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Abstract

The heterogeneity of individual cellular behavior in response to physical and chemical stimuli
has raised increasing attention in many biological processes. There is great incentive in
developing techniques for high throughput single-cell measurements and manipulations.
Particularly, cell size has been recognized as an important parameter in single cell study and
pericellular protease activity plays a key role in regulating the microenvironment of individual
cells. Therefore, this thesis focuses on establishing new methods to address the issues of cell size
and single cell protease measurement.

We first develop a size-based cell separation technique using Dean-coupled inertial microfluidic
sorter. Separation of cells by size before downstream assays might be beneficial in simplifying
the system and facilitating the discovery of rare subpopulations through enrichment of cells with
certain size range or cell cycle phase. By investigating the particle focusing and separation
mechanisms in curved microfluidic channel, we develop a novel design of inertial microfluidic
sorter with higher separation resolution and then demonstrate its capacity in leukocyte isolation
from blood. This novel cell sorter would be a promising alternative to many other cell separation
problems.

We then establish a microfluidic platform for functional measurement of single cell pericellular
proteases, including both those secreted and expressed on cell surface. We apply the platform to
studying the PMA-mediated protease response of HepG2 cells at single-cell level and reveal the
diversity in the dynamic patterns of single-cell protease activity profile upon drug stimulation.
We also present the preliminary exploration of single-cell protease activity behavior in anti-
cancer drug resistance development.

Lastly, we explore the applicability of our platform for single-cell shedding measurement.
Protease-mediated molecular shedding is one of the key mechanisms through which individual
cells actively regulate their own microenvironment. However, the amount of molecules being
shed for individual cells is extremely low, posing significant challenges in detecting shedding
quantitatively. By means of analytical analysis and numerical simulations, we investigate the
intrinsic noise of low-abundance molecule detection. Experimental characterizations have also
been performed to evaluate the impact of practical factors on actual readout variation.

Thesis Supervisor: Jongyoon Han
Title: Professor of Electrical Engineering and Computer Science, and Biological Engineering

3



4



Acknowledgements
The past years at MIT has been an incredible and enriching learning experience during
which I meet amazing people.

Foremost, I would like to express my heartfelt gratitude to my research advisor, Prof.
Jongyoon Han, who introduced me into the amazing field of BioMEMS and guided me with
his insightful thoughts. I have greatly benefited from his passion and vision for science in
addition to his generous support and encouragements throughout my doctoral studies.
With his kind advice and help, I have been very fortunate to have the freedom to explore
various research problems and try out new ideas, even though many of them did not work
out well. I could not have imaged for a better advisor.

My committee members, Prof. Douglas A. Lauffenburger and Prof. Darrell J. Irvine, have
also been a great source of advice and knowledge. I would like to thank them for reviewing
my progress and keeping me on my toes. I do very much appreciate their time,
encouragement and enlightening input. It is my great honor to have them on my thesis
committee.

This work is done in collaborations with many others. Dr. Guofeng Guan, Dr. Ali Asgar. S.
Bhagat in Singapore and Dr. Han Wei Hou here at MIT have been closely involved during
the development of size-based cell sorter. Ms. Allison M. Claas in Lauffenburger Lab has
been very helpful when it comes to cell culture and the conventional assays at bulk level. I
am grateful for their efforts and critical inputs in shaping the projects. I must also
acknowledge the funding sources of my doctoral studies, including Singapore-MIT Alliance
for Research and Technology (SMART), DARPA Dialysis-Like Therapeutics (DLT) program
and NIH grant R01-CA096504.

My sincere thanks also go to all the Han group members who have been very supportive
and a joy to work with. I am indebted to Yong-Ak Song for setting me on my feet as a new
graduate student, and to Aniruddh Sarkar for the helpful discussions and brilliant
suggestions over the past years. It is also a great pleasure to work and spend time with
other group members (listed in no particular order), including Sunghee Ko, Taehong Kwon,
Wei Ouyang, Sha Huang, Chia-Chen Yu, Siwon Choi, Bumjoo Kim, Lih-Feng Cheow, Leoni Li,
Rhokyun Kwak, Chia-Hung Chen, Hiong Yap Gan, and Sung Jae Kim.

I thank members of the RLE 8th floor community, especially the members of Voldman and
Yanik labs, for sharing the lab facilities and tips of their use. I would like to acknowledge
staff members at MIT Microsystems Technology Laboratories for their help in
microfabrication. I would also like to express my appreciation for the camaraderie
provided by my old friends from my undergraduate college, USTC, and the new friends I
found at MIT including my classmates of BE'10 and many others. My time at MIT was made
enjoyable with many cherished moments in large part due to those many friends.

Last but not least, I am deeply indebted to my parents, Chengming Wu and Ying Li, for their
unconditioned love and support, as I have ventured beyond my home country to another
side of the earth. Their love of science and way of critical thinking has been the seed of my
pursuit in scientific research. I would like to dedicate this thesis to them to express my
utmost love and gratitude.

5



This doctoral thesis has been examined by a Committee of the Department of Biological
Engineering as follows:

Professor Douglas A . Lauffenburger .............................................................................................

Chairman, Thesis Committee

Professor of Biological Engineering, Chemical Engineering and Biology

Professor Jongyoon H an ................................................................................................... .........

Thesis Supervisor

Professor of Electrical Engineering & Computer Science, and Biological Engineering

Professor D arrell J. Irvine .............................................................................................. . .......

Member, Thesis Committee

Professor of Materials Science & Engineering, and Biological Engineering

6



Table of Contents
List of Figures........................................................................................................................................ 9

List of Tables................................................................ ......................... ......... .. ...... .... ...... 11

List of Abbreviations.........................................................................................................................12

Chapter 1 Introduction ...................................................................................... .......................... 13
1.1 Cellular Heterogeneity: A Hidden World Behind Population Averages ......................... 13

1.1.1 Characteristics of Cellular Heterogeneity .......................................................................................... 13
1.1.2 Im plications of Cellular Heterogeneity ............................................................................................... 14
1.1.3 Necessity of Single-Cell M easurem ents ............................................................................................... 14

1.2 Measuring Cell-To-Cell Variability: An Emerging Role for Microfluidic Technologies.. 15
1.2.1 Technical Challenges for Single-Cell M easurem ents ................................................................... 15
1.2.2 M icrofluidics for Single-Cell M easurem ents.................................................................................... 16

1.3 Thesis Scope and Outlines..................................................................................................................17
1.4 References...............................................................................................................................................18

Chapter 2 Size-Based Cell Separation Using Spiral Microchannel ................................ 20
2.1 Introduction............................................................................................................................................. 21

2.1.1 Cell Separation Problem for Blood Sam ple ....................................................................................... 21
2.1.2 Current Technologies for Blood Cell Separation ........................................................................... 21
2.1.3 Our Approach for Blood Cell Separation Based on Size .............................................................. 22

2.3 M aterials and M ethods........................................................................................................................ 23
2.3.1 M icrochannel Fabrication..............................................................................................................................23
2.3.2 Sam ple Preparation..........................................................................................................................................23
2.3.3 Device Characterization ................................................................................................................................. 24
2.3.4 Flow Cytom etry Analysis ............................................................................................................................... 24
2.3.5 Nitro Blue Tetrazolium (NBT) Test .................................................................................................... 25

2.4 Design Principle of Dean-Coupled Inertial M icrofluidic..................................................... 25
2.5 Separation of Leukocyte from Blood .............................................................................................. 29

2.5.1 Device Perform ance on Hum an Blood Sam ple .............................................................................. 29
2.5.2 Effect of RBC Removal Techniques on the Immune-Phenotype of PMNs............................32

2.6 Conclusions and Future Directions ............................................................................................. 33
2.6.1 Section Sum m ary...............................................................................................................................................33
2.6.2 On-Going W orks and Future Directions ............................................................................................ 34

2.7 Section Acknow ledgem ents.......................................................................................................... 34
2.8 References ............................................................................................................................................... 34

Chapter 3 Microfluidic Platform for Single-cell Protease Activity Measurement........38
3.1 Introduction............................................................................................................................................ 38

3.1.1 Pericellular Proteases: Key Players of Cellular M icroenvironm ent ....................................... 38
3.1.2 Current Methodologies for Single-Cell Measurement of Pericellualr Protease Activity .... 39
3.1.3 Our Approach for Protease Activity Study at Single-Cell Resolution .................................... 40

3.3 M aterials and M ethods........................................................................................................................ 41
3.3.1 Device Fabrication ............................................................................................................................................ 41
3.3.2 Preparation of M icrow ell Arrays and Cell Culture......................................................................... 41
3.3.3 Device Assem bly and Operation.................................................................................................................42
3.3.4 Device Characterization w ith Recom binant Protease................................................................. 43
3.3.5 Bulk Live-Cell Protease Activity Assays............................................................................................ 43
3.3.6 Single Live-Cell Protease Activity Assays ......................................................................................... 43

7



3 .3 .7 D ata A n aly sis ............................................................................................................----------- ..... ............ .. .-4 4

3.4 Device Design and Characterizations........................................................................................ 45

3.4 .1 D evice D esign ......................................................................................................... .. --............................ 4 5

3.4.2 Device Characterizations with Recombinant ADAM 17 .............................................................. 47

3.5 Case Study I: Dose-dependent Heterogeneity in PMA-mediated ADAM17 Activation of
HepG2 Cells............................................................................................................... . --.................... 48

3.5.1 PMA-Induced Protease Activity of Single HepG2 Cells .............................................................. 48

3.5.2 Signaling Components Involved in PMA-Mediated ADAM17 Protease Response........... 49

3.5.3 Snapshots for Temporal Response of PMA-Mediated Protease Activation ........................ 51

3.5.4 Tracking the Protease Temporal Response of Single Cells ......................................................... 52

3.6 Case Study II: Single-Cell Protease Response of Parental and Gefitinib-Resistant
H CC827 Cells ..................................................................- - -.................................................................... 55

3.6.1 Discrepancy Between Bulk Profile and Single-Cell Profile......................................................... 55

3.7 Conclusions and Future directions .................................................................. ....................... 59
3 .7.1 Section Su m m ary ....................................................................................................................... ..................... 59

3 .7.2 Fu tu re D irection s ......................................................................................................................... .... ..... . 59

3.8 Section Acknowledgements........................................................................................................... 60
3.9 References ............................................-.................. -........................................................... 60

Chapter 4 Theoretical Limits in Single-Cell Shedding Detection....................................65
4.1 Introduction.................................................................................................................................... 65
4.2 Materials and Methods ........................................................................................................................ 66

4.2.1 Numerical Modeling of Antibody-based Molecular Capture in Confined Space............... 66
4.2.1.1 D eterm inistic Continuum M odel.......................................................................................................................... 69
4.2.1.2 Stochastic D iscrete M odel.......................................................................................................................-.......------ 71

4.2.2 Flow Cytometry Characterization of Bulk Immunosandwich Assay ..................................... 73

4.2.3 Closed-Array Immunosandwich Assay with Recombinant c-Met............................................74

4.2.4 Single-Cell Measurement of c-Met Shedding.....................................................................................75
4.2.5 Data Analysis for Microwell-Coupled Immunosandwich Assays ........................................... 75

4.3 Analytical Theories of Fluctuations in Low-Abundance Molecular Capture................. 76
4.3.1 Fluctuations in Source Concentrations............................................................................................. 77

4.3.2 Fluctuations in Binding K inetics.................................................................................................................79
4.4 Modeling Results of Closed-Array Assays on Sample with Fixed Target Concentration
................................................................................................. ..................................................--........ ...... 8 1
4.5 Modeling Results of Closed-Array Assays on Single-Cell Shedding...................84
4.6 Experimental Characterization with Recombinant Protein ........................ 89
4.7 Detection of Single-Cell Shedding in Closed Array................................................................ 93
4.6 Section Summary.................................................................................................................................95
4.7 Section Acknowledgements.......................................................................................................... 96
4 .8 R eferences ................................................................................................................................-------..... 96

Chapter 5 Conclusions....... .................................................... 99

Appendix........................ ............................................................................ . ............... 101
A.1 Supporting Information for Chapter 3.......................................101

8



List of Figures
Figure 1.1 Cell-to-cell heterogeneity has many different manifestations and causes...........13

Figure 1.2 Ensemble average and heterogeneity, with gene expression as an example......15

Figure 2.1 Schematic of spiral channel with trapezoid cross-section illustrating the
o p eratio n p rin cip le............................................................................................................................................... 2 7

Figure 2.2 Schematic and average composite fluorescent images indicating the inertial
focusing of 10 g m and 6 g m beads in spiral channels with rectangular cross-section and
trap ezoid cross-section....................................................................................................................................... 28

Figure 2.3 Top-down view images demonstrating the focusing behavior of fluorescent
particles as a function of flow rate inside spiral channel with trapezoid cross-section of 500
g m width, 70 p m (inner) and 100 p m (outer) depth ................................................................. 29

Figure 2.4 Normalized intensity line scans indicating the distribution of WBCs and RBCs at
different hematocrit (0.1%, 0.5%) across channel width of spiral channels with rectangular
cross-section and trapezoid cross-section under optimal flow rate........................................... 31

Figure 2.5 Characterization of blood cells in spiral channel with trapezoid cross-section..31

Figure 2.6 Spiral processing of buffy coat obtained via differential centrifugation.......... 32

Figure 2.7 Comparison of PMN activation by spiral and other RBC removal techniques.... 33

Figure 3.1 Schematics of microfluidic platform for single-cell protease activity
m easurem ent and the assay procedure. ................................................................................................. 47

Figure 3.2 Device characterization with recombinant ADAM 17. ............................................... 48

Figure 3.3 Heterogeneous protease response for HepG2 cells treated with DMSO or
different concentrations of PMA (0.1, 0.2, 0.5, 0.8, 1 p M) ........................................................... 49

Figure 3.4 Inhibitors against different components of signaling pathway suppressed the
PMA-induced protease activity increase in HepG2 cells ................................................................. 50

Figure 3.5 Temporal response of the PMA-mediated single-cell protease activity measured
in 1 -ru n a ssay .......................................................................................................................................................... 5 2

Figure 3.6 Heterogeneous temporal behavior of single-cell protease activity upon PMA
ch a lle n g e ................................................................................................................................................................... 5 4

Figure 3.7 1-run measurements on ADAM17 protease activity of parental (P) and resistant
(GR) HCC827 cells at basal (DMSO) or 1 p M gefitinib-treated (Get) condition................ 57

Figure 3.8 2-run measurements on gefitinib-mediated ADAM17 protease response of
parental (P) and resistant (GR) HCC827 cells..................................................................................... 58

Figure 4.1 Schematic of the closed-array antibody-based analyte capture for external
source of target analytes and cellular source of target analytes................................................ 67

Figure 4.2 Schematic for reversible binding between target analyte and the immobilized
antibody as a tw o-step process....................................................................................................................... 68

9



Figure 4.3 Temporal profile of molecular capture in closed-array configuration for external
source of target an alytes.................................................................................................................................... 8 3

Figure 4.4 Coefficient of variation (CV) of the captured analyte number at equilibrium for
closed-array molecular capture of target analytes from external source............................... 84

Figure 4.5 Temporal profile of target analyte distribution for single-cell shedding detection
in closed-array configuration (deterministic continuum model).............................................. 85

Figure 4.6 Temporal profile of molecular capture in closed-array configuration for cellular
source of target an alytes.................................................................................................................................... 8 7

Figure 4.7 Coefficient of variation (CV) of the captured analyte number after 10-h
incubation of an analyte-releasing cell with an antibody-coated bead in closed microwell.88

Figure 4.8 Experimental comparisons of close-array detection and bulk assay on standard
sam ple of fixed target concentration............................................................................................................ 91

Figure 4.9 Quantification of c-Met ectodomain shedding of parental HCC827 cells using
closed-array Im m unosandw ich assay.......................................................................................................... 94

Figure A.1 Representative images for HepG2 cells cultured on collagen-coated microwell
a rra y .......................................................................................................................................... ...................... . 1 0 1

Figure A.2 Schematic for signal acquisition, processing and normalization..........................102

10



List of Tables
Table 4.1 Values of parameters used in simulations...................................................................... 70

Table 4.2 Capture efficiency and coefficient of variation (CV) in captured analyte number
based on the numerical simulations of deterministic continuum model (Ml) and stochastic
discrete model (M2) in the case of kg = 0.1 #/cell/sec ................................................................ 89

11



List of Abbreviations
ADAM A Disintegrin and Metalloproteinase

AI Activity index

c-Met Hepatocyte growth factor receptor

CV Coefficient of variation

CTC Circulating tumor cell

DMSO Dimethyl sulfoxide

EGFR Epidermal growth factor receptor

ERK Extracellular signal-regulated kinase

FRET Fluorescence resonance energy transfer

MET Hepatocyte growth factor receptor

MMP Matrix metalloproteinase

MNL Mononuclear leukocyte

NAI Normalized activity index

SAPE Streptavidin-conjugated phycoerythrin

PDMS Polydimethysiloxane

PMMA Poly(methy methacrylate)

PFF Pinched-flow fractionation

PKC Protein kinase C

PMA Phorbol 12-myristate 13-acetate

PMN Polymorphonuclear leukocyte

TIMP Tissue inhibitor of metalloproteinase

TKI Tyrosine kinase inhibitor

TNF-a Tumor necrosis factor alpha

WBC White blood cell

12



Chapter 1 Introduction

This thesis describes the development of two microfluidic techniques that facilitate single-
cell study and also discusses the theoretical limits of antibody-based single-cell secretory
molecule detection. This chapter first gives an introduction of cellular heterogeneity and
the motivation for single-cell study. Secondly, we point out the challenges and
requirements in single-cell measurements, and discuss the unique advantages of
microfluidic technologies. Lastly, we outline the scope of this thesis and how it would
facilitate single-cell study.

1.1 Cellular Heterogeneity: A Hidden World Behind Population Averages

1.1.1 Characteristics of Cellular Heterogeneity

Cell heterogeneity

Genotypic Potential Morphological
Epigenotypic Biochemical
Phenotypic -Functional

Positional Physical
Exogenous Chemical
Endlogenous Disease Biological

Causes of heterogeneity

Figure 1.1 Cell-to-cell heterogeneity has many different manifestations and causes. Potential
heterogeneity represents the cell's capability to change its function, chemical composition and
structure. The figure and caption are adapted from [1].

With decades of efforts in measuring and analyzing cellular properties at single-cell level,
people are now convinced that cellular heterogeneity is a ubiquitous feature of various
biological systems, ranging from a complex tissue of a multicellular organism to the
isogenic colony derived from a single mammalian cell or a bacterium in vitro. Furthermore,
as an inevitable outcome of the variability in cellular response, the cell-to-cell
heterogeneity in a given system can have many causes and manifestations in nearly the full
spectrum of cellular properties (Figure 1.1). In general, cell-to-cell variability could be
divided into two categories, the stochastic and the deterministic variability, based on its
origins and functional outcomes. The stochastic cell-to-cell variability arises from the
probabilistic and discrete nature of biochemical reactions. Along with the exquisite
architecture of intracellular signaling network, the stochastic variability in cellular
properties could enhance the capability of cells to maintain a state against small
fluctuations [2] and thus is a desirable feature of cells. Meanwhile, many cellular properties
present in a prior time point have been shown to influence the cell fate decision of
individual cells in response to subsequent internal and external stimuli [3]. This
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phenomenon reveals deterministic effects of cell-to-cell variability. Factors frequently used
to explain cell-to-cell variability include molecular marker (indicating the presence of
subpopulation with distinct phenotypes), cell size, cell cycle phase, spatial cell population
context and cell history.

1.1.2 Implications of Cellular Heterogeneity

Whatever the category, cell-to-cell variability has significant implications in many
biological processes. The most famous example can be found in the cases of
leukemia and solid tumors, where rare subpopulations, termed as "cancer stem
cells", with different proliferative and differentiative capacities from the bulk cancer
cells have been identified and shown to play an important role in tumorigenesis and
response to cancer therapy [4-7]. Moreover, recent studies of genetically
homogenous populations revealed that non-genetic variability, such as fluctuations
of intracellular biochemical reaction and subtle differences in the local
microenvironment, could lead to significantly diverse responsiveness to drugs and
stimuli [8-12]. Regardless of the origins of cellular heterogeneity, it's clear that the
functionally or phenotypically heterogeneous subpopulations should be
acknowledged and considered in clinical models for a proper guide to diagnosis and
treatment of the disease [13, 14].

1.1.3 Necessity of Single-Cell Measurements

The presence and importance of cellular heterogeneity calls for technologies making
measurements on single cells (Figure 1.2). While the conventional population-averaged
measurements are powerful tools in averaging out the stochastic variability to highlight the
dominant mechanisms operating within a population, they also mask the behavior of small
subpopulations, or, even worse, mislead the interpretation of experimental results. The
latter case can occur when several phenotypically distinct subpopulations are present in
the same population at comparable quantities. A typical example can be found in the case
of hormone-induced maturation of Xenopus oocytes [15], where a graded input is
correlated with a graded output based on population-averaged measurements. An intuitive
interpretation of the result would predict an intermediate output signal for an "average"
oocyte upon the treatment of intermediate input. However, individual oocytes actually
exhibit all-or-none characteristics in their response. Similarly, the ensemble averages
would also fail to capture the dynamics of cellular response when the actual response is

asynchronous or out-of-phase at single-cell level (Figure 1.2b). In fact, numerous key

signaling and transcriptional processes show pulsatile, or even oscillatory, behaviors [16],
emphasizing the necessity in measuring and analyzing single cells. Moreover, analysis of
single cells is the first step to understand cell-cell interactions in populations. It can help
separate cell-specific response (limited to individual cells) from those population-specific
responses (involving cell-cell communication) and provide unique insights in the

functioning of an entire system.
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Cell of Interest
Other Population

- -Bulk Average

Q)Q

Time Time

c d
- Bulk Average Bulk Average

0 0

Cells of Interest

Gene Expression Gene Expression

Figure 1.2 Ensemble average and heterogeneity, with gene expression as an example. (a) Population-
averaged measurements mask amplitude differences between cells of interest and the majority
population and (b) out-of-phase dynamics. (c) Subpopulation in multimodal distributions and (d) rare
cell populations are not accurately represented by ensemble end-point assays. The figure and caption
are adapted from [17].

1.2 Measuring Cell-To-Cell Variability: An Emerging Role for Microfluidic
Technologies

Science and technology are the two pedals of the same wheel, as scientific knowledge
allows the development of new technology, which in turn becomes the driving force of new
scientific discoveries. A lot of progress has been achieved in single-cell measurements since
the importance of cellular heterogeneity was first recognized in biological study. Whereas,
the demands will only increase for methods to read out cellular properties at single-cell
resolution, given the fact that cell-to-cell variability is increasingly applied to many
biological and clinical questions.

1.2.1 Technical Challenges for Single-Cell Measurements

To enable meaningful single-cell study, technical advances should be achieved in several
fronts: sensitivity, time resolution, throughput, and multiplexing capacity. Firstly, a single
cell contains limited amount of material that exists with a very large dynamic range in
abundances, for an astronomical large number of different species in molecule identities. It
requires molecular analysis methods to have very high detection sensitivity to accurately
probe on a particular molecule or at an "-omics" scale. Secondly, the dynamic range of time
scale is also very large for molecular events involved in cell fate decision process.
Considering a typical downstream signaling process of cell surface receptor ligation as an
example, early responses like calcium flux could happen within several seconds to minutes.

15
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And the subsequent intracellular signaling processes including the kinase reaction cascade
and transcriptional changes might take minutes to hours to occur. Whereas, phenotypic
difference determining the cell fate could be observed in a timescale of hours or days, as
changes in molecules abundances and activities accumulate in response to the propagating
signaling flux. Methods with suitable time resolution and wide operational range in
acquiring single-cell dynamics of molecular events are therefore in demand. Thirdly,
considerable throughput is necessary to extracting meaningful information based on
single-cell measurements. Because the critical behaviors of minority cell subpopulations
still needs to be measured with statistical significance, requiring sufficient number of
measurements for (often rare) subpopulation cells. While one can achieve this goal by
simply increasing the total number of single cells measured and monitored, it is often
necessary to enrich those minority subpopulations of interest. In such cases, cell separation
or enrichment technology also needs to be capable of processing large number of cells
efficiently, in order to address problems involving rare cells. Finally, a crucial question of
any single-cell study is whether the observed cell-to-cell variability has any biological
function or practical impact. The key to this question is to create a mechanistic link
between many different parameters of the cell fate decision process of the same cell.
Therefore, it's highly desirable to have the capacity in analyzing single cells in multiplexed
fashion, not only in terms of the "-omics" measurement for fully characterization of cellular
components within system, but also with respect to putting the single-cell readouts in the
context of extracellular microenvironment and the corresponding phenotypic outcomes.

