
The Sparse Fourier Transform: Theory & Practice

by

Haitham Al Hassanieh
M.S. in Electrical Engineering and Computer Science, Massachusetts Institute of Technology (2011)

B.Eng. in Computer & Communications Engineering, American University of Beirut (2009)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2016

@ Massachusetts Institute of Technology 2016. All rights reserved.

Signature redacted
A uthor

Department of Electrical Engine4A and/Computer Science
December 7, 2015

Certifiedby...................................Signature redacted
/ Dina Katabi

Professor
Thesis Supervisor

Accepted by.............

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY C

APR 152016 *

LIBRARIES

Signature redacted
...............

Lesle)A) Kolodziej ski
hairman, Department Committee on Graduate Theses

2

The Sparse Fourier Transform: Theory & Practice
by

Haitham Al Hassanieh

Submitted to the Department of Electrical Engineering and Computer Science
on December 7, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

The Fourier transform is one of the most fundamental tools for computing the frequency repre-
sentation of signals. It plays a central role in signal processing, communications, audio and video
compression, medical imaging, genomics, astronomy, as well as many other areas. Because of its
widespread use, fast algorithms for computing the Fourier transform can benefit a large number of
applications. The fastest algorithm for computing the Fourier transform is the FFT (Fast Fourier
Transform) which runs in near-linear time making it an indispensable tool for many applications.
However, today, the runtime of the FFT algorithm is no longer fast enough especially for big data
problems where each dataset can be few terabytes. Hence, faster algorithms that run in sublinear
time, i.e., do not even sample all the data points, have become necessary.

This thesis addresses the above problem by developing the Sparse Fourier Transform algo-
rithms and building practical systems that use these algorithms to solve key problems in six differ-
ent applications.

Specifically, on the theory front, the thesis introduces the Sparse Fourier Transform algorithms:
a family of sublinear time algorithms for computing the Fourier transform faster than FFT. The
Sparse Fourier Transform is based on the insight that many real-world signals are sparse, i.e., most
of the frequencies have negligible contribution to the overall signal. Exploiting this sparsity, the
thesis introduces several new algorithms which encompass two main axes:

* Runtime Complexity: The thesis presents nearly optimal Sparse Fourier Transform algorithms
that are faster than FFT and have the lowest runtime complexity known to date.

" Sampling Complexity: The thesis presents Sparse Fourier Transform algorithms with optimal
sampling complexity in the average case and the same nearly optimal runtime complexity.
These algorithms use the minimum number of input data samples and hence, reduce acquisition
cost and I/O overhead.

On the systems front, the thesis develops software and hardware architectures for leveraging the
Sparse Fourier Transform to address practical problems in applied fields. Our systems customize
the theoretical algorithms to capture the structure of sparsity in each application, and hence max-
imize the resulting gains. We prototype all of our systems and evaluate them in accordance with

3

the standard's of each application domain. The following list gives an overview of the systems
presented in this thesis.

" Wireless Networks: The thesis demonstrates how to use the Sparse Fourier Transform to build
a wireless receiver that captures GHz-wide signals without sampling at the Nyquist rate. Hence,
it enables wideband spectrum sensing and acquisition using cheap commodity hardware.

* Mobile Systems: The thesis uses the Sparse Fourier Transform to design a GPS receiver that
both reduces the delay to find the location and decreases the power consumption by 2 x.

" Computer Graphics: Light fields enable new virtual reality and computational photography
applications like interactive viewpoint changes, depth extraction and refocusing. The thesis
shows that reconstructing light field images using the Sparse Fourier Transform reduces camera
sampling requirements and improves image reconstruction quality.

* Medical Imaging: The thesis enables efficient magnetic resonance spectroscopy (MRS), a new
medical imaging technique that can reveal biomarkers for diseases like autism and cancer. The
thesis shows how to improve the image quality while reducing the time a patient spends in an
MRI machine by 3 x (e.g., from two hours to less than forty minutes).

* Biochemistry: The thesis demonstrates that the Sparse Fourier Transform reduces NMR (Nu-
clear Magnetic Resonance) experiment time by 16 x (e.g. from weeks to days), enabling high
dimensional NMR needed for discovering complex protein structures.

* Digital Circuits: The thesis develops a chip with the largest Fourier Transform to date for
sparse data. It delivers a 0.75 million point Sparse Fourier Transform chip that consumes 40 x
less power than prior FFT VLSI implementations.

Thesis Supervisor: Dina Katabi
Title: Professor

4

Dedicated to Maha & Nadima Al Hassanieh

5

6

Acknowledgments

The work presented in this thesis would not have been possible without the help and support of a
large group of people to whom I owe a lot of gratitude.

First and foremost, I am really thankful for my advisor Dina Katabi who has given me this
tremendous opportunity to come work with her at MIT. For six years, she has supported me and
worked closely with me. She gave me the freedom to work on a wide range of projects outside her
research area. She was just as invested in my research and pushed very hard for the Sparse Fourier
Transform so we can bring it to completion. Her passion, hard work and dedication to the success
of her students is truly inspiring. I could not wish for a better advisor.

I am also really grateful for Piotr Indyk who was like a second advisor to me. He has supported
me and guided me through a lot problems. His decision to work with me on the Sparse Fourier
Transform has changed and shaped my entire PhD career. I truly admire and respect him.

I would like to thank the rest of my thesis committee members and letter writers: Elfar Adal-
steinsson, Victor Bahl and Fredo Durand. They have introduced me to fascinating research areas
and have given me a lot of advice and support that helped my career.

I would also like to thank everyone who worked on the Sparse Fourier Transform project. Dina,
Piotr and Eric Price were the first people to work with me. They played an indispensable role in
developing the theoretical Sparse Fourier Transform algorithms. The next person to work with me
was Fadel Adib who helped me take on the hard task of kickstarting the applications. Fadel was like
a powerhouse that allowed me to push through my vision for the Sparse Fourier Transform. After
that, Lixin Shi helped me bring to life more applications. He worked with me tirelessly for a very
long time while making the work process extremely enjoyable. Finally, I would like to thank all
of the remaining people who contributed to this thesis: Elfar Adalsteinsson, Fredo Durand, Omid
Abari, Ezzeldin Hamed, Abe Davis, Badih Ghazi, Ovidiu Andronesi, Vladislav Orekhov, Abhinav
Agarwal and Anantha Chandrakasan.

During my time at MIT, I was lucky to have a large group of friends. I am eternally thankful to
my closest friend Fadel Adib who has been there with me every step of the way on this long PhD
road and has helped me a lot throughout my PhD career. I am also extremely grateful for Ankur
Mani and Ila Sheren who helped me survive six years of MIT and made life so much fun. Jue Wang
is another friend who kept me grounded and on my feet during the hard conflicts The rest of my
friends and colleagues: Omid, Ezz, Lixin, Abe, Zach, Chen-Yu, Nate, Rahul, Mary, Katina, Kate,
Deepak, Swarun, Stephanie, Hongzi and Mingmin are some of the amazing people at MIT who
made my time here so wonderful.

7

I cannot express sufficient gratitude for my parents Najwa and Zuhair and my siblings Dima
and Mazen for their endless love, support and advice. I could not have achieved what I did without
their help and I owe all my success to them. No matter what I do, I can never repay them. I am
lucky to have a group of wonderful women who have helped raise me: Maha, Nadima, May, Nahla,
Rima, Nawal and Mona; their wisdom, strength and grace have inspired me to be a much better
person. I am also thankful for the other 53+ members of my family who I love and appreciate
tremendously.

Last but not least, I have been blessed with a large group of brothers: Mazen, Fadel, Ahmad,
Hassane, Majd, Amer, Ali, Assem, Bilal, Majed and Hussien. They are always there for me and I
can rely on them for anything. I am also grateful to my favorite person in the world and my best
friend: Hiba as well as the rest of my girls: Sarah, Pamela, Jessica, Lamia, Raghid, Hania, Lina,
Naela, Mayar and Dima.

8

Previously Published Material

Chapter 3 revises a previous publication [72]: H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Simple and
Practical Algorithm for Sparse Fourier Transform. SODA, 2012 2012.

Chapter 4 revises a previous publication [70]: H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Nearly
Optimal Sparse Fourier Transform. STOC, 2012.

Chapter 5 revises and extends a previous publication [56]: B. Ghazi, H. Hassanieh, P. Indyk, D. Katabi, E.
Price, and L. Shi. Sample-Optimal Average-Case Sparse Fourier Transform in Two Dimensions. Allerton,
2013.

Chapter 7 revises a previous publication [74]: H. Hassanieh, L. Shi, 0. Abari, E. Hamed, and D. Katabi.
GHz-Wide Sensing and Decoding Using the Sparse Fourier Transform. INFOCOM, 2014.

Chapter 8 revises a previous publication [69]: H. Hassanieh, F. Adib, D. Katabi, and P. Indyk. Faster GPS
via the Sparse Fourier Transform. MOBICOM, 2012.

Chapter 9 revises a previous publication [157]: L. Shi, H. Hassanieh, A. Davis, D. Katabi, F. Durand. Light
Field Reconstruction Using Sparsity in the Continuous Fourier Domain. SIGGRAPH, 2015.

Chapter 10 builds on and extends a previous publication [156]: L. Shi, 0. Andronesi, H. Hassanieh, B.
Ghazi, D. Katabi, E. Adalsteinsson. MRS Sparse-FFT: Reducing Acquisition Time and Artifacts for In Vivo
2D Correlation Spectroscopy, ISMRM, 2013.

Chapter 11 revises a previous publication [73]: H. Hassanieh, M. Mayzel, L. Shi, D. Katabi, and V.Y.
Orekhov Fast Multi-dimensional NMR Acquisition and Processing Using the Sparse FFT, Journal of Biomolec-
ular NMR, Springer, 2015.

Appendix G revises a previous publication [3]: 0. Abari, E. Hamed, H. Hassanieh, A. Agarwal, D. Katabi,
A. Chandrakasan, and V. Stojanovic. A 0.75 Million-Point Fourier Transform Chip for Frequency-Sparse
Signals, ISSCC, 2014.

9

10

Contents

Acknowledgements

Previously Published Material

List of Figures

List of Tables

List of Algorithms

1 Introduction
1.1 Sparse Fourier Transform Algorithms

1.1.1 Problem Statement
1.1.2 Algorithmic Framework
1.1.3 Algorithmic Techniques
1.1.4 Algorithmic Results

1.2 Applications of the Sparse Fourier Transform . .
1.2.1 Spectrum Sensing and Decoding
1.2.2 GPS Receivers
1.2.3 Light Field Photography
1.2.4 Magnetic Resonance Spectroscopy (MRS)
1.2.5 Nuclear Magnetic Resonance (NMR) . .
1.2.6 The Sparse Fourier Transform Chip . . .

1.3 Thesis Roadmap

I Theory of the Sparse Fourier Transform

2 Preliminaries
2.1 Notation .
2.2 Basics .

2.2.1 Window Functions
2.2.2 Permutation of Spectra
2.2.3 Subsampled FFT

11

7

9

17

19

21

23
26
26
27
30
33
33
36
36
37
37
37
38
38

39

41
41
42
42
44
45

.

.

.

.
.

. 4 5

3 Simple and Practical Algorithm 47
3.1 Introduction . 47

3.1.1 Results . 47
3.1.2 Techniques . 48

3.2 Algorithm . 49
3.2.1 Inner Loop . 49
3.2.2 Non-Iterative Sparse Fourier Transform 52
3.2.3 Extension . 53

4 Optimizing Runtime Complexity 57
4.1 Introduction . 57

4.1.1 Results . 57
4.1.2 Techniques . 58

4.2 Algorithm for the Exactly Sparse Case . 60
4.3 Algorithm for the General Case . 64

4.3.1 Intuition . 64
4.3.2 Analysis . 66

4.4 Extension to Two Dimensions . 70

5 Optimizing Sample Complexity 73
5.1 Introduction . 73

5.1.1 R esults . 73
5.1.2 Techniques . 74
5.1.3 Extensions.. 77
5.1.4 Distributions . 77

5.2 Algorithm for the Exactly Sparse Case . 77
5.2.1 Exact Algorithm: k =... .(.) . 78
5.2.2 Reduction to the Exact Algorithm: k = o(Vnr) 80

5.3 Algorithm for the General Case . 82
5.3.1 Analysis of Each Stage of Recovery . 82
5.3.2 Analysis of Overall Recovery . 84

6 Numerical Evaluation 87
6.1 Implementation . 87
6.2 Experimental Setup . 88
6.3 Numerical Results . 88

6.3.1 Runtime vs. Signal Size . 88
6.3.2 Runtime vs. Sparsity . 88
6.3.3 Robustness to Noise . 90

12

2.2.4 2D Aliasing Filter

II Applications of the Sparse Fourier Transform

7 GHz-Wide Spectrum Sensing and Decoding 93
7.1 Introduction . 93
7.2 Related Work . 95
7.3 BigBand . 96

7.3.1 Frequency Bucketization . 97
7.3.2 Frequency Estimation . 97
7.3.3 Collision Detection and Resolution . 98

7.4 Channel Estimation and Calibration . 100
7.4.1 Estimating the Channels and Time-Shifts 101

7.5 Differential Sensing of Non-Sparse Spectrum . 102
7.5.1 Frequency Bucketization . 102
7.5.2 Frequency Estimation . 102

7.6 A USRP-Based Implementation . 103
7.6.1 Implementing BigBand . 103
7.6.2 Implementing D-BigBand . 103

7.7 BigBand's Spectrum Sensing Results . 105
7.7.1 Outdoor Spectrum Sensing . 105
7.7.2 BigBand vs. Spectrum Scanning . 105
7.7.3 BigBand's Sparsity Range . 106

7.8 BigBand's Decoding Results . 108
7.8.1 Decoding Multiple Transmitters . 108
7.8.2 Signal-to-Noise Ratio 109

7.9 D-BigBand's Sensing Results . 109
7.10 Conclusion . 110

8 Faster GPS Synchronization 111
8.1 Introduction . 111
8.2 GPS Primer . 114
8.3 QuickSync . 115

8.3.1 Problem Formulation . 116
8.3.2 Basics . 116
8.3.3 The QuickSync Algorithm . 117

8.4 Theoretical Guarantees . 120
8.4.1 Assumptions . 120
8.4.2 Combining Multiple Runs . 120
8.4.3 Guarantees . 121

8.5 Doppler Shift & Frequency Offset . 121
8.6 Testing Environment . 122

8.6.1 Data Collection . 122
8.6.2 Baseline Algorithm . 123
8.6.3 Implementation . 123

13

92

8.6.4 Metrics . 123
8.7 Results . 124

8.7.1 Setting the Synchronization Threshold . 124

8.7.2 Performance in Terms of Hardware Multiplications 125
8.7.3 Performance on software based GPS receivers 127

8.8 Related Work . 127
8.9 Conclusion . 129

9 Light Field Reconstruction Using Continuous Fourier Sparsity 131
9.1 Introduction . 131
9.2 Related work . 133
9.3 Sparsity in the Discrete vs. Continuous Fourier Domain 133

9.3.1 The Windowing Effect . 134
9.3.2 Recovering the Sparse Continuous Fourier Spectrum 135

9.4 Light Field Notation . 137
9.5 Light Field Reconstruction Algorithm . 138

9.5.1 Input . 139
9.5.2 Initialization . 139
9.5.3 Optimization in the Continuous Fourier Domain 141
9.5.4 Reconstructing the Viewpoints . 144

9.6 Experiments . 146
9.7 Results . 147

9.7.1 Viewing our results . 147
9.7.2 The Stanford Bunny . 147
9.7.3 Amethyst . 147
9.7.4 Crystal Ball . 148
9.7.5 Gnome . 148
9.7.6 Extending views . 149
9.7.7 Informal comparison with Levin and Durand [2010] 149

9.8 Discussion . 151
9.8.1 Viewpoint Denoising . 151
9.8.2 Importance of Continuous Fourier Recovery 153

9.8.3 Potential Applications . 153
9.9 Conclusion . 155

10 Fast In-Vivo MRS Acquisition with Artifact Suppression 157
10.1 Introduction . 157
10.2 MRS-SFT . 159

10.2.1 Algorithm159
10.2.2 Reconstructing the 2D COSY Spectrum 162

10.3 Methods . 164
10.3.1 Single Voxel Experiments . 164
10.3.2 Multi Voxel Experiments . 165

14

10.4 MRS Results
10.4.1 Single Voxel Results
10.4.2 Multi Voxel Results

10.5 Conclusion .

11 Fast Multi-Dimensional NMR Acquisition and Processing
11.1 Introduction .
11.2 Multi-Dimensional Sparse Fourier Transform

11.2.1 Multi-Dimensional Frequency Bucketization .
11.2.2 Multi-Dimensional Frequency Estimation . . .

11.3 Materials and Methods
11.4 R esults .
11.5 D iscussion. .
11.6 Conclusion .

165
165
168
168

171
. 171
. 173
. 173
. 176
. 177
. 178
. 181
. 183

12 Conclusion
12.1 Future Directions .

A Proofs

B The Optimality of the Exactly k-Sparse Algorithm 4.2.1

C Lower Bound of the Sparse Fourier Transform in the General Case

D Efficient Constructions of Window Functions

E Sample Lower Bound for The Bernoulli Distribution

F Analysis of QuickSync System

G A 0.75 Million Point Sparse Fourier Transform Chip

Bibliography

15

185
186

189

211

213

217

221

223

229

237

16

List of Figures

1-1 Bucketization Using Aliasing Filter
1-2 Resolving Collisions with Co-prime Aliasing
1-3 Filters used for Frequency Bucketization
1-4 Fourier Projection Filters .

2-1 An Example of a Flat Window Function

3-1 Example Inner Loop of the Algorithm on Sparse Input.....

5-1 An Illustration of the 2D Sparse Fourier Transform Algorithm
5-2 Examples of Obstructing Sequences of Non-zero Coefficients .

6-1 Runtime vs. Signal Size .
6-2 Runtime vs. Signal Sparsity
6-3 Robustness to Noise Results

7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8

8-1
8-2
8-3
8-4
8-5
8-6
8-7
8-8

. 28

. 29

. 31

. 31

. . . 43

. . . 51

. . . 75

. . . 75

89
89
91

Spectrum Occupancy . 94
Phase Rotation vs. Frequency . 101
Hardware Channel Magnitude . 101
Spectrum Occupancy Results . 104
False Negatives and Positives as a Function of Spectrum Sparsity 106
Unresolved Frequencies as a Function of Spectrum Sparsity 107
BigBand's Packet Loss as a Function of the Number of Transmitters 108
D-BigBand's Effectiveness as a Function of Spectrum Sparsity 110

FFT-Based GPS Synchronization Algorithm . 112
GPS Trilateration . 114
2D Search for Peak Correlation . 115
The Duality of Aliasing and Subsampling . 117
The SciGe GN3S Sampler . 122
Probability of Error Versus the Threshold . 124
Gain of QuickSync Over the FFT-based Algorithm in Multiplications 125
Number of Multiplications on a Per Satellite Basis for the Europe Trace 126

8-9 Gain of QuickSync Over the FFT-based Algorithm with Known Doppler Shift 127

17

8-10 Gain of QuickSync Over the FFT-based Algorithm in FL

9-1
9-2
9-3
9-4
9-5
9-6
9-7
9-8
9-9
9-10
9-11
9-12
9-13
9-14
9-15
9-16
9-17
9-18

10-1
10-2
10-3
10-4
10-5
10-6

11-1
11-2
11-3
11-4
11-5
11-6
11-7

G-1
G-2
G-3
G-4
G-5

OPs

Sparsity in the Discrete vs. Continuous Fourier Domain and Our Results
The Windowing Effect
Light Field Spectrum in the Discrete and Continuous Fourier Domains .
Light Field Sampling Patterns: .
Discrete Fourier Projections .
Voting Based Frequency Estimation
Optimizing the Continuous Frequency Positions
Flow Chart of the 2D Sparse Light Field Reconstruction Algorithm . . .
Reconstruction of the Stanford Bunny Data Set
Reconstruction Error .
Reconstruction of the Amethyst Data Set
Reconsrution of Specularities .
Reconstruction of the Crystal Ball Data Set
Reconstruction of the Gnome Data Set
Extending Views .
Viewpoint Denoising .
Reconstruction in the Discrete vs. Continuous Domain
The Ghosting Effect .

Artifacts in In-Vivo 2D COSY Spectrum
Off-Grid Recovery Using Gradient Descent

. 128

. 132

. 135

. 136

. 139

. 140

. 141

.144

. 146

. 147

. 148

. 149

. 150

. 150

. 151

. 152

. 152

. 154

. 154

. 158

. 162
Iterating Between Recovering Diagonal Peaks and Cross-Diagonal Peaks 163
MRS-SFT Recovery Results on Brain Phantom Data 166
MRS-SFT Recovery Results on In-Vivo Data . 167
Multi-Voxel Recovery Results for MRS-SFT vs. Full FFT 169

2D Bucketization Using Co-prime Aliasing . 173
Bucketization Using Discrete Line Projections . 174
Combining Discrete Projections with Aliasing . 176
Discrete Line Projections on 4D BEST-HNCOCA Spectrum of Ubiquitin 178
NMR Reconstruction Results . 180
Correlation of Peak Intensities in 4D BEST-HNCOCA Spectrum of Ubiquitin . . . 181
Ca-N Plane from the 4D BEST-HNCOCA Experiment: 183

A Block Diagram of the 210 x 3 6-point Sparse Fourier Transform 230
The Micro-Architecture of the 2' 0-point FFT's . 231
The Micro-Architecture of Collision Detection, Estimation, and Recovery 232
Die Photo of the Sparse Fourier Transform Chip 234
Chip Measurement Results . 235

18

List of Tables

1.1
1.2

7.1
7.2

Practical Systems Developed Using the Sparse Fourier Transform
Theoretical Sparse Fourier Transform Algorithms

Spectrum Sensing Scanning Time
Reduction in SNR at Different Quantization Levels

8.1 Variation in the Doppler Shift in the US Traces

9.1 Light Field Notation .

10.1 Signal to Artifact Ratio .
10.2 Line Width of NAA (ppm) .

G. 1 Sparse Fourier Transform Chip Features
G.2 Comparison of Sparse Fourier Transform Chip with FFT Chips . .

. 25

. 34

106
109

. 126

. 137

. 168

. 168

. 233

. 234

19

20

List of Algorithms

3.2.1 SFT 1.0: Non-Iterative Sparse Fourier Transform for k = o(n/ log n) 50
3.2.2 SFT 2.0: Non-Iterative Sparse Fourier Transform with Heuristic for k = o(n/Vlog n) 54
4.2.1 SFT 3.0: Exact Sparse Fourier Transform for k = o(n) 61
4.3.1 SFT 4.0: General Sparse Fourier Transform for k = o(n), Part 1/2. 66
4.3.2 SFT 4.0: General Sparse Fourier Transform for k = o(n), Part 2/2. 67
5.2.1 SFT 5.0: Exact 2D Sparse Fourier Transform for k = .(v..) 79
5.2.2 SFT 5.1: Exact 2D Sparse Fourier Transform for k = o(v/n) 81
5.3.1 SFT 6.0: General 2D Sparse Fourier Transform for k = E(V/n) 83
9.4.1 Light Field Reconstruction Algorithm . 138
9.5.1 Sparse Discrete Fourier Recovery Algorithm . 142
9.5.2 Sparse Continuous Fourier Recovery Algorithm 145

21

22

Chapter 1

Introduction

The Fourier transform is one of the most important and widely used computational tasks. It is
a foundational tool commonly used to analyze the spectral representation of signals. Its applica-
tions include audio/video processing, radar and GPS systems, wireless communications, medical
imaging and spectroscopy, the processing of seismic data, and many other tasks [14, 27, 77, 137,
176, 183]. Hence, faster algorithms for computing the Fourier transform can benefit a wide range
of applications. The fastest algorithm to compute the Fourier transform today is the Fast Fourier
Transform (FFT) algorithm [34]. Invented in 1965 by Cooley and Tukey, the FFT computes the
Fourier transform of a signal of size n in 0 (n log n) time. This near-linear time of the FFT made
it one of the most influential algorithms in recent history [32]. However, the emergence of big data
problems, in which the processed datasets can exceed terabytes [154], has rendered the FFT's run-
time too slow. Furthermore, in many domains (e.g., medical imaging, computational photography),
data acquisition is costly or cumbersome, and hence one may be unable to collect enough measure-
ments to compute the FFT. These scenarios motivate the need for sublinear time algorithms that
compute the Fourier transform faster than the FFT algorithm and use only a subset of the input
data required by the FFT.

The key insight to enable sublinear Fourier transform algorithms is to exploit the inherit spar-
sity of natural signals. In many applications, most of the Fourier coefficients of the signal are small
or equal to zero, i.e., the output of the Fourier transform is sparse. For such signals, one does not
need to compute the entire output of the Fourier transform; it is sufficient to only compute the
large frequency coefficients. Fourier sparsity is in fact very common as it appears in audio/video,
medical imaging, computational learning theory, analysis of Boolean functions, similarity search
in databases, spectrum sensing, datacenter monitoring, etc [5, 28, 95, 112, 114, 130].

