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Abstract

This work describes a framework built to simulate the thermal and hydrological processes

in a deep borehole repository of spent nuclear fuel. Such simulation requires a fully coupled solver,
capable of capturing the processes at the scale of tens of kilometers and millions of years.

The MOOSE framework was chosen for this purpose, where the FALCON application,
developed at INL, was adopted as baseline. This application had previously been applied for
simulation of fluid flow and heat transport in geothermal reservoirs, and therefore provided a
valuable reference.

Additional features were implemented in FALCON in order to simulate deep borehole
repositories. Solver options were adjusted for best performance. Code verification was performed
on Rayleigh-Bnard convection in a porous medium. Cross-code validation was performed
between the FALCON code and the FEHM code on a single borehole test case, and the thermal
results were further compared to analytical and simplified numerical models, confirming the
potential existence of a second peak of temperature at the scale of thousands of years.

Two configurations for the borehole repository were analyzed. The first one consisted of
an infinite array of boreholes, which allows one to significantly simplify the geometry, boundary
conditions, and test code features. A parametric study of input parameters such as rock
permeability, borehole spacing, and pitch length, was performed to assess thermal behavior of the

repository. Analysis of the results led to the conclusion that the water flow in the caprock is driven
mostly by thermal expansion of water. The displacement length of the water front was found to be
negligible in comparison to the depth of the repository.

The second configuration included a semi-infinite array of boreholes. This representation
is a more realistic approximation of an actual repository, since it includes the modeling of the

undisturbed rock surrounding the emplacement zone. It was shown that in this configuration
convection can originate between the emplacement region and the rock outside the repository. At
rock permeability higher than 10-16 m2 this mechanism can lead to an escape length of the water
front larger than the burial depth. However, it was shown that the salinity gradient in the
underground water can suppress convection and effectively eliminate water escape.

Thesis Supervisor: Emilio Baglietto
Title: Assistant Professor of Nuclear Science and Engineering
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Symbol I Mea

PJFNK Preconditioned Jacobian-Free Newton Krylov method
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P I Density kg/r 3
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(P Trial functions in weak forms of equations -
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SKB Swedish Nuclear Fuel and Waste Management Company
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11



1. Introduction

1.1. Motivation
After the suspension of work on the Yucca Mountain nuclear waste repository, currently

no approved concept for used nuclear fuel disposal exists in the United States [1]. The total amount
of high-level waste accumulated after more than 50 years of commercial usage of nuclear reactors
is estimated at around 69,000 tHM [2].

In 1983 deep boreholes were suggested as a viable solution to this problem [3]. The concept
includes drilling a number of boreholes up to 5 km deep into a granitic region of the Earth's crust.
Canisters with spent nuclear fuel are placed in the bottom few kilometers of the borehole, which
is later sealed with concrete, bentonite or cement. Compared to shallow repositories, canisters with
spent nuclear fuel are placed significantly deeper into the boreholes, further away from ground
surface and aquifers. Low-permeability rock creates a natural barrier that prevents radionuclides
from spreading. Deep granite rock is typically a chemically reducing environment, which reduces
the solubility of most radionuclides and transuranics. All the above characteristics lead to an
augmented isolation of the radioactive materials from the biosphere. In addition, solid granite
formations are very common in the US and the rest of the world. Currently deep borehole waste
disposal is the only significantly investigated alternative to shallow repositories.

Since the concept of deep boreholes for spent nuclear fuel was proposed a number of
studies were performed to assess its reliability. They range from analytical derivations [4] to 2D
simulations [5] of heat transfer behavior. A number of studies were performed in Sweden at SKB.
They include analytic derivation of groundwater flow rate around single boreholes represented by
an instantaneous point source [6]. Later this approach was extended to linear heat sources, complex
decay heat with several components, and effect of salinity on the water flow [7]. A three-
dimensional numerical study of arrays of deep boreholes was performed at Sandia National
Laboratories. A finite volume code FEHM [8] was used to study coupled fluid flow, heat transfer,
and mechanical properties of the rock [9]. However, the code did not geometrically resolve the
boreholes, which were instead replaced by a homogenized large element.

1.2. Objectives
For a rigorous justification of the boreholes concept a fully coupled 3D code is essential.

The objective of this project was to develop a modeling capability that includes thermal,
hydrologic and chemical transport, and can be extended in the future by including modeling of the
mechanical properties of the rock. The code should be capable of resolving processes on different
length scales, which vary from tens of centimeters (borehole diameter) to tens of kilometers (site
size). The code should be capable of running on time scales from years in the beginning of

simulation to the total time of 1 million years, which is the regulated time period of confinement.

To reach the goal, the FALCON application [10], developed in the MOOSE framework
[11], was selected as starting point. The goal of this work was to implement thermal and fluid
models to existing applications, implement in the application all necessary models and correlations
and optimize the code for deep boreholes modeling. The work focused mostly on development and

demonstration of a tool that could be used for realistic geometries and conditions. For this reason,
rather than analyzing site specific properties of water, rock, canister, and seal, it was shown that a
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wide range of input parameters can be analyzed in this application by running approximations of
real correlations with specified tolerances.

A further objective of the work has been to leverage the tool to identify potential failure
mechanisms and radionuclide transport paths. The provided findings may be used to improve the
design of the borehole repository, including optimal pitch length and number of boreholes,
maximum depth of the repository, emplacement length, and canister properties like diameter and
filling material. The results could be used to support the site selection, and afterward an extension
of this MOOSE-based analysis could be adopted to support the site license application.

1.3. Selection of Computational Framework

The discussed requirements on the computational capabilities impose restrictions to the
numerical methods being used. Conventional finite volume codes, for example, while offering
advantages in memory usage and model implementation, cannot perform equally well with time
steps varying by a factor of 1,000,000 and on cells with aspect ratio of the order of 1,000. A
possible approach to overcome this limitation is to use very fine mesh and very small time steps.
However, this would make the solution impracticable due to the computational cost.

Another approach is to use a finite element solution method. Finite element codes can
handle elongated elements inside the borehole, which allows resolving the borehole diameter while
keeping the number of layers in the vertical direction relatively small. Additionally, finite element
codes offer an excellent base for coupling of all physical phenomena, thus allowing the use of
relatively large time steps.

The MOOSE (Multiphysics Object Oriented Simulation Environment) framework was
chosen in this work, as it satisfies all the discussed requirements. It is a C++ framework designed
at Idaho National Laboratory for solving strongly coupled multi-physics problems using a robust
finite elements solver [11, 12]. The framework is built on top of the adaptive finite element library

libMesh and allows easy implementation of different physical processes as separate kernels. Each

kernel is an object that represents the residual of the solution due to one physical phenomenon. A
number of applications have been developed using MOOSE in the past. One of them is FALCON
(Fracturing And Liquid CONvection). This application was developed at Idaho National
Laboratories to model multiphase fluid flow, heat transport, and rock deformation for geothermal
reservoirs [10]. This application already included heat transport in the rock and a two-phase
formulation of fluid mechanics and was used in this project.

13



2. Background

2.1. Deep Boreholes Concept Overview

The concept of deep boreholes was suggested in 1983 [3] and, along with seabed disposal,
became one of two options recommended by the Department of Energy (DOE). The main idea is
to dispose of canisters with high-level waste (HLW) and spent fuel in very deep (up to 5 km)
boreholes. Typically a diameter around 34 cm is assumed, which allows disposal of one assembly
of a PWR in one 5-m-long canister. Drilling such boreholes is a routine operation for the oil and
gas industry, so the total cost of the technology should be lower compared to other approaches.

The canisters with the fuel can be lowered to the bottom 2-3 km of the borehole, and sealed
with low-permeable material like concrete, bentonite, or cement. After this the borehole should
remain intact for the next one million years. Even if canisters degrade after emplacement, the layer
of granite above should prevent radionuclides from escape to the environment.

Compared to the now-abandoned Yucca Mountain repository project, deep boreholes rely
more intensely on geologic properties. There are some geological observations which justify the
above assumption. The first example of a geologic repository is the natural nuclear reactor in Oklo
[13]. It is believed that 1.7 billion years ago a natural chain reaction occurred in rich uranium ore
deposits. The isotope composition of neodymium and ruthenium found on site was different from
the naturally occurring isotope composition. This leads to the conclusion that all decay products
stayed with the original uranium ore for billions of years without migrating to the surface.

Another example is radioactive dating of the groundwater. Different methods involving
various isotopes (H3 , C1 4 , 1129, and Cl 36 ) have been used to determine the age of the water samples
from different depths in granitic rocks [14]. The presence of tritium (tu2 = 12.3 y) indicates that
the surface layer actively communicates with the atmosphere and is not more than about 60 years
old. In granitic rocks tritium is typically found down to 200 m. C' 4 

(ti/2= 5,730 y) can be found in
deeper regions. For even deeper regions longer-living isotopes of Cl 36 (ti/2 = 301,000 y) and 1129

(tu2 = 15 My) are used [14, 15]. A general conclusion is that the residence time of water below
1000 m exceeds the time required for most of the radionuclides to decay.

Therefore, the environment of the deep boreholes prevents radionuclide escape from the
deep borehole. For this reason, there is no need to build additional engineered barriers, except for
the seal or plug, as explained below. However, borehole drilling induces perturbations to the
existing system. Borehole drilling can cause stresses in the granite which can cause formation of
cracks. The borehole's seal consists of material different from the surrounding granite, which
potentially can create a gap between the seal and the borehole wall. The high decay heat of
canisters causes thermal expansion of the adjacent rock, which can induce wall failure and increase
granite permeability around the borehole. In addition, decay heat causes water expansion and
induces water flow.

2.2. Governing Equations

2.2.1. Thermal Model

It is typical to assume the rock and fluid in the pores are in local thermal equilibrium. This
assumption is justified by the fact that pores have sizes of the order of micro- and millimeters, and
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the fluid flow is extremely low. With this assumption, consider the heat transport equation in the
most general form:

(p,) = V -(kVT)+ q"f J VT, (2.1)

(PC)eff = ePf Cf +(1-.6)P,c (2.2)

ke = kf+(1 -)kr (2.3)

Here, the following nomenclature is used:

p density of the material, kg/m3

c specific heat capacity of the material, J/(kg-K)
T temperature, K
t time, s
k thermal conductivity, W/(m-K)
q volumetric heat generation (due to radioactive decay in the fuel or in the host rock),

W/m3

superficial velocity, which will be defined in Section 2.2.2, m/s

Indices eff denote effective values, f denote fluid properties, and r denote rock properties.

If the geothermal flux q" is very high or the rock properties vary significantly then Eq.

(2.1) may have multiple unsteady solutions, including ones with convection of ground water. Such

regions are undesirable for a deep borehole repository and fuel emplacement. In the absence of

any factors that break the equilibrium the system reaches steady state with uniform heat flux
through the lithosphere. If the temperature across any horizontal plane is uniform then the water
flow should become zero, and the equation (2.1) turns into

- k j m +q=0. (2.4)

Usually the heat generation in granite is low and its contribution to the geothermal flux is

negligible compared to the heat flux on the bottom of the modeled region q". In this case Eq. (2.4)

can be solved analytically for temperature as a function of depth only:

0 N

T(z)=T (0)+ . (2.5)
zkei (z, T)4

If the thermal conductivity keff is constant then (it should be noted that z is negative):

T(z) = T(0)+ q z. (2.6)
keff

This solution is used as an initial condition for the transient analysis of the deep borehole repository

performance. The initial temperature of the canisters was assumed to be the same as that of the

surrounding rock. The real canister's temperature may be higher or lower than that of the rock,

however, heat added or removed from the system is negligible compared to the total heat produced
by the canisters in the long term, so this assumption does not affect the final results.
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After the canisters emplacement the temperature distribution changes significantly. Each
fission product and actinide decays according to the first-order differential equation:

= -AN, 
(2.7)

dt

where N is the number of atoms of the corresponding radionuclide, and A is the decay constant.
The solution to eq. (2.7) is the well-known exponential law:

N = Noe-. (2.8)

If each decay produces energy E, then the total power generated by the sample also follows
the exponential law:

AENOe-
q"' qe (2.9)

V

For the mixture of the elements this dependence becomes more complex. At first, the
overall heat generation consists of heat generation by all the elements that undergo decay, with
different decay constants. But some elements form decay chains, in which the daughter
radionuclides are produced from parent radionuclides and decay later. Heat generation by these
elements does not follow the simple exponential decay (2.9). Nevertheless, the total heat
generation can be obtained numerically for any initial composition of the spent fuel. The tables for
the decay heat of the commercial spent fuel from different types of reactors are widely available
[16, 17].

Typically canisters cannot be resolved in geological simulations, since each canister
contains hundreds of fuel rods with non-uniform burnup, and hence, decay power. For this reason
all canisters are replaced with a homogenized material. The heat generation in the model is spread
uniformly inside the canister. The canisters are replaced with a material with effective density,
heat capacity, and thermal conductivity. The density is averaged to conserve the total mass of the
canister, and the specific heat capacity is averaged to conserve total heat capacity. The effective
heat conductivity is adjusted so that the peak temperature in the homogenized canister corresponds
to the peak temperature in the spent fuel rods. The details of the homogenization process were
described by C. Hoag [18].

