigation of the error in
the estimate of the radar time delay to an under-
spread target is conducted. The target is assumed
to be described by a Gaussian scattering law in
both delay and doppler frequency and it is assumed
that system noise power exceeds the average echo
signal power in a single coherent integration
period. The results of the investigation are
applied to typical radar ranging for Venus and
the standard deviation of the delay error is given
in terms of radar receiver and processing parameters.
When the total reception time of the signal and
average transmitted power is fixed the delay error
is seen to decrease as the resolution of the radar
system in delay and doppler frequency is increased.
As resolution becomes sufficiently fine a point
of diminishing return (with respect to the resulting
decrease in the delay error) is reached.
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I. INTRODUCTION

Plaxletary radar ranging is done routinely for Mercury,

Venus, and Mars. The usual method for both simple ranging

and mapping planetary surfaces is the delay-doppler method,

first proposed by P. E. Green in 1959 (see Green, 1960).

Green pointed out that the signal reflected from all

points along the intersection of the planet's surface with a

plane parallel to the plane containing the apparent axis of

rotation and line of sight to the planet will have the same

doppler shift due to the relative motion of the earth and

planet (see figure 1). As we will see later, the doppler

shift for points on this line relative to the doppler shift

for the sub-radar point is directly proportional to the

distance of the plane containing this line of intersection

from the plane parallel to it passing through the subradar

point (the subradar point is the intersection with the

planetary surface of the line joining the radar and the

center of mass of the planet). In practice, processing of

the received echo signal can never achieve resolution fine

enough to tell us how much power was reflected from a "line"

on the planet's surface but does indicate how much was

reflected by a "strip" of finite width on the surface,

called a doppler strip (see figure lb). It is convenient to

express width of a doppler strip in units of frequency since

it is the frequency shift of the echo signal that is actually

determined by analysis of the receiver output power. It will

4
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be Shown later (see section IB) that the width of a strip is

inversely proportional to the Coherent Integration Period

(CIP) of the receiver output signal so that in order to

reduce the width of a strip to zero (i.e., reduce the strip

to a line) the CIP would have to be infinitely long. There

are practical and statistical reasons for limiting the

length of the CIP. They are discussed in section II.

Green also noted that the intersection of the surface of

a spherical planet with a plane perpendicular to the line of

sight to the planet forms a circle and the signals reflected

from all points of the circle will return to the antenna at

the same time. In practice, as one might expect, instrumental

factors, the uneven nature of the planetary surface, and

statistical reasons prevent us from resolving a circle on the

surface of the planet and limit us to resolving an annulus or

ring of finite width on the surface, called a delay ring,

from which we may say an echo signal was reflected. The

width of a delay ring is expressed in units of time.

Although planetary targets subtend very small angles

compared to typical antenna beamwidths, Green noticed that it

is possible to resolve small regions on a planet's surface by

resolving the distribution of echo power in both doppler and

delay, i.e., as a function of doppler frequency shift and of

time of reception of the echo signal. The power density at

each point in the delay-doppler coordinate system is related

to the power of the signal reflected from the region of the

planet's surface corresponding to the intersection of a delay

U
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ring and a doppler strip (see figure lb). Just how the

received power distribution is related to the form of the

transmitted signal and to the reflection characteristics of

the planet's surface will be discussed when we talk about the

ambiguity function (section IB). For a perfectly smooth and

spherical planet most of the echo power would be received

effectively from the first Fresnel zone (see e.g., Rossi,

p167) so that the distribution of power versus delay and

doppler would be very narrowly peaked. However, because of

topography and roughness of real planetary surfaces a

measurable amount of power is backscattered from other

regions on the planet.

Planetary radar ranging is done by sampling the received

power density distribution (in delay and frequency) at

several different values of delay and at one or more doppler

frequencies. To determine the position of the subradar point

a least squares fit is made to the observed echo power

distribution of a theoretical distribution or "template"

(see Rogers et al, 1970). One of the parameters estimated

in the fit is the delay to the subradar point. The resulting

uncertainty in the delay estimate and the effect on this

uncertainty of varying the number and resolution of delay

rings and doppler strips will be examined in this paper.

I A. BACKSCATTERED POWER

We begin by obtaining an expression for the distribution

in time delay and doppler frequency of power backscattered by

A



- 7 -

the planet's surface. The delay and doppler shift associated

with the motion of the center of mass of the planet will be

ignored for the moment; in the radar receiver we attempt to

eliminate these effects based upon our a priori knowledge of

the relative motion between the target and receiver. The

effect on the backscattered power distribution of the signal

processing performed in the radar receiver will be discussed

in the next section (I B).

A wave reflected from an annulus on the planetary surface

subtending an angle between and $ + d4 was incident upon the

surface at an angle between $ and $ + d$ (see figure la).

This corresponds to a signal delay time between T and T+ di

(by delay to a point on the planet's surface we mean round

trip time of the echo travelling between the antenna and a

point on the planetary surface). Because the planet is

rotating the signal reflected from different infinitesimal

regions along the same annulus will have different values of

doppler shift. In particular, the doppler shift lying between

f and f + df is due to reflection from an infinitesimal region

of the planet's surface formed by the intersection of the

surface and the infinitesimal region parallel to the plane

containing the line of sight and apparent axis of rotation

(see figure lb).

The width of a delay ring and a doppler strip as discussed

in this section and this section only is thus dT and df

respectively and does not refer to the delay and frequency

resolution of the radar system. The delay and doppler
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resolution depend upon the shape of the transmitted pulse

and the radar receiver system as we will see in sections IIIB

and IB.

The Cartesian coordinate system x,y,z (see figure 2) has

its origin at the center of mass of the planet with the z

axis pointing toward the antenna, the x axis perpendicular to

the z axis and the y axis perpendicular to the x-z plane.

The apparent angular rotation of the planet projected into

the x-y plane, W, , is along the y axis. The radius of the

planet is constant for our purposes and is referred to as f
in figure 2. The infinitesimal area of the surface correspond-

ing to the rn delay ring is centered at z = z, and the inter-

section of the 4n doppler strip with this delay ring is

centered on the coordinates x in the (x,y,z)

coordinate system.

The time delay (round trip time of the echo reflected

from a point on the surface) for power reflected from the

subradar point is T. and the time delay for power reflected

from the n- delay ring (see figure 2) is In. The differ-

ential area of intersection of a delay ring with a doppler

strip is JS on the surface of the planet and its projected

area on the x-z plane is JA (see figure 2). From figure 2

we see we may write Z4 as

wj'Aete Ta %-T

C = ~d
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solving for K w /

(Z)
2 -V Wa)

The differential area in the x-z plane, aA , is (see figure 2)

AIA =xz ~ ' AFT
41wa

6 is the angle between the axis and the vector between AS

and the origin in the (x,y,z) coordinate system so that

(see figure 2)

JA = c5 cosD

4 4 JWa Cos

To obtain cose in terms of the delay-doppler position of

we define direction cosines as follows

cF
13

z n
P

CS)

(6~)2f3

COSO(1

(4)

(7)
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If fn is the doppler frequency of the signal returning

from the doppler strip centered at (fZh), "o is the

doppler frequency of the signal returning from the subradar

point, and -J is the frequency of the radar carrier signal

emitted from the antenna, then we have

Using the fact the sum of the squares of the direction

cosines equals 1 we write

Using equations (5) and (6) we may write cosineO as

cos = - C- T) TL fL 112 1A

The negative value of cos6 corresponds to the element Ac

in the Southern hemisphere of the planet (if the direction of

Wgis defined to be North). For the present it is assumed

the planet is symmetric about the x-z plane. We shall also

assume the planet has rotational symmetry about the x axis.

Substituting the positive value of cosO into equation (4)

II
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we have

isCZ AFJT
d-S =(8)4+Ihoa C 1"4 ~1

4pLvlw,'

If we call the power scattered back to the antenna per

unit area of planetary surface t ( P~aoj r are defined

below; since rotational symmetry has been assumed T' is a

function of only the angle of incidence, ), then the power

at the input of the radar receiver is

where (see Radar Studies of Mars, 1970)

'(MG0S = radar cross section = (T

= cross section per unit area of surface of

the target

=

i n "4-

= ( )7LTA x (---) x LA

C~ = radar cross section

R = transmitted power (peak value)

GT = antenna gain

LT = transmitter waveguide attenuation

R = distance to planet

LA = atmospheric attenuation
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We would now like to obtain a relation between the angle

of incidence, $, and the relative delay and doppler coordi-

nates T, F, so that T(O) and thus the right hand side of

equation (9) may be expressed entirely in terms of T and F.

To do this we note, from figure 2

es)

From the above equations we can express $ as a function of z
or T. We denote these functional relations by writing

.LT)

so that G'may be expressed in terms of z or T: (although,

of course, z / T)

q-'(#) --1cz)) 3 -3 'ltz)

where the different subscripts denote the different functional

dependence. Expressing G-'in the form 6~ (T) and using

equation (8) we may write equation (9) as

p- P'LTF) TjF
0-

wh ere

- T LT)(10

C c12
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and T'is called the target scattering function.

I B. THE AMBIGUITY FUNCTION

So far we have only talked about the power scattered by

the planet and not the power appearing at the output of our

receiver. The connection between the two is made by means of

a function 'i(T,F) called the ambiguity function of the

radar system.