The research presented in this thesis pursues the above insight in the context of both algorithms
and systems in order to answer the following two core questions:

How can we leverage sparsity to design faster Fourier transform algorithms?

&

How do we build software and hardware systems that adapt our algorithms to
various application domains in order to deliver practical gains?

23

This thesis answers the above questions by developing the Sparse Fourier Transform algo-
rithms: a family of sublinear algorithms for computing the Fourier transform of frequency-sparse
signals faster than FFT and using a small subset of the input samples. The thesis also develops
architectures for leveraging sparsity to build practical systems that solve key problems in wireless
networks, mobile systems, computer graphics, medical imaging, biochemistry and digital circuits.

This thesis makes both theoretical and systems contributions. The theoretical contributions
form the algorithmic foundations of the Sparse Fourier Transform which encompass two main
axes:

" Optimizing the Runtime Complexity: The thesis presents Sparse Fourier Transform algo-
rithms with the lowest runtime complexity known to date. For exactly sparse signals, we present
an algorithm that runs in 0 (k log n) time where k is the number of large frequency coefficients
(i.e. sparsity) and n is the signal size. This algorithm is optimal if the FFT algorithm is optimal.
For approximately sparse signals, which we will formally define in Section 1.1.1, we present an
algorithm that runs in 0(k log n log (n/k)) time which is log n factor away from optimal. Both
algorithms improve over FFT for any sparsity k = o(n) and have small "Big-Oh" constants.
As a result, they are often faster than FFT in practice and run quickly on very large data sets.

" Optimizing the Sampling Complexity: The thesis presents Sparse Fourier Transform algo-
rithms with the optimal sampling complexity for average case inputs, i.e., these algorithms
use the minimum number of input data samples that would produce a correct answer. Hence,
they reduce the acquisition cost, bandwidth and I/O overhead needed to collect, transfer and
store the data. Specifically, these algorithms require only 0(k) samples for exactly sparse sig-
nals and 0(k log n) samples for approximately sparse signals while keeping the same runtime
complexity of the aforementioned worst case algorithms. Furthermore, the algorithms naturally
extend to multi-dimensional Sparse Fourier Transforms, without incurring much overhead.

The simplicity and practicality of the Sparse Fourier Transform algorithms allowed us to use
them to build six new systems that address major challenges in the areas of wireless networks and
mobile systems, computer graphics, medical imaging, biochemistry and digital circuits. Table 1.1
summarizes the systems developed in this thesis and our contributions to each application.

Leveraging the Sparse Fourier Transform to build practical systems, however, is not always
straightforward. The Sparse Fourier Transform is a framework of algorithms and techniques for
analyzing sparse signals. It inherently depends on the sparsity of the signal which changes from
one application to another. Thus, incorporating domain knowledge from each application allows
us to deliver much more significant gains. First, different applications exhibit different levels and
structure of sparsity. For example, in wireless networks, occupied frequencies in the wireless spec-
trum are not randomly distributed. They are instead clustered based on transmission regulations
set by the FCC. Hence, incorporating the structure of the sparsity into the algorithm and system is
essential for achieving good performance gains. In addition, in some applications such as medical
imaging, the sparsity of the signal is not apparent, which requires developing methods to sparsify
the signal before being able to use the Sparse Fourier Transform. In other applications, sparsity
appears only in part of the system and thus we have to redesign the entire system in order to prop-
agate the gains of the Sparse Fourier Transform to other stages and improve the overall system

24

Wireless Networks
Spectrum Sensing & Acquisition
Realtime GHz-wide spectrum acquisition requires costly

and highly customized hardware that consumes high

power.

Contribution: Built a receiver that can acquire a band-

width 6 x larger than its digital sampling rate enabling

realtime GHz spectrum sensing and decoding using

cheap components typically used in WiFi receivers.

100
80

60
40
20

0
1 1.5 2 2.5 3 3.5 4 4.5

Frequency (GHz)

5 5.5 6

Mobile Systems
GPS
GPS receivers consume a lot of power

on mobile devices which drains the bat-

tery.

Contribution: Designed a GPS receiver

that reduces the time and power it takes

the receiver to lock on its location.

Computer Graphics
Light Field Photography
Light field photography uses a camera

array to refocus and change the view-

point in post-processing.

Contribution: Developed a light field

reconstruction system that reduces the

camera sampling requirements and im-

proves image reconstruction quality.

Medical Imaging
Magnetic Resonance Imaging (MRI)
Magnetic resonance spectroscopy (MRS) detects the

biochemical content of each voxel in the brain and can

be used to discover disease biomarkers.

Contribution: Delivered a system for processing MRS

data that enhances image quality and reduces the time

the patient has to spend in the MRI machine by 3 x.

L& 0

Biochemistry
Nuclear Magnetic Resonance
NMR is used to discover biomolecular

structures of proteins.

Contribution: Reduced NMR exper-

iment time by 16x enabling high-

dimensional NMR which is needed for

discovering complex protein structures.

Digital Circuits
Sparse Fourier Chip
Massive size Fourier transforms require

large silicon area and consume high

power.

Contribution: Delivered a 0.75 million

point Fourier transform chip for sparse

data that consumes 40 x less power than

prior FFT VLSI implementations.

Table 1.1: Practical Systems Developed Using the Sparse Fourier Transform

I
25

0

O
A

performance. Hence, adapting the Sparse Fourier Transform into practical applications requires
a deep understanding of the application domain and customizing the algorithms to become more
in-sync with the system requirements.

The next two sections provide an overview of the theoretical algorithms and the software and
hardware systems developed in this thesis.

1.1 Sparse Fourier Transform Algorithms

The existence of Fourier transform algorithms faster than FFT is one of the central questions in
the theory of algorithms. The past two decades have witnessed significant advances in sublinear
Fourier algorithms for sparse signals. The first such algorithm (for the Hadamard transform) ap-
peared in [102] (building on [63]). Since then, several sublinear algorithms for complex Fourier
inputs have been discovered [6, 7, 57, 59, 88, 116]. The main value of these algorithms is that they
outperform FFT's runtime for sparse signals. For very sparse signals, the fastest algorithm is due
to [59] and has O(k log"(n) log(n/k)) runtime, for some c > 2. This algorithm outperforms FFT
for any k smaller than E(n/ log' n) for some a > 1.

Despite this impressive progress, the prior work suffers from two main limitations. First, none
of the existing algorithms improves over FFT's runtime for the whole range of sparse signals,
i.e., k = o(n). Second, the aforementioned algorithms are quite complex, and suffer from large
"Big-Oh" constants that lead to long runtime in practice. For example, an implementation of the
algorithm in [59] can only outperform FFT for extremely sparse signals where k/n < 3.2 x
10- [89]. The algorithms in [57, 88] require an even sparser signal (i.e., larger n and smaller k).
As a result, it has been difficult to incorporate those algorithms into practical systems.

In this section, we give an overview of our Sparse Fourier Transform algorithms, which ad-
dress the above limitations of prior work. We start by formalizing the problem. We then describe
the algorithmic framework underlying all of our Sparse Fourier Transform algorithms. Once we
establish this framework, we describe the different techniques that can be used at each step of a
Sparse Fourier Transform algorithm. We finally present the various algorithms that result from
using these techniques.

1.1.1 Problem Statement

Consider a signal x of size n whose discrete Fourier transform is R defined by:

n-i

R (f) = x(t) . e- 2 ft/n (1.1)
t=U

R is exactly k-sparse if it has exactly k non-zero frequency coefficients while the remaining n - k
coefficients are zero. In this case, the goal of the Sparse Fourier Transform is to exactly recover
R by finding the frequency positions f and values R(f) of the k non-zero coefficients. For general
signals, the Sparse Fourier Transform computes a k-sparse approximation R' of R. The best k-
sparse approximation of R can be obtained by setting all but the largest k coefficients of R to 0.

26

The goal is to compute an approximation R' in which the error in approximating 5R is bounded
by the error on the best k-sparse approximation. Formally, R has to satisfy the following f2/f2
guarantee:

f - R'112 < C min ||R - Y112, (1.2)
k-sparse y

where C is some approximation factor and the minimization is over exactly k-sparse signals.
In the remainder of this section, we will describe the algorithmic framework and techniques

in terms of exactly sparse signals. However, the full details and extensions to the general case of
approximately sparse signals can be found in Chapters 3, 4, and 5.

1.1.2 Algorithmic Framework

The Sparse Fourier Transform has three main components: Frequency Bucketization, Frequency
Estimation, and Collision Resolution.

1. Frequency Bucketization:

The Sparse Fourier Transform starts by hashing the frequency coefficients of R into buckets such
that the value of the bucket is the sum of the values of the frequency coefficients that hash into
the bucket. Since R is sparse, many buckets will be empty and can be simply discarded. The algo-
rithm then focuses on the non-empty buckets and computes the positions and values of the large
frequency coefficients in those buckets in what we call thefrequency estimation step.

The process offrequency bucketization is achieved through the use of filters. A filter suppresses
and zeroes out frequency coefficients that hash outside the bucket while passing through frequency
coefficients that hash into the bucket. The simplest example of this is the aliasing filter. Recall the
following basic property of the Fourier transform: subsampling in the time domain causes aliasing
in thefrequency domain. Formally, let b be a subsampled version of x, i.e., b(i) = x(i -p) where
p is a subsampling factor that divides n. Then, b, the Fourier transform of b is an aliased version
of R, i.e.:

p-1

E(i) = 5(i + m(n/p)). (1.3)
m=0

Thus, an aliasing filter is a form of bucketization in which frequencies equally spaced by an interval
B = n/p hash to the same bucket and there are B such buckets as shown in Figure 1-1. The
hashing function resulting from this bucketization can be written as: h(f) = f mod n/p. Further,
the value in each bucket is the sum of the values of only the frequency coefficients that hash to the
bucket as can be seen from Equation 1.3.

For the above aliasing filter, the buckets can be computed efficiently using a B-point FFT which
takes O(B log B) time. We set B = 0(k) and hence bucketization takes only 0(k log k) time
and uses only O(B) = O(k) of the input samples of x. In Section 1.1.3, we describe additional
types of filters that are used by our Sparse Fourier Transform algorithms to perform frequency
bucketization.

27

Alias

0 1 2 3 4 5 6 7 8 9 10 11 0 1 2 3

Frequencies Buckets

Figure 1-1: Bucketization Using Aliasing Filter: Sub-sampling a signal by 3 x in the time domain,
results in the spectrum aliasing. Specifically, the 12 frequency will alias into 4 buckets. Frequencies

that are equally spaced by 4 (shown with the same color) end up in the same bucket.

2. Frequency Estimation:

In this step, the Sparse Fourier Transfonn estimates the positions and values of the non-zero fre-

quency coefficients which created the energy in each of the non-empty buckets. Since 5 is sparse,

many of the non-empty buckets will likely have a single non-zero frequency coefficient hashing
into them, and only a small number will have a collision of multiple non-zero coefficients. We

first focus on buckets with a single non-zero frequency coefficients and estimate the value and the

position of this non-zero frequency, i.e., 5(f) and the corresponding f.
In the absence of a collision, the value of the non-zero frequency coefficient is the value of the

bucket it hashes to since all other frequencies that hash into the bucket have zero values. Hence,
we can easily find the value of the non-zero frequency coefficient in a bucket. However, we still

do not know its frequency position f, since frequencY bucketization mapped multiple frequencies

to. the same bucket. The simplest way to compute f is to leverage the phase-rotation property of
the Fourier transform, which states that a shift in time domain translates into phase rotation in

the frequency domain [115]. Specifically, we perform the process of bucketization again, after a

circular shift of x by T samples. Since a shift in time translates into a phase rotation in the frequency

domain, the value of the bucket changes from b(i) = k(f) to (T) (I) = 5(f) -e* where the phase

rotation is:
A(,) = 27f T/n (1.4)

Hence, using the change in the phase of the bucket, we can estimate the position of the non-zero

frequency coefficient in the bucket. Note that the phase wraps around every 27 and so the shift

r should be I to avoid the phase wrapping for large values of f.' Since, there are A non-zero

frequency coefficients, thisfrequency estimation can be done efficiently using at most 0(k) com-

putations. In Section 1. 1.3, we describe additional techniques that are used by our Sparse Fourier

Transform algorithms to estimate the values and positions of non-zero frequency coefficients.

3. Collision Resolution:

Non-zero frequency coefficients that are isolated in their own bucket can be properly estimated as

described above. However, when non-zero frequencies collide in the same bucket, we are unable

Note that for approximately sparse signals, multiple time shifts are used to average the noise and ensure robust
estimation as we show in Chapter 4.

28

0 1 2 3

1 St Bucketization
(Sub-sample by 3)

0 1 2 3 4 5 6 7 8 9 10 11

Frequencies

0 1 2

2 nd Bucketization
(Sub-sample by 4)

Figure 1-2: Resolving collisions with Co-prime Aliasing: Using 2 co-prime aliasing filters, we
ensure the frequencies that collide in one filter will not collide in the second. For example, frequen-

cies 5 and 9 collide in the first filter. But frequency 5 dies not collide in the second which allows

us to estimate it and subtract it.

to estimate them correctly. Hence, to recover the full frequency spectrum, we need to resolve the

collisions.
To resolve collision, we need to repeat the frequency bucketization in a manner that ensures

that the same non-zero frequencies do not collide with each other every time. The manner in

which we achieve this depends on the type of filter used for bucketization. For example, with

the aliasing filters described above, we can bucketize the spectrum multiple times using aliasing

filters with co-prime sampling rates. This changes the hashing function from h(f) = f mod n/p
to h'(f) = f mod n/p' where p and p' are co-prime. Co-prime aliasing filters guarantee that

any two frequencies that collide in one bucketization will not collide in the other bucketization.

To better understand this point, consider the example in Figure 1-2. The first time we bucketize,
we use an aliasing filter that sub-samples the time signal by a factor of 3. In this case, the two

frequencies labeled in red and blue collide in a bucket whereas the frequency labeled in green does

not collide, as shown in the figure. The second time we bucketize, we use an aliasing filter that sub-

samples by 4. This time the blue and green frequencies collide whereas the red frequency does not

collide. Now we can resolve collisions by iterating between the two bucketizations. For example,
we can estimate the green frequency from the first bucketization, where it does not collide. 2 We

subtract the green frequency from the colliding bucket in the second bucketization to obtain the

blue frequency. We then go back to the first bucketization and subtract the blue frequency from the

bucket where it collides to obtain the red frequency.

Iterating between the different bucketizations by estimating frequencies from buckets where

2 In Chapter 5, we will present techniques to detect collisions. However, accurately detecting collision is not always

necessary. Since x is sparse, the number of collisions will be very small and errors caused by assuming a non-zero

frequency is isolated when it is in a collision can be corrected in subsequent iterations of the algorithm.

29

they do not collide and subtracting them from buckets where they do collide, ensures that each
non-zero frequency will be isolated in its own bucket during some iteration of the algorithm. This
allows us to estimate each non-zero frequency correctly. Thus, at the end of the of the collision
resolution step, we have recovered all non-zero frequencies and hence have successfully computed
the Fourier transform of the signal.

1.1.3 Algorithmic Techniques

The previous section established a general framework for computing the Sparse Fourier Transform
and gave one example of a technique that can be used in each step of this framework. In this
section, we describe a more comprehensive list of techniques that are used by different Sparse
Fourier Transform algorithms.

1. Frequency Bucketization Techniques:

As described earlier bucketization is done using filters. The choice of the filter can severely affect
the running time of a Sparse Fourier Transform algorithm. Ideally, we would like a filter that uses
a small number of input time samples to hash the frequency coefficients into buckets. For example,
the rectangular or boxcar filter shown in Figure 1-3(a), uses only B time samples to hash the
frequency coefficients into B buckets which is ideal in time domain. However, in the frequency
domain, it is equal to the sinc function,3 which decays polynomially as shown in Figure 1-3(a). This
polynomial decay means that the frequency coefficients "leak" between buckets, i.e., the value of
the bucket is no longer the sum of n/B coefficients that hash to the bucket. It is a weighted sum of
all the n frequency coefficients. Hence, a non-zero frequency coefficient can never be isolated in
a bucket and estimated correctly. One the other hand, a rectangular filter is ideal in the frequency
domain since it has no leakage as shown in Figure 1-3(b). However, it is sinc function in the time
domain and hence requires using all n input samples which take at least Q(n) time to process.

In this thesis, we identify several efficient filters that use a small number of samples in time
domain and have minimal or no leakage in the frequency domain and as a result can be used to
perform fast bucketization.

e Flat Window Filter: This filter looks very similar to a rectangle or box in the frequency do-
main while still using a small number of time samples. An example of such filter is a Gaussian
function multiplied by a sinc function in the time domain which is shown in Figure 1-3(c).
Since the Gaussian function decays exponentially fast both in time and frequency, the leakage
between buckets in this filter is negligible and can be ignored. Similarly, the filter is concen-
trated in time and hence uses only a small number of time samples. The resulting hash function
of such filter can be written as h(f) = [f /(n/B)]. Gaussian is only one example of such func-
tions. One can potentially use a Dolph-Chebyshev or a Kaiser-Bessel function as we describe
in more detail in Chapter 2.

3The sinc function is defined as: sinc(x) sin(x)/x.

30

R 1

F t _n Frquency Dom Fil__in Frequny Dmain Filter in FrequenIy Doman

(a) Rectangular (b) Sinc (c) Gaussian/Rectangular

Figure 1-3: Filters used for Frequency Bucketization shown in the ti
frequency (lower row) domain.

.7
-4 4 4 -4 ---- 4---

1 4-

4- -4

i .4.

4
T"

-ua

(b)

aU

4

low

(a) (c) (d)

Figure 1-4: Fourier Projection Filters: The top row of figures shows the sampled lines of the

time signal and the bottom row of figures shows how the spectrum is projected. Frequencies of the

same color are projected onto the same point. (a) row projection (b) column projection (c) diagonal

projection (d) line with slope = 2.

i Aliasing Filter: We presented this filter in the previous section. It is simply a spike-train of pe-

riod j) in time domain since it sub-samples the time domain signal by a factor of p as shown in

Figure 1-3(d). It is also a spike-train in the frequency domain since it sums up frequency coef-

ficients that are equally spaced by n/p. The aliasing filter is ideal both in time and in frequency

since it only uses B time samples and has zero leakage between buckets. Unfortunately, we

will later show that the aliasing filter does not lend itself to powerful randomization techniques

and as a result, can only be shown to work for average case input signals as opposed to worst

case.

31

Filter in Time DomainFio-, r 1iTm. Domain

T T _7

Filter in Time Domain

Fiter rown Fr)quny Domain

(d) Aliasing

ime (upper row) and the

i- J

* Fourier Projection Filter: This filter is a generalization of the aliasing filter to higher dimen-
sions. It is a direct result of the Fourier Slice Projection Theorem which states that taking the
Fourier transform of samples along a slice (e.g. a ID line in 2D time signal or a 2D plane
in a 3D signal) results in the orthogonal projection of the frequency spectrum onto the corre-
sponding slice in the Fourier domain. For example, if we sample a row in a 2D time domain
signal and then take its ID Fourier transform, each output point of the Fourier transform will
be the sum of the coefficients along one column as shown in Figure 1-4 (a). Alternatively, if we
sample a column, each output point will be the sum of the coefficients along one row as shown
in Figure 1-4(b). This also holds for any discrete line as shown in Figure 1-4(c,d). Thus, if we
sample a line with slope equal to 1 or 2, we get a projection in the frequency domain along lines
with slopes equal to -1 or - 1/2. Note that discrete lines wrap around and hence can generate
non-uniform sampling as shown in Figure 1-4(d).

2. Frequency Estimation Techniques:

Recall that the goal of the frequency estimation step is to compute the positions f and values
x(f) of the non-zero frequency coefficients that have been hashed to non-empty buckets. In what
follows, we will present the techniques used by the Sparse Fourier Transform algorithms to perform
frequency estimation.

" Time-Shift/Phase-Rotation Approach: In this approach, which we have previously described
in Section 1.1.2, we repeat the bucketization after shifting the time signal x by a circular shift
of T samples. For buckets with a single isolated non-zero frequency coefficient, this results in a
phase rotation A0 of the complex value of the coefficient. A0 = 27rfT/ n which we can use to
compute the frequency position f. Since the frequency is isolated, its value can be immediately
computed from the value of the bucket as described in the previous section. This is an extremely
efficient approach since it requires constant 0(1) time to estimate each non-zero frequency. For
noisy signals, we repeat this process for multiple different time shifts to average the noise. The
details of how we average the noise to ensure robust recovery can be found in Chapter 4.

" Voting Approach: This is a non-iterative streaming approach where we repeat the bucketi-
zation few times while changing the hashing function. For each bucketization, the non-empty
buckets vote for all the frequency coefficients that hash into those buckets. Non-zero frequency
coefficients will get a vote from every bucketization with high probability. On the other hand,
zero and negligible frequencies are unlikely to get many votes. Hence, after repeating the buck-
etization and this voting procedure a few times, the k non-zero frequency coefficients will have
the largest number of votes and can be identified. In Chapter 3, we will show that this approach
is more resilient to signal noise. However, this comes at the cost of increased runtime which
we prove to be 0(log n/ nk log n).

3. Collision Resolution Techniques:

Collision resolution is achieved by repeating the bucketization in a manner that changes the way
frequency coefficients hash into buckets so that the same coefficients do not continue to collide.

32

We can randomize the hashing function if we can perform a random permutation of the posi-
tions of the coefficients in x before repeating the bucketization. This can be achieved by rearrang-
ing the indices of the input time signal x and rescaling it in the following manner: 4

x'(t) = x(-t mod n) - e-j2t/n (1.5)

where -is a random integer invertible modulo n and 0 is a random integer. This results in a random
linear mapping of the positions of the frequency coefficients: f -+ o 1f + 0 mod n. The proof
of this can be found in Chapter 2. While this randomization is a very powerful collision resolution
technique, it only works with the flat window filter and does not work with aliasing filters as
we will show in Chapter 3. To resolve collisions using aliasing filters, we need to use co-prime
subsampling i.e. subsample the signal using different co-prime subsampling rates as explained in
the previous section.

1.1.4 Algorithmic Results

In this section, we will present the theoretical results of the Sparse Fourier Transform algorithms
that we developed. All the algorithms follow the framework described in Section 1.1.2. However,
they use different techniques from Section 1.1.3 and as a result achieve different runtime and sam-
pling complexities as well as different guarantees. Most of the theoretical algorithms presented in
this thesis are randomized and succeed with a large constant probability. Table 1.2 summarizes the
theoretical Sparse Fourier Transform algorithms presented in this thesis along with their complex-
ity results, guarantees and techniques used.

1.2 Applications of the Sparse Fourier Transform

The second half of this dissertation focuses on developing software and hardware systems that
harness the Sparse Fourier Transform to solve practical problems. The thesis presents the design
and implementation of six new systems that solve challenges in the areas of wireless networks,
mobile systems, computer graphics, medical imaging, biochemistry, and digital circuits. All six
systems are prototyped and evaluated in accordance with the standards of each application's field.

Adapting the Sparse Fourier transform to a particular application requires a careful design
and deep knowledge of the application domain. The Sparse Fourier transform is a framework of
algorithms and techniques for analyzing sparse signals. It is not a single algorithm that can be
plugged directly into an application. To apply it to a problem, one has to deeply understand the
structure of the sparsity in the application of interest, and customize the framework to the observed
sparsity. More generally, real applications add new constraints that are application-dependent, and
can deviate from our mathematical abstraction. Below we highlight some of the common themes
that arise in mapping the Sparse Fourier Transform to practical systems.

4Note that only time samples that will be used by the bucketization filters need to be computed.

33

Bucketization

Chapter Algorithm Runtime / Sampling Sparsity Model Analysis & Estimation
Complexity Range & Guarantee Techniques

* Flat Window
SFT 1.0* 0(log n vnk log n) 0(n/ log n) Approximate Worst Case

(foo/f2) * Voting

3

o Flat Window
SFT 2.0 0(log n (/nk 2 log n) 0(n/ /logn) Approximate Worst Case & Aliasing

(Heuristic) * Voting

* Flat Window
SFT 3.0 0(k log n) 0(n) Exact Worst Case

(Time Optimal) * Phase Rotation

* Flat Window
4 SFT 4.0 0(k log n log (n/k)) 0(n) Approximate Worst Case

(f2/f2) 9 Phase Rotation

* Flat Window
SFT 4.1 0(k log 2 n log (n/k)) 0(n/ log n log log n) Approximate Worst Case, 2D

(V2/f2) * Phase Rotation

* Projections
SFT 5.1 0(k log k) Time 0(v/'i) Exact Average Case, 2D & Aliasing

0(k) Samples (Optimal) * Phase Rotation

5

* Projections
SFT 6.0 0(k log 2 n) Time E(V/ii) Approximate Average Case, 2D

0(k log n) Samples (f2/[2) (Sample Optimal) * Phase Rotation

Table 1.2: Theoretical Sparse Fourier Transform Algorithms

(*) The sampling complexity of algorithms SFT 1.0-4.1 is the same as their runtime complexity.