Equation (2.1) was used for transient thermal analysis. This is an advection-diffusion

equation with thermal diffusivity

kef
DT = (P , (2.10)

which has the order of 10-6 m2 /s. The surface boundary condition was set to a constant temperature
of 10 'C, which represents a typical average surface temperature for the north temperate zone.
Underground axial boundary conditions for shallow repositories were discussed in [4]. The general
recommendation was to set the axial boundary as far as possible, with distance of 10 times the
depth of the repository, sufficient to have no effect on the solution around the repository. Such an
approach is impossible for deep boreholes, since it would require the domain size of 50 km.
Another approach was used in the FEHM code [9], when the boundary was set at 7 km with a
constant heat flux condition.
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From the analysis of the isotropic heat diffusion equation one can derive the characteristic

length of heat diffusion

L = b . (2.11)

Since the total simulation time is 1 million years the characteristic length at this moment is

L ~ 5 km. Preliminary runs of the code were made with a thermal boundary at 10 km with constant

heat flux and constant temperature conditions and they show no effect of the boundary type. For

this reason the axial boundary was set at 10 km with fixed heat flux.

Lateral boundary conditions depend on the type of geometry considered. For the

geometries with symmetry planes the boundary was set as a symmetry boundary with zero heat

flux through it. The outer boundary in the open geometries was set as no-flux, far enough so that

it does not interfere with the solution. In all cases the temperature was not a limiting variable for

the lateral boundary distance.

2.2.2. Fluid Model
Several important assumptions should be made to derive the governing equations of water

flow. It is assumed that the phenomena occurring at the ground surface and in the aquifer do not

affect the behavior of water deep underground. For this reason, the water table is assumed to be at

the top of the computational domain. The favorable locations for the deep borehole repository have

low geothermal fluxes and temperature gradients. For this reason the pressure is always high

enough for water to be liquid at any moment of time and in any location. The buildup of gases in

the borehole is also neglected. With these assumptions only single phase fluid is considered and

the capillary effects can be neglected.

The underground water can be confined in isolated and connected pores. The number of

isolated pores increases with depth. The pressure in such pores deviates from hydrostatic and is

more close to the lithostatic (overburden) pressure [14, p. 167]. However, isolated pores do not

contribute to water flow. The water in connected pores is at hydrostatic pressure. Assuming

isotropic properties of the rock consider the general form of Darcy's law:

VP - pf + L j =0. (2.12)
K

Here, the following nomenclature was used:

P pressure, Pa
k acceleration due to gravity, m/s2

p water viscosity, Pa-s
K host rock permeability, m2

superficial (Darcy) velocity, m/s

It should be noted that i is the superficial velocity defined as

_Q=- , (2.13)
A
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where Q is a volumetric flow rate, m3/s, and A is a cross-section area, m2 . The superficial velocity
is related to the average linear velocity or seepage velocity v of the flow in pores:

j = Ec , (2.14)

where E is the effective porosity of the rock.

Equation (2.12) is valid for slow flows. Typically it is assumed that velocity is proportional
to the pressure gradient if

Reer = P <10 (2.15)

where dp is the flow length scale. In many applications particle diameter is taken as the length
scale. For the flows in low-porosity media it is difficult to determine particle or fracture diameters

and it is suggested that d, = [K or d, = 1K7/l [19]. In any case Recr does not exceed 10-8, so Eq.

(2.12) can be certainly applied.

Before the fuel emplacement the distribution of the pressure with depth is hydrostatic, and
can be obtained from Eq. (2.12):

0

P(z)= P(0)+ pf (T ,P)g dz. (2.16)

Equation (2.16) specifies the initial water pressure in the system. It should be noted that it
does not depend on porosity or permeability of the rock.

After fuel emplacement water starts to move due to expansion and pressure gradients.

Assuming that the flow is always saturated, it follows the continuity equation:

a (Ep )
at +V pj)= 0. (2.17)
at

Combining Eqs. (2.12) and (2.17) one can get

a(EP)V Kp -V- PfVP =0. (2.18)
at P (P

As a first approximation rock porosity can be assumed constant. Then from the definition
of water compressibility one has

aP KpfV Kp f6cpf pf tV. vF- r P j (2.19)
spep, -V- P )-V- k , (.9

which is a diffusion equation of pressure. The characteristic diffusivity of pressure for this equation
is

KD, = ,(2.20)

and for a typical deep borehole repository Dp has order of magnitude of 0.1 m2 /s.
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Correct account of rock compressibility adds one more term to the final equation. The
pressure in most of the rock is lithostatic, which is very different from the hydrostatic pressure. A
very small fraction of rock near the fractures is affected by water pressure increase, so effective
compressibility is lower than compressibility of the pure material of the rock (see p. 77 in [14]).
Define a confined uniaxial compressibility of rock:

jp,r = (2.21)
8P'

Then the left side of Eq. (2.19) becomes [19]

a(Ep= + p -8 'p 8(eP, + 6 r (2.22)

8t aP at aP at at

and the whole equation turns into

(jpf +/3P,)Pf a=Vj - Kp > KP V{ . (2.23)
at ( PP

The characteristic diffusivity of pressure for this equation is [20]

D, = K (2.24)
P k/Pf + Pr

Equations (2.19) or (2.23) were used for transient analysis of water flow. The top boundary
was set as a fixed pressure boundary. This allows free exchange of water with the surroundings at

the surface. Currently there is no model for the water exchange with aquifers. Such models can be

implemented in future to correctly treat effects of dilution.

The lateral boundaries were set to impermeable on the symmetry planes:

j -ii = 0. (2.25)

The outer boundary in open geometries was set at 20-40 km away to reduce the effect of the

boundary on the solution.

The bottom boundary condition was set to impermeable boundary with zero flux through
it. This represents the physical conditions at the great depth. Typically rock permeability and

effective porosity decrease with depth. However, at the depth of 12-15 km a brittle-ductile

transition in rock occurs due to high pressure and temperature. It is assumed that below the brittle-

ductile transition pores at hydrostatic pressure tend to collapse so that porosity of connected pores

goes to zero [14]. This means that at a certain point water flow instantly goes to zero. In the present

work the boundary was set at 10 km; however, in the future it can be set at the depth of brittle-

ductile transition specific for the location being analyzed.

2.2.3. Solute Transport

The groundwater can transport dissolved species. Two main groups of solutes are of

interest in the present work. One of them is the salinity of water, and another is the radionuclides
released from the canisters to the groundwater. The transport of both follows the same equations,

however, the two groups are different for the analysis. The water salinity can reach values of 400
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g/L. This concentration is high enough to change the equation of state of water. In contrast to this,
the amount of soluble radionuclides in canisters is small compared to the amount of water available
for it.

In the presence of solute Eq. (2.19) should be modified. In this case the continuity equation
(2.17) should be written for water only, while the hydrostatic pressure term in Darcy's law (Eq.
(2.12)) should include brine density Pb. Taking this into account Eq. (2.19) becomes

pKp K j. (2.26)-c8 8tp p pp-- )

Through brine density water transport is coupled to the solute transport. There are three

main mechanisms of solute transport: advection, diffusion, and dispersion. Diffusion in the open

water is governed by Fick's first law:

J = -Df VS, (2.27)

where J is the mass flux of the solute, and S is the salinity or concentration of the solute in kg/m 3

or g/L.

In a porous medium the diffusion coefficient should be modified. At any cross-section in

the rock with area A only cA of it is available for water flow and diffusion of solute through it.

Additionally, the effect of tortuosity of the channels plays a role. For these reasons the diffusion

coefficient should be modified [14]:

D, = Dp, (2.28)

where r is tortuosity. Fick's law can be combined with the mass-balance equation to obtain Fick's

second law:

as
e --= DV 2 S. (2.29)at

Mechanical dispersion is another mechanism that contributes to the transport. Typically it

is expressed as an additional term to the diffusion coefficient [19, 14]:

D = D, + av, (2.30)

where a is the dispersion coefficient and v is the seepage velocity (Eq. (2.14)). Typically it is

assumed that the dispersion coefficient is proportional to the characteristic length of the cracks

[19, 14]:

a = 1.8d,. (2.31)

In the present work the values of the characteristic length and seepage velocity are low so that

dispersion can be neglected compared to diffusion.

Pure advective transport of the solute can be written as
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=s -i VS. (2.32)at
Taking into account Eq. (2.14) two Eqs. (2.29) and (2.32) can be combined into

a- _ I + V2S -VS. (2.33)at T
Equation (2.33) is the governing equation of the solute transport and was implemented in

FALCON. In the present work only salinity (not radionuclides) transport was modeled with Eq.
(2.33). The initial conditions were set from the measurements of salinity in natural reservoirs.
Boundary conditions were set to impermeable bottom and symmetry boundaries, fixed salinity at

the surface and outer boundaries.

2.3. Reference Model Parameters

The performance of the deep borehole repository depends on many properties of rock at
the site and repository design. It should be noted that neither a place for a repository nor final

design of the boreholes and canisters has been selected. However, a set of realistic parameters is
needed for testing of the code to make sure that the code can correctly treat all phenomena existing
in the repository. Most of the parameters were taken consistent with previous research conducted
at MIT [1, 5, 21, 22] and SNL [9, 23] to facilitate comparison and analysis of the results.

2.3.1. Rock Properties

Heat properties of the rock are site-specific, but in general they can be measured in

laboratory conditions. Some of them like thermal conductivity may also depend on temperature,
and density depends on pressure. However, such variations are typically lower than the uncertainty

due to uncertain rock composition. For the sake of simplicity all thermal properties of the rock

were assumed to be constant in time and uniform throughout the domain. However, temperature
and pressure-dependent properties can also be implemented in MOOSE. A detailed summary of

crystalline basement rock can be found in [21, p. 44]. Suggested values are taken as reference

parameters and are summarized in Table 1.

In many civil applications granite is considered impermeable, with permeability estimated
below 1018 m2 [19, p. 68]. However, the flows around deep boreholes can have a significant effect
on the time scales of millions of years, so even this low permeability should be taken into account.

Permeability of the granite varies depending on the method of measurement. Laboratory
measurements of small samples typically predict low permeability [24], while in-situ

measurements predict much higher permeability, of the order of 10-16 m 2 [25]. This is likely to be

caused by larger cracks, which typically are absent in small samples studied in the laboratory
facilities. Permeability is also likely to depend on depth. However, very few correlations exist for

this dependence. The most notable was derived in [25] and was used in the FEHM code:

log K [M 2 ] = -3.2 log z [km] -14. (2.34)

However, in most of the runs uniform permeability was used. Other parameters include effective

porosity of the rock and confined rock compressibility, which were also taken consistent with

previous MIT studies [5, 21].
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Table 1. Summary of rock properties.

Parameter Value
Density 2750 kg/M 3

Thermal conductivity 3.0 W/(m-K)
Specific heat 790 J/(kg-K)
Geothermal flux 45 mW/m2
Geological temperature gradient 15 0C/km
Surface temperature 10 OC
Surface pressure 101,325 Pa
Permeability 10-16 m2

Porosity 0.01
Confined compressibility of rock 4.62x10-12 Pa'
Solute diffusion in water 10-9 m 2 /s

Various correlations for salinity of water with depth were developed in the past. Typically

linear dependence of salinity with depth is derived in analytical studies [7] and is used in

simulations [23]. However detailed study of data from different sources show that salinity reaches

saturation at a depth around 2 km. A correlation developed at MIT for water salinity was used in

the present work [22]:

S [krg/M3] =1.234 x104 z[m] 2 +0.059419z[m]+5.844, z > -1930m
(2.35)

S = 350 kg/m3 , z < -1930m

This correlation was modified to remove unphysical negative salinity in the uppermost
region:

S =5.844 kg/m3, z > -480m

S [kg/=3 ] 1.234 1- 4z [m] 2 + 0.059419z [in] + 5.844, - 480m> z > -1930rm (2.36)

S=350kg/m 3, z<-1930m

No horizontal variation in initial salinity profile is usually assumed. This assumption is

valid if the rock is located far from the sea or large saline lakes. However, due to water flow caused

by expansion or convection horizontal variation around the deep borehole repository may appear

after the fuel emplacement.

2.3.2. Repository Design

Different deep borehole repository designs were developed by various groups. This

includes designs developed in SKB, Sweden [26], University of Sheffield [27], United Kingdom,
SNL [28] and MIT [21, 29].

Typically the borehole is designed to accommodate fuel at the depth of 3 to 5 km; however,

more shallow concepts with disposal zone between 1 km and 2 km have been proposed [29]. The

diameter of the boreholes is usually limited by the drilling technologies available and size of the

canisters used. Usually canisters are designed so that they can accommodate full fuel assemblies

without their reprocessing [21]. The borehole diameter can be larger in the plug zone than in the

emplacement zone; however, during the modeling this difference was usually neglected.
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One borehole of this design can accommodate up to 400 5-m-long canisters with spent
nuclear fuel. The total mass of spent fuel loading is 500 kgHM per canister, or 200 tHM per
borehole. An array of 20x20 boreholes in a square lattice is assumed as a reference design for the
repository that can satisfy the needs of the US. The borehole spacing is limited by many factors
like thermal and hydrologic performance. In the past it was shown that very close spacing may
cause significant increase in repository temperature after around 10,000 years since emplacement

[5]. This limits the minimum distance between boreholes at 200 m.

Complete resolution of all features of the fuel canisters with the mesh is impossible. For

this reason canisters containing the fuel are treated as a homogeneous medium. All thermal

properties of the canisters like volumetric decay power, thermal conductivity, density, and specific
heat capacity are assumed to be uniform. Properties like volumetric decay heat, density, and

specific heat capacity are taken so that total values of power, mass, and heat capacity are

conserved. The value of thermal conductivity is usually adjusted so that peak temperature in the

homogenized geometry matches the peak temperature in the canister. The process of

homogenization was studied in detail analytically by Hoag [18], and can be studied numerically
on the scale of the canisters.