In this section we will see that T'(T,F) actually

represents the radar system's response to a point non-

fluctuating target (examples of this kind of target will be

given later in this section). If, for example, the point

target is at zero delay and doppler frequency T and F are the

delay and frequency variables of the radar output.

The function Tz(T,F) depends on both the transmitted

waveform and the receiver impulse response but we will assume

that the receiver filter has an impulse response, h,(t) which

is matched to the transmitted waveform. If the transmitted

waveform is Y (t) then h,(t) will be Y (t, - t), the time

reversal of Y(t) shifted an amount t0 to make h,(t)

realizeable. For this combination of signal and filter

T1'(T,F) is given by (see Evans and Hagfors, chapter 1, 1968)

( dtX (4 Y tt 4e)Zt t

where the star indicates the complex conjugate of the function

and the line beneath the symbol indicates the function is

complex. We use complex numbers to describe both the ampli-

tude and phase of a signal (see, e.g., Bracewell, 1965).



The amplitude of the complex modulated carrier wave Y(t) is

IY(t)l , Y(AY(t$ , the magnitude of the complex

number Y(t). The projection of Y(t) onto the imaginary (j)

axis is called the imaginary part of Y(t) and the projection

of Y(t) onto the real axis is referred to as the real part

of Y(t). The phase of Y(t) with respect to the positive real

axis is the tangent of the angle between Y(t) and the positive

real axis. For example, the phase of Y(t) is 00 relative to

the positive real axis and the phase of jY(t) relative to the

positive real axis is 900' Likewise, the phase of -jY(t)

and -Y(t) is -900 and 1800, respectively. In this paper,

however, we will be concerned only with purely real rectangu-

lar pulses which modulate the transmitted carrier wave.

Radar ranging signal processing utilizes both analogue

and digital systems (see, for example, Pettengill et al, 1969).

The echo signal is first mixed to lower frequencies and passed

through a pulse matched filter by analogue systems and then

sampled at discrete time intervals, converted to digital form

and presented to a digital computer for final processing.

This processing scheme will be described in detail later in

this section. In this case, ITkT,F) take the form (see Evans

and Hagfors, chapter 1, 1968, and Shapiro, 1967)

I~~RL.T~~~b) L It I AS~R XtS) vn(StT-rt?) ' CI3



where

AR = antenna receiving aperture

LR = waveguide attenuation in the receiver

and where m(t) is a periodic series of rectangular pulses of

duration TB (called the baud length), and repetition period

tp (called the pulse repetition period or PRP), X(t) is the

envelope of one period of m(t) and H (F) is

S 914tpf

where Mtr is the Coherent Integration Period (defined later

in this section) and R is the number of Coherent Integration

Periods. The variables just mentioned will be precisely

defined as the need arises later in this section. For the

present, it is sufficient to note that T (T,F) is separable

(i.e., has a part dependent only upon F and a part dependent

only upon T). The theoretical radar receiver output as a

function of T and F, P(T,F), may be written as a convolution

of the ambiguity function with P'(T,F), the target scattering

function (which describes the distribution of backscattered

power from the target):

where the integral is taken over all values of relative delay

and doppler of the target.

Let us examine the physical meaning of ?'(T,F) and

investigate how the ambiguity function contributes to

ambiguity in relating points of the target from which the
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transmitted signal was reflected to points in the plot of

output power vs. T and F. The theoretical model 'of the

receiver output power, P(T,F), may be considered a result of

the ambiguity function "probing" the target scattering

function. Specifically, from our understanding of the

convolution integral we can interpret the output power as

the volume under the surface formed by the product of

P (T',F') with NL(T',F') offset an amount T in relative

delay and F in relative doppler shift. If 'TT',F') were an

impulse then there would be a one to one relation between

P(T,F) and P (T,F). In fact, in this case, we would have

P(T,F)=P(TF). However, because of the extent of 'j(T,F)

in the T and F coordinate as shown in figure 4g, P(T,F) at

each value of T and F corresponds to P (T,F) at more than

one value of T and F. In other words, the value of the

power at the receiver output that appears at, say, relative

delay T=T and relative doppler F=F, is due to power reflected

from a region on the target having a range of values of T

and F about the value T=T,, F=F that is determined by the

shape of l'(T,F). If Thad only one sharp peak then the

region on the target contributing to the value of P(T,F) at

T=T0 , F=F, would be narrow, whereas if f was broad in either

the T or F dimension (or both) the region on the target

contributing to P(T,,F,) would be large in extent. Unless

k(TF) is an impulse, then, it is impossible to say the

output power at any value of (T,F) was reflected from that

point on the target having that same value of (TF); we can

II
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only specify a region of finite resolution on the target,

whose resolution depends on the shape of MykT,F), from which

we may say the output power at any point (T,F) was reflected.

The effect of this resolution on the ranging error will be

examined later in this paper. Also contributing to possible

error in ranging is the fact that Tlis periodic (with

period t?) which indicates P(T,F) is also periodic and thus

our estimate of the delay to the target obtained by analyzing

the receiver output may be incorrect by an amount ntF (where

n =0),z)--- ) unless our a priori estimate of delay is in error

by less than about tp. However, the orbits of the earth and

the planets for which radar ranging is presently conducted is

known sufficiently well to eliminate an error or magnitude tF,

To gain further insight into the role of TI(T,F) in the

signal processing let us consider a ranging experiment with

a stationary (with respect to the receiver) point source.

It will be convenient, for instructive purposes, to trace

the signal in this case only to the output of the pulse

matched filter and to calculate the output power appearing

at that point. We will then consider the point target to

be moving relative to the receiver and follow the processing

all the way through the computer.

Consider transmitting a real signal whose envelope,

m(t), is shown in figure 4a. We see m(t) is a periodic

series of rectangular pulses of unit height and duration "T

called the'baud length". Let the functionYX(t) (see figure 4b)

represent a single pulse so that in terms of X(t) we may

II



- 18 -

write m(t) as NS-

t

Ns-i

-- %(t) : 0 d(t-nYt P) (6

where 0 I Ztcl

otherwise

and where the asterisk denotes convolution, tis the pulse

repetition period, and Ntis the number of pulse periods

transmitted. (For a typical Mars ranging experiment, for

example, the number of pulses transmitted NJ 600sec / 1O'- see

= 6XIOS xalthough the siqnal is processed coherently over

only M pulses where M is t< N5 ; typically, i & M 6 50). In this

example and in the rest of this paper the receiver and

transmitter are assumed co-located. The target we will

consider first is a stationary, non-fluctuating point target,

i.e., the target scattering function, call it P'(T,F) is an

impulse at constant relative delay and zero doppler shift.

The position of P (T,F ) in figure 4c is at T=T' and

F=F. (recall that T and F are measured relative to a priori

estimate of the delay and doppler shift of the signal

reflected from the subradar point). The point non-fluctua-

ting target has negligible depth in delay and doppler and

may be contrasted with the point fluctuating target whose

target scattering function (figure 4c) has negligible depth

in relative delay but a spread of relative doppler frequen-

cies due, for example, to rapid rotation about some axis

(see Evans and Hagfors, 1968). The receiver that will

II
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develop maximum peak signal to noise ratio for the non-

fluctuating point target employs a filter matched to the

signal that enters the receiver. Since we are considering a

point nonfluctuating target the reflected signal will be the

same as the transmitted signal, neglecting the factor P .

(Except for a time delay and frequency shift due to relative

motion of earth and target: we will assume in this example

that both these effects are compensated for by the radar

system before the signal enters the filter so that the target

delay and doppler values appear fixed for the duration of the

transmitted signal at the values they had when the signal was

first reflected from the target). The reflected signal

received by the antenna and appearing at the input of the

filter whose impulse response is h,(t) depends upon the

receiving parameters Ag and L., in addition to the factor P.

Specifically, the reflected signal at the input of hL(t) is

dependent upon the factor Pa! ALaP . The factor P. will

be omitted for the present, but will be accounted for at the

end of this section to yield the proper theoretical output

power distribution P(T,F). In fact, as we will see, when

convolving l1with P' to obtain P we need only account for the

factor A La since P' contains the factor P1,

In light of the above discussion, the receiver will use a

filter whose impulse response, h,(t), is equal toM(t-t),

the time reversal of one of the pulses in the transmitted

pulse train shifted am amount to to make the filter realizable

(no output before input - see figure 4d). We see from

II



- 20 -

figures 4b and 4d that if t,='s then h,(t) will be realizable.

We will choose, then to ='T5 so that hI(t) = -X(T-t).

Let us assume we know the precise delay to the target at

all times so that we may begin receiving at the precise time

the reflected signal first enters the receiver (In practice

one allows a brief interval of time between the end of

transmission of the signal and the time the reflected signal

returns to the antenna). In this case the output of h1 (t)

due to the signal reflected by the point target will begin at

zero delay relative to the a priori "estimate", which means

our value of TS is zero. We will also assume we know

exactly the relative motion between the antenna and the target

so that Fs=0. The output voltage of h,(t) is the convolution

of the reflected signal, m(t), (as we explained above the

reflected signal entering h,(t) is the same as the transmitted

signal) with h,(t). Since m(t) is a periodic train of

rectangles each of which have the same dimensions as h,(t)

(compare figure 4a and figure 4d) the output of h,(t) will be

a periodic series of trianglbs of T;Tidth 21% and height 'TB

with the same period (tp) as m(t). (Note that although the

a priori estimate of delay was correct 1Ts=0o the peak of the

triangle occurs at an offset of *r - This is due to the fact

that h (t) is the time reversal of the transmitted signal

offset an amount to=rBs . We may compensate for this effect

by offsetting the train of impulses that sample the receiver

output by an amount t.= s ). We may therefore represent the



output of h,(t) as the convolution of one period of m(t) with

h,(t) (which will yield one triangle of height 1'r and width

2'Y) convolved with a periodic series of unit impulses.