34

" Structure of Sparsity: In most applications, the occupied frequency coefficients are not ran-
domly distributed; they follow a specific structure. For example, as mentioned earlier, in wire-
less communication, the occupied frequencies in the wireless spectrum are clustered. In com-
putational photography, the occupied frequencies are more likely to be present in part of the
Fourier spectrum. On the other hand, in an application like GPS, the occupied coefficient can
be anywhere. Understanding the structure of sparsity in each application allows us to design a
system that leverages it to achieve the best performance gains.

" Level of Sparsity: A main difference between theory and practice is that the Sparse Fourier
Transform algorithms operate in the discrete domain. In real and natural signals, however, the
frequency coefficients do not necessarily lie on discrete grid points. Simply rounding off the
locations of the coefficients to the nearest grid points can create bad artifacts which significantly
reduce the sparsity of the signal and damage the quality of the results. This problem occurs in
application like medical imaging and light-field photography. Hence, we have to design systems
that can sparsify the signals and recover their original sparsity in the continuous domain in order
to address the mismatch between the theoretical Sparse Fourier Transform framework and the
scenarios in which it is applied.

* System Requirements: Different applications have different goals. For example, in medical
imaging, the acquisition cost is high since it requires the patient to spend more time in the
MRI machine while processing the captured data afterwards is not a problem. Hence, the goal
would be to minimize the number of input samples that need to be collected even if it requires
additional processing time. On the other hand, in applications like GPS, collecting the samples
is very cheap. However, processing them consumes a lot of power. Hence, the goal would be to
minimize computational load even if all the input samples are used. Finally, in applications like
spectrum acquisition and NMR spectroscopy, the goal would be to minimize both the runtime
and the sampling. Hence, understanding the system is essential for adapting the Sparse Fourier
Transform techniques to satisfy the requirements of each application.

* System Architecture: In some applications, the applicability of the Sparse Fourier Transform
to a system architecture might not even be apparent. For example, the Fourier transform of the
GPS signal is not sparse and hence applying the Sparse Fourier Transform directly to GPS is
not feasible. However, we observed that the GPS receiver correlates its signal with a special
code transmitted by the satellite, and the output of the correlation is sparse because it spikes
only when the code and the signal are aligned. Hence, we have to map this indirect form of
sparsity to the Sparse Fourier Transform framework. We also need to ensure that the gains of
the Sparse Fourier Transform are not bottlenecked by other components in the system. Thus,
careful system design is essential for propagating these gains along the system pipeline and
improving the overall system performance.

* Signal to Noise Ratio: In practice, the gains of the Sparse Fourier Transform are constraint
by the noise level in the system. It is essential to perform sampling and processing that would
be sufficient to bring the signal above the noise floor of the system. For example, although the
sparsity that appears in a GPS system is extremely high (~0.025%), GPS signals are -30 dB

35

to -20 dB below the noise floor which requires additional computation that upper bounds the
performance gains. Thus, understanding the noise level and structure is essential in designing
any system that uses the Sparse Fourier Transform.

The following subsections summarize the developed systems in this thesis and how they benefit
from the Sparse Fourier Transform.

1.2.1 Spectrum Sensing and Decoding

The ever-increasing demand for wireless connectivity has led to a spectrum shortage which prompted
the FCC to release multiple new bands for dynamic spectrum sharing. This is part of a bigger vision
to dynamically share much of the currently under-utilized spectrum, creating GHz-wide spectrum
superhighways that can be shared by different types of wireless services. However, a major tech-
nical obstacle precluding this vision is the need for receivers that can capture and sense GHz of
spectrum in real-time in order to quickly identify unoccupied bands. Such receivers consume a lot
of power because they need to sample the wireless signal at GigaSample/s.

To overcome this challenge, we leverage the fact that the wireless spectrum is sparsely uti-
lized and use the Sparse Fourier Transform to build a receiver that can capture and recover GHz
of spectrum in real-time, while sampling only at MegaSample/s. We use the aliasing filters and
phase rotation techniques described in Section 1.1.3 to build the entire receiver using only cheap,
low power hardware similar to what is used today by WiFi and LTE in every mobile phone. We
implement our design using three software radios, each sampling at 50 MegaSample/s, and pro-
duce a device that captures 0.9 GHz - i.e., 6x larger digital bandwidth than the three software
radios combined. The details of the system design, implementation and evaluation can be found in
Chapter 7.

1.2.2 GPS Receivers

GPS is one of the most widely used wireless systems. In order to calculate its position, a GPS
receiver has to lock on the satellite signals by aligning the received signal with each satellite's
code. This process requires heavy computation, which consumes both time and power. As a result,
running GPS on a phone can quickly drain the battery.

We introduced a new GPS receiver that minimizes the required computation to lock on the satel-
lite's signal hence reducing localization delay and power consumption. Specifically, We observed
that GPS synchronization can be reduced into a sparse computation problem by leveraging the fact
that only the correct alignment between the received GPS signal and the satellite code causes their
correlation to spike. We built on this insight to develop a GPS receiver that exploits the Sparse
Fourier Transform to quickly lock on the satellite signal and identify its location. We prototyped
this design using software radios. Our empirical results with real satellite signals demonstrate that
the new GPS receiver reduces the computational overhead by 2 x to 6 x, which translates into sig-
nificant reduction in localization delay and power consumption. Chapter 8 presents the analysis
and evaluation of the design in detail.

36

1.2.3 Light Field Photography

Light field photography is an active area in graphics where a 2D array of cameras or lenslets is used
to capture the 4D light field of a scene. 5 This enables a user to extract the 3D depth, refocus the
scene to any plane, and change the angle from which he views the scene. This is essential for VR
(Virtual Reality) systems as well as post processing of images and videos. Capturing light fields,
however, is costly since it requires many cameras or lenslets to sample the scene from different
viewpoints.

Thus, our goal is to reduce the cost of light field capture by using only few of the cameras in
the 2D array and reconstructing the images from the missing cameras . To do this, we leverage
the fact that the 4D Fourier transform of a light field is sparse and we use the Sparse Fourier
Transform to sub-sample the input and reduce the number of cameras. Once we have computed
the Fourier transform, we can invert it back to recover the images from the missing cameras which
were not sampled and hence recover the full 2D array. However, as explained earlier, natural signals
like light fields are not very sparse in the discrete domain. To address this issue, we developed a
light field reconstruction system that optimizes for sparsity in the continuous Fourier domain. This
improves the quality of reconstruction while reducing the required number of cameras by 6 x to
10 x. The light field reconstruction algorithm along with the reconstruction results can be found in
Chapter 9.

1.2.4 Magnetic Resonance Spectroscopy (MRS)

One of the next frontiers in MRI is Magnetic Resonance Spectroscopy (MRS). MRS enables zoom-
ing in and detecting the biochemical content of each voxel in the brain, which can be used to dis-
cover disease biomarkers that allow early detection of cancer, Autism, and Alzheimer. MRS tests,
however, take prohibitively long time, requiring the patient to stay in the MRI machine for more
than two hours. MRS images also suffer from a lot of clutter and artifacts that can mask some
disease biomarkers. These two challenges have been a major barrier against adopting these tests in
clinical diagnosis. To overcome this barrier, We demonstrated that processing MRS data using the
Sparse Fourier Transform enhances image quality by suppressing artifacts and reduces the time the
patient has to spend in the machine by 3 x (e.g. from 2 hrs to 40 mins). The details of our MRS
algorithm, experiments and results can be found in Chapter 10.

1.2.5 Nuclear Magnetic Resonance (NMR)

NMR is a technique that provides the detailed structural properties of chemical compounds, pro-
viding the 3D structure of complex proteins and nucleic acids. However, collecting NMR measure-
ments is a very time consuming and costly process that can take from several days up to weeks. This
prevents researchers from running high-dimensional NMR experiments which are needed for ana-
lyzing more complex protein structures. NMR uses spectral analysis to find the resonance frequen-
cies that correspond to the coupling between different atoms. NMR spectra are sparse. Hence, us-

5 The four dimensions of a light field correspond to the 2D pixels in each image captured by a camera in the 2D
camera array.

37

ing the Sparse Fourier Transform, we show how to generate the NMR spectra by sub-sampling the
NMR measurements. We customized the Sparse Fourier Transform for multi-dimensional NMR
and showed that it can reduce the time of an NMR experiment by 16 x. Chapter 11 describes the
Sparse Fourier Transform techniques used for processing our NMR experiments along with our
recovery results.

1.2.6 The Sparse Fourier Transform Chip

Traditionally, hardware implementations of FFT have been limited in size to few thousands of
points. This is because large FFTs require a huge I/O bandwidth, consume a lot of power, and
occupy a large silicon area. The Sparse Fourier Transform naturally addresses these issues due
to its low computational and memory cost, enabling very large Fourier transforms. We built the
largest Fourier transform VLSI chip to date with nearly a million point Fourier transform while
consuming 40 x less power than prior FFT VLSI implementations. The hardware architecture and
benchmarking of the fabricated chip can be found in Appendix G.

1.3 Thesis Roadmap

This thesis is divided into two parts. Part I describes the theoretical foundations of the Sparse
Fourier Transform. It presents the Sparse Fourier Transform algorithms in detail and provides the
analysis and proofs of the guarantees of these algorithms. Chapter 2 presents the notation and basic
definitions that will be used in this part of the thesis. Chapters 3 and 4 focus on reducing the runtime
complexity of the Sparse Fourier Transform algorithms while Chapter 5 focuses on optimizing
the sample complexity. Finally, in Chapter 6, we present numerical simulations to evaluate the
performance of the Sparse Fourier Transform.

Part II describes the applications and systems designed using the Sparse Fourier Transform.
Chapter 7 describes the design and implementation of a wireless receiver that can capture GHz of
spectrum in realtime. Chapter 8 presents a GPS receiver design with lower computational overhead.
Chapter 9 describes a light field photography reconstruction algorithm that achieves high quality
image recovery. Chapter 10 shows how the Sparse Fourier Transform can be used to reduce the
time a patient spends in an MRI machine and generate clearer images. Chapter 11 presents the
application of the Sparse Fourier Transform to Nuclear Magnetic Resonance in biochemistry.

Finally, in Chapter 12, we conclude and discuss the future work.

38

Part I

Theory of the Sparse Fourier Transform

39

40

Chapter 2

Preliminaries

2.1 Notation

We use w = e -2ri/n as the n-th root of unity and w' = e-27i/V as the - 1' -th root of unity. For any
complex number a, we use #(a) E [0, 27r] to denote the phase of a. For a complex number a and a
real positive number b, the expression a b denotes a complex number a' such that I a - a'I ; b.

For a vector x E Cn, its support is denoted by supp(x) c [n]. We use I x Io to denote Isupp(x) ,
the number of non-zero coordinates of x. Its Fourier spectrum is denoted by ;, with

1

For a vector of length n, indices should be interpreted modulo n, so x- = xn-_. This allows us to
define convolution

(X *y)= ZXj yj
j G [n]

and the coordinate-wise product (x - Y) = Xiyi, so x '~y = *
We use [n] to denote the set {1,..., n}. All operations on indices in are taken modulo n.

Therefore we might refer to an n-dimensional vector as having coordinates {0, 1, ... , n - 1} or
{0, 1 ... , n/2, -n/2+1, ... , -1} interchangeably. When i E Z is an index into an n-dimensional
vector, sometimes we use i to denote minj=j (mod n) 1A. Finally, we assume that n is an integer
power of 2.

For the case of 2D Fourier transforms which will appear in Chapter 5, we assume that V/_n is a
power of 2. We use [m] x [M] = [M] 2 to denote the m x m grid {(i, j) :i E [m], j E [m]}. For a
2D matrix x E CvOX E',, its support is denoted by supp(x) C [x/] x [V/']. We also use ||xIlo to
denote Isupp(x) . Its 2D Fourier spectrum is denoted by j, with

Faly fEys f e -m mC[V/ne

Finally, if y is in frequency-domain, its inverse is denoted by Y-.

41

2.2 Basics

2.2.1 Window Functions

In digital signal processing [138] one defines windowfunctions in the following manner:

Definition 2.2.1. We define a (E, 6, w) standard window function to be a symmetric vector F E R'
with supp(F) C [-w/2, w/2] such that F0 = 1, F, > Ofor all i G [-En, En], and |Fi| < 6for all
i [-En, En].

Claim 2.2.2. For any E and 6, there exists an (E, 6, O(log(1/6))) standard window function.

Proof This is a well known fact [160]. For example, for any E and 6, one can obtain a standard
window by taking a Gaussian with standard deviation O(log(1/6)/E) and truncating it at w
O(1 log(1/6))). The Dolph-Chebyshev window function also has the claimed property but with
minimal big-Oh constant [160] (in particular, half the constant of the truncated Gaussian). E

The above definition shows that a standard window function acts like a filter, allowing us to
focus on a subset of the Fourier coefficients. Ideally, however, we would like the pass region of our
filter to be as flat as possible.

Definition 2.2.3. We define a (E, E', 6, w) flat window function to be a symmetric vector F E R'
with supp(F) C [-w/2, w/2] such that F2 G [1 - 6,1 + 6]for all i E [-E'n, E'n] and |F,I < 6for

all i V [-En, En].

A flat window function (like the one in Figure 2-1) can be obtained from a standard window
function by convolving it with a "box car" window function, i.e., an interval. Specifically, we have
the following.

Claim 2.2.4. For any , c' and 6 with E' < E, there exists an (E, E' 06, (1 1. n)))fat window

function.

Note that in our applications we have 6 < 1/no(') and E - 2E'. Thus the window lengths w of
the flat window function and the standard window function are the same up to a constant factor.

Proof Let f = (E - E')/2, and let F be an (f, , , w) standard window function with minimal

w = O(2 ,log (,+)n). We can assume E, E' > 1/(2n) (because [-En, En] = {0} otherwise), so

log (c+E')n - O(log n). Let F' be the sum of 1 + 2(c' + f)n adjacent copies of F, normalized to

F'o 1. That is, we define
E(E'+f)n ^.

Zj=-fn F
so by the shift theorem, in the time domain

(E'+f)n
F'Fa Z ,

j=-(E'+f)n

42

G (linear scale)

1

0.8

0.6

0.4

0.2 I-

0
0 50 100 150 200 250

(a)

G (log scale)

0 50 100 150 200 250

(c)

El

C (linear scale)

0 50 100 150 200 250

(b)

O (log scale)

0 50 100 150 200 250

1

0.01

0.0001

le-06

le-08

le-l0

le-12

(d)

Figure 2-1: An Example Flat Window Function for n = 256. This is the sum of 31 adjacent
(1/22, 10-8, 133) Dolph-Chebyshev window functions, giving a (0.11, 0.06, 2 x 10- 9, 133) flat
window function (although our proof only guarantees a tolerance 6 = 29 X 10-8, the actual toler-
ance is better). The top row shows G and G in a linear scale, and the bottom row shows the same
with a log scale.

43

2

1.5

1

0.5

0

1
0.1

0.01
0.001

0.0001
le-05
le-06
le-07
le-08

M

' ' ' I I I I I

Since F, > 0 for Ii| < fn, the normalization factor Ef__, Fj is at least 1. For each i E
[-C'n, C], the sum on top contains all the terms from the sum on bottom. The other 26'n terms in
the top sum have magnitude at most 6/((c'+ c)n) = 6/(2(E+f)n), so IF'i - 11 < 2c'n(6/(2(E'+
f)n)) < 6. For jil > En,however, F' < 2(E' +f)n6/(2(E'C+f)n) < 6. Thus F' is an (,c',6,w)
flat window function, with the correct w. E

2.2.2 Permutation of Spectra

Following [59], we can permute the Fourier spectrum as follows by permuting the time domain:

Definition 2.2.5. Suppose ou- 1 exists mod n. We define the permutation Py,a,b by

(Pa~a,bX)i =XoU(ia)Wabi

We also define 7F,, (i) = a-(Z - b) mod n.

Claim 2.2.6. Pa,bX ,) = acia

Proof

PO1'a~bzoW(i-b) (PabX)j
Pt~,a~~g~jb jE[n]

1 O a (i -b)(ja bj

'vnjE[n]

Saci
1 z o(-) o j-a

VnjE[n] aja

Lemma 2.2.7. If j $ 0, n is a power of two, and o- is a uniformly random odd number in [in], then
Pr[u-j E [-C, Cl] < 4C/n.

Proof If j = m2' for some odd m, then the distribution of crj as -varies is uniform over m'21 for
all odd m'. There are thus 2 -round(C/2'+1) < 4C/2'+' possible values in [- C, C] out of n/21+'
such elements in the orbit, for a chance of at most 4 C/rn. E

Note that for simplicity, we will only analyze our algorithm when n is a power of two. For
general n, the analog of Lemma 2.2.7 would lose an n/p(n) = O(log log n) factor, where o is
Euler's totient function. This will correspondingly increase the running time of the algorithm on
general n.

Claim 2.2.6 allows us to change the set of coefficients binned to a bucket by changing the
permutation; Lemma 2.2.7 bounds the probability of non-zero coefficients falling into the same
bucket.

44

2.2.3 Subsampled FFT

Suppose we have a vector x E Cn and a parameter B dividing n, and would like to compute
Yi Xi(n/B) for i E [B].

Claim 2.2.8. Y^
Therefore Y-

is the B-dimensional Fourier transform of y= xiB-i
can b m e XBj

can be computed in 0(1 supp (x)~ I B log B) time.

Proof

n-I

Si(n/B) =Z ij(n/B)

J=o
B-1 n/B-1

. BJ+
a=O j=O

B-1 n/B-1

z z XBj+a i(Bj+ajn/B
a=O j=O

B-I
aian/B ya ian/B

a=O

2.2.4 2D Aliasing Filter

The aliasing filter presented in Section 1.1.2. The filter generalizes to 2 dimensions as follows:
Given a 2D matrix x E C',<' v, (Tr, Tc) E [/i] x [V/fi], and Br, Bc that divide V/Tn, then for

all (i,j) E [Br] x [Be] set

Yi j Xi(V/i1B,)+-r,j(v/n-/Bc)+rc

Then, compute the 2D DFT ^ of y. Observe that - is a folded version of i:

Y,=lB5+i,mB+-

45

D-

46

Chapter 3

Simple and Practical Algorithm

3.1 Introduction

In this chapter, we propose a new sub-linear Sparse Fourier Transform algorithm over the complex
field. The key feature of this algorithm is its simplicity: the algorithm has a simple structure, which
leads to efficient runtime with low big-Oh constant. This was the first algorithm to outperform FFT
in practice for a practical range of sparsity as we will show later in Chapter 6.

3.1.1 Results

We present an algorithm which has the runtime of

o (log n nk log n)

where n is the size of the signal and k is the number of non-zero frequency coefficients. Thus,
the algorithm is faster than FFT for k up to 0 (n/log n). In contrast, earlier algorithms required
asymptotically smaller bounds on k. This asymptotic improvement is also reflected in empirical
runtimes. For example, we show in Chapter 6 that for n 222, this algorithm outperforms FFT for
k up to about 2200, which is an order of magnitude higher than what was achieved by prior work.

The estimations provided by our algorithm satisfy the so-called f'/f2 guarantee. Specifically,
let y be the minimizer of IIX - y 12. For a precision parameter 6 1/n0(1), and a constant c > 0,
our (randomized) algorithm outputs ' such that:

- c', < - y 2/k + 6|1| (3.1)

with probability 1 - 1/n. The additive term that depends on 6 appears in all past algorithms [6, 7,
57, 59, 88, 116], although typically (with the exception of [90]) it is eliminated by assuming that all
coordinates are integers in the range {-no(1) . .. no(1)} . In this chapter, we keep the dependence
on 6 explicit.

The fo/f2 guarantee of Equation (3.1) is stronger than the f2/62 guarantee of Equation (1.2).
In particular, thef,, /f 2 guarantee with a constant approximation factor C implies the f2/62 guar-

47

antee with a constant approximation factor C', if one sets all but the k largest entries in ' to 0.1
Furthermore, instead of bounding only the collective error, the fo/2 guarantee ensures that every
Fourier coefficient is well-approximated.

3.1.2 Techniques

Recall from Chapter 1 that the Sparse Fourier Transform algorithms work by binning 2 the Fourier
coefficients into a small number of buckets. Since the signal is sparse in the frequency domain,
each bucket is likely3 to have only one large coefficient, which can then be located (to find its
position) and estimated (to find its value). For the algorithm to be sublinear, the binning has to be
done in sublinear time. Binning the Fourier coefficient is done using an n-dimensional filter vector
G that is concentrated both in time and frequency, i.e., G is zero except at a small number of time
coordinates, and its Fourier transform G is negligible except at a smallfraction (about 1/k) of the
frequency coordinates (the "pass" region).

Prior work, uses different types of filters. Depending on the choice of the filter G, past algo-
rithms can be classified as: iteration-based or interpolation-based.

Iteration-based algorithms use a filter that has a significant mass outside its pass region [57,
59, 116]. For example, the papers [57, 59] set G to the rectangular filter which was shown in Fig-
ure 1-3(a), in which case C is the Dirichlet kernel4 , whose tail decays in an inverse linear fashion.
Since the tail decays slowly, the Fourier coefficients binned to a particular bucket "leak" into other
buckets. On the other hand, the paper [116] estimates the convolution in time domain via random
sampling, which also leads to a large estimation error. To reduce these errors and obtain the f2/f2

guarantee, these algorithms have to perform multiple iterations, where each iteration estimates the
largest Fourier coefficient (the one least impacted by leakage) and subtracts its contribution to the
time signal. The iterative update of the time signal causes a large increase in runtime. The algo-
rithms in [57, 116] perform this update by going through 0(k) iterations each of which updates
at least 0(k) time samples, resulting in an 0(k 2) term in the runtime. The algorithm [59], intro-
duced a "bulk sampling" algorithm that amortizes this process but it requires solving instances of
a non-uniform Fourier transform, which is expensive in practice.

Interpolation-based algorithms are less common and limited to the design in [88]. This ap-
proach uses the aliasing filter presented in Chapter 1, which is a leakage-free filter that allows [88]
to avoid the need for iteration. Recall that in this case, the filter G has Gi 1 iff i mod n/p = 0
and G, = 0 otherwise. The Fourier transform of this filter is a "spike train" with period p and
hence this filter does not leak; it is equal to 1 on 1/p fraction of coordinates and is zero elsewhere.
Unfortunately, however, such a filter requires that p divides n and the algorithm in [88] needs
many different values of p. Since in general one cannot assume that n is divisible by all numbers
p, the algorithm treats the signal as a continuous function and interpolates it at the required points.
Interpolation introduces additional complexity and increases the exponents in the runtime.

'This fact was implicit in [35]. For an explicit statement and proof see [58], remarks after Theorem 2.
2 Throughout this thesis, we will use the terms "Binning" and "Bucketization" interchangeably.
3 One can randomize the positions of the frequencies by sampling the signal in time domain appropriately as we

have shown in Section 2.2.2.
'The Dirichlet kernel is the discrete version of the sinc function.

48

Our Approach

The key feature of our algorithm is the use of a different type of filter. In the simplest case, we
use a filter obtained by convolving a Gaussian function with a box-car function.5 Because of this
new filter, our algorithm does not need to either iterate or interpolate. Specifically, the frequency
response of our filter G is nearly flat inside the pass region and has an exponential tail outside it.
This means that leakage from frequencies in other buckets is negligible, and hence, our algorithm
need not iterate. Also, filtering can be performed using the existing input samples xi, and hence our
algorithm need not interpolate the signal at new points. Avoiding both iteration and interpolation
is the key feature that makes this algorithm efficient.

Further, once a large coefficient is isolated in a bucket, one needs to identify its frequency. In
contrast to past work which typically uses binary search for this task, we adopt an idea from [145]
and tailor it to our problem. Specifically, we simply select the set of "large" bins which are likely
to contain large coefficients, and directly estimate all frequencies in those bins. To balance the cost
of the bin selection and estimation steps, we make the number of bins somewhat larger than the
typical value of 0(k). Specifically, we use B e vrk, which leads to the stated runtime. 6

3.2 Algorithm

We refer to our algorithm as SFT 1.0 and it is shown in Algorithm 3.2.1. A key element of this
algorithm is the inner loop, which finds and estimates each "large" coefficient with constant prob-
ability. In Section 3.2.1 we describe the inner loop, and in Section 3.2.2 we show how to use it to
construct the full algorithm.

3.2.1 Inner Loop

Let B be a parameter that divides n, to be determined later. Let G be a (1/B, 1/(2B), 6, w) flat
window function described in Section 2.2.1 for some 6 and w = 0(B log n). We will have 6 ~
1/nc, so one can think of it as negligibly small.

There are two versions of the inner loop: location loops and estimation loops. Location loops,
described as the procedure LOCATIONINNERLOOP in Algorithm 3.2.1, are given a parameter
d, and output a set I C [n] of dkn/B coordinates that contains each large coefficient with
"good" probability. Estimation loops, described as the procedure ESTIMATIONINNERLOOP in Al-
gorithm 3.2.1, are given a set I c [n] and estimate ji4 such that each coordinate is estimated well
with "good" probability.

