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Abstract

In this thesis, the windowed multipole method of Doppler broadening is developed
from the multipole method. The multipole method is a pole and residue reformulation
of the cross section data used in nuclear cross section data libraries. This form is
advantageous as the Doppler broadened form is analytical, and the library itself is very
small. However, multipole is quite slow. By introducing a slight approximation to the
data, however, the computational cost can be reduced substantially. The method used
to do this is called the windowed multipole method. The conversion of a multipole
library to a windowed multipole library is detailed thoroughly. Then, a windowed
multipole library is developed and tested on a light water reactor benchmark. In
testing, the library outperformed target motion sampling and pseudomaterials in
computational time, memory usage, and cache efficiency. Windowed multipole had
a factor of 33 fewer cache misses than target motion sampling, and a factor of 80
fewer than pseudomaterials. This reduction in memory transfers makes it a very
suitable on-the-fly Doppler broadening algorithm for Monte Carlo simulations on
future supercomputer designs.

Thesis Supervisor: Benoit Forget
Title: Associate Professor of Nuclear Science and Engineering
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Chapter 1

Introduction

Over the last few years, intense interest has been focused on simulating nuclear re-

actors with coupled thermal-hydraulics and neutron transport. Such high fidelity

simulations would be useful everywhere from the design stage to investigation of ac-

cidents. This sudden interest has come about since recent computers are becoming

large enough to tackle the problem with minimal approximation. Thus, a full core

could be simulated in a matter of days.

One issue in particular stands in the way of these simulations. In order to couple

the temperature field into the neutronics simulation, the neutronics simulation will

have to properly handle the change in collision probability that occurs when the

target moves due to the temperature of the medium. There are many ways to handle

this probability, from the many ways of performing Doppler broadening (performing a

convolution integral to create an effective cross section) to sampling the target motion

itself. However, the majority of methods in use today either require a great deal of

computational time, a great deal of data stored in memory, or both.

With the advent of future exascale computers, it is predicted that the memory

bandwidth will not increase proportionally with the floating point performance [2].

Thus, any task that wishes to take full advantage of such a machine would have

to reduce memory load as much as possible. With the cross section library being

frequently accessed inside of a Monte Carlo code, a substantial reduction in library

size would have substantial performance benefits.
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This thesis details the implementation of a new, memory efficient algorithm to

perform Doppler broadening called the windowed multipole method. This method

takes the original resonance data that is available for most isotopes, converts it into a

form that can be analytically Doppler broadened, and then performs an optimization

to minimize the number of operations required at the expense of an extremely small

loss of accuracy. This method requires orders of magnitude less memory bandwidth

than other techniques, while also taking less time to evaluate on current computers.

As the memory available becomes slower relative to the rest of the machine, the

advantage of the technique will only improve.

1.1 Structure of this Document

This thesis is segmented into five chapters. The first is this introductory chapter.

Chapter 2 discusses Doppler broadening. It introduces the algorithms currently in

use, their advantages, and their weaknesses. Specifically mentioned is the multipole

algorithm and its two primary weaknesses. Then, in Chapter 3, these two weaknesses

are addressed with a novel algorithm, the windowed multipole method. In Chap-

ter 4, the resulting windowed multipole cross section libraries are tested for accuracy

and performance. Direct accuracy comparisons are done between the library and

the ENDF-B/VII.1 libraries included with MCNP6 [7]. Timing and memory usage

comparisons are performed between windowed multipole and two other temperature-

dependent algorithms: target motion sampling and pseudomaterials (both of which

are described in Chapter 2). Finally, a brief summary of results are presented in

Chapter 5.

1.2 On Nomenclature Usage

One issue with the literature with regards to Doppler broadening and specifically

multipole is the inconsistent usage of symbols. In order to ensure that the meaning

of each term of each equation is well understood, a nomenclature section is provided

14



at the end of this chapter. In this nomenclature section, important variables used

multiple times in the document will be described. Symbols will also be described

alongside equations when used for the first time.

1.3 On the Machine Used

All performance testing was performed on the same machine, to ensure consistency

and repeatability. The processor of this machine was an Intel@Core i7-970 operating

at 3.2 GHz. This is a six core machine with 32 kiB of 8-way associative Li data cache

and 256 kiB of 8-way associative L2 cache per core. 12 MiB of 16-way associative L3

cache is shared between cores.
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Nomenclature

U(v) The microscopic cross section at a velocity v, page 21

-eff(V, T) The effective microscopic cross section at a neutron velocity v and

temperature T, page 21

A The ratio of the mass of the target to the mass of the neutron,

page 26

kb Boltzmann's constant, taken as 8.617342 x 10- eV K- 1 [91, page 20

M The target mass, page 20

P(VT) The probability of a target having a velocity VT, page 20

p3  The pole at index j, j being an index to the whole set of poles that

create a cross section, page 26

R(v, T) The reaction rate for a neutron at velocity v going through a ma-

terial at temperature T, page 21

rjx The residue for reaction x corresponding to pole pj, page 26

T Temperature, page 20

u The square root of the energy, E, page 26

v The velocity of a neutron, page 21

V' The relative velocity of a neutron and its target, page 21

VT The target velocity, page 20
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Chapter 2

Temperature Effects

In order to run a Monte Carlo simulation, the probability of collision must be known

in order to randomly sample a distance for a particle to travel. Precisely knowing this

probability is essential to correctly simulating a nuclear reactor. These probabilities

are available in evaluations such as the ENDF-B/VII.1 [3] library as microscopic cross

sections. For a two-body problem in which the target is at rest, the cross section is

only a function of projectile energy, so all evaluations are reported in this form.

The issue is, though, that a target moves due to thermal energy. In order to

compute the probability of collision, first we must know the distribution of target

velocities. A brief introduction to these distributions is shown in Section 2.1. Then,

the target motion probability distribution must be used to calculate new collision

probabilities. This is done in Section 2.2.

2.1 Target Motion Distributions

There are many possible ways to model the target motion distribution, depending

on what material is being interacted with. In the simplest case, the material is a

free gas. In a free gas, the targets have no interaction amongst themselves, and their

velocity distribution follows that of the Maxwell-Boltzmann distribution [15]. In this

particular case, the target motion is only a function of temperature (T) and target

mass (M), and is shown in Equation (2.1).

19



P(V)dVT - 4/3/2V2e-IVdVT (2.1)
7r

M

2kbT

In the case of solids, the binding energy between atoms can alter the target motion

in an anisotropic way. In these circumstances, the probability distribution is now a

function of angle, and far more complex. A particular example for lattices with cubic

symmetry (such as those in U0 2) is presented in [18]. There are a wide variety of

distributions for different crystal structures.

Although fully representing the target motion is preferable, it is substantially

more difficult. Due to this, the majority of cross sections are processed assuming a

free gas target distribution. As mentioned in the second paper above, this approx-

imation becomes less accurate at low temperatures and with particularly strongly

bound crystals. As most reactors operate at temperatures significantly higher than

room temperature, these are minor issues for most materials (with exception to some

moderators). Thus, all further analysis in this thesis is done assuming a free gas

distribution.

2.2 Doppler Broadening

The process of Doppler broadening fundamentally comes down to conserving reaction

rate. For a single neutron, the reaction rate is the product of the velocity and the

probability of collision. The process is shown in Equation 2.2. In this form, the reac-

tion rate at a relative velocity v' is integrated over all possible target velocity vectors

VT. Only those that are physically possible (v' > 0) are added to the contribution.

R(v, T) = v'u-(v')P(Y )dY (2.2)

20



The reaction rate can also be thought to be the product of the velocity and an effective

probability of collision.