This will produce the periodic series of triangles just

described. Calling 4 (T,F) the output voltage of the filter

h, (t) (see figure 4e) we have:

~(T)Q) S ( t ~X(tP ,(T-t) + Z U.(T-Wl?) C01)
o t

where we have used

"X(t) 04tol,
one period of m(t) (is)

0 T <gt,

The second argument of e, corresponds to F; it is zero because

the doppler shift due to the relative motion of the earth and

the point nonfluctuating target has been (assumed) correctly

eliminated by the time the echo signal is presented to h,(t).

Using h,(t) = Xvr8 -t) equation (17) becomes

, (T-1, 30) 0 X(t)X (t+T-T)4t , u.(T-n4t

4 ) t wvat))( It4'oT)

The output power is

-1
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Since is a series of triangles (see figure 4e)

T (T-18,0) is a series of triangles - squared (see figure 4f).

The function 9Vr(T-1s6 o) may therefore be expressed in the form

P A t YLt 4 1T) --T Z Uq(&A?

a0ct MW tx (tiTO(-1
Next, we assume the nonfluctuating point target has a

known constant component of motion relative to the receiver

along the line of sight of the target to the receiver. We

will assume that this component of relative motion is

directed toward the receiver. Also, we assume that we are

able to compensate for the change in delay between the

receiver and target due to the motion of the target toward

the receiver so that the target delay appears fixed for the

duration of the transmitted signal at the value it had when

the signal was first reflected from the target (see figure 4ff).

Therefore the signal that is presented to h (t) is the same

as the transmitted signal but with a doppler shift in

frequency, F, due only to the motion of the point target

toward the receiver (F is positive for relative motion of the

target toward the receiver and negative for relative motion

away from the receiver). Assume we begin receiving at the

instant the reflected signal enters h1 (t).

The description of the signal processing that follows will

consider the general case of a target with finite extent in

both delay and doppler frequency. Application to the specific

II
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instance of the point nonfluctuating target just described

will be made along the way and in the end we will demonstrate

that !P4(T,F) is simply the output power distribution in the

case of a point nonfluc tuating target.

The signal that returns to the antenna is doppler shifted

(due to the relative motion of the earth and target) in

frequency and is mixed (by the radar system) to an inter-

mediate frequency plus doppler frequency ftF where F is

the dbppler shift relative to the subradar point (by this

stage the radar system has removed the frequency shift

corresponding to the subradar point). The signal is then

presented to phase quadrature detectors (see figure 5) where

it is' separately mixed dith a sine and cosine wave of

frequency fy and low pass filtered (the frequency fIF of the

signal that is mixed with the signal of frequency f1r +F will

produce a signal with frequency components 2f1f-F and F.

The low pass filter is designed such that the frequency

component2 zfz -F is in the stop band). The output of the

"cosine" mixer, x(t) is the real part and the output of the

"sine" mixer, (t), is the imaginary part of a complex

number Z (t) = Z (t) t :2 Xt)jI(). The complex number g.(t) may

be considered as a two dimensional vector (whose projections

onto the two orthogonal axis are x(t) and y(t)) rotating at

the relative angular doppler frequency 2%F. That is,

a O(.t) .= :wF , where eft)= tavn Y(t)/Xct) . For a point non-

fluctuating target with a component of relative motion

directed toward the receiver z(t) = m(t).
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The sine and cosine components, y(t) and x(t) respectively,

are then presented the pulse matched filter h,(t) (see

figure 5c), and sampled. The sine and cosine components

af ter sampling are labeled a (T + Is) anqd b (T tts) respectively.

We define the complex voltage sample A as

A (T + ts) z b CT +Its) +a (T+Its (2)

Where I takes on integer values 20 and ts is the sampling

interval (which must be 4 L ̂yB , as will be explained later).

Note that when Its - Ap (i.e., Its is an integer multiple of

the pulse repetition period) A(T) and A(T *ntp) will corre-

spond to reflection from thie same annular region on the

planet's surface where T is the relative delay of the signal

reflected from this region. For convenience, when reference

is made to a and b in the text as the saipled sine and cosine

components of the output per se the argument will contain only

the "T" term.

Before saying anything more specific about the echo

signal processing we should examine what values of the PRF

would be best to use for studying a spread (i.e.,.finite

extent in delayaand doppler dimension) target.

If the delay depth of the planet is TD, to avoid sampling

at one point in time the signal reflected from more than one

delay ring on the target it is necessary to have

(23)- =
Pe T F
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If the PRF were less than To "self noise" would be present in

the sampled signal. Later we will show that the power at any

doppler frequency for any delay ring may be obtained by

sampling the rotating sine - cosine vector at integer

multiples of the pulse repetition period, ti,, Let o equal

the limb doppler spread of the target =.xcA (where eeg is

the center to limb doppler spread). Then, if we are to avoid

aliasing the sampling theorem tells us we must have

Thus, the bounds on the PRF are

Z s' 1> P ' (2

If we sample at the PRF ho aliasing will occur as long as

the PRF satisfies equation (25). We see it is possible to

sample such that equation (25) is satisfied if

TID (2 BS)< \ 46

in which case the target is said to be "underspretd" and it

is possible to sample such that no aliasing or self noise

will be present. If T, (28ct) was > 1 then the target would be

"overspread" and, strictly speaking, it would not be possible

to avoid the problem of self noise.

Fbr the underspread planet (the only case that will be

examined in this paper), let us choose ?5c,, for example,

to be 100 cps and delay depth To = 10 msec . Equation (25) is
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just satisfied because

(actually the product should be less than 1, but this may be

accomplished by considering T. to be infinitesimally less

than 10 msec ). The baud length, ts , is chosen to be 10Sec

and the sampling period, ts ,is then pec.. The sampling period

is made .L for the following reason: The frequency

response of the filter in figure 5c whose impulse response

is h,(t) is H(f) - .'m a function whose
'If

central peak is 2 (1 /'16) 2 ook 4z wide between the first

nulls. We would like to sample the output of the filters

h (t) such that there is no aliasing of the sampled signal in

the frequency domain. We may accomplish this by sampling at

the Nyquist rate. Assuming H(f) is essentially zero outside

I loo Vz the output of H(f) is thus also essentially zero

outside I I0O A4 z and so the Nyquist rate is 2OOVIV4 which means

the sampling period must be S 2e . I ' fecause

the PRF is <-L sampling at intervals of I TB will yield a

power output free of self noise and aliasing whose envelope

is of the form shown in figure 5d (i.e., each of the values

in the set ta(T+)ts)} is independent of the other values;

the same is true for 6CT+tIts) . The total number of samples

in each period is seen to be

Z tp

4
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The processing of a(T) and b(T), the sampled sine and

cosine components of the output, can be understood in terms

of rotating vectors, as mentioned earlier. Let the vector

A(T+Rt, ) = b(Trts)+ acits) be rotating at, say, the

angular doppler frequency WAF=2wF . The pulse repetition

period is tp, so referring to figure 5d we see points of

equal delay relative to the subradar point are separated in

time by tp seconds. By the n period the vector at doppler

frequency F and delay T (corresponding to the delay ring at

relative delay T) will have rotated WLhtp radians. To obtain

the voltage at doppler frequency F for the delay ring at

relative delay T we must rotate the vector from each period

back the amount it has advanced relative to the vector from

the first period and then sum all the vectors. Thus /(TF),

the voltage corresponding to the signal reflected from the

region of the targets surface defined by the intersection of

the delay ring at relative delay T and doppler strip at

relative doppler frequency shift F is

V('TF)= 2ATvt%20

where the total number of periods received is Vs . Thus

V (T,F) is simply the Discrete Fourier Transform (DFT) of

A(T+nt?). However, we should note that in practice multiply-

ing by e 2wFvtt will not in general yield the relative

doppler frequency component precisely at relative doppler

frequency F. This is because the relative motions between
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the target and the antenna are a priori imperfectly known

and thus the radar system does not remove precisely the

doppler frequency shift corresponding to the subradar point.

This means A(T +It,) would not be rotating at, say, F but

rather at some relative doppler frequency F 'whose value is

nearly F iftour a priori information was nearly correct.

In practice, for certain statistical reasons which are

soon to be discussed, when calculating P(T,F), the output

power, the sum over Nsinterpulse periods is broken up into

R sums over M periods ( R-t' NS), and M-tp is called the

Coherent Integration Period (CIP). The total output power

is obtained by summing the power calculated from each of

the R CIP's:
R- M-1pr~wt

PSTFzZ 1Z ALT+~ E~wi*rtp)e I

where

Let us now show that the resolution of each doppler strip

is inversely proportional to the length of the CIP and also

derive the form of the ambiguity function for the receiver

shown in figure 5a. From figure 5 we see that the complex
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voltage sample A( T + ts ) may be expressed

AL-T +It, zct~e '~IPt *1Lt) *I (t t--T& -Its)

where z Lt ) e' -: t)+ t, and z(t) is multiplied by

e iUml because, as explained previously, z(t) is a vector

rotating at relative doppler frequency F'.

