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by
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the requirements for the degree of Master of Science.

ABSTRACT

A semi-analytical investigation of the error in.

the estimate of the radar time delay to an under-
spread target is conducted., The target is assumed
to be described by a Gaussian scattering law in

both delay and doppler frequency and it is assumed
that system noise power exceeds the average echo
signal power in a single coherent integration
period, The results of the investigation are
applied to typical radar ranging for Venus and

the standard deviation of the delay error is given
in terms of radar receiver and processing parameters.
When the total reception time of the signal and
average transmitted power is fixed the delay error
is seen to decrease as the resolution of the radar
system in delay and doppler frequency is increased.
As resolution becomes sufficiently fine a point

of diminishing return (with respect to the resulting
decrease in the delay error) is reached.
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Title: Assistant Professor of
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I. INTRODUCTION

Planetary radar ranging is done routinely for Mercury,
Venus, and Mars. The usual method for both simple ranging
and mapping planetary surfaces is the delay-doppler method,
first proposed by P. E. Green in 1959 (see Green, 1960).

Green pointed out that the signal reflected from all
points along the intersection of the planet's surface with a
plane parallel to the plane containing the apparent axis of
rotation and line of sight to the planet will have the same
doppler shift due to the relative motion of the earth and
planet (see figure 1). As we will see later, the doppler
shift for points on this line relative to the doppler shift
for the sub-radar point is directly proportional to the
distance of the plane containing this line of intersection
from the plane parallel to it passing through the subradar
point (the subradar point is the intersection with the
planetary surface of the line joining the radar and the
center of mass of the planet). In practice, processing of
the received echo signal can never achieve resolution fine
enough to tell us how much power was reflected from a ''line"
on the planet's surface but does indicate how much was
reflected by a "strip" of finite width on the surface,
called a doppler strip (see figure 1lb). It is convenient to
express width of a doppler strip in units of frequency since
it is the frequency shift of fhe echo signal that is actually

determined by analysis of the receiver output power. It will



be ghown later (see section IB) that the width of a strip is
inversely proportional to the Coherent Integration Period
(CIP) of the receiver output signal so that in order to
reduce the width of & strip to zero (i.e., reduce the strip
to a line) the CIP would have to be infinitely long. There
are practical and statistical reasons for'limiting the
length of the CIP. They are discussed in section II.

Green also noted that the intersection of the surface of
a spherical planet with a plane perpendicular to the line of
sight to the planet forms a circle and the signals reflected
from all points of the circle will return to the antenna at
the same time. 1In practice, as one might expect, instrumental
factors, the uneven nature of the planetary surface, and
statistical reasons prevent us from resolving a circle on the
surface of the planet and limit us to resolving an annulus or
ring of finite width on the surface, called a delay ring,
from which we may say an echo signal was reflected. The
width of a delay ring is expressed in units of time.

Although planetary targets subtend very small angles
compared to typical antenna beamwidths, Green noticed that it
is possible to resolve small regions on a planet's surface by
resolving the distribution of echo power in both doppler and
delay, i.e., as a function of doppler frequency shift and of
time of reception of the echo signal. The power density at
each point in the delay-doppler coordinate system is related
to the power of the signal reflected from the region of the

planet's surface corresponding to the intersection of a delay



ring and a doppler strip (see figure 1lb). Just how the
received power distribution is related to the form of the
transmitted signal and to the reflection characteristics of
the planet's surface will be discussed when we talk about the
ambiguity function (section IB). For a perfectly smooth and
spherical planet most of the echo power would be received
effectively from the first Fresnel zone (see e.g., Rossi,
pl67) so that the distribution of power versus delay and
doppler would be very narrowly peaked. However, because of
topography and roughness of real planetary surfaces a
measurable amount of power is backscattered from other
regions on the planet.

Planetary radar ranging is done by sampling the received
power density distribution (in delay and frequency) at
several different values of delay and at one or more doppler
frequencies. To determine the position of the subradar point
a least squares fit is made to the observed echo power
distribution of a theoretical distribution or "template'

(see Rogers et al, 1970). One of the parameters estimated

in the fit is the delay to the subradar point. The resulting
uncertainty in the delay estimate and the effect on this
uncertainty of varying the number and resolution of delay

rings and doppler strips will be examined in this paper.

I A, BACKSCATTERED POWER
We begin by obtaining an expression for the distribution

in time delay and doppler frequency of power backscattered by



the planet's surface. The delay and doppler shift associated
with the motion of the center of mass of the planet will be
ignored for the moment; in the radar receiver we attempt to
eliminate these effects based upon our a priori knowledge of
the relative motion between the target and receiver. The
effect on the backscattered power distribution of the signal
processing performed in the radar receiver will be discussed
in the next section (I B).

A wave reflected from an annulus on the planetary surface
subtending an angle between g and g + df was incident upon the
surface at an angle between g and ¢ + dg (see figure la).

This corresponds to a signal delay time between 7T and T+ d
(by delay to a point on the planet's surface we mean round
trip time of the echo travelling between the antenna and a
point on the planetary surface). Because the planet is
rotating the signal reflected from different infinitesimal
regions along the same annulus will have different values of
doppler shift. In particular, the doppler shift lying between
f and £ + df is due to reflection from an infinitesimal region
of the planet's surface formed by the intersection of the
surface and the infinitesimal region parallel to the plane
containing the line of sight and apparent axis of rotation
(see figure 1b).

The width of a delay ring and a doppler strip as discussed
in this section and this section only is thus dyY and d4df
respectively and does not refer to the delay and frequency

resolution of the radar system. The delay and doppler



resolution depend upon the shape of the transmitted pulse
and the radar receiver system as we will see in sections IIIB
and IB.

The Cartesian coordinate system x,y,z (see figure 2) has
its origin at the center of mass of the planet with the z
axis pointing toward the antenna, the x axis perpendicular to
the z axis and the y axis perpendicular to the x-z plane.

The aprarent angular rotation of the planet projected into

the x-y plane, @, , is along the y axis. The radius of the
planet is constant for our purposes and is referred to as f

in figure 2, The infinitesimal area of the surface correspond-
. ing to the nte delay ring is centered at z = z, and the inter-
section of the W$!doppler strip with this delay ring is
centered on the coordinates Xwm,YamZw in the (x,y,2z)
coordinate system,

The time delay (round trip time of the echo reflected
from a point on the surface) for power reflected from the
subradar point is 7Y, and the time delay for power reflected
from the nt delay ring (see figure 2) is Yw. The differ-
ential area of intersection of a delay ring with a doppler
strip is 45 on the surface of the planet and its projected
area on the x-z plane is dA (see figure 2). From figure 2
we see we may write Z, as

Z, = P- %(Tn"fo)
=P-ET ()

where T =2 4,-7,
C = speed o{\igkt



solving for Xwmp

cF (2)

The differential area in the x-z plane, dA y 1s (see figure 2)

g €
dA =dxdz - 479, 4F4T 3)

® is the angle between the Y axis and the vector between d5

and the origin in the (x,y,z) coordinate system so that

(see figure 2)

dA = AS cos®
Thus
2
ds ¢ b C4)
4+, coshd
To obtain cosd in terms of the delay-doppler position of
we define direction cosines as follows
X 13
S S (5)
P ZPWa
Zn C
— = \- el
b“ = cosf (1
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1f f;\is the doppler frequency of the signal returning
from the doppler strip centered at (xXm, Ywn,Zn), {ois the
doppler frequency of the signal returning from the subradar
point, and V is the frequency of the radar carrier signal

emitted from the antenna, then we have

'FW\"fo EF = Z-Ji" Wa

Using the fact the sum of the squares of the direction

cosines equals 1 we write

Xw:-bygh +Z 2 :‘31

L S 2 Y
Yemn * I(P""XM“Z:) = ¥ pcosd

Using equations (5) and (6) we may write cosine@ as

2f2 y
¢ = - & - e 1yt]12
os® = % [ v " U sz)] (1a)

-t

'
zPVw —— [V w;T‘( ‘[‘)-'F"]Iz (18)
The negative value of cosf corresponds to the element 4%

in the Southern hemisphere of the planet (if the direction of
Eﬁais defined to be North). For the present it is assumed
the planet is symmetric about the x-z plane. We shall also
assume the planet has rotational symmetry about the~z axis.

Substituting the positive value of cosf into equation (&)
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we have

oo o dF 4T )
T 4V, SR e
L S U - 5Tl

If we call the power scattered back to the antenna per
unit area of planetary surface ?;.—";’m ( Prand ¢ are defined
below; since rotational symmetry has been assumed ¢ ' is a
function of only the angle of incidence, @), then the power

at the input of the radar receiver is

P (zaxedxdz = Py .":_‘2_)_"..5._. (9)
§§ 09149

where (see Radar Studies of Mars, 1970)

SSGﬁﬂ)AS = radar cross section = ¢~

¢' = cross section per unit area of surface of
the target
P = 8%
‘
B = (A x (o )k,
§ = radar cross section
ﬂ~ = transmitted power (peak value)
Gr = antenna gain
Lt = transmitter waveguide attenuation
R = distance to planet

LA = atmospheric attenuation
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We would now like to obtain a relation between the angle
of incidence, g, and the relative delay and doppler coordi-
nates T, F, so that 0’k¢) and thus the right hand side of
equation (9) may be expressed entirely in terms of T and F.

To do this we note, from figure 2
psimg - Ji-z2 P

= ‘ ~(p-cT

Pat-LP- )

From the above equations we can express g as a function of z
or T. We denote these functional relations by writing
g = $.(2)
= P LT)
so that ¢'may be expressed in terms of z or T: (although,

of course, z # T)

o'z TP = 6B = 63l

gt

0

9% (BT = 0 (T)
where the different subscripts denote the different functional
dependence. Expressing ¢ 'in the form G;XT) and using

equation (8) we may write equation (9) as

i Tlgrds )
P ——}"’——— = PUT,E) dTSF
where
P‘(T)F): K c(lfr LT) T N (‘0)
[l - ('ZP “a) - ()= %})R]:
- Pa
K= = ()
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and G'is called the target scattering function.
I B, THE AMBIGUITY FUNCTIUN

So far we have only talked about the power scattered by
the planet and not the power appearing at the output of our
receiver, The connection between the two is made by means of
a function WY?*(T,F) called the ambiguity function of the
radar system.

In this section we will see that ¥!(T,F) actually
represents the radar system's response to a point non-
fluctuating target (examples of this kind of target will be
given later in this section). If, for example, the point
target is at zero delay and doppler frequency T and F are the
delay and frequency variables of the radar output,

The function Y*(T,F) depends on both the transmitted
waveform and. the receiver impulse response but we will assume
that the receiver filter has an impulse response, h,(t) which
is matched to the transmitted waveform. If the transmitted
waveform is Y (t) then h (t) will be Y (t, - t), the time
reversal of Y(t) shifted an amount t, to make h,(t)
realizeable. For this combination of signal and filter

Y% (T,F) is given by (see Evans and Hagfors, chapter 1, 1968)

FHLE) 7 1YWY wm ettt

~ Q0

\* (12)

where the star indicates the complex conjugate of the function
and the line beneath the symbol indicates the function is
complex. We use complex numbers to describe both the ampli-~

tude and phase of a signal (see, e.g., Bracewell, 1965),
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The amplitude of the complex modulated carrier wave Y(t) is
1Y(B)] = ,j‘gm\;m‘ , the magnitude of the complex
number Y(t). The projection of Y(t) onto the imaginary (j)
axis is called the imaginary part of ¥Y(t) and the projection
of Xﬁt) onto the real axis is referred to as the real part
of Y(t). The phase of Y(t) with respect to the positive real
axis is the tangent of the angle between Y(t) and the positive
real axis., For example, the phase of Y(t) is 0° relative to
the positive real axis and the phase of jY(t) relative to the
positive real axis is 90°, Likewise, the phase of -jY(t)
and -Y(t) is -90° and 180°, respectively. 1In this paper,
however, we will be concerned only with purely real rectangu-
lar pulses which modulate the transmitted carrier wave.