The heat generation of decay products of nuclear fuel is available as the ANS standard
[17]. Heat generation of real canisters varies from assembly to assembly depending on the reactor

type, burnup, and cooling time. Typically it is approximated with an average decay power with

some level of conservatism. An overview of different correlations was made in [30]. For the sake
of consistency with previous research two correlations for average decay power were used in the

present study.

The first correlation was derived from [30], scaled to 57 MWh/kg burnup as a conservative
assumption. This function was previously used at MIT [5, 21]:

0.75

q'(t)= 21 7 6  tj W/m 3 , (2.37)

where tc = 25 y is cooling time.

In the validation of the code with the FEHM code (Section 5.2) the table for characteristics
of average PWR fuel was used. This correlation was obtained at SNL as a weighted average of

commercial PWR fuel, taking into account variations in burnup and cooling time. These data are

shown in Appendix A.

Fluid transport properties of both canisters and plug remain uncertain. Canisters are

designed to be impermeable for some period of time after emplacement, but they can degrade and

conduct water. The permeability of the seal material can be measured under laboratory conditions,

but it cannot be representative due to possible cracking of the seal and the gap between seal and

the host rock. For this reason permeability was varied in a range from Ix to 100x the rock

permeability.
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Table 2. Summary of the repository properties.

Parameter Value
Borehole diameter 0.34 m
Emplacement zone 3 to 5 km
Boreholes spacing (pitch length) 200 m
Number of boreholes 400
Boreholes arrangement square lattice
Canisters average thermal conductivity 0.628 W/(m-K)
Canisters average specific heat capacity 499 J/(kg-K)
Canisters average density 4405 kg/M 3

Permeability io-15 m2

Porosity 0.01

2.3.3. Physical Correlations
Equations (2.2) and (2.19) require water properties like density, heat capacity, and

viscosity. These properties depend on pressure and temperature and should be implemented using
a correlation or a table. In the FALCON code IAPWS-97 tables were implemented to obtain
density and viscosity [31], so the same implementation was used in the present work. Heat capacity
was not available in FALCON directly. However, water heat capacity enters into Eq. (2.2)

multiplied by porosity c, which does not exceed 1%. For this reason water heat capacity was

approximated with a constant value of 4180 J/(kg-K).

Equation (2.26) requires the density of brine to be modified to account for the presence of

solute in it. Typically polynomial functions for brine density as function of salinity and pressure

are derived [32]. They usually are applicable in a narrow range of temperatures and used mostly
in oceanography applications. In the present work brine density is taken as a linear combination of

IAPWS-97 water density at the given conditions, and salinity [22]

Pb (P, T, S) = p (P, T) + 0.795 S. (2.38)

This implies that the effective density of water per unit volume in presence of solute is

lower than the table density of pure water:

p,(P,T,S) = p,(P,T)-0.205 S. (2.39)
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3. Implementation

3.1. MOOSE Framework

MOOSE is a computational framework designed to simplify development of fully-coupled,
parallel, fully implicit, nonlinear finite element codes [11, 12]. MOOSE utilizes the mathematical
principle of Jacobian-free Newton-Krylov method, which requires only residual evaluations of the

discretized equations, as well as having a conventional Newton solver of equations. The equations
are implemented using a modular approach, in which every term of the governing equation is

represented by a single kernel. Each kernel calculates residuals (for all solvers) and derivatives
with respect to some of the variables (for PJFNK and Newton solvers). The values of the residuals
are collected by MOOSE and passed to libmesh framework [33]. Libmesh in turn creates matrices

of unknown variables which are solved with a PETSc solver [34]. Through PETSc the MOOSE
framework supports parallel solution capabilities using MPI protocol. MOOSE can run efficiently
on laptops, workstations, and multi-node clusters. The main advantage of MOOSE is that many

activities like parallelizing, solving equations, etc. are hidden from the user. The code developer
should implement kernels for equations to be solved and some auxiliary objects used for

calculation. Most of the code is written in C++, however, external FORTRAN90 subroutines can

be added to the code.

Originally MOOSE was used for nuclear reactor and fuel performance analysis. However,

modular structure of the code allows solving many equations beyond the area of nuclear

engineering. A set of equations for fluid flow, heat transport, and rock deformation was

implemented to MOOSE at Idaho National Laboratories under the name FALCON. The FALCON
application was used with minor changes to solve governing equations for the deep borehole

repository.

3.2. Weak Form of Equations

To implement Eqs. (2.1), (2.18), and (2.33) in MOOSE they should be written in the so-

called weak form [11]. Assume that a set of test functions Vi is defined on each element of the

mesh. These can be Lagrange, Hermite or other polynomials. Then multiply the original equations

without the time derivative terms by the test functions and integrate over the element domain Q:

f VV -(kVT)dQ+ fiqm' dQ - Jqpfcj .V T dQ = 0, (3.1)

fV(1V -dQ - YpV Kpf VP dQ =0, (3.2)

J4f+ V2SdQ-_ji-vsdQ=o. (3.3)

It should be noted that all the resulting equations are scalar equations, while the original

Eq. (2.1) was a vector equation with three components. All three equations contain second

derivatives under the integrals. They can be reduced to the first derivatives using integration by

parts:
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-JVq -(kfVT)dQ+ yv(k,,,VT)-n d +f qw dQ +Vy pfcfT J dQ - (3.4)

- f / -pcj-n d M =0,

fV - Kpf2 g dQ+ f V KI VP dK- f q1 Kp VP -i d aQ o0 (3.5)

C4 --Df+4 (3.6)
-v { + VS dQ+ f + VS -ridaQ -fj-lVS dQ=0,

where MQ is the boundary of the domain Q and h is the normal vector to this boundary.

These equations can be rewritten using simplified notation, where (,) is used for volume

integrals and (,) is used for boundary integrals:

(V V,(k,VT))- (V,,,ffVT)- ) -(/,q")-(Vvf/, pfcfTJ)+ (pcg) j) =o, (3.7)

r KPf 2 }Kp KKf VP. (3.8)
f/, V - 9 + V Y/, VP -Y/, ii VP- 0,

SeD f rj jyjj -Df + v o &' s)o (3.9)
V qf, + VS - y, + VS -i +(qf,j -vs)=0.(39

These equations are integrated over time using an implicit Euler method. Time integration

creates an additional kernel for each equation.

Equations (3.7)-(3.9) are defined for three variables T, P, and S. Each of them can be

discretized using the expansion on a set of trial functions:

N

U = upi. (3.10)
i=I

Usually the same trial shape functions Vii are used as the test functions pi, which simplifies
integration of each term of the governing equations. Substitution of expansion (3.10) to the

governing equations leads to N equations for each variable and each computational cell with N
unknowns ui. Finding coefficients ui that turn the right side of the equations into zero solves the

governing equations.

3.3. Solver Types

The right hand side of Eqs. (3.7)-(3.9) is defined on each cell and each test function and

can be represented as a multivariable function:

P (ii)=0. (3.11)

The value of f can be calculated for any guess i. In this case

i? = P(iii) (3.12)
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is generally referred as the residual vector. Reduction of the norm of the residual to zero or close
to zero indicates that solution to the discretized problem has been found. In the MOOSE framework
the search of the solution can be performed using two solvers: Newton solver and Jacobian-free
Newton-Krylov solver (JFNK).

3.3.1. Newton Solver

Newton solver is suitable for problems in which derivatives of the kernels can be directly
calculated with respect to all variables. Consider N non-linear equations [35]:

P(ii)= 0. (3.13)

Assume that i,, is the solution at iteration n. The Jacobian matrix of size NxN of this

system is defined as

ij ( F )= i. (3.14)
un~j

Then the multivariable Taylor series of Eq. (3.13) can be expressed as

P(5i+)= P(i)+ J(ii)&i, + higher - order terms. (3.15)

If the desired solution is P(ii+1 ) =0 and the Jacobian matrix can be calculated directly

from the current solution u, then the next approximation can be obtained:

J(06i).+1 = -4(i"), (3.16)

ii"+ = ii" + &n+1. (3.17)

Steps (3.16)-(3.17) can be repeated until the residual reduces to the acceptable value.

3.3.2. Jacobian-free Newton Krylov Solver

In many multiphysics applications partial derivatives can be difficult to determine. For this

reason MOOSE utilizes the JFNK approach. In this method the full Jacobian is not needed for

calculation of the solution vector update &,,+, (3.16). Instead the full solution is searched as a

linear combination of several Krylov iterations on the initial guess 6WO7:

, = -i(5u)- J&i, (3.18)

(W1+ = 0 + A(JF) +2(J2 )+A p(J30)+... (3.19)

where coefficients / minimize the residual. Equations (3.18) and (3.19) contain only the result of

a Jacobian acting on a certain vector. Such results can be approximated as

J ';F(ii+ 0) - (a), (3.20)

where i is the given vector, and c is a small perturbation. The details of the JFNK method can be

found in [35].
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The JFNK method may be slow since it may require a large number of Krylov iterations
(3.19). The rate of convergence can be improved if the system is preconditioned. Using right
preconditioning, one replaces the matrix equation (3.16) with an identical equation

(J (ii, )P-, (P &. I) = -f (ii"), (3.21)

where P is the preconditioning matrix. Different preconditioning matrices are available in
MOOSE; however, the most efficient are physics-based preconditioners. In this approach,

preconditioning matrix P consists of some partial derivatives of kernels with respect to the problem

variables. These derivatives may be identical to the Jacobian terms in a Newton solver. However,
unlike the Newton solver, preconditioned JFNK can take approximate terms with some terms

missing.

3.4. Code Description
This chapter defines the classes of MOOSE which were implemented in FALCON and

were modified for the deep borehole repository modeling.

3.4.1. Variables

Governing equations in weak form (3.7)-(3.9) are defined based on three independent

variables temperature T, pressure P, and salinity S. In MOOSE they are defined in the block

Variables of the input file. This block specifies each variable acting on certain blocks of the

mesh. This means that some equations can be solved on part of the mesh. However, in the deep

borehole repository modeling all variables were defined on all blocks of the mesh. The

Va r iable s block also defines the type of the shape functions used, as well as the scaling factors.

3.4.2. Materials
All coefficients in the weak form equations (3.7)-(3.9) other than main variables are

defined in the classes of MOOSE called Materials. The resulting objects are commonly named

material properties. Material properties are updated on each nonlinear iteration and can be accessed

by kernels or other structures of the code.

Each Material class contains the method compute Prope rt ie s, in which material

properties calculation is performed. Each material property should be defined on each quadrature

point qp of the mesh. For example, the following code

for(unsigned int qp=O; qp<_qrule->npoints(; qp++)

{

_porosity[qp] = _inputporosity;
}

defines material property _porosity for each quadrature point qp equal to the

_inputporosity.

Materials structure of the original FALCON includes five Materials. The basic class is

Porous Flow, which defines fundamental rock properties like porosity. Three more advanced

classes are HeatTransport, FluidFlow, and SolidMechanics. They inherit the objects

defined by PorousMedia. In addition they define all the properties required for solution of three
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governing equations of FALCON for heat transport, fluid flow, and solid mechanics, respectively.
The last class is called Geothermal and it inherits all objects from the previous three classes
without adding any new objects. One of the advantages of this organization of the code is that
some kernels can be used independently from the others. For example, H e a t T rans por t can be
used to model thermal behavior without coupling to other processes.

For the purpose of the present work only four classes Porous Flow, HeatTransport,

FluidFlow, and Geothermal were used. Many classes were significantly simplified. For
example, the original FALCON code used pressure-temperature and pressure-enthalpy
formulations of the equations of state of water. In the present work no two-phase flow is expected.
For this reason pressure-enthalpy formulation was removed from the code. All objects defined in
the materials are listed in Table 3.

Table 3. Material properties

Material class Property name Description
PorousMedia _permeability Permeability

porosity Porosity
_densityrock Rock density

_specific heat water Specific heat of water

gravityvector Direction of gravity vector

-gravity Magnitude of gravity vector
salinitydiffusivity Diffusion coefficient of salt, Eq.

(2.28)
HeatTransport _thermalconductivity Thermal conductivity of rock

specific heat rock Specific heat of rock
FluidFlow compressibility-rock Confined compressibility of rock,

Eq. (2.21)
_d_ rho_d_s Coefficient 0.795 in Eq. (2.38)

_dens_f luidout Brine density, Eq. (2.38)

denswaterout Water density, Eq. (2.38)
visc water out Water viscosity

_d_densd_press Partial derivative of water density
with pressure

_ddens_d_temp Partial derivative of water density
with temperature

t au wa t er Kp~-w e term, Eq. (2.23)

darcymas s_fluxwater Mass flux of water
_darcy_fluxwater Superficial velocity

timeolddens_fluidout Brine density, Eq. (2.38), from the
previous time step

time old dens water out Water density, Eq. (2.38), from the

previous time step
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3.4.3. Kernels
After all material properties are defined each kernel in Eq. (3.7)-(3.9) can be calculated on

each quadrature point. Each kernel class should have a mandatory user-defined

computeResidual or computeQpResidual method. For example, for temperature

diffusion term (V V/, pf cf J -T) the corresponding residual method is defined as

Real TemperatureConvection::computeQpResidual()

I
return -

_specific heatwater[_qp]*_darcymass_fluxwater[_qp]*_gradtest
[_i][_qp]*_u[_qp];

}
Here _g rad te s t is the object for the gradient of the test function V V , and _u is the object for

the main variable of the corresponding equation T. Note that the pf j term is represented by a

single material property _darcymass_f lux water. The rest of the kernels are constructed

in a similar way. Time integration requires additional kernels, although it does not appear in the

as
weak form of the equations. For example, the time derivative term for solute transport s is

at
represented by the following computeQpResidual method:

Real
SalinityTimeDerivative::computeQpResidual()

{
return _porosity[_qp]*_test[_i][_qp]*_u_dot[_qp];

}
All the kernels used are listed in Table 4. The Source column indicates the original source

of the kernels used in the code. Six kernels were taken directly from FALCON with minor

modifications. HeatSource kernel was implemented in the library of standard kernels in

MOOSE. Kernels for solute transport were implemented based on standard diffusion, advection,
and time derivative kernels from the MOOSE library.