Using the right hand side of the above equation to

substitute for the value of A(T+tLw%+3tp) in the expression

for P,(T,F)

P. M' (z4rF' SzTrF't .-2VFAt 2

P's(3 F)= Z 56.(S) z it -S)i C_(t-11$- T- Lm+rltp) ea

the term LA t -1 - T - E m+rjWIt . picks out the values

tz-: +T +.M4)tp in the exponent of e and also picks

out the same values oft in the argument of Zt t-S) so the

above equation may be written

P, (TIF) - '2\ S A 0S) -L eT +T +Cw+rtp-S) 

~ e e

Z 4 Z 1(A)(+Z'T + Lt tp1)e e

With R >tM we may set (see Shapiro, 1967, pp.1316-7)

Z (Tt1 -- Lm4rltp) Z LT 4i --

so that
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we may now easily perform the summation over h)

_ jHo-F -P') )Z1C)

so that

The function 14,ot-4))V has nulls occuring at

Mt?. ) -MtP

maxima between the nulls (see figure 6). The value of

the maxima at F-F'=0 is much larger that the value of

the other maxima so we may consider IHoLF-')I1  as a

filter whose bandwidth is ess ntially Mt, or

since Mt'is the time interval of one CIP. Thus, the

longer the CIP the narrower the bandwidth centered about F.

In the case of a point nonfluctuating target with a

component of relative motion along the line of sight to

the antenna Z Lt) bLt) and, recalling V11 ),

equation (27D) becomes
9.-) .. FPS

r=.*a

and, assutming the radar receiver correctly eliminates the

doppler shift due to relative motion between the point

-4
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nonfluctuating target and the antenna we set F '=0 and

rzo -,w

a sketch of a plot of the above equation is shown in

figure 4g.

We see from the preceding analysis that T(T,F) gives

the distribution as a function of relative delay and

doppler of power reflected from a nonfluctuating point

target that appears at the output of a ("noiseless")

receiver that uses a pulse matched filter (see figures 4g

and 4ff). The power appearing at the output of h,(t)

that was reflected from a target with a finite delay depth

and a distribution of doppler frequencies is given by

the convolution of 'iT(TF), the receiver output for a

nonfluctuating point target, with the description of the

tarret given by the target scattering function, P'(T,F)

where, as stated earlier, the integral is taken over all

values of relative delay and doppler and where

VCTF)= ARLp.' 2 CT F)

The factor ARL, has been inserted to account for the

factor PR that was omitted earlier in this section;

since P' contains the factor P1 we need only insertR

AL to account for the factor R Akipk)

I
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From equation (15) we see the quantity '(T--i)P't)'d

is the power reflected from the surface of the planet

corresponding to a relative delay between T and Y'+4

and a frequency offset between E and 4+ ; and

contributing to P(TF), the output power at relative

delay T and relative doppler shift F. The total

contribution to P(T,F) is the sum of

over all values of 4 and T , as we see from equation (15).

The sum just described is a sum of powers. One may wonder

why we do not sum over voltages and then take the square

of the this sum to obtain the output power. To explain

this we must consider the statistical nature of the

surface of a target with a rough surface, of finite

extent in delay and doppler (i.e., a spread target).

A rough surface is often described in terms of the

rms (root mean square) surface slope. If we knew the

relative surface height at each point on the target we

could calculate the rms slope by taking the spatial

derivative of the height at each point and calculating

the mean and variance for this set of measurements.

For most targets studied by radar astronomy a description

of the height at each point, even if it could be made,

would be much too complex to be useful. In practice, an

estimate of the rms slope due to surface height variations

roughly on the order of the wavelength of the transmitted
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signal or larger is used in developing a target scattering

function, which is a statistical description of the

surface as opposed to a complex description of every

individual point on the surface. In practice the rms

slope is one of the parameters estimated in a least

squares fit of theoretical tothe observed echo power.

We will now demonstrate that for a target with a

rough surface, such as one of the terrestial planets, it

turns out that a sum of powers yields a lower variance

of the output power than a sum of voltages.

Because the surface is rough as the planet rotates

the signal reflected from a position on the planet fixed

relative to the subradar point will have a random value

of magnitude and phase corresponding to random variations

in the surface structure (for a detailed description of

the reflection of electromagnetic waves from many different

models of rough surfaces see Beckmann, 1963). This leads

to a random variation in the sampled receiver output

values a (T +i.Qt,) and b(T f kts) and thus P,(T,F) will be

a random variable whose values are distributed according

to some probability density p(P).

We will now determine the density (PSA) so that we

may calculate the expected value and variance of PS'AL-))

the average observed output power R PS(TF)/ZR.

After we obtain an expression for the variance of

PSA(T,F) we will obtain an expression for the variance

of the average output power as obtained by squaring a sum
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of voltages and compare the relative value of these

variances.

The quantities b(TwtP) and a(T +yNt) are the real and

imaginary parts of a signal reflected from the area of the

target's surface corresponding to the relative delay T.

The signal reflected from different regions along this

delay ring will have different values of doppler shift so

that b(T invtp ) and a(T it? ) are due to contributions of

the signal reflected from all regions comprising the delay

ring at relative delay T, each region having a different

value of doppler shift. If we define TJ(T,F) to be the

complex voltage signal (at the output of a filter whose

impulse response *h,(t)) that is the contribution to

A(T +ntp) from the region on the planet corresponding to

the relative doppler frequency shift between F and F+dF

then we may write

V Tt1tPj$:(29
BT

where +3 T and -BT are the maximum and minimum values of

doppler shift associated with the region of equal delay on

the target from which the signal contributing to A(T) was

reflected. As we have shown, rotating AMT,f t Lback

by multiplying by e L and summing over all values

of m will yield the voltage reflected from that region of

the delay ring (at relative delay T) corresponding to
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the doppler frequency F; i.e., from equation (27B)

- I

\lr ~ M (AC) T +t-trit?) 63

+ 4(2 WA)

where

C r

(2D)

Cd-(1F) - [a (t L , t) C 5(zT F otp) - C TtL i 5t \(2Tf F t)1

Because of the rough surface A(T i-K) will have a

random value of magnitude and phase. In particular,

b(T tvi?) and a(T t np), the real and imaginary parts of

the signal reflected from the surface of the planet

corresponding to relative delay T are independent random

variables and each have a Gaussian distribution with an

expected value of zero and a variance which we will
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call T'l L-T). Since A(T+ tp) = b(T fotn) + ' a(T +nt)anY MT+ntp)

and a(Tint?) are independent A(T*Yttp) will have a zero

expected value and variance GOLCT) . In addition, as the

planet rotates the annular region of the surface correspond-

ing to a fixed value of relative delay will present

different small scale (i.e., on the order of a wavelength)

structure to the incident radar beam and therefore it is

reasonable to assume A(T+ltp) and A(T+stp) are independent

when 1-#s (1 and s are integers). We may relate 4(T) to

U (T,F) through the integral expression of A(T) (given

in equation (28)):

IS 1

UrIA(T)l ' JLI A(TV)1'= 1 ACTW) _S Ou-' . F -)AF u = TCT) (2?

where OrvJ(T*Y3)j4 is

Using equation (28a) we may calculate the auto-

correlation function of Ia' (T,F) from which we may

obtain the mean square value of NVR which is equal to

the variance of \/, since = (this follows from

equations (28B)(28D), and (28E) and the fact ELa1=W'L~=0o)

where we have made use of the fact Et.A (T+tAwrtp)A(tt+V4tP)V O

because these values of A are independent when A=A and

E LA (T +trl =O for any integers m and r. Because

I
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the complex voltage s ample A(T +Em+r7Itp) corresponds to

the relative delay coordinate T for all values of m and r

we have

ELIA CT +, C. t 0 }V= E E\IA LT) )

so now we write equation (28G) as

~V,v7~ 'IFI') 2 EUlA LWP I)#~

and using equation (28F) the above becomes

Since

* herwite

we have

-jtJ

w8f

we define

2 O

C2 1 H )

--- -----------

~ M
I

46,VVVVI C'T-3 PV )
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so that equation (28H) may be written

From equations (28D) and (28E) and the fact

\)avLa(1= \artbi it is easily verified E L\ - LcrV= 0

and E vC- .V: EjCe = so from equation (28B)

OI)P)Jf: Aa-U CL3T3 t-VaoL- 4,V 26
\I'- ' )M \

Also, from equation (28D) and (28E) we may show A and Cr

have equal values of variance (although using (28D) and

(28E) the explicit form of the variance is not easily

obtained) and thus from the above equations we have

We may use equations (27) and (28B) to write PSA(TF),

the average output power, as

C 11)F) +4 01F)

where

CLE) c,2

~(27)

-~i M,1F
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C
Using the Central Limit Theorem we will assume and -.

both have a density that is well approximated by a

Gaussian density of zero expected value and variance

G-L(T,F) (see equations (28D), (28E), and (28J)). Thus,

C(TF) and D(TF) have a )jdensity that is given by

(see Gnedenko, p174)

(R12 ) 2C

so that C and 6 , the expected values of C and D

respectively, is

00

CL ) = ?(C)Jc -:- ) T
0

and since C and D are independent, E PSAp 4 , the

expected value of P is

. Tr-) = Z.rIL7TF)

Since PSA (T,F) is the average value of the output power

in the presence of random fluctuations due only to

reflection from a rough surface (note we have not mentioned,

thus far, the effects of the noise due to the radar system)

the expected value of P ,(T,F) should be equal to P(T,F),

the theoretical model of the echo power distribution

(given by equation (15)) so we will write

(2' A)



- 40 -

To obtain P (TF) we calculate
S4)

and since C(T,F) and D(TF) are independent

so

so 474C F) (30)

According to equation (30) the variance of the average

output power PSA (T,F) is inversely proportional to the

number of Coherent Integration Periods used in decoding

PSA(TF) at each value of F.