R(v, T) = vaeff(v, T)

Vaef(V, T) = f v'a(v')P(V ')d (2.3)
JAl /T:v'>O

In this general form, whatever the probability distribution, be it Maxwell-Boltzmann

as we will use throughout the rest of this document, or some crystalline lattice prob-

ability distribution, Equation (2.3) will hold.

When the Maxwell-Boltzmann distribution from Equation (2.1) is substituted into

Equation (2.3), the isotropy allows for the conversion of the complex integral to that

of a much simpler form as shown in Equation (2.4).

Ueff(V, T() =a(v') e-(v/v) - e-'+v)] dv' (2.4)

There are a large number of ways to implement this algorithm, with varying

strengths and weaknesses. The rest of this chapter will be dedicated to discussing

five different algorithms.

The first, known as SIGMAl, is an algorithm to exactly Doppler broaden data

available in pointwise form. This algorithm is commonly used in preprocessing tools

such as NJOY [171, and will be described in detail in Section 2.2.1. The next algorithm

converts the Doppler broadening integral into a target motion sampling problem, and

then samples the target motion whenever a cross section is needed. This algorithm

will be detailed in Section 2.2.2. The third is to perform a curve fit of the tempera-

ture data and store it for later usage and is shown in Section 2.2.3. Fourth, simple

interpolation between two different temperatures can be done. This is the basis of the

Pseudomaterials technique in Section 2.2.4. The final algorithm performs a partial

fraction expansion of the resonance data available with most isotopes and broadens

these fractions exactly. This algorithm is presented in Section 2.2.5, and then greatly
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expanded in Chapter 3.

2.2.1 SIGMA1

The SIGMA1 [4] algorithm is the most commonly used algorithm, as it works on

pointwise data, which any other kind of data can be converted into. The idea is

to first perform a coordinate transform to Equation 2.4, replacing /v 2  y2 and

S/v' 2  X 2

-(y, T) = o-*(y, T) - -*(y, T)

1 (1)1/2 00
o*(y, T) = ( / x2 O.(x, O)e-(XY)dx

Upon substitution of o-(x, 0) = Ak + CkX 2 for the region x c (Xk, Xk+1), the algorithm

simplifies into an analytical form:

-*(y,T)= 2 2 CkH4+ 4CyH+ (Ak+6Cky 2)H2 +

(2Aky + 4Cky 3)HI + (Aky 2 + Cky 4 )Ho

where H,, is short for Hn(Xk+1 - y, Xk - y), which is:

Hn(a, b) = Fn(a) - Fn(b)

Fn(a) = -- ja Zne-z2 dZ

The set of equations Fn(a) form a recursive set, and an analytical form using the error

function is available. Thus, to evaluate a cross section, each point is the sum over

each line segment of those 10 terms. While the number of segments can be reduced,

as those far away contribute very little, this algorithm is particularly slow. As such,

it is used to preprocess libraries before use in the Monte Carlo simulation. For each

temperature T in the problem, the entire OK pointwise dataset is broadened using the

22



above equation from OK and stored pointwise. Used in this way, although pointwise

lookup is computationally cheap, it requires the storage of large quantities of data.

2.2.2 Target Motion Sampling

Target motion sampling is the technique used in the Serpent Monte Carlo code [22].

It takes an alternate approach in that, instead of reconstructing an equivalent cross

section, it samples the target motion from the function that creates the equivalent

cross section.

The technique has two stages. First, the maximum possible cross section given any

target velocity (within a reasonable band), called the majorant cross section (Emaj)

is calculated prior to simulation. During the simulation, the neutron is transported

stochastically using this cross section. At the destination, the target motion is sam-

pled to calculate the real total cross section at the relative velocity Ze(E', x). Then,

the collision is kept with the probability

E0 (E', x)P = tot (2.5)
maj

In order to sample the target velocity, it is noted that the effective cross section can

be represented in two ways:

-eff(V, T) = J -(v')P(Vi, p)dVtdi

Ueff (V, T) = f v'-(v')PMB(Vt)dVtd 2

Thus, the distribution of target velocities given a Maxwell Boltzmann target distri-

bution is given by the following equation.

P(V,1 ) = LPMB(V) (2.6)
2v

It is not trivial to sample from Equation 2.6. The method used splits the distri-

bution into two components and samples randomly from one or the other. Once a

23



velocity is known, then the angle is sampled from an isotropic distribution. Finally,

the relative velocities are compared to ensure that such a collision is physically possi-

ble. Once a physically realistic target velocity is sampled from, Equation 2.5 sampled.

If Equation 2.5 indicates success, the particle is moved. If not, the process begins

again.

This technique has numerous benefits. First, since the Doppler broadening is

performed in a general way that is not a function of the structure of the data, it will

be correct so long as the Maxwell-Boltzmann assumption is correct. Secondly, the

technique requires only one library, which can be at either OK or at some temperature

below that of all expected temperatures in the problem. The latter form has been

found to be more computationally efficient [23].

However, the primary disadvantage is the computational time. As mentioned by

Viitanen and Leppdnen [231, target motion sampling with an elevated basis temper-

ature reduced performance by 46 to 60%, depending on the problem simulated. Sec-

ondly, the majorant cross section needs to be tabulated to allow for proper sampling.

This additional table adds overhead.

2.2.3 Curve Fitting

One approximate method is to process the cross section data at many temperatures,

and then curve fit at each energy point the temperature dimension of the data. For

example, at energy Eg, the cross section can be represented as follows:

N N

o-(T, E,) ~ + bg,iT'/2 + Cg (2.7)

The values ag,4, bg,i and cg are the curve fitting coefficients at Eg for this reaction. As

for the value N, it has been found that a value of 8 allowed for a library to be within

0.1% for all reactions, isotopes, and energies [251. While Equation (2.7) is very quick

to evaluate, a 17 term expansion would require the storage of approximately 17 times

as much data as would be required for a single temperature.
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2.2.4 Pseudomaterials

Pseudomaterials is arguably the most basic of all of these algorithms. Given a data

set at temperature T1, and another at T2, all one needs to do to find the cross section

at T is to interpolate between them. There are a few different methods to perform

this interpolation, such as linear-linear:

-(E, T) = a(E, TI) + [u(E, T2 ) - a(E, T)] [ T1
IT2 - T1I

Or log-log:

[ ln(T) - ln(T1) 1
or(E, T) = ln(a(E, T1 )) + [ln(a(E, T2)) - ln(a(E, T1 ))] -

_ln(T2) - ln(TI) _

While the choice of methods matters, the most important thing is the spacing between

temperature datasets. For complicated isotopes, such as 238 U, log-log interpolation

could not get 0.1% accuracy with 28K steps between temperatures [211. For most

other isotopes, the requirements are less stringent.

However, if 28K is taken as the required spacing, and a range of temperatures

from 300K to 3000K is of interest, nearly 100 times as much data will need to be

stored compared to the single temperature case.

2.2.5 Multipole

The multipole formalism is, essentially, a different way to store the fundamental reso-

nance information from the cross section libraries. When evaluators run experiments

to calculate the cross section of a reaction, the model that the data is fit to is one of

several simplifications of R-matrix theory [16]. R-matrix is a two-body model of the

quantum-physical interaction between a projectile and a target. However, in its full

form, the matrix itself is infinite in size, as there are an infinite number of possible

channels in which particles can enter or leave. So, this matrix is simplified in a variety

of ways, most often into the Reich-Moore or the multi-level Breit-Wigner (MLBW)

forms. The coefficients that go into those models are distributed for many isotopes
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over their resolved resonance energy range.