By Claim 2.2.8, we can compute z in 0(w + B log B) = 0(B log ') time. Location loops
thus take 0(B log + + dknr/B) time and estimation loops take 0(B log + I +I) time. Figure 3-1

5A more efficient filter can be obtained by replacing the Gaussian function with a Dolph-Chebyshev function. (See
Figure 2-1 for an illustration.)

6 Although it is plausible that one could combine our filters with the binary search technique of [59] and achieve an
algorithm with a O(k log' n) runtime, our preliminary analysis indicates that the resulting algorithm would be slower.
Intuitively, observe that for n = 222 and k = 2, the values of rnk = 216.5 ~ 92681 and k log2 n = 45056 are quite
close to each other.

49

procedure LOCATIONINNERLOOP(x, k, B, d)
Choose U, T and b uniformly at random from [n] such that o- is odd.

Compute % = in / for j E [B], where y = G - (P,7,bX) > FFT
J <- indices of dk largest coefficients in 2.
I = {i E [n]|ho,b(i) E J} where h,(i) = round(-(i - b)B/n)
return I

procedure ESTIMATIONINNERLOOP(x, B, I)
Choose r, T and b uniformly at random from [n] such that o is odd.
Compute% = ,/B forj E [B], where y = G - (P,,T,bX)

for i c I do
= Z 62) /G, where og,b(i) = o-(i - b) - h,(i)(n

t> oa,b : [n]

of ZF B- 1 Yi+jB

c> h,, : [n] -+ [B]

/B)
-+ [-n/(2B), n/(2B)]

return '
procedure NONITERATIVESPARSEFFT(x, k, B, L, d)

V' +- 0
forr E{1,... , L} do

Ir <- LOCATIONINNERLOOP(x, k, B, d).
I ,= I1U U IL

for i E I do
si = {rz E Ir}|

I' = {i c 11s > L/2}
for r E{, ... , L} do

j, &- ESTIMATIONINNERLOOP(x, B, I')

for i c I' do
j = median({[r})

retuiirn

3.2.1: SFT 1.0: Non-Iterative Sparse Fourier Transform for k o(n/ log n)

illustrates the inner loop.
For estimation loops, we get the following guarantee:

Lemma 3.2.1. Let S be the support of the largest k coefficients of ii, and -s contain the rest.
Then for any c < 1,

Pr | 2> |2+362 1 k
%,rb k I EB

Proof The proof can be found in Appendix A. 1. D:

Furthermore, since Gi)| E [1 - 6, 1 + 6], ^h1 (i)I is a good estimate for 5i l-the division
is mainly useful for fixing the phase. Therefore in location loops, we get the following guarantee:

50

Convolved signal

- 0.8
0.6

D 0.4
S0.2

0

7 0.8

0.6
0.4

S0.2
0

0 7r/2 7F 37/2

1
- 0.8

0.6
S0.4
S0.2

0
7T

I I-I

) w/2 7r 37r/2 2

PUT bX

(a)

Samples actually computed

27

1
0.8
0.6
0.4
0.2

0

0 7/2 - 3/2

PU"T b X

G. PTbX

(b)

Regions estimated large

0 7/2

2-

i 37/2 27

y= G PTbX

(c)

Chosen region
Sample cutoff

(d)

PUrT, b X

Figure 3-1: Example Inner Loop of the Algorithm on Sparse Input. This run has parameters
n = 256, k = 4, G being the (0.11, 0.06, 2 x 10-, 133) flat window function in Figure 2-1, and
selecting the top 4 of B = 16 samples. In part (a), the algorithm begins with time domain access

to PUTb given by (P,T,bX)i = X(ipT)Wb, which permutes the spectrum of x by permuting
the samples in the time domain. In part (b), the algorithm computes the time domain signal y =
G - PU, bx. The spectrum of y (pictured) is large around the large coordinates of PTbx. The

algorithm then computes ^, which is the rate B subsampling of ^ as pictured in part (c). During
estimation loops, the algorithm estimates i based on the value of the nearest coordinate in 3,
namely Zhs,(i). During location loops (part (d)), the algorithm chooses J, the top dk (here, 4)
coordinates of z, and selects the elements of [n] that are closest to those coordinates (the shaded
region of the picture). It outputs the set I of preimages of those elements. In this example, the two
coordinates on the left landed too close in the permutation and form a "hash collision". As a result,
the algorithm misses the second from the left coordinate in its output. Our guarantee is that each
large coordinate has a low probability of being missed if we select the top 0(k) samples.

51

I

0

J

Permnuted signal

Lemma 3.2.2. Define E = | | |+ 3622| to be the error tolerated in Lemma 3.2.1. Then

for any i G [n] with || > 4E,

Pr[i I] < 0 +I- cB cd

Proof The proof can be found in Appendix A.2 E

3.2.2 Non-Iterative Sparse Fourier Transform

Our SFT 1.0 algorithm shown in Algorithm 3.2.1 is parameterized by E and 6. It runs L = O(log n)
iterations of the inner loop, with parameters B = O(c1oo/)) 7) and d = O(1/E) as well as 6.

Lemma 3.2.3. The algorithm runs in time 0(nk o"(n/6) log n

Proof To analyze this algorithm, note that

I'| s = Ir| = Ldkn/B

or JI'l < 2dkn/B. Therefore the running time of both the location and estimation inner loops
is O(B log n + dkn/B). Computing I' and computing the medians both take linear time, namely

O(Ldknr/B). Thus the total running time is O(LB log n+Ldkn/B). Plugging in B = O()

and d = O(1/E), this running time is O(klog(n/6) log n). We require B = Q(k /E), however; for
k > En/ log(n/6), this would cause the run time to be larger. But in this case, the predicted run
time is Q(n log n) already, so the standard FFT is faster and we can fall back on it. D

Theorem 3.2.4. Running the algorithm with parameters e, 6 < 1 gives ' satisfying

||X - X 1|2 ||E 1 -s||11 + 621

with probability 1 - 1/ n and running time O(k log(n/6) log n).

Proof Define

E1= s + 362 1

Lemma 3.2.2 says that in each location iteration r, for any i with 1^ ;;> 4E,

k 1
Pr[i Ir] O(+)<1/4.

cB cd-

7Note that B is chosen in order to minimize the running time. For the purpose of correctness, it suffices that
B > ck/E for some constant c.

52

Thus E[si] > 3L/4, and each iteration is an independent trial, so by a Chernoff bound the chance
that si < L/2 is at most I/ 2Q(L) < i/r 3 . Therefore by a union bound, with probability at least
1- 1/n2, Z E I' for all i with I ;> 4E.

Next, Lemma 3.2.1 says that for each estimation iteration r and index i,

Pr [ls -_ ; I> E] < 0(k) < 1/4.

Therefore, with probability 1 - 2 -Q(L) > 1 - 1/n3 , ; [- 'ii I E in at least 2L/3 of the iterations.

Since real(,ij') is the median of the real(.if), there must exist two r with 1;[- s I < E but one
real(.i[) above real(<j) and one below. Hence one of these r has lreal(<j -) < lreal(&[-) <
E, and similarly for the imaginary axis. Then

.| - Ii4 < V2max(|real(X. - X7, |imag(2| - <ii|| <;2 E.

By a union bound over I', with probability at least 1 - 1/rn 2 we have J4j - ^ I < E for all
i E I'. Since all i I' have ;4j= 0 and | I < 4E with probability 1 - 1/rn2, with total probability
1 - 2/n 2 we have

|- | 16E2 = k 1 -S| + 486211-11

Rescaling c and 6 gives our theorem. D

3.2.3 Extension

In this section, we present an extension of the SFT 1.0 algorithm which adds a heuristic to improve
the runtime. We refer to this new algorithm as SFT 2.0 and it is shown in Algorithm 3.2.2. The idea
of the heuristic is to apply the aliasing filter to restrict the locations of the large coefficients. The
algorithm is parameterized by M that divides n. It performs the aliasing filter as a preprocessing
step to SFT 1.0 and uses its output to restrict the frequency locations in the set ,r outputted by the
location loops as shown in Algorithm 3.2.2.

Observe that ^j = z% l Mj riW (i+Mj). Thus,

E' 2] = 2.
i=j mod M

This means that the filter is very efficient, in that it has no leakage at all. Also, it is simple to
compute. Unfortunately, it cannot be "randomized" using P,,,,: after permuting by o and b, any
two colliding elements j and j' (i.e., such that j = j' mod M) continue to collide. Nevertheless,
if ^ is large, then j mod M is likely to lie in T-at least heuristically on random input.

SFT 2.0 assumes that all "large" coefficients j have j mod M in T. That is, we restrict our sets

I, to contain only coordinates i with i mod M E T. We expect that Ir M ~ dkn/B rather than
the previous dkn/B. This means that our heuristic will improve the runtime of the inner loops from
O(Blog(n/6) + dkn/B) to O(Blog(n/6) + kdkn/B + M + dk), at the cost of O(M log M)
preprocessing.

53

procedure NONITERATIVESPARSEFFT2(x, k, B, L, d, M)
' <- 0

Choose T E [n] uniformly at random

yi = i(n/M)+r
Compute
T - indices of the 2k largest elements of > T c [M]
for r E{1, , L} do

J +- LOCATIONINNERLOOP(x, k, B, d).

Ir {i E Jji mod M E T}
I = I1 U ... U IL
for i E I do

si = {rlI E IG}
I' = {i c Ilsi > L/2}
for r E {1,... , L} do

4j, &- ESTIMATIONINNERLOOP(x, B, I')

for i E I' do
ji = median({4[})

return V
3.2.2: SFT 2.0: Non-Iterative Sparse Fourier Transform with Heuristic for k o(n/Vlog n)

Note that on worst case input, SFT 2.0 may give incorrect output with high probability. For
example, if xi 1 when i is a multiple of n/M and 0 otherwise, then y = 0 with probability
1 - M/n and the algorithm will output 0 over supp(x). However, in practice the algorithm works
for "sufficiently random" x.

Claim 3.2.5. As a heuristic approximation, SFT 2.0 runs in O((k 2 n log(n/6)/i)1 /3 log n) as long
as k < c 2nlog(n/6).

Justification. First we will show that the heuristic improves the inner loop running time to
O(B log(n/6) + kdkn/B + M + dk), then optimize the parameters M and B.

Heuristically, one would expect each of the I, to be a M factor smaller than if we did not
require the elements to lie in T modulo M. Hence, we expect each of the I, and I' to have size
I dkn/B = O(dkn/B). Then in each location loop, rather than spending O(dkn/B) time to list
our output, we spend O(dkn/B) time-plus the time required to figure out where to start listing
coordinates from each of the dk chosen elements J of Z. We do this by sorting J and {o-i I i c T}
(mod M), then scanning through the elements. It takes O(M + dk) time to sort O(dk) elements
in [M], so the total runtime of each location loop is O(B log(n/6) + kdkn/B + M + dk). The
estimation loops are even faster, since they benefit from II'l being smaller but avoid the M + dk
penalty.

The full algorithm does O(M log M) preprocessing and runs the inner loop L = O(log n)
times with d = 0(1/e). Therefore, given parameters B and M, the algorithm takes 0(M log M +

54

B log ' log n + - jn log n + M log n + k log n) time. Optimizing over B, we take

_ k
O(M log n + k log(n/6) log n + - log n)

time. Then, optimizing over M, this becomes

13 k
O((k2r log(n/6) 1/3 log n + - log n)

time. If k < E 2 n log(n/6), the first term dominates.
Note that this is an (n log(n/6))1/6 factor smaller than the running time of SFT 1.0.

55

56

Chapter 4

Optimizing Runtime Complexity

4.1 Introduction

The algorithm presented in Chapter 3 was the first algorithm to outperform FFT in practice for
reasonably sparse signals. However, it has a runtime of 0 (log n nk log n) which is polynomial
in n and only outperforms FFT for k smaller than O(n/ log n).

4.1.1 Results

In this chapter, we address this limitation by presenting two new algorithms for the sparse Fourier
transform. We show:

" An 0 (k log n)-time algorithm for the exactly k-sparse case, and
" An O(k log n log(n/k))-time algorithm for the general case.

The key property of both algorithms is their ability to achieve o(n log n) time, and thus improve
over the FFT, for any k = o(n). These algorithms are the first known algorithms that satisfy this
property. Moreover, if one assumes that FFT is optimal and hence the DFT cannot be computed
in less than O(n log n) time, the algorithm for the exactly k-sparse case is optimal' as long as
k = 0(1). Under the same assumption, the result for the general case is at most one log log n
factor away from the optimal runtime for the case of "large" sparsity k = n/ log o(1) .

For the general case, given a signal x, the algorithm computes a k-sparse approximation ' of
its Fourier transform, Y that satisfies the following 2 /2 guarantee:

||j - X'1|2 < C min fli - Y112, (4.1)
k-sparse y

where C is some approximation factor and the minimization is over k-sparse signals.
Furthermore, our algorithm for the exactly sparse case is quite simple and has low big-Oh

constants. In particular, our implementation of a variant of this algorithm, described in Chapter 6,
is faster than FFTW, a highly efficient implementation of the FFT, for n = 222 and k < 217 [71].

'One also needs to assume that k divides n. See appendix B for more details.

57

In contrast, for the same signal size, the algorithms in Chapter 3 were faster than FFTW only for
k < 2000.2

We complement our algorithmic results by showing that any algorithm that works for the gen-
eral case must use at least Q(k log(n/k)/ log log n) samples from x. The proof of this lower bound
can be found in Appendix C. The lower bound uses techniques from [146], which shows a lower
bound of Q(k log(n/k)) for the number of arbitrary linear measurements needed to compute the
k-sparse approximation of an n-dimensional vector j. In comparison to [146], our bound is slightly
worse but it holds even for adaptive sampling, where the algorithm selects the samples based on
the values of the previously sampled coordinates. 3 Note that our algorithms are non-adaptive, and
thus limited by the more stringent lower bound of [146].

4.1.2 Techniques

Recall from Chapter 3 that we can use the flat window filters coupled with a random permutation of
the spectrum to bin/bucketize the Fourier coefficients into a small number of buckets. We can then
use that to estimate the positions and values of the large frequency coefficients that were isolated in
their own bucket. Here, we use the same filters introduced in Chapter 3. In this case, a filter G have
the property that the value of G is "large" over a constant fraction of the pass region, referred to
as the "super-pass" region. We say that a coefficient is "isolated" if it falls into a filter's super-pass
region and no other coefficient falls into filter's pass region. Since the super-pass region of our
filters is a constant fraction of the pass region, the probability of isolating a coefficient is constant.

However, the main difference in this chapter, that allows us to achieve the stated running times,
is a fast method for locating and estimating isolated coefficients. Further, our algorithm is iterative,
so we also provide a fast method for updating the signal so that identified coefficients are not
considered in future iterations. Below, we describe these methods in more detail.

New Techniques: Location and Estimation

Our location and estimation methods depends on whether we handle the exactly sparse case or the
general case. In the exactly sparse case, we show how to estimate the position of an isolated Fourier
coefficient using only two samples of the filtered signal. Specifically, we show that the phase dif-
ference between the two samples is linear in the index of the coefficient, and hence we can recover
the index by estimating the phases. This approach is inspired by the frequency offset estimation
in orthogonal frequency division multiplexing (OFDM), which is the modulation method used in
modem wireless technologies (see [77], Chapter 2).

2Note that both numbers (k < 217 and k < 2000) are for the exactly k-sparse case. The algorithm in Chapter 3 can
deal with the general case, but the empirical runtimes are higher.

3Note that if we allow arbitrary adaptive linear measurements of a vector i, then its k-sparse approximation can
be computed using only O(k log log(n/k)) samples [86]. Therefore, our lower bound holds only where the measure-
ments, although adaptive, are limited to those induced by the Fourier matrix. This is the case when we want to compute
a sparse approximation to 7 from samples of x.

58

In order to design an algorithm 4 for the general case, we employ a different approach. Specifi-
cally, we can use two samples to estimate (with constant probability) individual bits of the index of
an isolated coefficient. Similar approaches have been employed in prior work. However, in those
papers, the index was recovered bit by bit, and one needed Q(log log n) samples per bit to recover
all bits correctly with constant probability. In contrast, we recover the index one block of bits at a
time, where each block consists of 0 (log log n) bits. This approach is inspired by the fast sparse
recovery algorithm of [62]. Applying this idea in our context, however, requires new techniques.
The reason is that, unlike in [62], we do not have the freedom of using arbitrary "linear measure-
ments" of the vector x, and we can only use the measurements induced by the Fourier transform.5

As a result, the extension from "bit recovery" to "block recovery" is the most technically involved
part of the algorithm. Section 4.3.1 contains further intuition on this part.

New Techniques: Updating the Signal

The aforementioned techniques recover the position and the value of any isolated coefficient. How-
ever, during each filtering step, each coefficient becomes isolated only with constant probability.
Therefore, the filtering process needs to be repeated to ensure that each coefficient is correctly
identified. In Chapter 3, the algorithm simply performs the filtering 0 (log n) times and uses the
median estimator to identify each coefficient with high probability. This, however, would lead to a
running time of 0(k log2 n) in the k-sparse case, since each filtering step takes k log n time.

One could reduce the filtering time by subtracting the identified coefficients from the signal.
In this way, the number of non-zero coefficients would be reduced by a constant factor after each
iteration, so the cost of the first iteration would dominate the total running time. Unfortunately,
subtracting the recovered coefficients from the signal is a computationally costly operation, cor-
responding to a so-called non-uniform DFT (see [61] for details). Its cost would override any
potential savings.

In this chapter, we introduce a different approach: instead of subtracting the identified coeffi-
cients from the signal, we subtract them directly from the bins obtained by filtering the signal. The
latter operation can be done in time linear in the number of subtracted coefficients, since each of
them "falls" into only one bin. Hence, the computational costs of each iteration can be decomposed
into two terms, corresponding to filtering the original signal and subtracting the coefficients. For
the exactly sparse case these terms are as follows:

e The cost of filtering the original signal is 0(B log n), where B is the number of bins. B is set
to 0(k'), where k' is the the number of yet-unidentified coefficients. Thus, initially B is equal
to 0(k), but its value decreases by a constant factor after each iteration.

e The cost of subtracting the identified coefficients from the bins is 0(k).

Since the number of iterations is 0 (log k), and the cost of filtering is dominated by the first itera-
tion, the total running time is 0(k log n) for the exactly sparse case.

4We note that although the two-sample approach employed in our algorithm works in theory only for the exactly k-
sparse case, our preliminary experiments show that using a few more samples to estimate the phase works surprisingly
well even for general signals.

51n particular, the method of [62] uses measurements corresponding to a random error correcting code.

59

For the general case, we need to set k' and B more carefully to obtain the desired running
time. The cost of each iterative step is multiplied by the number of filtering steps needed to com-
pute the location of the coefficients, which is O(log(n/B)). If we set B = 0(k'), this would
be E(log n) in most iterations, giving a E(k log2 n) running time. This is too slow when k is
close to n. We avoid this by decreasing B more slowly and k' more quickly. In the r-th itera-
tion, we set B = k/poly(r). This allows the total number of bins to remain 0(k) while keeping
log(n/B) small-at most 0(log log k) more than log(n/k). Then, by having k' decrease accord-
ing to k' = k/re(') rather than k/2e(r), we decrease the number of rounds to 0(log k/ log log k).
Some careful analysis shows that this counteracts the log log k loss in the log(n/B) term, achieving
the desired 0(k log n log(n/k)) running time.

4.2 Algorithm for the Exactly Sparse Case

In this section, we assume E {-L, ... , L} for some precision parameter L. To simplify the
bounds, we assume L < nc for some constant c > 0; otherwise the log n term in the running time
bound is replaced by log L. We also assume that j is exactly k-sparse. We will use the filter G with
parameter 6 = 1/(4n2 L).

Definition 4.2.1. We say that (G, G') = (GB,6,a, G'B,6,a) E R h x R" is a flat window function
with parameters B > 1, 6 > 0, and a > 0 ifIsupp(G)| = 0(log(n/6)) and G' satisfies

* C'2 =for iZ < (1 - a)n/(2B) and G' = Ofor Jil > n/(2B)

0 C'2 E [0, 1]for all i

" JIG' - GJ0oo < 6.

The above notion corresponds to the (1/(2B), (1 - a)/(2B), 6, O(B/a log(n/6))-flat window
function. In Appendix D, we give efficient constructions of such window functions, where C can
be computed in 0(log(n/6)) time and for each i, G'l can be computed in 0(log(n/6)) time. Of
course, for i V [(1 - a)n/(2B), n/(2B)], C', E (0, 1} can be computed in 0(1) time. The fact
that G'i takes w(1) time to compute for i E [(1 - a)n/(2B), n/(2B)] will add some complexity
to our algorithm and analysis. We will need to ensure that we rarely need to compute such values.
A practical implementation might find it more convenient to precompute the window functions in
a preprocessing stage, rather than compute them on the fly.

The algorithm NOISELESSSPARSEFFT (SFT 3.0) is described as Algorithm 4.2.1. The algo-
rithm has three functions:

" HASHToBINS. This permutes the spectrum of x -z with P,,a,b, then "hashes" to B bins. The
guarantee will be described in Lemma 4.2.4.

* NOISELESSSPARSEFFTINNER. Given time-domain access to x and a sparse vector 2 such that
x - z is k'-sparse, this function finds "most" of x'- z.

" NOISELESSSPARSEFFT. This iterates NOISELESS SPARSEFFTINNER until it finds 2 exactly.

We analyze the algorithm "bottom-up", starting from the lower-level procedures.

60

procedure HASHTOBINS(x, 2, P,,a,,, B, 6, a)
Compute j,/B for j E [B], where y = GB,,,6 ' (P,,a,bX)

Compute Y'jn/B Yin/B - * Pa, z Z)jn/B for j E [B]

return ii given by iij = y'
procedure NOISELESSSPARSEFFTINNER(X, k', 2, a)

Let B = k'//, for sufficiently small constant 4.
Let 6 = 1/(4n2 L).
Choose o- uniformly at random from the set of odd numbers in [n].
Choose b uniformly at random from [n].
i +- HASHTOBINS(x, 2, P,,O,b, B, 6, a).
i' +- HASHTOBINS(X, 2, Pa,, B, 6, a).

- 0.
Compute J = {j : Iii I > 1/2}.
for j E J do

a +- / /ij.
i +- - 1 (round(#(a)g)) mod n. > 0(a) denotes the phase of a.

v +- round(ii1).
i- v.

return @
procedure NOISELESSSPARSEFFT(x, k)

2 +-- 0
for t E 0, 1,... , log k do

kt +- k/2t, at <- E(2-t).
2 + + NOISELESSSPARSEFFTINNER(x, kt, ', at).

return 2
4.2.1: SFT 3.0: Exact Sparse Fourier Transform for k = o(n)

Analysis of NOISELESSSPARSEFFTINNER and HASHToBINS.

For any execution of NOISELESS SPARSEFFTINNER, define the support S = supp(2 - 2). Recall
that rb(Z) = o(i - b) mod n. Define hab(i) = round(wr,bz(i)B/n) and Oa,b(i) = lra,b(z) -

h,,b(i)n/B. Note that therefore 1 O,() < n/(2B). We will refer to ho,b(i) as the "bin" that the

frequency i is mapped into, and Oa,b(i) as the "offset". For any i c S define two types of events
associated with i and S and defined over the probability space induced by - and b:

* "Collision" event Ec0u(i): holds iff h,(i) E h,,b(S \ {i}), and
" "Large offset" event Eoff (i): holds iff10,,b()| ;> (1 - a)n/(2B).

Claim 4.2.2. For any i E S, the event E,,,(i) holds with probability at most 4|S|/ B.

61

Proof Consider distinct i, j c S. By Lemma 2.2.7,

Pr[ho,,b(i) = h,b (j)] < Pr[7,ab(i) - 7ab(j) mod n c [-n/B, n/B]]

= Pr[-(i - j) mod n C [-n/B, n/B]]

4/B.

By aunion bound overj E S, Pr[Ecol(i)] 4 SI /B. D

Claim 4.2.3. For any i E S, the event Eoff (i) holds with probability at most a.

Proof Note that o,,b(i) 7,ab,(i) o(i - b) (mod n/B). For any odd o- and any 1 E [n/B], we
have that Prb[-(i - b) 1 (mod n/B)] B/n. Since only an/B offsets o,b(z) cause Eff(i),
the claim follows. D

Lemma 4.2.4. Suppose B divides n. The output ii of HASHTOB INS satisfies

S(x - z)i(G" 60,, () aoi 6l J11.

Let = I{i E supp(s) Eoff (i)}. The running time of HASHTOBINS is O(B log(n/6) + |j|o +
(Iog(n/6)).

Proof The proof can be found in Appendix A.3. E

Lemma 4.2.5. Consider any i E S such that neither E,01, (i) nor Eff (i) holds. Let j -h z (i).
Then

round(#(i ij/i))-) = -i (mod n),

round(ii) = x. - 2.

and j G J.