To answer the question posed earlier to why we

calculate P,,(T,F) by summing po-7ers instead of summing

voltages and squaring the resulting voltage let us

calculate the variance of

L-T Z~

and compare the result with equation (30). Let us first

consider the sum

and determine p(), the probability density of p, the
amplitude of the resultant voltage. This is done in
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Beckmann (p128) and the result is

(32)

Since the real and imaginary parts of V,(T,F) have a

Gaussian density of zero mean and variance T (T,F) the

probability density of -- -9., the magnitude of

has the Rayleigh density

'f 0

V'r C

L r - 2

/V Te

which is simply the distribution for a sum of only

two terms (see Gnedenko, p173). We may now calculate 2

(~~' )~ 2
M

so that equation (32) becomes

P P*/2 FTZ-

R- d

Comparing equations (31) and (31A) we see

-- -- M

- Mx P -a / P, ( ,ra 3ZPMZ
P. L VIA

40 
V

YL #1 V.) ZT, (TIF)
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p(a), the probability density of Z2 L , is easily

obtained from p(p) (see Lee, pp.191-193); the result is

T1 Z>o

(Z'o

so that

ZpZ 16T"

and Vletl , the variance of ,, is

which is independent of the number of CIP's used in

decoding relative doppler frequencies. This is under-

standable, since the sum in equations (31) actually

corresponds to only one CIP of duration (R-M)tp.

Comparing equation (30) with equation (33) we see

that the fluctuations in the average output power PSA (TF)

are on the order of a factor R smaller than the fluctua-

tions in Pv (TF). It is for this reason that power

outputs from each CIP rather than voltage outputs are

summed over the R CIP's.
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II. ANALYTICAI INVESTIGATION OF UNDERSPREAD

GAUSSIAN TARGET

The real and imaginary parts of the sampled receiver

at time T relative to the a priori estimate of the time

of arrival of the echo signal, b(T) and a(T), are due to

reflection of the signal from the delay ring -n the planet

corresponding to relative delay T (for an underspread

target). We have assumed that the independent random

variables a(T) and b(T) have a Gaussian density of zero

expected value and variance L T I(T). We will now consider

the effect of adding to x(t) and y(t) (see figure 5) the

random signal n(t) which is due to receiving system noise

and determine the resultant noise signal in a(T) and b(T);

n(t) is independent of x(t) and y(t) and is assumed to be

white noise with an expected value of zero and variance

No watts per unit bandwidth. The expected value of

it), the noise at the output of the filters h ,(t) in

figure 5 due to the noise n(t) at the input, is zero and

the variance ofv((t) is the convolution of VtLf)I , the

autocorrelation function of h (t), with ony,(L), the auto-

correlation function of n(t), evaluated at Y= . The

functions 6'vyT ) onnL') &nrd Otji) appear as shown

in figure 7, where fais the autocorrelation function

of Yk(t):
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Because n(t) is white its autocorrelation function is an

impulse and we assume the area of the impulse to be N .

Thus,

? Mb ~T

and (see figure 7)

so that the sampled output of the sine and cosine mixers

in the presence of additive system noise is a(T) + Yi(T)

and b(T) + Y(T) respectively, where the variance of 1(T)

is -N'Y - The expected value of the sum a(T) + k(T)

is the sum of the individual expected values a(T) and Yt(T)

(which is zero) and because a(T) and Yt(T) are independent

the variance of the sum is tIe sum of the variance:

\Ibr [aCT)+ t (;T))= L p C..0 (T)+-i )

The same is true for the sum b(T) + (T).

Let us call P SWA(T,F) the average power calculated

when the effect of system noise is considered in addition

to the effects of a rough surface (i.e., P SWA is the average

echo power calculated from the samples a(T) + 14(T) and

b(T) +'V1(T)). The expected value and variance of PSNA(TF)

may be calculated in the same manner in which the expected

value and variance of PSA (T,F) was calculated by replacing

Ok(T) with T2(T) + N1if . When this is done equation (28G)
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becomes

where \/A(T,F) is the average value of the complex voltage

from the Y CIP calculated from the samples a(T) + I(T)

and b(T) + Y(T). Calculating the variance of VA, in the

same manner in which the variance of \, was calculated

will lead to the result

\ia LA3VY IVJAL1F)' I Z~U F + N-fi

which may be compared with equation (281). We may go on

to calculate VWrLPsfvl in the same manner that led to

equation (30) and find

VarLPSNA (,TII C)) ))

where

) 2 . 2 LT,) +N )

and using equation (28J) and (29A) ~ 1may be written

~~FUT)F4 1TF

and the expected value of P NA(TF) is

) 2 : 2 (53C)
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Let us examine the effect of the variance (7 of

the output echo power P SNA on the implied uncertainty in

the range (delay) estimate. Consider first the limiting

case of no system noise and no random fluctuations in the

amplitude and phase of the reflected signal (e.g., a target

with a smooth surface).

In this case the average observed echo power is the

same as P(T,F), the theoretical model of the echo power

distribution and one could estimate the delay to the sub-

radar point by calculating the cross correlation in delay

of the theoretical echo power distribution with the average

observed echo power distribution (which is the same as the

theoretical distribution except for a possible delay and

doppler frequency offset due to a priori uncertainty with

respect to these parameters). The value of trial offset

at which the maximum value of the cross correlation occurs

(say it is T' ) is used to obtain the delay to the subradar

point (the a priori estimate of delay is corrected by adding

to it T ).

When system noise is added to the sampled receiver

output and we observe a target with a rough surface so that

a(T) and b(T) are random variables the average observed echo

power will be PSNA(T,F). In this case we will cross

correlate (in delay) PSNA(TF) with P(T,F) to obtain the

delay to the subradar point. The value of trial offset,

T'=T , at which the maximum value of cross correlation
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occurs is used to obtain the delay to the subradar point.

However, the maximum value of the cross correlation of

P SPJwith P will have an uncertainty associated with it due

to the variance 0$.A associated with PI and we will now

determine this uncertainty.

The average cross correlation function, RA(T',F) will

be defined as the cross correlation in delay of P(TF) with

the average echo power PSNA(T,F): (in practice PSNA(TF)

is observed for only a finite number of values of relative

delay T, say T- V o,l)2,...)K. However, we may obtain

P SNA(TF) by interpolation of PSNA (T ,F) A o,2-K.):

RA ) = -T ( i.1% ') (34)

The expected value of RA is

EL~A~,V~ RuiJ) = 8c7 PeI))ELALT+1)) (34A)

The cross correlation in delay, R (T',F), may be

calculated for each value of F at which P SN (T,F) is observed

(i.e., it may be calculated for each doppler strip that is

"decoded". See figure 8a). Sometimes only one doppler strip,

centered on the subradar point (the "zero frequency component")

is decoded. Suppose, however, we observe NT doppler strips

at each value of T corresponding to values of relative doppler

shift F = F,, n * 0, 1, 2,. .Nj . Then summing the average

cross correlation R A(T,F) overall values of F, at each
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value of T (see figure 8b) yields

PIS2 RALTIV,) (.3ss

Qualitatively, when investigating the terrestrial planets,

one might guess that summing RA(T ,Fh) over all values of Y%

tends to increase SNR , the signal to noise ratio, as long

as one is careful not to sum RA(T ,F,) over many doppler

values at large values of relative delay, for at large

values of delay the noise in the received power (reflected

from terrestrial planets) is relatively strong compared to

the received pacer. We will now examine quantatitively a

scheme for determining the error in the observed value of

delay. This scheme, as we will see, depends upon knowledge

of 4Rss(*T) , the autocorrelation function of RS(T'),

which we will use to determine statistical properties of

Rs(T') such as its variance and covariance.

The value of T at which the maximum value in R,(T')

occurs, call it T' (which corresponds to the error in the

a priori delay to the subradar point) may be obtained by

taking the first derivative of R,(T') and setting it equal

to zero. The reason for using this procedure to determine

the effect of the variance of Rs(T') in determining the

delay to the target is that we now have a linear problem.
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That is assuming Rs(T') is parabolic in the vicinity of

T the first derivative of R5 (T') will be linear in this

vicinity and one standard deviation in will be

proportional to one standard deviation in T', and since the

value of T'= Ts' is a measure of the observed delay to the

planet, one standard deviation in T' is a measure of the

error in the observed delay to the planet, which is what we

would like to know.

From equations (35) and (35A) we may write

d T' JT'

L~aT') R VTn,)

and furthermore, using equation (34A),

00O c) PiVAj T+V) F
AT - T P ( L F)TFr

-SAT I f

so that

CIT - AT J T P(T"I ,)INA(-T *T'F")

and

,T ,,(36c)

-d
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As mentioned earlier, in the vicinity of s-o.. , =:0

we will approximate with a straight line, e.g.,

F'e
AT

where -a is the slope and b the intercept (on the y axis)

of the "best" line (in the least squares sense) that fits

the actual curve formed by the plot of T)vs. T

We will assume the least squares fit of Vs.T'

to a straight line is so close that the variance of the

parameters a and b (that are obtained from the fit) is zero

and thus a and b will be treated as constants. From the

above equation we see the maximum value of RW(T ) occurs

at T' T , the value of T 'for which 0 There-

fore, determining the error in the observed value of T'S

due to the variance of (which, ultimately,CM T1wihutmaey

is a function of the processing parameters and nature of

the target's surface and motion relative to the earth) is

sufficient to tell us the error in the observed delay to

the planet, and this is the object of this paper.