The functions used to evaluate the cross sections from these simplifications have a

unique property. They can be reconstructed using a partial fraction expansion that,

instead of representing a cross section through a series of energies and channel widths,

represents a cross section using poles and residues [11]. For example, the cross section

for reaction x could take the form shown in Equation (2.8). The term j represents

the sum over all quantum numbers, levels, and poles necessary to fully reconstruct

the function.

o-X (E) =iX R '(2.8)

When Equation (2.8) is Doppler broadened, however, the main advantage of the

multipole formalism shows itself. The Doppler broadened form is shown in Equa-

tion (2.9).

O-2(U, T) = u/ R irixvW(z) - i' C)(2.9)

Where:

kbT
4A

z U -P

(j exp -(u+) 2

C ( =j 2pg f du'- U/' 2}} N p -U'2

There are two functions of interest. First, W is the Faddeeva function, a function

in which numerous high performance evaluators are available [13, 8]. The second

function, C, has been found to be so small as to be completely ignored when E >>
kbT/A [12].

There are two major advantages to this technique. First, the resolved resonance
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region can be stored as a few thousand complex numbers instead of hundreds of

thousand pointwise values. This reduces the memory requirements for a single tem-

perature tremendously. Second, since the Doppler broadening is analytical, more

than one temperature need not be stored.

There are three drawbacks. The first drawback is that this only works when the

cross section evaluators have provided resonance parameters which can be converted

to multipole. Currently, this is limited to isotopes with cross sections not in pointwise

format and without any charged particle exit channels. The next drawback is compu-

tational cost. Each resonance needs 2(1 + 1) poles and residues to reconstruct it. In

the case of 238U as represented in the ENDF-B/VII.1 library, that will yield 11,520

poles. The Faddeeva function must be evaluated at each pole for each cross section

evaluation. Thus, multipole can be even slower than SIGMAL. Finally, although the

C function is negligible for E > kbT/A, kbT/A for 238 U at 300K is 1.1 x 10-4 eV.

This is even worse for low mass isotopes at higher temperatures. The last two of these

issues are remedied Chapter 3, at the cost of slightly decreased overall accuracy.

2.3 Summary

Now that Doppler broadening has been introduced, along with five possible methods

to perform it, it is worth making a table comparing one algorithm to another. First,

Table 2.1 compares computational time relative to single temperature table lookup.

Method Time

SIGMA1 - Preprocessed Reference
SIGMA1 - On the Fly Extremely slow
Target Motion Sampling 2 x Reference
Multipole Extremely slow
Curve fitting Near Reference
Pseudomaterials 2 x Reference

Table 2.1: Methods comparison - computational cost

Table 2.2 similarly compares the memory requirements relative to single temper-

ature table lookup.
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Method

SIGMAl - Preprocessed
SIGMAl - On the Fly
Target Motion Sampling
Multipole
Curve fitting
Pseudomaterials

Memory

One pointwise library per temperature

One pointwise library
One pointwise library + Majorant table
0.01 x a pointwise library
17x a pointwise library
10-100x a pointwise library

Table 2.2: Methods comparison - memory cost

Multipole is unique in that it can take substantially less memory than methods

currently in use. Even if it were to be optimized to take a factor of ten longer than

lookup in a preprocessed library, it would have niche value on a memory-constrained

machine. However, Chapter 3 details a novel optimization of multipole called win-

dowed multipole, and Chapter 4 shows that this algorithm can do much better than

a factor of ten.
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Chapter 3

Windowed Multipole

Although Multipole had major advantages (analytic Doppler broadening, low memory

cost), it has two issues. The first is with regards to the C function in Equation (2.9).

When E < kT/A, either the C function needs to be evaluated, or some replacement

must be made. The second is with regards to computational performance. As pre-

viously explained, for 238U there are 11,520 poles. For each cross section evaluation,

the Faddeeva function would have to be evaluated once per pole to reconstruct the

cross section. This typically made Multipole on the order of several hundred times

slower than other on-the-fly algorithms. Both issues are solved in the same way.

There are two interesting effects when a pole is taken individually. The first is

that, distant from the center of a resonance, the pole is relatively smooth [121. This

allows this region to be replaced with a lower order approximation, such as a curve

fit [6]. The second is that the difference between a Doppler broadened pole and a

OK pole approaches zero in these smooth regions. Both of these effects are shown in

Figure 3-1.

This understanding forms the basis for windowed multipole. At any given point in

energy, the contribution of the majority of poles could be represented by a single curve

fit. The goal then is to simultaneously store as few curve fits as possible, evaluate as

few poles per cross section evaluation as possible, and compromise accuracy as little

as possible.

This leads to the windowing part of windowed multipole. Given a set of poles
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Figure 3-1: A single pole comparison between 01K and 300K for 23U

and residues that represent the cross section. we first segment the energy domain

with a grid. Each cell is called an inner window. For each inner window. another

window is laid on top. called the outer window. All poles that have a real component

lying within the outer windows are exactly evaluated. An optimization routine then

identifies the optinial size of these outer windows. The remaining terns are then

curve fit. The process is shown inl Figure 3-2.

Thus. if one wanted to evaluate a cross section. the process is to find what iner

window brackets the energy. look pll) which poles nmst be evaluated exactly. evaluate

them. anl add in the willdow's curve fit.

As for the C function, the curve fitting can also eliimiinate it. The C function

is only relevant at low energies. These low energies are often very smooth. and can

be entirely represented by curve fits. If the curve fit itself can he exactly Doppler

broadenme(d with 11o approxilllation. the error disappears.

However, there are several unknowus that must be dealt with first to ensure that
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Select Inner Windows
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Add Outer Windows To Each Inner Window

0 200 400 600 800 1000

Curve Fit Explicit Resonance Evaluation Curve Fit
For any point in the inner window

Figure 3-2: The xindowing process

the algorithn works (quite well. The first is the general structure of the optimization

process, detailed in Section 3.1. The second one is the choice of Faddeeva function to

evaluate, as there are several different algorithns. Three are compared in Section 3.2.

Finally, not all dlata is easy to compress into the Windowed m1 nultipole library. One

particular issue is the existence of "File 3 (lata in the ENDF-6 format. This is

pointwise (Lata that iiust We sunied with the resonance data to reconstruct the cross

sectioll. The (uirreint lllethlo(d used to elimiimte this issue is described in Section 3.3.

3.1 The Optimization Process

The first, issue is the optimization process. This process transforms a multipole library

(that is pr)ecollplited from the resonance plarameters) into a windowed nmultipole

library. The goal is to make the a(tll comJpitation of a cross section as cheap and

as efficient as possible. The transformation also introduces minute approximationls to

the data. Thus, a balance is forned. The miore approximations inade. the faster the
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cross section can be evaluated. As such, the goal is to take a user defined tolerance,

often measured as a maximum allowed relative error across the entire dataset, and

make the library run as fast as possible in that envelope.

To make this process possible, three components must be considered. The first

is the choice of energy grid that the inner windows exist on. The second is the

curve fitting function to be used. The last component is the structure of the actual

optimization algorithm. The rest of this section is dedicated to the analysis of these

facets.

3.1.1 Energy Grid

In the original development of windowed multipole, the only requirement set on the

energy grid was that it should not require a binary search due to the possible per-

formance repercussions. This eliminates arbitrarily sized windows, but it also leaves

available equally spaced windows. It is of course not necessary that the windows be

equally spaced along the energy axis. In light of that, three different axes were tested:

energy, momentum, and lethargy.

238U was processed into three different windowed multipole libraries. Each of

them had the same number of windows, 2000. For each window, the outer window

was set to span a set distance past the inner window such that the difference in span

between the inner and outer window was a constant. This distance was 50 eV. The

only difference was the size of the inner windows of each library: one equally spaced

in energy, one equally spaced in momentum, and one equally spaced in lethargy. The

value of the OK a cross section is plotted in Figures 3-3, 3-4, and 3-5, for each of the

libraries, with a comparison to the exact OK value.