Radar ranging signal processing utilizes both analogue
and digital systems (see, for example, Pettengill et al, 1969).
The echo signal is first mixed to lower frequencies and passed
through a pulse matched filter by analogue systems and then
sampled at discrete time intervals, converted to digital form
and presented to a digital computer for final processing.
This processing scheme will be described in detail later in
this section. 1In this case, ¥!(T,F) take the form (see Evans

and Hagfors, chapter 1, 1968, and Shapiro, 1967)

PHTFY = & - h
DR = IHtEIE Z Aaka §dg Xymig s T-rtd | (1)
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where

Ag antenna receiving aperture

Lg waveguide attenuation in the receiver

and where m(t) is a periodic series of rectangular pulses of
duration T (called the baud length), and repetition period
tp (called the pulse repetition period or PRFP), Kt} is the

envelope of one period of m(t) and H (F) is
S \Y\"ﬁmtp‘:

(14)
swz gipf

HUEY =

where Mt, is the Coherent Integration Period (defined later
in this section) and R is the number of Coherent Integration
Periods. The variables just mentioned will be precisely
defined as the need arises later in this section. For the
present, it is sufficient to note that ¥ (T,F) is separable
(i.e., has a part dependent only upon F and a part dependent
only upon T). The theoretical radar receiver output as a
function of T and F, P(T,F), may be written as a convolution
of the ambiguity function with PI(T,F), the target scattering
function (which describes the distribution of backscattered

power from the target):
POL,FY = §§drdf ¥ (1-4,F-)P' (3,5 (15)

where the integral is taken over all values of relative delay
and doppler of the target.

let us examine the physical meaning of Y'(T,F) and
investigate how the ambiguity function contributes to

ambiguity in relating points of the target from which the
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transmitted signal was reflected to points in the plot of
output power vs. T and F. The theoretical model of the
receiver output power, P(T,F), mmy be considered a result of
the ambiguity function "probing' the target scattering
function., Specifically, from our understanding of the
convolution integral we can interpret the output power as
the volume under the surface formed by the product of
P'(T',F') with ®'(T',F') offset an amount T in relative
delay and F in relative doppler shift. If ‘YTT’,F') were an
impulse then there would be a one to one relation between
P(T,F) and P'(T,F). In fact, in this case, we would have
P(T,F)=P' (T,F). However, because of the extent of YXT,F)
in the T and F coordinate as shown in figure 4g, P(T,F) at
each value of T and F corresponds to P'(T,F) at more than
one value of T and F. 1In other words, the value of the
power at the receiver output that appears at, say, relative
delay T=T, and relative doppler F=F, is due to power reflected
from a region on the target having a range of values of T
and F about the value T=T,, F=F, that is determined by the
shape of 2%T,F). If Y*had only one sharp peak then the
region on the target contributing to the value of P(T,F) at
T=T, , F=F, would be narrow, whereas if ¥'was broad in either
the T or F dimension (or both) the region on the target
contributing to P(T,,F,) would be large in extent. Unless
$%T,F) is an impulse, then, it is impossible to say the
output power at any value of (T,F) was reflected from that

point on the target having that same value of (T,F); we can
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only specify a region of finite resolution on the target,
whose resolution depends on the shape of YXT1,F), from which
we may say the output power at any point (T,F) was reflected.
The effect of this resolution on the ranging error will be
examined later in this paper. Also contributing to possible
error in ranging is thé fact that ¥*is periodic (with
period tp) which indicates P(T,F) is also periodic and thus
our estimate of the delay to the target obtained by analyzing
the receiver output may be incorrect by an amount nt, (where
n=0,1,2,--- ) unless our a priori estimate of delay is in error
by less than about t,. However, the orbits of the earth and
the planets for which radar ranging is presently conducted is
known sufficiently well to eliminate an error or magnitude t,.
To gain further insight into the role of ¥*(T,F) in the
signal processing let us consider a ranging experiment with
a stationary (with respect to the receiver) point source.
It will be convenient, for instructive purposes, to trace
the signal in this case only to the output of the pulse
matched filter and to calculate the output power appearing
at that point. We will then consider the point target to
be moving relative to the receiver and follow the processing
all the way through the computer.
Consider transmitting a real signal whose envelope,
m(t), is shown in figure 4a. We see m(t) is a periodic
series of rectangular pulses of unit height and duration 7Y,
called the 'baud length''. Let the function X (t) (see figure 4b)

represent a single pulse so that in terms of X (t) we may
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write m(t) as Ns=\
m(t) “2_30 X(t-ntp)

Ng~r
Kt * Zou.,u.-nt. p) (16)
n=

where 1 os¢tan
—X(t) = { »

0] ot\\erw\se

{

and where the asterisk denotes convolution, tpis‘the pulse
repetition period, and‘Agis the number of pulse periods
transmitted., (For a typical Mars ranging experiment, for
example, the number of pulses transmitted /Ng= 600sec/ 1073 gec
= 6%105 although the signal is processed coherently over
only M pulses where M is << Ng ; typically, 1¢ M«50). In this
example and in the rest of this paper the receiver and
transmitter are assumed co-located, The target we will
consider first is a stationary, non-fluctuating point target,
i.e., the target scattering function, call it P'(T,F) is an
impulse at constant relative delay and zero doppler shift,
The position of P'(T,F ) in figure 4c is at T=T{ and

F=F, (recall that T and F are measured relative to a priori
estimate of the delay and doppler shift of the signal
reflected from the subradar point). The point non-fluctua-
ting target has negligible depth in delay and doppler and
may be contrasted with the point fluctuating target whose
target scattering function (figure 4c) has negligible depth
in relative delay but a spread of relative doppler frequen-
cies due, for example, to rapid rotation about some axis

(see Evans and Hagfors, 1968). The receiver that will
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develop maximum peak signal to ncise ratio for the non-
fluctuating point target employs a filter matched to the
signal that enters the receiver. Since we are considering a
point nonfluctuating target the reflected signal will be the
same as the transmitted signal, neglecting the factor Fy.
(Except for a time delay and frequency shift due to relative
motion of earth and target: we will assume in this example
that both these effects are compensated for by the radar
system before the signal enters the filter so that the target
delay and doppler values appear fixed for the duration of the
transmitted signal at the values they had when the signal was
first reflected from the target)., The reflected signal
received by the antenna and appearing at the input of the
filter whose impulse response is h (t) depends upon the
receiving parameters Ay and L., in addition to the factor P/,
Specifically, the reflected signal at the input of h (t) is
dependent upon the factor P = AgL.P. . The factor Pp will
be omitted for the present, but will be accounted for at the
end of this section to yield the proper theoretical output
power distribution P(T,F). In fact, as we will see, when
convolving ¥°with P’ to obtain P we need only account for the
factor A L, since P’ contains the factor P, .

In light of the above discussion, the receiver will use a
filter whose impulse response, h, (t), is equal to X (t,-t),
the time reversal of one of the pulses in the transmitted
pulse train shifted am amount %', to make the filter realizable

(no output before input - see figure 4d). We see from
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figures 4b and 4d that if t,=7, then h (t) will be realizable.
We will choose, thent,=7p so that h,(t) = X(Ts-1),

let us assume we know the precise delay to the target at
all times so that we may begin receiving at the precise time
the reflected signal first enters the receiver (In practice
one allows a brief interval of time beﬁween the end of
transmission of the signal and the time the reflected signal
returns to the antenna). 1In this case the output of h, (t)
due to the signal reflected by the point target will begin at
zero delay relative to the a priori "estimate'", which means
our value of g is zero. We will also assume we know
exactly the relative motion between the antenna and the target
so that F,=0. The output voltage of h,(t) is the convolution
of the reflected signal, m(t), (as wé explained above the
reflected signal entering h (t) is the same as the transmitted
signal) with h,(t). Since m(t) is a periodic train of
rectangles each of which have the same dimensions as h,(t)
(compare figure 4a and figure 4d) the output of h (t) will be
a periodic series of triangles of width 27, and height T
with:the same period (1,) as m(t). (Note that although the
a priori estimate of delay was correct LT;=0] the peak of the
triangle occurs at an offset of Y3 . This is due to the fact
that h|(t) is the time reversal of the transmitted signal
offset an amount't°=ﬁh » We may compensate for this effect
by offsetting the train of impulses that sample the receiver

output by an amount t,=7Yg ). We may therefore represent the



output of h (t) as the convolution of one period of m(t) with
h,(t) (which will yield one triangle of height 7 and width
27g) convolved with a periodic series of unit impulses.

This will produce the periodic series of triangles just
described. Calling X (T,F) the output voltage of the filter

h‘(t) (see figure 4e) we have:

N N
LT,00 = § dt Xtyh(T-1) + Z, Us(T-ntpd (17)
where we have used
X(t) oslsTy
one period of m(t) = 08)
© Tac<lste

The second argument of &£ corresponds to F; it is zero because
the doppler shift due to the relative motion of the earth and
the point nonfluctuating target has been (assumed) correctly
eliminated by the time the echo signal is presented to h,(t).

Using h,(t) = X (73-1) equation (17) becomes
N"'

t
X (T%,0) = § TX@X(L+9-Trdt %2 u(T-ntp)

n=o

i

te
SO dt mIX (L+7g-T) (19)

The output power is

2 *Tg 2
\}_'P (T-16,0) = 1& (T,0) 1|
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Since 56(1’&,0) is a series of triangles (see figure 4e)
Y;(TJQ,o) is a series of triangles - squared (see figure 4f),

The function Y;(F1ho) may therefore be expressed in the form

X tp 5 N“\
Ye (T-7g,00 = | XX T-TI " % 3 uptT-ntpd (20)
ne)d

, Lp
= 1) 9t Mt X (e (21)

Next, we assume the nonfluctuating point target has a
known constant component of motion relative to the receiver
along the line of sight of the target to the receiver. We
will assume that this component of relative motion is
directed toward the receiver., Also, we assume that we are
able to compensate for the change in delay between the
receiver and target due to the motion of the target toward
the receiver so that the target delay appears fixed for the
duration of the transmitted signal at the value it had when
the signal was first reflected from the target (see figure 4ff).
Therefore the signal that is presented to h (t) is the same
as the transmitted signal but with a doppler shift in
frequency, F, due only to the motion of the point target
toward the receiver (F is positive for relative motion of the
target toward the receiver and negative for relative motion
away from the receiver). Assume we begin receiving at the
instant the reflected signal enters h, (t).

The description of the signal processing that follows will
consider the general case of a target with finite extent in

both delay and doppler frequency. Application to ﬁhe specific
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instance of the point nonfluctuating target just described
will be made along the way and in the end we will demonstrate
that Eﬁ(T,F) is simply the output power distribution in the
case of a point nonfluc tuating target.