A few important notes should be made regarding the implementation of certain kernels.

The time derivative kernel in the pressure equation utilizes a pressure time derivative term.

However, this term should not necessarily have this form. An alternative is to implement Eq.
(2.18):

aEK +V pf2  -V. KpfVP =0. (3.22)

at P p ,

In this case the density time derivative is required. Density from both the previous time step and

current iteration is available to the code. In this case the final form of the term implemented is

=() +Pfp . (3.23)
at at + at
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Table 4. Kernels

Variable Term Kernel Name Source
T (Vq, (keffVT)) TemperatureDiffusion FALCON

-(Vy:,pc j-T) TemperatureConvection FALCON

aT
(PC TemperatureTimeDerivative FALCON

-(lq") HeatSource MOOSE

PVf, VP WaterMassFluxPressure_PT FALCON

Kpf
K,rV g WaterMassFluxElevation_PT FALCON

P

(Cpf+ fp)f p MassFluxTimeDerivative FALCON

S
SVf, +--JVSJ SalinityDiffusion MOOSE

(I ,j.VS) SalinityConvection MOOSE

E aSalinityTimeDerivative MOOSE
at

Another concern is the stability of the advection-diffusive solution of temperature and

solute transport. Unlike the pressure equation, which is purely diffusive, temperature and solute

transport equations have both advective and diffusive terms. The temperature equation has

diffusivity around three orders of magnitude higher than the salinity equation, so no stability issues
of the solution were observed. In addition to this, mesh was refined around the borehole where the
highest temperature gradients are observed.

For salinity advection, however, additional stabilization was needed. The stabilization term

was added as isotropic streamline-upwind Petrov-Galerkin (SUPG) [36]. Consider the general
advection problem equation

(3.24)

on a grid with element size a. It can be derived [36] that this scheme can become stable if an

artificial diffusion term is added to the equation with the coefficient of diffusion

D = .2 (3.25)
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Eq. (3.25) ensures that numerical diffusion is adjusted for the numerical needs locally. Additional
numerical diffusion is high only in the regions with large cell size a and high flow velocity j. For

this reason the Salinit yConve ction kernel was implemented with an SUPG diffusion term.

Each kernel might have optional computeJacobian or computeQpJacobian
method defined for it. This method creates an approximate Jacobian that can be used for
preconditioning of the JFNK method or for a Newton solver. For example, the

Tempe ratureConvection kernel has an approximate Jacobian term

Real TemperatureConvection::computeQpJacobian()

{
return -

_specific heatwater[_qp]*_darcy mass flux water[_qp]*_gradtest
[i) [_qp] *-phi [_j I [_qp];

}

which represents the partial derivative of the term with respect to the equation variable T. Another
type of optional methods is off-diagonal Jacobians. These methods represent partial derivatives
with respect to variables other than that of the kernel. Off-diagonal Jacobians were implemented
for the pressure time derivative kernel, since it had clear dependence on the changes of salinity
and temperature in the given cell.

3.4.4. Boundary Conditions

Boundary conditions appear as surface integrals in the weak forms (Eqs. (3.7)-(3.9)). Only
two types of boundary conditions were used in the deep borehole repository modeling: Neumann
boundary conditions and Dirichlet boundary conditions. Both are implemented as standard
boundary conditions in MOOSE. Dirichlet boundary conditions were used for fixed values, like
surface temperature, pressure, and salinity. Symmetry boundaries imply no-flux conditions, which
was implemented as a Neumann boundary for the corresponding variables. The bottom was set up

as no-flux for pressure and salinity, and fixed geothermal flux for temperature. It should be noted

that specification of the bottom boundary condition for pressure in the input file looks like

o=0. (3.26)

This might seem counterintuitive, since pressure gradient is hydrostatic. However, this

implementation is the only correct approach, since a pg component is contained in the hydrostatic

pressure kernel, which was not integrated by parts in the weak form derivation of (3.8), and thus,

does not require any boundary condition component.

3.4.5. Initial Conditions

Initial conditions for pressure and temperature can be obtained numerically from Eq. (2.6)
and (2.16). However, for the simple setup with constant properties of the rock only thermal

equation (2.6) can be implemented as an analytical function. Equation (2.16) can never be

expressed as analytical function due to variation in water density. For this reason before each

transient a coupled steady-state problem for heat and water transport was solved. The results were
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output to the standard Exodus file, which was read at the beginning of the transient step as the
initial condition for the transient simulation.

In the runs with saline water the salinity equation was not modeled on the first step since
salinity in the natural rock is not in equilibrium. Instead it was fixed according to Eq. (2.36) for
correct account of hydrostatic pressure by brine.

3.4.6. Executioner

The executioner in MOOSE is group of the classes which specify the flow of the
calculation, including the time step, adaptivity, solver types, criteria of convergence, etc. A

standard Transient executioner provides most of the features required for modeling of the deep

boreholes, including the time step reduction if the solution does not converge. However, modeling
of deep boreholes differs from usual applications in time scales that have to be resolved. The deep
boreholes require small initial time step in the beginning for correct capturing of the initial period

of high decay heat, and large time steps at the end to be able to cover all the time period modeled

(1,000,000 years). In MOOSE time step is governed by TimeStepper class inheriting from

Executioners. The adaptive time stepper SolutionTimeAdaptiveDT is available which

adjusts time step based on the computational time of the previous time steps. It was modified to

remove the capability to reduce the time step, allowing it only to increase the time step by a small
percentage (typically around 1-5%) or decrease it by 50% if solve does not converge. Time

steppers are discussed in detail in Chapter 4.2.

3.4.7. Functions

Functions in MOOSE are classes which allow users to implement functions of coordinate

or time to be used by materials and kernels. Two functions were implemented for modeling of the

deep borehole repositories. They are decay heat equation (2.37) as function of time and initial

salinity profile (2.36) as function of depth. The decay heat equation for cross-code validation with

the FEHM code (Appendix A) was implemented using the built-in capability of table-defined
functions.

3.4.8. User Objects

The Userobject system in MOOSE provides data and calculation results to other

MOOSE objects. The IAPWS-97 correlation was implemented in FALCON and was the only

UserObje ct used in the present work.

3.4.9. Output

MOOSE is capable of output of the full solution in the most common formats (ExoduslL,

Tecplot and many others), as well as single value per time step by each Postprocessor object.

In addition to this, console output gives important information about the state of the program,

convergence data like residuals, etc.

Results analysis was performed using standard tools provided in MOOSE, as well as in

graphing applications Paraview and Tecplot.
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3.5. Geometry and Meshing

Modeling of the complete repository can be challenging and memory-consuming. For
example, modeling of one quarter of a 9x9 array of boreholes in the FEHM code required 866910
nodes even without proper resolution of the boreholes. In that setup each borehole was represented
by 20 elements each 100 m long. Proper refinement of the mesh in the vertical direction at the
location of thermal gradients and near the borehole can increase the number of computational cells
required to model complete repository of 20x20 to a few million cells. For this reason analysis of
simpler geometries has been performed.

Two simplified geometries were considered in the present work. One of them assumes that
the array of boreholes is infinite (see Figure 1). This allowed reducing the geometry to a single
borehole with symmetry boundaries on the planes between the boreholes. In addition to this the

geometry was further reduced by the factor of 4 due to symmetry of the geometry around one
borehole. The infinite array of boreholes approach is the limiting case for the large array [5, 23]
and correctly predicts thermal behavior of the repository. The sensitivity of this geometry to the

borehole spacing can be studied. In the limiting case of infinite spacing between boreholes the
geometry represents the single borehole case. This test case was used for the cross-code validation
with the FEHM code in Section 5.2.

0 0 0 0 0 0 Cs
modeled

r-;, 0 M, 0 0 c,,domain

o~ 0 0 0 0 o K borehole

, 0 0 0 0 0 ( spacing

Figure 1. Infinite array of boreholes

However, one of the drawbacks of the infinite array geometry is that it does not model any
sink for energy and momentum in the horizontal direction to the undisturbed rock. This can be
avoided by considering a semi-infinite array of boreholes (see Figure 2). In this setup it is assumed
that the array of boreholes is infinite along one of two horizontal axes, and has finite width along
the other. This allows one to reduce the modeled region while keeping the possible mechanisms
for transport close to the real repository.
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Figure 2. Semi-infinite array of boreholes

Meshing was performed using the Cubit 14.0 application [37] and exported in ExodusII
file format. Meshing was performed with hexahedral elements with HEX8 type. Typically the
geometry was exported as three blocks for spent fuel, seal, and rock. The meshing was always
started from meshing the horizontal plane (Figure 3, left). Mesh was built using the sizing
function capability of Cubit, which allowed gradually increasing the cell size starting from the
borehole (Figure 4). All surface meshes were created using the standard pave scheme of Cubit.
The horizontal mesh was extruded in the vertical direction using the sweep scheme. The mesh
was created so that maximum distance between layers did not exceed 100 m. However, mesh was
refined at the depth of 3 km and 5 km, where strong gradients of temperature are expected (Figure
3, right). Typically the number of the elements of the mesh for one quarter of the borehole was
around 100,000.

The semi-infinite configuration was meshed similarly to the infinite array. The view of the
mesh from the top is shown in Figure 5. The large part of the mesh outside of the repository is not
shown in the figure. The width of the array was assumed to be 21 boreholes, so the total of ten half
boreholes and one quarter borehole were meshed. The final mesh contained 769,890 hexahedral
elements.

Mesh convergence has been studied on the infinite array mesh. A very coarse mesh with
25,886 elements was built as an initial mesh. It was refined two times using Cubit option

refine volume all numsplit 1

Two resulting meshes with 207,088 and 1,656,704 elements were used for mesh convergence
analysis.

35



Figure 3. Mesh of the infinite array. Left: view from top. Right: view from side, not to
scale.

Figure 4. Close view of the mesh around the borehole.

F . s s

Figure 5. Mesh of the semi-infinite array, view from top.
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4. Best Practices
This chapter describes the best practices of setting up the simulation in the MOOSE

environment for deep borehole repository application. This was studied on the reference case

described in Chapter 2.3. The geometry was set for the infinite array configuration, which can be

represented by a relatively small mesh.

Most of the runs were performed on the cluster of the NSE department of MIT. The cluster

has 12 computational nodes with 24 GB of RAM on each node and Intel@ Xeon@ CPU E5-2620
2.00 GHz 6-cores processors (12 threads on each processor with hyper-threading enabled). The

number of nodes for each simulation was taken so that the number of mesh elements per thread

did not exceed 5000. This ensures efficient usage of the cluster and minimizes losses on nodes

communication [38].

As a figure of merit the maximum water upward displacement was chosen. It is defined

as [6]

z(t 0)= v(t)dt (4.1)
0

at a certain location above the borehole. The physical meaning of this value is the maximum

displacement of the water front over the time period from 0 to to. The maximum displacement was

monitored at the depth of 1 km (2 km above the borehole) in the plug region, where the

permeability is assumed to be 10 times higher than in the rock. Taking into account Eq. (2.14)

which correlates seepage velocity to the superficial velocity, Eq. (4.1) can be expressed as

to
fj(tidt 

(4.2)
Z (to 0=

Taking into account that porosity is assumed to be a constant 1%, Eq. (4.2) becomes

to

zQ0o) = 1001f jQ)dt. (4.3)
0

The simulation time to was chosen at 1011 s.

4.1. Solver Parameters

4.1.1. Convergence Criteria and Scaling
The goal of the solver is to reduce the residual of the weak form of Eq. (3.7)-(3.9) to zero

or value which is low enough to consider that the mathematical formulation of the problem

converged to the right solution. This can be done with various solver options at different

performance, however, low enough residuals indicate that the solution has been found regardless

of the method used.

In MOOSE one residual norm used for convergence analysis is calculated for all equations

over the whole domain. For example, for the set of Eqs. (3.7)-(3.9) one can write
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||RiI = |IRT 112 + IRp 112 +|IRs112, (4.4)

where IIRTI, JIRII, and Rs 11 are the norms of the Eqs. (3.7), (3.8), and (3.9), respectively. However,

Eqs. (3.7)-(3.9) represent conservation of energy, mass of water, and mass of solute, and have

dimensions of J/(m3.s), kg/(m 3-s), and kg/(m3 -s). Due to the dimensional nature of the individual
residuals they should be non-dimensionalized or scaled.

MOOSE implements the approach of scaling. It is assumed that in order to have sufficient
convergence of solution of each governing equation the residuals should be multiplied by some
factors that make initial residuals at each time step of the same order of magnitude:

||R| =IIRT12 + (cP|+CRPI)| + (CS |Rs i1Y. (4.5)

It was found that the best scaling parameters for the set of Eqs. (3.7), (3.8), and (3.9) are

C, =108 , CS =106. (4.6)

These coefficients are implemented in the Variables block using scaling parameter.