In order to calculate the standard deviation of the

error in T1 we express c)R,(T) as

SR s LT')
AT- -aJ MA)

d T '~
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where ( represents the random value of the variable T'

that results from taking the first derivative of 5(T ') and

solving for T' (e.g., [' - t" -$6 ) using the values

of a and b determined from the plot of VS. T'.

(see figure 9A)).

The motivation behind this procedure and how it is

used to obtain the standard deviation of the error in T

is given in the following argument, with reference to

figure (9). Suppose we use the plot of VS. T

to obtain T and then calculate the derivative of Rs(T ')

with respect to T and evaluate it at T'= T . From the

plot of vs T' we assumed there would be a linear

c RiL1')
relationship between and T so using the values

a and b we solvefotS', the random value of T' corresponding

to the random value 4 I
AT' T'=Ts'

which is equation (37A) evaluated at T. Next we want to

know what the variance of would be if we made many

observations of , at T '= Ts' . This information

is obtained from the above equation, which is equivalent
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to equation (37A):

Va1- 2z VarI iR (38)

and so the standard deviation of the error in the a priori

delay (i.e., the standard deviation of the uncertainty in

T , ) is times the standard deviation of , evaluatediT'

at T'= TS':

Let us now calculate the variance of . it

can be sho,,.n (see 6.573 class notes, spring 1971, p126)

-, =LTEAV)')
-T (40)

where the dot above the function R5 signifies total

differentiation with respect to the argument of R . if,

in addition, R,(T') is wide sense stationary (and we will

assume this is the case), then we may write T.'= T,'+'T and

EliSILRS'"j E 4(T' ,LV4
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Using equation (39) and the relation TI it

A' EdR5. 0

Defining

0,,1 S1Y) -~ E. EP.~T') ~

() = E.R5LV)R(T1^1)]

Tje have

8LT z- SR y

which relates O
5

gR('Y) , the autocorrelation function of

RS(T'), to ('Y) , the autocorrelation function of the

derivative of R,(T') with respect to T'.

The variance of may now be written in terms

of equation (40) and (41):

1 -- ).' =
C11:

(41)
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substituting the right hand side of the above equation into

the right hand side of equation (38) yields

L D - i

1/2.

RttT I
T$=T'3

By definition, however,
A T' T'=T'

reduces to

AD= L-'RIRsR pO

equals zero, so that A D

(4Z)

In order to evaluate the above we must calculate OR,, ).

Using equation (35)

L43)

Rati)~~ ~ ~ ~ ~ ~ ~ ~~~Ri'ik 95'Rt'i ' AT,)Rc'f5 7Z( Ri%(T'4YP

Let us work with the first term on the right hand side cE

the above equation; it may be written

E .RACT' F,) R (T'T)) -Z AT'RALT'J,) ,Vf4%)

using equation (34) to substitute for RA in the preceding:

,0%00
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writing -J*T'+'T = -J 'I - T *LT +T' in the argument

second PSMA in the last intpgral on the right above:

3,F -%~ -* F

Whe re

0 rTy, 0

making the substitution ,i-T -

0 60
Al S J i5dT PIV jF) POT +Js9y) OPSWAS,,kI , F,

v -aC -M

wco
w here ?p,(#)F,) SdT PLTFn)PLT+1,F,)

Equation (44) suggests the following block diagram:

Wk Op (-'T If RARIJ")

The second term on the right hand side of equation (43)

may similarly be expressed

494

wAc re #,,FSFF ) Al P[TFV)P(T+,,Fw)

-,)

(4)

(S A)

(4SS)

of the

(44)

Z 2 9 A LT'3 Fs) RA Wil I FV4)
ik V"

54Ax +' FYI) P('t -T + L I ',F

Z A (7,)
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In general, the function -t) F,,Fz) will be defined as

and also

Now, in terms of equations (44) and (45) we may write

9,,R$(') as

ao
Z S A 0v llo P(f)F% + A ? iftIV)0

?i M -,,A + , ) (46A)

where the above equality was obtained by removing the

restriction6 *r in the second term on the right hand side

of equation (46) and recognizing from equation (45D) that

jp( FwjF) p (I p, Fvt) andj OpSMA?): , (1 p)

At this point we would like to express OR,'jR1 R) in terms

of functions such as P SA (T,F), P(T,F), and T (TF).

Therefore we recall from equations (33A), (33B), and (33C)

ZaN0 'Ts
PALT F) PLTF) + N (47)

Var E ALT)) = P,) C + /4 r
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It will be convenient to write P SNA (T,F) in terms of a

constant part (namely, the expected value FSMA (T,F)) and a

random "noise" component which we sball call N(T,F):

PSNA -VF) = PTCTF) f N C1F) (4*J)

In order for equation (49) to satisfy equations (47) and(48)

N(T,F) must be independent of 5n and must have the

following properties:

var.Nof) g[P?0,)+Agt } (58

and we will furthermore assume N(TF) to be "white". The

autocorrelation function of P SfA (TF) may now be written

since P5A and N(T,F) are independent and N(T,F) = 0.

The function 1,LT'- F1F,,) which will be required to

evaluate the integral in equation (46A), is

P CTP F14 F m) $ ( p ' F ,,) + (NA

Recognizing the fact the system noise, in practice, is

much greater than the echo signal we will neglect

El FS PT)F)l = P(.T) F ) , the expected value of the average

echo power reflected from the rough surface (assuming zero

system noise), with respect to , the expected value
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of the system noise, and thus equation (48) becomes

T,' (TF)SNA R M%

Later on we will require an explicit value (in terms of

SNA 3 N e N()F FM ), defined in

accordance with equation (45D) as

S A~T N (T) Fk) N (T+T '

Since N(T,F) is of zero expected value, variance (QM I

and is assumed "white", the above becomes

where

ot~et WISE

and &F,6 ,, is merely a statement of the fact the noise

N(T,F) corresponding to different doppler strips (different

values of F) is independent so that, for example,

E L NT )F) NTF>= 0 'i F,* F,. This f ollows from the assumption

N(T,F) is "white".

Under the assumption of dominating system noise

PSNA(T,F) is, approximately, (see equation (47) and figure ICA)

S~fA M

-4



- 59 -

To avoid obtaining an infinite value for the autocorrelation

of PSIA (TF) we may consider P SA(T,F) to be a periodic series

of rectangles of arbitrary length (period) Ty and height

placed side by side (see figure 10B) so, using the definition

of th! autocorrelation of a periodic signal of period T

NT T

M + ~40LT)~~](53)

MM

and now we may substitute equations (52) and (51) into the

right hand side of equation (50A) to obtain

From eq-untion (46) we see we must cross correlate

#P~ie with Op. to obtain -this is done below:

-4
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and we have used the fact ,, must be symmetric so that

OF'T EFkl) C ;L F%;FM), Substituting the right hand

side of equation (54) into the right hand side of equation (46A)

we have finally,

and substituting the above expression of fRSgS(') into the

right hand side of equation (42) yields

,4D "2.M f T
T' Ts'

IT2 (56)
T =,

where we have used the identity 0 f ('T-FCFw)= O 'YF,.)

(see equation 45D)).

The value of a is obtained by differentiating equation (37)

with respect to T': -
J1 Rs T')

and using equation (360) the above may be written

Z = S JT f P(T) F)Pt '

Substituting the right hand side of equation (47) for the

value of PFSA in the above integral:

a = (T3Van) CT+t', Fv) (57)n -T
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where we have made use of the fact

T PC T,1-j '~ 0

We may now replace the a that appears in equation (56) by

the right hand side of equation (57) so that

AD L P

JT' 5T P -)Fr'=Fl
Op Fh) j

Equation (58) expresses AD , the standard deviation in

the observed value of delay for an underspread target, in

a convenient form because, presuming the preceding

assumptions are made, it can be evaluated as a function

of the radar system parameters with a knowledge of only

P(T,F), the theoretical model of the received echo power

distribution (which, as we saw in equation (15), is the

convolution of the ambiguity function with the target

scattering function).

At this point we will verify that the dimension of AD

is seconds if all times are expressed in seconds. If P

is measured in Watts then the dimension of , is \Az -sec
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and has the dimension V" -se . From the equation

above equation (54) we see the dimension of

is \-Sec' since the dimension of 8Q. is sec, the

dimension of Nofs is W (per unit bandwidth [cps) ; see

page 48; if P(T,F) is dimensioned as W then so is N11% ;

i.e., they must have the same dimension), and the dimension

of O,, is lAt'-sec. Therefore, the dimension of

N,13 2..
4*ecz

M z r Pi) is - w and the dimension

of equiation (58) is ... ,,e .Ts-= sec, as it should be.