The signal that returns to the antenna is doppler shifted
(due to the relative motion of the earth and target) in
frequency and is mixed (by the radar system) to an inter-
mediate frequency plus doppler frequency f;otF where F is
the doppler shift relative to the subradar point (by this
stage the radar system has removed the frequency shift
corresponding to the subradar point). The signal is then
presented to phase quadrature detectors (see figure 5) where
it is separately mixed with a sine and cosine wave of
frequency ﬁw and low pass filtered (the frequency f3¢ of the
signal that is mixed with the signal of frequency f; +F will
produce a signal with frequency components 2f;-F and F.

The low pass filter is designed such that the frequency
component: 2f;;-F is in the stop band). The output of the
"cosine' mixer, x(t) is the real part and the output of the
“gine' mixer, (t), is the imaginary part of a complex
number Z(t) = Z(ﬂcijt: X ()4jyi)- The complex number Z(t) may
be considered as a two dimensional vector (whose projections
onto the two orthogonal axis are x(t) and y(t)) rotating at
the relative angular doppler frequency 2wf, That is,

%%mr :mF , where 8(t)= fan™ [ y®t)/%xt)] . For a point non-
fluctuating target with a component of relative motion

directed toward the receiver z(t) = m(t).
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The sine and cosine components, y(t) and x(t) respectively,
are then presented the pulse matched filter h (t) (see
figure 5c¢), and sampled. The sine and cosine components
after sampling are labeled a(T+ft) and b (T+4ts) respectively.

We define the complex voltage sample A as

A(T+Ltg) = b (T+ity) +jalTlty) (22)

Where L takes on integer values 20 and 1¢ is the sampling
interval (which must be ¢i 7Ys , as will be explained later).
Note that when {ts=wly (i.e., ft5 is an integer multiple of
the pulse repetition period) A(T) and A(T +nlp) will corre-
spond to reflection from the same annular region on the
planet's surface where T is the relative deléy of the signal’
reflected from this region. For convenience, when reference
is made to a and b in the text as the sampled sine and cosine
components of the output per se the argument will contain only
the "T'" term,

Before saying'anything more specific about the echo
signal processing we should examine what values of the PRF
would be best to use for studying a spread (i.e., finite
extent in delayzand doppler dimension) target.

If the delay depth of the planet is 1, to avoid sampling
at one point in time the signal reflected from more than one

delay ring on the target it is necessary to have

— = > 2
PRE te TD (23)



- 25 -

If the PRF were less than |p "self noise' would be present in
the sampled signal. Later we will show that the power at any
doppler frequency for any delay ring may be obtained by
sampling the rotating sine - cosine vector at integer
multiples of the pulse repetition period, Ty, 'Let By equal
the limb doppler spread of the target =2xB, (where B, is
the center to limb doppler spread). Then, if we are to avoid

aliasing the sampling theorem tells us we must have

| -
2Bcy < g, " PRF (24)

Thus, the bounds on the PRF are
|
2By ¢ PRF < T (25)

If we sample at the PRF tio aliasing will occur as long as
the PRF satisfies equation (25)., We see it is possible to

sample such that equation (25) is satisfied if

To(2B,) ¢ (26)

in which case the target is said to be "underspread' and it
is possible to sample such that no aliasing or self noise
will be present. If T,(28,) was >{ then the target would be
Yoverspread' and, strictly speaking, it would not be possible
to avoid the problem of self noise.

For the underspread planet (the only case that will be
examined in this paper), let us choose 2B, , for example,

to be 100 cps and delay depth Tp = i0wmsec . Equation (25) is
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just satisfied because

To (ZBcg) = 100cps)107 sec) =4

(actually the product should be less than 1, but this may be
accomplished by considering T, to be infinitesimally less
than 10 msec ). The baud length, 75 , is chosen to be 10fisec
and the sampling period, tg ,sthen 5 psec. The sampling period
is made 5 73 for the following reason: The frequency

response of the filter in figure 5c¢ whose impulse response
-53m Y sin anf I8

nt )
central peak is 2 (V/9g) = 2p00kHz wide between the first

is h,(t) isH(E) = e a function whose
nulls, We would like to sample the output of the filters
h\(t) such that there is no aliasing of the sampled signal in
the ffequency domain. We may accomplish this by sampling at
the Nyquist rate., Assuming H(f) is essentially zero outside
Xioo hHz the output of H(f) is thus also essentially zero
outside 2100kHz and so the Nyquist rate is 200RHWz which means
the sampling period must be % faﬁﬁh = busec = %ﬂb. Because
the PRF is <-%6 sampling at intervals of 47Ts will yield a
power output free of self noise and aliasing whose envelope
is of the form shown in figure 5d (i.e., each of the values
in the set {a(T*ﬁtﬂ} is independent of the other values;

the same is true for {b(T+{t;)} . The total number of samples

in each period is seen to be

2te
Tg



The processing of a(T) and b(T), the sampled sine and
cosine components of the output, can be understood in terms
of rotating vectors, as mentioned earlier. 1I1et the vector
A(T +4t; ) = b(T+lt)+jalT+fts) be rotating at, say, the
angular doppler frequency Wg =2vF . The pulse repetition
period istp, so referring to figure 5d we see points of
equal delay relative to the subradar point are separated in
time by lp seconds. By the h& period the vector at doppler
frequency F and delay T (corresponding to the delay ring at
relative delay T) will have rotated w;htp radians. To obtain
fhe voltage at doppler frequency F for the delay ring at
relative delay T we must rotate the vector from each period
back the amount it has advanced relative to the vector from
the first period and then sum all the vectors., ThusV(T,F),
the voltage corresponding to the signal reflected from the
region of the targets surface defined by the intersection of
the delay ring at relative delay T and doppler strip at

relative doppler frequency shift F is

Ny-| -)2WFutp
V(T,FY = g:oAuntP) e
where the total number of periods received is N¢ . Thus
V (T,F) is simply the Discrete Fourier Transform (DFT) of
A(T +nlp). However, we should note that in practice multiply-
ing by eﬁz“F“iP will not in general yield the relative
doppler frecuency component precisely at relative doppler

frequency F. This is because the relative motions between
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the target and the antenna are a priori imperfectly known
and thus the radar system does not remove precisely the
doppler frequency shift corresponding to the subradar point.
This means A(T + {ty) would not be rotating at, say, F but
rather at some relative doppler frequency F " whose value is
nearly F ifjfour a priori information was nearly correct,

In practice, for certain statistical reasons which are
soon to be discussed, when calculating P(T,F), the output
power, the sum over Nginterpulse periods is broken up into
R sums over M periods (R-M=N¢), and M-1ip is called the
Coberent Integration Period (CIP)., The total output power
is obtained by summing the power calculated from each of
the R CIP's:

R M)
RiTFy= Z |2 AT+ imenitype

'51“F“’t? \7.
rsg M=

R~ n R~
= 212 ATammintphemtp ) 22 W (27)

rzd W r=o

wher .
ere —JZ‘WFth

hotmipl = e (21A)

"t
Vo (T,F) = 3 AT +Dwmanitp) hoimtpd 18
M=o

Let us now show that the resolution of each doppler strip
is inversely proportional to the length of the CIP and also
derive the form of the ambiguity function for the receiver

shown in figure 5a. From figure 5 we see that the complex
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voltage sample A( T +4tq ) may be expressed

FI

X t
AT 2t = 202 e?™™ F gy 4y (g Yo (t-Te -t

=z fa§ W 1622 (k) ¥ T (1o TR

where zttSesz“Ft:= Xtt)+31yt) and z(t) is multiplied by
e;z“F% because, as explained previously, z(t) is a vector
rotating at relative doppler frequency F'.

Using the right hand side of the above equation to
substitute for the value of A(T +Lwm+rllp) in the expression
for » (T,F)

R - j2nF's

3 jarFt . rFmt
PT,FY = 212 fashigizit-ne BaTEt avhete o

Ue [t -Tg - T-Imerdtpde

the term MU lt-Tg~-T-Lmirltp) - picks out the values

. ]
t % ¢« T+Lmivdt, in the exponent of e°'“Ft and also picks
out the same values of T in the argument of zit-{) so the

above equation may be written

~R~‘ M- o ‘TF - “;l(1 +.‘ L , L) )
PS(T;F) -zo\é-.oség hit§) 2 (T8 +T+Lm")-tp~§)cé' lSaoZ ati+lmi) 'e-éﬂ’F”tP .
13 SRR 32T (F-F)mt
=2 \Z Ség\s\(g)zc“rvnr.mqtp-g)e Ly seonF ymtp 2
r>a W

With R>»M we may set (see Shapiro, 1967, pp.1316-7)

2 (T+Tg-¢-Imdtp) = 2 (T Vg - §-Y"Lp3

so that

R-1 Mo . Fm . R -1
PRALE) = 2 |2 e DIl ¢y (2 Trgg-rtere T |

YO  Wtd
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we may now easily perform the summation over m

- . ' (A ~Bi
[ gdamieriteye o I TIMLRWRIRD oy ppy? (276
Mo SwwintplF-¢')
so that

) -)eWE'E o
BLITFY = 2 163 2075 € D1 THAE-EO0 (3

The function IHo(F-F)1*  has nulls occuring at

et = v L + 2
F-F T T Mt 27 Mip ]

maxima between the nulls (see figure 6)., The value of
the maxima at F-F'=0 is much larger that the value of
the other maxima so we may consider |Ho(F-¥)|? as a

. . . A \
filter whose bandwidth is esseatially Hy, or £,
since Mty the time interval of one CIP. Thus, the
longer the CIP the narrower the bandwidth centered about F.
In the case of a point nonfluctuating target with a
component of relative motion along the line of sight to

the antenna Z) =wlt) and, recalling W(§)=X(Tg-§ ),

equation (27D) becomes

Iy "y By TN
PSW..(:T‘F) P (TiEF)z Z |HolF-F) \ Agxm-s)mﬂﬂrg-dp)e \

Yo ~a0

R-1

= L \Hv‘F-F‘)\'\?Ag)((g) m(§+T -vtp)e‘sm ‘"‘B'S’Iz
r=o )

and, assuming the radar receiver correctly eliminates the

doppler shift due to relative motion between the point
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nonfluctuating target and the antenna we set F'z0 and

R-'

PUTIF0 T TP = [HoUh)? ZOWJSX‘SW‘S*T‘*)"?HZ
¥=0 -a

a sketch of a plot of the above equation is shown in
figure 4g.

We see from the preceding analysis that SF?T,F) gives
the distribution as a function of relative delay and
doppler of power reflected from a nonfluctuating point
target that appears at the output of a ("noiseless')
receiver that uses a pulse matched filter (see figures 4g
and 4ff), The power appearing at the output of h, (t)
that was reflected from a target with a finite delay depth
and a distribution of doppler frequencies is given by
the convolution of ¥ *(T,F), the receiver output for a
nonfluctuating point target, with the description of the

tarcet given by the target scattering function, P (T,F)

PLT,FY = §d7df TRy F-f) P e, D) (18)

where, as stated earlier, the integral is taken over all
values of relative delay and doppler and where

PV, FY = Aple2?(1,F) .