Proof The proof can be found in Appendix A.4. E

For each invocation of NoISELESSSPARSEFFTINNER, let P be the the set of all pairs (i, v)
for which the command ibi +- v was executed. Claims 4.2.2 and 4.2.3 and Lemma 4.2.5 together
guarantee that for each i E S the probability that P does not contain the pair (i, (j -)j) is at
most 4 S / B + a. We complement this observation with the following claim.

Claim 4.2.6. For any j J we have j C ha,,(S). Therefore, | J| = |P| |S|.

Proof Consider anyj (ho,b (S). From Equation (A.1) in the proof of Lemma 4.2.5 it follows that
IBy ii5 <nL < 1/2. E

Lemma 4.2.7. Consider an execution of NOISELESS SPARSEFFTINNER, and let S = supp (--2).
IfIS| I k', then

E[||2 - 2 - @|o0] < 8(+ a)|S|.

62

Proof Let e denote the number of coordinates i E S for which either Eco (i) or Eoff (i) holds.
Each such coordinate might not appear in P with the correct value, leading to an incorrect value
of G-. In fact, it might result in an arbitrary pair (i', v') being added to P, which in turn could lead
to an incorrect value of @i. By Claim 4.2.6 these are the only ways that i can be assigned an
incorrect value. Thus we have

||2 - - 11o < 2e.

Since E[e] < (4 SI/B + a)IS| I (43 + a) S1, the lemma follows. El

Analysis of NoISELESSSPARSEFFT.

Consider the tth iteration of the procedure, and define St = supp(2 - 2) where 2 denotes the value
of the variable at the beginning of loop. Note that ISo = - supp () < k.

We also define an indicator variable It which is equal to 0 iff IStI/ISt-1| 1/8. If It = 1 we
say the the tth iteration was not successful. Let y = 8 - 8(0 + a). From Lemma 4.2.7 it follows
that Pr[It = 1 I ISt- iI < k/2t-1] < -y. From Claim 4.2.6 it follows that even if the tth iteration is
not successful, then IStI/ St-il < 2.

For any t > 1, define an event E(t) that occurs iff i t/2. Observe that if none of the
events E(1) . .. E(t) holds then IStl k/2t .

Lemma 4.2.8. Let E = E(1) U ... U E(A)for A = 1 + log k. Assume that (4-Y) 1/ 2 < 1/4. Then
Pr[E] < 1/3.

Proof Let t'= t/2]. We have

Pr[E(t)] < V '< 2t y t'< (4y) t/2

Therefore

Pr[E] < E Pr[E(t)] < 4 1/2 - 1/4 -4/3 1/3.
t I - (4,y)1/2

Theorem 4.2.9. Suppose ji is k-sparse with entries from {-L,... , L}for some known L n
Then the algorithm NoISELESS SPARSEFFT runs in expected O(k log n) time and returns the
correct vector j with probability at least 2/3.

Proof The correctness follows from Lemma 4.2.8. The running time is dominated by O(log k)
executions of HASHToBINS.

Assuming a correct run, in every round t we have

||1|| -< l|o + Stl < k + k/2 t < 2k.

Therefore
E[{i c supp(z) Eoff (i)}] < al 2|%0 < 2ak,

63

so the expected running time of each execution of HASHToBINS is O(B log(n/6)+k+ak log(n/6))
O(B log n + k + ak log n). Setting a = 6(2-t/ 2) and 3 =)(1), the expected running time
in round t is O(2-t/ 2 k log n + k + 2-t/2 k log n). Therefore the total expected running time is
O(k log n).

4.3 Algorithm for the General Case

For the general case, we only achieve Equation (4.1) for C = 1+6 if || 1 2 < n O(1) *mink-sparsey -
Y112. In general, for any parameter 6 > 0 we can add 6 11 12 to the right hand side of Equation (4.1)
and run in time O(k log(n/k) log(n/6)).

Pseudocode for the general algorithm SFT 4.0 is shown in Algorithm 4.3.1 and 4.3.2.

4.3.1 Intuition

Let S denote the "heavy" O(k/c) coordinates of 5i. The overarching algorithm SPARSEFFT (SFT
4.0) works by first "locating" a set L containing most of S, then "estimating" -L to get 2. It then
repeats on x - z. We will show that each heavy coordinate has a large constant probability of
both being in L and being estimated well. As a result, X - z is probably nearly k/4-sparse, so we
can run the next iteration with k -+ k/4. The later iterations then run faster and achieve a higher
success probability, so the total running time is dominated by the time in the first iteration and the
total error probability is bounded by a constant.

In the rest of this intuition, we will discuss the first iteration of SPARSEFFT with simplified
constants. In this iteration, hashes are to B = O(k/e) bins and, with 3/4 probability, we get 2
so x - z is nearly k/4-sparse. The actual algorithm will involve a parameter a in each iteration,
roughly guaranteeing that with 1- V/& probability, we get - so Z- z is nearly ak-sparse; the for-
mal guarantee will be given by Lemma 4.3.8. For this intuition we only consider the first iteration
where a is a constant.

Location

As in the noiseless case, to locate the "heavy" coordinates we consider the "bins" computed by
HASHToBINS with P,,a,b. This roughly corresponds to first permuting the coordinates according
to the (almost) pairwise independent permutation P,a,b, partitioning the coordinates into B =
O(k/e) "bins" of n/B consecutive indices, and observing the sum of values in each bin. We get
that each heavy coordinate i has a large constant probability that the following two events occur:
no other heavy coordinate lies in the same bin, and only a small (i.e., O(c/k)) fraction of the mass

from non-heavy coordinates lies in the same bin. For such a "well-hashed" coordinate i, we would
like to find its location T = r,,(z)= -(i - b) among the en/k < n/k consecutive values that
hash to the same bin. Let

27r
Oj = (j +a-b) (mod 27r). (4.2)

n

64

so *= 2i. In the noiseless case, we showed that the difference in phase in the bin using P,,o,b
and using P,1,b is 0* plus a negligible 0(6) term. With noise this may not be true; however, we can
say for any / c [n] that the difference in phase between using P,,a,b and P,,afl,b, as a distribution
over uniformly random a c [n], is 00*9 + v with (for example) E[v2] = 1/100 (all operations on
phases modulo 27r). We can only hope to get a constant number of bits from such a "measurement".
So our task is to find T within a region Q of size n/k using 0(log(n/k)) "measurements" of this
form.

One method for doing so would be to simply do measurements with random / E [n]. Then each
measurement lies within <r/4 of *, with at least 1- > 3/4 probability. On the other hand, for

j T and as a distribution over /, /(0* - Oj') is roughly uniformly distributed around the circle.
As a result, each measurement is probably more than r/4 away from 0j3. Hence 0(log(n/k))
repetitions suffice to distinguish among the n/k possibilities for T. However, while the number of
measurements is small, it is not clear how to decode in polylog rather than Q(n/k) time.

To solve this, we instead do a t-ary search on the location for t = 6(log n). At each of
0(log,(n/k)) levels, we split our current candidate region Q into t consecutive subregions Q,..., Qt,
each of size w. Now, rather than choosing / C [n], we choose / E [1' ,]. By the upper bound
on /, for each q C [t] the values {30 j E Qq} all lie within /w2, < 7r/4 of each other on the cir-
cle. On the other hand, if Ij - I > 16w, then 0 (0* - Oj) will still be roughly uniformly distributed
about the circle. As a result, we can check a single candidate element eq from each subregion: if
eq is in the same subregion as T, each measurement usually agrees in phase; but if eq is more than
16 subregions away, each measurement usually disagrees in phase. Hence with 0(log t) measure-
ments, we can locate T to within 0(1) consecutive subregions with failure probability 1/t(1). The
decoding time is 0 (t log t).

This primitive LOCATEINNER lets us narrow down the candidate region for T to a subregion
that is a t' = Q(t) factor smaller. By repeating LOCATEINNER log, (n/k) times, LOCATESIGNAL

can find T precisely. The number of measurements is then 0(log t logt(n/k)) = 0(log(n/k))
and the decoding time is 0(t log t logt(n/k)) = 0(log(n/k) log n). Furthermore, the "measure-
ments" (which are actually calls to HASHToBINS) are non-adaptive, so we can perform them
in parallel for all 0(k/e) bins, with 0(log(n/6)) average time per measurement. This gives
0(k log(n/k) log(n/6)) total time for LOCATESIGNAL.

This lets us locate every heavy and "well-hashed" coordinate with 1/t(1) = o(1) failure
probability, so every heavy coordinate is located with arbitrarily high constant probability.

Estimation

By contrast, estimation is fairly simple. As in Algorithm 4.2.1, we can estimate (x - z) as ho 6 (i),

where it is the output of HASHTOBINS. Unlike in Algorithm 4.2.1, we now have noise that may
cause a single such estimate to be poor even if i is "well-hashed". However, we can show that for
a random permutation Pa,b the estimate is "good" with constant probability. ESTIMATEVALUES
takes the median of Rest = 0 (log) such samples, getting a good estimate with 1 - e/64 proba-
bility. Given a candidate set L of size k/c, with 7/8 probability at most k/8 of the coordinates are
badly estimated. On the other hand, with 7/8 probability, at least 7k/8 of the heavy coordinates
are both located and well estimated. This suffices to show that, with 3/4 probability, the largest k

65

procedure SPARSEFFT(x, k, E, 6)
R +- O(log k/ log log k) as in Theorem 4.3.9.
2(1) <- 0

for r E [R] do
Choose Br, kr, a, as in Theorem 4.3.9.
Rest +- O(log(',)) as in Lemma 4.3.8.

L, <- LOCATESIGNAL(x, (r), Br, ar, 6)
2(r+1) _ 2(r) + ESTIMATEVALUES(x, 2(r), 3kr, Lr, Br, 6, Rest).

return 2(R+1)

procedure ESTIMATEVALUES(x, 2, k', L, B, 6, Rest)
for r c [Rest] do

Choose ar, br E [n] uniformly at random.
Choose Or uniformly at random from the set of odd numbers in [n].

&(r) <- HASHTOBINS(x, 2, Pula,,, B, 6).

iv <-- 0

for i E L do
wj <- medianlr ii() -aroi. r> Separate median in real and imaginary axes.

J +- argmaxJj=kJ Og||2.

return iv-j

4.3.1: SFT 4.0: General Sparse Fourier Transform for k = o(n), Part 1/2.

elements J of our estimate iv' contains good estimates of 3k/4 large coordinates, so x -z-- Wj is
close to k/4-sparse.

4.3.2 Analysis

Formal definitions

As in the noiseless case, we define ,b(i) (i - b) mod n, ha,b(i) = round(r,b (i)B/n) and

O,b(i) =rb(i) - he(i)r/B. We say hbb(i) is the "bin" that frequency i is mapped into, and

Oa,b() is the "offset". We define h, (j) ={i E [n] h,b(i) =}
Define

Err(x, k) min flX - y1|2-
k-sparse y

In each iteration of SPARSEFFT, define ' = - -, and let

2

S = {i E [n]I |il2 > 2

Then ISI < (1 + 1/c)k = O(k/E) and '- x's 1 (1 + E)p2. We will show that each i E S is
found by LOCATESIGNAL with probability 1 - 0(a), when B = Q()

66

procedure LOCATESIGNAL(X, 2,'B, a, 6)
Choose uniformly at random u-, b E [n] with o- odd.
Initialize l = (i - 1)n/B for i E [B].
Let wo = n/B, t = log n, t' = t/4, Dmax = logt,(wo + 1).
Let R 0c = E(log,/,(t/a)) per Lemma 4.3.5.
for D c [Dmax] do

1 (D+1) - LOCATEINNER(X, 2, B, 6, a, , 03, 1(D), wo /(t)Dl , t, R10c)
L +- {7-,-((D,,a-+1)) j E [B]}
return L

> 6, a parameters for G, G'

> (l1, li + W),.. (1lB, 1B +w) the plausible regions.
> B r k/E the number of bins

t 1 log n the number of regions to split into.
> R10 c~ log t = log log n the number of rounds to run

procedure LOCATEINNER(X, 2, B, 6, a, o-, b, 1, w, t, Rjoc)
Let s = 8(o1/3)
Let vj,q = 0 for (j, q) c [B] x [t].
for r G [Rioc] do

Choose a c [n] uniformly at random.
Choose 0 E f . . . , "} uniformly at random.
it + HASHTOBINS(x, , P,a,i, B, 6, a).

' + HASHTOBINS(x, , Pa,a+O,b, B, 6, a).
forj c [B] do

for q E [t] do

mj,q +- lj t
0
j, q 27r(mj,q+ub) mod 27r

if min(13Oq - c3 , 27 - 1 0 j,q - cj 1) < swr then

Vj,q +- Vj,q + 1
forj C [B] do

Q* <- {q E [t] | Vj,q > R1,/2}

if Q* $ 0 then

i,- mingEQ* j + pW

else
1j +-

return I'
4.3.2: SFT 4.0: General Sparse Fourier Transform for k = o(n), Part 2/2.

67

For any i c S define three types of events associated with i and S and defined over the
probability space induced by o- and b:

* "Collision" event Ecoli(i): holds iff h,,b(i) E ha,b(S \ {i});
* "Large offset" event Eff (i): holds iff 1o, (i) 1 (1 - a))n/(2B); and
* "Large noise" event Enoise(i): holds iff II'h;(h,(1\s 2 > Err2 (x', k)/(aB).

By Claims 4.2.2 and 4.2.3, Pr[Ecou(i)] 4 S| /B = O(a) and Pr[Eoff (i) 2a for any i E S.

Claim 4.3.1. For any i c S, Pr[Enoie(i)] < 4a.

Proof For each j $ i, Pr[h,,b(j) = ha,b(i)] < Pr[uj - o-il < n/B] < 4/B by Lemma 2.2.7.
Then

E[1|| 'h-'(he,t)\ 2 2 0n\6

The result follows by Markov's inequality. E

We will show for i c S that if none of Ecoll(i), Eoff (i), and Enoise (i) hold then SPARSEFFTIN-
NER recovers j with 1 - 0(a) probability.

Lemma 4.3.2. Let a E [n] uniformly at random, B divide n, and the other parameters be arbitrary
in

U = HASHToBINS(x, z, P,,,, B, 6, O).

Then for any i C [n] withj = hrb(i) and none of Ecol (i), Eff (i), or Enoise(i) holding,

aci2] _<2-_

aB

Proof The proof can be found in Appendix A.5. 7

Properties of LOCATESIGNAL

In our intuition, we made a claim that if 3 c [n/(16w), n/(8w)] uniformly at random, and i >
16w, then n/i is "roughly uniformly distributed about the circle" and hence not concentrated in
any small region. This is clear if 3 is chosen as a random real number; it is less clear in our setting
where 3 is a random integer in this range. We now prove a lemma that formalizes this claim.

Lemma 4.3.3. Let T C [m] consist of t consecutive integers, and suppose / G T uniformly at
random. Then for any i G [n] and set S C [n] of I consecutive integers,

1 iM 1M 1
Pr[/i mod n E S] < [im/n] (1+ l/i)/t -+ +- +-

t nt nt it

Proof Note that any interval of length 1 can cover at most 1 + [L/il elements of any arithmetic
sequence of common difference i. Then {/i 13 c T} c [im] is such a sequence, and there are
at most [im/n] intervals an + S overlapping this sequence. Hence at most [im/n] (1 + [i/i]) of
the / C [m] have 0i mod n C S. Hence Pr[3i mod n E S] < [im/n] (1 + [l/ij)/t. D

68

Lemma 4.3.4. Let i G S. Suppose none of E,011 (i), Eff (i), and Enoise (i) hold, and let j heb(i).
Consider any run of LOCATEINNER with 7, rb(i) E [1j, i + w] . Let f > 0 be a parameter such
that

B Ck
afC

for C larger than some fixed constant. Then Ta,b(i) E [l, 1; + 4w/t] with probability at least

1 - tf Q(Rlo,),

Proof The proof can be found in Appendix A.6. E

Lemma 4.3.5. Suppose B = g for C larger than some fixed constant. The procedure LOCATES-
IGNAL returns a set L of size |LI < B such that for any i E S, Pr[i E L] > 1 - O(a). Moreover
the procedure runs in expected time

B
0((- log(n/6) + 121 (1 + a log(n /6))) log(n/B)).

a

Proof The proof can be found in Appendix A.7. D

Properties of ESTIMATEVALUES

Lemma 4.3.6. For any i C L,

Pr[i - x', > 2< e-(Rst)

if B > Ckfor some constant C.

Proof The proof can be found in Appendix A.8. E

Lemma 4.3.7. Let Rest > C log B for some constant C and parameters -y, f > 0. Then if ESTI-
MATEVALUES is run with input k' 3k, it returns 'w} for | JI = 3k satisfying

Err2 (- ijfk) < Err 2(x, k) + O(kp 2)

with probability at least 1 - 3.

Proof The proof can be found in Appendix A.9. D

Properties of SPARSEFFT

We will show that jI - 2 (r) gets sparser as r increases, with only a mild increase in the error.

Lemma 4.3.8. Define 2(r) = j - 2(r). Consider any one loop r of SPARSEFFT, running with

parameters (B, k, a) = (B, kr, a,) such that B ;> -"for some C larger than some fixed constant.
Then for any f > 0,

Err 2 ((r+), Jk) < (1 + E) Err 2 (j(r), k) + O(a5 2)

69

with probability 1 - 0 (a/ f), and the running time is

B 1
Q((l(r)l 11(1 + a log(n/6)) + - log(n/6))(log + log(nI/B))).

a ac

Proof The proof can be found in Appendix A.10. L

Given the above, this next proof follows a similar argument to [86], Theorem 3.7.

Theorem 4.3.9. With 2/3 probability, SPARSEFFT recovers 2(R+1) such that

fl - 2(R+1) 12 < (1 + c) Err(J, k) + 61|1 2

in O(k log(n/k) log(n/6)) time.

Proof The proof can be found in Appendix A. 11. E]

4.4 Extension to Two Dimensions

This section outlines the straightforward generalization of SFT 4.0 shown in Algorithm 4.3.1 to
two dimensions. We will refer to this algorithm as SFT 4.1.

Theorem 4.4.1. There is a variant of Algorithm 4.3.1 that will, given x, 2 E C1x0, return x'
with

||x - 2 - X'1|2 2 . min 1|2 - 2 -- X | + ||2/n
k-parse z*

with probability 1 - a for any constants c, a > 0 in time

O(k log(n/k) log 2 n + Isupp(2) log(n/k) log n),

using O(k log(n/ k) log 2 n) samples of x.

Proof We need to modify Algorithm 4.3.1 in two ways: by extending it to two dimensions and by
allowing the parameter 2.6 We will start by describing the adaptation to two dimensions.

The basic idea of Algorithm 4.3.1 is to construct from Fourier measurements a way to "hash"
the coordinates in B = 0(k) bins. There are three basic components that are needed: apermutation
that gives nearly pairwise independent hashing to bins; afilter that allows for computing the sum
of bins using Fourier measurements; and the location estimation needs to search in both axes. The
permutation is the main subtlety.

6We include i so we can use this a subroutine for partial recovery in the following chapter. However, the input 2
can be set to zero in which case we get the 12/12 guarantee for a 2D version of SFT 4.0.

70

Permutation Let M C [V] 2 x 2 be the set of matrices with odd determinant. For notational
purposes, for v = (i, j) we define x, := xi,.

Definition 4.4.2. For M E M and a, b c [V'i]2, we define the permutation
C Vn by

(PM,a,bX)v = XM(v-a)(W)V Mb*

We also define FM,b (V) = M(v - b)

Claim 4.4.3.

mod \/ .

PM, a,-- bX T X7 ,b(V)

Proof

PM, a, bXM(v-b) 1V- In

U ES/n

(wI)uTM(v-b) (PMab X) U

(W)UTM(v-b) XM(u- a) (f)U TMb

-w vTMTa 1 () VT MT(u-a) X~ua

= j j(W I)vTMTa

where we used that M is a bijection over [vr1 2 because det(M) is odd.

This gives a lemma analogous to Lemma 2.2.7 from Chapter 3..

Lemma 4.4.4. Suppose v E [V/-h] 2 is not 0. Then

C2
(mod V/-n)] < 0(-).nPr [MV E [-C, C]2M~M

Proof For any u, define G(u) to be the largest power of 2 that divides both aO and u1 . Define
g 0(v), and let S = {u E [V/-]2 G(u) = g}. We have that Mv is uniform over S: M is a
group and S is the orbit of (0, g).

Because S lies on a lattice of distance g and does not include the origin, there are at most
(2 [C/g] + 1)2 - 1 < 8(C/g) 2 elements in S n [-C, C]2, and (3/4)n/g2 total elements in S.
Hence, the probability is at most (32/3) C 2 /rn. E

We can then define the "hash function" hM,b : [ri] 2 _ [B] 2 given by (hM,b(u)) =

round(1rM,b (u) - IB); i.e., round to the nearest multiple of ri/B in each coordinate and scale

down. We also define the "offset" OM,b(U) = 7TM,b(U) - n/BM,b(u). This lets us give results
analogous to Claims 4.2.2 and 4.2.3 from Chapter 4:

* Pr[hM,b(u) = hM,b(v) < O(1/B)] for u / v. In order for h(u) = h(v), we need that

7FM,b(U) - 7fM,b(v) E [-2 i/B, 2 n/B]2. But Lemma 4.4.4 implies this probability is

0(1/B).

71

PM,abCVn xV -+

El

* Pr[oM,b(u) - - a) n/B, (1 - a) n/B]2] < 0(a) for any a > 0. Because of the

offset b, oMb (U) is uniform over [- n/B, n/B] . Hence the probability is 2a - a 2 + o(1)
by a volume argument.

which are all we need of the hash function.

Filter Modifying the filter is pretty simple. Specifically, we define a flat-window filter G E- RV
with support size 0(B log n) such that G is essentially zero outsize [- n/B, n/B] and is

essentially I inside -(1 - a) n/B, (1 - a) n/B] for constant a. We compute the B x B

2-dimensional DFT of z, = x,, Gi Gj to sum up the element in each bin. This takes B log2 n
samples and time rather than B log n, which is the reason for the extra log n factor compared to
the one dimensional case.

Location Location is easy to modify; we simply run it twice to find the row and column sepa-
rately. We will see how to do this in the following chapter as well.

In summary, the aforementioned adaptations leads to a variant of Algorithm 4.3.1 that works
in two dimensions, with running time 0(k log(n/k) log2 n), using 0(k log(n/k) log 2 n) samples.

Adding extra coefficient list 2 The modification of the Algorithm 4.3.1 (as well as its variant
above) is straightforward. The algorithm performs a sequence of iterations, where each iteration
involves hashing the frequencies of the signal into bins, followed by subtracting the already recov-
ered coefficients from the bins. Since the algorithm recovers 6(k) coefficients in the first iteration,
the subtracted list is always of size 0(k).

Given the extra coefficient list, the only modification to the algorithm is that the list of the
subtracted coefficients needs to be appended with coefficients in 2. Since this step does not affect
thc samples takcn by the algorithm, thc sample bound remains unchanged. To analyze the running
time, let k' be the number of nonzero coefficients in 2. Observe that the total time of the original

algorithm spent on subtracting the coefficients from a list of size E(k) was 0(k log(n/k) log n),
or 0(log(n/k) log n) per list coefficient. Since in our case the number of coefficients in the
list is increased from 8(k) to k' + 6(k), the running time is increased by an additive factor of
0(k' log(n/k) log n). E

72

Chapter 5

Optimizing Sample Complexity

5.1 Introduction

The algorithms presented in Chapter 4 achieve very efficient running times. However, they still
suffer from important limitations. The main limitation is that their sample complexity bounds are
too high. In particular, the sample complexity of the exactly k-sparse algorithm is 0(k log n). This
bound is suboptimal by a logarithmic factor, as it is known that one can recover any signal with
k nonzero Fourier coefficients from 0(k) samples [8], albeit in super-linear time. The sample
complexity of the approximately-sparse algorithm is O(k log(n) log(n/k)). This bound is also a
logarithmic factor away from the lower bound of Q(k log(n/k)) [146].

Reducing the sample complexity is highly desirable as it typically implies a reduction in signal
acquisition time, measurement overhead and communication cost. For example, in medical imag-
ing the main goal is to reduce the sample complexity in order to reduce the time the patient spends
in the MRI machine [114], or the radiation dose she receives [158]. Similarly in spectrum sens-
ing, a lower average sampling rate enables the fabrication of efficient analog to digital converters
(ADCs) that can acquire very wideband multi-GHz signals [184]. In fact, the central goal of the
area of compressed sensing is to reduce the sample complexity.

A second limitation of the previous algorithms is that most of them are designed for one-
dimensional signals. We have show in Section 4.4 that a two-dimensional adaptation of the SFT 4.0
algorithm in Chapter 4 has roughly 0(k log3 n) time and sample complexity. This is unfortunate,
since multi-dimensional instances of DFT are often particularly sparse. This situation is somewhat
alleviated by the fact that the two-dimensional DFT over p x q grids can be reduced to the one-
dimensional DFT over a signal of length pq [59, 90]. However, the reduction applies only if p and
q are relatively prime, which excludes the most typical case of m x m grids where m is a power
of 2.