Let us assume a simple form of the tarpet scattering

function in order to determine whether equation (58) will

yield reasonable results. In particular, suppose the

target scattering function is Gaussian in both the delay

and doppler dimension, e.g., suppose iCF is

, a a-T2/Tl -F2'/IB'

where R is the geometrical cross section of the planet,

Tc is the "characteristic" delay depth and BC is the

"characteristic" doppler width, i.e., at T: Tc ) F = ac

has diminished to times the value of 7' at T=F=O. We

will assume Tc = o.b'TD and Bc 0.1 x Eg where TD is the

delay depth of the target and Bi sbis the limb-to-limb
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relative doppler spread. The radar cross section, 0

may be expressed as

S- figR e - F1L15

4D -,W

- Tc )r R

where Rp is the radius of the target. In the case of

Venus, for example, T = 40 "sec 10 C pS, aV

T2 (011.4 OXIO's Se. X O .1% cps) 1 PR,

= 0.04-1T j .

The average power received from the cell corresponding to

delay-doppler coordinate (T,F) is

STIf LTNT-'rI-)P'(TF)

where , is the peak value of 2V(T,F) (see Figure 4g).

Note that as 11 (T,F) approaches an impulse of volume,

say, i'hT5P P(T,F) becomes

PLTF) P r(TF-~
0~

which is the correct behavior (see Evans and Iagfors,

1968, p66).

The convolution of TLwith P' can be performed, with

some difficulty, over the range of 'Y but cannot be

performed analytically over the range of F (recall, as a
siv'TMt,F

function of F, ' L - Even if the convolu-

tion in F could be obtained analytically the resulting

-4
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power distribution P would be rather complicated. We

would still need to obtain an expression for fe(T,F) in

order to examine the behavior of equation (58) and this

would be a difficult if not impossible task to do exactly.

Therefore, we will begin at this time to make some simplify-

ing assumptions.

Assume first of all the extent of V(T,F) is very

sharply peaked compared to P'(T,F). (Later we will assume

the opposite is true in order to obtain the behavior of AD

when P' is sharply peaked compared to V). Approximating

one period of 'T(TF) as an impulse of volume Vyt we have

.0r (SF) V

We have convolved P(TF) with only one period of J(T,F)

rather than with the entire periodic expression 9AT,F)

because we have assumed the delay to the target is known

to within one period (see the discussion in Section IB).

In the delay dimension 1' is a series of triangles squared

and as a function of F it is given by \H0 (F)j1 (see

equation (15)). The peak height of the triangles-squared

is PT (i.e., the peak height of the triangles is )

, the peak value of T'(TF), occurs at T=1%, 0

(see, for example, figure 4g) and in this example its value

is

rMk ~ ,16,O) =iyM2
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Since the base of the triangles squared is Z'T the area

under each triangle-squared, A1 , is

A1  S ̂ 1 ( rT~i PT'I0 I^

The area under one period of the curve described by

IHO(F)I' ) Av ) is equal to the area under one period of

. Because it is difficult to integrate this

function we will make the approximation

A; = -) (see Kraut, p208)

tp

Because V'(T,F) is separable the volume under V is AIAp

and noTw? we may write P(T,F) as

CT) ) __')_A_-_ A

Before we continue we should note dividing by T, has

the effect of normalizing 9V(T,F) so that, for example,

the peak height of the triangles-squared is unity and so

the peak height of each of the triangles is also unity.

Thus the height of Og(the autocorrelation of the pulse

matched filter) at 'T=o is unity and the variance of

Y (t) ( = #ni)# ) evaluated at 1=0 ) will be '/ No

as opposed to 'hNoa (see figure 7). The dimension of

N0 is watts- sec or watts per unit bandwidth (see p39)
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and is equal to 6TN where 4 is Boltzman's constant and

T is the system temperature.

Let us now calculate

OPPF) S" d P P CLE)P ur 4,+y ) F )

A A, A T 8 e

??PA E TA

Kre~I ~T/T~(WAaFc

and

n8)2 2F ,.jq ' I
Opp t'YF) (PR AIAF ) e ' e

C 'T'O

S-(PRAA

Assuming T , the position of the peak value of Rs(T')

is zero or very close to zero

OpT'F) I

dT'' T-r:

A RI 2 i/-

(P AT F f -~le4 (62.)

and substituting the right hand side of equation (61) and

(62) into equation (58) yields (replacing No ̂ s with /V .kTi)

-2 R - -Toy rT. \AT11AD bu,=a 1 ((03)
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We may express R, the number of CIP-s, as the total

duration of reception of the echo signal, t (we will

assume t1 is fixed in this paper), divided by Mt?, the

duration of one CIP:

The maximum number of doppler strips decoded is Sol Mtp ,

the limb-to-limb doppler spread of the target dived by

, the frequency resolution of each doppler cell.

We denote .Bit MtP1 as the largest integer value : Bjrjtp

so that the sum in the denominator of equation (63) is

limited to [Pr AtP1 terms. Let us substitute into the

right hand side of equation (63) the values of AiA f,

and ' given above and also make use of the relations

Mt and A = L.j.11 t p to yield

31. -2-2 aT,,JT. tp , I (63A)

In examining the behavior of AD as certain parameters

are varied we will fix the value of PA , the average

transmitter power and tT, the reception time. Because we

are assuming PA is constant the peak transmitted power, PT ,

must necessarily clange as TS and tp are varied. The
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relation between PTP ,'Ye and tp is

:L? (G3B)

Writing P.P - ? (where B %a ARntsf )ee A tt0iKA) and substituting

the right hand side of the above equation for P.T equation (63A)

becomes

14
312 -Z-2 TN CA_p _

AD = - ((o4)

We should recall that the above equation applies only

when the delay and doppler resolution of the radar receiver

is very fine so that TkT,F) may be approximated by an

impulse compared to P'(TF). This means we must have

MtP T(64A)

'YO (4 0-1x < o *I

We now consider the case in which P' (TF) may be

approximated by an impulse compared to TI(T,F). In this

instance we find

PcF,) P~

Again assuming T' , the position of the peak value of

R6 (T') is zero or very close to zero equation (58)
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becomrvs (replacing N "YB with TA)

P C-TF,) Il-I

cIT~ ?PCir J0

Since the autocorrelation of I (T,F) is to be performed

only in the delay dimension we realize this involves

autocorrelating the now familiar triangle-squared function.

According to the above expression of AD we must then

calculate the second derivative of this autocorrelation

with respect to T' and evaluate it atT7O . A somewhate

tedious calculation yields

aT'1 MA 3 Ts

and

24TN

ZT T

using R av

at T'=o )

2 kTN
P9, M t

(number of doppler strips decoded

'IS

A D = --T~
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The effect of this very poor resolution may be considered

as nearly a uniform weighting of P'(T,F) over all values

of T and F for which the target scattering function is of

significant value. Thus, \NO(F 0 ) \ evaluated at any

value of F in the range - fjB a , is not

significantly different from 0 ,)\ 14- So

Fir.~ t__Io

and using P .z-F and equation (63B) the above may be

wiritten

AD 21TN -'Ys

Because we have assumed poor resolution in this case we

must limit the application of the above formula to the

region

Mtr (65A)

In addition to the restrictions on the values of -Ep

and 'Y in equations (64) and (65) we recall, according

to the basic premise of this paper that we will confine our

attention to underspread targets, we require

TD tP(

(the desirable implications of this inequality are discussed

in section 13)
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III. NUMERICAL RESULTS

Let us, for example, apply our results to a typical

Venus ranging experiment since Venus is a good practical

example of an underspread target. The values of the

parameters appearing in equations (64) and (65) will be

consistent with the values used in the radar measurements

mande on Venus by Pettengill et al in 1964 using the

facilities of Arecibo Ionospheric Observatory (see table I

and Pettengill et al, 1967). (At the operating wavelength

of the Arecibo facility the value of Bi for Venus ranges

between Gcs at inferior conjugation to 25 cps at superior

conjunction; since To for Venus is 40 meec the product

B9ATo is always 4 and thus Venus is always underspread).

Using the values of the parameters listed in table I we

calculate

=(11Tc6 b IT R4 = 0. o4n Rj - 4:1 lo" w

PT C7TLIL-
R -84wR.-()x -x Anl =h

(at Zent)

A)' 0 V47- 2.16 - I \W~ At - se c (at ZentA46

When the antenna is pointing 200 below the zenith point

the gain decreases by nearly a factor of 2 (see table I)

and we will assume the effective receiving aperture goes

down to 0.4 times the geometrical antenna cross section
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and the system temperature increases slightly, say, by a

factor of 1.25 so that

A U Z0 ze*U tWhgle)

OnPt 3.S )O-ZI \ec t 20 zeUi angle)

Using equations (64) and (65) the behavior of AD with

Mtp , the length of the CIP, was examined in the case of

very fine and very poor resolution. Values of the parameters

typical of those for observations of Venus made at Arecibo

in 1964 (see table I) were used. The received time (t')

and ?A , the average transmitter power, were fixed at 800 sec

and 100 kW respectively. The zenith angle of Venus was

assuamed to be 200. For both fine and poor resolution tr was

restricted to the values T104tp al which is

0.04 sec C t P < O.O se .

for Venus.

In the case of fine delay-doppler resolution only the

values of -t, j 0.%SJ =1crt were considered (of course,

tha smaller - , i.e., the larger Atp , the better the

approximation that led to equation (64)). Also, in this

region, 'YS is assumed ICS sec (typical values of 'YS

used by Pettengill et al in 1964 were 0.1 - 1 msec) to

satisfy the requirement ^e, 4< 0-1c T = 4Y'O 3 sec (see equation (64A)).
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Using equation (64) with the appropriate parameters listed

in table I we find

A' = 10.8psec. for tT =800sec (66)

zevlth agIe=20

independent of Mtp, the duration of the Coherent Integration

Period (as long as At? is & Ics to satisfy the assumption

made in arriving at equation (64)).