In essence, each different mode has a different compromise. The linear in energy

window is very accurate at high energy, and not very accurate at low energy. The

opposite can be said of the equally spaced in lethargy. The equally spaced in momen-

tum version is roughly balanced between the two. The choice between the spacing

methods depends on whether or not it is easier to recover accuracy at lower energies

or higher energies by increasing the outer window size.

32



cT, U238, OK, WMP vs. MP, Equal Energy Windows

absolute errors

10

10

10 10-4 1()- 10- 10 1 100 -101 102 103 1(4 10,

Energy, eV

Figure 3-3: Using equal in energy Windows

cr,, U238, OK, WMP vs. MP, Equal Momentum Windows
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Figure 3-4: Using equal in nionentun windowS
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-5 r, U238, OK, WMP vs. MP, Equal Lethargy Windows
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Figure 3-5: Using equal in lethargy windows

The 6.67 eV resonance of "U is shown in Figure 3-6. In this. the positive real

pole. the negative real pole in which the sign is flipped to make it plottable. and their

sun are shown. It is clear that either pole has little to iio impact on the high energy.

However. both have a large inpact at low energy. All of the (T, pole alnd residue pairs

have similar 1/v components at low energy.

Essentially. all poles have an impact at low energy. but few have an impact at high

energy. Thus. to reduce the curve fit error, more poles would have to be considered per

unit error at low energies than at high energies. Furthermore. since nuclear reactors

often have the majority of their neutrons at thermal energy, full reactor analysis

is most sensitive to increases in computational cost at low eneg-y. Both combined

indicate that anything that adds low energy errors should be avoided at all costs.

This ehmninates the equally spaced inl energy method.

Finally, it is noted that going froi equally spaced in mnomeitumn bills to equally

spaced ill lethargy only slightly decreases low energy error and imiassively increases
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Figure 3-6: Pole reconstruction of the 6.67 (,V resonance of 2
31U

high energy error. From this. equally spacedI ill monmenitiinii is the pr-efelred spacing,

and will be used throughout the rest of this docuelnlit.

3.1.2 Curve Fits

The curve fit lleeds to imeet two criteria. accuracy and Doppler broadenability. Ac-

curacy is important for obvious reasons. If we could not accurately reconstruct the

data with the curve fit. it seives no purpose.

In order to construct an accurate curve fitting scheme. the curve fit must recoil-

struct exactly as mnany cases of interest as possible. There are three functions that

are particularly important. The first is that of a constant. Not only is a const alit

generally useful, but it also is the low-energy asvmlptotic represenltation of the scat-

tering (r()s section at 0K. The second is that of 1/1'. as it is the asymptotic form of

absorption (1rss sections. The filial one of interest is 1/E, but for less obvious rea-

sons. Whe a resoniance is expanded into poles and residues, as shown in Figure 3-6.
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the individual poles take a 1/E form in the asymptotic region. This can also be found

in the equations, as 1/E is the leading term in Equation (2.8). Thus, if a single pole

is being curve fitted without its counterpart, 1/E becomes essential.

The second criteria, that the curve fit must be Doppler broadenable, is required

for two reasons. The first is due to the inaccuracy at low energies of the multipole

formalism when the C function of Equation (2.9) is ignored, as explained in this

chapter's introduction. The second is that, also at low energies, the cross section is

often quite smooth and resonance free. However, it is composed of thousands of the

tail ends of resonances. In order to get Doppler broadening at low energies, the choice

is then between broadening possibly thousands of poles, or broadening a single curve

fit. For computational efficiency reasons, the latter choice is obvious.

Several polynomials were tested, but only one met all the above criteria. It takes

the form of Equation (3.1).

N

-(E) = ZanEn/2- 1. (3.1)
n=O

In this form, 1/E, 1/v, and a constant could all simultaneously be represented exactly.

Furthermore, Equation (3.1) can itself be Doppler broadened in a recursive way [14].

N

o-(E, T) = Ean~n(E, T)
n=O

Oo(E, T) = erf( VaE)
E

1
O1(ET) =

02(E, T) = [ +E Oo(E,T) + eaE
12a I caurE

Vn > OOn+2 (E, T) = 2n +1+ EOn(E, T) n(m- -2(E T)
I2a 40Z

A
Z kbT

In this form, only a single error function and a single exponential need to be evaluated.

The rest is simple. Thus, the Doppler broadening of a curve fit can be performed
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quickly with minimal overhead. There was also another accidental advantage to this

fit. When one takes Equation (2.8) and performs the Laurent series expansion on

it at u = 0, it takes the form of Equation (3.2), which is structurally identical to

Equation (3.1).

= :rxUn-2 (3.2)
U p - u =opj

This converges so long as lpl > Jul. This implies that the curve fit can always

exactly reconstruct any pole when near zero energy given enough terms. As mentioned

many times prior, low energies are the most important region for curve fitting. This

polynomial is used as the curve fit of choice for the rest of this document.

3.1.3 The Optimization Algorithm

The optimization algorithm is designed to minimize computational time. As with

many optimization algorithms, this one is a bit convoluted. In order to keep the algo-

rithms reasonably brief, Table 3.1 shows some symbolic abbreviations used throughout

this section.

Symbol Meaning

P the set of poles for the window
C the set of curve fit terms for the window
-e(E, T) the exact cross section operator for this window

oa(E, T) the WMP cross section operator for this window
Cb(E, T, C) the broadened curve fit evaluation operator at T, E
C(E, C) the unbroadened curve fit evaluation operator at T, E
P(E, T, P) the pole evaluation operator at T, E
T the span of all temperatures of interest
E the span of all energies within this window
fit(x(E)) the curve fit coefficient generator on some function x(E)

Table 3.1: Algorithm notation table

Using this notation, the overall optimization algorithm for a single window is

presented in Algorithm 1. The rationale for this algorithm is that it is always cheaper

to not broaden a curve fit than to broaden one, and that even a broadened curve fit
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should be cheaper than evaluating several poles and residues exactly. This algorithm

Algorithm 1 Optimization Process of a Single Window
P -0
C <- fit (ae(E, 0))
if the maximum error in the domain of T, E is less than the tolerance without
broadening the curve fits then

uw(E, T) <- CU(E, C)
Go on to the next window

else if the maximum error in the domain of T, E is less than the tolerance while
broadening the curve fits then

aw (E, T) <- Cb (E, T, C)
Go on to the next window

end if
P <- an optimal set of poles using Algorithm 2
C <- fit (ce(E, 0) - P(E, 0, P))
if there exists a P such that the maximum error in the domain of T, E is less than
the tolerance without broadening the curve fits then

uw(E, T) +- CU(E, C) + P(E, T, P)
Go on to the next window

else if there exists a P such that the maximum error in the domain of T, E is less
than the tolerance while broadening the curve fits then

uw(E, T) <- Cb(E, T, C) + P(E, T, P)
Go on to the next window

end if
If no setting has been found, fail and alert the user that the curve fit order is too
small or that P may not be allowed to grow enough

raises several interesting problems to implement. What is a, defined as? How does

one efficiently find if the error is less than a tolerance for all temperature and energy?

And finally, how does one choose an optimal set of poles, P?

The Exact Cross Section

As explained earlier, multipole itself cannot be used as the reference cross section,

as it is inexact at low energies. SIGMA1, detailed in Section 2.2.1, is exact for a

pointwise dataset. Given a sufficiently fine pointwise set, it can be used as a reference

solution. However, there is a bit of an issue. If we need to know the value of the cross

section at a variety of energies and temperatures that are not known prior, SIGMA1

will be very inefficient. As such, a crossover was implemented. Below this threshold,
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Figure 3-7: Difference between normal multipole and SIGMAl at 30001K for 23U

SIGMA1 is used to generate tile reference solution. Above this value, multipole is

used. A grapli of the differenee 1)etween imultipole al(l SIGMAl for 28U is shown in

Figure 3-7. The discrep alIcY droips below 0.1% at around 1 eV.