5.1.1 Results

In this chapter, we present sample-optimal sublinear time algorithms for the sparse Fourier trans-
form over a two-dimensional V/'n x Vri grid. Our algorithms are analyzed in the average case.

73

Our input distributions are natural. For the exactly sparse case, we assume the Bernoulli model:
each spectrum coordinate is nonzero with probability k/n, in which case the entry assumes an ar-
bitrary value predetermined for that position.' For the approximately-sparse case, we assume that
the spectrum 2 of the signal is a sum of two vectors: the signal vector, chosen from the Bernoulli
distribution, and the noise vector, chosen from the Gaussian distribution (see Chapter 2 Prelimi-
naries for the complete definition). These or similar2 distributions are often used as test cases for
empirical evaluations of sparse Fourier Transform algorithms [89, 104] or theoretical analysis of
their performance [104].

The algorithms succeed with a constant probability. The notion of success depends on the sce-
nario considered. For the exactly sparse case, an algorithm is successful if it recovers the spectrum
exactly. For the approximately sparse case, the algorithm is successful if it reports a signal with
spectrum 2 such that:

| - = (.2 n) + ||2||/,c (5.1)

where a.2 denotes the variance of the normal distributions defining each coordinate of the noise vec-
tor, and where c is any constant. Note that any k-sparse approximation to j has error Q(o.2 n) with
overwhelming probability, and that the second term in the bound in Equation (5.1) is subsumed by
the first term as long as the signal-to-noise ratio is at most polynomial, i.e., I|I||2 < n0(1) 0.

Assuming \/_i is a power of 2, we present two new Sparse Fourier Transform algorithms:

" An 0(k log k)-time algorithm that uses only 0(k) samples for the exactly k-sparse case where
k = 0(\i), and

" An 0(k log2 n)-time algorithm that uses only 0(k log n) samples for the approximately sparse
case where k = 8(n).

The key feature of these algorithms is that their sample complexity bounds are optimal. For the
exactly sparse case, the lower bound of Q(/k) is immediate. For the approximately sparse case,
we note that the Q(k log(n/k)) lower bound of [146] holds even if the spectrum is the sum of a
k-sparse signal vector in {0, 1, -1}" and Gaussian noise. The latter is essentially a special case of
the distributions handled by these algorithms.

An additional feature of the first algorithm is its simplicity and therefore its low "big-Oh"
overhead. As a result, this algorithm is easy to adapt for practical applications.

5.1.2 Techniques

Our first algorithm for k-sparse signals is based on the following observation: The aliasing filter
(i.e., uniform sub-sampling) is one of the most efficient ways for mapping the Fourier coefficients

'Note that this model subsumes the scenario where the values of the nonzero coordinates are chosen i.i.d. from
some distribution.

2A popular alternative is to use the hypergeometric distribution over the set of nonzero entries instead of the
Bernoulli distribution. The advantage of the former is that it yields vectors of sparsity exactly equal to k. In this
chapter we opted for the Bernoulli model since it is simpler to analyze. However, both models are quite similar. In
particular, for large enough k, the actual sparsity of vectors in the Bernoulli model is sharply concentrated around k.

74

(a) Original Spectrum

(d) Step 3: Row recovery

(b) Step 1: Row recovery

4, 4,

(e) Step 4: Column recovery

(c) Step 2: Column recovery

(f) Step 5: Row Recovery

Figure 5-1: An Illustration of the 2D Sparse Fourier Transform Algorithm. This illustration
shows the "peeling" recovery process on an 8 x 8 signal with 15 nonzero frequencies. In each step,
the algorithm recovers all 1-sparse columns and rows (the recovered entries are depicted in red).

The process converges after a few steps.

(a) (b)

Figure 5-2: Examples of Obstructing Sequences of Non-zero Coefficients. None of the remain-
ing rows or columns has a sparsity of 1.

75

*O

into buckets. For one-dimensional signals however, this filter is not amenable to randomization.
Hence, when multiple nonzero Fourier coefficients collide into the same bucket, one cannot effi-
ciently resolve the collisions by randomizing the spike-train filter. In contrast, for two-dimensional
signals, we naturally obtain two distinct spike-train filters, which correspond to subsampling the
columns and subsampling the rows. Hence, we can resolve colliding nonzero Fourier coefficients
by alternating between these two filters.

More specifically, recall that one way to compute the two-dimensional DFT of a signal x is to
apply the one-dimensional DFT to each column and then to each row. Suppose that k = aV for
a < 1. In this case, the expected number of nonzero entries in each row is less than 1. If every
row contained exactly one nonzero entry, then the DFT could be computed via the following two
step process. In the first step, we select the first two columns of x, denoted by u(') and u(), and
compute their DFTs jj(O) and ii('). Let Ji be the index of the unique nonzero entry in the i-th row
of 2, and let a be its value. Observe that i40) = a and = = a(w')-i (where w' is a primitive

ri-th root of unity), as these are the first two entries of the inverse Fourier transform of a 1-sparse
signal aej. Thus, in the second step, we can retrieve the value of the nonzero entry, equal to i ,
as well as the index j, from the phase of the ratio 6 l)/i o). (We first introduced this technique in
Chapter 4 and we referred to it as the "OFDM trick"). The total time is dominated by the cost of
the two DFTs of the columns, which is O(Vi log n). Since the algorithm queries only a constant
number of columns, its sample complexity is O(V'ni).

In general, the distribution of the nonzero entries over the rows can be non-uniform -i.e., some
rows may have multiple nonzero Fourier coefficients. Thus, our actual algorithm alternates the
above recovery process between the columns and rows (see Figure 5-1 for an illustration). Since the
OFDM trick works only on 1-sparse columns/rows, we check the 1-sparsity of each column/row
by sampling a constant number of additional entries. We then show that, as long as the sparsity
constant a is small enough, this process recovers all entries in a logarithmic number steps with
constant probability. The proof uses the fact that the probability of the existence of an "obstructing
configuration" of nonzero entries which makes the process deadlocked (e.g., see Figure 5-2) is
upper bounded by a small constant.

The algorithm is extended to the case of k = o (V') via a reduction. Specifically, we subsample
the signal x by the reduction ratio R = a /k for some small enough constant a in each dimen-
sion. The subsampled signal x' has dimension fm x m, where /Mi = . Since subsampling in
time domain corresponds to "spectrum folding", i.e., adding together all frequencies with indices
that are equal modulo m, the nonzero entries of 2 are mapped into the entries of x'. It can be seen
that, with constant probability, the mapping is one-to-one. If this is the case, we can use the earlier
algorithm for sparse DFT to compute the nonzero frequencies in 0 (m log m) = 0(v' log k)
time, using 0(k) samples. We then use the OFDM trick to identify the positions of those frequen-
cies.

Our second algorithm works for approximately sparse data, at sparsity E (V/-i). Its general
outline mimics that of the first algorithm. Specifically, it alternates between decoding columns
and rows, assuming that they are 1-sparse. The decoding subroutine itself is similar to that of
Algorithm 4.3.1 and uses 0(log n) samples. The subroutine first checks whether the decoded entry
is large; if not, the spectrum is unlikely to contain any large entry, and the subroutine terminates.

76

The algorithm then subtracts the decoded entry from the column and checks whether the resulting
signal contains no large entries in the spectrum (which would be the case if the original spectrum
was approximately 1-sparse and the decoding was successful). The check is done by sampling
O(log n) coordinates and checking whether their sum of squares is small. To prove that this check
works with high probability, we use the fact that a collection of random rows of the Fourier matrix
is likely to satisfy the Restricted Isometry Property of [25].

A technical difficulty in the analysis of the algorithm is that the noise accumulates in successive
iterations. This means that a 1/ log o(1) n fraction of the steps of the algorithm will fail. However,
we show that the dependencies are "local", which means that our analysis still applies to a vast
majority of the recovered entries. We continue the iterative decoding for log log n steps, which
ensures that all but a 1/ log0o 1) n fraction of the large frequencies are correctly recovered. To
recover the remaining frequencies, we resort to algorithms with worst-case guarantees.

5.1.3 Extensions

Our algorithms have natural extensions to dimensions higher than 2. We do not include them in
this chapter as the description and analysis are rather cumbersome.

Moreover, due to the equivalence between the two-dimensional case and the one-dimensional
case where n is a product of different prime powers [59, 90], our algorithms also give optimal
sample complexity bounds for such values of n (e.g., n = 6) in the average case.

5.1.4 Distributions

In the exactly sparse case, we assume a Bernoulli model for the support of 2. This means that for
all (i, j) E [x/n] x [fn], Pr{(i, j) E supp ()} = k/n and thus E[Isupp (j)1] = k. We assume an
unknown predefined matrix aij of values in C; if ij is selected to be nonzero, its value is set to

In the approximately sparse case, we assume that the signal j is equal to x" + @ E CVEnx/E ,
where i24j is the "signal" and @ is the "noise". In particular, x is drawn from the Bernoulli
model, where 9 *, is drawn from {0, aij } at random independently for each (i, J) for some values
aij and with E[I supp(*)I] = k. We also require that I a j I > L for some parameter L. @ is
a complex Gaussian vector with variance a2 in both the real and imaginary axes independently

on each coordinate; we notate this as iv Nc(0, uaIn). We will need that L = Ccr n/k for a

sufficiently large constant C, so that E[9||] > C]E[i 112].

We show in Appendix E that the sample lower bound of Q(k log (n/k)) on f2/f2 recovery
from [146] applies to the above Bernoulli model.

5.2 Algorithm for the Exactly Sparse Case

The algorithm for the noiseless case depends on the sparsity k where k = E[Isupp (2)] for a
Bernoulli distribution of the support.

77

5.2.1 Exact Algorithm: k = ()

In this section, we focus on the regime k = O(Vn). Specifically, we will assume that k = a ri.
for a (sufficiently small) constant a > 0.

The algorithm BASIcEXACT2DSFFT (SFT 5.0) is described as Algorithm 5.2.1. The key
idea is to fold the spectrum into bins using the aliasing filter defined in Chapter 2 and estimate
frequencies which are isolated in a bin. The algorithm takes the FFT of a row and as a result
frequencies in the same columns will get folded into the same row bin. It also takes the FFT of a
column and consequently frequencies in the same rows will get folded into the same column bin.
The algorithm then uses the OFDM trick introduced in Chapter 4 to recover the columns and rows
whose sparsity is 1. It iterates between the column bins and row bins, subtracting the recovered
frequencies and estimating the remaining columns and rows whose sparsity is 1. An illustration
of the algorithm running on an 8 x 8 signal with 15 nonzero frequencies is shown in Figure 5-1
in Section 5.1. The algorithm also takes a constant number of extra FFTs of columns and rows to
check for collisions within a bin and avoid errors resulting from estimating bins where the sparsity
is greater than 1. The algorithm uses three functions:

" FOLDToBINS. This procedure folds the spectrum into B, x B, bins using the aliasing filter
described in Chapter 2.

" BAsIcESTFREQ. Given the FFT of rows or columns, it estimates the frequency in the large
bins. If there is no collision, i.e. if there is a single nonzero frequency in the bin, it adds this
frequency to the result i1 and subtracts its contribution to the row and column bins.

" BAsIcEXACT2DSFFT. This performs the FFT of the rows and columns and then iterates
BASICESTFREQ between the rows and columns until is recovers j.

Analysis of BASIcEXACT2DSFFT

Lemma 5.2.1. For any constant a > 0, if a > 0 is a sufficiently small constant, then assuming that
all 1-sparsity tests in the procedure BASIcESTFREQ are correct, the algorithm reports the correct
output with probability at least 1 - 0 (a).

Proof The algorithm fails if there is a pair of nonzero entries in a column or row of that "sur-
vives" tmax = C log n iterations. For this to happen there must be an "obstructing" sequence of
nonzero entries pi, qi, P2, q2 ... pt, 3 < t < tmax, such that for each i > 1, pi and qi are in the
same column ("vertical collision"), while qi and piji are in the same row ("horizontal collision").
Moreover, it must be the case that either the sequence "loops around", i.e., pi = pt, or t > tmax.
We need to prove that the probability of either case is less than a. We focus on the first case; the
second one is similar.

Assume that there is a sequence pi, qi, ... pt-I, qt-1 such that the elements in this sequence are
all distinct, while pi = pt. If such a sequence exists, we say that the event Et holds. The number
of sequences satisfying Et is at most -/ri\ t, while the probability that the entries corresponding

78

procedure FOLDTOBINS(x, B,, Bc, T,, Tr)

Yi, = Xi(VIs/B,)+Tj(V/n_/Bc)+rc for (i,j) E [Br] x [Bc],
return , the DFT of y

procedure BASICESTFREQ(i (T), - (T), T, IsCol)
+ - 0.

ComputeJ {j : E jr)l > 0}.
forj E J do

b - oud /) o .
i round(O(b)) mod \/i.

S - (O)
Uj

if (EZeT -('

if IsCol then
ijij <- S.

else

-I == 0) then

for T E T do
-(r <- 0

S(--
1

I)-Ti

return @ , 6j(T) j(T)

procedure BASICEXACT2DSFFT(x, k)
T +- [2 c]
for r e T do

i()- FOLDTOBINS(X, N/ii, 1, 0,
fort <- FOLDToBINS(X, 1, VII, TI

T).

0).

for t E [Clog n] do
{, j(T), ()} +- BASICESTFREQ(ii(T),

{j, 9(T), ii(T)} < BASICESTFREQp (T),

> O(b) is the phase of b.

> Test whether the row or column is 1-sparse

> whether decoding column or row

> We set c > 6

> i(T) :=- {i(r) : T E T}
9(T) T, true).

ji(T) T, false).

return 2
5.2.1: SFT 5.0: Exact 2D Sparse Fourier Transform for k = E(\/-n)

to the points in a specific sequence are nonzero is at most (k/n)2 (t- 1)
probability of Et is at most

= (a//i)2(t-1). Thus the

/n(-1) .(a/ V/) 2 (t-1) - a 2(t-1)

Therefore, the probability that one of the events E1,.. . , Et_ holds
a4/(1 - a 2), which is smaller than a for a small enough.

is at most 't= a2(t1)

E

79

Lemma 5.2.2. The probability that any 1-sparsity test invoked by the algorithm is incorrect is at
most O(1/n(c- 5)/ 2).

The proof can be found in Appendix A. 12.

Theorem 5.2.3. For any constant a, the algorithm BAsIcEXACT2DSFFT uses O(Vn) samples,
runs in time 0(-i log n) and returns the correct vector 2 with probability at least 1 - 0(a) as
long as a is a small enough constant.

Proof From Lemma 5.2.1 and Lemma 5.2.2, the algorithm returns the correct vector 2 with prob-
ability at least 1 - 0(a) - 0(n-(c-5)/2) = 1 - O(a) for c > 5.

The algorithm uses only 0 (T) = 0(1) rows and columns of x, which yields 0 (V/) samples.
The running time is bounded by the time needed to perform 0(1) FFTs of rows and columns (in
FOLDToBINS) procedure, and 0(log n) invocations of BASICESTFREQ. Both components take
time 0(f log n).

5.2.2 Reduction to the Exact Algorithm: k = o(fi)

Algorithm REDUCEEXACT2DSFFT (SFT 5.1), which is for the case where k = o(xfi), is de-
scribed in Algorithm 5.2.2. The key idea is to reduce the problem from the case where k = o(r)
to the case where k = e)(\fT). To do that, we subsample the input time domain signal x by the
reduction ratio R = af/k for some small enough a. The subsampled signal x' has dimension

mi x F, where /m = k. This implies that the probability that any coefficient in s' is nonzero
is at most R 2 x k/n = a2 /k = (a 2 /k) x (k 2 /a 2)/m = k/m, since m = k 2 /a 2 . This means that
we can use the algorithm BAsIcNoISELESs2DSFFT in Section 5.2.1 to recover '. Each of the
entries of Y' is a frequency in Y which was folded into Y'. We employ the same phase technique
used in Section 5.2.1 to recover their original frequency position in x.

The algorithm uses 2 functions:

" REDUCEToBASICSFFT: This folds the spectrum into 0(k) x 0(k) dimensions and performs
the reduction to BAsIcEXACT2DSFFT. Note that only the O(k) elements of x' which will be
used in BASIcEXACT2DSFFT need to be computed.

" REDUCEEXACT2DSFFT: This invokes the reduction as well as the phase technique to recover
x.

Analysis of REDUCEEXACT2DSFFT

Lemma 5.2.4. For any constant a, for sufficiently small a there is a one-to-one mapping offre-
quency coefficients from 2 to i' with probability at least 1 - a.

80

procedure REDUCEToBASICSFFT(x, R, Tr, Tc)

Define x2 = XiR+T,,jR+c

return BASICEXACT2DSFFT(x', k)
procedure REDUCEEXACT2DSFFT(x, k)

R - , for some constant a < 1 such that R JY.k
jj(0, O) REDUCETOBASICSFFT(x, R, 0,0)
t'(,O) + REDUCETOBASICSFFT(x, R, 1, 0)

ii(O<-) REDUCETOBASICSFFT(x, R, 0,1)
+- 0

L <- supp(i(0,0)) n supp(i(1'0)) n supp(i(0,1))
for (f, m) (- L do

b, *- ~-(1,O) /i 0)

i +- round(#(b,)-j) mod n

j +- round(4(bc)-j) mod Vn

return 2

r> With lazy evaluation

5.2.2: SFT 5.1: Exact 2D Sparse Fourier Transform for k = o(V)

Proof The probability that there are at least 2 nonzero coefficients among the R 2 coefficients in ?
that are folded together in ', is at most

(R)(k/n)2 < (a 2 n/k 2)2 (k/n)2 = a4 k2
2

The probability that this event holds for any of the m positions in ' is at most ma4 /k 2

(k 2 /a 2)a4 /k 2 = a2 which is less than a for small enough a. Thus, with probability at least 1 - a
any nonzero coefficient in ' comes from only one nonzero coefficient in E.

Theorem 5.2.5. For any constant a > 0, there exists a constant c > 0 such that if k < cv/ni then
the algorithm REDUCEEXACT2DSFFT uses O(k) samples, runs in time O(k log k) and returns
the correct vector j with probability at least 1 - a.

Proof By Theorem 5.2.3 and the fact that each coefficient in ' is nonzero with probability
O(1/k), each invocation of the function REDUCEToBASICSFFT fails with probability at most
a. By Lemma 5.2.4, with probability at least 1 - a, we could recover j correctly if each of the
calls to REDToBASICSFFT returns the correct result. By the union bound, the algorithm RE-
DUCEEXACT2DSFFT fails with probability at most a + 3 x a = 0(a).

The algorithm uses 0(1) invocations of BASIcEXACT2DSFFT on a signal of size O(k) x
0(k) in addition to 0(k) time to recover the support using the OFDM trick. Noting that calculating
the intersection L of supports takes 0(k) time, the stated number of samples and running time then
follow directly from Theorem 5.2.3. E

81

5.3 Algorithm for the General Case

The algorithm for noisy recovery ROBUST2DSFFT (SFT 6.0) is shown in Algorithm 5.3.1. The
algorithm is very similar to the exactly sparse case. It first takes FFT of rows and columns using
FOLDToBINS procedure. It then iterates between the columns and rows, recovering frequencies
in bins which are 1-sparse using the ROBUSTESTIMATECOL procedure. This procedure uses the
function LOCATESIGNAL from Algorithm 4.3.2 to make the estimation of the frequency positions
robust to noise.

Preliminaries

Following [25], we say that a matrix A satisfies a Restricted Isometry Property (RIP) of order t
with constant 6 > 0 if, for all t-sparse vectors y, we have 11Ay 11' /1 yf|| E [1 - 6, 1 + 6].

Suppose all columns Ai of an N x M matrix A have unit norm. Let /I maxij IA2 - A, be
the coherence of A. It is folklore 3 that A satisfies the RIP of order t with the constant 6 = (t - I)P.

Suppose that the matrix A is an M x N submatrix of the N x N Fourier matrix F, with each the
M rows of A chosen uniformly at random from the rows of F. It is immediate from the Hoeffding
bound that if M = b, 2 log(N/-y) for some large enough constant b > 1 then the matrix A has
coherence at most p with probability 1 - -y. Thus, for M = E(t2 . t log N), A satisfies the RIP of
order t with constant 6 = 0.5 with probability 1 - 1/Nt.

5.3.1 Analysis of Each Stage of Recovery

Here, we show that each step of the recovery is correct with high probability using the following
two lemmas. The first lemma shows that with very low probability the ROBUSTESTIMATECOL
procedure generates a false negative (misses a frequency), false positive (adds a fake frequency)
or a bad update (wrong estimate of a frequency). The second lemma is analogous to Lemma 5.2.2
and shows that the probability that the i-sparse test fails when there is noise is low.

Lemma 5.3.1. Consider the recovery of a column/row j in ROBUSTESTIMATECOL, where ii and
v are the results of FOLDToBINS on . Let y e CV" denote the jth column/row of j. Sup-
pose y is drawn from a permutation invariant distribution y = yhead + Y residue + ygauss, where
minisupp(yhcad) Iyi| > L, ||yresidue 1 < EL, and ygauss is drawn from the V/B-dimensional normal
distribution Nc (0, uI) with standard deviation o- = c L/ n 1 /4 in each coordinate on both real
and imaginary axes. We do not require that yhead, Yresidue and ygauss are independent except for
the permutation invariance of their sum.

Consider the following bad events:

" False negative: supp(yhead) {i} and ROBUSTESTIMATECOL does not update coordinate i.

" False positive: ROBUSTESTIMATECOL updates some coordinate i but supp(yhead)

* Bad update: supp(yhead) = { i} and coordinate i is estimated by b with b - yh ead residue i+

log log n
log n

31t is a direct corollary of Gershgorin's theorem applied to any t columns of A.

82

procedure ROBUSTESTIMATECOL(ii, 9, T, T', IsCol, J, Ranks)
i +- 0.

> Set of changes, to be tested next round.S <-- {} I
forj E J do

continue if Ranks[(IsCol,j)] > log log n.
i *- LOCATESIGNAL(ii(T'), T')

> Procedi
a <- medianCT iilw)Ti.

continue ifI a < L/2

continue if EC T |, - a (w')-i 12 > L 2 |T

b <- meanE T iir ()Ti.

if IsCol then
÷i, - b.

else
ij, - b.

S +- S U {i}.
Ranks[(1 - IsCol, i)] += Ranks[(IsColj)].
for T c T U T' do

-(r) ~-(T) -bw

(-) (T) -

return iv, iii , S
procedure ROBUST2DSFFT(x, k)

TI T' c [V/],I T I = I T'I = O(log n)
for T E T U T' do

R (7) FOLDToBINS(X, \/n, 1, 0, T).
9(T) <-FOLDToBINS(X, 1, V/, T, 0).

2 -0
R +-1[2] x [V5

Scol <- [vI7n]
for t c [Clog n] do

{iv, i, 5, Sro} <- ROBUSTESTIMATECOL(ii, 9,
' -2 +-i-@.

ire from Algorithm 4.3.2: O(log 2 n) time

> Nothing significant recovered

10
> Bad recovery: probably not 1-sparse

> whether decoding column or row

> Rank of vertex (iscolumn, index)
> Which columns to test

T, T', true, Scol, R).

Srow <- [V/fl] if t = 0 t> Try each row the first time
{iv, 9, it, Scol} <- ROBUSTESTIMATECOL(V, ii, T, T', false, Srow, R).
2 - 2 i'

return 2
5.3.1: SFT 6.0: General 2D Sparse Fourier Transform for k = E(fli)

83

For any constant c and c below a sufficiently small constant, there exists a distribution over
sets T , T' of size O(log n), such that as a distribution over y and T, T' we have

" The probability of a false negative is 1/ logc n.

" The probability of afalse positive is 1/nc.

" The probability of a bad update is 1/ logc n.

The proof can be found in Appendix A. 13.

Lemma 5.3.2. Let y E C' be drawn from a permutation invariant distribution with r > 2 nonzero
values. Suppose that all the nonzero entries of y have absolute value at least L. Choose T C [in]
uniformly at random with t : = O(c3 log n).

Then, the probability that there exists a y' with |Iy'|Io < 1 and

11 (Y - Y-')T 2 < cL t/n

is at most c3 (c)c--2 wheneverE < 1/8.

Proof The proof can be found in Appendix A. 14. D

5.3.2 Analysis of Overall Recovery

Recall that we are considering the recovery of a signal = + i E Cv'X VE, where X- is drawn
from the Bernoulli model with expected k = avi nonzero entries for a sufficiently small constant
a, and @ ~ Nc(O, aI) with o =L k/n= E(cL/n1 /4) for sufficiently small c.

It will be useful to consider a bipartite graph representation G of x . We construct a bipartite
graph with 5 nodes on each side, where the left side corresnonds to rows and the right side
corresponds to columns. For each (i, J) c supp(2), we place an edge between left node i and
right node j of weight x*.(ij).