1.2.2 Microfluidics for Single-Cell Measurements

There are many technical advances on all of these critical aspects of single-cell
measurements and multiple reviews are available for analyzing single cells at almost the
full spectrum of cellular state [18, 19], ranging from nucleic acid levels [20], epigenetics
status [21], to proteomics [22] and metabolomics [23] characteristics. Particularly, various
microfluidic systems have emerged as powerful tools expanding upon and beyond the
existing capabilities of convention tools for single-cell analysis.

On one hand, there is a trend in miniaturizing the conventional analysis methods, such as
the nucleic acid sequencing [24] and antibody-based molecular detection [25]. The
miniaturized systems allow the compartmentalization and precise manipulation of small
volumes of liquid, making it ideal for single-cell isolation and the downstream processes.
Furthermore, microfluidic devices offer higher throughput, improved accuracy and the
capacity in detecting multiple target molecules simultaneously, owing to its power in
integrating multiple processing modules and the ability for parallelization and automation.

On the other hand, microfluidic technologies enable single-cell studies that are otherwise
impossible. Firstly, taking advantage of many unique physical phenomenon - such as the
cell trapping/separation using hydrodynamic [26], dielectric [27] or acoustic [28] forces -
in microscale system, microfluidics enable precise manipulation of many single cells.
Precise positioning of cells in space would not only provide the spatial registration of
individual cells for long-term study on cellular response and history [29], but also enable
the pairing between two different cells for cell-cell interaction study [26]. Moreover, when
using as a sample preparation step, microfluidic technologies enabling positioning cells in
flow can fractionate cell sample to enrich cells within certain size range or expressing
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certain surface marker. In fact, sample preparation is highly recommended for single-cell
analysis and often a necessary step when populations of interest are rare cells in complex
tissues, like blood. Such examples include single-cell studies on circulating tumor cells,
hematopoietic stem cells, and antigen specific T cells, whose abundance ranges from
several to thousands among the billions of non-target cells in one millimeter of blood.
Secondly, microfluidics has a tight control on the microenvironment of individual cells. Due
to its comparable length scale in respect to the size of single cells (-10 tm), microfluidics
provides a compatible interface for mimicking the physiological in vivo environments
around the cells, in terms of the chemical cues like the gradients of diffusive and
immobilized molecules, and the mechanical cues provided by interstitial flow or
extracellular matrix. Moreover, one can introduce spatio-temporally precise perturbation
of extracellular molecules [30] and shear stress [31] in microfluidic systems by exploiting
the laminar flow feature of fluid at microscale. All these manipulations on single cells and
their environment would greatly simplify the interpretation of cell behavior and therefore
are beneficial for many single cell studies.

1.3 Thesis Scope and Outlines

Any single-cell study is usually composed of three phases: sample preparation, single-cell
measurement, and data interpretation. In the sample preparation phase, various cell-
sorting techniques are frequently used to isolate or enrich the population of interest from
complex sample. And for a hypothesis-driven study, cells are often arranged in desirable
fashion using cell-manipulation techniques to investigate the impact of particular factors
on cellular response. In the single-cell measurement phase, various molecular
analytes/events or other phenotypic parameters are measured and registered to individual
cells for downstream mechanistic investigation. In the data interpretation phase, data
analysis should be performed on the readouts with consideration on limits in experimental
design and implementation. Despite the blossoming of tools and methodologies for single-
cell study, certain unfulfilled needs remain in each phase. This thesis seeks to contribute to
the field by providing tool facilitating sample preparation, platform enabling activity
measurement of cellular microenvironment, and critical analysis on the limits of antibody-
based analyte quantification for single-cell proteomic study.

We begin with the development of high-throughput size-based cell separation technique in
Chapter 2. Various cell separation techniques have been developed for sample preparation
of downstream assays. With a long history in sample preparation, affinity-based cell sorting
has been employed in both bulk and microfluidic platforms - in forms of fluorescence
activated cell sorting (FACS), magnetic activated cell sorting (MACS) and affinity-mediated
cell capture/trapping. However, these methods rely closely on affinity labeling, whose
performance depends on the quality of capture reagents and the presence of corresponding
binding targets on cells. Besides, the labeling process, i.e. molecule binding to cell surface,
could potentially alter the state of the target cells and thus not ideal for downstream
studies involving functional characterization. Alternatively, several intrinsic biophysical
properties, such as cell size, density, electrical properties and deformability, have also been
exploited for cell sorting and even single-cell measurements of cellular physical attributes
in a label-free manner. But the throughput, separation resolution and artificial impact on
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cell state remain problematic, especially when dealing with sensitive blood cells. In Chapter
2, we introduce a novel size-based cell separation technique to address those issues.

While many previous single-cell studies primarily focus on the intracellular signaling
events, the role of extracellular signaling in the regulation of cellular response is relatively
unexplored in the field of single-cell study. Given the increasingly recognition of

pericellular protease in extracellular signaling network, in Chapter 3, we develop a
microfluidic platform for single-cell measurement of pericellular protease and investigate
in both the amplitude and dynamic behavior of single-cell pericellular protease. Moreover,
since protease-mediated molecular shedding is one of the key mechanisms through which

individual cell actively regulates its own microenvironment, we further explore the
applicability of our platform for single-cell shedding measurement. Chapter 4 hence presents a
critical analysis on the theoretical limits of low-abundance molecule detection using antibody. A
summary of this thesis and directions for future work would then be listed in Chapter 5.
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Chapter 2 Size-Based Cell Separation Using Spiral Microchannel

This section contains extracted text and results from previous publication by the thesis
contributor:

"Separation of leukocytes from blood using spiral channel with trapezoid cross-section',
Analytical Chemistry, 2012, 84(21): p. 9324-9331, authored by Lidan Wu, Guofeng Guan,
Han Wei Hou, Ali Asgar. S. Bhagat and Jongyoon Han. Lidan Wu (thesis author) was the
first author of this publication, where she designed and carried out the experiments.
Guofeng Guan helped out in fabricating the PMMA master for spiral microchannels with
trapezoidal cross-section. Jongyoon Han supervised the research. All authors listed have
contributed in the data analysis and writing.

Cell size, a fundamental attribute resulting from both cell growth and cell division, impacts
the cellular design and function of individual cells [1], thus being recognized as an
important parameter in single cell study. Cell size has been correlated to the functional
state of individual cells via cell cycle phase, since various eukaryotic cells have been
reported to undergo size-dependent cell cycle transition. It has been shown that many
growth factors [2, 3] and anti-cancer drugs [4] work in a cell cycle-dependent manner
through their action on cell-cycle dependent kinases, providing a possible explanation for
the role of cell size in relevant study. Additional, cell size has also been linked to the
functional capacity of individual cells. One such example could be found in the study of
human mesenchymal stem cells [5], where smaller cells displayed a faster proliferation
cycle and more primitive form in terms of clonogenic potential and multipotent
differentiation capacity. Therefore, separation cell population based on size might serve to
enrich rare subpopulation with distinct functionality. And this kind of cell separation is
especially useful when populations of interest are minority cells in blood and other
biological fluids.

Inertial microfluidics has recently drawn wide attention as an efficient, high-throughput
microfluidic cell separation method. However, the achieved separation resolution and
throughput, as well as the issues with cell dispersion due to cell- cell interaction, has
appeared to be limiting factors in the application of the technique to real-world samples
such as blood and other biological fluids. In this chapter, we present a novel design of spiral
inertial microfluidic (trapezoidal cross section) sorter with enhanced separation
resolution. As a proof-of-concept, we demonstrate its ability in isolating leukocytes from
diluted human blood (1-2% hematocrit) with high efficiency (>80%). Polymorphonuclear
leukocytes (PMNs) enriched by our method also showed negligible activation as compared
to original input sample, while conventional RBC lysis method clearly induced artificial
activation to the sensitive PMNs. Therefore, the developed technique would be a promising
solution for many other size-based cell separation problems.
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2.1 Introduction

2.1.1 Cell Separation Problem for Blood Sample

Red blood cells (RBCs) or erythrocytes are the most abundant cell component in many
biological fluids, including blood (where it makes up -45% of the volume), bone marrow
aspirate and peritoneal aspirate. Depletion of contaminating RBCs from those samples is
often an indispensable sample preparation step before the application of any scientific,
clinical and diagnostic tests due to various reasons [6]. For example, inadvertent lysis of
RBCs releases hemoglobin, leading to chemical interference and deteriorating the PCR-
based test performances [7]. Reports supporting the anti-proliferative and pro-apoptotic
role of RBCs in primary cell culture of human cells have also been published [8, 9]. While
the required degree of RBC removal varies widely depending on the downstream
applications, avoiding artificial alteration on the phenotypes of sorted cells is an important
criterion for all studies. This is especially important in the case of removing RBCs from
human blood to isolate white blood cells (WBCs) or leukocytes, which play a key role in
carrying out and mediating the immune response to various pathogens. The information
extracted from the isolated leukocytes would be meaningful to facilitate disease prognosis
only when the key features of leukocytes' original state are not masked by the sample
preparation artifacts.

2.1.2 Current Technologies for Blood Cell Separation

Conventional methodologies for blood cell separation on the macroscale include
differential centrifugation and selective RBC lysis. While the performance of differential
centrifugation is affected by the blood source, especially for blood from individuals with
diseases, such as recurrent infections [10], the RBC lysis method, which is usually used in
combination with the centrifugation to get complete RBC removal, exposes the cells to
hypotonic environment, altering cell metabolism in a cell type-specific manner [11].
Besides, several cases have been reported that those sample preparation procedures could
result in altered immuno-phenotype [12, 13] or impaired viability [14, 15] of the isolated
WBCs. Moreover, the macroscale sample handling introduces variability to the separation
and downstream application results due to imprecise control and non-uniform conditions,
making the comparison of analogous results across different laboratories and platforms
non trivial [16].

Several high-resolution, continuous microfluidic separation techniques [17-20] utilizing
the size-dependent hydrodynamic effects have been reported to achieve the discrimination
of few-micrometers particle size differences, which is comparable to the intrinsic
difference in size observed among blood cells (RBCs: 6-8 ptm discoid; mononuclear
leukocytes (MNLs): 7-10 ptm sphere; polymorphonuclear leukocytes (PMNs): 10-12 ptm
sphere; WBCs include both MNLs and PMNs) [21, 22]. These approaches are considered to
be promising alternatives to bypass the issues associated with macroscale blood cell
separation methods mentioned above and are able to process the sample in a label-free and
continuous manner. Size-based microfluidic separation techniques do not require the
addition of any lytic agent or prior cell labeling treatment and allow better control of the
microenvironment during the blood sample handling. The cell separation is achieved by
driving individual cells uniformly through a microchannel with well-designed geometry,
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which leads to the alignment of cells in different positions across the channel width in a

cell-size-dependent manner, followed by continuous sample collection at different outlets.

The channel design is extremely critical for both the separation resolution and throughput,

and differs as the working principle of the exact size-based hydrodynamic effects varies. In

one example, "deterministic lateral displacement (DLD)", microchannel containing an array

of microposts leads to differential lateral displacement for particles above or below the

critical hydrodynamic diameter as a result of the asymmetric bifurcation of laminar flow

around the microposts [19]. In another type of microfluidic device, "pinched-flow

fractionation (PFF)", patterned with a contraction-expansion segment [20], the parabolic

velocity profile of laminar flow within the contraction region leads to the alignment of

particles near the channel sidewall in a size-based manner so that large particles with

comparable diameter to the channel width of contraction region stay closer to the middle

streamlines but smaller particles have their center closer to the channel sidewall. This

difference in lateral positions of particles with varying size is further amplified upon
entering the expansion region, resulting in efficient separation. Both techniques have the

high resolution required for separating RBCs from other cell types but are severely limited

in their practical application on clinical samples by the low working flow rates.

2.1.3 Our Approach for Blood Cell Separation Based on Size

To increase throughput, several groups have demonstrated the use of inertial lift forces and

Dean forces in straight [23, 24] or spiral microchannels respectively [25-29] to precisely

manipulate cell/particle positions within channel based on their size for high throughput

separation(> 106 cells/min or -1 mL/min flow rate). While spiral microchanel has also

been previous applied for efficient affinity-based capture of endothelial cells, smooth

muscle cells and fibroblasts on functionalized surfaces [30], the working flow rate and

throughput (7.54 pL/min for 106 cells/mL input sample) is considered lower than that

required for inertial focusing of cells in spiral channel, and thus not suitable for blood cell

separation applications due to the large RBC background in blood samples. In this work, we

further improve the separation resolution of spiral microchannel while maintaining the

high-throughput feature by modifying the shape of channel cross-section to be trapezoidal

instead of conventional rectangular, and demonstrate its ability for efficient RBC depletion

from human blood sample with negligible effects on PMN immuno-phenotype. Moreover, to

fit the needs of processing sample with volume ranging from microliter to milliliter scale,

the current design can directly process the diluted whole blood sample when the blood

sample volume is in the order of microliter, (e.g. fingerprick) and as a replacement for RBC

lysis method, it can also be used in combination with differential centrifugation to get pure

WBCs with no sign of alteration in activation status of the sorted cells for larger sample

volume (-mL). We envision that the novel trapezoid cross-sectional spiral microchannel

developed can be used as a generic, high-throughput method for removing RBCs and

enriching target cells from other biological fluids, such as harvesting mesenchymal stem

cells (MSCs) from bone marrow aspirates.
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2.3 Materials and Methods

2.3.1 Microchannel Fabrication

The trapezoid cross-sectional spiral channels were made of polydimethylsiloxane polymer
(PDMS, Sylard 184 Silicone Elastomer Kit, Dow Corning, USA) using standard soft
lithography techniques from a poly(methyl methacrylate) (PMMA) master template. The
PMMA template master was fabricated by a milling process (Whits Technologies,
Singapore) to meet the special requirement in cross-sectional geometry. Given the
available milling machine capability, the actual pattern of template mold has a tolerance of

10 ptm compared to the virtual design and a surface roughness of Ra = 0.8 Im.
Subsequently, PDMS prepolymer mixed with curing agent in a 10:1 (w/w) ratio was then
cast on the PMMA template master and cured under 80 0C for 2h to replicate the
microchannel features. The cured PDMS molds were peeled off from the PMMA master and
punched for the inlet and outlet reservoirs using 1.5 mm-diameter biopsy punch. Finally,
the PDMS molds were irreversibly bonded to another flat 0.5 cm-thick PDMS sheet
following oxygen plasma treatment (Harrick Plasma Cleaner/Sterilizer, Harrick Plasma,
Inc., USA). The resulting PDMS devices were cut at four different locations and the cross-
sections were measured under microscope to determine the exact dimensions of the
devices.

The rectangular cross-sectional spiral channels were also fabricated in PDMS polymer but
using a double molding process from a etched silicon wafer master [31]. Briefly, positive
AZ4620 photoresist was first patterned on a 6-inch silicon wafer to define the
microchannel features. Then, the patterned wafer was etched to desired depth using deep
reactive ion etching (DRIE), followed by residual photoresist removal using oxygen plasma
treatment. Next, trichloro(1H,1H,2H,2H-perfluorooctyl)silane (Sigma-Aldrich, USA) was
coated on the etched wafer for 1.5 h to assist PDMS mold release. PDMS liquid mixture with
5 parts of prepolymer and 1 part of curing agent was then poured to the silicon wafer and
cured under 80 oC for 2 h. The resulting PDMS mold has channel features obtruding from
the surface and will served as a master for subsequent PDMS molding. The silane treatment
and PDMS curing was repeated with this PDMS master to get negative replica. As a last
step, the negative replica with inlet and outlet reservoirs punched was bonded to another
PDMS substrate by standard plasma-assisted bonding.

2.3.2 Sample Preparation

For bead experiments, fluorescent polystyrene particles (1 wt. % solid content) with
diameter of 6 [tm (5.518 im 0.122 [tm), 10 im (10.3 pim 0.4 Im) (Polysciences, Inc.,
USA), or 15.5 im (15.5 pm 1.52 im, Bangs Laboratories, Inc.) were diluted in deionized
water (0.1% volume fraction) containing 0.025 mg/mL PEG-PPG-PEG Pluronic@ F-108
(Sigma-Aldrich, USA), respectively, serving as the input sample. The small amount of PEG-
PEG-PEG Pluronic@ F-108 added was not enough to change the viscosity and density of
fluid but rather minimized the non-specific adherence of particles to channel walls [32].

For experiments with blood sample, fresh human whole blood from healthy donors with
sodium heparin as anti-coagulant was purchased from Research Blood Component, LLC
(Boston, MA, USA) and processed within 6 h after collection to ensure viability of PMNs.
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The PMNs and MNLs were isolated using Mono-Poly Resolving Media (MP-RM; MP
Biomedicals, LLC, USA). Briefly, a 15mL centrifuge tube containing 3.5 mL of whole blood

layer atop a 3 mL MP-RM layer was centrifuged under 300g for 30 min with brakes off. The

bands of cells containing MNLs and PMNs were collected to separate tubes, washed and

resuspended in sample buffer (1x PBS with 0.5% BSA), respectively. The isolated MNLs and

PMNs could also be mixed together, serving as the representative WBC sample isolated via

differential centrifugation. WBCs isolated using selective RBC lysis method were obtained

by treating whole blood with RBC lysis buffer (eBioscience Inc., USA) (1:10) for 10 mins,
followed by washing and resuspension in sample buffer. Finally, for blood samples, whole

blood was spun down at 400g for 10min with brake off to obtain the cell and plasma

fractions. The cell fraction was then resuspended in sample buffer and adjusted to varying
hematocrits (0.5-2% hematocrit) to constitute the various samples.

2.3.3 Device Characterization

The device was mounted on an inverted phase contrast/epifluorescence microscope

(Olympus IX71, Olympus Inc., USA) equipped with a 12-bit CCD camera (C4742-80-12AG,
Hamamatsu Photonics K.K., Japan). Samples were loaded within a syringe and pumped
through the microchannel at varying flow rates using a syringe pump (Harvard Apparatus

PHD 2000, Harvard Apparatus Inc., USA). To prevent the particle/cell sedimentation, a

small magnetic stir bar placed inside the syringe was agitated during sample processing.

Using ImageJ @ software, the position of fluorescent particles within channel cross-section
were determined by taking the average fluorescence intensity of the image series. For cells,

high speed videos captured using a high-speed camera, Phantom v9.1 (Vision Research Inc.,

USA) under phase contrast were analyzed to determine the cell positions. The standard

deviation of light intensity of the high-speed video was calculated to visualize the positions

of fast moving cells.

2.3.4 Flow Cytometry Analysis

All antibodies were purchased from BD Pharmingen' (BD Biosciences, USA). To determine

the separation efficiency, whole blood was stained with 0.1 mg/ml Hoechst 33342

(Invitrogen, USA) and FITC-conjugated mouse anti-human CD66b monoclonal antibody

(1:25 v/v) for 30 min at 40C in the dark. The stained blood cell fraction was then collected

by centrifugation and resuspended in sample buffer to desired hematocrit as input sample.
Both input sample and output samples from two outlets were collected and analyzed on

BDTM LSR II flow cytometer (BD Biosciences, USA) to determine the WBCs (Hoechst-positive

cells) and PMNs (CD66b-positive cells) in each sample. Given the fact that MNLs comprise

various cell types and there are no convenient surface markers available to determine the

total amount of MNLs, the MNL count was based on the number of Hoechst-positive but

CD66b-negative cells. Additionally, the RBC concentration was further measured by Z2

coulter counter (Beckman Coulter Inc, USA). Similarly, to evaluate the device performance

on buffy coat sample, WBCs isolated by centrifugation with MP-RM were stained for surface

marker, CD66b, and nucleus. The stained WBCs were then resuspended in sample buffer

with same volume of the initial whole blood volume and processed by the device. Next, the

size distribution of cells in the sample was measured by Z2 coulter counter and flow

cytometer was used to analyze the sample composition.
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For comparison between different RBC removal techniques, whole blood (without staining)
was diluted to 1% hematocrit in sample buffer and then processed by the microchannel
device. Subsequently, input and output samples of device, as well as the WBCs isolated by
differential centrifugation with MP-RM or by 10 min of hypotonic RBC lysis (methods
described in the sample preparation section), were stained with FITC-conjugated mouse
anti-human CD66b monoclonal antibody (1:25 v/v) and APC-conjugated mouse anti-
human CD18 monoclonal antibody (1:25 v/v) for 30min at 40C in the dark. After staining,
the samples were washed with sample buffer and analyzed on flow cytometer. The gates
for activated PMNs (i.e. CD18-positive PMNs), were drawn based on PMNs treated with 30
mins of 1 p.M phorbol 12-myristate 13-acetate (PMA; Sigma-Aldrich, USA) under 370C
(complete activation achieved), followed with immunofluorescence staining and FACS
analysis.

2.3.5 Nitro Blue Tetrazolium (NBT) Test

The WBCs isolated by differential centrifugation with MP-RM and the WBCs isolated by the
spiral process with 1% hematocrit input sample were resuspended in sample buffer to a
final concentration of -1 million cells/mL. 40 uL of each cell sample was deposited onto
Poly-L-lysine coated glass slide (Sigma-Aldrich, USA), respectively, where the region for
sample has been circled using Hydrophobic Barrier Pen (ImmEdgeTM Pen, Vector
Laboratories, Inc., USA). Sample on the slide were then incubated at 37 OC for 10 min to
allow the cell attachment. The assay buffer for NBT test was freshly prepared and consisted
of 1x Ca 2+/Mg2+-containing DPBS buffer (Dulbecco's Phosphatase Buffered Saline;
Invitrogen, USA) and 0.25% (w/w) NBT (Sigma-Aldrich, USA). For the conditions with PMA
stimulation, the assay buffer also contained 1 p.M PMA. After incubation, 40 uL of assay
buffer would be added onto the slide for 20-min incubation at 37 OC. Lastly, the cell sample
was observed under phase contrast microscope (Olympus CKX41, Olympus Inc., USA) and
color images would be taken by a DSLR camera (Canon EOS 500D, Canon, USA) with 60x
objective under microscope using NDPL-1 (2x) connecting len (Vivitar@ Sakar
International, Inc., USA).

2.4 Design Principle of Dean-Coupled Inertial Microfluidic

When flowing through a microchannel, particles suspended in a fluid experienced inertial
lift forces and viscous drag. Inertial lift forces include the shear-induced lift force resulting
from the parabolic velocity profile of flows in a confined channel [25] and the wall-induced
lift force arising from the disturbed rotational wake around the particles when close to the
wall [33]. For particles satisfying ap/Dh > 0.07 (where ap represents particle diameter,
and Dh = 4A ismicrochannel hydraulic diameter, A and P are the area and perimeter ofp
channel cross-section respectively), the interplay between shear-induced and wall-induced
lift forces leads to lateral migration of the initial randomly distributed particles to stable
equilibrium positions around the microchannel periphery [25-27]. Many studies revealed
that the net inertial lift force (FL) acting on the particles is highly dependent on particle size
(FL oc a') and fluid shear rate (FL oc G 2 ). Apart from these, the resulting equilibrium
positions are also affected by the geometry of channel cross-section. Within a square cross-
sectional straight microchannel, particles focus at 8 equilibrium positions in low Reynolds
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number flows (Re, < 100, where Rec = pUfDh and p, Uf, p represents the density, velocity
it

and viscosity of the fluid medium separately) but 4 equilibrium positions near channel
corners when Reynolds number is high (Rec > 500) [34]. Whereas, the asymmetric nature
of shear rate in rectangular cross-sectional microchannel with high aspect ratio results in

preferential focusing of particles along the longer channel dimension [35]. Incorporation of
channel curvature could further modify the equilibrium positions by exerting viscous drag
of secondary flow on particles. Fluid passing through a curved microchannel such as spiral
channel is subjected to centrifugal acceleration generating a secondary flow composed of

two counter-rotating vortices (Dean vortices) across the channel cross-section [36, 37].
The magnitude of the vortex flow can be expressed using the non-dimensional Dean
number (De) and the viscous force, known as Dean drag force (FD), experienced by the
particles can be quantified by assuming Stokes drag.

De =U (2.1)

FD= 3x7rUDaP = 5.4 x 10-4 glDe 63a

where UD represents the average velocity of Dean flow given by UD = 1.8 X 10-4 De 1.63

[37]. Notably, although it's not clearly indicated in the expression of Dean drag force, both
its magnitude and direction varies within the channel cross-section since the secondary
flow velocity differs at different location of Dean vortices and is almost zero at the vortex
core [38]. While the inertial lift force primarily dictates the particle focusing, the
combinatory effect of Dean drag force and inertial lift force within spiral channel reduces
the multiple equilibrium positions of particles into two vertically overlapping positions
with same lateral distance to the inner channel wall [39]. Furthermore, as a result of the
size-dependence of both two forces (FL oc a', FD oc ap), particles with varying diameters

occupy distinct lateral positions near the inner channel wall and demonstrate different
degree of focusing when flowing through same spiral channel under a given flow rate. Thus
the spiral microchannel can be applied as a possible size-based particle/cell separation
device.