Similarly. the transition polit for a lower mass isotope. say, 2 Al. is around 20 eV

as shown in Figure 3-8. As this cutoff should ble roughly plroplortiollal to atoi(' weight

ratio and little else. a simple 2-poillt correlatiol (,all be made. Inl tie automation ste,)

this correlation was used to lredit the (ultoff for other isotopes.

Finding if the Error Criterion is Met

It would be useful to (efile a maximum allowe(d relative error and use that as the

blelunark ill which success is nmeasured. This makes the error checking portion of the

code quite difficult. There are two app)roaches here. The first is to create a ftictiol f.

defilled ill Equationi 3.3. aid searci for tle existemce of a zero ill tie two-dimensional
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Figure 3-8: Difference between normal imultipole and SIGMA 1 at 3000K for 2Al

energy-temperature span.

f(E T)~ =o1, (E, T) (T (E. T) C (3.3)
c (E. T)

UnfortuInatel, not filnding a zero of this function gives Ito evidence of the success or

failure ill meeting the error criterion. It very well iay be that the zero finder keeps

missing its intended target. Furtherniore, there are n1o guarantees that Equation 3.3

is smooth. which makes the search for zeros even more difficult. The other approach

is to formulate Equation 3.4. and find the global maxiumii if f.

(3.4)T 1, (E. T) - 7,(E, T)
(T,(E. T)

This is itself not trivial, and there is no guarantees with any algorithin of success.

However. only an approximate maxirninn is of interest. for if any point exceeds tol-

erance. the process can be safely terminated with a failure. The algorithm currently
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implemented to search for the global maximum is the differential evolution technique

[201. In the code, it is configured with the settings listed in Table 3.2. These values

were found entirely by adjusting and checking, and likely do not actually resemble

the optimal settings.

Variable Value

Differential Weight 0.5
Crossover Probability 0.9
Population 100

Table 3.2: Differential evolution settings

Finding an Optimal Set of Poles

The actual pole finding process is also a bit convoluted. In order to reduce the

dimension of the problem, instead of scanning the computational cost of each pole

relative to the error introduced, only the outer window span is varied. Furthermore,

simple bisection searching is performed to find the optimal window size. The general

process is shown in Algorithm 2. There are several possible improvements to this

algorithm, such as treating Jbegin and jend as the optimization targets instead of S0 .,

but these have not been attempted.

3.2 Faddeeva Functions

Now we consider components that do not change the structure of the library. The

choice of Faddeeva function is a relatively important one, as the performance and

accuracy of this function have a very strong bearing on the performance and accuracy

of the final result. As such, three different Faddeeva functions were tested. The first is

the Faddeeva Package by Steven G. Johnson [131. This algorithm has been tested by

its author and it was found "that the accuracy is typically at least 13 significant digits

in both the real and imaginary parts." This algorithm was considered the reference

solution. It will be known as "MIT W" throught the rest of this document. The

second algorithm is the one that came with the original WHOPPER code [11], and
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Algorithm 2 Outer Window Optimization
M <- midpoint of the inner window

S10 , +- the initial guess for the minimum window size (0)
Shigh +- the initial guess for the maximum window size
Sow <- Shigh

repeat
bsegin +- index of first pole with real component > M - Sow/2

Jend <- index of last pole with real component < M + Sow/2
P + [Jbegin : jend]

C < fit (Ue(E, 0) - P(E, 0, P))
if the maximum error < tolerance then

Shigh = So.

Sow (Shigh + Sio)/ 2
else if iteration # 1 then

slow =So
Sow (Shigh + Siow)2

else
Fail and alert the user.

end if
until Converged

will be called "WHOPPER W" throughout the rest of this document. The third one

is from the MC2 2 code [8], and will be called "QUICK W" throughout this document.

There are other algorithms that were not thoroughly tested. For example, there is a

Fourier transform method whose advantage is that it is fully vectorizable I1. Such

an algorithm may be advantageous on future architectures, such as GPUs.

Both MIT and WHOPPER W have similar structures. Each separates the com-

plex domain into regions in which differing expansions are used. The primary differ-

ence between them is the shape of the domain for each method, as well as how many

terms are used. The QUICK W algorithm takes a different approach. In the region

JzJ < 6 (where z is the input variable to the Faddeeva function), an interpolation

table is used. Outside this region, a three-term expansion is used.

In order to properly scale just which part of each algorithm is important, a basic

hydrogen scattering simulation was run. At each collision, the cross section of 2 38U

as represented in WMP format was evaluated. At each evaluation of the Faddeeva

function, the value of z was tallied. This is shown in Figure 3-9. From this, it is clear
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Figure 3-9: histogram for a simple hydrogen scattering simulation

that the majority of evaluations are with values of in excess of 10 thousand. This

is good. as most of these algorithlms use fewer teris as , -c. For exaiiiple, when

4Rz +1 D2z > 4000. MIT WN uses only two terms in its expansiOni.

However, it is also worth coiisideriiig when low-l l is importait. As the value of

z (u - 1) / (2 ). this value will approach zero in two circuiiistaiices. The first is

whei i 1).j, as is the case at the peak of a resoinaince. The sec)nd is when -+ D,

which occurs when T -+ oC. As such, it is iost difficult to evaluate the shape of the

peak of a resonance at high temnjperatures.

Plotted in Figure 3-10 and Figure 3-11 are comparisons of' WHOPPER NV and

QUICK W to MIT W respectively. Relative to one another, it is clear that the

WHOPPER W is much more accurate near the peaks. Even then. fairly substan-

tial errors in the wings of the resonance make usage of WHOPPER W ullfavorable.

Table 3.3 details the time cost per cross sectioii used iii the imiakinig of these two

graphs.
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Figure 3-10: 23811 T, MIT W to WHOPPER V comparison
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Figure 3-11: 238U , MIT V to QUICK W compar-ison
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Algorithm Time Per, us

MIT W 0.740
WHOPPER W 0.498
QUICK W 0.413

Table 3.3: Time cost of differing Faddeeva functions

Although alternative algorithms could in principle provide a large improvement

in performance in exchange for accuracy, this has not yet been investigated on a fully

integrated problem. In order to ensure the accuracy of, or at least the predictability

of the algorithm, the MIT W Faddeeva function was used throughout the rest of this

document. It will be noted in Section 4.4.1 that the Faddeeva function is itself not a

major contributor to the evaluation time of windowed multipole.

3.3 Dealing With File 3

The "File 3" data, so called because it is File 3 in the ENDF-6 manual [9], is a set of

pointwise data that must be summed into the cross section to properly calculate it.

There are two components of interest, those that affect the primary cross sections at,

ga, os, and of, and those that do not (known as secondary reactions).

Take, for example, 238U. The resolved resonance region extends from 10- eV

to 20 keV. The File 3 data is shown in Figure 3-12 for at. It is convenient that the

value is zero for all the components of the resolved resonant region. Furthermore,

when Doppler broadened, as done in Figure 3-13 to 3000K, the error introduced is

extremely minor. For this isotope, the pointwise OK data is merely saved alongside

and loaded into the simulation for use as the fast cross section. For similar reasons,

the secondary reactions, which are often at energies above the resolved resonance

region, are also just saved as pointwise and not treated with any Doppler broadening

in the simulation.