The factor A L, has been inserted to account for the
factor PR that was omitted earlier in this section:
since P' contains the factor Pé we need only insert

AgLa to account for the factor PRL==ARLRP;).
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From equation (15) we see the quantity'thT“nF—f)PﬁTj)éTd¥ !
is the power reflected from the surface of the planet
corresponding to a relative delay between Y' and 7¥'+d%’
and a frequency offset between f and £ +d%t and
contributing to P(T,F), the output power at relative
delay T and relative doppler shift F, The total
contribution to P(T,F) is the sum of I 7-7, F-H)P ) dvad
over all values of f and % , as we see from ecquetion (15).
The sum just described is a sum of powérs. One may wonder
why we do not sum over voltages and then take the square
of the this sum to obtain the output power. To explain
this we must consider the statistical nature of the
surface of a target with a rough surface, of finite
extent in delay and doppler (i.e., a spread target).

A rough surface is often described in terms of the
rms (root mean square) surface slope. If we knew the
relative surface height at each point on the target we
could calculate the rms slope by taking the spatial
derivative of the height at each point and calculating
the mean and variance for this set of measurements.

For most targets studied by radar astronomy a description
of the height at each point, even if it could be made,
would be much too complex to be useful, 1In practice, an
estimate of the rms slope due to surface height variations

roughly on the order of the wavelength of the transmitted
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signal or larger is used in developing a target scattering
function, which is a statistical description of the
surface as opposed to a complex descrintion of every
individual point on the surface. 1In practice the rms
slope is one of the parameters estimated in a least
squares fit of theoretical tothe observed echo power,

We will now demonstrate that for a target with a
rough surface, such as one of the terrestial planets, it
turns out that a sum of powers yields a lower variance
of the output power than a sum of voltages.

Because the surface is rough as the planet rotates
the signal reflected from a position on the planet fixed
relative to the subradar point will have a random value
of magnitude and phase corresponding to random variations
in the surface structure (for a detailed description of
the reflection of electromagnetic waves from many different
models of rough surfaces see Beckmann, 1963). This leads
to a random variation in the sampled receiver output
values a (T +4&15) and b(T + {tgy ) and thus P;(T,F) will be
a random variable whose values are distributed according
to some probability density p(R).

We will now determine the density PP, so that we
may calculate the expected value and variance of PgulT,F),
the average observed output power = P(T,F)/ MR,

After we obtain an expression for the variance of ', i -
PSA(T,F) we will obtain an expression for the variance

of the average output power as obtained by squaring a sum
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of voltages and compare the relative value of these
variances.

The quantities b(T +w;) and a(T +nwlp) are the real and
imaginary parts of a signal reflected from the area of the
target's surface corresponding to the relative delay T.
The signal reflected from different regions along this
delay ring will have different values of doppler shift so
that b(T +nlp ) and a(T +wlp ) are due to contributions of
the signal reflected from all regions comprising the delay
ring at relative delay T, each region having a different
value of doppler shift. If we define U(T,F) to be the
complex voltage signal (at the output of a filter whose
impulse response =*h , (t)) that is the contribution to
A(T +ntp) from the region on the planet corresponding to
the relative doppler frequency shift between F and F+dF

then we may write

By
AlTH 8tp) © SB UV (Taltp FIIF 29
T

where +By and -B; are the maximum and minimum values of
doppler shift associated with the region of equal delay on
the target from which the signal contributing to A(T) was
reflected. As we have shown, rotating A(T,+ntg ). back

by multiplying by e %" "t

and summing over all values
of m will yield the voltage reflected from that region of

the delay ring (at relative delay T) corresponding to
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the doppler frequency F; i.e., from equation (27B)

M Fwt
= Ve (T, F) ';7\2 ALTtmeritg) @020 0P
W=
P B S2uFwtp
M Z_.a {BLT-»EMW]T-P\ +3&(_Tfl'_Mfﬂtp)}€ (28m)
\
= LAl TF) + ¢l P1) (288)
_ ~)Br
=W oe(3,Fle (28c)
where
U ()R = ,Jc&(v,nd,‘(i,?)'
b = G,
(2g9)

de(3,F) = Z [h (T+L mante) cos@nFmty) + a(Tn‘.mﬂty\smtanmt |

m=g
(28E)
(TR = Z [alT+ Lm”]t?)cos(,zrrl’mtp) B(T+Lmte) sin(2nt mtp)}

29
Because of the rough surface A(T twlp) will have a
random value of magnitude and phase. 1In particular,
b(T +wl¢) and a(T +ntp), the real and imaginary parts of
the signal reflected from the surface of the planet
corresponding to relative delay T are independent random
variables and each have a Gaussian distribution with an

expected value of zero and a variance which we will
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call -‘5 0.2 LY. Since A(T+nltp) = b(T +nlp) + FACT +nTp) and b(Tentp)
and a(Tante) are independent A(T+wtp) will have a zero

expected value and variance U,*(T) . 1In addition, as the

planet rotates the annular region of the surface correspond-

ing to a fixed value of relative delay will present

different small scale (i.e., on the order of a wavelength)
structure to the incident radar beam and therefore it is
reasonable to assume A(T+1Tp) and A(T+stp) are independent

when {#s (1 and s are integers). We may relate G@XT) to

U (T,F) through the integral expression of A(T) (given

in equation (28)):
8y 8y
Var LADT = EL1aenitl= jamyt = §§ ¢, (TR ARV = 63T)  (28%)
B8y
where FoylTHF, V) s

Fou (T F) = ELUCT,FYUT,)

Using equation (28a) we may calculate the auto-
correlation function of 1,3\ Va (T,F) from which we may
obtain the mean square value of ',’;‘VR which is equal to

the variance of ‘/‘RV' since -%VR 29 (this follows from

equations (28B)(28D), and (28E) and the fact ELal=Elb)=0):

y = : . o . ,
Bl THFFY 2 R Ve LEVTFY = M2 TACTImiE 2 g V2T F nte
ms
(286G)
where we have made use of the fact ETA(T+[AwTtp)A(T+TR4NtE)) =0

because these values of A are independent when A= § and

ELA(T+Tmedt))= 0 for any integers m and r. Because
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the complex vcltage sample A(T+Lm+ntp) corresponds to
the relative delay coordinate T for all values of m and r

we have

ELiATvimadted?] = E VAT

sO now we write equation (28G) as

M- - eml
¢v,v,n'>F;F') - _‘\;\__:2 EUMT)\ZSC 3ZWE-F)mlp

m=g

and using equation (28F) the above becomes

M~ 8, i o
.'B‘

M‘Mbo
Since
- ]
”‘Z“e_‘JmlPF’)Mt? M E-F
e : o ofherwise
= Qg
we have
87
Fuv, (THRF) 2 Sé JFAV g (I Mg
-8t
T ———— 8y
Guy (T ER) = L N PRAL .
AR e Vel P02 22 _LTWSJWW)VD‘) (23H)

we define
| 5
02 0T, 2§ ddgyy (T B
—st
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so that equation (28H) may be written

l—_—.—.—_—_—.
AT UL L A D (281)

From equations (28D) and (28E) and the fact
VavLa(M) = Varlbti]) it is easily verified ELd¢)=ELCY=2 O
and BLdCy}= ELI\ELC\ =g so from equation (28B)

T -3 Woank = . 28

\larL);\\:, ARSIE ‘{‘l\v,n,m‘ = \Ie.-[_l"-‘c,tw,;)] +va,[h;,qu)‘k < 1’_‘\_'\1' G2 LT, F)
Also, from equation (28D) and (28E) we may show d,and C,
have equal values of variance (although using (28D) and
(28E) the explicit form of the variance is not easily

obtained) and thus from the above equations we have

Vael 'l!“'\épﬂﬁ'ﬂ: Vaw[%qcvﬂ;r‘ﬂ * %1 ORUZ (T,F) =2 o (1,F) (287)

We may use equations (27) and (28B) to write Pg, (T,F),
the average output power, as
-jantmty

Ry Moy
L )
P, U0,F) = R%\;‘;\é‘aAﬂ*Lmn)tr)C \z = ﬁi—R% (1,F)

= CLT,E) + DY, F)

where
LR Ry
CnLf) = 3 2 s
r=o (29)
&1 408
\ = LAR N
DCL,F) =5 —
! R [ =" Mz
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dv

Using the Central Limit Theorem we will assume %i and A
both have a density that is well approximated by a
Gaussian density of zero expected value and variance

0 *(T,F) (see equations (28D), (28E), and (28J)). Thus,’
C(T,F) and D(T,F) have a X’ density that is given by

(see Gnedenko, pl74)
(Rlz)Rh' RIz-' _ R

C 20
=. e

(g

PID) =picy =

so that C and D , the expected values of G and D

respectively, is
— x —
Ciy,r) = Secpwdde = ¢2(1,F) = DUIT,F)
0

and since C and D are independent, ELP,}= ¥, , the

expected value of Py is

-

RalT,F) = 20%(T,F)

Since PSA(T’F) is the average value of the output power

in the presencé of random fluctuations due only to
reflection from a rough surface (note we have not mentioned,
thus far, the effects of the noise due to the radar system)
the expected value of P¢,(T,F) should be equal to P(T,F),
the theoretical model of the echo power distribution

(given by equation (15)) so we will write

P, T, F1 = PUT,E) (22A)
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—

To obtain P, (T,F) we calculate
Yy “© 3 4
c:FY = § crpradde = DARF) =20 (RN
o

and since C(T,F) and D(T,F) are independent

\

- — 4 L
CGUT,E) + DUTFY = 40 (LR )

1"

o2
Ry (HF)

80

49 *(1,F) (30)
R

"

—HI
VarLPg, O, 0} = B3 4T\ F) - R, 05,F)

According to equation (30) the variance of the average
output power P, (T,F) is inversely proportional to the
number of Coherent Integration Periods used in decoding
PsA(T'F) at each value of F.