Our algorithm is a "peeling" procedure on this graph. It iterates over the vertices, and can with
a "good probability" recover an edge if it is the only incident edge on a vertex. Once the algorithm
recovers an edge, it can remove it from the graph. The algorithm will look at the column vertices,
then the row vertices, then repeat; these are referred to as stages. Supposing that the algorithm
succeeds at recovery on each vertex, this gives a canonical order to the removal of edges. Call this
the ideal ordering.

In the ideal ordering, an edge e is removed based on one of its incident vertices v. This happens
after all other edges reachable from v without passing through e are removed. Define the rank of
v to be the number of such reachable edges, and rank(e) = rank(v) + 1 (with rank(v) undefined if
v is not used for recovery of any edge).

Lemma 5.3.3. Let c, a be arbitrary constants, and a be a sufficiently small constant depending on
c, a. Then with 1 - a probability every component in G is a tree and at most k/ log' n edges have
rank at least log log n.

84

Proof Each edge of G appears independently with probability k/n = a/V/Y. There are at most
v/n cycles of length t. The probability that any cycle of length t exists is at most at, so the chance
any cycle exists is less than a2 /(1 - a2) < a/2 for sufficiently small a.

Each vertex has expected degree a < 1. Exploring the component for any vertex v is then a
subcritical branching process, so the probability that v's component has size at least log log n is
1/ log' n for sufficiently small a. Then for each edge, we know that removing it causes each of its
two incident vertices to have component size less than log log n - 1 with 1 - 1/ logc n probability.
Since the rank is one more than the size of one of these components, the rank is less than log log n
with 1 - 2/ logc n probability.

Therefore, the expected number of edges with rank at least log log n is 2k/ log' n. Hence, with
probability 1 - a/2 there are at most (1/a)4k/ log' n such edges; adjusting c gives the result. E

Lemma 5.3.4. Let ROBUST2DSFFT' be a modified ROBUST2DSFFT that avoidsfalse negatives
or bad updates: whenever a false negative or bad update would occur, an oracle corrects the
algorithm. With large constant probability, ROBUST2DSFFT' recovers 2 such that there exists a
(k / log" n)-sparse 2' satisfying

||z - x - ' 2 n.

Furthermore, only O(k / logc n) false negatives or bad updates are caught by the oracle.

Proof The proof can be found in Appendix A. 15 D

Lemma 5.3.5. For any constant a > 0, the algorithm ROBUST2D SFFT can with probability 1 -a
recover 2 such that there exists a (k/ logc - n)-sparse 2' satisfying

using O(k log n) samples and O(k log2 n) time.

Proof To do this, we will show that changing the effect of a single call to ROBUSTESTIMATECOL
can only affect log n positions in the output of ROBUST2DSFFT. By Lemma 5.3.4, we can, with
large constant probability, turn ROBUST2DSFFT into ROBUST2DSFFT' with only O(k/ logc n)
changes to calls to ROBUSTESTIMATECOL. This means the outputs of ROBUST2DSFFT and of
ROBUST2DSFFT' only differ in O(k/ log - n) positions.

We view ROBUSTESTIMATECOL as trying to estimate a vertex. Modifying it can change from
recovering one edge (or none) to recovering a different edge (or none). Thus, a change can only
affect at most two calls to ROBUSTESTIMATECOL in the next stage. Hence in r stages, at most

2 r1 calls may be affected, so at most 2 ' edges may be recovered differently.
Because we refuse to recover any edge with rank at least log log n, the algorithm has at most

log log n stages. Hence at most log n edges may be recovered differently as a result of a single
change to ROBUSTESTIMATECOL. E

Theorem 5.3.6. Our overall algorithm can recover ' satisfying

|p- ' 12U2 n + ||2 /nc

85

with probability 1 - a for any constants c, a > 0 in 0(k log n) samples and 0(k log2 n) time,
where k = a,/Tifor some constant a > 0.

Proof By Lemma 5.3.5, we can recover an 0(k)-sparse i such that there exists an (k/log- n)-
sparse ' with

with arbitrarily large constant probability for any constant c using 0 (k log 2 n) time and 0 (k log n)
samples. Then by Theorem 4.4.1, we can recover a 2' in 0(k log2 n) time and 0(k log 4 -' n)
samples satisfying

|x2 - 2 - 2 < 120r n + p1 2 /n

and hence Y' 2 + ' is a good reconstruction for j. E

86

Chapter 6

Numerical Evaluation

In this chapter, we simulate and numerically evaluate the performance of some of our Sparse
Fourier Transform algorithms.

6.1 Implementation

We implement the following algorithms: SFT 1.0, SFT 2.0, and a variant of SFT 3.0 which we will
refer to as SFT 3.1. We implement them in C++ using the Standard Template Library. The code
can be found on the Sparse Fourier Transform webpage: http://www.sparsefft.com.

We evaluate the performance and compare the following six implementations:

1) SFT 1.0: This algorithm was presented in Chapter 3 and has a runtime of O(log n rnk log n).

2) SFT 2.0: This algorithm was also presented in Chapter 3 and has a runtime of O(log nr Ynk 2 log n).

3) SFT 3.1:' A variant of SFT 3.0 which was presented in Chapter 4 and has a runtime of
O(k log n).

4) AAFFT 0.9 [87]: This is an implementation of the prior sublinear algorithm which had the
fastest theoretical [60] and empirical runtime [89] before our SFT algorithms. The algorithm
has a runtime of O(k log'(n) log(n/k)) for some c > 2.

5) FFTW 3.2.2 [54]: This is the fastest public implementation for the FFT algorithm which has a
runtime of O(n log n).

6) FFTW Optimized [54]: This is an optimized version of FFTW that requires preprocessing,
during which the algorithm is tuned to a particular machine hardware. In contrast, our current
implementations of SFT algorithms do not perform hardware specific optimizations.

'In this variant, an aliasing filter is used in the very first iteration of the algorithm followed by two Gaussian flat
window filters as opposed to only using Gaussian filters in SFT 3.0.

87

6.2 Experimental Setup

The test signals are generated in a manner similar to that in [89]. For the runtime experiments,
k frequencies are selected uniformly at random from [n] and assigned a magnitude of 1 and a
uniformly random phase. The rest are set to zero. For the tolerance to noise experiments, the test
signals are generated as before but they are combined with additive white Gaussian noise, whose
variance varies depending on the desired SNR. Each point in the graphs is the average over 100
runs with different instances of test signals and different instances of noise. In all experiments, the
parameters of SFT 1.0, SFT 2.0, SFT 3.1 and AAFFT 0.9 are chosen so that the average L' error in
the absence of noise is between 10-' and 10-8 per non-zero frequency.2 Finally, all experiments are
run on a Dual Core Intel 3.0 GHz CPU running Ubuntu Linux 10.04 with a cache size of 6144 KB
and 8 GB of RAM.

6.3 Numerical Results

6.3.1 Runtime vs. Signal Size

In this experiment, we fix the sparsity parameter k = 50 and report the runtime of the compared
algorithms for 12 different signal sizes n : 214, 215 ..., 226. We plot, in Figure 6-1, the mean,
maximum, and minimum runtimes for SFT 1.0, SFT 2.0, SFT 3.1, AAFFT 0.9, FFTW, and FFTW
OPT, over 100 runs. The relative runtimes of AAFFT 0.9 and FFTW are consistent with those
reported in [89](see Figure 3.1).

As expected, Figure 6-1 shows that the runtimes of SFT 1.0, SFT 2.0 and FFTW are approx-
imately linear in the log scale as a function of n. However, the slope of the lines for SFT 1.0 and
SFT 2.0 is less than the slope for FFTW, which is a result of their sub-linear runtime. On the other
hand, SFT 3.1 and AAFFT 0.9 appear almost constant in the log scale as a function of n which is
also expected since they only depend logarithmically on n. Further, the figure shows that for signal
sizes n > 16384, SFT 3.0 has the fastest runtime. It is faster than both variants of FFTW and is
400 x faster than AAFFT 0.9. SFT 1.0 and SFT 2.0 are faster than FFTW for n > 100, 000 and
faster than AAFFT for n < 226. Overall, for a large range of signal sizes the SFT algorithms have
the fastest runtime.

6.3.2 Runtime vs. Sparsity

In this experiment, we fix the signal size to n = 222 (i.e. 4,194,304) and evaluate the runtime verses
the number of non-zero frequencies k. For each value of k, the experiment is repeated 100 times.
Figure 6-1 illustrates the mean, maximum, and minimum runtimes for the compared algorithms.

Figure 6-1 shows that SFT 1.0 and SFT 2.0 have a faster runtime than basic FFTW for k
up to 2000 and 2200, respectively. When compared to the optimized FFTW, the crossing values
become 500 and 1000. Thus, SFT's crossing values are around ri. In comparison, AAFFT 0.9

2For the values of k and n that are close to the ones considered in [89], we use the parameters therein. For other
ranges, we follow the guidelines in the AAFFT 0.9 documentation [87].

88

Run Time vs Signal Size (k=50)

SFT 1.0
SFT 2.0
SFT 3.1

AAFFT 0.9
FFTW

FFTW OPT

-IFI I

2 14 215 216 2 12 12 9 220 221 222 23 224

Signal Size (n)

Figure 6-1: Runtime vs. Signal Size The figure shows that for a large range of

is faster than FFTW and the state-of-the-art sublinear algorithm.

Run Time vs Signal Sparsity (n=2)
10

1

U)
E

0.1

0.01

0.001

0.0001

1e-05

26 27 28 292 2r 2t 2(K
Sparsity (K)

225 226

signal sizes, SFT

41

2 10 2 212

Figure 6-2: Runtime vs. Signal Sparsity SFT significantly extends the range of applications for

which sparse approximation of Fourier transform is practical, and beats the runtime of FFTW for

values of k which are orders of magnitude larger than those achieved by past work.

89

10

1

E
0.1

0.01

0.001

0.0001

SFT 1.0
SFT 2.0
SFT 3.1

AAFFT 0.9
FFTW

FFTW OPT
'

is faster than FFTW variants for k between 100 and 200. Further, the relative runtimes of AAFFT
0.9, and FFTW 3.2.2 are close to those reported in [89](Figure 3.2). The figure also shows that
SFT 3.1 has the fastest runtime among all algorithms. It is almost two orders of magnitude faster
than SFT 1.0 and SFT 2.0 and more than 400 x faster than AAFFT. Finally, FFTW has a runtime
of O(n log (n)), which is independent of the number of non-zero frequencies k, as can be seen
in Figure 6-1. Thus, as the sparsity of the signal decreases (i.e., k increases), FFTW eventually
becomes faster than all SFT and AAFFT. In fact, the FFTW will become faster than SFT 3.1 for
k > 131072. Nonetheless, the results show that in comparison with the fastest prior sublinear
algorithm [89], the SFT algorithms significantly extend the range of applications for which sparse
approximation of Fourier transform is practical.

6.3.3 Robustness to Noise

Last, we would like to check SFT's robustness to noise. Thus, we compare the performance of
SFT 1.0 and SFT 2.0 against AAFFT 0.9, for different levels of white Gaussian noise. For this
experiment, we exclude SFT 3.1 since it only works for exactly sparse signals. We fix n = 222 and
k = 50, and experiment with different signal SNRs.3 We change the SNR by changing the variance
of the Gaussian noise. For each noise variance, we run multiple experiments by regenerating new
instances of the signal and noise vectors. For each run, we compute the error metric per as the
average L1 error between the output approximation ' (restricted to its k largest entries) and the
best k-sparse approximation of X^ referred to as Y-:

1
Average L1 Error = -E I - pik O<i<n

Figure 6-3 plots the average error per non-zero frequency for SFT 1.0, SFT 2.0, and AAFFT
0.9. The figure shows that all three algorithms are stable under noise. Further, SFT variants appear
to be more robust to noise than AAFFT 0.9.

3The SNR is defined as SNR = 20 log L', where z is an n-dimensional noise vector.

90

22Robustness vs SNR (n=2 k=50)

SFT 1.0
SFT 2.0

AAFFT 0.9

'K

20 40

SNR (dB)
60 80

Figure 6-3: Robustness to Noise Results (n 222. k = 50). The figure shows that all three

algorithms are stable in the presence of noise but the SFT algorithms have lower errors.

91

10

1

uIJ

0

LU

-O

0.1

0.01

0.001

0.0001

1e-05

1le-06

1e-07

1e-08

-20 0 100

Part II

Applications of the Sparse Fourier
Transform

92

Chapter 7

GHz-Wide Spectrum Sensing and Decoding

7.1 Introduction

The rising popularity of wireless communication and the potential of a spectrum shortage have mo-
tivated the FCC to take steps towards releasing multiple bands for dynamic spectrum sharing [48].
The government's interest in re-purposing the spectrum for sharing is motivated by the fact that the
actual utilization of the spectrum is sparse in practice. For instance, Figure 7-1 from the Microsoft
Spectrum Observatory [123] shows that, even in urban areas, large swaths of the spectrum remain
underutilized. To use the spectrum more efficiently, last year, the President's Council of Advisors
on Science and Technology (PCAST) [174] has advocated dynamic sharing of much of the cur-
rently under-utilized spectrum, creating GHz-wide spectrum superhighways "that can be shared by
many different types of wireless services, just as vehicles share a superhighway by moving from
one lane to another."

Motivated by this vision, this chapter presents BigBand, a technology that enables realtime
GHz-wide spectrum sensing and reception using low-power radios, similar to those in WiFi de-
vices. Making GHz-wide sensing (i.e. the ability to detect occupancy) and reception (i.e. the ability
to decode) available on commodity radios enables new applications:

" In particular, realtime GHz sensing enables highly dynamic spectrum access, where secondary
users can detect short sub-millisecond spectrum vacancies and leverage them, thereby increas-
ing the overall spectrum efficiency [16].

" Further, a cheap low-power GHz spectrum sensing technology enables the government and the
industry to deploy thousands or such sensors in a metropolitan area for large-scale realtime
spectrum monitoring. This will enable a better understanding of spectrum utilization, iden-
tification and localization of breaches of spectrum policy, and a more-informed planning of
spectrum allocation.

" Beyond sensing, the ability to decode signals in a GHz-wide band enables a single radio to
receive concurrent transmissions from diverse parts of the spectrum. This would enable future
cell phones to use one radio to concurrently receive Bluetooth at 2.4 GHz, GSM at 1.9 GHz,
and CDMA at 1.7 GHz.

93

Microsoft Observatory Seattle Monday 01/14/2013 10-11am

100
0- 880
C: 60

~- 40
20

0 0
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Frequency (GHz)

Figure 7-1: Spectrum Occupancy: The figure shows the average spectrum occupancy at the Mi-

crosoft spectrum observatory in Seattle on Monday January 14, 2013 during the hour between

10 am and 11 am. The figure shows that between 1 GHz and 6 GHz, the spectrum is sparsely

occupied.

Realtime GHz signal acquisition, however, is challenging. For example, existing methods for

spectrum sensing, like those used in the Microsoft spectrum observatory [123], do not work in

realtime. They rely on sequential hopping from one channel to the next, acquiring only tens of

MHz at a time [153, 169]. As a result, each band is monitored only occasionally, making it easy to

miss short lived signals (e.g., radar).

The key difficulty in capturing GHz of bandwidth in realtime stems from the need for high-
speed analog-to-digital converters (ADCs), which are costly, power hungry, and have a low bit
resolution [68, 131]. Compare typical low-speed ADCs used in WiFi or cellular phones with the
very high speed ADCs needed to capture GHz of bandwidth. A 100 MS/s ADC, like in Wi-Fi
receivers, costs a few dollars, consumes a few milli Watts, and has a 12 to 16-bit resolution [40,
131, 166]. In contrast, a high speed ADC that can take multiple giga-samples per second may cost
hundreds of dollars, consume multiple orders of magnitude more power, and have only 6 to 8-bits
resolution [40, 68, 13 1].

In this chapter, we explore how one can achieve the best of both worlds. Specifically, we would
like to capture GHz of spectrum but using only few ADCs that sample the signal at tens of MS/s.

We introduce BigBand, a technology that can acquire GHz of signal using a few (3 or 4) low-
speed ADCs. BigBand can do more than spectrum sensing - the action of detecting occupied
bands. It can also decode the signal (i.e., obtain the I and Q components). To achieve its goal,
BigBand builds on the Sparse Fourier Transfonrin algorithms, described in Part I of this thesis, to
recover the wireless spectrum using only a small subset of samples -i.e., it can recover GHz of
spectrum without sampling it at the Nyquist rate.

Some past work has proposed using compressive sensing to acquire GHz signals at sub-Nyquist
rate [103, 151, 172, 184]. BigBand builds on this work but differs from it substantially. Approaches
based on compressive sensing require random sampling of the signal which cannot be done sim-
ply by using standard low-speed ADCs. It needs analog mixing at Nyquist rates [103, 184] and

94

expensive processing to recover the original signal. Such a design is quite complex and could
end up consuming as much power as an ADC that samples at the Nyquist rate [1, 2]. Like the
compressive-sensing approaches, BigBand can acquire a wideband signal without sampling it at
the Nyquist rate. Unlike compressive sensing, however, BigBand does not need analog mixing
or random sampling and can work using commodity radios and standard low-speed ADCs. Fur-
ther, it computes the Fourier transform of a sparse signal faster than the FFT, reducing baseband
processing.

We have built a working prototype of BigBand using USRP software radios. Our prototype
uses three USRPs, each of which can capture 50 MHz bandwidth to produce a device that captures
0.9 GHz -i.e., 6 x larger bandwidth than the digital bandwidth of the three USRPs combined. We
have used our prototype to sense the spectrum between 2 GHz and 2.9 GHz, a 0.9-GHz stretch
used by diverse technologies [123]. Our outdoor measurements reveal that, in our metropolitan
area,' the above band has an occupancy of 2-5%. These results were verified using a spectrum
analyzer are in sync with similar measurements conducted at other locations [123]. We further use
our prototype to decode 30 transmitters that are simultaneously frequency hopping in a 0.9 GHz
band, hence demonstrating that BigBand decodes the signals, not only senses their power.

Finally, we have extended BigBand to perform spectrum sensing (not decoding) even when
the spectrum utilization is not sparse. To do so, we leverage the idea that even if the spectrum
itself is densely occupied, only a small fraction of the spectrum is likely to change its occupancy
over short intervals of a few milliseconds. We build on this basic idea to sense densely occupied
spectrum using sub-Nyquist sampling. We also evaluate our design empirically showing that it can
detect frequency bands that change occupancy even when the spectrum is 95% occupied.

7.2 Related Work

BigBand is related to signal acquisition via digital and analog compressive sensing [103, 124, 125,
151, 172, 184, 185]. However, compressive sensing needs random sampling and analog mixing
at Nyquist rates [103, 125, 184]. These approaches cannot be built using commodity radios and
ADCs with regular sampling; they require a custom design and could end up consuming as much
power as an ADC that samples at the Nyquist rate [1, 2]. Furthermore, compressive sensing does
not directly compute the spectrum representation of the signal and still needs to perform heavy
computation to recover the spectrum, which is power consuming.

BigBand is also related to theoretical work in signal processing on co-prime sampling [175,
180, 181]. In [180, 181], co-prime sampling patterns are utilized to sample sparse spectrum. These
methods however require k ADCs with co-prime sampling patterns, where k is the number of
occupied frequencies. In contrast, using the Sparse Fourier Transform allows us to use only a
constant small number of ADCs. Our system is further implemented and shown to work in practice.
In [175], co-prime sampling is used to sample linear antenna arrays. This work however assumes
the presence of a second dimension where signals can be fully sampled and cross-correlated and
hence cannot be used for spectrum acquisition.

'MIT campus, Cambridge MA, USA.

95

Also relevant to our work is the theoretical work on using multicoset sampling to capture the
signals in a wideband sparse spectrum with a small number of low speed ADCs [79, 178]. However,
in order to recover the original signals from the samples, these techniques require prior knowledge
of the locations of occupied frequencies in the spectrum and hence are not useful for spectrum
sensing. In contrast, our approach recovers both the locations of the occupied frequencies and the
signals in these frequencies and thus can be used for both spectrum sensing and decoding.

Some proposals for test equipment reconstruct wideband periodic signals by undersampling [159,
173]. These approaches however assume that the signal is periodic -i.e., the same signal keeps re-
peating for very long time - which allows them to take one sample during each period until all
samples are recovered and rearranged in the proper order. Though this requires one low speed
ADC, it is only applicable to test equipment where the same signal is repeatedly transmitted [173].

There is significant literature about spectrum sensing. Most of this work focuses on narrow-
band sensing [13, 149, 187]. It includes techniques for detecting the signal's energy [13], its wave-
form [187], its cyclostationarity [84], or its power variation [149]. In contrast, we focus on wide-
band spectrum sensing, an area that is significantly less explored. A recent system called Quick-
Sense [186] senses a wideband signal using a hierarchy of analog filters and energy detectors.
BigBand differs from QuickSense in that it can recover the signal (obtain the I and Q components)
as opposed to only detecting spectrum occupancy. Second, for highly utilized spectrum (i.e. not
sparse), the approach in [186] reduces to sequentially scanning the spectrum whereas BigBand's
extension for the non-sparse case provides a fast sensing mechanism.

Finally, the proposed research complements the geo-location database required by the FCC for
identifying the bands occupied by primary users (e.g., the TV stations in the white spaces). The
database, however, has no information about frequencies occupied by secondary and unlicensed
users in the area. Also, due to the complexity of predicting propagation models, the database pro-
vides only long-term predictions, and can be inaccurate, particularly with dynamic access pat-
terns [16, 48].

7.3 BigBand

BigBand is a receiver that can recover sparse signals with sub-Nyquist sampling using low-power
commodity radios. BigBand can do more than spectrum sensing - the action of detecting occupied
bands. It provides the details of the signals in those bands (I's and Q's of wireless symbols), which
enables decoding those signals.

BigBand uses the Sparse Fourier Transform to acquire sparse spectra using low speed ADCs.
In this section, we explain how BigBand adapts the Sparse Fourier Transform for the application of
spectrum acquisition. We use x and R to denote a time signal and its Fourier transform respectively.
We also use the terms: the value of a frequency and its position in the spectrum to distinguish Rk
and f. BigBand discovers the occupied frequency positions f and estimates their values 4f. Once
R is computed, it can recover the time signal x and decode the wireless symbols.

Following the Sparse Fourier Transform framework set in Section 1.1.2, BigBand's design
has three components: frequency bucketization, estimation, and collision resolution. Below we re-
explain these components in the context of wireless signal acquisition and processing. A theoretical

96

analysis of BigBand's Sparse Fourier Transform algorithm follows immediately from Chapter 5.2

7.3.1 Frequency Bucketization

BigBand starts by hashing the frequencies in the spectrum into buckets. Since the spectrum is
sparsely occupied, many buckets will be empty and can be simply discarded. BigBand then focuses
on the non-empty buckets, and computes the values of the frequencies in those buckets in what we
call the estimation step.

In order to hash frequencies into buckets, BigBand uses the aliasing filter described in Sec-
tion 1.1.2. Recall that, if b is a sub-sampled version of the wireless signal x of bandwidth B W,
i.e., bi = xi., where p is the sub-sampling factor, then, b, the FFT of b is an aliased version of R,
i.e.:

p-1
by E Ri+m(BW/p) (7.1)

m=O

Thus, the aliasing filter will hash frequencies equally spaced by an interval B W/p to the same
bucket using the hashing function i = f mod BW/p. Further, the value in each bucket is the
sum of the values of only the frequencies that hash to the bucket as shown in Equation 7.1. Most
importantly, aliasing fits naturally to the problem of spectrum acquisition since it can simply be
implemented by sampling the signal using a low-speed ADC slower than the Nyquist rate.

Now that we hashed the frequencies into buckets, we can leverage the fact that the spectrum
of interest is sparse and hence most buckets have noise and no signal. BigBand compares the
energy (i.e., the magnitude square) of a bucket with the receiver's noise level and considers all
buckets whose energy is below a threshold to be empty. It then focuses on the occupied buckets
and ignores empty buckets.

7.3.2 Frequency Estimation

Next, for each of the occupied buckets we want to identify which frequencies created the energy
in these buckets, and what are the values of these frequencies. If we can do that, we then have re-
covered a complete representation of the frequencies with non-zero signal values, i.e., we acquired
the full signal in the Fourier domain.

Recall that our spectrum is sparse; thus, as mentioned earlier, when hashing frequencies into
buckets many buckets are likely to be empty. Even for the occupied buckets, many of these buckets
will likely have a single non-zero frequency hashing into them, and only a small number will
have a collision of multiple non-zero (or occupied) frequencies. In the next section, we present a
mechanism to detect whether a bucket has a collision and resolve such collisions. In this section,
we focus on buckets with a single non-zero frequency and estimate the value and the position of
this non-zero frequency.

Recall that if there is a single occupied frequency coefficient in the bucket, , then the value
of this occupied frequency is the value of the bucket. Said differently, the value of a bucket after

2Note that while the algorithms in Chapter 5 are for 2D signals, the analysis holds due to the equivalence between
the two-dimensional case and the one-dimensional case where n is a product of different prime powers [59, 90].