One major challenge of utilizing spiral microchannel in blood cell separation lies in the

limited separation resolution and capacity of holding vast number of RBCs without

affecting the separation efficiency. One recent work showed that polystyrene particles with
a diameter of 7.32 pim, 9.92 pm, 15.02 pm and 20.66 pm, respectively, could focus into four

distinct bands in a spiral microchannel with 500 pm x 100 pm (WxH) rectangular cross-

section at De = 16.3, at a very low concentration (0.005% volume fraction particle
solution) [40]. However, this design cannot be directly applied to blood sample where the
vast number of RBCs significantly broaden the stream width of RBCs due to cell-cell
interactions and affect the focusing of other cells. To accommodate the samples with higher
hematocrit, we need to increase the spacing between equilibrium positions. Our approach
is to modify the spiral microchannel cross-section into a trapezoid with higher channel
depth on the outer channel wall (Figure 2.1). The asymmetry of trapezoid cross-section

alters the shape of velocity field and results in formation of strong Dean vortex cores

skewed towards the outer wall with larger channel depth even at relatively low flow rates.
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Therefore, while in spiral with rectangular cross-section the interplay between inertial lift
force and Dean drag force leads to the focusing of large particles close to the inner wall and
the trapping of small particles at the core of Dean vortices located at the center of channel
width, the modified velocity field of spiral with trapezoid cross-section leads to a greater
shift for small particles towards the outer wall without affecting the focusing position of
large particles, thus providing a greater difference in equilibrium positions between them,
resulting in higher separation resolution (Figure 2.2).
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Figure 2.1 Schematic (not to scale) of spiral channel with trapezoid cross-section of 500 pm width, 70
pm (inner) and 100 pm (outer) depth illustrating the operation principle. At the outlet, the larger white
blood cells (WBCs) focus near to the inner wall due to the combination of inertial lift force (FL) and Dean
drag force (FD), while the smaller red blood cells (RBCs) are trapped at the core of dean vortex and form
a broad band near the outer wall.

The trapezoid cross-section also has an impact on the size- and flow-rate-dependence of
particle focusing. In a rectangular cross-sectional spiral, particles with ap/Dh > 0.07

initially focus near the inner channel wall at low Re,, and then move towards the outer wall
as Rec increases. When Rec is sufficiently high, Dean drag force dominates the particle
behavior leading to defocusing of particles. On the contrary, our results indicate that
instead of Df, the channel depth at inner wall (Dinner) serves as a better critical channel
dimension to determine whether particles of certain diameter can form a focused stream
near the inner wall. This was confirmed by using trapezoid channels satisfying Douter/
Dinner < 1.5 criterion (Figure 2.3). Interestingly, while the particle behavior of trapezoid
cross-section spiral displays a similar focusing-defocusing dependence on Rec , an
additional regime featured by the trapping of particles within the outer half of channel
cross-section was observed when Rec increased further. Moreover, the flow rate required
to trap particles increases with particle size, making the isolation of particles within a
specific size range feasible. The exact mechanism of particle trapping under high Rec
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remains elusive. Previous research has revealed that the position of the focused particle
stream is affected both by the direction and magnitude of FD acting on particles
significantly [41], while FL was the primary force dictating particle focusing in low Re, flow
[39]. We therefore hypothesize that the altered velocity field within trapezoid cross-
sectional spiral might lead to a skewed Dean vortex profile, acting as a particle trap at the
core of the vortex. As a result, at low Rec the large particles can escape the Dean vortex
cores experiencing small FD and be able to find their lateral equilibrium position primarily
determined by spatial distribution of FL. Further study on the inertial focusing of trapezoid
cross-sectional spiral is necessary to validate this hypothesis.
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Figure 2.2 Schematic (not to scale) and average composite fluorescent images indicating the inertial
focusing of 10 pm (white) and 6 pm (red) beads in (A) spiral channel with rectangular cross-section of
500 lpm x 90 pm (WxH) under optimal flow rate: 1 ml/min (De = 4.31); (B) spiral channel with
rectangular cross-section of 500 pm x 120 pm under optimal flow rate: 2 ml/min (De = 8.63); (C)
spiral channel with trapezoid cross-section of 500 pm width, 70 pm (inner) and 100 pm (outer) depth
under optimal flow rate: 0.8 ml/min (De = 4.22); (D) spiral channel with trapezoid cross-section of 500
pm width, 90 pm (inner) and 120 pm (outer) depth under optimal flow rate: 0.8 ml/min (De = 4.32).
Yellow lines indicate the positions of channel walls.
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Figure 2.3 Top-down view images demonstrating the focusing behavior of fluorescent particles as a
function of flow rate (Q) inside spiral channel with trapezoid cross-section of 500 pm width, 70 pm
(inner) and 100 pm (outer) depth. (A) 15.5 pm particles, ap/Dh = 0.104, ap/Dinner = 0.213; (B) 10 pm

particles, ap/Dh = 0.067, ap/Dinner = 0.137; (C) 6 pm particles, ap/Dh = 0.040, ap/Dinner = 0.082.

Yellow lines indicate the position of channel walls, while the inner channel walls were shown on the top
side of the images.

2.5 Separation of Leukocyte from Blood

2.5.1 Device Performance on Human Blood Sample

The optimized PDMS device for RBC removal developed consists of a 1-inlet, 2-outlet spiral
microchannel with trapezoid cross-section of 500 pm width (485.00 pm 2.31 pm), 70 pm
(inner wall, 72.84 pm 1.16 pm) and 100 pm (outer wall, 102.65 pm 3.55 pm) depth.
Near the outlet region, the 485 pm wide channel was split into two outlet channels with a
channel width ratio of 3 : 7 (inner : outer), while their channel lengths were adjusted to be
equal with each other. We defined the inner outlet to be the WBC outlet with RBC-depleted
sample (i.e. PMNs/MNLs) and the outer outlet to be the RBC waste outlet. The optimal flow

29

U!.'

1.0 1.5 2.0 2.5 3.0 3.5 4.0



rate was experimentally determined to be 0.8 mL/min (Re, = 46.52; De = 4.22). PMNs and
MNLs isolated via centrifugation using MP-RM were injected through our device separately
to determine their equilibrium positions inside the channel (Figure 2.5A). Under optimal
flow rate, PMNs formed a focused stream at a distance of -75 ptm away from the inner
channel wall in the top-down view, and MNLs occupied a similar lateral position but had a
slightly wider stream width presumably due to the smaller cell size. On the contrary, RBCs
with much smaller cell size displayed as a broad stream near the outer channel wall,
enabling the isolation of PMNs/MNLs from RBCs at the device outlets. Compared to
conventional rectangular cross-sectional spiral microchannel (Figure 2.4A), where the
distribution of WBCs significantly overlaid with that of RBCs for input sample of 0.1%
hematocrit, the developed trapezoid cross-sectional spiral achieved a larger spacing
between WBCs and RBCs (Figure 2.4B), therefore allowing it to process input sample of
higher hematocrit without compromising the purity and recovery of isolated WBCs. Figure
2.5B showed the recovery of blood components from WBC outlet of the developed device
after a single pass and the optimal performance was achieved for 0.5% hematocrit blood
sample with -95% RBC removal and 98.4% of total WBC recovery (99.4% PMN recovery
and 92.4% MNL recovery). Under this condition, the device's throughput translates to -10
ptL of whole blood (45% hematocrit) per min which is significantly higher than other
microfluidic leukocyte isolation devices, such as "hydrodynamic filtration" with -29 fold
WBC enrichment at 20 pL/min for 10-fold diluted blood [42], dielectrophoretic (DEP)
microseparator with 92% WBC recovery at 50 ptL/hr [43], and magnetophoretic
microsparator with 97% WBC recovery at 2.5-20 pL/hr [44]. Further increase in input
sample hematocrit would broaden the distribution of RBCs across channel width, leading to
a decrease in both RBC removal but the total WBC recovery and PMN recovery remained
relatively constant. Up to 1.5% hematocrit, the device can still achieve 86.8% RBC removal
and 96.2% of total WBC recovery. A 2-stage process, where the output sample from WBC
outlet of the 1st run was used as the input of 2nd run without any dilution, can be fashioned
to achieve high RBC removal while maintaining good WBC recovery for 1%-1.5%
hematocrit sample (Figure 2.5C, D). Since WBCs collected from the 1st stage were
concentrated by a factor of -6, one can easily process 500 pL of whole blood with the 2-
stage process for less than 25 min, which is comparable to the microfluidic RBC lysis device
reported by Sethu et al. [45].
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Figure 2.4 Normalized intensity line scans indicating the distribution of WBCs and RBCs at different

hematocrit (0.1%, 0.5%) across channel width of (A) spiral channel with rectangular cross-section

(500 ptm x 90 pm) under optimal flow rate (1 ml/min), or (B) spiral channel with trapezoid cross-section

(500 pm x 70/100 rn) under optimal flow rate (0.8 ml/min). The inner channel wall is represented by

x = 0, and the outer channel wall is represented by x = 500. HCT: hematocrit.
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Figure 2.5 Characterization of blood cells in spiral channel with trapezoid cross-section. (A) Normalized

intensity line scan indicating the distribution of polymorphonuclear leukocytes (PMLs), mononuclear

leukocytes (MNLs) and RBCs (0.1% hematocrit) across channel width at 0.8 ml/min. The inner channel

wall is represented by x = 0, and the outer channel wall is represented by x = 500. (B) Single-pass

recovery percentage of total WBCs, PMNs, MNLs and RBCs at different hematocrit. Recovery percentage

of 1% hematocrit (C) and 1.5% hematocrit (D) input sample after processed by trapezoid cross-sectional

spiral in a 2-stage cascade manner. The amount of RBCs was measured by coulter counter, and the

amounts of WBCs, PMNs and MNLs were based on FACS analysis of Hochest-positive, CD66b-positive

cells, Hochest-positive but CD66b-negative cells, separately. Error bars indicate the standard deviation

of results from three tests.

The device can also be used as a secondary step of differential centrifugation, whose
performance was subjected to variation of blood source and manual transfer of different
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cell layers to different tubes. It is often the case that some RBC residuals stay with the
isolated WBCs after the first 30-min centrifugation and additional slow centrifugation
washing steps or RBC lysis step are required to further RBC removal. Here we
demonstrated the RBC removing ability of our device in processing buffy coat in a case
where notable amount of RBCs were isolated along with WBCs by centrifugation (Figure
2.6). Based on the size distribution of cell sample, we observed that the WBC percentage
(cell diameter: 6.6-15 prm) among the whole population increased from 30% to 91% after
processing by our device.
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Figure 2.6 Spiral processing of buffy coat obtained via differential centrifugation. (A) A photo of healthy
blood sample after centrifugation with Mono-Poly Resolving Medium. The first layer (FR1) consisted of
MNLs, while the second layer (FR2) contained the majority of PMNs and some RBC residual. Cells from
these two layers were re-suspended in same volume of the original whole blood sample and further
processed by our spiral microchannel with trapezoid cross-section. (B) Size distribution of cells in input
and output samples of the trapezoid cross-sectional spiral microchannel.

2.5.2 Effect of RBC Removal Techniques on the Immune-Phenotype of PMNs

Gentle depletion of RBCs from sample is crucial for the downstream analysis on remaining
cells. In a recent study, the overall gene expression profile and cell viability was measured
for cancer cells, MCF7, after inertial separation under Re, = 21 and no significant affects
caused by the separation process were observed compared to the unsorted control sample
[24], indicating transient exposure of cells to shear condition in short time scale might not
be enough to change the cell function. For the described spiral device here, the viability of
isolated WBCs was found to be 98.22% 0.83% (trypan blue staining; input: 98.05% +
1.08%) and their ability of producing reactive oxygen species in response to in vitro stimuli
(PMA) has been measured by NBT test. As shown in Figure 2.7A, PMNs isolated by both
spiral process and differential centrifugation remained passive but were able to reduce
NBT at the presence of 1 pM PMA. Given the high sensitivity of white blood cells to external
stimuli, we compared the effect of different RBC removal techniques on the expression
level of cell surface marker (Figure 2.7B), CD18, which is a classical activation marker for
PMNs. Both spiral process and centrifugation using MP-RM had negligible effect on PMN
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activation, whereas the RBC lysis method increased the percentage of activated PMNs
significantly and could potentially affect the phenotype and gene expression profile.
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Figure 2.7 Comparison of PMN activation by spiral and other RBC removal techniques. (A) Nitroblue-

tetrazolium (NBT) test on WBCs isolated by differential centrifugation method (MP-RM) or spiral process

under condition with or without 1 pM PMA. Scale bar: 10 pm. (B) Comparison of activated PMNs in

sample processed by different RBC removal methods based on FACS analysis of CD66b+ CD18 + cells.

Error bars represent standard deviation of results from three tests.

2.6 Conclusions and Future Directions

2.6.1 Section Summary

In this work, we developed a novel, high-throughput RBC removal technique using
trapezoid cross-sectional spiral, which provides higher resolution separation as compared
to rectangular cross-section with similar dimensions. To our knowledge, this is the first
experimental demonstration where the asymmetry velocity field within a trapezoid spiral
channel affects the inertial focusing phenomenon, indicating the feasibility of using channel
cross-sectional geometry (other than width and depth) as a parameter for optimization of
curvilinear inertial microfluidic sorter. Our size-based separation technique eliminates the
needs for long-term exposure of blood cells in nonphysiological condition and thus
minimizes artificial alterations on cellular phenotypes during separation. While clogging
and low throughput are major drawbacks for most microfluidic size-based separation
methods which utilize membranes [46] or micron-sized pillars [47],the large dimensions of
our device enables large volume sample processing with no clogging issues. As compared
to other types of continuous cell separation methods, such as DLD and PFF techniques, our
spiral microchannel functions at high operation flow rate (-mL/min) with large channel
dimension accommodating the abundant RBCs (up to -2% HCT), and thus possesses high
throughput and is amenable to process blood samples. The highly repeatable performance
and ability in enriching WBCs to >90% of total cell population also makes it a good choice
to complete deplete RBCs from various biological fluids when used alone or in combination
of differential centrifugation. Further optimization of channel cross-section and other
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structural features is possible to apply this technique in many other primary cell separation
problems.

2.6.2 On-Going Works and Future Directions

There are several on-going works in our lab utilizing the developed size-based cell sorting
technique and two examples are shown as below.

In collaboration with Prof. Joel Voldman's group (Massachusetts Institute of Technology,
Cambridge, MA, USA), we integrate the exact spiral cell sorter with the iso-dielectric
separation (IDS) system. The integrated system successfully measures the electrical profile
of individual leukocytes in a continuous manner at single cell level, and provides rapid
result (within 15min) on leukocyte activation status for blood sample of fingerpicking
volume (-20 ptL). Thus, such integrated system might be useful in point of care application
and bedside monitoring of inflammatory disease progression at fine temporal resolution.

With some modification in channel dimension, the trapezoidal cross-section spiral has also
been employed by our group and collaborators in Singapore to isolate circulating tumor
cells (CTCs). The optimized spiral CTC sorter is capable to isolate CTCs from clinically
relevant blood volumes rapidly (7.5ml whole blood under 8min) with very high selectivity
(99.99% removal of WBCs) and recovery (90% for CTCs) [48, 49]. Successful
implementation of various downstream analysis has been performed on the retrieved
CTCs, including genomic characterization using fluorescence in situ hybridization (FISH)
and DNA sequencing, and proteomic characterization using immunofluorescence.
Moreover, the retrieved CTCs were unlabeled and viable with a potential for propagation in
downstream in vitro cell culture. Active efforts are carried out in optimizing the culture
conditions for CTCs.
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Chapter 3 Microfluidic Platform for Single-cell Protease Activity
Measurement

This section contains extracted text and results from previous publication by the thesis
contributor:

"High-throughput protease activity cytometry reveals dose-dependent heterogeneity in
PMA-mediated ADAM17 activation" Integrative Biology, 2015, 7(5): p. 513-524, authored
by Lidan Wu, Allison M. Claas, Aniruddh Sarkar, Douglas A. Lauffenburger, Jongyoon Han.
Lidan Wu (thesis author) was the first author of this publication, where she designed and
carried out the experiments. Allison M. Claas helped out in bulk assays. Aniruddh Sarkar
contributed in data analysis. Jongyoon Han supervised the research. All authors listed
have contributed to the manuscript.

As key components of autocrine signaling, pericellular proteases, A Disintegrin and
Metalloproteinases (ADAMs) in particular, are known to impact the microenvironment of
individual cells and have significant implications in various pathological situations
including cancer, inflammatory and vascular diseases [1-3]. There is great incentive to
develop a high-throughput platform for single-cell measurement of pericellular protease
activity, as it is essential for studying the heterogeneity of protease response and the
corresponding cell behavioral consequences. In this chapter, we develop a microfluidic
platform to simultaneously monitor protease activity of many single cells in a time-
dependent manner. This platform isolates individual microwells rapidly on demand and
thus allows single-cell activity measurement of both cell-surface and secreted proteases by
confining individual cells with diffusive FRET-based substrates. In case study I with this
platform, we observe dose-dependent heterogeneous protease activation of HepG2 cells
treated with phorbol 12-myristate 13-acetate (PMA). To study the temporal behavior of
PMA-induced protease response, we monitor the pericellular protease activity of the same
single cells during three different time periods and reveal the diversity in the dynamic
patterns of single-cell protease activity profile upon PMA stimulation. The unique temporal
information of single-cell protease response can help unveil the complicated functional role
of pericellular proteases. In case study II (unpublished), we apply the developed platform
to study the single-cell protease activity behavior of parental and gefitinib-resistant
HCC827 cells. We observe discrepancy between the protease response derived from single-
cell measurement and population-averaged assay, suggesting a potential role of cell-cell
communication in the protease response of HCC827 cells.

3.1 Introduction

3.1.1 Pericellular Proteases: Key Players of Cellular Microenvironment

A Disintegrin and Metalloproteinases (ADAMs), a family of transmembrane proteins with
peptide cleavage activities, have been shown to be the principal mediators of protein
ectodomain shedding on the cell surface [4]. Together with the closely-related matrix

metalloproteinases (MMPs), ADAMs process and cleave hundreds of proteins including
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cytokines, receptors, growth factors and adhesion molecules and hence regulate many key
cell signaling pathways via the modulation of the cellular microenvioronment [5-7]. There
is increasing evidence to support the significant contributions of ADAMs in many
physiological and pathological processes, ranging from multi-cellular organism
development, wound healing to tumorigenesis, and thus ADAMs have been recognized as
potential therapeutic targets in various diseases [1-3]. The most established role of ADAMs,
especially ADAM17 and ADAM10, is in cancer formation and progression [8], where the
ADAM-mediated shedding of EGF family members is associated with increased cell
proliferation, migration and survival [4]. A recent study revealed that the autocrine
signaling via protease-mediated EGF ligand shedding could stimulate the directed
migration of individual human mammary epithelial cells (HMECs) without affecting their
close neighborhood [9]. The studies suggested that variability in single-cell protease
activity could lead to diverse intracellular kinase activation profiles or cell migration
patterns in response to the same stimuli, which might contribute to the resistance
development against cancer therapies. Indeed, on one hand, the active ADAMs on the cell
surface are generally considered to promote malignancy since they activate the growth
factor ligands via proteolysis, and selective inhibitors against ADAM17 in particular have
been shown to restore the sensitivity of gefitinib resistant non-small cell lung cancer
(NSCLC) [10]. On the other hand, ADAMs could also shed the growth factor receptors from
the cell surface and researchers have found that the receptor accumulation resulting from
ADAM inhibition could enhance the activation of compensatory signaling pathway involved
in the drug resistance development of endometriosis [11]. Therefore, there is an emerging
need in studying the heterogeneity of protease response of individual cancer cells and its
cell behavioral consequences. The first step towards any relevant biological study is to
develop an appropriate technique for single-cell measurement of pericellular protease
functional characteristics.

3.1.2 Current Methodologies for Single-Cell Measurement of Pericellualr Protease Activity

Unlike MMPs, ADAMs are primarily located at the cell membrane and function in the
pericellular space. Beside the multiple post-translational modifications and other
intracellular regulatory mechanisms mediating the proteolytic activity of ADAMs, the local
balance between active ADAMs and their physiological inhibitors in the extracellular
environment also determines the actual function of those enzymes [12-14]. Moreover, one
recent study on endometriosis discovered a counter-intuitive decrease in both MMP-2 and
ADAM-9 protease activities in the presence of reduced concentration of TIMP-4 protease
inhibitor [15], further suggesting the catalytic activity to be a better surrogate marker for
the ADAM functionality than the protein expression. Pericellular activity measurement of
proteases primarily relied on various fluorescent reporter systems that generated
fluorescence upon reaction with proteases, and the key issue of single-cell measurement is
to constrain the readout to individual cells. Many existing methodologies utilize the
translocation of fluorescence generating systems into the cytoplasm to enable single cell
detection [16-19] and significant throughput has been achieved when conjugated with flow
cytometry. But caution must be taken as the translocation of extensive amount of
exogenous molecules into the cytoplasm could potentially interfere with the intracellular
singling events. Another big category of single-cell protease activity measurement in
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pericellular space is based on dye quenched (DQ) extracellular matrix (ECM) proteins [20,
21]. Coupled with advanced live-cell imaging system, DQ-ECM substrates have been shown
to be useful in monitoring the spatio-temporal proteolysis events associated with cell
migration and cell-cell interaction [21, 22]. Despite the benefits of DQ-ECM systems, an
important drawback is that the DQ-ECM approach for single-cell pericellular protease
measurement not only requires prior nuclear labeling that is known to interfere with
cellular processes [23], but also imposes high demands on the imaging setup in many
aspects including cell tracking, data memory, and spatial and temporal resolution of
measurements. Nevertheless, the signaling response associated with protease-mediated
shedding could be very rapid and dynamic [24]. For example, as a typical downstream
signaling process of cell surface receptors' binding to their ligands, early responses like
calcium flux could happen within several seconds to minutes, while the subsequent
intracellular kinase reaction cascade and transcriptional changes might take minutes to
hours to occur. Therefore, to reveal the underlying regulation mechanisms associated with
pericellular protease function, it is valuable to develop a novel methodology for single-cell
protease activity measurement. An ideal measurement method would not only work in
higher time resolution at considerable throughput, but also be compatible with
conventional activity/concentration measurements and cell culture techniques, with
minimal preparation and perturbation. This is especially important considering that the
major goal of single-cell assays is to compare and contrast the signals at the bulk and
single-cell levels, to elucidate both the role of critical subpopulations and any emergent
population behaviors.

3.1.3 Our Approach for Protease Activity Study at Single-Cell Resolution

Microfluidics systems, which have been increasingly recognized as a useful tool in
biological studies, offer the tremendous advantages in single-cell analysis [25, 26]. Until
now, many different kinds of microfluidic chips have been developed to allow the
manipulation and analysis of cells within the miniaturized devices in a controlled and
reproducible way. Diverse single-cell assays against various molecular properties such as
cellular transcriptome and secretory profile, or biophysical properties such as
deformability and density, have also been realized in microfluidic platforms [27, 28].
Particularly, isolating individual cells with microwell arrays or discrete microchambers has
emerged as a popular and robust approach for microfluidic single-cell platform. With
appropriate engineering, microwell-based systems hold generic applicability to versatile
biological problems. Both mammalian cell culture [29, 30] and ELISA-like measurement of
secretary molecules [31, 32] have been successfully demonstrated with microwell-based
systems for high-throughput single-cell study.

In this work, we develop a flexible yet robust microfluidic approach of multiwell
confinement for single-cell measurement of pericellular protease activity. We take
advantage of a microfluidic platform with valving function [33] to control the molecular
transport of individual microwells and also to confine the fluorescence readout signal from
each cells for higher detection sensitivity. Since our platform has very little requirement on
sensing substrates, various commercially available FRET-based substrates with high
specificity against certain protease(s) could be used in the same manner as corresponding
bulk assays. Potential multiplexed protease activity profiling is possible when assayed
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with panels of moderately specific FRET-based protease substrates with different
fluorescence spectra [34]. As a proof-of-concept, in case study I, we demonstrate the
capability of single-cell protease activity measurement using adherent human
hepatocellular carcinoma cell line, HepG2, and study its ADAM17 protease response
mediated by PMA, a potent inducer of inflammation. Furthermore, since the microfluidic
platform allows us to replace the medium within microwells easily and rapidly, we are able
to monitor the temporal evolution of pericellular protease response of the same single cell.
Results derived from our temporal protease activity profiling reveal that the extracellular
protease activity profile could have diverse temporal dynamic patterns at the single-cell
level. Moreover, the data indicates that the typical analogue dose-response relationship
observed at the bulk level might have root in the dose-dependent effect of stimulant on
single cells' signaling dynamics. Although the physiological significance of the
asynchronous single-cell protease response is unclear, our results open up the possibility
that heterogeneous protease response may have an impact on the dynamic interaction of
the protease-mediated autocrine-signaling network, which may result in diverse cell fate
decisions.