However, there are isotopes in which this is not even close to a valid solution. For

example, there is 23Na. The resonant region spans 600 eV to 500 keV. The File 3

data is plotted in Figure 3-14.
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23 Na File 3 ot
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Figure 3-14: 23Na File 3 for u,

In this particular case. there are two issues. First. the File 3 (lata is 11o01-zero in the

resonanee region. Second. as portrayed in Figure 3-15. the difference betweefl Doppler

broadening and not is quite significant. For this particular isotope. the windowed

lnultipole lib rary generation algoritlun has been slightly modified. Instead of spanning

just the resolved resonance range. the windowed inmltipole data always spans froin

1U-5 eV to the e(d of the resolve(d resonance range. Whenever the resoinance data

is not applicable. no poles get introduced into the window. Then. whenever File 3

data is encountered. it is sullnned(l into the curve fitted portion of the data. Finally.

all pointwise data beyond the end of the resolved resonance range is storel pointwise

for use in the Monte Carlo simulation. Alog with the Doppler blroalelling algorithm

described in Section 3.1.2. this mostly mitigates the issues of File 3 data.

There are a few circumstances in which even this will fail, and that is when tlhe data

is particularly non-smooth. As a final example, Figure 3-16 presents a particularly

egregious issue. ;"Ar has a very complex File 3, and a nethllod to handle such data
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Figure 3-15: 2:}Na File 3 for or, Doppler broadened

has yet to be developed. Several other isotopes exhibit this or similar problems. For

minor issues. su1ch as those of "Fe. the tolerance can be slightly loosened in proximity

to the issue.

01

3.4 Summary of the Windowed Multipole Algorithm

The windoved imiltipole generation process is designed to initigate the computational

cost of the process of calculating cross sections. It does this by separating the energy

into separate domains, and for each domain evaluating some poles exacly and the rest

with Doppler broadenable curve fits.

In this chapter. the energy grid used to separate the energy into domnains is se-

lected. The equal-in-momentum bins were chosen due to their ability to mlininlize

errors across the energy donain in a roughly equal way. Further. as the bills were

equal along an axis. no hinary searching would have to be performed.
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Figure 3-16: :'Ar File 3 for u,

The next coniponent decided upon was the forin of the curve fit algorithin. The

function u(E) = /* E-2-I was decided upon as it contained nany favorable

properties. It was able to exactly represent I1E, 1/u, and a constant. all of which

appear in soic way with the data. It was also Doppler broadenable with a highly

efficient recursive algoritlun. Finally, the Laurent expansion at low energies indicates

that this curve fit will converge when fitting a pole givell an infinite numnber of teris.

The optimization algorithin and its conponents are then (letailed. First it scans

if a curve fit could suffice. If not. another algorithn selects the optinal number of

poles to exactly evaluate for a givein window using a bisection search routine. The

inaximuim error is stochastically searched for using a differential evolution algoritlun.

The Faddeeva function is then chosen. The ilnput to the Faddeeva functions are

analyzed to investigate how often certain portions of each algorit ln are triggered. The

ability to evaluate peaks of resonances are then compared. The -MIT W" function

is selected as it has high accuracy and decent performance. It is also noted that
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some performance can be gained by switching algorithms, but as will be noted in

Section 4.4.1, the overall performance is loosely dependent on the Faddeeva function

anyways.

Finally, since the input data is not always clean, a method for handling the extra

pointwise data some cross section libraries have is explained. Pointwise data, so

long as it is mostly smooth, can be subsumed into the curve fit for the primary

reactions. For the fast region and for secondary reactions, analysis notes that the

error introduced is quite small.
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Chapter 4

Integrated Testing

Now that the windowed multipole method is built up, a detailed analysis of its ca-

pabilities relative to other methods must be performed. Of interest would be the

accuracy, the clock cycle cost per evaluation, the memory requirements, and the

memory bandwidth requirements.

In order to run this evaluation, first a reference problem to simulate must be

generated. The light water reactor benchmark used for this purpose is described in

Section 4.1. Then, using the isotopes in that model, a library must be constructed.

The structure and the constraints of the library are presented in Section 4.2.

Once those are set, two separate sets of simulations will be run. The first set is an

uninstrumented large-scale run to assess relative accuracy and quality. The results

of these runs will be in Section 4.3. Then, far more small scale instrumented tests

will be run to compare the relative performance and memory usage of other Doppler

broadening techniques relative to windowed multipole. These will be performed in

Section 4.4.

4.1 BEAVRS Benchmark

The benchmark that was run is the Benchmark for Evaluation and Validation of

Reactor Simulations, or BEAVRS for short [10]. This model is a pressurized light

water reactor based as closely as possible on an operating design. A core layout
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Core Barrel

Pressure \/r: trtfn Shield Panel

Figure 4-1: BEAVRS core diagran, image from 1101

diagraI is shown iin Figure 4-1

In the hot zero-power version of this core. there are 90 isotopes. The entire list

is detailed ill Table 4.1. As imaniy of these as possible Were coflverted into windowed

llimultip)ole format before simulatioii.

4.2 The Library

The library was generated using the resonance information froii the ENDF-B VII.1

cross section library I31. Due to the limitations of the basic nmiltipole imiethod as

described in Section 2.2.5. some isotopes could not be processed into libraries as they

exist only in pointwise form. Furthermore. some failed to be converted (lime to some

peculiarity of their data. The oies not processed are listed in Table 4.2, with the

reason for failure emumnerated.

The isotopes in pointwise format have an obvious reasoi for failure. ill that miul-

tilole omly works on resonance data. The ones with "File 3" listed as a imode of

failure failed because of the addition of overly complex pointwise data to the Reich-
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Element

Hydrogen
Helium
Boron
Carbon
Nitrogen
Oxygen
Aluminium
Silicon
Phosphorus
Sulfur
Argon
Calcium
Titanium
Vanadium
Chromium
Manganese
Iron
Nickel
Copper
Zirconium
Niobium
Molybdenum
Silver
Cadmium
Indium
Tin
Uranium

Isotope List

1, 2
3, 4
10, 11
Natural
14, 15
16, 17
27
28, 29, 30
31
32, 33, 34, 36
36, 38, 40
40, 42, 43, 44, 46, 48
46, 47, 48, 49, 50
50, 51
50, 52, 53, 54
55
54, 56, 57, 58
58, 60, 61, 62, 64
63, 65
90, 91, 92, 94, 96
93
92, 94, 95, 96, 97, 98
107, 109
106, 108, 110, 111, 1
113, 115
112, 114, 115, 116, 1
234, 235, 238

17, 118, 119, 120, 122, 124

Table 4.1: Isotopes in the BEAVRS core

Moore/MLBW data. As explained in Section 3.3, smooth pointwise data can be curve

fit and subsumed into the windowed multipole format. For the listed isotopes, the

data was particularly non-smooth, and library generation was not successful.

As for those isotopes that were processed, the target accuracy was a 0.1% maxi-

mum relative error, with a few exceptions. If the difference between inexact and exact

was less than 10-5b, this discrepancy was ignored. All isotopes were allowed a 1%

error between 10-5 and 10- eV, as the scattering cross section in this region is the

difference between two very large numbers. This was not expected to impact results,

as few neutrons reach such energies and it does not affect the total cross section. For
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Isotope Reason

H-1 Pointwise
H-2 Pointwise
He-3 Pointwise
He-4 Pointwise
B-10 Pointwise
B-11 Pointwise
Carbon (natural) Pointwise
N-14 Pointwise
N-15 Pointwise
0-16 Pointwise
0-17 Pointwise
P-31 Pointwise
S-36 Pointwise
Ar-36 File 3
Ar-38 File 3
Ar-40 File 3
Ca-46 Pointwise
Nb-93 File 3

Table 4.2: Isotopes not in windowed multipole format

5 6 Fe, the errors in the absorption cross sections were ignored within 1.5 keV of 400.5,

450.6, 500.5, 550.5, 600.5, 650.5, 700.5, 750.5, and 800.5 keV. The reason for this is

that there is a slight square wave in the File 3 data. The same is done for 63Cu and
65 Cu at 55 keV and 60 keV, respectively, as there is a sharp discontinuity at both

points. As these errors are in narrow bands at high energies and only in the relatively

small aborption reaction, it is not expected that these will affect the results much

either.