The convergence criterion is governed by the parameter ni_re l_to1, which defines the

relative decrease of the residual (4.5) required to stop the current time step or steady run. The

default value of this parameter in MOOSE is 10-8. However, this value should be adjusted for

different simulations.

The steady state runs start with an approximate value of pressure and temperature
distribution and have very high initial residual. The default value of the convergence criterion is

not sufficient for the code to converge. The resulting steady state causes significant unphysical

water flow in the beginning of subsequent transient simulation. For this reason the convergence

criterion was reduced to 1014. The iterative process stops if the residual does not change during

several iterations, so the final drop of residual typically observed during steady state was around
io-12-io-13.

For the transient runs convergence of the order of 10-8 was never achieved. Typically the

best reduction of the residual was of the order of 10-5. However, an insufficient convergence
criterion leads to significant numerical error in the solution. Figure 6 shows the dependence of

velocity as function of time for two different convergence criteria of 10- and 10'. The solution

with criterion set to 10-3 does not converge and shows clear numerical oscillation. A quantitative

measure of such oscillations is the maximum upward displacement, which is shown in Figure 7.
The results converge to the value around 197 m with the error of around 1%. This error can be

taken as the minimum iteration error of the simulation.
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4.1.2. Solver Type and Preconditioning

Although the solution itself does not depend on the solver type but depends on the iteration
criteria, computational time of different methods can vary by orders of magnitude. The different
methods discussed in the FALCON report [31] include only the performance plots of JFNK and
PJFNK solvers as a function of number of iterations. Similar analysis was performed for Newton,
JFNK, and PJFNK solvers. It turned out that the JFNK solver without preconditioning never
converges even for one time step of a transient problem. The behavior of the Newton solver
compared to the PJFNK solver is shown in Figure 8. It is clear that convergence by the same factor
takes less iterations for the PJFNK solver compared to the Newton solver.

10

102

10

100

I0 1'

0 20 40 60 80 100 120 140
Linear Iterations

Figure 8. Performance of the solver for Newton solver and preconditioned JFNK solver
with the same preconditioner (hypre). Different colors correspond to different non-linear

iterations

However, a smaller number of iterations does not necessarily mean better performance in
terms of computational time. Iterations of Newton method tend to be faster than iterations of
PJFNK method. Two methods were studied with three different preconditioners available in
MOOSE. The performance of the preconditioners was compared for the same setup for 20 time
steps. The performance results are shown in Table 5. Preconditioned JFNK method with block
Jacobi preconditioner failed to converge on the standard setup. The rest of the runs showed
approximately the same performance for Newton and PJFNK solvers. On average the Newton
solver was 3 times faster than the PJFNK solver. The best performance was obtained with block
Jacobi preconditioner. This setting was used in the rest of this work.
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Table 5. Performance of different solvers and preconditioners

Preconditioner PJFNK Newton
ASM (Additive Schwarz method) 2212 s 619 s
bjacobi (Block Jacobi) - 488 s
hypre 1846s 525s

4.1.3. Shape Functions
A number of shape functions of different families and order are available in MOOSE. The

most common and default functions used are Lagrange family of first order. Other functions like
second order Lagrange, third order Hermite, were tested. It was found that higher orders increase

the computational time significantly and do not affect the solution. First order Lagrange

polynomials were subsequently used for all variables.

4.2. Time and Grid Convergence

Default adaptive time stepper SolutionTimeAdaptiveDT is available in MOOSE.
This time stepper tries to decrease or increase time step by a small percentage (default value of

10%). The direction is chosen by the algorithm based on the processor time required to compute a
previous few time steps. If the solution fails to converge the time step is decreased by a factor of

2. This time stepper was applied to the reference setup. The resulting behavior of time step At as

a function of physical time t is shown in Figure 9 with red color.

One can see that the general trend is that time step grows on average. However, very often

time stepper switches the direction of time step change and begins to decrease the time step. At

least once the solution did not converge (at t ~ 8x1012 s) and time step dropped by the factor of 2.

This behavior of time stepper was acceptable, however, time step decrease by small percentage is

usually not needed during the simulation and was removed in the modification of the time stepper.
The performance of the new time stepper is shown in Figure 9 with a black line. Time halving was

left as the only mechanism of time step reduction and it occurred four times during the reference
problem solution.

Improvement of the time stepper allowed performing a rigorous time and grid convergence
study of the problem. The behavior of time step with time varies for different setups and even

meshes. For this reason, convergence was studied only over the initial period of time before the

first drop of time step occurs until to = 1.x101" s. The time step growth factor was adjusted
according to the relative size of mesh elements to preserve local CFL number. The results are

shown in Table 6.

The results show that the difference between different meshes is within 2.3%.
Unfortunately, it is impossible to obtain the exact order of convergence since the results for the

first two runs are very close to each other. However, the difference is small enough to assume that

the mesh and time step are sufficiently refined.
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Table 6. Convergence analysis

Mesh relative size Number of elements Time growth factor FOM, z, m
4x 25,886 0.04 195.43
2x 207,088 0.02 195.93
1x 1,656,704 0.01 200.10
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5. Verification and Validation
This chapter describes verification and validation of the code. Verification was performed

on the Rayleigh-Bnard convection, and validation was performed against results by Sandia
National Laboratory for single borehole [23] and thermal modeling of the infinite array performed
at MIT [5].

5.1. Benard Cells Modeling
A classical benchmark for the porous thermal-hydrologic flow is the study of the critical

Rayleigh number onset on convection. Consider a flat heat-conducting porous medium between

two horizontal surfaces at z =0 and z = H , and the acceleration due to gravity directed

perpendicular to these surfaces. The surfaces are maintained at constant temperatures Ti and T2 at

bottom and top, respectively. All properties of the porous medium such as density pr,
permeability K, heat capacity ceff, thermal conductivity keff, and porosity E are assumed constant

and isotropic. The properties of the water such as thermal expansion coefficient ,T, viscosity p,
heat capacity cf are assumed to be constant. The water is assumed to be incompressible, and the
variation of density pf due to any temperature change AT is small compared to the density.

This system is governed by the same equations (2.1) and (2.19) for heat and fluid transport
as the deep boreholes repository. In the absence of water the only stationary solution for the

temperature and heat flux in the medium exists similar to steady state temperature profile in rock

(2.6):

T(z)= T, +(T2 - T) Z (5.1)
H

,, T -T
q =k 2 1(5.2)

H

In the presence of the water this solution is still valid, since it allows hydrostatic

distribution of water pressure P(z) such as superficial velocity j = 0. However, this solution is not

necessarily stable. A non-dimensional Rayleigh number

Ra = Kpfg/JTHAT (5.3)
pDT

can be introduced as a measure of the ratio of the buoyancy-driven force to the viscos force.
Perturbation analysis of the steady state solution using the Fourier spectrum of the temperature

solution suggests that transition from the uniform temperature to convective behavior occurs at

critical number Rac, between 14.0 and 39.5 [39]. The exact critical Rayleigh number depends on

the boundary conditions. They may vary between fixed temperature and fixed heat flux and

permeable or impermeable wall. In the present work the bottom was taken impermeable with fixed

temperature and the top was taken permeable with fixed temperature. In this case the critical

Rayleigh number predicted by theory is 25.0.

The test case was set up on two-dimensional mesh with height of 1 m and width of 5 m.

The side boundaries were set impermeable for fluid and heat flux. The mesh used was uniform

with refinement at the top and bottom boundaries. The average temperature of the domain was
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chosen at 55 'C. Temperature difference between top and bottom surfaces was chosen to minimize
the effect of non-linearity of water properties. The Rayleigh number was adjusted by changing the
permeability of the rock K. The summary of model parameters for the convection study is shown
in Table 7.

Table 7. Convection study parameters

Parameter Symbol Value
Average temperature T 55 0C
Temperature difference AT 10 0C, I 0C
Thermal expansion coefficient A5 4.87x10-' K-'
Acceleration due to gravity g 9.81 m/s 2

Height of the domain H 1 m
Width of the domain 5 m
Effective volumetric heat capacity (pc)egf 2.77x 10-4 J/m3

Thermal diffusivity DT 1.083 x 10-6 m 2 /s
Average water viscosity p 5.03 x 10-4 Pa-s
Rock permeability K variable

T: 50 51 52 53 54 55 56 57 58 59 60
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Temperature and streamlines at the different Rayleigh numbers. (a) Ra = 257,
(b) Ra = 17
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Different initial conditions were examined for modeling of the convective cells. The steady
state temperature profile from Eq. (5.1) developed into convective solution, however, this process
took a lot of computational and physical time (convection usually developed after t ~ 106 s. The
sample result of the convection modeling for temperature difference of 10 'C and Ra = 257 is
shown in Figure 10(a). The temperature field is shown with color and streamlines correspond to
water flow. No steady solution was obtained, and the "fingers" fluctuated with time over the
domain, splitting into new "fingers" or combining together. In contrast to this, the solution at low

Rayleigh number (Figure 10(b)) remained stationary and did not change with time.

Although a convective solution was obtained at high Ra and a steady state solution was
preserved at low Ra, the above approach is not practical for determination of the critical Ra. The
computational and physical time required to develop convection grows while Ra approaches the
critical value, which makes it impossible to run multiple test cases.

For this reason the initial setup was modified. To reduce the effect of non-linearity of water
properties the temperature difference in the domain was decreased from 10 'C to 1 'C. This

allowed determination of coefficients in Ra definition with better accuracy. Instead of using a
uniform temperature profile (5.1) a temperature profile with small Gaussian perturbation in the
middle was set as the initial condition:

T(z)= T, +( 2 I)-+ Tpe,ur, n ex . (5.4)

Parameters Tperturbation and C were set at 0.1 'C and 0.1 in 2, respectively. The Fourier transform of
this Gaussian profile includes all possible wavelengths, including the critical one. The analysis of
time dependence of temperature with time is expected to show whether the solution has unstable

modes or all the modes decrease in amplitude and the whole perturbation decays with time.

The temperature of the perturbation peak was monitored in the center of the computational
domain. The temperature of the steady state solution at this point was 55 'C while the initial
temperature of the perturbed solution was 55.1 'C. The search for the critical Rayleigh number
was performed for the permeabilities and Rayleigh numbers listed in Table 8. The temperature
evolution for different test cases is shown in Figure 11. One can see that at Rayleigh number above
26 temperature increases, while for lower Rayleigh number temperature tends to decrease to the

steady state value. The results in Figure 11 show that the critical Rayleigh number observed from
the numerical experiment is between 19.5 and 26.0, which is consistent with the theoretical value

of 25.0.

Table 8. Permeability and Rayleigh numbers in the test cases

Permeability Ra
2.00x10-9 m2  17.3
2.25x10-9 m 2  19.5
2.50x10-9 m 2  21.6
3.00x10-9 m 2  26.0
4.00x10-9 M2 34.6
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Figure 11. Evolution of the temperature of the perturbation peak for different Ra

5.2. FEHM Code Validation

A paper by Bill Arnold and Teklu Hadgu describes modeling of the coupled thermal-
hydrologic processes around the deep borehole repository [23]. The geometry used included one
quarter of a 9x9 array of boreholes. Heat generation was turned off on some boreholes to compare
performance of 9x9, 7x7, 5x5, 3x3 arrays, and a single borehole. The last test case was chosen for
cross-code validation of the FEHM code and the FALCON code. Additional data beyond those
reported in the article were kindly provided by Bill Arnold.

The details of both setups are summarized in Table 9. Most of the parameters coincide with
the reference setup in Chapter 2.3. However, there are certain differences. The depth of the
modeled region was set to 7 km, and temperature gradient was set to 25 'C/km. The water was
assumed to be fresh. The decay heat was entered as table data and is provided in Appendix A, and
the total simulation time was 100,000 years instead of 1,000,000 years.

Certain parameters were different in the two setups. In the FEHM code the mesh around
the borehole was square, with one element representing the borehole with effective diameter
0.88 m. In FALCON the borehole was resolved as a circle with realistic diameter of 0.34 m. This
affects the behavior near the borehole and leads to sharper peaks of variables in FALCON
compared to FEHM. The second difference is in the outer boundary conditions. In FEHM they
were set as constant pressure and temperature, while in FALCON they were set to no flux
(Neumann BS for pressure and temperature). The reason is that there is no capability in MOOSE
that allows the user to fix the value of the variable during the transient run without recompiling
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the code. However, the outer boundary is set far enough from the borehole so that it should not
affect the solution, and this difference should have very small effect on the solution.

The results of thermal modeling in FEHM and FALCON are shown in Figure 12 and the
results of fluid modeling are shown in Figure 13. Both figures show the results at the centerline of
the borehole and depth of 2 km and 4 km. Figure 13 shows the superficial velocity on the left axis,
and the right axis shows the seepage velocity in kmly, taking into account the porosity of 0.01 and
correlation (2.14).

Thermal profiles from the two codes are consistent far from the borehole. For example, at
the depth of 2 km (1 km above the disposal zone) the difference in temperature increase between
the codes does not exceed 3% of the maximum temperature increase (Figure 12, top). FEHM
slightly overpredicts temperature around 1000 and 100,000 years after the fuel emplacement,
however, both codes predict the same magnitude and time of the thermal peak.