3.3 Materials and Methods

3.3.1 Device Fabrication

For the bottom piece of the microfluidic platform, arrays of microwells were made of
polydimethysiloxane polymer (PDMS, Sylard 184 Silicone Elastomer Kit, Dow Corning,
USA) using standard soft lithography techniques from a SU8-patterned silicon master.
Individual microwell was cuboid in shape with a volume of 1.89 nL (area of 100 x 100 pIm 2

with a depth of 189 ptm), arranging into 5 x 6 blocks with well-to-well interval of 190 pim.
The microwell dimensions described were empirically established for easy monitoring of
cellular morphology and locomotion of adherent mammalian cells with 15-20 [im in
diameter. The access channels between each block had the same depth and width as that of
microwells, and were designed to facilitate the liquid convection across the microwell
array during operation. Each microwell array containing 4 x 8 blocks of microwells (960
microwells per array) was patterned on the center area of a 1 mm-thick PDMS slab laying
facing up on top of a 1.5" x 1.5" glass slide (VWR@ Plan Micro Slides, VWR International
LLC, USA), and used for cell culture.

The top piece of the microfluidic platform was also made of PDMS polymer and comprised
of a flow chamber layer and a valve control layer. The flow chamber layer contained an 8
mm x 15 mm x 100 pm (width x length x depth) straight channel, both ends of which were
connected to the inlet and outlet reservoirs via branching channels. The valve control layer
is positioned directly on top of the flow chamber layer and formed a 15 mm x 8 mm x 200
pm straight channel via irreversible plasma bonding. This is where the pressure would be
applied to control the closing and opening of the underneath flow chamber (Figure 3.1).

3.3.2 Preparation of Microwell Arrays and Cell Culture

The PDMS microwell array on a glass slide was placed within a 35 mm x 10 mm tissue
culture dish and treated with oxygen plasma (Harrick Plasma Cleaner/Sterilizer, Harrick
Plasma, Inc., USA) for 1 min to sterilize the surface. To promote cell adhesion, plasma-
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treated microwell array was first incubated with 0.02 N sterile acetic acid containing 40
pg/mL rat collagen I (A1048301, Invitrogen, USA) at room temperature for 1h, followed by
washing with 1x PBS three times to remove unbound collagen molecules and residual acid.
Then, in HepG2 study (case study I), suspensions of HepG2 cells (HB-8065, ATCC, USA)
were deposited onto the surface of the microwell array at 1.2 x 10s cells/mL concentration
in complete medium, which consists of Eagle's minimum essential medium (EMEM; 30-
2003, ATCC, USA), 10% fetal bovine serum (16000, Invitrogen, USA), 50 U/mL of Penicillin
and 50 U/mL of Streptomycin (15070-063, Invitrogen, USA). Cells were allowed to settle
down for 5-6 min before the surface of microwell array was gently washed with medium
from the side to remove the cells in the access channels or outside microwells. The
microwell array seeded with cells would then be submerged in complete medium and
incubated at 37 0C with 5% C0 2 for 8-10 h before being subjected to overnight serum
starvation and assayed on the second day. Visual inspection of the cell-loaded microwell
array by microscopy suggested that the sedimentation of cells into microwells followed a
Poisson distribution and thus on average -25% of total microwells contained single cells.

The similar procedure was performed in HCC827 study (case study II) with modification in
the cells and culture medium used. Parental HCC827 cells (CRL-2868, ATCC, USA) are kind
gift from Prof. Douglas A. Lauffenburger (Massachusetts Institute of Technology,
Cambridge, MA, USA). The gefitinib-resistant HCC827 cells are generated in vitro from the
parental cells using a selection process adapted from [35]. Briefly, HCC827 cells were
maintained in complete medium, which consists of RPMI 1640 (21870-076, Invitrogen,
USA), 10% fetal bovine serum (S11150, Atlanta Biologicals, Inc, USA), 2 mM glutamine
(35050-061, Invitrogen, USA), 100 U/mL of Penicillin and 100 U/mL of Streptomycin
(15140-148, Invitrogen, USA). To generate a resistant cell line, parental HCC827 cells were
exposed to 1 ptM gefitinitib (G-4408, LC Laboratories, USA) and 50 ng/ml recombinant
human HGF (hepatocyte growth factor; 294-HG, R&D Systems, USA) for 14 days, followed
by another 14-day exposure of 1 pM gefitinib alone. After the 28-day selection process, the
resulting cells exhibited resistance to gefitinib-induced cell death and were maintain in
gefitinib-free complete medium for further expansion and assay.

3.3.3 Device Assembly and Operation

Prior to protease measurement, the top control piece of device would first be exposed to a
30 sec plasma treatment for sterilization and then be aligned manually onto the bottom
cell-loaded piece that is covered by serum-free medium. Then the two pieces would be
clamped together under light compression between plates of a homemade assembly
chamber and the entire assembly would then be mounted within a stage top incubator
(Tokai Hit Co., Ltd, Japan) onto an inverted epifluorescence microscope (Olympus IX71,
Olympus Inc., USA) equipped with a motorized stage (H117 ProScanTM motorized stage,
Prior Scientific Inc., USA) and a 12-bit CCD camera (SensiCam QE, PCO, Germany). The
whole assembly process takes 5 minutes and the humidified incubator was kept at 37*C
with 5% C02 supply for live-cell imaging. Sterile assay buffer or washing buffer was loaded
within a syringe and pumped through the flow chamber formed between the top and
bottom piece at varying flow rates using a syringe pump (Harvard Apparatus PHD 2000,
Harvard Apparatus Inc., USA). The valve control chamber of the top piece was filled with
deionized water and its inlet reservoir was connected to a gas controller. With no external
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pressure applied to valve control chamber, the flow chamber was connected to reservoirs
for buffer introduction and all microwells in the same array were exposed to the same
fluidic environment. The flow chamber can be closed by applying 16 kPa to the valve
control layer, and thus the valve membrane of control layer isolates the microwells
underneath from each other to form discrete and closed compartments for protease
activity measurement of individual microwells.

3.3.4 Device Characterization with Recombinant Protease

Different concentrations of recombinant human ADAM17 protease (930-ADB-010, R&D
Systems, Inc., USA) were mixed with serum-free medium (EMEM) containing 10 [tM
ADAM17-specific FRET-based substrate (PEPDABO10, BioZyme, Inc., USA). Immediately
after the mixing, sample mixture was injected to the flow chamber of the assembled device
at 200 [tL/min for 1 min followed by 40 itL/min for 10 min. Subsequently, 16 kPa pressure
was applied to valve control chamber to isolate the microwells underneath. Fluorescence
intensity of each closed microwell was recorded at 2.5-min intervals for 15 frames using a
10x objective lens with the help of a motorized stage. The starting time for time-lapse
fluorescence intensity recording was t = 14 1 min after the mixing of substrates and
recombinant enzyme.

3.3.5 Bulk Live-Cell Protease Activity Assays

Parental or gefitinib-resistant HCC827 cells were first seeded with complete medium into

96-well plate (3300, Corning@ CellBINDO, Corning Incoporated, USA) at density of 15000
cells per well (i.e. -469000 cells/cm 2) for 10 h, followed by overnight serum starvation.
Subsequently, we changed the media to be serum-free medium (RPMI 1640 with
glutamine) containing 10uM ADAM17-specific FRET-based substrate (PEPDABO10) along
with either luM gefitinib or DMSO control. In all cases, media contained less than 0.5%
DMSO. Upon the addition of substrate, cells were imaged at 15 min intervals for 2 h at 37
*C using plate reader (Varioskan TM flash multimode reader, Thermo Scientific Inc., USA) at
excitation and emission wavelengths of 485nm and 530nm, respectively. We performed
experiments in biological triplicate and included negative control with no cells seeded but
otherwise treated with DMSO control. The Activity Index of bulk assay was calculated as
the increasing rate of substrate fluorescence over time.

3.3.6 Single Live-Cell Protease Activity Assays

HepG2 cells or HCC827 cells seeded in collagen I-coated microwell arrays were cultured in
the corresponding serum-free medium overnight before assayed for protease activity. For

some assays, cells were pre-treated with various inhibitors, including G66983 (G1918,
Sigma-Aldrich, USA), ERK inhibitor II FR180204 (328010, EMD Milipore, Germany) and
TAPI2 (SML0420, Sigma-Aldrich, USA). For all assays, cells were pre-loaded with viability
dye, 2 ptM CellTraceTM calcein violet AM (C34858, Invitrogen, USA), for 30 min prior the

device assembly. Following the device assembly and mounting onto a stage top incubator
(37 *C, 5% C02, humidified), cells were imaged briefly for the localization and viability
under microscope at multiply positions along z direction. Then, assay buffer consisting of
10 ptM ADAM17-specific FRET-based substrate, PEPDAB010, along with either different
concentrations of phorbol 12-myristate 13-acetate (PMA; P1585, Sigma-Aldrich, USA) or
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DMSO control in serum-free medium would be injected into the flow chamber at 200
ptL/min for 1 min followed by 40 pL/min for 10 min. Then, cells in each microwells would
be isolated by pressurizing the valve control chamber. In HepG2 study (case study I), the
fluorescence intensity would be recorded at 2.5-min intervals for 36 min. In HCC827 study,
the fluorescence intensity would be recorded at 8-min intervals for 15 frames (totally 114
min) instead. At the end of the 1st assay, the cells in microwells were rinsed at 40 pL/min
for 15 min using fresh washing buffer, which had the same composition as the assay buffer
used in the 1st run of measurement but contained no FRET-based protease substrates. The
rinsed cell-loaded array can then be used in subsequent run of protease measurement if
applicable. Once all the runs of protease measurement were done and the residual
substrates were washed away, serum-free medium containing 3 PM propidium iodide
(P3566, Invitrogen, USA) and 0.8 p.M Hoechst 33342 (H1399, Invitrogen, USA) were
injected into the flow chamber at 40 pL/min for 10 min to stain the cells post-
measurement. Fluorescent images under different wavelength channels were taken for
cells within microwells at multiple depth positions and would be used for subsequent data
analysis of cell number and post-assay survival. Then, the device would be disassembled
and the bottom piece loaded with stained cells in microwells were rinsed with fresh
medium and kept within tissue culture dish with complete medium in cell culture
incubator for further culture. On the day following single-cell protease measurements, cells
would be stained with 2 pM calcein AM (354216, BD Biosciences, USA) for 20 min before
imaging with microscope for the day 2 survival.

3.3.7 Data Analysis

Fluorescent images taken post-assay for cells stained with Hoechst 33342 and propidium
iodide were scrutinized manually to count the cell number within individual microwells
and to identify the location of each cells in the depth direction of microwell array. Images
taken prior to the assay and on day 2 were also analyzed for cell survival across the entire
assay. We excluded data from microwells with non-cell objects (dirt, impurity in coating
solution, etc) or cells dead by day 2 from further analysis. For each microwell array, we
could get valid data from more than 180 1-cell wells and 100 2-cell wells. Moreover, to
avoid confounding factors relevant to the varying depth locations of individual cells, we
only considered the single cells remaining at the bottom of each microwells during the
entire assay period into the final protease activity analysis, unless otherwise stated.
Usually, we got 60-70% of single cells located at the bottom of microwells by the time of
protease measurement.

We have developed a procedure for signal processing and normalization of the protease
measurement. As illustrated in Appendix Figure A.2, (i) the time-lapse raw images for the
substrate cleavage were captured by fluorescence inverted microscope and then stabilized
using Image Stabilizer plugin of Image J@ software. Given the non-uniform illumination
within observation window and the well-to-well interference due to light scattering, a
normalization method was applied. (ii) Briefly, two templates were generated based on the
raw images with the aid of MATLAB and defined the regions within each microwells and
the background regions around the wells, respectively. (iii) The pixel intensity within each
region was further sorted in ascending order and the extreme values at both ends would be
discarded. The average value of the central 20% pixel intensity was then considered as
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the intensity indicator for that region. In this manner, one can reduce the variation
introduced by inaccurate microwell border identification and the presence of bright objects
within microwell. (iv) For background regions, the average value became the normalized
intensity. For microwell regions, the average value of each well region was further
subtracted by the normalized intensity of its surrounding background region. Then, one
can obtain time-lapse profile of normalized intensity for individual microwells. (v) We
modeled the protease-mediated substrate cleavage as the classical Michaelis-Menten
model, where the initial rate of cleavage is proportional to the concentration of active
enzyme in the system with excessive substrate of nearly constant concentration. Therefore,
we defined the protease activity index (AI) as the increasing rate (i.e. slope) of normalized
fluorescence intensity and extracted the Al value for each region via robust linear least-
squares fitting of the time-lapse normalized intensity profile. (vi) When dealing with
different cell-loaded microwell arrays, we used the median Al value of empty microwells
from each array as the reference value, to account for the spontaneous substrate cleavage
occurred in the absent of cells within that particular array. We further calculated the
normalized Al value by subtracting each microwell Al value with the reference value of the
same array and used the resultant normalized Al value to evaluate the protease response of
cells within different microwell arrays. Notice that all the histograms shown in this
manuscript have been smoothened using MATLAB function ksdensity).m where the
density estimation was based on a normal kernel function and the locations of kernel
smoothing windows were robustly estimated via function histogram(Q.m. Based on the
normalized Al values of 0-cell wells, we also defined a threshold for high activity
microwells to be beyond 2 standard deviations away from the average value of 0-cell wells'
normalized Al values. Therefore, the threshold for HepG2 study (case study I) is
normalized Al = 2, while the threshold for HCC827 study (case study II) is normalized Al =1
given the lower value and tighter distribution of 0-cell well's normalized Al values.
Percentage of high activity microwells derived from a given protease assay then provides
an indicator to quantify the overall protease response of all the single cells measured
during that particular assay. Any p-values shown were calculated based on Welch's t-test.

3.4 Device Design and Characterizations

3.4.1 Device Design

Many conventional bulk cell measurements and some in vivo protease activity image
techniques utilized synthetic FRET-based substrates that have high specificity against
certain protease or protease class. Inspired by the popular microwell-based approach in
microfluidic single-cell study, we established a multiwell platform to confine individual
cells in discrete compartments during protease activity measurement with small molecule
substrates with high diffusivity. Due to the enhanced signal readout via the confinement of
the excessive diffusible substrates within microwells, the signal generated by pericellular
protease-mediated reaction dominates the signal resulting from intracellular substrate
cleavage events.

Compared to the existing methods, our approach has little requirement on substrate design
and could be used for study of single-cell pericellular protease response in a time-
dependent manner, as replenishing fresh substrate into the system allows for interrogation
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of same cells for multiple times. The additional temporal information of protease response
might have an impact on cellular outcomes since the dynamics of downstream kinase
signaling network has been shown to be an important component of the cell fate decision
process [36, 37]. Moreover, our platform is compatible with other single-cell study
technologies, including various live-cell reporter systems for intracellular signaling events,
micro-engraving for molecular secretory profile [31] and FISH assay for single-cell
chromosome analysis.

Cell culture is performed with the bottom PDMS piece patterned with microwell array
structure at the central region (Figure 3.1A). We observed healthy HepG2 morphology and
cell proliferation on the microwell array over a 1-week tissue culture (Appendix, Figure
A.1). Compared to a closed system, cells grown in those microwells would experience
similar oxygen gradient and nutrient condition as conventional tissue culture, which is
important for comparison between single-cell assay results with those from conventional
bulk assays performed on cells grown on standard tissue culture plate. While the flow
chamber used in this work is a simple straight channel with branched microfluidic
connection to reservoirs for synchronized delivery of fluid across channel width (Figure
3.1B), the flow chamber could be modified to compose of a microfluidic generator [38]
when on-chip stimulation with a spatial gradient of drug is desired.
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Figure 3.1 Schematics of microfluidic platform for single-cell protease activity measurement and the

assay procedure. The platform is composed of two PDMS pieces, a bottom piece with microwell array

pattern for cell culture (A) and a top piece with a 2-layer structure (B). Upon device assembly (C), the

flow chamber is formed between the two pieces and is designed for injection of drug-containing buffer

or reaction mixture with FRET-based protease substrate to the microwells. The top chamber of valve

control layer allows the pneumatically actuation of flow channel ceiling to control the closing and

opening of microwells. (D) After the introduction of assay buffer and the closing of microwells, the

protease activity measurements were conducted via microscopic time-lapse imaging of fluorescence

generating from the protease-specific substrate cleavage. For repeated measurements on the same cells,

the microwell array was rinsed by introducing of fresh assay buffer without substrate at the end of each

run. The rinsed cell-loaded array would then be used in the subsequent run of protease measurement

after replenishing with fresh substrate-containing assay buffer.

3.4.2 Device Characterizations with Recombinant ADAM17

We first characterized the device performance with different amounts of ADAM17

recombinant protease mixed with FRET-based protease substrate. While current available

substrates usually have cross-reactivity against closely related proteases, it is possible to

distinguish between the proteases when the cleavage of multiple substrates by the same

sample has been monitored [34]. In this work, we only used one kind of substrate in all the

measurements and the substrate chosen has been demonstrated to have very high catalytic

efficiency against ADAM17 over others [34]. As shown in Figure 3.2, we observed a positive

correlation between the concentration of recombinant ADAM17 in the system and the

measured microwell activity index (AI), defined as the increasing rate of fluorescence

intensity resulting from the substrate cleavage. Meanwhile, the background Al values

derived from the fluorescence of plateau regions around microwells remained low for all

the conditions tested. Furthermore, we also noticed that as a consequence of light

scattering and non-uniform illumination within the observation window of microscope, the

distributed range of microwell Al values increased with the average Al value under same

condition, resulting in a coefficient of variation (CV) of 15-20%. Thus, we considered

more than 30% deviation from the original Al value to be the real change in protease

activity measured by our platform.
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Figure 3.2 Device characterization with recombinant ADAM17. Sample mixture containing different
concentrations of recombinant human ADAM17 protease and 10 pM FRET-based substrate was injected
to the flow chamber of the assembled device. Fluorescence intensity was monitored for 36 min after the
flow chamber was closed to isolated individual microwells. The activity index (Al), defined as the
increasing rate of normalized fluorescence intensity was calculated (see Appendix Figure A.2) and is
shown here for an individual microwell area (marked by red dash line in the inset) or plateau region
around the microwell (marked by blue dash line in the inset). One can observe a positive correlation
between recombinant protease concentrations in the system and the Al values for microwells. Red
squares: microwell area (Well); Blue circles: plateau region around the microwell (BG); Green dash lines:
linear fit of Al vs. ADAM17 concentration. Error bars indicate standard deviations of individual microwell
Al values from duplicate assays using 2 different devices (n > 1800 per condition).

3.5 Case Study I: Dose-dependent Heterogeneity in PMA-mediated ADAM17
Activation of HepG2 Cells

3.5.1 PMA-Induced Protease Activity of Single HepG2 Cells

As one of the most common causes of cancer death, liver cancer results in the death of
around 598,000 people yearly due to the poor prognosis [39]. Mounting evidence supports
the association of poor prognosis with upregulation of many pro-inflammatory signals that
can be cleaved and activated by ADAM17 protease, such as EGFR ligands and tumor
necrosis factor alpha (TNF-cc) [40]. Besides, the increased expression level of ADAM17 has
also been observed in liver injury and liver cancer development [41]. Given the importance
of protease study in liver cancer, we tested the functionality of our platform with human
hepatoma HepG2 cells challenged with PMA, a potent inducer of inflammation that has
been shown to activate the ADAM17-dependent shedding of multiple substrates [4]. As
shown in Figure 3.3, cell-containing microwells in DMSO control case displayed low
normalized Al values similar to those of empty wells, suggesting few active ADAM17
present at the cell surface under basal condition. Meanwhile, PMA challenge resulted in a
long tailed distribution of single cells' normalized Al values with a large fraction of single
cells exhibiting high protease activity level (5-28% at [PMA] 0.2 tM). Notice that the
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threshold for high activity microwells defined in this work was chosen based on the
normalized Al values of 0-cell wells and has been set to be normalized Al = 2, which was
beyond 2 standard deviations away from the average value of 0-cell wells' normalized Al
values. Moreover, we observed a dose-dependent relationship between the percentage of
single cells with high protease activity and the PMA concentration (Figure 3.3B). These
results indicate that PMA treatment could increase the cell surface ADAM17 activity of
HepG2 cells and this is consistent with previous findings where PMA is known to massively
stimulate the shedding of several ADAM17 protease substrates, such as TNF-a and c-Met, in
HepG2 cells [42]. Interestingly, even under PMA concentration as high as 1 pM, there was
still -72% of single cells displaying a very low, baseline protease activity, at least during
the assay time (i.e. PMA treatment tine, tPMA = 15-51 min). The presence of those 'non-
responding' cells reveals the inherent heterogeneity in protease response at the single-cell
level and suggests that the escalating protease activity of a minority of fast-responding cells
is the primary contributor of PMA-induced ADAM17 protease activation observed during
short-term assay at the bulk scale.
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Figure 3.3 Heterogeneous protease response for HepG2 cells treated with DMSO or different
concentrations of PMA (0.1, 0.2, 0.5, 0.8, 1 lpM). The normalized activity index (Al) is shown for
microwells containing single HepG2 cells. (A) Histogram of the normalized Al values for 1-cell wells (n
>300 per condition). The inset shows the histogram of the normalized Al values for 0-cell wells. Dark

dash lines mark the place where normalized Al value = 2. (B) Percentage of 1-cell wells with high

normalized Al values (>2). Error bars represent standard deviation of a triplicate using three different

arrays.

3.5.2 Signaling Components Involved in PMA-Mediated ADAM17 Protease Response

There are several distinct, potential mechanisms that could modulate the ADAM protease-
mediated substrate cleavage. Cells' protease activity can be affected via the regulations on
enzyme proteins' expression, maturation, trafficking to the cell surface and post-
translational modifications that could prime the protease activity via the induction of
protein conformational changes. Alternatively, modifications on the substrate proteins (i.e.
cell surface receptors that are targets of ADAM-induced shedding) could also modulate the
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cleavage event without affecting the catalytic activity of the responsible protease.
Currently, the exact mechanism of PMA-induced ADAM-dependent shedding in HepG2 cell
system is still not fully clarified. PMA is a strong and pleiotropic stimulus [43-45]. It is
known to regulate the accessibility of the catalytic site of ADAM17 on the cell surface of
mouse embryonic fibroblasts [46]. PMA is also a potent activator of PKC kinases[47] and
Jurkat cells with PKC knockdown have been shown to be incapable of altering some
substrate shedding in response to PMA challenge [48]. Moreover, the activation of PKC
could lead to the activation of ERK cascade [49]. In HeLa cells, ERK activation is known to
induce phosphorylation of the cytoplasmic domain of ADAM17 protein and accelerate its
transportation to cell surface [50], where the active ADAM protease plays an important
role in autocrine signaling. However, contradictory evidence also exists regarding the role
of ERK kinases in PMA-mediated ADAM17 activation. In mouse monocytic cells [51] and
fibroblast cells [52], researchers observed no altered transport of ADAM17 to cell surface
upon PMA challenge and found that the cytoplasmic domain of ADAM17 was not even
required for PMA-induced ADAM 17-dependent EGFR ligand shedding.
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Figure 3.4 Inhibitors against different components of signaling pathway suppressed the PMA-induced
protease activity increase in HepG2 cells. Serum-starved HepG2 cells were first incubated with different
inhibitors and then subjected to protease activity measurement in the presence of both 1 pIM PMA and
inhibitors. For PKC kinase inhibition, HepG2 cells were pre-treated with 1 pM G66983 for 1.5h. For ERK
1/2 kinase inhibition, HepG2 cells were exposed to 10 p.M Erk inhibitor II FR108204 (ERKi2) for 4h before
protease assay. For protease inhibition, HepG2 cells were incubated with 20 pM TAP12, a broad-
spectrum inhibitor against several MMPs and ADAM17, for 4h before measurement. (A) Histogram of
the normalized Al values for 1-cell wells (n >300 per condition). The inset shows the histogram of the
normalized Al values for 0-cell wells. Dark dash lines mark the place where normalized Al value = 2. (B)
Percentage of 1-cell wells with high normalized Al values (>2). Data for 0-cell wells with high normalized
Al values is also shown. DMSO: control vehicle; PMA: stimulation with 1 pM PMA alone; +GO: PKC
kinase inhibition along with 1 aM PMA challenge; +ERKi2: Erk kinase inhibition along with 1 pM PMA
challenge; +TAP12: broad-spectrum protease inhibition along with 1 pM PMA stimulation. Error bars
represent standard deviation of a triplicate using three different arrays.
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To investigate the mechanism of PMA-induced protease activation in HepG2 cells and also
to show that the increase in protease activity observed by our assay was indeed a result of
authentic biological event rather than artifacts, we pre-treated the cells with inhibitors
against different components of signaling pathway and observed the corresponding
changes in cell surface protease activity. As shown in Figure 3.4, TAPI2, a broad-spectrum
inhibitor against MMP proteases along with ADAM17, reduced the PMA-induced protease
activation to the level of empty wells, confirming that the responsible protease in this case
belonged to MMP/ADAM family. Additionally, PKC inhibition (G66983) clearly suppressed
the single-cell protease activity to the level of the DMSO control case, suggesting a causal
role of PKC kinases in the signaling network of PMA-mediated ADAM17 protease response.
On the contrary, ERK inhibitor only slightly dampened the protease activation (p-value =
0.19, insignificant) and thus ERK kinases were unlikely to be essential for ADAM17
activation in PMA-treated HepG2 cells. Therefore, we confirmed that our system was
capable of detecting changes in the extracellular protease activity of single cells upon drug
challenge and there were inside-out signaling events through PKC kinases involved in the
PMA-induced protease response for HepG2 cells.