4.3 Accuracy Testing

The BEAVRS model and the WMP libraries were then loaded into OpenMC [19],

which had been modified to support the libraries. Two major runs were performed.

Both runs had the coolant at 600K, and everything else at 900K. The first run used

WMP data wherever possible. The second one used MCNP6-sourced data. These

were run on a single assembly, with 3.1% enriched fuel with no instrument tubes
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or burnable absorbers. To ensure high accuracy on the differential tallies, a large

number of neutrons were run in the problem. The simulation parameters are listed

in Table 4.3.

Parameter Value

Inactive Batches 250
Active Batches 450
Neutrons Per Batch 20 million

Table 4.3: Accuracy run configuration

For each simulation, several components were tallied: the eigenvalue, the total

absorption rate in 238U and 235U, the total fission rate in 235U, and the flux. The

tallies were performed per-pin, as well as over 16 energy bins. The energy bins are

shown in Table 4.4.

Bin Index Bottom of Bin Top of Bin

1 10-5 eV 3 x 10-2 eV
2 3 x 10-2 eV 0.1 eV
3 0.1 eV 0.3 eV
4 0.3 eV 0.625 eV
5 0.625 eV 1 eV
6 1 eV 4 eV
7 4 eV 6 eV
8 6 eV 10 eV
9 10 eV 25 eV
10 25 eV 50 eV
11 50 eV 100 eV
12 100 eV 1 keV
13 1 keV 10 keV
14 10 keV 100 keV
15 100 keV 1 MeV
16 1 MeV 20 MeV

Table 4.4: Energy Bins Used For All Tallies

First of all, the eigenvalues are listed in Table 4.5. The eigenvalues are sepa-

rated by around 8 pcm. While the difference exists and is well outside of statistics,

the eigenvalue difference is quite small. More important is the difference on tallies,

however.
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Run Eigenvahie

M\CNPG Data 1.2034302 + 0.0000095
Multipole Data 1.2035119 0.0000094

Table 4.5: Eigenvalues

Flux, Assembly, WMP Compared to MCNP6 Data

0.024 0.0064

0.018 0.0056
0.0 e0.0048't

0.012 0(04

1 .01 0.004280.006 ~0.0040
0.000 . 0.0032

* * - 0.0060.0(024>

*-0.012 001

O-0.018 0.0008
-0.024 . _

0. 0 0(01'

Figure 4-2: Relative difference, flux. by pin. WIMP vs. MCNPG-sourced data

4.3.1 Flux

The first set of plots are for the flux for the problem. Starting first with the spatial

graph iin Figure 4-2. of the 289 pills. 58 are greater than two standard deviations

above zero and 2 are greater than two standard deviations below zero. There is a

weak spatial pattern. possibly indicating a slight neutron clustering )ias 151.

In the case of the eniergy variable as shown in Figure 4-3. the reason for the

discrepalcy is slightly more apparent. For ahost every bin below 1 keV. the flux

is higher iII the WMP case than in the MCNP-sourced data case. This indicates

that the absorpt ion rate inside of the core is slightly lower in the WMP case in the

resolved resonance regine. Despite these discrepancies. the worst ilin is only off by

0.02%. which is well below the target accuracy of both libraries.

4.3.2 Fission

The fission rate for 23 5U was tallied throughout the simulation as well. This spatial

tally is shown ill Figure 4-4. As compared to the flux error. the differences across the

spectrlum are iimore pronounced, as high as 0.06 0.02%.

56



Flux, WMP Compared to MCNP6 Data

0.04

0.02

U

-0.02

-0.04

10 5 10 1 10 1 10 2 10 1 10 101 102 103

Energy, eV

104 w05 106 107 108

Figure 4-3: Relative differelle. flux, over energy. WIP vs. ICNPG-soureed (lata

233 U Fission,

g -
m m

$ a

Assembly,
0.060

0.045

0.030

0.015

0.000

-0.015

-0.030

-0.045

-0.060

NMP Compared to MCNP6 Data

U

Figure 4-4: Relative difference, fission. 23U

0.0200

0.0175

0.015 

0.0125

0.0100 .

0.0075

0.0050

0.0025

0.0000

by pin. W\P vs. MCNP6-sourced data

I
57



0.04

0.03

0.02

6 0.01

-0.00

M* -0.01

-0.02

235U Fission, WMP Compared to MCNP 6 Data

-. .....-. .-- ---- ------ --

0.03[

fl fl
1051-4 10--3 10-2 10- 100 10 102 103 10 10 106 107 108

Energy, eV

Figure 4-5: Relative difference, fission, 23 5U, over energy, WMP vs. MCNP6-sourced
data

The fission rate as a function of energy was also compared in Figure 4-5. Two

interesting features appear. The first is that the 1 to 4 eV bin is nearly 0.02% reduced,

whereas the 6 to 10 eV bin is 0.025% increased. These bins correspond to important

resonances in 2 35U (at 1.13 eV) and 2 35U (at 6.67 eV) and this will be further analyzed

in the absorption section.

4.3.3 Absorption

Finally, the absorption rate was tallied for both 235U and 23 8U. The spatial tallies are

presented in Figure 4-6 for 235U. The percent difference is a maximum of 0.06+0.02%.

For 2 38 U, in Figure 4-7, the maximum difference is 0.08 + 0.03%.

More interesting is the energy component. Earlier, it was noted that the fission

in 235U was low in the 1 to 4 eV band, and high in the 6 to 10 eV band. When

examining the absorption rate for 235U in Figure 4-8, much the same appears, as the

absorption rate is mostly composed of fission. However, when examining the 238U

graph in Figure 4-9, the entire range from 1 eV to 10 eV is depressed by 0.05%. This
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2 35 U Absorption, Assembly, WMP Compared to MCNP6 Data
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Figure 4-8: Relative difference, absorption, 23 5U, over energy, WMP vs. MCNP6-
sourced data

would increase the number of neutrons available in that region, and would increase

the fission rate.

The fairly large discrepancy at high energies for 238U is also interesting. For both

simulations, the same unresolved resonance data was used and the flux stayed roughly

constant for the bins of interest. As such, this may indicate a complicated interaction

between other isotopes.

Overall, the accuracy on each tally was well within the specified tolerance of the

library. With no tally exceeding 0.08+0.03% relative error, the accuracy appears to

be well beyond what is needed for any practical calculation.

4.4 Performance Testing

OpenMC was then run inside of Callgrind, a module of Valgrind designed to measure

the number of function evaluations as well as their clock cycle cost [24]. For these

runs, the cache performance metrics were also enabled so that cache misses could be
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Figure 4-9: Relative difference, absorption, 238 U, over energy, WMP vs. MCNP6-
sourced data

monitored. As running inside of Callgrind is significantly slower (typically by orders

of magnitude) than on the hardware directly, the problem size was shrunk. The

parameters used are listed in Table 4.6.