To understand why b D is independent of Mtp in this case

let us calculate AVE , the ratio of the average echo

power to the standard deviation of the echo power correspond-

ing to each delay-doppler cell that is decoded. Using

equations (33A), (33B), and (330)

From the above one might expect that 4D would increase as

frequency resolution, or the length of the CIP ( /tp), is

increased. However, as the frequency resolution increases

more delay-doppler cells may be decoded and, as it turns

out, r..E decreases at the same rate as the square root of

the summation of the average power from each of the

[B,14t\ -\ doppler cells increases (see equation (64)) and
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as a result we recover the same signal to noise ratio for

all values of Mtp.

In obtaining AD in the case of fine resolution

(equation (64)) we have found AD is the same for all

"allowed" values of tp , i.e., o.o4 t pE 0. 10 sec

and for all values of Xa sufficiently small (namely, less

than about 1 msec). This is a result of varying P1 , the

peak transmitted power in such a way that ?A, the average

transmitted power, is constant. Thus, tPJ?;X1 = tPlBTe --=P

is constant and substituting 'IBA for tPIPR in equation (63A)

we find AD is independent of tf and1" (as long as the delay-

doppler resolution is sufficiently fine so that the approxi-

mations that led to equation (63A) are valid).

We may compare the value of AD given in equation (66)

with the estimated delay error of 50 jisec for Venus ranging

reported by Pettengill et al in 1967 using the same values

of the appropriate parameters we have used to obtain

equation (66) CrS waY 6 S Imso av% tpwbs 'O-Isee).The dif ference

between the two estimates of delay error is due to the

simple Ganssian model.assumed in this paper and to the not

very greatly refined error analysis used by Pettengill et al

in 1967 (see Pettengill et al, 1967, and Jurgens and Dyce,

1970). However, this difference is not great if we consider

the "99% confidence level", or 3-AD error, which is 33 usec.

MNL_



- 75 -

Let us now turn our attention to figure 11, in which we

have plotted the duration of the CIP (Mtjp) versus AD in the

case of poor delay-doppler resolution with the use of equa-

tion (65) and table.I. In this plot Mt, is always 2Sces

in order to satisfy the requirement At,>.OpBik= ces and 'N

was fixed at 4-0 Iof sec to satisfy the inequality'I>>oTDKIol'sect

(see equation (65A)). Again, we have set PA1OOl6W)t too 0sec,

and the antenna was assumed to be pointing at a zenith angle

of 200. The range of tp for which figure 11 applies is

o.os sec 6 tp S o.Wsec. The minimum value of the duration of

the CIP for any value of tp is, of course, tp sec , and

must always be greater than 0.04 sec because the baud

length in figure 11 is assumed to be 0.04 sec. Since we

are interested in measuring the range to the target tP must

be greater than 'YB . As a somewhat arbitrary lower cutoff,

therefore, the length of the CIP versus AD was not plotted

for a CIP less than 0.05 sec.

As we have mentioned, figure 11 describes the relation

between AD and ItW' for values of Mtr so small that there is

essentially no frequency resolution (i.e., the distance

between the first nulls of the frequency resolution function

li icfy)j , is much greater than the radar doppler spread

of the planet). In spite of this, from figure 11, we see AD

decreases as Mtpincreases. This decrease may be attributed

to the fact that as the frequency resolution approaches

the radar doppler width of the planet less noise signal

contributes to the output power because the doppler frequency

A
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dimension of the target occupies a greater fraction of

the resolution bandwidth. The result is 6D decreases as

the square root of the bandr&idth, i.e., as , as we

see in equation (65). (Also, see Evans and Hagfors,

1968, p39 3 ).

III A. SUMMARY

We have examined the behavior of the semi-analytically

derived expression for one standard deviation (AD) in the

estimate of delay to an underspread planetary target (with

a rough surface) as a function of the radar receiver and

processing parameters. The average transmitted power and

duration of reception of the echo signal were fixed (in

practice, this is approximately true) and 'ya (the delay

resolution), mt. (the frequency resolution), and t?

were varied. Using a simple Gaussian model for the

target scattering function and making some approximations

it was found that, in general, AD is smaller for fine

delay-doppler resolution than for poor resolution. In

particular, AtD was observed to decrease as M increased

(i.e., as the frequency resolution increased. For

sufficiently high resolution, however, AD was found to be

independent of the length of the CIP. This was explained

by noting that in the method we used to determine the delay

to the subradar point the result of summing the power

samples from the large number of doppler cells(which high,
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frequency resolution allowed to be decoded)was cancelled

by the large fluctuations in the decoded output power in

each cell that occured when the received time and average

transmitter power was fixed. For very poor resolution a

plot of AD versus Mt? was obtained (figure 11) using values

of the appropriate parameters fcr a typical Venus ranging

experiment and it was observed that AD varied as (Mtp)

(equation (65)). Thus in this case AD decreases as Mtp

increases and we saw this was due to the fact the target

occupies a greater percentage of the doppler resolution

bandwidth as the frequency resolution increases (i.e., as

Mtp increases). Therefore, as Mt? was increased the signalpower

corresponding to the region beyond the limb of the target

(but within the resolution of the receiver), which

contributes only to "Incise", was decreased.

fiMk-
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IV. SUGGESTIONS FOR FURTHER RESEARCH

There are several obvious, interesting, and useful

extensions of the work presented in this paper. As might

be expected, future investigation in this area must deal

with the problem of evaluating 6D for more realistic

planetary targets and also for overspread planetary targets.

Attention should first be given to evaluating the

expression for AD as derived in this paper for a planet

obeying a scattering law that gives a more accurate

description of the observed echo power distribution than

that given by a Gaussian scattering function. Scattering

functions that yield close agreement with planetary radar

observations have been derived by Ha'fors (see, e.g., Evans

and Hagfors, Chapter 4, 1968; and Jurgens and Dyce, 1970)

and Muhleman (see, e.g., Jurgens and Dyce, 1970). (The

scattering functions derived by Hagfors and Muhleman

correspond to the variable T'in equation (10)). In this

case an analytical evaluation of AD is strictly impossible

to obtain and the best treatment of the problem of

evaluating the behavior of AD with respect to the radar

system and processing parameters would employ numerical

methods of analysis.

The next step would be to derive an expression for

in the case of overspread targets (with a rough surface),

specifically, targets for which BqlD>\ and for which the

hm-
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PRF was ' ig and tp CTI . The severity of the resulting

"aliasing" of the observed echo power distribution in both

the delay and doppler coordinate (see the discussion in

section IE) would depend upon how much greater than unity

the product Sato was and on the scattering law that the

target obeyed. Both Mercury (B,1o0 A4-I and Mars (C1T 06S2'

are examples of overspread targets.

Finally, the effects of large scale features, such

as mountain ranges, on the estimated delay error for

both underspread and overspread targets should be investigated.
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LIST OF SYMBOLS

A list of some of the frequently used symbols is given below

T

F

1 (T, F)

P'(T,F)

P(TF)

Psj (T,F)

PSNA (TF)

RA(T' ,F)

S(t )E %fx(t)=~h

A DWe

Mt,

NS

N T

R

'YFS

Time delay relative to delay corresponding
to subradar point

Doppler frequency shift relative to doppler
shift of subradar point

Ambiguity function

Target-scattering function

Theoretical echo power distribution
(convolution of T'(T,F) with P'(T,F))

Average output echo power distribution for
echo signal reflected from a target with
rough surface but assuming zero system noise

Average output echo power distribution in
presence of system noise and random fluctuations
of sampled echo amplitude due to reflection from
rough surface

Cross correlation of P A(TF) with P(T,F)

Expected value of x(t,f)

Umb-to-limb doppler spread of target

One standard deviation in observed delay to
subradar point

Duration of 1 CIP

Number of pulse repetition periods in timet T

Number of doppler strips decoded at relative
delay T

Number of CIP's used in decoding a doppler cell

Baud length

WIL_
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LIST OF SYMBOLS (Continued)

TO Delay depth of target

t, Pulse repetition period

T Position of peak value of icn') , corresponds
to observed position of subradar point relative
to a priori estimate

tT Total time duration of reception of echo signal
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FIGURE 4 (Cont. )
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FIGURE 6
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FIGURE 10
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FIGURE 11
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TABLE I

Typical values of relevant parameters corresponding to radar
investigation of Venus by Pettengill et al in 1964 (for
definition of symbols, see text)

R 400 sec-c = l.2 x 10'm

tT * 800 sec

P =6050 km

X = 0.6972 m

=430 Wi

Bi = 10 cps when R = 1.2 x 101M

Ca = 3 x 107 sec when R = 1.2 x 10"m

To = 40 msec

GT = 4.2 x 10 (antenna pointing toward zenith)

= 2.4 x 105 (antenna pointing 200 below zenith)

L ITL = 0.7

L Y = 0.9

A = 0.6 xii ('-P ft) 2 = 4.4 x 10 m (at zenith)

= 0.4 x I( '-"ft)2 = 2.9 x 10 m (at 200 keith2angle)

PA = 100 kW

T.,= 2000 K (at zenith)