To answer the question posed earlier to why we
calculate PSA(T,F) by summing powers instead of summing
voltages and squaring the resulting voltage let us

calculate the variance of

L R z A -
RIZEVOBI: G AU, P 27, (31)

and compare the result with equation (30). 1Iet us first

consider the sum

Y by RO, F) 36,
petl = F‘-“Zv,n,n i e’ (31A)
X ] =

and determine p(p), the probability density of p, the

amplitude of the resultant voltage. This is done in
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Beckmann (pl28) and the result is

Py e e (32)

Since the real and imaginary parts of %\V,(T,F) have a
Gaussian density of zero mean and variance § (T,F) the
probability density of -,‘;\*U‘,. , the magnitude of lM\IV

has the Rayleigh density

'U',. —'LTr‘/ZHtO"!
-_“& _ Mq‘l "U',.?O
Plm) =
o V<0

which is simply the ¥} distribution for a sum of only
two terms (see Gnedenko, pl73)., We may now calculate (%&)‘.

vV‘ i - v v
(F) = ; (1;\ ) ?(‘%) (%) 202 (T,F)
so that equation (32) becomes

P - P22RO2

{ =
PPy = -~ e

Comparing equations (31) and (31lA) we see

7 5Pt
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p(2), the probability density of 2: -'hpz y 1s easily

obtained from p(p) (see Lee, pp.191-193); the result is

) ALY
;;C Z.>0
PLZ) =

0 740
so that

Z, = S:ZPCZ.)A'Z. =20

—

2 = 722z et

and Vael2Z), the variance of?Z,, is
—_— =1
VarlZ]= Vor Lim RUTI) = 27 -2 = zotofy 33

which is independent of the number of CIP's used in
decoding relative doppler ffequencies. This is under-
standable, since the sum in equations (31) actually
corresponds to only one CIP of duration (R'Mjbp,

Comparing equation (30) with equation (33) we see
that the fluctuations in the average output power PsA(T’F)
are on the order of a factor R smaller than the fluctua-
tions in éﬁi P, (T,F). 1t is for this reason that power
outputs from each CIP rather than voltage outputs are

summed ower the R GCIP's.,
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II. ANALYTICAI INVESTIGATION OF UNDERSPREAD

GAUSSIAN TARGET

The real and iméginary parts of the sampled receiver
at time T relative to the a priori estimate of the time
of arrival of the echo signal, b(T) and a(T), are due to
reflection of the signal from the delay ring on the planet
corresponding to relative delay T (for an underspread
target). We have assumed that the independent random
variables a(T) and b(T) have a Gaussian density of zero
expected value and variance % TXT). We will now consider
the effect of adding to x(t) and y(t) (see figure 5) the
random signal n(t) which is due to receiving system noise
and determine the resultant noise signal in a(T) and b(T);
n(t) is independent of x(t) and y(t) and is assumed to be
white noise with an expected value of zero and wvariance
éle watts per unit bandwidth. The expected value of
N (t), the noise at the output of the filters h (t) in
figure 5 due to the noise n(t) at the input, is zero and
the variance of N (t) is the convolution of ¢hh£ﬁ) , the
autocorrelation function of h (t), with ¢“hL7), the auto-
correlation function of n(t), evaluated at Y=0 , The
functions ¢kyVT\,¢nntﬂ),&nd ¢1%L«) aprear as shown
in figure 7, where ¢m\is the autocorrelation function

of \'\(t):

Ban (1) = §47 B0 G-y
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Because n(t) is white its autocorrelation function is an
> > '
impulse and we assume the area of the impulse to be Eﬂﬂf.

Thus,
-
¢“m = 3N @, (M

and (see figure 7)
Var TR()) = @pat0) = $Ng Ty

so that the sampled output of the sine and cosine mixers
in the presence of additive system noise is a(T) + n(m
and b(T) +’\(T) respectively, where the variance of W (1)
is % Né‘TB . The expected value of the sum a(T) + n(T)
is the sum of the individual expected values a(T) and‘ﬂ(T)
(which is zero) and because a(T) and N\ (T) are independent

the variance of the sum is the sum of the variance:

Var [atM+ (M} 7 3 L02(T) «N§ s )

The same is true for the sum b(T) + Q(T).

Let us call P (T,F) the average power calculated

SNA
when the effect of system noise is considered in addition

to the effects of a rough surface (i.e., P is the average

SNA
echo power calculated from the samples a(T) + N (T) and

b(T) +N (T)). The expected value and variance of P¢,, (T,F)
may be calculated in the same manner in which the expected

value and variance of PSA(T,F) was calculated by replacing

O(T) with ¢T) + N}Yg . When this is done equation (28G)



becomes

-

. L2t (F=FImlp
Va WP = 5 7 LoD eNg T e
me

where VAfT,F) is the average value of the complex voltage
from the YQ‘CIP calculated from the samples a(T) + R(T)
and b(T) + N (T). Calculating the variance of V, in the
same manner in which the variance of -;-;\1 V, was calculated

will lead to the result

Var LV LB = 1V, (T,F)1" = ;‘:/\[Z Br T2 0HF) +NEYy]

which may be compared with equation (28I). We may go on
to calculate VarLPsy,) in the same manner that led to

equation (30) and find
40"*n,n

VarLByat1,¥1] = A = Tr,lT,F) (33R)

where
2 {
T'ir,F) = o L2840 ITF) N2 75 ]
and using equation (28J) and (29A) G'llmay be written

S Ne Y,

Ne Y

= P(T)F) L o .—M—.B (336)
and the expected value of Psm (T,F) is
D) X 2 No Y
Bl F) = 20""”,:) 2 2PN F)+ »7-:\-5 (33¢)
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let us examine the effect of the wvariance th of

the output echo power PSN on the implied uncertainty in

A
the range (delay) estimate. Consider first the limiting
case of no system noise and no random fluc tuations in the
amplitude and phase of the reflected signal (e.g., a target
with a smooth surface).

In this case the average observed echo power is the
same as P(T,F), the theoretical model of the echo power
distribution and one could estimate the delay to the sub-
radar point by calculating the eross correlation in delay
of the theoretical echo power distribution with the average
observed echo power distribution (which is the same as the
theoretical distribution except for a possible delay and
doppler frequency offset due to a priori uncertainty with
respect to these parameters). The value of trial offset
at which the maximum value of the cross correlation occurs
(say it 1is Té ) is used to obtain the delay to the subradar
point (the a priori estimate of delay is corrected by adding
to it T, ). |

When system noise is added to the sampled receiver
output and we observe a target with a rough surface so that
a(T) and b(T) are random variables the average observed echo

power will be P, (T,F). 1In this case we will cross

SNA
correlate (in delay) P, (T,F) with P(T,F) to obtain the
delay to the subradar point. The value of trial offset,

{ i » Iy .
T'=Tg , at which the maximum value of cross correlation



- 47 -

occurs is used to obtain the delay to the subradar point.
However, the maximum value of the cross correlation of

P with P will have an uncertainty associated with it due

SNA
to the variance @7,, associated with Pg,, and we will now
determine this uncertainty.

The average cross correlation function, RA(T‘,F) will
be defined as the cross correlation in delay of P(T,F) with
the average echo power PSNA(T,F): (in practice P, (T,F)
is observed for only a finite number of values of relative
delay T, say Ty~ h=®o0,},2,..,K. However, we may obtain

P ¢ (T,F) by interpolation of P,  (T,,F) kR=>01,2,-.,K ):

RaLTHF) = §TUT POT,FIR, (T4 F) (34)

The expected value of R, is

e o
ELRALT,FY) = RyTLE) = § 3T PORYE LR, (17, F1) (34R)

“ a0

The cross correlation in delay, R (T',F), may be
calculated for each value of F at which Peya (T,F) is observed
(i.e., it may be calculated for each doppler strip that is
"decoded". See figure 8a). Sometimes only one doppler strip,
centered on the subradar point (the "zero frequency component')
is decoded. Suppose, however, we observe Nt doprler strips
at each value of T corresponding to values of relative doppler
shift F = F,, n # 0, 1, 2,...Ny . Then summing the average

cross correlation R.A(Tf,F) overall values of F, at each
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value of T ’(see figure 8b) yields

Nt'-\

Rel1] - 2 RALT'F,) (35)
Nyla

ETR{T] = 2 ELR,TF) (35A)
=3

Qualitatively, when investigating the terrestrial planets,
one might guess that summing RA(T',FN) over all values of n
tends to increase SNR , the signal to noise ratio, as long
as one is careful not to sum RA(T',F“) over many doppler
values at large values of relative delay, for at large
values of delay the‘noise in the received power (reflected
from terrestrial planets) is relatively strong compared to
the received pwer. We will now examine quantatatively a
scheme for determining the error in the observed value of
delay. This scheme, as we will see, depends upon knowledge
of ¢Rd%(7) , the autocorrelation function of RSCT'),
which we will use to determine statistical properties of
R¢(T') such as its variance and covariance.

The value of T at which the maximum value in RS(T')
cccurs, call it T¢ (which corresponds to the error in the

a priori delay to the subradar point) may be obtained by

taking the first derivative of RS(T') and setting it equal
to zero. The reason for using this procedure to determine
the effect of the variance of RS(T') in determining the

delay to the target is that we now have a linear problem.
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That is assuming RS(T') is parabolic in the vicinity of

Zf; the first derivative of RS(T') will be linear in this
dR5(T"
dt?

proportional to emne standard deviation in T', and since the

vicinity and one standard deviation in will be
value of T'= Ts is a measure of the observed delay to the
planet, one standard deviation in Tg is a measure of the
error in the observed delay to the planet, which is what we
would like to know.

From equations (35) and (35A) we may write

dRs(T) d RMT )

T ; ;*T.R* 1Fa (3b)
‘-A—E R Z‘l—'? ATL T (36A)
d w 47

and furthermore, using equation (34A),

‘
%_%?LT\F“\ . %'-'y'_fJTP(TanWM‘T*T £y = -Sm” PlT;Fnﬁa;;:MW)m
3 AT a?ch B olTT P
so that
%ﬁ”" © 2 0 §4T PR Ry (14T R (368
and
ji"m ZﬁLT'SJT POL,E) Rl T+, ) (360)
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As mentioned earlier, in the vicinity of %—Rf”'):o
B ¥
we will approximate iEfLT) with a straight line, e.g.,
AQS(.T) - -a-‘-l+b (37)
dT'

. dR .
where -a is the slope and b the intercept (on the §§| axis)

of the 'best" line (in the least squares sense) that fits

_A__Rs(.T‘) J

a7 vs. T .
dR(TH
at

the actual curve formed by the plot of
We will assume the least squares fit of vs. T

to a straight line is so close that the variance of the
parameters a and b (that are obtained frbm the fit) is zero

and thus a and b will be treated as constants. From the

above equation we see the maximum value of RS(T') occurs

at T'= % = T, , the value of T' for which %%f:o . There-

fore, determining the error in the observed value of Tj

due to the variance of %%:ctll'T' (which, ultimately,
SV

is a function of the processing parameters and nature of
the target's surface and motion relative to the earth) is
sufficient to tell us the error in the observed delay to
the planet, and this is the object of this paper.

In order to calculate the standard deviation of the

error in Té we express f!&‘LTU as
dT!
dR;(TH '
=2 = -af +b (3741

dT'
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where.glrEpresents the rondom value of the variable T'

that results from taking the first derivative of Rs(T') and
solving for T' (e.g., §'= —g [%%*Yq~b] Y ueing the values
of a and b determined from the plot of %Eﬁn” vs. T
(see figure 9A)).

The motivation behind this procedure and how it is
used to obtain the standard deviation of the error in Té
is given in the following argument, with reference to
figure (9). Suppose we use the plot of I~
to obtain Tg and then calculate the derivative of RS(T')

a4 —é‘s(-“) vs. T
T

with respect to T'! and evaluate it at T'='T; . From the

-

R LT .
plot of %;ﬁ )vs.T' we assumed there would be a linear
. . Rs(T’ .
relationship between %F;ﬁ ) and T' so using the values

a and b we solveﬁfg', the random value of T' corresponding

to the random value ‘_‘_.Esnl)‘ :
a7 T'sTs

, JR4(T)
(. ~alv- T L)

1Y

which is equation (37A) evaluated at T; . Next we want to

know what the variance of g;would be if we made many

AR, (T

observations of 17 at T'= Ty’ . This information

is obtained from the above equation, which is equivalent
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to equation (37A):

’ - L ARSLT’) =
VarL¢] = anar[ 1T }TET; AD (38)
and so the standard deviation of the error in the a priori

delay (i.e., the standard deviation of the uncertainty in
dRs(T)

T; ) is j times the standard deviation of 37" evaluated
at T'= Ty
ansn)
Ab = AVaels)) i\/ L -1.3} (38R)
Let us now calculate the variance of %;?(T) . It

can be shown (see 6.573 class notes, spring 1971, pl26)

2

m{ E LRSLT“) Rs (T, )} P E LRs(T\') RSLT{) } (39)
d ELRs(™) _
AT = ELR,(TY) (40)

where the dot above the function R4 signifies total
differentiation with respect to the argument of Ry . If,
in addition, R(T') is wide sense stationsry (and we will

!
assume this is the case), then we may write To= T+ and

E [“.RS\T\')‘j-T;R,(T:)] = E LRI R LT +13)
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Using equation (39) and the relation Ty =TV

P .
551 T € [Rs (hOR T4

1}

-4 B LRI Re(T+M))
an?