3.5.3 Snapshots for Temporal Response of PMA-Mediated Protease Activation
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Figure 3.5 Temporal response of the PMA-mediated single-cell protease activity measured in 1-run
assay. HepG2 cells were treated with either 0.5 pM (A, B) or 1 pM PMA (C, D) for various durations
(0.25h, 1.5h, 2h, 4h) before subjected to protease activity measurement. Each cell-load arrays were
assayed only once. (A, C) Histogram of the normalized Al values for 1-cell wells (n >300 per condition).
Dark dash lines mark the place where normalized Al value = 2. (B, D) Percentage of 1-cell wells with high
normalized Al values (>2). Error bars represent standard deviation of a triplicate using three different
arrays.

Since it has been long recognized that cells make their decision based on not only the
magnitude but also the dynamics of signaling events, we studied the temporal behavior of
HepG2 protease response upon PMA challenge. To get the snapshots of protease response,
we first performed a single run of protease activity measurement for cells in different
microwell arrays with various PMA exposure time. On one hand, for treatment of 0.5 pM
PMA (Figure 3.5A, B), we observed a small upward shift in the distribution of 1-cell wells'
normalized Al values over time. But the percentage of single cells with very high protease
activity (i.e. normalized Al >2) remained relative constant at -14% for PMA exposure time
ranging from 0.25h to 4h. On the other hand, in the case of 1 ptM PMA treatment (Figure
3.5C, D), protease activation has extended to the majority of single cells as the PMA
exposure time increased. We observed that the percentage of 1-cell wells with high Al
values varied with the pre-treatment duration. The percentage of responding cells peaked
around -50% when the pre-treatment time was 1.5h, and decreased to -26% at pre-
treatment time of 4h. Comparing the results under these two different PMA concentrations,
we found that stimulant dosage exerted an impact on the response properties of the single-
cell population in terms of protease activation dynamics. That is, the lower stimulant
dosage ([PMA] = 0.5 ptM) generated a low but relatively constant level of protease activity
over time, whereas the higher dosage ([PMA] = 1 ptM) produced a varying but high protease
activity signal among the single-cell population. Reasons for this dose-dependent impact on
single-cell population might lie in the time-dependent behavior of individual single cells
and thus require tracking of protease response for individual cells over time.

3.5.4 Tracking the Protease Temporal Response of Single Cells

Many cell-signaling and transcriptional process show pulsatile, or even oscillatory,
behaviors [24]. Although the physiological significance of such oscillations in these systems
is not fully understood, it could be another regulatory layer in which biological information
can be encoded. Therefore, we further investigated the temporal behavior of individual
cells by performing 3 sequential runs of measurements on the same cell-seeded array. As
shown in Figure 3.6, we observed various temporal patterns of the protease response for
individual cells. In DMSO control case, the majority (-95%) of the cell-containing
microwells displayed low level of protease activity during the entire assay period of 3.2
hours (Figure 3.6A) and there were little changes between runs (Figure 3.6C, E). About 4%
of DMSO-treated single cells displayed high protease activity in the 3rd run (Figure 3.6B),
potentially as a result of the cellular response to the stress induced by repeated
measurements. In both PMA stimulation case of 0.5 piM and 1 piM, the fraction of the non-
responding cells reduced to -60 2% (No. 8 in Figure 3.6E), while 15-20% of single cells
exhibited a pulsatile activity profile (initial increase followed by decrease, No. 3 in Figure
3.6E). There were also 8-10% of PMA-treated single cells with a delayed protease
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response (No.7 in Figure 3.6E), as they started to show high protease activity signal in the
3rd run of measurement, which corresponded to PMA treatment time: tPMA = 2.5 -3.2h. The
impact of PMA dosage was most evident in the early protease response of single cells. As
shown in Figure 3.6B, higher dosage of PMA treatment resulted in more single cells with
high activity in the 1st run of measurement. Meanwhile, Figure 3.6E shows that most of
these fast-responding cells experienced a decrease in protease activity at 2nd run of
measurement and thus fell into the category of dynamic pattern No.5 (3.8% for [PMA]= 0.5
pM vs. 10.2% for [PMA] = 1 ptM; p-value = 0.21, insignificant).

Although our assay provided limited time points for each single cell, we could gain a
glimpse of how individual cells' protease response might change over time. Firstly, results
from both 1-run and 3-run assays support asynchronous yet transient protease response at
the single-cell level --- that is, each single cell follows an increase-then-decrease protease
activity profile upon PMA challenge. Secondly, higher stimulant concentration seems to
favor more cells with earlier onset of protease activation, instead of modulating the
maximum level of individual cells' protease activity. A similar behavior has been observed
in the well-studied case of single cells' gene expression [53, 54], where DNA enhancers had
been demonstrated to augment the activation probability of single cell without affecting the
strength of cellular activation at the individual cell level. Lastly, inspired by the insight that
analogue dose-response at the population level could be a result of digital behavior of many
individual players, we hypothesized that PMA could increase the probability of single cell
being turned ON to go through the transient protease activation profile in a dose-
dependent manner. Under this assumption, we came up with an explanation for the distinct
dynamic properties of single-cell population observed in the 1-run assays. In the case of
lower PMA concentration, the probability of single cells being turned ON might be low and
thus there would always be enough cells for turning ON as most of the cells haven't gone
through the protease activation process. As a result, one could observe a low but relative
constant level of protease activity at the population level of single cells, since at any given
time point of PMA treatment, there might be a small but relatively constant number of cells
being initiated for protease activation. However, in the case of higher PMA concentration,
most of the cells could be turned ON at the early stage due to the increased activation
probability endowed by the high PMA concentration. This would result in a more
synchronous, higher-strength but pulsatile protease activity at the population level.
Obviously, higher time resolution measurements are needed to validate our hypothesis.
Nevertheless, our microfluidic platform is able to provide unique temporal information of a

large number of single cells utilizing the same biosensing modalities and without involving
complex intracellular sensor engineering [16]. Thus, the platform could serve as a generic
drug-screening step for primary cells from individual patients.
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Figure 3.6 Heterogeneous temporal behavior of single-cell protease activity upon PMA challenge. Three
sequential runs of protease activity measurement were performed with the same cell-loaded arrays for
DMSO control case and PMA stimulation case (0.5 pM or 1 pM PMA), respectively. As illustrated in the
experiment schedule shown on the lower right, the DMSO or PMA drug (magenta bar) was applied to
cells at constant concentration for the entire experiment. The protease measurements (blue blocks)
were conducted in sequential manners and thus corresponded to different drug exposure times. (A)
Histogram of the normalized Al values for 1-cell wells (n >300 per condition). Dark dash lines mark the
place where normalized Al value = 2. (B) Percentage of 1-cell wells with high normalized Al values (>2).
(C) Clustered heat maps for 1-cell wells' normalized Al under different conditions. In each heat map,
there are three columns corresponding to the three different time periods of protease measurement
and each row represents the protease activity of individual single cells (n >300 per condition). (E)
Distribution of the single-cell protease activity profile over different dynamic patterns. (D) Table for
description of each dynamic pattern. Schematic arrowed profiles were also shown for the patterns with
more than 5% single cells in at least one of the drug conditions. If the normalized Al values of single cells
are less than 2 at both time points or changes in their Al values are less than 30% of the original Al
values, we define them as "no change" in protease activity over time. Meanwhile, an "increase" or
"decrease" in protease activity is defined for the rest of single cells depending on whether their Al
values at the latter time point are 30% larger or smaller than the corresponding Al values at the earlier
time point. Error bars represent standard deviation of a triplicate using three different arrays.
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3.6 Case Study 1I: Single-Cell Protease Response of Parental and Gefitinib-
Resistant HCC827 Cells

Despite decades of investigation and significant progress in cancer biology, resistance to
cancer therapy remains a major challenge in current cancer research. Even in the case of
targeted cancer therapies, resistance to anticancer drugs frequently emerges in patients
with impressive good initial responses [55]. This resistance issue is particularly evident in
the case of non-small cell lung cancer (NSCLC), where specific tyrosine kinase inhibitors
(TKIs) are employed in targeted therapies to treat patients harboring relevant genomic
abnormalities - often in the gene encoding EGFR. Large-scale clinical studies reported a
median progression-free time of about 12 months for lung caner patients with good initial
response to TKIs [56, 57]. With a systematic comparison on tumor biopsies of same drug-
resistant patients before and after TKI treatment, a recent study discovered newly found
secondary mutation in 22 out of 37 patients (59%) and histological transformation in 5 out
of 37 patients (14%) [58], which provides some insights for the potential mechanism of the
acquired drug resistance. However, 7 out of 37 drug-resistance patients (30%) displayed
neither genotypic nor phenotypic alterations, emphasizing the needs in fully characterizing
cellular states to elucidate currently unknown mechanisms of drug resistance. As
mentioned in section 3.1.1, pericelluar proteases, ADAMs in particular, could have dual role
in resistance development against cancer therapies. Depending on the context, including
the shedding of growth factor ligands or receptors and the responsiveness of
compensatory kinase signaling pathway, the activities of ADAMs could either exaggerate or
mitigate the disease progression [10, 11, 59]. Single-cell study on protease activity will help
to elucidate the role of protease and microenvironment in resistance development.

In this case study II, we use HCC827, a NSCLC cell line, as model experimental system.
Parental HCC827 cells harbor mutation in EGFR and are sensitive to TKI treatment using
gefitinib. It has been reported that rare cells with MET amplification could be found in the
parental cell population prior to TKI treatment and got enriched through a 2-stage
selection process at the presence of gefitinib [35]. The resulting cell line, termed gefitinib-
resistant HCC827 cells, maintain the MET amplification and exhibit lack of sensitivity to
gefitinib-induced cell death at bulk level. In this section, we seek to exanimate the single-
cell protease activity profile for parental and resistant HCC827 cells. Further single-cell
measurements along the time course of resistance development process might help to
elucidate the evolution of protease profile and its role in mechanism of drug resistance.

3.6.1 Discrepancy Between Bulk Profile and Single-Cell Profile

We first measured the protease activity of parental (P) and gefitinib-resistant (GR) HCC827
cells at bulk level using plate reader. As shown in Figure 3.7A, both parental and resistant
cells displayed a very weak increase in bulk ADAM17 protease activity upon 1 IM gefitinib
treatment (insignificant). The gefitinib-treated parental cells exhibited much higher
protease activity than DMSO- and gefitinib-treated resistant cells (p-value <0.001,
significant). We then performed 1-run protease assay using our microwell platform on
parental and resistant HCC827 cells at both basal (DMSO) and drug-treated (Gef)
conditions. As shown in Figure 3.7B-E, we observed an upward shift in the distribution of
microwell protease activity as cell number per well increased, indicating a relationship
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between cell number and protease activity. In the case of 3-cell and 4-cell microwells,
majority of microwells displayed normalized protease activity index higher than detection
threshold (>1, Figure 3.7F). However, no statistically significant difference was found
between each condition, suggesting similar protease activity level for parental and
resistant HCC827 cells. Moreover, to examine the gefitinib-induced protease response, we
further performed 2-run protease assay on the same cell-loaded array using the
microfluidic platform (Figure 3.8). The basal ADAM17 activities of cells were measured in
the 1st run at the presence of DMSO control, while the drug-treated protease activities of
same cells were measured in the 2nd run along with gefitinib. As shown in Figure 3.8,
majority of cell-loaded microwells displayed no apparent change in their protease activity
upon 1 pM-gefitinib challenge. Treatment with increased gefitinib dosage (10 ptM) induced
no statistical significant changes in the ADAM17 activities of parental cells, either. Taken
together, the results from microwell assay suggest no obvious protease activity difference
between parental and resistant HCC827 cells, in terms of both basal activity and the
gefitinib-induced protease response. This is contradictory to the bulk assay's results where
the gefitinib-treated parental cells displayed higher activity than resistant cells.
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It's unclear why protease response at few-cell level is different from that at bulk level. One
potential explanation involves the uncontrolled cell death present in bulk assay. In general,
cells undergoing cell death exhibit very high protease activity level during the assay. In
microwell assay, only cells remaining alive on the 2nd day of assay were considered for data
analysis. Whereas, in bulk assay, live cells were mixed with dead and dying cells, resulting
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in an overestimation on the protease activity level. Moreover, parental HCC827 cells

display lower viability than resistant cells at both basal and gefitinib-treated conditions
during culture. Thus, the higher protease activity observed in bulk gefitinib-treated
parental cells might directly arise from the more dead and dying cells present in sample.
Besides, the cell-cell communication might also play a role in the discrepancy between bulk

assay result and microwell assay result. Dying cells in culture shed away vesicles
containing various molecules inside or on the membrane surfaces. Those vesicles could
interact with live cells and modulate their cellular response. While dying cells could
communicate with neighboring live cells freely in bulk assay, those communications are

excluded from microwell assay due to the compartmentalization.

3.7 Conclusions and Future directions

3.7.1 Section Summary

In this chapter, we develop a microfluidic platform for single-cell study of pericellular
protease activity. In contrast to existing methodologies for single-cell pericellular protease
measurement, we constrain the fluorescence readout of protease activity to individual cells
by physical isolation of cells within each microwells using a pneumatically actuated lid. Due
to the simplicity of our design, our platform works with various small molecule FRET-

based protease substrates and is able to measure single-cell protease activity with
meaningful time resolution (-1.2h).

In case study I, we apply the developed platform to study the PMA-induced single-cell
protease response of HepG2 cells and show, for the first time, that the extracellular
protease activity of individual cells displays diverse dynamic patterns despite the overall
trend of population cell response during the same period. Moreover, our platform is

compatible with many existing single-cell analysis methods probing other molecular events
of single cells. A typical example would be to combine our platform for protease activity
measurement with the micro-engraving method for molecular shedding from the cell

surface. This combination of techniques is particularly valued in the study of protease-

mediated cancer resistance development. Our platform therefore has the potential for

studying the context-dependent role of pericellular protease activities in governing cell
behaviors.

In case study II, we present the preliminary exploration of single-cell protease activity

behavior in anti-cancer drug resistance development. While the bulk assay result suggests
higher gefitinib-induced protease activity for parental HCC827 cells, the microwell assay
result indicates no significant difference among the protease behavior of parental and

resistant HCC827 at few-cell level. The discrepancy between bulk assay's and microwell

assay's results might arise from the uncontrolled cell death present in bulk assay as well as

the molecular communication between live cells and dying cells. Thus, further study on
protease response of parental and resistant HCC827 cells should consider the effect of cell

death on cellular behavior.

3.7.2 Future Directions

There are some on-going works in our lab utilizing the single-cell protease activity
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measurement platform.

One work is to investigate the neutrophil protease behavior under different conditions.
Although people have long recognized the heterogeneity among the circulating neutrophils,
it remains to be seen whether the heterogeneity also exists in the aspect of cellular
protease activity and if yes, what causes and consequences might be. In this project, size-
based cell sorter developed in Chapter 2 are first used to isolate neutrophils gently from
blood sample and then the microfluidic platform developed in Chapter 3 is used to measure
the single-cell protease profile. Using healthy human blood sample, the microfluidic
platform revealed subtle increase of ADAM17 protease activity in -30% neutrophils upon
0.1 [tM PMA treatment, which in in agreement with the corresponding bulk assay's results.
Further investigation on single-cell protease profile of neutrophils from different patient
samples might help to study the role of neutrophil protease in disease progression.

Another work involves the investigation on the role of protease in distant metastasis.
Circulating tumor cells (CTCs), which have been shed into blood stream by a primary
tumor, have been believed to be the seed for the generation of secondary tumors
(metastasis) in distant organs. Due to the rarity of CTCs in blood (2-5 CTCs per 7.5 mL
blood), single-cell analysis becomes an invaluable approach to get rich information from
the limited amount of CTCs isolated from patient sample. With the help of size-based cell
sorter developed in Chapter 2, we would harvest CTCs at high recovery from patient
sample and then expand the viable retrieved CTCs during in vitro culture. Downstream
analysis, including the single-cell protease activity measurement using our platform, would
then be performed on the retrieved CTCs during the time course of in vitro colonization. It's
hypothesized that during this time course, viable CTCs would have to change their
functional state from a relative unresponsive mode - suitable for their peripheral blood
circulation - to an active mode enabling their functionalities during late stages of
metastasis process, including the abilities to attach extracellular matrix, to infiltrate the
stromal cells and to form colonies. The evolution of single-cell protease activity profile
during this time course would shed light on the different roles of those proteases at
different stages of distant metastasis.
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Chapter 4 Theoretical Limits in Single-Cell Shedding Detection

4.1 Introduction

Besides the activity to degrade extracellular matrices, another critical aspect of protease's
role in regulating cellular microenvironment is via molecular shedding. As mentioned in
section 3.1.1, depending on the identity of protease substrates and the extent to which the
proteases shed away cell-surface molecules, pericellular proteases could impact cellular
behavior through either positive or negative feedback. Thus, measuring molecular
shedding at single-cell level is crucial for studying the mechanistic role of proteases in cell
fate decision. Moreover, the protease-mediated shedding rate of cell surface molecules, c-
Met in particular, has been shown to correlate with the malignant potential for a variety of
human cancers [1], further suggesting the need in analyzing molecular shedding for single-
cell study of cancer research. Therefore, this chapter of the thesis is devoted to the
experimental and numerical study of the detection of shed molecules from a single cell,
confined in microwells. In this work, we chose the strategy of confining antibody-coated
beads from standard Luminex assay with single cells under study in same microwells.
Compared with antibody immobilization method on the wall of the device (i.e. the
microengraving technique) [2, 3], this provides better control over surface immobilization
of antibodies and easier validation using Luminex system or flow cytometer.

Similar to cytokine secretion and antibody production, protease-mediated molecular
shedding results in soluble molecules released from cell surface. Immunosandwich assays
against these secreted or shed molecules from single cells are challenging due to the low
abundance of targets, and therefore are frequently coupled with small microfluidics
chambers, microwells or even droplets that are loaded with cells, to enhance the
quantitative measurement of single-cell secretion or shedding, as the idea of microfluidic
confinement to enhance detection sensitivity has been widely known previously [4, 5].
Those single-cell immunosandwich assays are usually performed in two formats. One is the
open array format with cells in open environment and capture agent in close proximity [6,
7]. The other is the closed array format with both cells and capture agent confined in closed
space [2, 3]. Using numerical simulations of a deterministic continuum model, a recent
paper [8] compared the assay performance of these two formats in the regime of single-cell
antibody production (generation rate, kg = 500-2000 molecules/cell/sec [9, 10]) and
cytokine secretion (kg = 5-50 molecules/cell/sec [2]). Based on the simulations, open
array format would bias the detection towards cells with high secretion rate, whereas the
closed array format provides a greater dynamic range that is more suitable for quantitative
analysis on a wide range of single-cell secretion rates. Therefore, it is tempting to directly
apply the closed array format of single-cell immunosandwich assay to measure the
molecular shedding of individual cells. However, molecular shedding of interest in cancer
research usually occurs at a generation rate that is 1-2 orders of magnitude lower than the
cytokine secretion rate of immune cells. For example, the c-Met shedding rate of cultured
breast tumor cells has been established to be 0.02-1.04 molecules/cell/sec [1], which
would result in only a few thousands of target molecules available for detection after hours
of incubation. Molecular binding of such low-abundance target molecules, in a confined,
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microfluidic reaction chamber, raises important question about how far one can push the
confinement-based detection idea, until it hits the limit posed by the low abundance. In
addition, the stochastic nature of molecular diffusion and reaction process in such low
abundance limits could result in significant variation in the final output of
immunosandwich assay for the exact same target molecule concentration, compromising
the accuracy of detection and challenging the conventional way of data interpretation. A
careful characterization on the affinity-based molecular capture in relevant concentration
ranges would be helpful to properly guide the upstream design and downstream analysis of
single-cell shedding measurement that based on immunosandwich assays.

In this chapter, we couple our microwell array platform developed in Chapter 3 with
Luminex assay using antibody-coated microbeads to detect the c-Met shedding of single
parental HCC827 cells. Using it as an experimental system, we perform critical analysis on
the theoretic limits in detection uncertainty for the closed-array immunosandwich assay.
Then, we establish both deterministic continuum model and stochastic discrete model to
numerically simulate the molecular capture in this type of assay and characterize the
impact of stochastic events in assay performance as a function of capture agent affinity,
amount and spatial distribution, microwell size, and the abundance of target molecules.
Lastly, we present the experimental data for the closed-array immunosandwich assay using
our platform and discuss the practical factors impacting the detection sensitivity and
uncertainty.

4.2 Materials and Methods

Methods for device fabrication, cell culture, and device assembly and operation are the
same as described in section 3.3.1, 3.3.2, 3.3.3, respectively.

4.2.1 Numerical Modeling of Antibody-based Molecular Capture in Confined Space

For simplicity, symbols for molecules listed in this chapter are written in upper-case
letters, such as R (Receptors) for the unoccupied antibodies immobilized on bead surface, L
(free Ligands) for the freely diffusing target analytes in solution, and C (Complexes) for the
analyte-antibody complexes formed on bead surface. We use lower-case letters for the total
number of molecules present in the entire system. Thus, 1, r and c refer to the total
molecular number of target analytes, unoccupied binding sites and bound complexes
within the closed microwell, respectively. The concentrations of individual molecule
specie, in terms of molecule number per unit volume or area, are written in upper-case
letters inside square brackets, such as [L] for the volume concentration of free target
analytes in solution, [R] and [C] for the surface concentrations of unoccupied binding site
and bound complexes, respectively. We also use k for rate constants of reactions, t for the
time after closing microwell, n for the normal vector of a surface (pointing inside the
bead/cell surface).

We built models for microwells with two different dimensions. The large microwells have
the same dimension (100 pm x 100 pm x 189 pm a) used in protease activity study in
Chapter 3, and are better suited for adherent mammalian cells with large spreading area
and active locomotion. The small microwells are cuboids with dimension of 50 pm X
50 ptm x 50 pm and are suitable for analysis on non-adherent cells or cells with limited
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spreading. Notice that there were -5% variation in the depth of actual microwells due to
fabrication artifacts.

We modeled the walls of microwell as impermeable to molecules in the system. As the
actual material made of microwells in experiments, PDMS is permeable to small
hydrophobic molecules (e.g. steroid hormones) [11] and certain gases (e.g. oxygen and
carbon dioxide) [12], but is impermeable to most of peptides, proteins and small
hydrophilic molecules [13]. Our target molecules are the shed protein fragments and thus
have negligible permeability into PDMS walls.

Besides, we neglected the non-specific binding of target analytes to microwell surfaces. The
non-specific binding usually occurs with equilibrium dissociation constant, Kd, in milimolar
range, which is much larger than the Ka of antibody-mediated specific analyte capture in
our system (Kd = 0.1-10 nM). Moreover, in the actual experiments, the microwell
surfaces are typically blocked with BSA before the addition of target analytes. Also, both the
complete medium for cell culture and the serum-free medium used for assay contains
bovine serum (1-10%). As a result, highly abundant serum albumin proteins greatly
outnumber the specific target analytes and one could expect prevalent absorption of serum
albumin proteins onto the microwell surface, which would minimize the non-specific
binding of our target analytes by blocking the surfaces of microwell.
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Figure 4.1 Schematic (not to scale) of the closed-array antibody-based analyte capture for (A, B, C)

external source of target analytes and (D, E, F) cellular source of target analytes. (B, C, E, F) Top-down

views of bottom surface of microwell are shown to depict the positions of antibody-coated bead and

analyte-releasing cell under different simulation conditions. Dash lines within each top-down schematic

represent the centerlines and diagonals of bottom microwell surface and its quadrant, respectively.
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The kinetic models of the antibody-based molecular capture in confined space were
established for target molecules generated from two sources: external source and cellular
source. In the case of external source (Figure 4.1A, B, C), known amount of target molecules
(10) are loaded into the closed microwell at t = 0, mimicking the scenario of assaying on
standard concentration of target molecules. In the case of cellular source (Figure 4.1D, E, F),
a 15 pim-diameter sphere located at the bottom center of the closed microwell is modeled
as a cell constantly releasing target molecule at a given rate (kg: molecules/cell/sec),
mimicking the scenario of assays on single cell. The cell diameter is chosen to match the
size of human cancer cells. Despite the fact that the shedding rate of a live cell likely
changes over time as a result of both external environment factors and internal cellular
events, we assume a constant shedding rate over time to evaluate the overall molecular
capture during the time course of an experiment. Besides, for both cases, we assumed the
initial concentration of analyte-antibody complex to be negligible ([C]O = 0).