Parameter Value

Inactive Batches 250
Active Batches 450
Neutrons Per Batch 100

Table 4.6: Performance run configuration

The full core was simulated, and the temperature of everything but the coolant was

varied. Three different techniques were tested. The first, of course, is the windowed

multipole method using the library described in Section 4.2. For this technique, the

non-coolant temperatures were 600, 900, 1200, 1500, 1800, 2100, and 2500K. The

second one is the target motion sampling algorithm described in Section 2.2.21. The

initial data to sample from was 600K, which was broadened to 900K. Finally, a single

'This implementation was performed by Tuomas Viitanen independently of this project.
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pseudomaterials run was completed, in which a "750K" reactor was run with 50%

of the atoms at 600K and 50% of the atoms at 900K. Although this would not give

a very accurate simulation, the interest was only in measuring how the additional

libraries impacted performance.

4.4.1 Clock Cycle Costs

The first number of interest is the estimated cross section calculation cycle cost per

collision. This unit of measurement was chosen due to the fact that, due to the

stochastic properties of the simulations, the collision count would vary. Furthermore,

the per-material lookup time would also not be relevant, as target motion sampling

performs several before a target velocity is sampled. The specific routine tracked is

the calculatexs routine, used to calculate ot, Oa, Uf, and a,. This does not include

the sample-reaction routine, which identifies which reaction occurs at a collision,

and requires the calculation of 9-, ,,,, etc., which are still pointwise in the WMP

format.

The clock cycle costs per collision are listed in Table 4.7 for the windowed multipole

900K run, the target motion sampling 900K run, and the pseudomaterials "750K" run.

In it we find that TMS takes 2.8 times as long to run as WMP, and pseudomaterials

double lookup took 1.2 times as long.

Run Clock Cycles

WMP 900K 31587
TMS 900K 89440
Pseudomaterials "750K" 38415

Table 4.7: Clock cycles per collision, cross section lookup

The time cost of WMP was found to be slowly varying in temperature. This is

shown in Figure 4-10. This is anticipated. As explained in Section 3.2, as temperature

increases, the cycle cost for the Faddeeva function increases. In these runs, the

Faddeeva function averaged only 15% of the total cost to evaluate a cross section,

explaining the slight trend. Since the Faddeeva function is such a small fraction of
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Figure 4-10: Clock (yele cost as a function of tenperature

total cost. little effort was expend(ed coiparing the tradeoffs between a high accuiracy

but slow Faddeeva functionii and vice versa.

4.4.2 Cache Misses

The next set of numbers of interest are the cache misses per collision in the cross

section calculator. There are two ilumbers here. The "11 miss" is a counter of the

number of times the CPU could not find data in the fastest inenory close to the CPU

and had to look elsewhere. The next, nore important number is the "LL miss rate.

or the last-level cache niss rate. This couliter indicates the number of times the CPU

could not find data anywhere on chip and has to request data from main imemory.

Such a miss takes substantial tiinc. The values for each of these counters are listed

in Table 4.8.

Although there are fairly large differences in first-level cache misses. WMP's major

advantage is in last-level misses. Using the WIP libraries effectively eliinated any
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Run LI Misses LL Misses

WMP 900K 554 0.072
TMS 900K 1394 5.83
Pseudomaterials "750K" 736 14.4

Table 4.8: Cache misses per collision, cross section lookup

last-level misses during the cross section lookup step. To put this in perspective for

the whole problem, the total last-level misses for the entire eigenvalue calculation

routine were also recorded. These are shown in Table 4.9. There was a factor of 33

fewer last-level misses compared to target motion sampling, and a factor of 80 fewer

misses compared to pseudomaterials. The memory bandwidth benefits are readily

apparent.

Run Total LL Misses

WMP 900K 0.197
TMS 900K 6.50
Pseudomaterials "750K" 15.7

Table 4.9: Cache misses per collision, full problem

4.4.3 Memory Utilization

At the other end, it is useful to know how much memory is being utilized in each

simulation. A similar Valgrind module, Massif, was used to investigate how much

memory was being used for specific tasks. Each simulation was run until the initiation

of the first eigenvalue calculation cycle. These runs are summarized in Table 4.10.

Overall, WMP has substantial benefits in total memory usage relative to the other

two methods. There are a few points worth expanding on, however. First, WMP

does not completely eliminate the ACE primary cross section data, as explained in

Section 4.2. Furthermore, as explained in Section 3.3, the secondary distributions

and the fast regimes use pointwise data. The memory cost of the fast regime is listed

as "WMP Pointwise" to keep it separate from ACE data. Overall, the primary cross

sections in WMP take only 8.6% of the total resident set size of the simulation.
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Data WMP TMS Pseudo

ACE Primary 3.5 61.8 121.2
ACE Secondary 39.1 39.1 77.2
ACE Secondary Energy Dist. 21.5 21.5 43.0
ACE URR 0.5 0.5 0.9
ACE Angular Dist. 16.9 16.9 33.6
S(a,3) 9.3 9.3 9.3
TMS Majorant Tables 10.3 -
WMP Tables 5.3 - -
WMP Pointwise 4.2 --
Other 9.3 9.1 12.5

Total 109.6 168.5 297.7

Table 4.10: Memory consumption by component, in MiB

It is also worth mentioning that the ACE secondary distributions and angular

distributions are not broadened, so although the memory consumption for these terms

are doubled in the pseudomaterials problem, the data loaded in from the files are

essentially identical at both temperatures.

4.5 Summary of Integrated Testing

There are several important results from the integrated testing. The first one is of

accuracy. As the MCNP6-sourced data itself was pointwise, approximations are made

to make sure that the library is not too large. Thus, a discrepancy could mean that

the library is more accurate, less accurate, or something orthogonal to both. However,

the WMP discrepancies never exceeded 0.1% for any tally recorded. The flux was

much closer at a maximum of 0.02%. The eigenvalue was discrepant by about 8 pcm.

So, regardless of which direction the discrepancy points, the discrepancy is very small,

indicating a high quality library.

The next important result is performance. Windowed multipole was faster, re-

quired less memory, and had fewer cache misses than target motion sampling and

pseudomaterials on the sample problem. Furthermore, this is on a relatively middle-

end consumer machine. On a supercomputer, where the memory bandwidth is far
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more constrained, WMP should significantly outperform the other techniques.
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Chapter 5

Summary and Future Work

In this document, the windowed multipole Doppler broadening method was devel-

oped and tested on a real world benchmark. Each component of the technique was

described, and the choices made were studied and justified. Then, an entire cross

section library was generated and tested in an integrated benchmark.

Overall, the on-the-fly WMP algorithm has three key advantages. It is very quick.

The WMP library outperformed pseudomaterials and target motion sampling in com-

putation time by a factor of 1.2 and 2.8 respectively. It has very few last-level cache

misses. WMP required a factor of 33 fewer last-level misses than target motion sam-

pling, and a factor of 80 fewer misses than pseudomaterials. Finally, it requires less

memory in general. On a 90 isotope simulation, WMP required 58.9 MiB less memory

than TMS and 188.1 MiB less memory than pseudomaterials. However, the pseudo-

material simulation was only with two libraries. As the number of libraries loaded

increases to increase accuracy and temperature range, the disparity will only increase.

These advantages are tempered by the inflexibility. WMP is only able to oper-

ate on resonance data, so if an isotope does not have published resonance data the

conversion is impossible. A few isotopes have extra pointwise data that is sufficiently

non-smooth as to prevent curve fitting. And finally, the underlying multipole method

has yet to be developed to handle charged particle channels.

This then leads to possible future work. Although it would be advantageous if the

cross section libraries were more consistent and used fewer non-physical structures
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(discontinuities, etc.) in their data, it would also be worthwhile to investigate the

improvement of the flexibility of WMP to handle such data. Furthermore, published

resonance data for isotopes such as 160 would be advantageous. Finally, the addition

of charged particle channels to multipole would be beneficial.
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