Defining
¢RsRs('n = ELRUTHR (T4 M)
Pae, ) = ELR (TR (T'vN)]
we have
Al
¢é$é; 1) R ) -A-:r 1 ¢ RIRS("‘) (4\)

which relates ¢Rﬁ%(7\ , the autocorrelation function of
Rs(T’), to ¢§sés('\') » the autocorrelation function of the

derivative of RS(T') with respect to T'.

. RgLT g .
The variance of ﬁ;ﬁ ) may now be written in terms

of equation (40) and (41):

. . 2 - :
VarlRsem} = [RT)Y - (R,n')\)

2
= -4 Prpe™| - (%TF’(T'))Z
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substituting the right hand side of the above equation into

the right hand side of equation (38) yields

V2
L2 2% g om] - (S= Re(T)Y:
= - - R.R - b ,
AD 4 [ a7t s N=zo a1’ ) ]T'-'-'Ts
By definition, however, éE?ET)\ equals zero, so that AD
a1’ T'=7¢
reduces to
T N R
AD = a L- T11¢Rsk,"‘-).31=o (42)
T'.T"

In order to evaluate the above we must calculate ¢’Rsn,”)-

Using equation (35)

" (43)
Prer (1) = RsUVIRUT'4v) = 2 RA(T,F RACT'HY,E) +'7&§R~&T‘.Fn3 Ra (T4 Fp)
nso

LT3

let us work with the first term on the right hand side of

the above equation; it may be written

&0
? E [QA(.T; F,,) RR(T'Y‘)] = ? ¢R‘RA('YJF“) = ?—lAT'Ran;F,) QA(T'*'T,Fn)
using equation (34) to substitute for R, in the preceding:

] 20 ; a0
§ Pop, TP = ?_id‘f' [‘L TP F,) B, LTHTF,) -_5;;,) P, B gM(-dn’n)r-,,)}

<0 o0 o
= T S0 { 9T PORIPOLED (AT Run(T4T,R,) B, 0T, F,)
00 -

-0
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writing YTy = J+T-T +LT 47" in the argument of the

second F.y, in the last integral on the right above:

= hZSZH | JTPCLED POR) o W17 T
where

@
Bo pOTRY= § 4T'R,, (TaT, R, 7T+ LT T, F)
. o9

SAA

making the substitution -T=4 ,JV’=JQ‘

@ o0
T e WF = 25 LS ATPILRIPTLED Bo e (fe, F)

3l

n-mn -2
o
= D ad Fp LR ¢Q fwﬁl*‘*; Fa) (44)
n o8 WA 'S,

L]
where Bo.(0,F) = SAT P(T,FIPIT+L,F)
-~

Equation (44) suggests the following block diagram:

¢%~.ﬂf::) ¢pp -7 7 ¢RARA("')

The second term on the right hand side of equation (43)

may similarly be expressed

&
D D RAT FORA (T ) = 2T § al BpplliFa FdPp o LT3R F)  (46)
R ™ R M-x SHA'SHA

ngwm

where  @pollyR Ra)

1]

~0
§ 4T PT,FQP(TaL, Fr) (45 A)
-0

00
Poglrstlind 2§ R 1 R R GINE)  (458)
~o0
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In general, the function ¢x7 (€yF,,F,) will be defined as

L
Py TR = _goat’xtt',ﬂ)y(t wt/f) (45¢)

and also

20
Bey (£35,6) = _ioat’xtt’,f.)ylt*t',fﬂ = By (146)  (a5D)

Now, in terms of esquations (44) and (45) we may write

parlY)  as

(46)
o0 L
¢R3R§’Y) : %-E:o‘” ¢Ppulph)¢%n!:§f*1'&) +§'§.§~A!¢PP[£3FMF")¢%M&M(2+'Y; F"’F"‘)
Rim
N R L P
= @%_&mauppu; Ry H)¢P‘"?"h 7 Fr i F) (46A)

where the above equality was obtained by removing the
restriction k+m in the second term on the right hand side
of equation (46) and recognizing from equation (45D) that
PrediFiiFa) = Bpe (L F0Y and dp o LYERD = g o (L, F,).

At this point we would like to express ¢gmg7) in terms
of functions such as Py,, (T,F), P(T,F), and o;,;h(T,F).

Therefore we recall from equztions (33A), (33B), and (33C)

P - NETe
BaualThF) = PL,F) YN (47)

Var [, (7P)) = 0.2 (T)F) = % LP(T,F) ¢ =2 (49)
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It will be convenient to write PSNA(T,F) in terms of a
constant part (namely, the expected value P,,, (T,F)) and a

random '‘noise' component which we shall call N(T,F):

Poua (ThF) = PLT,F) #N(T,F) (49)

In order for equation (49) to satisfy equations (47) and(48)
N(T,F) must be independent of iiNA and must have the

following properties:
{43A)

elNRY] =0

2
VaeLN(T,B] = S LP0n, e By (438)

and we will furthermore assume N(T,F) to be "white'. The

autocorrelation function of PSNA(T,F) may now be written

P

SNA

RATWF) = s < (TLF) a4 g, (T)F) (50)

LT 7Y PSNA

since P and N(T,F) are independent and E(T,F) 2 0.

Sna

The function ¢p p (T') Fy,Fm) which will be required to

L] APSIVA

evaluate the integral in equation (46A), is

i
¢P$NAP5NA(TIS Frafm) = ¢ ﬁuﬁ.}."l} Py Fu) + ¢N~U' ‘JF" P (504)

Recognizing the fact the system noise, in practice, is
much greater than the echo signal we will neglect
ELRLTE)Y= P(T,F) y the expected value of the average
echo power reflected from the rough surface (assuming zero

2N
system noise), with respect to N;\a , the expected value
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of the system noise, and thus equation (48) becomes

4,1
2 = 4N Ts
U;NA (T)F) - RM‘

later on we will require an explicit value (in terms of

Poua P, and NIy of 4, (T Fi,Fwm ), defined in

accordance with equation (45D) as

[
Drn LT3 F0Fm) = § AT NLT,FONITHT! F)

-0

. - . . 2
Since N(T,F) is of zero expected value, variance Uy,
and is assumed "“white', the above becomes

4 2
¢n~(T",F\.)FM) = 4':‘::3 uo(oT‘)&F‘F"“ (s1)

where
1 FR:FM

SvaF, ° ,
" o otherwise

and Sﬂﬁm is merely a statement of the fact the noise
N(T,F) corresponding to different doppler strips (different
values of F) is independent so that, for example,
ELNG, FONT,F =0 f F #F,. This follows from the assumption
N(T,F) is "white'",

Under the assumption of dominating system noise =

PsNA(T’F) is, approximately, (see equation (47) and figure 10A)

- 1
Z No TB
(P = 50
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To avoid obtaining an infinite value for the autocorrelation

——

of sNA(T F) we may consider ESNA T,F) to be a periodic series

. . Ngt Y
of rectangles of arbitrary length (period) T, and height —%(B
placed side by side (see figure 10B) so, using the definition

of the autocorrelation of a periodic signal of period T

T - ' . Nz“';
AT = R - 5 (el
4.2
No 7T
- I:\‘s (52)

and now we may substitute equations (52) and (51) into the

right hand side of equation (50A) to obtain

~ Ne T8 '
$o,,. 0, T FnFm) :’\' [+ x 7 Uo (T )SF..F.'.] (53)

From equation (46) we see we must cross correlate

PPy Pa With $pp to obtain ¢Q’Rs ; this is done below:

20
§ 41 ¢PP(23FMFM)¢P».P”EL""')Fh\Fm) = g“ foptL) By iFm) =2 No 15 L *"’ Ua b Gy F..]

- 20 -0
(54)

= N T"[A,..,ua.,v Y+ 4 Bon s R SE R

oo
where A‘)?(Fh,‘:p\) = S A.Q¢?g(2.')?h‘\:’]
]
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and we have used the fact ¢,, must be symmetric so that
side of equation (54) into the right hand side of equation (46A)

we have finally,

Prye (T = N”“ZZ[M#RJ3+ Ber (7, FiF) 65,5, ) (55)

and substituting the above expression of  $p o (7) into the

right hand side of equation (42) yields

ﬁ-N:‘YB’. Al .
AD = é—[“ Rmi %% PrE ¢PP(‘T Fuy "‘)SF\J ]7-0

T'z Ts
4NJTs o & V2
1 o 4.
=3l 7w 2T bR

0 (56)
T=Ts .

where we have used the identity ¢hee(T:Fa,Fm) = @pp (¥, Fem)
(see equation 45D)),
The value of & is obtained by differentiating equation (37)

with respect to 7.

4*R LT
7"

and using equation (36C) the above may be written

2

2 o —
~a = Z 3§ § 4T P(T,R)E,, (4T FL)
“®

SNA

Substituting the right hand side of equation (47) for the

value of P, in the above integral:

SNA

a = —2 SAT PeT,Fa) PCT+7 Fa) (57

AT"
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where we have made use of the fact

2

T chTHN" *AT =

We may now replace the & that appears in equation (56) by

the right hand side of equation (57) so that

- Y
~4NG Ty s & *
AD = R o g Per F")} =0
S8 )
28 & Sm 47 Pcr,F,.)Pnn,m\T'ﬂ"

ANJTR o &t "
- [-‘ 7\7\?5 Z’ —A_;r" ¢P?(")F“)]1’=o
(58)

A"
~§% :ﬁ-n ¢PP (,‘\")F,\') \T"-'

Equation (58) expresses AD , the standard deviation in
the observed value of delay for an underspread target, in
a convenient form because, presuming the preceding
assumptions are made, it can be evaluated as a function
of the radar system parameters with a knowledge of only
P(T,F), the theoretical model of the received echo power
distribution (which, as we saw in equation (15), is the
convolution of the ambiguity function with the target
scattering function),

At this point we will verify that tﬁe dimension of AD
is seconds if all times are expressed in seconds. If P

is measured in Watts then the dimension of ¢,,is W™ sec
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2 2
and %}f”’ has the dimension ¥%:§? . From the equation

above equation (54) we see the dimension of

2z

& .2
13 - 4N, 1‘6
R UO‘ Q‘H) SFnFn\ - -M3R d?r(l)Fh]

S 42 Ppe L2}

is W' sec? since the dimension of d{ is sec, the
dimension of Ne¥s is W (per unit bandwidth Lcps); see
page 48; if P(T,F) is dimensioned as W then so is Ng g ;

i.e.,, they must have the same dimension), and the dimension

of ¢PPis Wisec, Therefore, the dimension of

4 cpct . .
4::;‘3 P d,Ta.‘P?r"’J ») is w-g-ez—f-c =w* and the dimension

w*]"l.

of equation (58) is sec, as it should be

W sealsee

Tet us assume a simple form of the target scattering
function in order to determine whether equation (58) will
vield reasonable results, In particular, suppose the
target scattering function is Gaussian in both the delay
and doppler dimension, e.g., suppose x'is

T = f‘fij; e-T’/rg ~-F*lge

where TRp is the geometrical cross section of the planet,
Tc 1s the "characteristic" delay depth and B, 1is the
"'characteristic' doppler width, i.e.,, at T=T,, F=R. , ¢
has diminished to é times the value of T at T=F=0. We

will assume T, = 0.«Tp and B.= 0.1x By where Ty is the

delay depth of the target and Byy 1is the limb-to-limb
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relative doppler spread. The radar cross section, 0O ,

may be expressed as

® o ST 72 - F*Bt
SSdeFﬂRse”T‘ F18

~0 g

q

1

(W*T.8) wRE

where Rpis the radius of the target. 1In the case of

Venus, for example, Ty= 40wmsec, Bop= 10¢cps, and

0 = W2 (0% 40%107°5e, ) 0.1 %10 ¢ps) T R

= 0.04TRp

The average power received from the cell corresponding to

delay-doppler coordinate (T,F) is

§§dvdt 22 (71 JFA) T E)
R \Yn:' s
= %’;i SSJTA'G Yr(T-v,F-f) PI(T,F)
where ¥, is the peak value of ¥XT,F) (see Figure 4g).