In both deterministic continuum model and stochastic discrete model, a 6.8 pm-diameter
sphere is modeled as the Luminex microbead carrying antibodies against the target
molecules. The antibodies are assumed to be uniformly coated on bead surface and have
reversible binding reaction with the target analytes (Figure 4.2, Equation 4.1).

transport intrinsic
bulk phase step reaction step

k
k+

close proximity
of binding site

R+L (RL) C

Figure 4.2 Schematic for reversible binding between target analyte (diamond) and the immobilized
antibody (Y-shape) as a two-step process. The overall reaction could be separated into a transport step
and an intrinsic reaction step. The transport step is characterized by rate constant k+ and is influenced
by diffusion and geometric consideration. The intrinsic reaction step is characterized by the intrinsic rate
constant, ko, and koff, which are determined by analyte and antibody molecular properties. The

intermediate state, (RL), in which analyte and ligand are close enough to bind but have not yet done so
is termed the encounter complex. The figure and caption are adapted from [14].

R + L *-+ (RL) - C (4.1)

As shown in Figure 4.2, the reversible binding reaction (Equation 4.1) can be considered as
a two-step process, where a molecular transport step, with transport rate constant k+ is
required to bring the reactant molecules in close proximity physically before the intrinsic
chemical reaction of binding can occur. The intrinsic associate and dissociate rate constants
are termed as kon and kof, respectively, while the overall observed rate constants for
onwards and reverse binding reactions are termed as kf and kr, respectively. For all
simulations, we assumed that target analytes bind to antibodies at a 1:1 stoichiometry and

68



thus the dissociation constant for antibody specific capture has Kd = koff/kofl. Notably,
many kinetic experiments treated the overall reversible binding reaction as a one-step
process and thus measured the observed rate constants, kf and kr, rather than the intrinsic
rate constants. But, when the intrinsic chemical reaction step is the rate-limiting process
rather than the molecular transport step, the observed rate constants would have similar
values as the intrinsic rate constants. And this is often true in conventional bulk-scale
kinetic experiments where both binding partners, R and L, are in large abundance.
Therefore, we took values from reports on conventional bulk-scale kinetic experiments and
assigned the same values to the intrinsic rate constants used in our models.

For simulations on external source of target analytes, the antibody-coated bead is assumed
to be located at the bottom center of microwell surface for 1-bead case (Figure 4.1B). In 2-
bead case (Figure 4.1C), we divided the bottom surface of microwell into four quadrants
and positioned the second antibody-coated bead at the center of one quadrant. For
simulations on cellular source of target analytes, we assumed an ideal position at the
bottom center of microwell surface for the analyte-releasing cell in all cases. The position
for bead with capture surface is assumed to be at the center of one quadrant of bottom
microwell surface under default settings (Figure 4.1E). To study the impact of bead-cell
distance on analyte capture, we also performed simulations for the situations with 11.4 rn
center-to-center distance between the 6.8 pim-diameter bead and the 15 pim-diameter cell.
In this case, the antibody-coated bead is assumed to be on the centerline of bottom
microwell surface and the shortest distance between bead surface and cell surface is only
0.5 pim (Figure 4.1F).

4.2.1.1 Deterministic Continuum Model
The deterministic continuum model of molecular capture in confined volume is based on
the experiments performed in this chapter. And all the simulations on deterministic
continuum model were performed using COMSOL Multiphysics 4.3. Given the lack of active
flow and fluid exchange within the closed microwell during incubation, we modeled the
transport of analytes in assay buffer using simple diffusion model:

L- = DLV 2 [L] 
(4.2)

at

where DL is the diffusion coefficient.

As mentioned above, we modeled the cases for both external and cellular sources of target
analytes, to mimic the situations for assays on standard sample and assays on single cells,
respectively. In the case of external source, different values are used for the initial
concentration of free target analytes, [L]O. In the case of cellular source, we assumed [L]O =
0 in the system and constant releasing of target analytes from cell:

Ltotai = kg t (4.3)

where Ltotai is the total amount of target analytes in the system. Therefore, at the cell
surface, the diffusion flux is balanced against the reaction flux from analyte releasing.

-n - (-DV[L]) = kg/Aceu (4.4)

where Acell is the surface area of the cell.
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For both kinds of target sources, we have reversible binding reaction between analyte and
antibody (Equation 4.1) on bead surface, where the diffusion flux of free analyte is
balanced against the reaction flux from antibody-mediated binding.

-n -(-DLVI L\) 0 =-k0ARj0-jCj)jL\+kg [C1 (4.5)
0 t

where [R]o is the initial concentration of all binding sites on bead surface and ([R]o - [C])
describes the surface density of unoccupied binding sites at a given time point. The
diffusion terms for the immobilized antibody R and analyte-antibody complex C are set to
zero at bead surface.

We determined the values for all simulation parameters based on literature and our
experimental setup. Notice that the standard samples we used in experiments contain
recombinant c-Met/Fc chimera protein (358-MT-100/CF, R&D Systems, Inc., USA) as target
analyte. The recombinant c-Met protein has a molecular weight of -129.2 kDa, while the
shed fragments of cellular c-Met have a molecular weight in the range of 50-100 kDa [1].
Thus, we estimated their diffusion coefficients to be close to that of antibodies and
cytokines, whose molecular weights are -150 kDa and 15-45 kDa, respectively [15]. Using
bio-layer interferometry (Octet@ RED96 system, Pall Corporation, USA), we experimentally
determined the rate constants for the binding of recombinant c-Met protein to immobilized
capture antibody (MAB3581, R&D Systems, Inc., USA), as k,, = 6.85 x 10s (M -s)-' and
koff < 10- s-1. Moreover, we estimated the density of total binding sites on the
antibody-coated microbeads (46-650MAG, EMD Millipore Corporation, USA) based on
experimental results of standard Luminex assay with the recombinant c-Met proteins (data
not shown, protocol follows the manufacturer's instructions on the Luminex kit containing
the antibody-coated microbeads). The resulting estimation is [R]o~10- 8 moI/m2 . In Table
4.1, we summarized the parameter values used in simulations for the deterministic
continuum model and stochastic discrete model.

Table 4.1 Values of parameters used in simulations
Cell diameter 15 pm

Bead diameter 6.8 pm

Well size Large well: 100 pm x 100 pm x 189 pm (1.89 nL in volume)

Small well: 50 pm x 50 pm x 50 pm (0.125 nL in volume)

Density of total binding [R]o = 600, 6000, 60000 molecules/pm2

sites [16] i.e. [R]o ~ 10-9, 10-8, 10-7 mol/m 2

Dissociation constant for Kd = 0.1, 1, 10 nM

binding [17] i.e. k,, = 106, 10s, 104 (M -s)-; koff = 10-4 s-1

Analyte diffusion DL = 10-10 m2 /s
coefficient [15]

Initial analyte External source: 10 = 102, 103, 104 #/well

concentration i.e. large well: [L]o = 0.088, 0.879, 8.786 pM
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small well: [L]O = 1.328, 13.284, 132.843 pM

Cellular source: [L]0 = 0

External source: kg = 0

Analyte releasing rate [1 Cellular source: kg = 0.1, 1, 10 molecules/cell/s

4.2.1.2 Stochastic Discrete Model
The stochastic discrete model we built shares the same model setup with the deterministic
continuum model described above, in terms of macroscopic governing equations, boundary
conditions and parameter settings. However, the diffusion process of analytes in the
stochastic discrete model is simulated as random walk of individual molecules, while the
reactions for both analyte releasing and antibody-analyte binding are treated as discrete
events and simulated by computing the event's probabilities with random numbers.
Therefore, in our stochastic discrete model, the binding reaction (Equation 4.1) is treated
as a two-step process characterized by explicit molecular diffusion process and the
intrinsic rate constants, kon and kff . And the initial transport step of the two-step reaction

is modeled at molecular level by considering the physical contact of two binding partners.
This formulation allows more realistic modeling of binding reaction and the analysis on
fluctuations in binding outcomes of the entire system.

The numerical simulations on stochastic discrete model are performed using MCell
(http-/rncell.org) [18, 19], a general Monte Carlo reaction-diffusion simulator. A full
description on the simulation design and programming of MCell could be found elsewhere
[19]. Briefly, we created realistic 3D structures for the sealed microwell, antibody-coated
bead and analyte-releasing cell. The concentration of molecular species in stochastic
simulation is treated as the collection of molecule particles at precise locations. The
diffusion of target analytes in the fluid phase of microwell is treated as random thermal
motion of individual molecules in 3D. For a given molecule at time t, the distribution of its
final positions at (t + At) is calculated based on the governing diffusion equation (Equation
4.2) and then the MCell software would sample randomly from the calculated distribution
to pick a specific position and update it as the new position of the given molecule at
(t + At). The impermeable walls of microwell are modeled as reflective boundary
conditions, where the collision of analyte molecule with the wall would result in molecule
trajectory following specular reflection. Same as in the deterministic continuum model, we
do not consider the diffusion on bead surface for the immobilized antibodies and antibody-
analyte complexes.

For external source of target analytes, the initialization step of MCell positions user-defined
number of target moelcules (l) at random but precise locations within the fluid phase of
the system. The exact positions of individual molecules are calculated based on random
number stream and constrained to have pseudo-uniform concentration in fluid phase at
t = 0. For cellular source of target analytes, we incorporated explicit reaction for analyte
releasing from cell into the stochastic discrete model, in order to account for the
randomness in the direction of analyte releasing.

RS -> L + RS (4.6)
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where RS is the analyte releasing site on the cell surface. We assumed a big surface
diffusion coefficient for RS, DRS = 10- m2 /s, which is chosen to give an average diffusion
distance so large that the releasing site could appear at any location on cell surface over the
simulation time step (At = 0.1 s). Thus, the analyte releasing could occur anywhere on the
cell surface. The analyte releasing reaction (Equation 4.6) has macroscopic rate constant,
kRS-

rs - kRS= kg (4.7)

where rs represents the number of releasing sites per cell. In this manner, Equation 4.3 still
holds in the stochastic discrete model. We therefore implemented the simulations for
kg = 0.1, 1, 10 molecules/cell/s by setting values of (rs, kRs) as (1, 0.1), (1, 1), (10, 1),
respectively.

In our stochastic discrete model, the bimolecular reactions between a volume molecule and
a surface molecule (e.g. the forward reaction of Equation 4.1) occur only when the
following two criteria are satisfied simultaneously. Firstly, there must be a collision
between a volume molecule (or its movement ray) and the grid element containing the
surface molecule. The grid element can be interpreted as the macroscopic reaction cross-
section of the surface molecule. Secondly, the random number assigned for the collision has
to be larger than the reaction threshold, which is the Monte Carlo probability pMc that a
collision would leads to a reaction event. Detailed derivation of the reaction threshold has
been described previously [18]. Simply speaking, a diffusing volume molecule can hit the
grid element occupied by the surface molecule multiple times before it diffuse infinitely far
away from the grid element. Thus, the probability pMC of reaction per collision should be
equal to the quotient of the expected bulk reaction rate divided by the total number of
collisions within one time step.

For the unimolecular, first-order reactions, such as Equation 4.6 and the reverse reaction of
Equation 4.1, the distribution of expected lifetime for each reactant molecule is assumed to
follow exponential decay. The software, MCell, then determines the exact lifetime of each
molecule based on the lifetime distribution and schedules the unimoleular reaction
accordingly at the appropriate time point. Moreover, given the spatial reversibility of a
reversible binding reaction between a volume molecule and a surface molecule (e.g.
Equation 4.1), the distribution of expected positions for a newly unbound volume molecule
(e.g. the fluid-phase reaction product of unimolecular reaction) should match the
distribution of positions for a free volume molecule that can potentially bump against the
grid element occupied by the surface molecule (i.e. the same surface tile occupied by the
reactant molecule undergoing unbinding reaction). In other words, by symmetry, the
probability density distribution of volume molecules leaving the surface should be the
same as the distribution of volume molecules that hit the surface. The simulator software
hence calculates the spatial distribution of a newly unbound volume molecule (e.g. the
fluid-phase reaction product of unimolecular reaction) and sample randomly from the
calculated distribution to determine the exact position of a fluid-phase product molecule
upon the unbinding reaction.

To evaluate the detection uncertainty resulting from stochastic reaction-diffusion events,
we implemented numerical simulations for same set of parameters (listed in Table 4.1)
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using multiple random number seeds of different values. Based on the seed value, the MCell
software generates a series of random numbers that are used to determine the outcomes of
individual decisions made during the simulation. Thus, the intrinsic noises derived from
stochastic events could be estimated from the outcomes of individual simulations that are
executed using different values in random number seed. The outputs of our numerical
simulations are the molecule numbers for each species present in the system as a function
of time. With the aid of MATLAB, we computed the mean and the coefficient of variation
(CV, the ratio of the standard deviation to the mean) for different molecule species.

4.2.2 Flow Cytometry Characterization of Bulk Immunosandwich Assay

For all the immunosandwich experiments in this chapter, we used the magnetic
microbeads coated with capture antibody and the biotinlyated detection antibody from a
Luminex kit (46-650MAG, EMD Millipore Corporation, USA). The equivalent pair of capture
antibody and detection antibody could also be purchased from R&D Systems, Inc. (USA) in
solution form (capture antibody: MAB3581; biotinlyatd detection antibody: BAF358). This
pair of antibodies could bind to the extracellular domain of human c-Met protein
simultaneously and thus were used to measure the c-Met shedding of cells. The antibody-
coated capture beads are 6.8 pim-diameter magnetic micro-particles with bright
fluorescence in the allophycocyanin (APC) channel and thus can be manipulated in space
using magnet. We used streptavidin-conjugated phycoerythrin (SAPE) as the fluorescent
reporter for the immunosandwich assay. The standard samples used in this work are
composed of different concentrations of recombinant c-Met/Fc chimera protein (358-MT-
100/CF, R&D systems, Inc., USA), 1% BSA and serum-free medium for HCC827 cell culture
(i.e. RPMI 1640 with 2mM glutamine, 100 U/L penicillin and 100 U/ml streptomycin).

For bulk immuosandwich assay, antibody-coated capture beads were washed once with
1%BSA/PBS and then incubated with 80 tL of standard samples in different recombinant
c-Met concentrations in 1.7 mL microtubes at room temperature for 2 h on tube rotator
(10136-084, VWR International, USA). The bead concentration was around 7500 #/mL of
sample during the incubation step. After the 2-h incubation, the capture beads were
washed 5x with washing buffer (0.1%BSA/PBS). Subsequently, the washed beads are
incubated at room temperature for 1 h on tube rotator, with 1 ptg/ml of biotinlyated
detection antibody in 1%BSA/PBS. Then, the beads were washed 5x with washing buffer,
followed by a 1-h incubation with 5 pg/ml SAPE in 1%BSA/PBS at room temperature on
tube rotator. After incubation with SAPE, we washed the beads for 5x and then re-
suspended them in 0.1%BSA/PBS before analyzed on flow cytometer (BD Accuri" C6, BD
Biosciences, USA). The magnetic beads were gated from the flow cytometry data based on
their bright APC signals. The fluorescence signals of those beads in the PE (phycoerythrin)
channel were used as indicator for the amount of target analytes (e.g. recombinant c-Met
proteins) captured by individual beads. To minimize the impact of outliers, we trimmed off
5% data points with extremely high or low PE signals from the data for each condition.
Those outliers might result from beads with abnormalities in bead size, reference dye
(APC) concentration or antibody coating efficiency. Furthermore, to mimic the situation
with low background signal, we used the median PE intensity of negative control sample as
the baseline intensity and subtracted it from the original PE signal of each bead. The
resulting bead signal is termed as the normalized PE signal. Coefficient of variation was

73



then calculated based on the normalized PE signal for each condition. Notice that for each
washing step, we harvested the magnetic beads from solution by placing the sample on
magnet (12321D, Thermal Fisher Scientific Inc, USA) for 5min before discarding the fluid.

4.2.3 Closed-Array Immunosandwich Assay with Recombinant c-Met

To prepare our microfluidic platform for immunosandwich assay with recombinant c-Met
protein, we exposed both the bottom and top piece of the device to plasma treatment for 30
sec before coating their surfaces (i.e. the microwell surfaces and the flow chamber
surfaces) with 1%BSA/PBS for 30 min at room temperature. After a brief washing step
with 0.1%BSA/PBS, we dispensed 120 ptL of magnetic antibody-coated beads (-400
beads/pL for large microwells, -1000 beads/pL for small microwells) in assay buffer

(1%BSA-containing serum-free medium) onto the BSA-coated microwell array and then

allowed the beads to settle down for -3 min while placing a neodymium block magnet
(BCC2-N52, K&J Magnetics, Inc., USA) beneath the microwell array. The presence of
magnetic field during bead loading greatly enhanced the loading efficiency of small

magnetic beads into microwells. Subsequently, we carefully removed the block magnet and
gently washed the microwell array from the side with assay buffer to remove the beads

outside the microwells. After that, we assembled the bead-loaded microwell array with the

top control piece of the device through mechanical clamping and connected the assembled
device with fluid input and gas controlled as described in section 3.3.3. The entire assembly
was then mounted within a stage top incubator (Tokai Hit Co., Ltd, Japan) that was secured
onto the motorized stage (H117 ProScan', Prior Scientific Inc., USA) of an inverted

epifluorescence microscope (Olympus IX71, Olympus Inc., USA) equipped with a 12-bit CCD
camera (SensiCam QE, PCO, Germany). In agreement with the conditions used for live-cell
assay in section 4.2.4, 5% C0 2 was supplied to the humidified incubator during the entire

assay.

Following the device assembly and mounting, the beads were imaged briefly for their
locations under microscope at multiple positions along z directions. More than 99% of the

magnetic beads were located at the bottom of each microwells. Then, the standard sample
containing known concentration of recombinant c-Met protein in assay buffer would be

injected into the flow chamber for 10 min before closing the valve for a 2-h incubation at 37
0C. The flow rate for buffer injection has been set differently for microwell arrays with

different depths to achieve similar shear stress at the well bottom. In the case of large
microwells, the total distance between microwell bottom to the ceiling of flow chamber is

-300 tm and the buffer injection was carried out at 40 ptL/min. In the case of small
microwells, the total distance reduces to -150 iim and thus the buffer injection was

performed at 20 ptL/min. The same flow rate settings were used for all the buffer washing
steps and the sample/dye incubation steps in both recombinant assays and live-cell assays.
At the end of the closed-well incubation, the beads were rinsed with washing buffer

(0.1%BSA/PBS) for 15 min to remove the unbound target analytes from the system. During
the washing, the temperature of the humidified incubator was cooled down to room

temperature (22 0C) and maintained for the rest of the assay. Subsequently, 1 pg/ml of

biotinlyated detection antibody in 1%BSA/PBS was injected into flow chamber at 15
pt/min for 1 h, followed by a 15-min washing step with washing buffer to remove unbound

detection antibody. Next, the beads were exposed to 5 pg/ml SAPE in 1%BSA/PBS under
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continuous flow condition (15 ptL/min) for 1 h. Notice that fluorescent images in the PE
channel were recorded during SAPE incubation and would be processed to create mask
that defines the regions within microwells in the array. Then, the beads were rinsed with
washing buffer for 15 min to remove the unbound SAPE in the system. Finally, fluorescent
images at different wavelength channels were taken for beads within microwells and
would be used for subsequent data analysis of bead numeration and analyte capture status.

4.2.4 Single-Cell Measurement of c-Met Shedding

The immunosandwich assays with live cells were performed in a similar manner as the
closed-array assays with recombinant protein (section 4.2.3). Detailed methods for cell
culture and the device preparation step has also been described in section 3.3.2. Briefly,
parental HCC827 cells were loaded onto microwell array coated with 40 pg/ml rat collagen
I (A1048301, Invitrogen, USA) and then cultured in complete medium containing 10% FBS
for 8-10 h at 37 0C with 5% C0 2 . The seeded cells were then subjected to serum starvation
for 6-8 h before assayed for molecular shedding. For all live-cell assays, cells were pre-
loaded with viability dye, 2 ptM calcein violet AM (C34858, Invitrogen, USA), for 30 min
prior to the magnetic bead loading and device assembly with BSA-coated top control piece.
After mounting the assembled device into the humidified incubator (37 0C, 5% C0 2),
fluorescent images were recorded for the locations of antibody-coated beads and HCC827
cells as well as the cellular viability under microscope of multiple positions along z
direction. Next, DMSO-containing assay buffer (1%BSA in serum-free medium) would be
injected to flow chamber for 10 min, followed by pressurizing the valve control chamber to
seal individual microwells. After 2-h incubation within sealed microwells, the cells and
beads were rinsed with serum-free medium for 10min. The rinsed array was then exposed
to 3 tM propidium iodide (P3566, Invitrogen, USA) and 0.8 ptM Hoechst 33342 (H1399,
Invitrogen, USA) in serum-free medium for 10min to stain the cells post-incubation. After
the dye staining, the array was washed with washing buffer (0.1%BSA/PBS) for 15min
before imaged under different wavelength channels at multiple depth positions. The post-
staining fluorescent images would be used for downstream analysis on bead number, cell
number and post-assay survival. Subsequently, the washed array was subjected to
incubation with biotinlyated detection antibody and SAPE in sequence, with 15-min
washing step in between, as described for recombinant assay in section 4.2.3. Images were
also taken for microwell array during SAPE infusion and would be used downstream for
well template generation. Lastly, the cells and beads were subjected to a final round of
washing (15 min) and then recorded for fluorescence signals under different wavelength
channels. The final-step images would be used for data analysis on analyte capture status.

4.2.5 Data Analysis for Microwell-Coupled Immunosandwich Assays

Manual numeration of cell number within each microwells was performed on fluorescent
images taken post-incubation for cells stained with Hoechst 33342 and propidium iodide.
We excluded data from microwells with non-cell objects (e.g. dirt and impurity in coating
slolution) or cells died after the closed-array incubation from further analysis. Meanwhile,
fluorescent images taken after SAPE staining were scrutinized manually to count the bead
number within individual microwells and were used as "readout images" for further
analysis on the readouts of immunosandwich assay. Each microwell array has either 960
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large microwells or 1440 small microwells in total. Generally, we could get -32%, 18%, 9%
and 4% of microwells loaded with 1, 2, 3 and 4 beads, respectively, in a bead-loaded array.
With the aid of Image J® software, template defining the regions within microwells was

generated based on the raw images taken during SAPE infusion and aligned with "readout

images" taken after SAPE staining. This aligned well template was then used in

downstream data processing to group bead signals into individual microwells. Based on the

"readout images", we further created two masks to define the regions of interests (ROI) for

cell nuclei (based on Hoechst signal) and beads (based on APC signal), respectively.
Furthermore, we dilated the ROIs of cell nuclei template by 3 pixels (i.e. -7pm) to get a
mask for the entire cell and then overlaid it with the bead mask to identify the antibody-
coated beads lying in close proximity of the cells. A corrected bead mask was then

generated by excluding those near-cell beads from the ROIs of raw bead mask.

We have developed a procedure for image processing and signal analysis. Firstly, we

generated one aligned microwell template, one mask for entire cells, and one corrected

bead mask, as mentioned above. Secondly, to fix the uneven background arising from non-

uniform illumination within the observation window, we performed rolling-ball

background subtraction on the "readout images" using Image J® software under the

settings of sliding paraboloid and rolling ball radius = 50 pixels. Thirdly, taking advantage
of the particle analysis function of Image JO, we extracted the coordinates and corrected

fluorescence signals of individual beads from the background-subtracted "readout images"
using the corrected bead mask. To avoid the variation introduced by inaccurate border

identification, we used the median value of fluorescence intensity of each ROI as the signal

indicator for the corresponding bead. Lastly, we mapped the bead signals to each microwell

based on bead coordinates and the aligned microwell template using MATLAB. Thus, we

have information about individual microwells for the following parameters: cell number,

bead number and fluorescence signals of each bead in both PE and APC channel. The PE

signals of beads were the readouts of immunosandwich assay and should correlate with

the amount of target analyte captured on each bead. To minimize the impact of outliers, we
trimmed off 5% data points with extremely high or low PE signals from the data for each

microwell array. Those outliers might result from beads with abnormalities in bead size,
reference dye (APC) concentration or antibody coating efficiency. The average per bead

fluorescence signal was also calculated for microwells with more than one antibody-coated

bead. For simplicity, we only considered 1-bead well for the data analysis of live-cell assay.