Table 9. Cross-code validation parameters

Parameter
Emplacement zone depth
Borehole diameter
Depth of the modeled region
Distance to the outer boundary
Surface BC
Bottom BC

Outer BC
Symmetry BC
Surface temperature
Temperature gradient (vertical)
Salinity
Decay power
Total modeling time
Rock heat conductivity
Rock heat capacity
Rock density
Borehole and seal heat conductivity
Borehole and seal heat capacity
Borehole and seal density
Borehole and seal permeability
Rock permeability
Borehole and seal porosity
Rock porosity

FEHM
3 km to 5 km

0.88 m (effective)
7 km
10 km

constant P, T
no water flux,

imposed heat flux
constant P, T

no flux
10 OC

25 0C/km
0 g/L

Table data
100,000 y

3.0 W/(m-K)
790 J/(kg-K)
2750 kg/m3'

0.628 W/(m-K)
499 J/(kg-K)
4405 kg/m3'

10-15 m2

10-16 m2

0.01
0.01

FALCON
3 km to 5 km

0.34 m
7 km
10 km

constant P, T
no water flux,

imposed heat flux
no flux
no flux
10 C

25 0C/km
0 g/L

Table data
100,000 y

3.0 W/(m-K)
790 J/(kg-K)
2750 kg/m 3

0.628 W/(m-K)
499 J/(kg-K)
4405 kg/M 3

10-15 m2

10-16 m 2

0.01
0.01
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Figure 13. Log-log plots for vertical component of velocity at the centerline
depth of 2 km and 4 km

vs time at the

Thennal results in the emplacement zone are different for the FALCON and FEHM codes
(Figure 12, bottom). Since FEHM does not resolve the borehole, the temperature in the middle cell
is the average of the whole domain in the real setup. The maximum temperature in the domain at
the depth of 4 km predicted by FALCON (solid black line) was up to 30 'C higher than the
maximum temperature in the FEHM code (solid red line). Moreover, the canisters' surface
temperature (dashed black line) was higher than the temperature predicted by FEHM.

Similar results were observed for fluid flow. The results far from the borehole at the depth
of 2 km match each other within 5%, while the results in the emplacement differ by a factor up to
3. This difference is caused by the different resolution of the borehole in FALCON and FEHM
discussed above, which causes higher values in the FALCON code. It should be noted that both
codes represent the whole borehole as a homogeneous medium with effective porosity and
permeability. Even in FALCON the velocity observed is not necessarily a real water velocity in
the boreholes region.

5.3. Thermal Transient Validation

A thermal transient was validated against previous data obtained at MIT by Ethan Bates
and presented at an ANS conference [5]. The test case considered in the paper included an infinite
array of the boreholes with pitch lengths of 100 m and 200 m. The simulation was performed using
the 2D axisymmetric diffusion solver in Matlab. For this reason the cuboid element corresponding
to a borehole in an array was replaced with a cylinder with effective radius
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PR =(5.5)

to preserve the area per borehole. Only heat transport was modeled, and the properties coincide
with the reference setup described in Chapter 2.3. The temperature was monitored at the surface
of the canister in the vicinity of the bottom of the borehole at the depth of 5 km.

The important conclusion made by the authors was that dense borehole arrangement in a
repository can cause a second thermal peak at around 10,000-100,000 years after fuel
emplacement. This is caused by the heat wave from the borehole reaching the symmetry boundary
with the next borehole (or, in other words, reaching the opposite heat wave from the adjacent
borehole). This result was later confirmed by the FEHM code for repositories of 5x5 boreholes
and more [23].

The results of the modeling in FALCON compared to the 2D model in Matlab are shown

in Figure 14. It should be noted that only the temperature increase with respect to initial

temperature is shown. The reason for this is that in the 2D Matlab model the exact location of the
point being monitored is unclear. The point was reported to be at 5 km; however, temperature
increase in the first 10 years indicates that no vertical diffusion of heat occurred. The exact point

was monitored slightly above the bottom of the borehole so that the temperature increase in the
initial 10 years corresponded to diffusion in the horizontal plane only. In FALCON temperature
increase was monitored at the depth of 4 km.

The results of thermal modeling show acceptable agreement of FALCON data with the 2D
model during the first peak (t < 100 y). At around 1000 years after emplacement the 2D model
significantly underpredicts the temperature due to heat diffusion in the vertical direction. At around

1,000,000 years the 2D model overpredicts the temperature, which can be caused by reflection of

the heat wave from the bottom boundary, which was set at 8 km.
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6. Results

6.1. Infinite Array of Boreholes

6.1.1. Reference Case
An infinite array of boreholes represent the limiting case of a very large repository. This

test case was studied using the reference parameters described in Section 2.3. In addition, this
configuration was also used to develop the application best practices described in Chapter 4. For
simplicity, this setup was first analyzed without the effects of salinity, which was expected to have
no effect on the infinite array configuration. The thermal model was discussed in Section 5.3, and

this section describes the behavior of a coupled thermal-hydrologic model.

The simulation results are shown in Figure 15 at three different times following the
emplacement of the canisters containing spent nuclear fuel, which is adopted as time=0. The time

dependencies of the temperature and velocity at selected locations are shown in Figure 16 and

Figure 17, respectively. Similarly to the analysis of the cross-code validation, the seepage velocity
is shown on the right axis.

The images in Figure 15 represent a slice of the borehole domain, starting from the

borehole centerline (left) to the symmetry plane between boreholes (right). The domain is a

rectangle of 100 mx 10 kin, where for improved visualization of the results the images are stretched
in the horizontal direction by a factor of 20. The color scale represents the temperature increase of

the rock relative to the initial temperature at each location. The temperature biasing allows

removing the effect of the temperature difference due to the geothermal gradient, which would

otherwise completely mask the changes due to decay heat. The streamlines represent the

instantaneous direction of the water flow. It should be noted that streamlines do not represent

quantitative displacement of water, rather they only indicate the path for the water. Since the

velocity of water flow is extremely low, water is effectively only displaced a small fraction of the

streamline over the whole period of 1,000,000 years.

Figure 15(a) shows the temperatures and streamlines at 10 years after the fuel

emplacement. Given that the thermal diffusivity (2.10) is given by

k
DT= jff =1.38 x 10-6 m 2 /s, (6.1)

the characteristic length of temperature diffusion (2.11) is

L = DTt 20 n. (6.2)

This represents the characteristic length of heat propagation from the borehole. The heat diffuses

in horizontal direction from almost all regions of the borehole (except for top and bottom) due to
axial symmetry and total length of the repository region (2000 in). For this region, the temperature

increase is practically equal in most of the heat-generating region. At the same time, radionuclides
with half-life of around 10-100 years quickly decay, leading to the decay of total power produced

and therefore a decrease in the emplacement temperature. This mechanism causes the observable
first temperature peak for the canisters (Figure 14 and Figure 16) at around 5 years from the initial

emplacement. It is important to note that the magnitude of this peak does not depend on the spacing
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of the boreholes, but instead depends on the local conditions. including thermal conductivity of
the rock close to the canisters, the gap resistance between the canisters and the rock, and clearly
the heat generation in the canister.
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Figure 15. Temperature increase due to decay heat and streamlines of water flow caused by
perturbation in the infinite array configuration (not to scale). (a) 10 years after fuel

emplacement, (b) 1,000 years after fuel emplacement, (c) 100,000 years after fuel
emplacement.
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The water flow at 10 years from fuel emplacement is caused by the thermal expansion of
the water. This wave propagates both upward and downward. However, very close to the borehole
the water velocity is always directed upward due to buoyancy. The superficial velocity at the
centerline in the emplacement region reaches the peak at around 5 years (solid blue line in Figure
17), while the velocity at the symmetry plane is directed downward, and is discontinuous in Figure
17 due to the logarithmic scale used. The velocity in the caprock zone reaches its peak later due to
slow propagation of the water pressure wave through the rock.

Figure 15(b) shows the temperatures and streamlines at 1,000 years after the fuel
emplacement. At this moment the decay power decreases significantly so that the temperature
gradient close to the borehole is much lower than it was at 10 years. However, at this time the heat
wave has already reached the symmetry boundary with the adjacent borehole (characteristic length
of temperature diffusion is around 200 in). Depending on the spacing between the boreholes the
volume of rock may be insufficient to store the heat generated at the given depth and the heat can,
from this point only redistribute vertically. However, heat diffusion in the vertical direction is not
sufficient to remove the extra heat in some cases and this leads to a second, delayed, increase in
temperature (see Figure 16). The water flow is directed upward due to increasing average
temperature of the emplacement region. Superficial velocity decreases in all regions with the slope
of approximately -3/4 in log-log coordinates (see Figure 16), which is the same as the exponent in
the decay heat correlation (2.37).

Figure 15(c) shows the temperatures and streamlines at 100,000 years after the fuel
emplacement. At this moment the decay power of the borehole is very small so the temperature in
the emplacement zone is almost uniform in the horizontal direction (see also Figure 16). The

characteristic length of temperature diffusion is around 2000 m, so heat diffuses away from the
borehole. At some point, this diffusive flux becomes higher than the heat generation, so the average
temperature of the emplacement region decreases, and the water flow in the caprock reverses (see
black and red lines in Figure 17).

It should be noted that throughout the whole transient, at each location the advective
transport of heat is negligible compared to the diffusive transport. The P6clet number, which is
defined as

Pe- PfCfjVT - pf cf L (6.3)
kdf V 2T keff

does not exceed 10-2 anywhere in the geometry. This result is consistent with previous findings,

which have shown that advective heat transport can usually be neglected in borehole applications

[4].

6.1.2. Analytical Model

The results shown above were used by Bates to develop a simplified model of the water
flow in the caprock zone of the repository [21]. Two observations lead to the development of the

simplified model:

1) The flow in the caprock zone is upward and uniform at any period of time. Although
there is some convection in the emplacement zone with downward water flow in the
cold regions (at the symmetry plane) and upward flow in the hot region (the vicinity of
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the borehole), there is no convection in the caprock. The superficial velocity in the plug
region (solid black and red lines in Figure 17) is exactly 10 times higher than that at
the symmetry plane (dashed black and red line in Figure 17). The permeability of the
plug was assumed to be 10 times higher than that of the rock, which means that the
driving pressure gradient is uniform across the horizontal plane in the caprock.

2) The superficial velocity at the depth of 1 and 2 km is the same after 10 years since
emplacement, and in the interval between 100 and 100,000 years it decreases at the
same rate as the decay heat (Eq. (2.37)).

To derive the equation for the superficial velocity consider the temperature and pressure
diffusivities (Equations (2.10) and (2.20), respectively). The diffusivity of pressure is of the order
of 0.1 m2/s, which means that over the period of time of 10' s the pressure distribution should reach
an equilibrium given that there are no pressure sources. However, continuing generation of heat in
the canisters creates a source of pressure due to water expansion. The diffusivity of temperature is

around 10-6 m2 /s, so one can select a region around the borehole, which does not have diffusive
losses of heat over some long period of time.

Consider the region of rock around one borehole in an array below a certain boundary
above the borehole (for example, this boundary can be set at the depth of 1 or 2 km). The total heat
produced in one borehole is

q(t) = q"(t)-Vfiel = q''(t)- L,,,,,acent * ;7r. (6.4)

Define an average temperature of the rock, assuming that the specific heat capacity is
constant:

JTdV
= Td V(6.5)

The thermal conductivity is constant, the heat advection can be neglected, so the solution
of the heat transport equation (2.1) can be represented as a superposition of a geothermal solution
and a borehole solution. The overall balance of natural geothermal fluxes is zero, so they can be
excluded from consideration. If all the heat generated by the radioactive decay stays in the system
the average temperature changes at a rate

dTal, q"'(t). L,,I (6.6)),2

dt (pc)effVr

The whole region contains a volume of water WV,.. If porosity is constant in the entire

volume then the average temperature of water coincides with the average temperature of the rock.
Then assuming constant properties of water the extra volume of water produced due to the thermal

expansion is

dV = ITcVrdT.. (6.7)

Since the pressure profile reaches steady state, it assures that all water leaves the region
through the only exit to the outside, which is the top surface of the selected region with the area A.
Therefore the superficial velocity through the rock is
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dVt) =f-TLeplaceen .2 q=(t) (6.8)
A-dt A-(pc),

and the seepage velocity of the flow is

V) (t) M TLemplacementr
2 . q"(t)

C A -(pc)e. (6.9)

If there are regions with different permeabilities then Eq. (6.8) can be used to determine the

superficial velocity in the dominating region, since the cross-sectional area of rock of 40,000 m 2

significantly exceeds the area of the plug (approximately 0.09 in2 ). Since the driving pressure

gradient in the seal and the rock is the same, then the velocities in the seal can be defined as

/(t) J TLmpacement7. q"WQ) (6.10)
K, A -(pc)eff

.t K, fTLe ,,plcementrf - q"(t) (6.11)

Kr A -(c)eff

Equations (6.8)-(6.11) are valid only if general assumptions for the heat and fluid transport

are valid, and only in a certain time range. Right after the fuel emplacement the pressure wave

does not reach the location being monitored, and the model overpredicts the velocity. Then the

model fails at around 100,000 years after emplacement due to heat diffusion away from the

repository. The comparison of the analytical model to the numerical modeling is shown in Figure

18.

The analytical model allows calculating the maximum upward displacement (4.1) based on

the seepage velocity (right axis in Figure 18). In the reference setup the maximum upward

displacement of water in the rock is 30 m, and in the plug it is 300 in for the seal permeability of

10-15 m2 (reference case) and 3000 m for the seal permeability of 10-14 m2 (failed seal case in [21]).