P(T,F) =

Note that as ¥ (T,F) approaches an impulse of volume,
say, P 8T8F P(T,F) becomes

o' (T,F)$T8F
o

PR = Ry

which is the correct behavior (see Evans and Hagfors,
1968, p66).
The convolution of ¥*with P’ can be performed, with

some difficulty, over the range of Y but cannot be

performed analytically over the range of F (recall, as a
Slﬂ'ﬂMth

function of F, ¥* = Ty ). Even if the convolu-

tion in F could be obtained analytically the resulting
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power distribution P would be rather complicated. We

would still need to obtain an expression for ¢W(T,F) in
order to examine the behavior of equation (58) and this
would be a difficult if not impossible task to do exactly.
Therefore, we will begin at this time to make some simplify-
ing assumptions.

Assume first of all the extent of W(T,F) is very
sharply peaked compared to P'(T,F). (later we will assume
the opposite is true in order to obtain the behavior of AD
when P’ is sharply peaked compared to ¥*). Approximating

one period of Qﬁ(T,F) as an impulse of volume V¢ we have

. o' (T,F) Vi
PLT,F) = Pa ~7;§§: .

We have convolved PQT,F) with only one period of ‘QtT,F)
rather than with the entire periodic expression ¥XT,F)
because we have assumed the delay to the target is known
to within one period (see the discussion in Section IB).

In the delay dimensjon YY" is a series of triangles squared
and as a function of F it is given by \H (F)|* (see
equation (15)). The peak height of the triangles-squared
is Py (i.e., the peak height of the triangles is 3 ).

\Y,; , the peak value of ¥'(T,F), occurs at T=4s, F=0
(see, for example, figure 4g) and in this example its value

1ls

Tow = ¥'(%6,0) =PpMm?
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Since the base of the triangles squared is 27 the area

under each triangle-squared, A; , is

~
z-SB“ﬁ'

Ay = 2§ (RTAT 5§ e

The area under one period of the curve described by

IHO(F)‘Z) Ay , is equal to the area under one period of

sin2 T MtpF

. Because it is difficult to integrate this
smutef

function we will make the approximation

Ae = Z'(lixT:\'tp’Ml) (see Kraut, p208)
M
te

I

Because ¥"(T,F) is separable the volume under ¥* is A;A¢

and now we may write P(T,F) as

r'(T,F) AxAF
T e

PTL,F) = Ry

Before we continue we should note dividing by ¥p. has
the effect of normalizing Y'(T,F) so that, for example,
the peak height of the triangles-squared is unity and so
the peak height of each of the triangles is also unity.
Thus the height of ¢kh(the autocorrelation of the pulse
matched filter) at ¥=0 is unity and the variance of
N (t) (= dl¥)# Hi¥) ) evaluated at =0 ) will be “zN§ -1
as opposed to '2Ng¥a  (see figure 7). The dimension of

Nolis watts - sec or watts per unit bandwidth (see p39)
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and is equal to kT, where kR is Boltzman's constant and
Ty is the system temperature.

ILet us now calculate

-]
Pep LV,Fn) = _Sn dT PO, R PLT 4y | F)
- PIAz Ar. (.\TRP) SA ‘ZF ’Bce‘Tx/T‘;"—(T#‘“‘ITc‘L
] P
~2Fy IRl 2212
= (FaAshs TR Y e T g 0¥
A2
and
SN
2 2F il ¢ 2
RP 2 2r, c e ZT
bep (VFI = (PRAxA;‘L) e = 21
ATI ‘f':o J‘z\Tc Tc‘l. ]L=o
TRe
= _ (.PRA‘\'AF 9) _zF"IlB:
———J_.T"‘_F_—" oV
(4
Assuming Ts' , the position of the peak value of ﬁs(T')
is zero or very close to zero
T Rp
-éf ¢PP (‘TlaFn)) - - (PRATAF?)I -2Fy /8¢
47" T'2T4%0 37 T ¢ (62)

and substituting the right hand side of equation (61) and

(62) into equation (58) yields (replacing Ng Vs with N =kTy)

2.2'44 hTNAm \},': i
MR PRA'(‘F“:_; { g"" o-tFnlne \"2

L)

1)

AD

%))
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We may express R, the number of CI¥'s, as the total
duration of reception of the echo signal, t1 (we will
assume Ly is fixed in this paper), divided by Mtp, the

duration of one CIP:
tr
R - MtP .

The maximum number of doppler strips decoded is ByMte ,
the limb-to-limb doppler spread of the target dived by
7\4‘{? , the frequency resolution of each doppler cell.
We denote LByyMtpl  as the largest integer value & ByMte
so that the sum in the denominator of equation (63) is
limited to [Bu Mte) terms, let us substitute into the
right hand side of equation (63) the values of Ay, Ag,

3
and Yp“ given above and also make use of the relations

t .
R T«Itp and Nyg = L8t ) to yield

AD =

4
3z2-2-2 RTu AT tp Mt !
MLk Z2oA . (63R)

TRe 5 [Bimtp) - l2
Pa = B Aty {_Z e«zr,:we‘j

ng

In examining the behavior of AD as certain parameters
are varied we will fix the value of F, , the average
transmitter power and Ty , the reception time., Because we
are assuming PA is constant the peak transmitted power, Ps,
must necessarily ctange as Y3 and tp are varied. The



- 68 -

relation between P.,P,,Yg and lpis

t
P': = PA 7‘?8 (638)

Writing P.< %P, (where B éAngdisﬁueeeﬁ@nm) and substituting

the right hand side of the above equation for P equation (63A)

becomes
352 -2-2  wTu e Jote |
AD = TRE Va (64)
8- ?P . PA A)-t-‘T [.%l"*tﬂ‘; ..ZF,?)B;"]

Nso

We should recall that the above equation applies only
when the delay and doppler resolution of the radar receiver
is verv fine so that \P’(T,F) may be approximated by an
impulse compared to P'(T,F). This means we must have

!

7’\1? « 0~\*Bu= B,

(64A
Tg & 0axTp = T¢ )

We now consider the case in which P‘(T,F) may be
approximated by an impulse compared to \YI(T,F). In this
instance we find

37(1,F) -0

Yy -0

PCT,F) = Pg

Again assuming T, , the position of the peak value of

—

Rs (T') is zero or very close to zero equation (58)
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becomes (replacing NgYs withkTy)

2hTh
AD — ————
S - Nyt o oy
WR [2 2 e (.T',Fh)]
L] dT' TI=°

b3

' P )
where g (v,F,) 2 :{:&z (4T (T+7", R ¥2(T,F0)
™~

Since the autocorrelation of YI(T,E) is to be performed
only in the delay dimension we realize this involves
autocorrelating the now familiar tfiangle-squared function.
According to the above expression of 4D  we must then
calculate the second derivative of this autocorrelation
with respect to T' and‘evaluafe it af'T4=0 . A somewhate

tedious calculation yields

4
2 | HolF )
4 beplTiR) =R - S L
a7 M 3 Te
and
2RT, !
AD - v Nyt ) 4 |’z
NmR [Pl 20 1HotFo ‘g_!_]
R ™ ™NM% 3 Ve
using R = %{Pané Ny:, (number of doppler strips decoded

at T'=0) =}

2R Ty rj % tp s

i
oMty [in (R Y g

AD =
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The effect of this very poor resolution may be considered
as nearly a uniform weighting of P'(T,F) over all values
of T and F for which the target scattering function is of
significant value, Thus, \l—-\t,(l?‘“=° )\* evaluated at any
cle, is not

value of F,, in the range -38; ¢F

neo

=o)\4' z Mq’ %0

L0

significantly different from |H(F

2RT 2kTu)s T
N .m - I

= e
A FaAmty Pe JMty A3

and using P = 8:P and equation (63B) the above may be

written

RTw T {3y \
Ap = B AR | (65)
B8P Jtr  dmt,

Because we have assumed poor resolution in this case we
must limit the application of the above formula to the

region
{
— DY O""BRL =B,
Mte (65A)

g > 0.4xTp =T¢

!
In addition to the restrictions on the values of Wi,

and “Yag in equations (64) and (65) we recall, according
to the basic premise of this paper that we will confine our

attention to underspread targets, we require

L

(the desirable implications of this inequality are discussed

in section 1B3)
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III. NUMERICAL RESULTS

Let us, for example, apply our results to a typical
Venus ranging experiment since Venus is a good practical
example of an underspread target. The values of the
parameters appearing in equations (64) and (65) will be
consistent with the values used in the radar measurements
mande on Venus by Pettengill et al in 1964 using the
facilities of ArecibovIonospheric Observator§ (see table 1
and Péttengill et al, 1967). (At the operating wavelength
of the Arecibo facility the value of Bj) for Venus ranges
between bcps at inferior conjugation to 25 cps at superior
conjunction; since Tp for Venus is 40 msee the product
By To is always ¢1 and thus Venus is always underspread).

Using the values of the parameters listed in table I we

calculate
0" = (B WR = 0.04WRE = 41x | m?
- R -, PrGelyta o .24
Pro= BPp 3 4~TI'TR‘ )X 1 x Arlgla = 1.83% 16" Py
(at zenilh)
NE =hTe = 2.T6b*10" Watt -sec (ot zenith)

When the antenna is pointing 20° below the zenith point
the gain decreases by nearly a factor of 2 (see table 1)
and we will assume the effective receiving aperture goes

down to 0,4 times the geometrical antenna cross section
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and the system temperature increases slightly, say, by a
factor of 1.25 so that
Pa = 5.6xip7% P ol 20° zenith ongle)

Wiy * 3.5x107% Wesece ot 20° zenilh angle)
v g

Using equations (64) and (65) the behavior of AD with
Mty , the length of the CIP, was examined in the case of
very fine and very poor resolution. Values of the parameters
typical of those for observations of Venus made at Arecibo
in 1964 (see table I) were used. The received time (ty)
and , the average transmitter power, were fixed at 800 sec
and 100 kW respectively. The zenith angle of Venus was
assumed to be 20°, For both fine and poor resolution tf was
restricted to the values Tb‘tP"%“ which is
0.04 sec ¢ L p < O.bsec

for Venus.