4.3 Analytical Theories of Fluctuations in Low-Abundance Molecular Capture

The readout signals of any single-cell measurement are usually in a form of distribution

rather than a signal value. There are mainly three distinctly different sources of variation in

the readout signals: biological variability, detection uncertainty and experimental artifacts.

Biological variability refers to the real difference in the single-cell properties under study.

Detection uncertainty results from the physical constraints underlying the mechanisms of a

detection method and is dominated by fluctuation in low-abundance molecular capture in

this study. Experimental artifacts are the ensemble outcomes of operational errors in real

world. While active efforts in the field have been devoted to address the issue of

experimental artifacts, we would like to focus on the detection uncertainty, which can mask

the key biology under study (biological variability) by putting the ultimate limits even for a
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perfect readout system.

Antibody-mediated analyte capture is the first step of analyte quantification using
immunosandwich assay. Fluctuations in the analyte capture translate directly into the
variance of final readout. The physics of antibody-mediated analyte capture, especially in
the case of low-abundance analytes, presents analogy to that of the receptor/ligand binding
in many aspects. Both processes involve reversible binding between volume molecules and
surface molecules to produce molecular complexes on the surface (Equation 4.1) and suffer
from the stochastic nature of molecular events due to limited number of molecules. In
1977, Berg and Purcell [20] published a paper on how the statistical fluctuations in the
cellular microenvironment could limits the precision of binding-based biochemical sensing.
While they used a simplified physical model of receptor/ligand binding, Berg and Purcell's
analysis provides the upper bound for the accuracy of cellular sensing through
receptor/ligand binding. Analysis on more complex physical models can also be found
elsewhere [21-23]. Inspired by those studies, we construct a probabilistic formulation of
the antibody-mediated analyte capture in this section and only consider the simple case of
antibody-analyte binding in the absence of significant antibody depletion and nonspecific
binding. For simplicity, we treated the reversible binding reaction as a one-step process
characterized by the observed rate constants, kf and kr, in section 4.3.

4.3.1 Fluctuations in Source Concentrations

For the binding between immobilized antibody and analyte (Equation 4.1), we have the
following reaction flux for antibody-analyte complex on the immobilization surface (i.e.
bead surface).

d = kf ([R]O - [C]) ([L]O - Nel [C] - kr[C] (4.8)
dt Vwell

where Nb, Ab and Vweii are the bead number per unit volume, the surface area of an
antibody-coated bead, and the volume of closed microwell, respectively. We define a
scaling factor, sf = NbAb/Vwell, to transform the surface concentration of binding sites on
bead to the volume concentration in the system. Thus, ([L]. - NbAb [C]) = ([L] 0 - sf[C])

Vwell
represents the volume concentration of freely diffused target analyte in the fluid phase of
the system at given surface concentration of complex, [C]. Since we only consider the case
with extremely low concentration of target analyte, we assume no significant depletion in
the available binding sites occur in the system. Therefore, we have nearly constant amount
of available binding sites on the bead surface (i.e. [R] = [R]O - [C] ~ [R]O). We then can
solve Equation 4.8 under the equilibrium condition (i.e. d[C]/dt = 0) and get the transient
solution under the initial condition of [C]O = 0.

[Cleq = [R]0 [L]= (4.9)
sf[RIo + KD

[CI(t) = [C]eq (i - e-kost) (4.10)

where [C],q represents the equilibrium concentration of analyte-antibody complex,
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KD = kr/kf, is the observed antibody dissociation constant, and kobs = kf(sf[R]o + KD) is

the characteristic rate constant of approach to equilibrium. Therefore, both the capture
efficiency at equilibrium, [C],ql[L]o = [R]O/(sf[R]o + KD), and the speed of approaching

equilibrium, kobs, are functions of [R]o and KD.

By taking partial derivatives of Equation 4.9 and rearranging the outcome, we noticed that

fluctuations in concentrations of source molecules, [L]o or [R]O, would result in

corresponding fluctuations in the concentration of binding products, [C]eq. The relative

magnitude of these fluctuations can be expressed in terms of coefficient of variation (CV) as

below [24].

a[C]eq a[L]o (4.11)
IC]eq ILlO

d[C]eq I+sf[R]o] a[R]0  (4.12)
[C] K, & (10

where d[C]eq, d[L]o and d[R]o represent the standard deviation in [C]eq, [L]o and [R]O,

respectively. We then can use Equation 4.11 and 4.12 to estimate the impact of fluctuations

in source molecule concentration on the binding outcome at equilibrium.

The actual concentration of freely diffused target analytes sampled by the antibody-coated
bead is fluctuating due to the thermal fluctuations of solvent molecules (i.e. Brownian

motion). And the thermal fluctuations in volume molecule concentration, a[L]O, can be

estimated based on the sampling volume V, which is the volume of fluid phase accessible to

binding [25]:

a[L]O/[L]o = ([L]oV)- 1/ 2  (4.13)

Notice that [L]o in Equation 4.13 has unit in terms of molecule number per unit volume,

and thus one would need to use Avogadro's number to translate molar concentration into

the form of molecule number per unit volume when using Equation 4.13 to estimate the

effect of thermal fluctuations.

For immunosandwich assay in bulk, the characteristic length 1v of the sampling volume is

given by the average diffusion length of target anlayte within sampling time tsample-

ly~)DLtsampie (414)

Considering the analyte-antibody binding reaction, a reasonable estimation for tsample is

1/kr, which is the average gap time between two binding events at steady state for the case

of [L]o = KD. Thus, V_13~(DL/kr)32 and in our experimental system with DL = 10-10 m 2 /

s and kr = 10-4 s', the sampling volume is 1 ptL (i.e. vl1 mm), which is several orders of

magnitude larger than the volume of our microwell. Therefore, for the closed-array

immunosandwich assay, the sampling volume should be the volume of the sealed

microwell. On one hand, the bulk assay (V- 1 ptL) has negligible variability in the [L] being

sampled, given that a[L]O/[L]0 -O.407% at [LIO = 0.1 pM. On the other hand, the actual

close-array immunosandwich assay could have very large fluctuations in the exact amount

of target analytes being encapsulated within individual microwells. In the case of small
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microwell ( V = 0.125 nL ), we find a[L]O/[L]0 -36.44%, 11.5 3%, 3.64% for [LUO =
0.1, 1, 10 pM, respectively. In the case of large microwell (V = 1.89 nL), we find d[L]O/
[L]o-9.37%, 2.96%, 0.94% for [L]O = 0.1, 1, 10 pM , respectively. Moreover, based on
Equation 4.11, those fluctuations in [L]O would lead to corresponding fluctuations of
similar magnitude in the binding outcome [C]eq. And thus, caution has to be taken when
interpreting outcomes from the closed-array immunoassay with standard sample of very
low analyte concentration.

In the case of live-cell assay, deviations in [L] from the mean behavior predicted by the
deterministic continuum model could directly arise from the discrete events of analyte
releasing from cell. Besides, for cells with same analyte production rate, the major source of
a[L] at a given time point is variability in the exact timing of molecule releasing, which has
been taken into account in our stochastic discrete model.

In reality, the fluctuations in binding site density, d[R]O, could arise from the operational
variation during bead fabrication and antibody coating, and thus is considered as
parameter for bead quality control. Equation 4.12 dictates, for example, that in the case of
small microwell containing only 1 bead with average [R]O = 6000 #/Pmm 2  10-8 mol/M2 ,
10% CV in [R]O translates to 0.086% CV and 0.864% CV in [C]eq at KD = 0.1, 1 nM,
respectively. Hence, in our system of closed-array immunosandwich assay, variability in
[R]O has negligibly low impact on the amount of analyte-antibody complexes at
equilibrium.

Notice that our stochastic discrete model doesn't consider variability in initial conditions so
that each simulation was executed with exact values of [L]0 and [R]0 in the system at t = 0.

4.3.2 Fluctuations in Binding Kinetics

The probabilistic nature of binding reaction is another major source of fluctuations in final
binding outcome. The reaction rate constant of a chemical reaction could be interpreted as
the reaction probability per unit time [26]. In other words, when we consider a time
interval At that is small enough to have no more than one reaction occurring, kf [L] and
krAt can represent the probability per unit time of an association and dissociation event to
occur (on a given reactant molecule during At), respectively. Consequently, we could
analyze the impact of fluctuating binding kinetics using a population balance model of
analyte-antibody complexes [27]. In the rest of this section, we use Pi(t) to represent the
probability of i analyte-antibody complexes present on the bead surface at time point t.
The scaling factor, sf = NbAb/Vwel, is defined as the same in section 4.3.1, and -thus
([L]O - sf[C]) represents the volume concentration of freely diffused target analyte in the
fluid phase of the system at given surface concentration of complex, [C]. We also use
[C 1] to represent the corresponding surface concentration for (c 1) number of
complexes present on a bead and [R][c] to represent the surface concentration, in terms of
molecule number per area, for r number of unoccupied binding sites at a given [C]. Thus,
we could write the following kinetic equation to describe the changes in Pc(t) [14]:
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P (t+ At) - P(t) = k, ([Li0 -sf[C-1I[)R] 1c- 1P-1(t)At

-k, ([LIO - sf [C])[R1 cz P(t)At (4.15)

-kr[C]P(t)At + kr[C +1]P,(t)At

Given that target analyte is in extremely low abundance, we assume nearly constant

amount of available binding sites, [R][c], [R][c l] ~ [R]0 . Therefore, in the limit of At -4 0,

Equation 4.15 can be rewritten into a differential equation.

dP(t) =-k ([L]O - sf[C - 1])[R10 c (t) + kr[C + 1]P. ((t)dt (4.16)

-{k([ L 0 - sf [C])[R 0 +kr[C]}P(t)

where c = 1, 2, 3, ... , (ro - 1). For c = 0 and c = ro, the corresponding equations are as

below.

dP0(t) = ] kP(t) (4.17)

dt

dP,_t =[L]O Pro-,(t)- k,[ R P (t) (4.18)
dt

For our system, we assume no bound antibodies present at t = 0 and thus the initial

condition is the following Equation 4.19.

P 0 if cO (4.
1 if c=O

The set of Equation 4.16-4.18 can be solved analytically by transforming those (ro + 1)
coupled linear ordinary differential equations into a single partial differential equation. The

detailed derivation of solution could be found elsewhere [14, 28]. Using the analytical

solutions, we can get the expected value of [C] (denoted as < [C] >) and its variance ac at

equilibrium.

<IC]eq >= ([CP = [R]O[L]0  (4.20)
\/eq sf R]o +KD

(a2) =([C -< IC] >)2 p R [R]dL]OKD (
ec e0 (IC] c (sf[R]0 +KD) 2

Notice that the expected value of [C] at equilibrium (Equation 4.20) is identical to the

solution [C],q (Equation 4.9) given by the deterministic continuum model (Equation 4.8).

Combining Equation 4.20 and Equation 4.21, we can evaluate the effect of stochastic and

discrete reaction events on [C],q in terms of CV.

a[C]eq (creq _ KD 1/2 (4.22)
[C]eq [Cleq ([R] 0 [L]0
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For the parameter values used in our system (Table 4.1), we would expect 10.71%CV,
3.39% CV and 1.07% CV in [C]eq at [L]o = 0.1pM, 1pM, 10pM, respectively, in the case of
KD = 1nM and [R]o = 6000 #/pm2 . The relative fluctuations in [C]eq would increase if
beads coated with antibodies of poor affinity (larger KD) or at low binding site density
(smaller [R]O) are used to capture target analyte. Notably, Equation 4.22 applies to all kinds
of binding assays under condition of negligible antibody depletion, including the
immunosandwich assays performed in bulk scale. Our stochastic discrete model has
incorporated the fluctuations in binding kinetics by simulating the reversible binding
reaction between target analyte and immobilized antibody as individual discrete-time
event.

4.4 Modeling Results of Closed-Array Assays on Sample with Fixed Target
Concentration

In the case of external source of target analytes, our numerical simulations on both
deterministic continuum model and stochastic discrete model indicate that the temporal
profile of capture efficiency, [C]/[L]O, is not dependent on the initial concentration of target
molecule in the system (Figure 4.3A, B). Meanwhile, microwell of smaller dimension,
increase in surface concentration of binding site or decrease in antibody dissociation
constant (i.e. increase in k,,) would result in faster equilibrium (Figure 4.3). This is in
agreement with the analytical expression of transient solution, [C](t), to the kinetic
equation of binding reaction (Equation 4.10). Additionally, the mean behavior predicted by
the stochastic discrete model is consistent with the simulation outcomes of the
deterministic continuum model, with only minor deviation when the binding rate of the
entire system is extremely low. In the case of small microwell (50 Pm x 50 pIm x 50 Mm)
that is suitable for assaying non-adherent cells or cells with limited spreading, both models
predicts near-100% capture efficiency after 1-h incubation period for systems with
Kd = 1nM and [R]o = 6k #/pm2 . However, when larger microwell (100 pm x 100 pm X
189 Mm) are used, the same parameter settings would only result in -40% capture
efficiency after 5-h incubation, making the secretion/shedding detection of cells with large
spreading area or high motility, more challenging. On the other hand, one could limit the
cell spreading area and cellular migration space by surface patterning of extracellular
matrix molecules and anti-fouling materials on the walls of microwells, hence allowing the
usage of small microwells for those actively migrating cells.

We next examine the fluctuations in the number of captured target analytes. Our
simulations on the stochastic discrete model reveal that the fluctuations of analyte-
antibody complex number decrease over time and reach a pseudo-steady state when the
molecular capture has reached equilibrium state in the system (Figure 4.3, column III). In
Figure 4.4, we plotted the coefficient of variation (CV) of the equilibrium number of
analyte-antibody complexes as a function of antibody dissociation constant Kd, surface
concentration of total binding sites [R]o and the initial concentration of target analytes [L]O,
respectively. In accordance with Equation 4.22, we observed a linear relationship between
Log(CV) vs. Log(Kd), Log(CV) vs. Log([R]O), and Log(CV) vs. Log([L]O), with a slope of
(0.470 0.001), (-0.458 0.024) and (-0.495 0.025), respectively. This good agreement
of numerical simulation results with Equation 4.22 supports that the fluctuations in
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binding kinetics are the major source of variation in binding outcomes at equilibrium. And

thus, we could rely on the stochastic discrete model to calculate the intrinsic noise of a
given system for any time point during sample incubation. Furthermore, our results
indicated that the uncertainty in binding-based molecule detection would increase in the
case of capture antibody with poor affinity (large Kd), low binding site availability (lower
[R]O) or few target molecules (smaller [L]O). Enlarging the microwell size would also

increase the CV for same amount of target analytes in the system. For antibody with
Kd = 1nM and binding site density of 6000 #/um2 (equivalent to 10-8 mouMr 2 ), 100

molecules of target analytes would result in 12.6% CV and 2.6% CV after 5-h incubation
time with antibody-coated bead in closed-array system with large and small microwell,
respectively. This kind of fluctuations is intrinsic to the binding reaction and establishes the

lower bound to the detection uncertainty of molecule quantification using binding-based

approach. Thus, caveat should be taken when translating the binding outcomes into the

amount of target analytes present within system.
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Figure 4.3 Temporal profile of molecular capture in closed-array configuration for external source of

target analytes. Column (1) shows the capture efficiency predicted by our deterministic continuum
model. Column (11) and (111) depict the average capture efficiency and coefficient of variation (CV) of the

captured analyte number, respectively, both of which are from numerical simulations on our stochastic

discrete model. Column (IV) lists the parameter settings and legends used for each row. The capture
efficiency is defined as the parentage of total target analyte being captured by the immobilized
antibodies in the system. X-axis represents the incubation time in logarithmic scale. Y-axes of column (1,
11) are in linear scale for capture efficiency, while y-axis of column (111) is in logarithmic scale for CV
values. For stochastic discrete model, different values of random number seeds were used to implement

simulations on same set of parameters. In the case of small microwell with dimension of 50 pim x
50 pm x 50 1um (A, C, D), n = 50 for [L]O = 100 #/well, n = 22 for both [L]O = 1k #/well and
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[L]O = 10k #/well. In the case of large microwell with dimension of 100 pm x 100 pm x 189 pm (B),
n = 22 for all conditions.

A 0 * 100/well B 0 100/well C * small
- 1k/well 01k/well large-0.5 * 10k/well -0.5 10k/well -0.5 Linear

-1 Linear near

-1.5 C -1.5 C >

-3.55

S-2 4 ? J -2 tk + o
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Figure 4.4 Coefficient of variation (CV) of the captured analyte number at equilibrium for closed-array
molecular capture of target analytes from external source. The plots are based on numerical simulations
of the stochastic discrete model. The CV values depicted in the plots are the average value of CV over
the last 10 min of the 5-h incubation time (t = 4 h 50 min ~ 5 h). During this time period, majority
cases of analyte capture have reached equilibrium with relatively stable CV values. The parameter
settings for each plot are (A) small microwell (50 pm x 50 pm x 50 pm), [R]O = 6k molecules/gm2

with different [L]O shown in legend; (B) small microwell, Kd = 1 nM with different [L]O shown in
legend; (C) [R]O = 6k molecules/gm2 , Kd = 1 nM with either small microwell or large microwell
(100 pm x 100 pm x 189 im). Both x-axis and y-axis are in logarithmic scale. The purple dashed lines
represent the linear least-squares fitting of data. In the case of small microwell (A, B, C), n = 50 for
[L]O = 100 #/well, n = 22 for both [L]O = 1k #/well and [L]O = 10k #/well. In the case of large
microwell (C), n = 22 for all conditions.

4.5 Modeling Results of Closed-Array Assays on Single-Cell Shedding

When applying the closed-array immunosandwich assay to single-cell shedding detection,
the system contains a cell that is releasing target analytes over time. As a result of the
interplay between target generation and target binding to antibodies within confined
space, the molecular capture of the entire system usually goes through three characteristic
phases in this case of cellular source of target analytes (Figure 4.5). During the first phase,
the forward reaction rate of antibody-analyte binding is slower than the analyte generation
rate by the cell, resulting in more target analytes present in solution phase than on bead
surface. With more molecules accumulated in solution phase, the forward reaction rate
keeps increasing to be higher than the target generation rate. The system then proceeds
into the second phase featured by relatively stable profile for the amount of target analytes
in solution over time. Meanwhile, the resulting capture efficiency also increases until the
binding sites are gradually saturated. In ensuring period of time, the system moves into the
third phase with a slower binding reaction rate than the target generation rate and hence
experiences a decrease in the capture efficiency.

Generally speaking, the ideal end point for closed-array incubation of cells with capture
antibody should fall into the latter part of second phase, where the system has high capture
efficiency and a relatively large dynamic range in measuring different analyte-releasing
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rates given the present of sufficient unoccupied binding sites. However, there are practical
constraints on the length of closed-array incubation for live cells. The confinement of live
cells eliminates the transportation of nutrients and wastes across the compartment
boundaries. Although high viability has been reported for cancer cell line after 4 days of
confinement in sub-nanoliter volume of droplets [29], the viability of many other
mammalian cells, particularly the primary immune cells, diminishes significantly when the
closed-array incubation time exceeds 4-6 h [30]. Besides, long-term confinement would
also impact cellular phenotypes. One typical case is the droplet-encapsulated cancer cells,
which exhibited very limited cell growth after encapsulation [29]. Thus, a reasonable live-
cell assay should have a closed-array incubation time less than 4 h. Furthermore, given the
well-known fact that cellular signaling is a dynamic process, live-cell shedding assay with
even less incubation time is always desired and would be valuable to reveal the dynamic
temporal behavior of cell shedding.

A 1st phase 3rd phase
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Figure 4.5 Temporal profile of target analyte distribution for single-cell shedding detection in closed-

array configuration. There are three characteristic phases of molecular capture in the system under

study. The first phase (shaded in green) is featured by a slower antibody-analyte binding rate than the
target generation rate by the cell and thus has very low capture efficiency. The second phase (shaded in
red) is characterized by a rapid increase in capture efficiency and a relatively stable profile of target
molecules in solution over time. The third phase starts when the capture efficiency starts to decrease as

a result of binding site saturation. Plots are based on simulation results of the deterministic continuum
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model in the case of sealed microwell containing only one antibody-coated bead and one analyte-

releasing cell. X-axis represents the incubation time in logarithmic scale. Plots are shown for the

quantities of target analytes accumulated in the whole system (black dash-dot-dot line), free in the fluid

phase (red solid line) and captured on antibody-coated bead surface (blue dashed line), respectively,

with y-axis on the left in logarithmic scale. Green dash-dot lines depict the percentage of total target

analytes being captured by antibodies, with y-axis on the right in liner scale. The parameter settings

used for simulation are shown in each plot.

To identify the optimal design for live-cell shedding detection using closed microwell, we

used both deterministic continuum model and stochastic discrete model to study the effect

of different parameters on assay performance. As shown in Figure 4.6A & B, the temporal

profile of capture efficiency is largely insensitive to different analyte-releasing rates from

the cell (kg) for the parametric space under study. This feature enables the closed-array

immunosandwich assay to quantify a wide range of analyte-releasing rate with a fixed

incubation time period. Whereas, antibody with low affinity (larger Kd) or low surface

density (lower [R]0 ) could result in slower progression of analyte capture and thus longer

time period that suffers from low capture efficiency (Figure 4.6C, D). Similarly, microwell

with larger dimension also slows down the progression of analyte capture in the system

(Figure 4.6A, B, E). Furthermore, we observed little impact of different distances between

the analyte-releasing cell and antibody-coated bead on the temporal profile of capture

efficiency (Figure 4.6F). This observation indicates that the intrinsic chemical reaction step

between antibodies and target molecules, rather than the molecular transport step, is the

rate-limiting process of the antibody-analyte binding within the operational envelope of

interest.

With the aid of numerical simulations on our stochastic discrete model, we can also

investigate the impact of various parameters on the intrinsic noise of single-cell shedding

assay using closed microwell. The relative magnitude of fluctuations (CV) in captured

analyte number keeps decreasing over time as more and more analytes accumulate onto

bead surface via antibody-mediated binding (Figure 4.6, column III). As a result, we

observed a strong correlation between the CV values and the capture efficiency of the

system when the capture efficiency is low. Whereas, in the ensuing period of incubation

(with near-100% capture efficiency), the magnitude of CV scales inversely with the total

amount of analyte present rather than the capture efficiency. Importantly, for a given

analyte-releasing rate, parameters of different values influence the CV values through their

impact on the progression speed of analyte capture in the system. And thus, when the

system progresses to a point with very high capture efficiency, the effect of those

parameters, including binding site density, antibody Kd and microwell size, would diminish.

On the contrary, the impact of analyte-releasing rate from the cell persists during the entire

incubation period. And we observed a liner relationship between Log(CV) and Log (kg) at

the end of 10-h incubation time for all conditions simulated (Figure 4.7). Therefore, the

optimal system for close-array detection of single-cell shedding should enable high capture

efficiency within the operation window of incubation time and the optimal length of

incubation time should be as long as the practical constraints allow.
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Figure 4.6 Temporal profile of molecular capture in closed-array configuration for cellular source of

target analytes. Plots are based on simulation results of two models in the case of sealed microwell
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containing only one antibody-coated bead and one analyte-releasing cell. Column (1) shows the capture
efficiency predicted by our deterministic continuum model. Column (11) and (111) depict the average
capture efficiency and coefficient of variation (CV) of the captured analyte number, respectively, both of
which are from numerical simulations on our stochastic discrete model. Column (IV) lists the parameter
settings and legends used for each row. The capture efficiency is defined as the parentage of total target
analytes being captured by antibody-coated bead. X-axis represents the incubation time in logarithmic
scale. Y-axes of column (1, 11) are in linear scale for capture efficiency, while y-axis of column (ll) is in
logarithmic scale for CV values. The coordinates of cell and bead used for simulation are shown in Figure
4.1E and Figure 4.1F for the default settings (A-E) and the case of bead-cell distance = 0.5 pm (E),
respectively. For stochastic discrete model, different values of random number seeds were used to
implement simulations on same set of parameters. n = 21 for all conditions.

A -1.4 Kd=O.nM B -1.4 + small
-1.6 * Kd = InM -1.6 o small: 0.5 pm
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%U -2.2 -2.