The analytical model predicts conservative fluid flux in the caprock compared to the numerical

modeling since it overpredicts the superficial velocity at the time when it is not valid. However, it

is not necessarily conservative if the assumptions of the infinite array (impermeable lateral

boundaries) are not valid.
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Figure 18. Velocity as function of time in the seal (centerline) and in the rock from
FALCON code and from the analytical model

6.1.3. Parameters Sensitivity

The analytical model derived by Ethan Bates [21] is not sensitive to a number of
parameters. For example, the superficial velocity does not depend directly on permeability,
although it enters the definition of pressure diffusivity, which affects the range of applicability of
the model. The seepage velocity, which defines the maximum upward displacement as the figure
of merit of borehole performance, does not depend on both permeability and porosity. The
analytical model does not depend on the arrangement of the boreholes (since only the area per
borehole is important), or geothermal flux, rock compressibility, or salinity of water.

Nevertheless, some of these parameters can affect the results of the modeling in FALCON.
This section briefly summarizes sensitivity to these results. The same data were examined in
Section 4.4 of the thesis by Ethan Bates [21].

6.1.3.1. Arrangement of the Boreholes

The effect of spacing was analyzed using the discussed reference configuration and varying
the different pitch length, as well as evaluating a hexagonal lattice of boreholes. For the hexagonal
lattice the spacing between the boreholes was set to

P = 214.9 m (6.12)
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to conserve the area per borehole at 40,000 m2. The results for the superficial flux in the caprock
region coincided with the reference square lattice results (Figure 17) and are not shown here.

The pitch length affects the borehole performance, as predicted by the analytical model,
and the velocity in the caprock is inversely proportional to the square of the pitch length. The
superficial velocity in the caprock near the seal at the depth of 1 km is shown in Figure 19. The
profiles for pitch lengths up to 1500 n are consistent with the analytical model. However, for the
case with pitch length of 3500 m a second peak is observed, which is caused by the convection in
the caprock. It should be noted that this test case was run without accounting for water salinity,
and the seepage velocity does not exceed 10-8 km/y at the second peak, leading to the maximum
upward displacement of the order of 10-2 km. However, this result indicates that the analytical
model is valid only for very tall and narrow geometries, and it is not directly applicable to wide
geometries.
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Figure 19. Velocity as function of time in the caprock at the depth of 1 km for different
borehole spacing

6.1.3.2. Variations of the Power

The analytical model predicts that the water flow is proportional to the power generated
per borehole. The results of the modeling in FALCON for the power at 50% and 200% of the
reference case decay heat of the canisters are shown in Figure 20. The results are proportional to
the decay power and justify the assumption of the superposition of different solutions made in the
analytical model derivation.
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Figure 20. Velocity as function of time in the caprock
powers

at the depth of 1 km for different

A further test case was evaluated on the modified geometry, in order to assess the effects
of different canisters in each borehole. The real borehole repository may be used for disposal of
fuel from different facilities with different age and burnup. The canisters can therefore produce
considerably different average decay power which could lead to unexpected temperature and
consequent flow redistribution. In order to assess the performance of such configurations it was
assumed that the boreholes with the decay power of 50% and 150% are arranged in the alternating
rows in an infinite array. In this case the simplest modeled domain (see Figure 1) should be doubled
in comparison with the previous analysis, to provide a minimum computational unit.

The results of the simulation indicate that no variation of superficial velocity in the caprock
was observed across the domain. The superficial velocity in the spent fuel zone and in the caprock
is shown in Figure 21. It can be observed that the velocities in the borehole depend on the heat
generation of the particular borehole, however, the caprock superficial velocity is the same as for
the reference setup. This indicates that the infinite array approximation can be used for modeling
of boreholes with different heat generation by using the average decay heat.
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Figure 21. Velocity as function of time for the reference setup and a modified case of

alternating boreholes with power at 50% and 150% of the reference power

6.1.3.3. Rock Properties

As previously mentioned, the analytical model is not sensitive to the rock permeability.
However, the permeability of the rock affects the pressure diffusivity (2.20), with lower
permeability corresponding to lower pressure diffusivity. This affects the time required for
pressure wave to reach the point being monitored. A similar effect on the pressure diffusivity is
produced by the compressibility of the rock (see equation (2.24)). The two effects are compared
in Figure 22 for permeability of 1016, 10-7, and 10-18 M2, and the confined compressibility of rock

of 4.62x 10-12 Pa-1 . The results are consistent with the expected behavior.

Another important effect of the permeability and rock compressibility is the overpressure
created by the water expansion in the borehole. The pressure for the same test cases at the depth
of 4 km in the borehole is shown in Figure 23. Higher permeabilities tend to cause lower pressure
increase, and vice versa. The overpressure might be an important factor for the mechanical failure
of the boreholes and has to be considered in possible failure scenarios.
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Figure 22. Velocity as function of time in the caprock at the depth of 1 km for different
permeabilities and for the case with compressible rock
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Figure 23. Pressure as function of time in the borehole at the depth of 4 km for different
permeabilities and for the case with compressible rock
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It should be observed that all the cases analyzed assumed constant rock permeability. In
reality, rock permeability decreases with depth. Correlation (2.34) describes one of the attempts to
create a correlation of permeability with depth. To remove an unphysical infinite increase of
permeability, its value near the surface is limited at 10-14 M 2 . This correlation was used in the
infinite array configuration and the results were compared to the reference case (Figure 24). The
resulting shape of the superficial velocity with time is slightly different in the beginning of the
simulation. but coincides in the region of applicability of the analytical model.
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Figure 24. Velocity as function of time in the caprock at the depth of 1 km for constant
permeability compared to variable permeability

A further test case was performed assuming higher permeability of the plug due to crushing
of the material in the seal, or other similar failure mechanism. In this case the reference
permeability of the plug was increased by the factor of 10 to 10-14 M2 . The results are shown in
Figure 25. As expected, the variation of permeability in the plug does not affect the velocity in the
caprock but increases the superficial velocity in the plug itself proportionally to the plug
permeability. It should be noted that the test case with different permeabilities poses a numerical
challenge and leads to slower convergence due to variation in pressure diffusion coefficient.
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Figure 25. Velocity as function of time in the caprock and plug at the depth of 1 km for
different plug permeabilities

6.2. Semi-infinite Array

6.2.1. Fresh Water

The results of the infinite array model show that no convection occurs in the rock above
the emplacement zone in the reference setup. However, at the pitch length of more than 1,500 m
the velocity does not follow the decay with the -3/4 slope in log-log coordinates after 10,000 years
since fuel emplacement. This is caused by convection between the heated region and the bulk of
the colder rock outside of the repository, although the resulting seepage velocity is too small to

cause any significant upward displacement of water. A similar effect can happen on the boundary
between the array of many boreholes and the undisturbed rock. In this case, the average
temperature in the array should be higher than the average temperature around one borehole, as in
the case with pitch length of 3,500 m, and the water velocity can be higher.

Modeling a semi-infinite array, which takes advantage of the quarter symmetry and models
a 20x20 borehole array is still extremely computationally demanding. However, the effect of the
convection between the repository and the surrounding rock can be studied on the semi-infinite
configuration, as described in Section 3.5 (see Figure 2).

The modeling was performed using the reference parameters described in Section 2.3.
Since the higher permeability of the plug had no effect on the water transport in the infinite array,
the plug permeability was assumed to be the same as the permeability of the rock, in order to
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improve the convergence of the code. Two rock permeabilities of 10-16 m2 and 10-17 M2 were
studied. Pure water properties were assumed, and the salinity transport was neglected.

The semi-infinite array demonstrated poor numerical convergence when compared to the
infinite array; this is related to the challenges in preconditioning this larger model. The poor
numerical convergence requires reducing the simulation time step, which could not exceed in this
case 2x101 0 s. The dependence of time step on time is shown in Figure 26. At the same time each
time step also requires a larger number of non-linear iteration, therefore resulting in simulations
that could not be completed for the full 1,000,000 years time span.
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Figure 26. Time step as function of time for the semi-infinite array case

The simulation results are shown in Figure 27 at three different times following the
emplacement of the canisters, for a rock permeability of 10-16 M2 . Similarly to the infinite array
(Figure 15), the temperature increase is shown on the color scale, and superficial velocities are
used for streamlines. The array of boreholes is located at the left border of the images and is
represented by the 11 vertical lines in Figure 27(a).

Figure 27(a) shows the temperatures and streamlines at 10 years from the fuel
emplacement. The temperature field near each borehole is the same as in the infinite array since
the short-term behavior of the two setups is identical. However, the streamlines are different. The
pressure wave propagates in all directions away from the repository, and so flows the water. The
streamlines in Figure 27(a) end at approximately 20 km from the borehole, since the pressure wave
just reaches this location and the velocity far from the borehole is close to zero.
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Figure 27. Temperature increase due to decay heat and streamlines of water flow caused
by perturbation in the semi-infinite array configuration with rock permeability of 10-1 iM 2

(a) 10 years after fuel emplacement, (b) 1,000 years after fuel emplacement, (c) 100,000
years after fuel emplacement.

66

-A



Figure 27(b) shows the temperatures and streamlines at 1,000 years from the fuel
emplacement. The maximum temperature is reduced and the emplacement zone is approximately
10 'C higher than the pre-emplacement temperatures. However, the heat generation still produces
significant overpressure and the flow is still driven by expansion away from the repository. At
100,000 years from the fuel emplacement (Figure 27(c)), the behavior of the flow changes
significantly. The emplacement region is unifornly heated, but the decay power is too low to cause
significant expansion-driven flow. The water in the repository is warmer and causes lower
hydrostatic pressure. This creates convective flow, which begins at the surface far away from the
borehole, propagates to a depth of more than 5 km, passes through the emplacement region and
exits the surface above the repository.

It should be noted again, as for the infinite array case, that the streamlines do not represent
the real displacement of water since the velocity is low and the distance is short compared to the
streamlines length (- 40 kin). However, in the semi-infinite array the water flow in the caprock is
higher at the scale of 100,000 years. Figure 28 shows the superficial velocity with time in the
caprock above the center borehole of a semi-infinite array compared to the infinite array in log-
log scale. The superficial velocity in the beginning is lower than that in the infinite array, however,
after 1000 years it becomes higher due to convection. This results in maximum upward
displacement of 2,390 m in the first 250,000 years for the permeability of 10-16 M 2. Reduction of
the permeability to 10-17 in 2 reduces the velocities and the maximum upward displacement
becomes 987 m over the first 250,000 years. However, this value is still higher than that in the
infinite array configuration, and is comparable to the depth of the burial.
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The convection rate in the repository is defined by the temperature difference between the
repository and the surrounding undisturbed rock. The convection onsets at around 10,000 years
since the fuel emplacement, which corresponds to the second peak in temperature. For this reason
any measures that reduce the magnitude of the thermal peak should also reduce the convection.
This includes reduction in the linear decay power in the boreholes as well as the increase of the
pitch length. Reduction of the length of the emplacement zone should also decrease the driving
pressure.

6.2.2. Saline Water
The presented results were obtained with the assumption of pure groundwater and no

salinity. In reality, the salinity of the water in the rock increases with depth. The highest gradient
of salinity is observed at the depth of 1-2 km, and below that depth the salinity remains constant
(Eq. (2.36)). It is expected that correct accounting for the salinity gradient could significantly
change the convective behavior of the semi-infinite array of boreholes. When the convective flux
of water moves the salinity front upwards it permanently creates a pressure difference in the
caprock above the repository compared to the undisturbed rock in the direction that suppresses
convection.

The salinity model described in Section 2.2.3 was therefore included in the simulations.
Unsurprisingly, it was found that convergence for this setup was even more challenging than for
the semi-infinite array without salinity. In particular, the time step never exceeded the value of
8x10 8 s. This did not allow performing simulations up to the 250,000 years that were reached in
the semi-infinite case with the rock permeability of 10-16 M2 . The test case with rock permeability
of 10-16 M2 reached the physical time of 1000 years but did not show any observable difference
from the case without salinity and it is therefore of limited significance. Future work could leverage
larger computational resources to finalize these runs.

Nevertheless the simulation with rock permeability of 10-' m 2 has been performed up to
70,000 years. The results shown in Figure 29 indicate that the superficial velocity drops by the
factor of 4 by the end of the simulation. The perturbation to the salinity profile at this moment at
the depth of 1.5 km is shown in Figure 30. The additional pressure gradient due to salinity is around
30 Pa/m. Multiplied by the total length of the salinity gradient region of 1,500 m one can obtain
the additional pressure of 45 kPa, which is comparable to the driving pressure of convection.
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7. Summary, Conclusions, and Recommendations

7.1. Summary

Realistic analysis of a deep borehole repository is significant for assessment of its

performance and identification of potential weaknesses and failure mechanisms. These analyses
should include all significant phenomena, which are physically coupled, with sufficient spatial and

temporal resolution of all processes.

In the present work a coupled thermal-hydrological model of the deep borehole repository
has been implemented in the FALCON application, leveraging the MOOSE framework. All
necessary physical models and correlations were added to the FALCON application and have been

presented in this work. A set of computational best practices was identified for optimal numerical
performance. The code has been verified on Rayleigh-Benard convection, and validated using the

data for thermal-hydrologic performance of a single borehole, as well as the thermal transient
analysis of an infinite array. Valuable results have been obtained and discussed for two

representative geometrical configurations of the repository.