In the case of fine delav-doppler resolution only the
values of ;h¢ £0.1xBgg =1cpS were considered (of course,
the smaller ﬂfp , i.2., the larger Miy , the better the
approximation that led to equation (64)). Also, in this
region, Tg is assumed £ 10 sec (typical values of Ha
used by Pettengill et al in 1964 were 0.1 - 1 msec) to

satisfy the requirement Mg << 0.1 xTy= 4110%s5ec (see equation (64A)).
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Using equation (64) with the appropriate parameters listed

in table I we find

AD = 10.8 psec for ty =800sec (06)

P, =100 kW

zeﬁmhangk=20°
0.0 £tps 0.0
g ¢ \msec

inderendent of Mtp, the duration of the Coherent Integration
Period (as long as ﬁie is £ lcps to satisfy the assumption
made in arriving at equation (64)),.

To understand why D is independent of Mty in this case
let us calculate Y , the ratio of the average echo
power to the standard deviation of the echo power correspond-
ing to each delay-doppler cell that is decoded. Using
equations (33A), (33B), and (330)

Psua (T,F)
Yave © DR g ,\YE
LVar (P, (7,60} (&)

z S_I'
Mtp

From the above one might expect that AD wculd increase as

frequency resolution, or the length of the CIP (Mtp), is
increased. However, as the frequency resolution increases
more delay-doppler cells may be decoded and, as it turns
out, r,, decreases at the same rate as the square root of
the summation of the average power from each of the

[ByMe) -V doppler cells increases (see equation (64)) and
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as a result we recover the same signal to noise ratio for
all wvalues of Mtp.

In obtaining AD in the case of fine resolution
(equation (64)) we have found AD is the same for all
"allowed" values of tp, i.e., 0.0%sec £ Lp<0.10sec
and for all values of Yg sufficiently small (namely, less
than about 1 msec). This is a result of varying Py , the
peak transmitted power in such a way that P, , the average
transmitted power, is constant. Thus, bPP/PyYg = tel8PYg= '/PA'B
is constant and substituting "18Px  for tplPgNe in equation (63A)
we find AD is independent of 1¢ and g (as long as the delay-
doppler resolution is sufficiently fine so that the approxi-
mations that led to equation (63A) are wvalid).

We may compare the value of 4D given in equation (66)
with the estimated delay error of 50 psec for Venus ranging
reported by Pettengill et al in 1967 using the same values
of the appropriate parameters we have used to obtain
equation (66) ( g was 4 \msec and tpwas 20isee) The difference
between the two estimates of delay error is due to the
simple Gaussian model assumed in this paper and to the not
very greatly refined error analysis used by Pettengill et al
in 1967 (see Pettengill et al, 1967, and Jurgens and Dyce,
1970). However, this difference is not great if we consider

the "99% confidence level', or 3-AD error, which is 33 usec.
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let us now turn our attention to figure 11, in which we
have plotted the duration of the CIP (Mtp) versus AD in the
case of poor delay-doppler resolution with the use of equa-
tion (65) and table.I. 1In this plot ﬁhp is always 25cps
in order to satisfy the requirement itp>’¢\‘%L=‘CPS and g
was fixed at 40x10™¥sec to satisfy the inequality Tg>>0.xTy=40xib’sec
(see equation (65A)); Again, we have set P,=100kw, t =800 sec,
and the antenna was assumed to be pointing at a zenith angle
of 20°, The range of Lp for which figure 11 applies is
0.05 sec ¢tp & 0.40sec, The minimum value of the duration of
the CIP for any value of tp is, of course, tp sec , and
must always be greater than 0.04 sec because the baud
length in figure 11 is assumed to be 0,04 sec. Since we
are interested in measuring the range to the target tp must
be greater than Tg . As a somewhat arbitrary lower cutoff,
therefore, the length of the CIP versus AD was not plotted
for a CIP tess than 0.05 sec.

As we have mentioned, figure 11 describes the relation
between AD and Mte for values of Mtr so0 small that there is
essentially no frequency resolution (i.e., the disténce
between the first nulls of the frequency resolution function
I HotF))* , is much greater than the radar doppler spread
of the planet). In spite of this, from figure 11, we see AD
decreases as Mipincreases, This decrease may be‘attfibuted
to the fact that as the frequency resolution approaches
the radar doppler width of the planet less noise signal

contributes to the output power because the doppler freauency
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dimension of the target occupies a greater fraction of
the resolution bandwidth, The result is AD decreases as
the square root of the bandwidth, i.e., as J;%; , as we
see in equation (65). (Also, see Evans and Hagfors,
1968, p393).
III A, SUMMARY

We have examined the behavior of the semi-analytically
derived expression for one standard deviation (AD) in the
estimate of delay to an underspread planetary target (with
a rough surface) as a function of the radar receiver and
processing parameters. The average transmitted power and
duration of reception of the echo signal were fixed (in
practice; this is épproximately true) and Vg (the delay
resolution), ﬁRP (the frequency resolution), and tp
were varied, Using a simple Gaussian model for the
target scattering function and making some approximations
it was found that, in generai, AD is smaller for fine
delay-doppler resolution than for poor resolution. 1In
particular, AD was observed to decrease as Mtp increased
(i.e., as the frequency resolution increased. For
sufficiently high resolution, however, AD was found to be
independent of the length of the CIP. This was explained
by noting that in the method we used to determine the delay
to the subradar point the result of summing the power

samples from the large number of doppler cells(which high-
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frequency resolution allowed to be decoded)was cancelled
by the large fluctuations in the decoded output power in
each cell tbat occured when the received time and average
transmitter'power was fixed. For very poor resolution a
plot of AD versus Mtp was obtained (figure 11) using values
of the appronriate parameters fcr a typical Venus ranging
experiment and it was observed that AD varied as (Mtyfuz
(equation (65)). Thus in this case 8D decreases as Mte
increases and we saw this was due to the fact the target
occupies a greater percentage of the doppler resolution
bandwidth as the frequency resolution increases (i.e., as

Mtp increases). Therefore, as Mlp was increased the signal power
corresponding to the region beyond the limb of the target

(but within the resolution of the receiver), which

contributes only to ''mcise', was decreased.
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IV. SUGGESTIONS FOR FURTHER RESEARCH

There are several obvious, interesting, and useful
-extensions of the work presented in this paper. As might
be expected, future investigation in this area must deal
with the problem of evaluating AD for more realistic
planetary targets and also for overspread planetary targets,

Attention should first be given to evaluating the
expression for AD as derived in this paper for a planet
obeying a scattering law that gives a more accurate
description of the observed echo power distribution than
that given by a Gaussian scattering function. Scattering
functions that yield close agreement with planetary radar
observations have been derived by Harfors (see, e.g., Evans
and Hagfors, Chapter 4, 1968; and Jurgens and Dyce, 1970)
and Muhleman (see, e.g., Jursens and Dyce, 1970). (The
scattering functions derived by Hagfors and Muhleman
correspond to the variable T'in equaticn (10)). In this
case an analytical evaluation of AD is strictly impossible
to obtain and the best treatment of the problem of
evaluating the behavior of AD with respect to the radar
system and processing parameters would employ numeri¢al
methods of analysis,

The next step would be to derive an expression for
in the case of overspread targets (with a rough surface),

specifically, targets for which SWTD>\ and for which the



PRF was <Bgﬂ and tp ¢ Ty . The severity of the resulting
"aliasing™ of the observed echo power distribution in both
the delay and doppler coordinate (see the discussion in
section IE, would depend upon how much greater than unity
the product BuTo was and on the scattering law that the
target obeyed, Both Mercury (8270 =%4%8) and Mars (ByT, =520)
are examples of overspread targets.

Finally, the effects of large scale features, such
as mountain ranges, on the estimated delay error for

both underspread and overspread targets should be investigated.
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LIST OF SYMBOLS

A list of some of the frequently used symbols is given below

T
F

Yi(T,F)
P'(T,F)
P(T,F)

Pyp (T,F)

Poua (T, F)

R, (T',F)
i
R (T')
E [xit,H)) = xt §)
¢x1(t'){;,‘h‘

Bry (t,f)
Bog

AD

Time delay relative to delay corresponding
to subradar point

Doppler frequency shift relative to doppler
shift of subradar point

Ambiguity function
Target-scattering function

Theoretical echo power distribution
(convolution of ¥*(T,F) with P’'(T,F)

Average output echo power distribution for

echo signal reflected from a target with

rough surface but assuming zero system noise
Average output echo power distribution in
presence of system noise and random fluctuations
of sampled echo amplitude due to reflection from
rough surface

Cross correlation of P, (T,F) with P(T,F)

Z RACTVFLD)

Expected value of x(t,f)

[
_Sm at'x ' £yt +t £
Byt 5 = § T dt xSyt
Eimb-to-limb doppler spread of target

One standard deviation in observed delay to
subradar point

Duration of 1 CIP
Number of pulse repetition periods in time ty

Number of doppler strips decoded at relative
delay T

Number of CIP's used in decoding a doppler cell

Baud length
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LIST OF SYMBOLS (Continued)

Delay depth of target

Pulse repetition period

Position of peak value of Rs(T) , corresponds
to observed position of subradar point relative
to a priori estimate

Total time duration of reception of echo signal
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FIGURE 4 (Cont.)

P, E)
o (T, 0) £ .
b\ /\ /.
g 1amn
A
M1y T
1

\\\ 2% P

(o,0)

A

Mty

F "
¥ (T, F)
A
MYy
\[A| 1_4/_\’ o F
0 { el
2 } A 2

) Rtp ) Ft? MtP Mt?



FIGURE 5

89 -

Ng-1
ULt -T-0t5" 7g)
a. cos znfl;t 1o > e
X (t
—\I d l;i\gls 7 h|(t\
echo b(Tet)
signe °
i 30
frequency |
Fipef % = YW v :E -
P ! ATty
WY
b, ! \ h, (D
C. A
e ;L‘L\:xu.nﬁ(,ﬁ ‘ y
> X (1)
(9,00 x( ~ >
8
K pct, o)
A
T T T T L T T ‘;T
T\ Ta “Lr "\"t? Tr‘t.? th T"‘Zt, T;“th 51?

Shice of PLY,F) vs. 1,F faken ot F:=0



- 90 -

FIGURE 6
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TABLE 1

Typical values of relevant parameters corresponding to radar
investigation of Venus by Pettengill et al in 1964 (for
definition of symbols, see text)

R

ty

]

400 sec-c = 1.2 x 10 m

800 sec

6050 km

0.6972 m

430 Me

10 cps when R = 1.2 x 10" m

3 x 1077 sec when R = 1.2 x 10'm

40 msec

4,2 x 105 (antenna pointing toward zenith)
2.4 x 10° (antenna pointing 20° below zenith)
0.7

0.9

Py
0.6 xm (P £t) 4,4 x 10 m (at zenith)

2
0.4 x T('LFft) = 2,9 x10'm (at 20° penith:angle)
100 kW

200° K (at zenith)