0 -2.4 o-2.4

-2.6 Slope -0.509, -2.6

-2.8 R2>0.99 -2.8

-3.0 . -3.0
-1.5 -1 -0.5 0 0.5 1 1.5 2 -1.5 -1 -0.5 0 0.5 1 1.5

Log(kg) (#/cell/sec) Log(kg) (#/cell/sec)

Figure 4.7 Coefficient of variation (CV) of the captured analyte number after 10-h incubation of an
analyte-releasing cell with an antibody-coated bead in closed microwell. The plots are based on
numerical simulations of the stochastic discrete model. The CV values depicted in the plots are the
average value of CV over the last 10 min of the 10-h incubation time (t = 9 h 50 min - 10 h). During
this time period, majority cases of analyte capture within small microwell (50 pm x 50 pm x 50 Mm)
have reached the 2nd phase with more than 80% capture efficiency and a relatively stable temporal
profile of capture efficiency. One exception is the case of small microwell and Kd = 10nM, where the
system has less than 50% capture efficiency. Meanwhile, all the simulated cases of large microwell
(100 pm x 100 pm x 189 Mm) have lower than 40% capture efficiency after 10-h incubation time. The
parameter settings for each plot are (A) small microwell, [R]o = 6k molecules/pm2 with different Kd
shown in legend; (B) small or large microwell, Kd = 1 nM, [R]o = 6k molecules/m2 with bead-cell
distance either at default setting or as close as 0.5 pm. Both x-axis and y-axis are in logarithmic scale.
n = 21 for all conditions, with one exception: n = 12 for large microwell with analyte releasing rate
k9 = 1 molecule/cell/sec.

It's noteworthy that the analytical expressions for capture efficiency and CV values
(Equation 4.10 and 4.21), which are derived for the case of external source of target
analytes, can be used to estimate the impact of different parameter values qualitatively,
even in the case of cellular source of target analytes. Thus, when the simulation results are
available for a given set of parameters, one could get a rough estimation on the assay
performance under different parameter settings by applying the two equations to the
available data. In Table 4.2, we list the capture efficiency and CV values of captured analyte
number that reasonable systems could achieve in the case of kg = 0.1 #/cell/sec after 1-h,
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2-h or 4-h incubation time. It can be used as a guide to estimate the simulation outcomes of
other systems and to design the experimental system.

Table 4.2 Capture efficiency and coefficient of variation (CV) in captured analyte number based on the
numerical simulations of deterministic continuum model (Ml) and stochastic discrete model (M2) in
the case of kg = 0. 1 #/cell/sec.

Parameter
Setting*

Standard**

Kd
=0. 1nM

Kd
= 10nM

[R]o = 600
#/pm 2

[R]o = 60k
#/pm 2

Bead-cell:
0.5pm***

Large

Large:
0.5 gm***

1-h Incubation

Cap Eff (%)

M1 M2

69.59 69.53 0.06

95.29 95.54 0.05

15.36 15.04 0.1k

15.14 14.92 0.11

95.46 94.17 0.0(

69.75 68.91 0.07

10.79 10.04 0.15

11.92 11.09 0 1

2-h Incubation

Cap Eff (%)

Ml M2

Cv

4-h Incubation

Cap Eff (%)

Ml

Cv

M2
II U

80.90 80.90 0.03,

97.27 97.47 0.031'

25.79 25.76 0.07(

25.31 25.00 0.08tJ

97.34 95.40 0.031j

80.96 81.28

18.62 18.20 0.08":

18.50 18.72 0.06-

86.64 86.42 0.009

98.26 98.34 0.028

37.39 36.50 0.051

36.66 36.23 0.051

98.30 95.49 0.026

86.67 86.46 0.028

27.78 26.52 0.065

26.81 26.96 0.057

*Only parameters with different values from the standard case are listed.
**Standard case has following parameter settings: small microwell (50 pm x 50 Pm x 50 pm) with

only one antibody-coated bead and one analyte-releasing cell, k. = 0.1 #/cell/sec, Kd = 1 nM,

[R]o = 6k molecules/pm2 , default setting for bead-cell distance.
*** The coordinates of cell and bead used for simulation are shown in Figure 4.1F, with 0.5 [tm

distance between the surfaces of bead and cell.

4.6 Experimental Characterization with Recombinant Protein

Since the readout of immunosandwich assay is fluorescence signal, a calibration curve is
usually required to translate the fluorescence signal into the amount of target analytes
being detected in the sample. A calibration curve can be obtained by characterizing the
assay performance on a series of standard samples containing known amount of target
analytes. In this section, we conduct the closed-array immunoassay using the microwell
array platform developed in Chapter 3 and characterize its performance in molecule
detection. We chose c-Met ectodomain shedding as our experimental model case. c-Met,
also known as hepatocyte growth factor (HGF) receptor, is a receptor tyrosine kinase that
engages in many signaling pathways and has significant implications in both normal and
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pathologic processes [31]. Abnormal activation of c-Met or c-Met overexpression has been
widely observed in many cancers where c-Met supports the invasive growth of cancer cells
[32]. On the other hand, the active pericelluar proteases could shed away the ectodomain
of c-Met from cell surface and generate soluble decoy c-Met which works as a endogenous
antagonist for c-Met binding with its ligands. Moreover, ADAM17-dependent c-Met
shedding has been shown to involve in the resistance development of KRAS mutant
colorectal cancer against MEK inhibitors [33], further emphasizing the importance of
studying c-Met shedding in cancer research.

We first characterize the behavior of closed-array immunosandwich assay using large
microwell of 100 pm x 100 pm x 189 pm dimension. As shown in Figure 4.8A, for standard

sample of given analyte concentration, we observed a decrease in the average per bead

fluorescence signal when there were more antibody-coated beads present in the same
sealed microwell. This is in agreement with our computational models. Our experimental

setup uses capture antibodies of Kd < 0.15 nM at surface density of [R]o ~ 6k #/PMm 2

10-8 mol/M2 on beads. With parameters of these values, the two models predict that the
capture efficiency of entire system within large microwell is ~81 % and -92% for 1-bead
case and 2-bead case, respectively, after 2-h incubation. Thus, in this case, the amount of

target analytes being captured by each bead would generally reduce for a closed microwell
with more beads present. Besides, for typical optical detection, the signal-to-noise ratio of
instrument readout correlates with the density of fluorophores rather than their total
amount on beads. Thus, on one hand, in situations where the total amount of target
molecules in the system is well below the available binding sites and total capture
efficiency is sufficiently high - such as our experimental system for assaying samples with
fixed concentration of target molecules, we should use smaller antibody capture area
within each microwell for analyte detection to increase the optical detection sensitivity. On

the other hand, in situations with low total capture efficiency, which is likely due to poor
antibody affinity or large microwell dimension, increasing the capture area (i.e. more

beads) would increase the capture efficiency of the entire system significantly and hence
enhance the detection sensitivity when integrating the fluorescence signal from all capture
area. For simplicity, we would focus on microwells with only one antibody-coated bead in

the rest of Chapter 4.

As expected, for both large and small microwell systems, we observed an upward shift in

the bead signal distribution of 1-bead case as the concentration of recombinant protein
increased (Figure 4.8B, C). When combining data from systems with different microwell
sizes, we noticed that the amount of captured analytes correlated more closely to the

absolute amount of analytes present within individual sealed microwell rather than the
concentration of analytes. For example, standard sample containing 10 ng/ml recombinant
protein (6.4k #/well in small well) exhibited a small-well signal distribution resembling
the large-well signal distribution of 0.5 ng/ml sample (4.4k #/well in large well). This

result also indicated that our experimental system has achieved very high capture

efficiency for low-abundance molecules (< 10k #/well) and microwell size is not a limiting
factor for molecular capture. However, despite the high capture efficiency, the distribution

of fluorescence signal for individual beads is very wide under each condition. As shown in

Figure 4.8D, standard samples displayed CV of 0.4-0.7 at concentration of 500-10k #/
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well and the CV value reduced to -0.2 when recombinant concentration is -88k #/well.
Removing data points with higher than 75th and 90th percentile values of the whole signal
distribution does not impact the value of CV significantly, implying that the high magnitude
of CV is not due to the presence of minority outliers.
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target molecules being captured by antibody-coated beads. In close-array immunosandwich assays, the

antibody-based capture of target molecules were performed by incubating recombinant c-Met proteins

with antibody-coated beads in sealed microwells of different well sizes. In bulk assay, the target capture

step was done by mixing antibody-coated beads with 80 pL of sample at -7500 beads/mI concentration.

To evaluate the impact of outliers, the 75th (0.75Q) and 9 0th (0.9Q) percentile values of data distribution

are marked by bright green triangles and crosses, respectively, for each condition. (A) Histogram of

average per bead PE signal for microwells with 1, 2, 3 or 4 beads in the case of large microwell

(100 pm x 100 Mm x 189 pm) and recombinant protein concentration of 10 ng/mL (equivalent to

88k molecules/well of target analytes). n > 120. (B, C) Histogram of PE signal on beads for microwells

with only 1 bead in the case of large microwell and small microwell (50 pm x 50 pim x 50 Mm), for

different concentrations of target molecules. n > 450. (D) Coefficient of variation (CV) of bead PE signal

for 1-bead case in closed-array immunosandwich assays, as a function of target molecule number per

microwell. The CV values were calculated for all data points (circle), data with values less than 9 0 th

percentile (square) and data with values less than 75th percentile (triangular), respectively. Blue markers

represent the CV values for results from assays with small microwells. Red markers are for results from

assays with large microwells. Dark green markers depict the results from negative control sample. (E)

Histogram of PE signal on beads in the case of immunosandwich assays at bulk level. The black dashed

line marks the median PE intensity of negative control (NegC) with target analyte concentration equal to

zero. This value is considered as the baseline intensity for bulk assay. (F) Coefficient of variation (CV) of

normalized bead PE signal for bulk assay, as a function of average target number per bead. The

normalized bead PE signal is calculated by subtracting the baseline intensity from the original bead

signal. n > 200.

There are several causes of this wide data scattering. On one hand, as discussed in section

4.3, thermal fluctuations could generate 0.01-0.05 CV in the exact number of target

analytes being encapsulated within each microwells at concentration of 500-10k #/well

and this would translate directly to the CV of bound complex at equilibrium. The

probabilistic nature of binding reaction also results in data scattering and gives rise to

additional 0.002-0.01 and 0.01-0.05 CV in the case of small and large microwell,

respectively, at concentration of 500-10k #/well (Figure 4.4). On the other hand, there are

practical factors contributing to data scattering, including variation in bead quality (size,

fluorescence background signal, antibody coating efficiency, etc), artifacts in optical

detection and fluorescence signal processing (uneven illumination, image background

subtraction, etc), and non-uniform dye aggregation during the downstream binding step of

biotinlyated detection antibody and streptavidin-conjugated PE fluorophores. Firstly, for

the variation in bead quality, we have done pre-screening to remove antibody-coated beads

with abnormal size and fluorescence background signal from our analysis and thus these

two factors should not be the primary contributor of readout variation in our experimental

system. Secondly, by applying Equation 4.12 to our experiment system, we realized that the

impact of different binding site densities on the fluctuations of captured target number was

relatively small. Given high affinity antibodies (KD ; 0.15 nM), large average binding site

density ( [R]o 108 mourn2  ) and small microwell dimension ( Ve =

0.125 nL or 1.89 nL), 10% CV in [R]o would only result in roughly 1% CV in [C]eq. Thus,

variation in antibody coating efficiency is unlikely to be the primary source of readout

variation either. Thirdly, to evaluate the impact of optical detection, we characterized the

immunosandwich assay at bulk level by incubating antibody-coated beads with standard

samples (of fixed total target amount) in tubes and measuring the fluorescence signal via
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flow cytometer, which has more uniform optical condition than that in microscopy imaging
of microwell array. For bulk assay, each bead can sample a large volume in its
neighborhood (characteristic diffusion distance l,-1mm). Hence, the average amount of
analytes being sampled by each antibody-coated bead is high and not sensitive to thermal
fluctuations. The absolute signal obtained by bulk assay also scattered over a wide range of
values, despite its good correlation with sample concentration (Figure 4.8E). After
subtracting the baseline signal (i.e. median fluorescence signal of negative control) from
raw data of bulk assay, the normalized signal has -0.45 CV at sample concentration of
0.1ng/ml (-62.6k molecules/bead) and decreases its CV to -0.35 when sample
concentration further increased (Figure 4.8F). Compared to the CV values (0.5-0.6) given
by the closed-array assay at -10k molecules/well, bulk assay gave only slightly lower CV
value with similar per bead/well target amount. Thus, artifacts in optical detection should
not contribute to experimental readout variation significantly. What remain for further
study are the artifacts in fluorescence signaling processing procedure and the non-uniform
dye aggregation during downstream step of the assay. Minimizing the impact of these two
practical factors might help to improve the detection resolution of closed-array
immunosandwich assay. Taken together, these results suggest that experimental artifacts,
rather than the intrinsic noise derived from detection mechanism, are the major
contributors of the data scattering observed in closed-array immunosandwich assay with
standard samples of fixed total target amount. One should take into account those non-
biological sources of data scattering when translating results of single-cell shedding assay
using similar platform into the biological variability of cells.

4.7 Detection of Single-Cell Shedding in Closed Array

We then conduct single-cell shedding assay to quantify c-Met shedding of parental HCC827
cells using antibody-coated beads and sealable microwell array. Parental HCC827 contains
mutation in EGFR gene and is a cell line for non-small cell lung cancer. Minor subpopulation
of parental HCC827 cells has been discovered to harbor MET amplification and thought to
be the origins of resistant HCC827 cells that also exhibit gene amplification in MET and
emerge after long-term treatment of tyrosine kinase inhibitors (TKI therapy)[34]. Single-
cell detection of c-Met ectodomain shedding would then provide unique insights for the
study of resistance development in non-small cell lung cancer.
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Figure 4.9 Quantification of c-Met ectodomain shedding of parental HCC827 cells using closed-array
Immunosandwich assay. The fluorescence intensity of beads in PE channel is an indicator for the amount
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cell-loaded arrays. (D) Coefficient of variation (CV) of bead PE signal as a function of mean bead signal
for large microwells containing only one antibody-coated bead. X-axis represents mean fluorescence
signal of 1-bead well in log scale. Blue marks are for the data from a triplicate of single-cell shedding
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As shown in Figure 4.9A, the distribution of bead fluorescence signal shifts upwards as the
number of cells within the closed microwell increases, indicating a positive correlation
between the total amount of shed c-Met molecules and the cell number. Moreover, we
observed slightly higher mean fluorescence signal for microwells containing only one
HCC827 cell in the case of small microwell than that in large microwell case (Figure 4.9B),
which is probably due to the higher capture efficiency within smaller microwell and is in
agreement with our simulation results (Figure 4.6E). Furthermore, cell-containing
microwells displayed wider distribution of bead signal with CV >0.7 (Figure 4.9D), as
compared to the corresponding assays with standard samples (0.5-10 ng/ml) where
recombinant protein-filled microwells showed similar mean fluorescence signal but lower
CV (<0.6). Notably, the data scattering observed in assays of standard samples dictates the
resolution of quantification at which one can distinguish between cells with different
shedding rates. Thus, the higher CV observed in single-cell assays reveals the existence of
biological variability among the c-Met shedding rate of individual cells. Nevertheless, it
remains difficult to translate the fluorescence readout of single-cell assays into the
shedding rate for individual cells with high precision due to the large CV observed in their
counterpart assays with standard samples. Further efforts in minimizing the experimental
artifacts are necessary to improve the resolution of quantifying low-abundance shed
molecules at single-cell level.

4.6 Section Summary

Protease-mediated molecular shedding plays an important role in extracellular signaling
network and involves in disease progression of cancer and drug resistance development.
Single-cell measurement on molecular shedding would help to enrich our understanding
on those pathological processes and potentially shed lights on novel therapies. While
immunosandwich assays in conjugated with microfluidic-based spatial confinement have
enable quantitative detection of antibody production and cytokine secretion at single-cell
level, the applicability of those assays in single-cell shedding regime, which has much lower
target generation rate, has not been exclusively characterized. In this chapter, we have
discussed the theoretical limits of low-abundance molecule detection and identified
fluctuations in source concentrations and binding kinetics as the origins of intrinsic noise
derived from binding-based detection mechanism. With the aid of numerical simulations
on both deterministic continuum model and stochastic discrete model, we then further
characterize the operational envelope for closed-array immunosandwich assay as a
function of microwell size, antibody affinity, binding site density and the abundance of
target analytes. We also evaluate the impact of stochastic events (e.g. the discrete processes
of molecule diffusion and reaction) on assay performance with an emphasis on intrinsic
detection uncertainty (coefficient of variation, CV). Lastly, we characterize the assay
performance experimentally using standard samples and live HCC827 cells. The
experimental results suggest that practical factors, particularly the non-uniform dye
aggregation and artifacts in fluorescence signal processing, are the primary determinants
of assay resolution at which one can distinguish between cells with different shedding
rates. While the impacts of those practical factors on assay outcomes need to be further
minimized for quantitative measurement, it's essential to consider those non-biological
sources of data scattering when extracting the level of biological variability from raw
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binding outcomes of immunosandwich assays. In summary, this chapter has provided a
careful characterization on binding-based molecule detection in closed configuration and
could guide the upstream design and downstream analysis of single-cell shedding
measurement.
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Chapter 5 Conclusions

As the increasing recognition of cell-to-cell heterogeneity in many biological and clinical
problems, the demands for tools and methodologies enabling single-cell study on various
aspects keep booming. But there are still many unmet needs in each phase of single-cell
study, including sample preparation, single-cell measurement and data interpretation.
Driven by the those needs in current single-cell study, this thesis seeks to contribute to the
field by providing (1) tool facilitating sample preparation, (2) platform enabling activity
measurement of cellular microenvironment, and (3) critical analysis on the limits of
antibody- based analyte quantification for single-cell proteomic study.

Sample preparation is often an essential step of single-cell study, particularly in the case
where minority of the cell population is the matter of interest. Size-based cell separation
has been recognized as an important label-free approach for enriching the rare cells for
downstream study. However, the throughput, separation resolution and artificial impact on
cell state remain problematic, especially when it comes to sensitive primary cells in blood.
In Chapter 2, we investigate the particle focusing and separation behavior within curved
microfluidic channel and develop a novel inertial cell sorter for high-throughput size-based
cell separation. The novel design of cell sorter consists of a 1-inlet, 2-outlet spiral
microfluidic channel with trapezoid cross-section and has higher separation resolution
than the conventional spiral cell sorter with rectangular cross-section. We demonstrate the
capacity of the novel cell sorter in isolating sensitive leukocytes from blood (1-2%
hematocrit) with high efficiency (>80%) but no artifacts on the immunophenotypes of
isolated cells. Our design of size-based cell sorter holds a promising solution for many
other size-based cell separation problems and such cases include isolation of circulating
tumor cells from blood and enrichment of mesenchymal stem cells from bone marrow
aspirates. Besides, since cell size is an important attribute in single-cell study due to its
unique impact on cellular design and function of individual cells, our novel size-based cell
sorter would facilitate downstream single-cell study by simplifying the system and
enriching rare subpopulation with potential distinct functionality.

In Chapter 3, we focus on the single-cell measurement phase. While the activity of
pericelluar proteases, including both those secreted and expressed on surface, plays a
significant role in regulating the microenvironments of individual cells, there is no
available tool for activity measurement of those proteases at single-cell level. We thus
establish a microfluidic platform enabling functional characterization of pericellular
proteases on many single cells simultaneously in a time-dependent manner. The platform
works for both suspension cells and adherent cells, and is compatible with other image-
based detection methods. By applying our platform to study PMA-mediated protease
response of HepG2 cells, we demonstrate that single-cell protease activation upon drug
stimulation could be heterogeneous not only in terms of activity magnitude but more
surprisingly with respect to temporal profile - with cells exhibiting transient activity
increase asynchronously. Moreover, we explore the behavior of single-cell protease activity
in the settings of anti-cancer drug resistance development using parental and gefitinib-
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resistant HCC827 cells. The preliminary results of single-cell measurements exhibit
deviation from the population-averaged assay outcomes and suggest a potential role of cell
death and cell-cell communication on the protease response of HCC827 cells at bulk level.
Therefore, our platform offers prospect for studying the roles of pericellular protease
activities in governing cell behaviors in a context-dependent manner.

Chapter 4 addresses the resolution problem in data interpretation phase, when it comes to
low-abundance molecule detection. Quantification of molecules at extremely low
abundance is critical for proteomic study of single cells. Current methods for single-cell
molecule detection usually relies on the antibody-mediated capture for target
quantification (e.g. immunosandwich assay) and employs spatial confinement of individual
cells to increase the target concentration for better detection sensitivity. However, in the
case of protease-mediated molecular shedding, the target generation rate by individual
cells is often lower than 1 molecule/ce1/sec and hence imposes significant challenges in
detecting the target analytes quantitatively. Using our sealable microwell platform
developed in Chapter 3 as the experimental system, we build the corresponding theoretical
model for low-abundance molecular capture within closed microwell in form of both the
deterministic continuum system and stochastic discrete system. With the aid of numerical
simulations, we then perform critical characterization on the operational envelope for
immunosandwich assay in closed configuration, with an emphasis on the ultimate limits of
detection uncertainty that is intrinsic to binding-based detection mechanisms. Lastly, we
experimentally characterize the assay performance with standard samples and live
HCC827 cells, and identify experimental artifacts, particularly the non-uniform dye
aggregation and artifacts in fluorescence signal processing, as the primary determinants of
detection resolution in actual experiment. Thus, Chapter 4 highlights the necessity in
considering those non-biological sources of data scattering when interpreting the detection
outcomes of binding-based single-cell molecule measurements. It also serves as a guide for
proper experimental design and downstream analysis of single-cell shedding
measurement.
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Appendix

A.1 Supporting Information for Chapter 3
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Figure A.1 Representative images for HepG2 cells cultured on collagen-coated microwell array. The red

digits indicate the number of cells in each microwell immediately after seeding on Day 0. Cell spreading

and proliferation was observed over time during complete medium culture. And the images were taken

using a phase contrast microscope.
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Figure A.2 Schematic for signal acquisition, processing and normalization. (i) The time-lapse raw images
for the substrate cleavage were captured by fluorescence inverted microscope and then stabilized using
Image Stabilizer plugin of Image J* software. Given the non-uniform illumination within observation
window and the well-to-well interference due to light scattering, a normalization method was
developed for signal processing. (ii) Briefly, two templates were generated based on the raw images
with the aid of MATLAB and defined the regions within each microwells (Well) and the background
regions around the wells (BG), respectively. (iii) The pixel intensity within each region was further sorted
in ascending order and the extreme values at both ends would be discarded. The average value (green
dash line) of the central 20% pixel intensity (red histogram) was then considered as the intensity
indicator for that region. In this manner, one can reduce the variation introduced by inaccurate
microwell border identification and the presence of bright objects within microwell. (iv) For background
regions, the average value became the normalized intensity. But for microwell regions, the average
value of each well region was further subtracted by the normalized intensity of its surrounding
background region. Then, one can obtain time-lapse profile of normalized intensity for individual
microwells. Example profiles of microwells with 0 or 1 cell are shown here. (v) We modeled the
protease-mediated substrate cleavage as the classical Michaelis-Menten model, where the initial rate of
cleavage is proportional to the concentration of active enzyme in the system with excessive substrate of
nearly constant concentration. Therefore, we defined the protease activity index (Al) as the increasing
rate (i.e. slope) of normalized fluorescence intensity and extracted the Al value for each region via
robust linear least-squares fitting of the time-lapse normalized intensity profile. A representative "bee
swarm" plot is shown for the microwell Al values of 0-cell, 1-cell and 2-cell wells using data derived from
a cell-loaded microwell array challenged with 0.8 IM PMA. (vi) For array-to-array comparison among
different cell-loaded microwell arrays, we used the median Al value of empty microwells (negative
control) from each array as the reference value to account for the spontaneous substrate cleavage
occurred in the absent of cells within that particular array. We further calculated the normalized Al
value by subtracting each microwell Al value with the reference value of the same array and used the
resultant normalized Al value to evaluate the protease response of cells within different microwell array.
A representative histogram is shown for the normalized Al values of 0-cell, 1-cell and 2-cell wells, and
the data is derived from the same assay shown in Figure A.2(v). Notice that all the histograms shown in
this manuscript have been smoothened using MATLAB function ksdensity).m where the density
estimation was based on a normal kernel function and the locations of kernel smoothing windows were
robustly estimated via function histogram().m. Based on the normalized Al values of 0-cell wells, we also
defined a threshold for high activity microwells. For HepG2 study (case study 1), the threshold for high
activity microwells is normalized Al = 2, which is beyond 2 standard deviations away from the mean of 0-
cell wells' normalized Al values. Similar, we defined the threshold for high activity microwells to be
normalized Al = 1 in HCC827 study (case study 11), which has lower and tighter distribution of 0-cell wells'

normalized Al values. Percentage of high activity microwells derived from a given protease assay then

provides an indicator to quantify the overall protease response of all the single cells measured during
that particular assay.
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