7.2. Conclusions

The results of the modeling of the infinite array of boreholes showed that for this

configuration the flow in the caprock is dominated by water expansion in both short and long

terms. Due to the high aspect ratio of the geometry, superficial velocities were found to be uniform

across the horizontal plane. Some water convection has been observed in the emplacement region,

however, it decreases in the long term when the temperature profiles become more uniform and it

does not contribute to the release of the radionuclides to the ground surface from the repository.

Water flow in the caprock resulted in a maximum upward displacement of water of 30 m,

which is the upper theoretical limit of the distance of radionuclide propagation upward from the

highest point of the repository. The maximum distance is reached at around 300,000 years after

the emplacement, after which the flow reverses due to cooling of the repository. The maximum
upward displacement can be higher in the presence of the seal with its higher average permeability,

and it was found to be proportional to the ratio of seal to rock permeabilities. This can cause a

maximum upward displacement in the seal of 3000 m for a seal permeability of 10 times the rock

permeability.

It was shown that in the semi-infinite array configuration the flow is dominated by thermal

expansion only during the first thousands of years since the emplacement. A convective cell is

formed between the warmer emplacement region and the colder surrounding rock. This resulted

in seepage velocities of the order of 10- km/y over the time span of 200,000 years, and the resulting
maximum upward displacements of 2,390 m and 987 m for rock permeabilities of 10-16 m 2 and

10-17 m2, respectively. Such maximum upward displacement in the host rock is comparable to the

burial depth of the fuel and may cause the release of the radioactive material to the surface.

A possible mechanism that may eliminate convection is the existence of a salinity gradient

in natural granitic rocks. The upward displacement of water above the repository is positive while

that above the undisturbed rock is negative. The resulting movement of the solute creates an

additional pressure, which tend to suppress convection. Even at the time of 70,000 years since the
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emplacement the velocity for a test case including salinity was 4 times lower than the velocity in
the pure water case.

The results of the modeling of the semi-infinite array led to a number of important
conclusions:

1) The infinite array geometry is the most conservative case for the thermal analysis of
the performance of the deep boreholes repository, but it imposes unphysical restrictions
on the potential flow of the ground water, suppressing the convection between the
repository and the undisturbed rock. The infinite array can be adopted for the thermal
analysis, but more detailed models should be considered for coupled thermal-
hydrologic studies.

2) The modeling shows that in the semi-infinite array configuration the superficial
velocity does not drop exponentially over the period of time between 10 years and
100,000 years like in the infinite array. This supports the requirement to model the deep
borehole repository for 1,000,000 years since the fuel emplacement.

3) Modeling of the salinity can be important for the performance of the deep borehole
repository, as it has been shown to noticeably suppress convection.

This work has also evidenced remaining challenges in the robustness of the adopted
numerical methods for many of the analyzed cases. The performance of the Newton solver was
found to be superior to the performance of the PJFNK solver, which indicated the need for
improved preconditioning to take full advantage of the JFNK approach. However, performance of
the Newton solver decreases when the solution becomes advection dominated, and limits the
maximum time step at which the code converges. This behavior was observed for both B6nard-
Rayleigh convection modeling and the modeling of the semi-infinite array. This restriction did not
allow achieving results for the total simulation time of 1,000,000 years.

7.3. Recommendations for Future Work

Recommendations for future work can be divided into code improvements and model
improvements.

The code has demonstrated limited robustness when the solution was dominated by the
presence of convection, as is the case for the Benard-Rayleigh convection and a semi-infinite array
of boreholes. In both cases, the code could not preserve large time steps, which had to be
considerably reduced in order to achieve a converged solution.

Development and testing of improved physics based preconditioning methods have the
potential to address this limitation and would further allow adopting effectively the PJFNK solver,
which is a key feature of the MOOSE framework.

In the present work the focus has mainly been the support for a conceptual design of a
borehole repository. For this reason, a number of simplifications has been made in the derivation
of the governing equations and in the description of reference model parameters. More realistic
functions for permeability and especially porosity dependence on the depth will instead be required
for the accurate evaluation of a realistic borehole design, in particular when evaluating the
convective flows close to the bottom boundary in the semi-infinite array configuration.
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Two potentially significant phenomena were neglected in this work. First it was assumed
that no measurable cracks exist in the rock, and therefore water flow could be described using the
isotropic Darcy equation, which averages the flow through a network of small cracks while using
an average permeability of the rock. However, local increase in permeability for the seal has shown
to have potential to significantly enhance the water velocity. Thick cracks in the host rock may act
in the similar way and create a mechanism for the rapid escape of radionuclides. The presence of
cracks could be included in future models as highly permeable two-dimensional structures
embedded in the three-dimensional uniformly conducting medium.

The second valuable improvement could be the implementation in the code of a mechanical
model of the rock. The model could be coupled to the thermal model through expansion
coefficients of the rock, and to the hydrologic model via permeability and porosity.
Implementation of the mechanical properties would complete the coupled thermal-hydrologic-
mechanical-chemical formulation and allow simulating all the processes that are expected to be

significant in a borehole repository.
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Appendix A. Average Heat Generation Table for PWR Fuel
This table summarizes the decay heat correlation used in [23]. The data were kindly

provided by Bill Arnold.

Table 10. Decay heat power for cross-code validation.

t, y

0
1
2
3
4
5
6
7
8
9
10
20
30
40
50
60
70
80
90
100
125
150
175
200
225
250
275
300
325
350
375
400
425
450
475
500
550

76

Total power per borehole
q, kW

430.56
430.56
426.23
421.96
417.75
413.59
409.48
405.42
401.41
397.45
393.54
357.02
324.80
296.35
271.22
249.02
229.39
212.03
196.67
183.06
155.40
134.81
119.38
107.70
98.770
91.840
86.378
81.997
78.411
75.417
72.865
70.645
68.677
66.904
65.284
63.784
61.061

Volumetric power in
homogenized boreholes

q"', W/m 3

2371.1
2371.1
2347.3
2323.8
2300.6
2277.7
2255.0
2232.7
2210.6
2188.8
2167.3
1966.1
1788.7
1632.0
1493.6
1371.4
1263.3
1167.7
1083.1
1008.1
855.78
742.42
657.44
593.14
543.94
505.77
475.69
451.56
431.82
415.33
401.27
389.05
378.21
368.45
359.52
351.27
336.27



600
650
700
750
800
850
900
950
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700

58.614
56.374
54.301
52.371
50.566
48.874
47.287
45.796
44.395
41.837
39.571
37.559
35.770
34.176
32.753
31.479
30.337
29.309
28.382
27.543
26.781
26.088
25.455
24.874
24.340
23.846
23.388
22.963
22.565
22.193
21.842
21.511
21.197
20.900
20.616
20.344
20.084
19.833
19.592
19.359
19.134
18.915
18.703
18.496
18.295
18.099

322.79
310.46
299.04
288.41
278.47
269.16
260.42
252.21
244.49
230.40
217.92
206.84
196.99
188.21
180.37
173.36
167.07
161.41
156.30
151.68
147.49
143.67
140.18
136.98
134.04
131.32
128.80
126.46
124.27
122.22
120.29
118.46
116.74
115.10
113.53
112.04
110.60
109.22
107.90
106.61
105.37
104.17
103.00
101.86
100.75
99.670
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4800
4900
5000
5200
5400
5600
5800
6000
6200
6400
6600
6800
7000
7200
7400
7600
7800
8000
8200
8400
8600
8800
9000
9200
9400
9600
9800
10000
11000
12000
13000
14000
15000
16000
17000
18000
19000
20000
21000
22000
23000
24000
25000
26000
27000
28000

17.907
17.719
17.535
17.179
16.835
16.504
16.183
15.872
15.571
15.278
14.994
14.717
14.448
14.186
13.931
13.683
13.441
13.205
12.975
12.751
12.533
12.320
12.113
11.910
11.713
11.520
11.333
11.149
10.298
9.5443
8.8756
8.2809
7.7510
7.2775
6.8535
6.4726
6.1296
5.8197
5.5389
5.2837
5.0509
4.8380
4.6426
4.4626
4.2963
4.1422

98.613
97.580
96.568
94.604
92.713
90.887
89.121
87.410
85.751
84.139
82.573
81.050
79.568
78.126
76.721
75.354
74.021
72.723
71.457
70.224
69.021
67.849
66.706
65.591
64.504
63.444
62.409
61.400
56.712
52.562
48.879
45.604
42.685
40.078
37.743
35.645
33.756
32.050
30.503
29.098
27.816
26.643
25.567
24.576
23.660
22.811
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29000
30000
31000
32000
33000
34000
35000
36000
37000
38000
39000
40000
41000
42000
43000
44000
45000
46000
47000
48000
49000
50000
51000
52000
53000
54000
55000
56000
57000
58000
59000
60000
61000
62000
63000
64000
65000
66000
67000
68000
69000
70000
71000
72000
73000
74000

3.9988
3.8652
3.7401
3.6227
3.5123
3.4081
3.3096
3.2161
3.1273
3.0428
2.9622
2.8851
2.8113
2.7405
2.6726
2.6072
2.5443
2.4837
2.4253
2.3688
2.3143
2.2616
2.2105
2.1611
2.1133
2.0669
2.0219
1.9783
1.9360
1.8949
1.8550
1.8163
1.7786
1.7421
1.7066
1.6720
1.6384
1.6058
1.5741
1.5432
1.5132
1.4840
1.4556
1.4280
1.4011
1.3749

22.022
21.286
20.597
19.951
19.342
18.769
18.226
17.711
17.223
16.757
16.313
15.888
15.482
15.092
14.718
14.358
14.012
13.678
13.356
13.045
12.745
12.455
12.174
11.902
11.638
11.383
11.135
10.895
10.662
10.435
10.216
10.002
9.7952
9.5938
9.3981
9.2080
9.0231
8.8433
8.6685
8.4986
8.3333
8.1725
8.0161
7.8639
7.7159
7.5719
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75000
76000
77000
78000
79000
80000
81000
82000
83000
84000
85000
86000
87000
88000
89000
90000
91000
92000
93000
94000
95000
96000
97000
98000
99000
100000
110000
120000
130000
140000
150000
160000
170000
180000
190000
200000
210000
220000
230000
240000
250000
260000
270000
280000
290000
300000

1.3495
1.3247
1.3006
1.2772
1.2543
1.2321
1.2105
1.1895
1.1690
1.1491
1.1296
1.1108
1.0924
1.0745
1.0570
1.0401
1.0235
1.0074

0.99179
0.97653
0.96168
0.94722
0.93314
0.91943
0.90607
0.89307
0.78025
0.69338
0.62621
0.57401
0.53321
0.50106
0.47549
0.45495
0.43822
0.42441
0.41282
0.40294
0.39437
0.38680
0.38000
0.37381
0.36809
0.36273
0.35767
0.35284

7.4317
7.2953
7.1626
7.0335
6.9078
6.7855
6.6664
6.5506
6.4378
6.3280
6.2211
6.1170
6.0158
5.9172
5.8212
5.7277
5.6367
5.5481
5.4619
5.3779
5.2961
5.2164
5.1389
5.0634
4.9898
4.9182
4.2969
3.8185
3.4486
3.1612
2.9364
2.7594
2.6186
2.5054
2.4133
2.3373
2.2735
2.2190
2.1718
2.1301
2.0927
2.0586
2.0271
1.9976
1.9697
1.9431
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310000
320000
330000
340000
350000
360000
370000
380000
390000
400000
410000
420000
430000
440000
450000
460000
470000
480000
490000
500000
510000
520000
530000
540000
550000
560000
570000
580000
590000
600000
610000
620000
630000
640000
650000
660000
670000
680000
690000
700000
710000
720000
730000
740000
750000
760000

0.34820
0.34371
0.33936
0.33511
0.33096
0.32689
0.32289
0.31896
0.31510
0.31129
0.30753
0.30383
0.30017
0.29656
0.29300
0.28948
0.28601
0.28258
0.27919
0.27585
0.27254
0.26927
0.26605
0.26286
0.25971
0.25660
0.25352
0.25048
0.24748
0.24452
0.24159
0.23869
0.23583
0.23301
0.23022
0.22746
0.22473
0.22204
0.21938
0.21675
0.21416
0.21159
0.20906
0.20655
0.20408
0.20163

1.9176
1.8929
1.8689
1.8455
1.8226
1.8002
1.7782
1.7566
1.7353
1.7143
1.6936
1.6732
1.6531
1.6332
1.6136
1.5942
1.5751
1.5562
1.5375
1.5191
1.5009
1.4829
1.4651
1.4476
1.4302
1.4131
1.3962
1.3794
1.3629
1.3466
1.3305
1.3145
1.2988
1.2832
1.2678
1.2526
1.2376
1.2228
1.2082
1.1937
1.1794
1.1652
1.1513
1.1375
1.1239
1.1104
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770000
780000
790000
800000
810000
820000
830000
840000
850000
860000
870000
880000
890000
900000
910000
920000
930000
940000
950000
960000
970000
980000
990000
1000000

0.19922
0.19683
0.19447
0.19214
0.18984
0.18756
0.18532
0.18310
0.18090
0.17874
0.17660
0.17448
0.17239
0.17032
0.16828
0.16627
0.16428
0.16231
0.16036
0.15844
0.15654
0.15467
0.15281
0.15098

1.0971
1.0840
1.0710
1.0581
1.0455
1.0329
1.0206
1.0083

0.99625
0.98432
0.97253
0.96088
0.94936
0.93799
0.92675
0.91565
0.90468
0.89384
0.88313
0.87255
0.86210
0.85177
0.84157
0.83148
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