97

aliasing, b, is a good estimate of the value of the occupied frequency Rf in that bucket, since
all other frequencies in the bucket have zero signal value (only noise). Although we can easily
find the value of the non-zero frequency in a bucket, we still do not know its frequency position
f, since aliasing mapped multiple frequencies to the same bucket. Recall from Section 1.1.2, to
compute f, we can use the phase-rotation property of the Fourier transform, which states that
a shift in time domain translates into phase rotation in the frequency domain. We perform the
process of bucketization again, after shifting the input signal by T. Since a shift in time translates
into phase rotation in the frequency domain, the value of the bucket of changes from b = Rf
to f(T) = Xf . e27jfI. Hence, using the change in the phase of the bucket, we can estimate our
frequency of interest and we can do this for all buckets that do not have collisions.

Two points are worth noting:

" First, recall that the phase wraps around every 27. Hence, the value of T has to be small to
avoid the phase wrapping around for large values of f. In particular, T should be on the order of
1/B W where B W is the bandwidth of interest. For example, to acquire one GHz of spectrum,
T should be on the order of a nanosecond.3

" Second, to sample the signal with a T shift, we need a second low-speed ADC that has the
same sampling rate as the ADC in the bucketization step but whose samples are delayed by T.

This can be achieved by connecting a single antenna to two ADCs using different delay lines
(which is what we do in our implementation). Alternatively, one can use different delay lines
to connect the clocks to the two ADCs.

7.3.3 Collision Detection and Resolution

We still need to address two questions: how do we distinguish the buckets that have a single non-
zero frequency from those that have a collision? and in the case of a collision, how do we resolve
the colliding frequencies?

Collision Detection

Again we use the phase rotation property of the Fourier transform to determine if a collision
has occurred. Specifically, if the bucket contains a single non-zero frequency, i.e., no collision,
then performing the bucketization with a time shift T causes only a phase rotation of the value in
the bucket but the magnitude of the bucket does not change -i.e., with or without the time shift,
|bill = ||6 fl = ||f . In contrast, consider the case where there is a collision between, say,
two frequencies f and f'. Then the value of the bucket without a time-shift is bj = Rf + RXf
while its value with a time-shift of T is f= . e2M + Rf . e 2 '7jif'T. Since the colliding
frequencies rotate by different phases, the overall magnitude of the bucket will change. Thus, we
can determine whether there is a collision or not by comparing the magnitudes of the buckets with
and without the time-shift. Note that even if one occasionally falsely detects a collision when there

31n fact, one can prove a looser version of this constraint where large r are fine. Formally, for r larger than 1/B W,
the FFT window size must be a non-integer multiple of T.

98

is a single frequency, BigBand can still correct this error. This is because the collision resolution
step described next will estimate the values of the presumed colliding frequencies to zero.

Collision Resolution

To reconstruct the full spectrum, we need to resolve the collisions -i.e., for each non-zero frequency
in a collision we need to estimate its value if and position f. We present two approaches for
resolving collisions which may also be combined in case the spectrum is less sparse.

A. Resolving Collisions with Co-prime Aliasing Filters
One approach to resolve collisions is to bucketize the spectrum multiple times using aliasing

filters with co-prime sampling rates. As described in Section 1.1.2, co-prime aliasing filters guaran-
tee (by the Chinese remainder theorem) that any two frequencies that collide in one bucketization
will not collide in the other bucketizations. Hence, we can resolve collisions by iterating between
the two co-prime bucketizations. We can estimate the frequencies that did not collide from the first
bucketization and subtract them from the colliding buckets in the second bucketization. This frees
some of the colliding frequencies in the second bucketization and allows us to estimate them. We
can then go back to the first bucketization and subtract these newly estimated frequencies from
the buckets where they collided. We can keep iterating until we have recovered all the occupied
frequencies.

Thus, by using co-prime aliasing filters to bucketize and iterating between the bucketizations
-i.e., estimating frequencies from buckets where they do not collide and subtracting them from
buckets where they do collide- we can recover the spectrum. This suggests that to capture a spec-
trum bandwidth B W, we can use two ADCs that sample at rates B W/pi and B W/p 2 where p, and

P2 are co-prime. For example, to recover a 1 GHz spectrum, we can use a 42 MHz ADC [40] along
with a 50 MHz ADC. The combination of these two ADCs can capture a bandwidth of 1.05 GHz
because 42 MHz = 1.05 GHz/25 and 50 MHz = 1.05 GHz/21, where 21 and 25 are co-prime.
Note that we also repeat each of these co-prime bucketization with a time shift (as explained in
Section 7.3.2, which requires a total of 4 low-speed ADCs.

B. Resolving Collisions without Co-prime Aliasing Filters
Co-prime aliasing filters are an efficient way to resolve collisions, but they are not necessary.

Here, we show how to resolve collisions while still using ADCs that sample at the same rate. This
means that one can use one type of ADCs for building the whole system. This makes it possible to
build BigBand using only software radios like USRPs [47].

We use one type of aliasing filter. However, we perform it for more than twice using multiple
different time shifts. To see how this can help resolve collisions, consider again the case where two
frequencies f and f' collide in a bucket. If we use two time shifts T1 and r2, we get three values for
each bucket. For the bucket where f and f' collide, these values are:

=i - f +if'

(T1i) - if .27i I-f + e~ 2irj f'-ri(72

j(T2) _ f e
2
7rfT2 + e27r f'r2

99

If we know the positions of f and f', the above becomes an overdetermined system of equations
where the only unknowns are kj, R'. Since only few frequencies hash into each bucket, there is
a limited number of possible values of f and f'. For each of these possibilities, the above over-
determined system can be solved to find R , R'. Hence, we can solve overdetermined system for
the possible (f, f') pairs and choose the pair that minimizes the mean square error. While the above
does not guarantee that the solution is unique, in case multiple pairs (f,f') satisfy the equations,
BigBand can detect that event and report to the user that the values of these frequencies remain
unresolved.4 Our empirical results (in Section 7.7.3) show however that for practical spectrum
sparsity (which is about 5%) 3 shifted bucketizations are enough to uniquely resolve the colliding
frequencies.

We note that though this method requires more digital computation, we only need to do this
for the few buckets that have a collision, and we know the number of collisions is small due to
the sparsity of the spectrum. We also note that this method can be combined with the co-prime
approach to deal with less sparse spectrum. In this case, one uses this method to resolve collisions
of two frequencies while iterating between the co-prime filters.

7.4 Channel Estimation and Calibration

The earlier description of BigBand assumes that the different ADCs can sample exactly the same
signal at different time-shifts. However, because the signals experience different channels, they
will be scaled differently and the ADCs will not be able to sample exactly the same signal.

To better understand this problem, let us consider the case where we resolve collisions without
the co-prime sub-sampling. In this case, we will have 3 ADCs each sampling a signal that is
delayed by a time shift. In this case, consider a non-zero frequency f whose value is Rf . If f hashes
to bucket i and does not collide, then the value of the bucket at each of the ADCs can be written
as:

bi = hw(f)-h1(f)-R~f

b - hw(f) - h2(f) Rf . (7.3)

Z - hw(f) - h3(f) Rf .

where hw (f) is the channel on the wireless medium, h, (f), h2(f), h3 (f) are the hardware channels
on each of the radios, and -(f) indicates that these parameters are frequency dependent. We can
ensure that h, (f) is the same in all three bucketizations by connecting the RF frontends to the
same antenna. As a result, hw(f) cancels out once we take the ratios, (T/S. and bT/b of the
buckets. However, the hardware channels are different for the different bucketizations. We need to
estimate them and compensate for them in order to perform frequency estimation and also resolve
the collisions.

Furthermore, though it is simple to create time-shifts between the three ADCs as explained in
Section 7.3.2, we need to know the values of these time-shifts T1 , 72 in order to perform frequency

4Note that theoretically, for a collision of k frequencies, 2k samples can guarantee a unique solution in the absence
of noise.

100

4
3
2

1
0

-1
-2

-3

Figure 7-2: Phase
3 USRPs is linear
shifts.

Z)

CU

Rotation vs. Frequency: The figure shows that the phase rotation between the
across the 900 MHz frequency spectrum and can be used to estimate the time

1.4
1.2

1
0.8
0.6
0.4
0.2

0

h 2

Ihi/h2 ...
h1/h 31 -

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

Frequency Range in GHz

Figure 7-3: Hardware Channel Magnitude: The relative channel magnitudes IhI (f) /h 2 (f)I and
Ih (f)/1,3 (f) are not equal to 1 and are not flat across the frequency spectrum. Hence, we need to

compensate for these estimates to be able to detect and solve collisions.

estimation based on phase rotation. Hence, we also need a way to estimate these time-shifts.

7.4.1 Estimating the Channels and Time-Shifts

To estimate the channels and the time shifts, we divide the total bandwidth B W' that BigBand

captures into p consecutive chunks. We then transmit a known signal in each chunk, one by one.

Since we only transmit in one chunk at a time, there are no collisions at the receiver after aliasing.

We then use Equation 7.3 to estimate the ratios h,(f) - e2Tj [TI /I (f) and hb:(f) c -e'9 T /hi (f) for

each frequency f in the spectrum.
Now that we have the ratios, we need to compute h>(1)/hi (f) for each frequency f, and the

101

a)
C,)
CU

CU

D

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

Frequency Range in GHz

3

4 1-2
413 -

delay T1 . We can estimate this as follows: Both the magnitude and phase of the hardware channel
ratio will be different for different frequencies. The magnitude differs with frequency because
different frequencies experience different attenuation in the hardware. The phase varies linearly
with frequency because all frequencies experience the same delay Ti, and the phase rotation of a
frequency f is simply 27f Ti. We can therefore plot the phase of the ratio as a function of frequency,
and compute the delay -71 from the slope of the resulting line.

Figure 7-2 shows the phase result of this estimation performed on the USRP software ra-
dios used in our implementation described in Section 7.6. As expected, the phase is linear across
900 MHz. Hence, by fitting the points in Figure 7-2 to a line we can estimate the shifts T1, T 2 and
the relative phases of the hardware channels (i.e. Zhi(f)/h 2(f) and Zhi(f)/h3 (f)). Figure 7-3
also shows the relative magnitudes of the hardware channels on the USRPs (i.e. hi (f)/h2 (f) and
jhi(f)/h3(f)I) over the 900 MHz between 3.05 GHz and 3.95 GHz. These hardware channels and
time shifts are stable. For our implementation, we estimated them only once at the set up time.

7.5 Differential Sensing of Non-Sparse Spectrum

We extend BigBand's algorithm to sense a non-sparse spectrum. The key idea is that although the
spectrum might not be sparse, changes in spectrum usage are typically sparse, i.e., over short in-
tervals, only a small percentage of the frequencies are freed up or become occupied. This makes
it possible to estimate the occupancy without sampling the signal at the Nyquist rate. We refer
to sparse changes as differential sparsity, and call the extension that deals with such non-sparse
spectrum D-BigBand. We note however that unlike in the case where the spectrum is sparse, in the
non-sparse setting we only perform spectrum sensing but we cannot recover the I and Q compo-
nents of the signal. Below we explain how we perform bucketization and estimation in D-BigBand.

7.5.1 Frequency Bucketization

D-BigBand also bucketizes the spectrum using sub-sampling filters. However, since the spectrum
is not sparse, it is very likely that all buckets will be occupied. Thus, D-BigBand tries to detect
changes in the occupancy of frequencies that hash to each buckets. To do so, D-BigBand computes
the average power of the buckets over two consecutive time windows TW by performing the
bucketization multiple times during each time window.5 Since the changes in spectrum occupancies
are sparse, only the average power of few buckets would change between the two time windows.
D-BigBand can then focus only on the few buckets where the average power changes.

7.5.2 Frequency Estimation

Now that we know in which buckets the average power has changed, we need to estimate which of
the frequencies in the bucket is the one whose occupancy has changed. However, we can no longer
use the phase rotation property to estimate these frequencies or resolve their collisions since the

5The number of times D-BigBand can average is = TW/ T where T is the FFT window time.

102

phase of the bucket now depends on all the frequencies that hash to the bucket and not just the
frequency whose occupancy has changed. Thus, to estimate the changing frequencies we are going
to use a different method which we refer to as voting which is similar to the voting approach
described in Section 1.1.3 and used in Chapter 3. We repeat the bucketization multiple times while
randomizing which frequencies hash to which buckets. After that, each bucketization votes for
frequencies that hash to buckets where the power changed. Frequencies that get the most number
of votes are picked as the ones whose occupancy has changed. To randomize the bucketizations, we
simply use co-prime sub-sampling which as described in Section 7.3.3 guarantees that frequencies
that hash together in one bucketization can not hash together in the other bucketizations.

As with any differential system, we need to initialize the state of spectrum occupancy. However,
an interesting property of D-BigBand is that we can initialize the occupancy of each frequency in
the spectrum to unknown. This is because, when we take the difference in power we can tell
whether the frequency became occupied or it became empty. Specifically, a negative power dif-
ference implies that the corresponding frequency became empty, and a positive power difference
implies that the corresponding frequency became occupied. Hence, once the occupancy of a fre-
quency changes, we can tell its current state irrespective of its previous state. This avoids the need
for initialization and prevents error propagation.

7.6 A USRP-Based Implementation

7.6.1 Implementing BigBand

As a proof of concept, we implement BigBand using USRP N210 software radios [47]. Since
the USRPs use the same ADCs, it is not possible to have co-prime sub-sampling rates. Thus, our
implementation relies on resolving collisions without co-prime sub-sampling.

We use three USRP N210 radios with the SBX daughterboards, which can operate in the
400 MHz to 4.4 GHz range. The clocks of the three USRPs are synchronized using an external
GPSDO clock [91]. In order to sample the same signal using the three USRPs, we connect the
USRPs to the same antenna using a power splitter but with wires of different lengths in order to
introduce small time-shifts. We also remove the analog low pass filters on the SBX daughterboards
to allow the USRP's ADC to receive the entire bandwidth that its analog front-end circuitry is
designed for. The analog circuitry of the USRP front-end can receive at most 0.9 GHz, which puts
an upper bound on the digital bandwidth of the system. The three USRP ADCs each samples the
signal at 50 MS/s. 6 Thus, our implementation of BigBand captures a bandwidth BW = 900 MHz
using only 150 MS/s.

7.6.2 Implementing D-BigBand

D-BigBand's frequency estimation relies on using different co-prime sub-sampling rates and hence
we cannot implement D-BigBand directly on USRPs. Thus, to verify that D-BigBand can sense

61n principle, the USRP ADC can sample up to 100 MS/s. However, the USRP digital processing chain cannot
support this rate and hence the ADC sampling rate can be set to no higher than 50 MS/s.

103

Occupancy from 2GHz to 3GHz (10 ms FFT window)

_0

0-

>1

0

100

80

60

40

20

0
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7

Frequency (GHz)

2.8 2.9 3

Occupancy from 2GHz to 3GHz (100 ps FFT window)

0

0

0~
0
0
0

100

80

60

40

20

0
2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

Frequency (GHz)

Figure 7-4: Spectrum Occupancy Results: The figure shows the average spectrum occupancy at

our geographical location on Friday 01/15/2013 between 1-2pm:, as viewed at a 10 ms granularity

(top) and 1 00pts granularity (bottom). It shows that the spectrum is sparsely occupied. Further, the

sparsity increases when one computes the occupancy over shorter time windows.

a non-sparse spectrum, we use trace-driven experiments. To collect traces of one GHz of highly
occupied spectrum, we use many USRPs to transmit and receive. Since we have a total of 20

USRPs, we divide them into 10 receivers and 10 transmitters and capture 250 MHz at a time. We

repeat this 4 times at center frequencies that are 250 MHz apart and stitch them together in the

frequency domain to capture the full 1 GHz spectrum. We then perfon the inverse FFT to obtain

a time signal sampled at I GHz. We now sub-sample this time domain signal using three co-prime

rates: 1/21, 1/20, and 1/23 GHz. We run D-BigBand using these sub-sampled versions of the signal.

104

7.7 BigBand's Spectrum Sensing Results

7.7.1 Outdoor Spectrum Sensing

We collect outdoor measurements from the roof top of a 24 floor MIT building. We use BigBand
to capture the signal between 2 GHz and 2.9 GHz over 30 minutes. We configure BigBand to
compute the spectrum over an FFT window of size W. We report here results for W = 10ms and
W = 100p/s. We calculate the occupancy of a particular frequency as the percentage of the FFT
windows during which the frequency was occupied (i.e., the power at that frequency was at least
twice the noise power).

Figure 7-4 shows the fraction of time that each chunk of spectrum between 2 GHz and 2.9 GHz
is occupied, as recovered by BigBand. These results were confirmed using a spectrum analyzer.
The figure shows that the spectrum is sparsely occupied. In particular, the occupancy is about 5%
when considered over FFT windows of 10 ms and drops to about 2%, when viewed over windows
of 100 ps. The figure shows that even frequencies that look 100% occupied over 10 ms windows,
become less occupied when viewed over shorter intervals. This is because while these frequencies
are occupied for some fraction of every 10 ms interval, there is a large number of shorter windows
within each 10 ins where these frequencies are not occupied. For example, the WiFi band around
2.4 GHz seems fully utilized when checked over 10 ms windows; yet if one views it over windows
that are 100 times shorter (i.e., 100ps), one would discover that the medium is almost always idle.
In contrast, the band around 2.1 GHz which is used by cellular technologies is occupied even at
very short time scales.

The above implies that the spectrum is sparser at finer time intervals, and provides more oppor-
tunities for fine-grained spectrum reuse. This result motivates the need for fast spectrum sensing
schemes to exploit these short-term vacancies.

Finally, we note that measurements collected in other locations or on different dates show
similar results to those in Figure 7-4 but may differ slightly in which frequencies are occupied.
Measurements from higher parts of the spectrum are qualitatively similar but have significantly
higher sparsity (we omit the figures for lack of space).

7.7.2 BigBand vs. Spectrum Scanning

Most of today's spectrum sensing equipment relies on scanning. Even expensive, power hungry
spectrum analyzers typically capture a 100 MHz bandwidth in one shot, and end up scanning to
capture a larger spectrum [169]. The performance of sequentially scanning the spectrum depends
mainly on how fast the device can scan a GHz of bandwidth. In the absence of fast scanning, the
system can miss radar and other highly dynamic signals. Here, we compare how fast it would take
to scan the 900 MHz bandwidth using three techniques: state-of-the-art spectrum monitors like the
RFeye [153], which is used in the Microsoft spectrum observatory, 3 USRPs sequentially scanning
the 900 MHz, or 3 USRPs using BigBand.

Table 7.1 shows the results for different FFT window sizes. In all cases, BigBand takes exactly
the time of the FFT window to acquire the 900 MHz spectrum. The 3 USRPs combined can scan
150 MHz at a time and hence need to scan 6 times to acquire the full 900 MHz. For FFT window

105

Table 7. 1: Spectrum Sensing Scanning Time: BigBand is multiple orders of magnitude faster
than other technologies. This allows it to perform real-time sensing to take advantage of even short
term spectrum vacancies.

0.004 False Negatives
0.0035 False Positive

0.003
0.0025

0.002 ---

0.0015
0.001

0.0005
0

0 2 4 6 8 10

Percentage of Spectrum Usage (Sparsity)

Figure 7-5: False Negatives and Positives as a Function of Spectrum Sparsity: BigBand's false
positive and false negative rates are extremely low.

sizes lower than 10 ms, the scanning time is about 48 is. Hence, the USRPs spend very little
time actually sensing the spectrum, which will lead to a lot of missed signals. Of course, state of
the art spectrum monitors can do much better. The RFeye node has a fast scanning mode of 40
GHz/second [153]. It scans in chunks of 20 MHz and thus will take 22.5 is to scan 900 MHz.
Note that RFeye has a maximum resolution of 20 kHz, and hence does not support FFT windows
larger than 50 ps.

Thus, BigBand, which uses off-the-shelf components, is much faster than even expensive scan-
ning based solutions, allowing it to detect short-tenn spectrum vacancies.

7.7.3 BigBand's Sparsity Range

The primary motivation of BigBand is to be able to sense sparse spectrum. In this section, we verify
the range of sparsity for which BigBand works. We run our experiments between 3.05 GHz and
3.95 GHz because this band is effectively empty (see Figure 7-1), and hence enables us to perform
controlled experiments. We vary the sparsity in the 3.05 GHz to 3.95 GHz range between 1% and

106

FFT Window BigBand 3 USRP Seq. Scan RFeye Scan
(900 MHz) (150 MHz) (20 MHz)

1 p's 1 ps 48 ms 22.5 ms
lops lops 48 ms 22.5 ms

100 ps 100ps 48 ms -
1 ms 1 ms 54 ms

10 ms 10 Ms 114 ms -

0.18
0.16
0.14
0.12

0.1
-0 0.08

0.06
0Cn 0.04

0.02
0 .~- _

0 2 4 6 8 10

Percentage of Spectrum Usage (Sparsity)

Figure 7-6: Unresolved Frequencies as a Function of Spectrum Sparsity: BigBand cannot re-

solve around 2% of the frequencies with 5% spectrum occupancy, and stays below 14% even when

spectrum occupancy grows as large as 10%.

10% by transmitting from 5 different USRPs. Each USRP transmits a signal whose bandwidth is

at least 1 MHz and at most 20 MHz. We randomize the bandwidth and the center frequencies of

the signals transmitted by the USRPs. For each sparsity level, we repeat the experiment 100 times

with different random choices of bandwidth and center frequencies. We run BigBand over a 1 ms

FFT window. We consider three metrics:

* False Negatives: The fraction of occupied frequencies that BigBand incorrectly reports as

empty.

* False Positives: The fraction of empty frequencies that BigBand incorrectly reports as occu-

pied.
e Unresolved Frequencies: The fraction of total frequencies that BigBand cannot resolve due to

unresolved collisions.

Figure 7-5 shows that BigBand's false positives and false negatives rates are extremely low.

The probability of false positive stays below 0.0005 even when 10% of the spectrum is occupied.

The probability of false negative is less than 0.002 when the spectrum occupancy is less than 5%,
and stays within 0.003 even when the spectrum occupancy goes up to 10%.

Figure 7-6 shows that the fraction of unresolved frequencies is less than 0.03 when the spectrum

usage is below 5%. This number increases as the spectrum usage increases, but stays below 0.14

when 10% of the spectrum is used. Unresolved frequencies increase as spectrum usage increases

because the probability of collision increases. Note however that in contrast to false positive and

false negatives, BigBand knows which exact frequencies it could not resolve and reports these

frequencies with the label "not-estimated". Thus, unresolved frequencies show lack of infornation

as opposed to errors. The application can decide how to treat unresolved frequencies. For dynamic

spectrum access, it can simply avoid the unresolved frequencies.

We also note that real-world spectrum measurements, for instance, in the Microsoft observa-

tory, and our results, reveal that actual spectrum usage is 2-5%. In this regime, BigBand's unre-

107

F

10-

CU

(10-2
C,,
0

10_
0 5 10 15 20 25 30

Number of Transmitters

Figure 7-7: BigBand's Packet Loss as a Function of the Number of Simultaneous Transmit-
ters: BigBand can decode as many as 30 transmitters spread across a 900 MHz wide band, while
keeping the packet loss less than 3.5%.

solved frequencies are less than 0.03. Further, if the occupancy is high, one may use D-BigBand,
which deals with high occupancies (see results in Section 7.9.)

7.8 BigBand's Decoding Results

7.8.1 Decoding Multiple Transmitters

In this section, we verify that BigBand can concurrently decode a large number of transmitters from
diverse parts of the spectrum. All the transmitters in our implementation use the same technology,
but the result naturally generalizes to transmitters using different technologies.

We use 10 USRPs to emulate up to 30 transmitters hopping in a spectrum of 0.9 GHz. At any
given time instant, each device uses 1 MHz of spectrum to transmit a BPSK signal. Similar to the
Bluetooth frequency hopping standard, we assume that there is a master that assigns a hopping
sequence to each device that ensures that no two devices hop to the same frequency at the same
time instant. Note however, that the hopping sequence for different devices allows them to hop
to frequencies that get aliased to the same bucket at a particular time instant, and hence collide
in BigBand's aliasing filters. Like in Bluetooth, each transmitter hops 1, 3, or 5 times per packet,
depending on the length of the packet.

Figure 7-7 shows the packet loss rate versus the number of devices hopping in the spectrum. It
shows that BigBand can decode the packets from 30 devices spanning a bandwidth of 900 MHz
with a packet loss rate less than 3.5%. Decoding all these transmitters without BigBand would
either require a wideband 0.9 GHz receiver, or a receiver with 30 RF-frontends, both of which
would be significantly more costly and power-hungry.

108

Quantization BigBand vs Narrowband RX
mean max

8 bits -2.73 dB -2.78 dB
14 bits -5.68 dB -5.89 dB

Table 7.2: Reduction in SNR at Different Quantization Levels

7.8.2 Signal-to-Noise Ratio

It is expected that BigBand will have more noise than a narrowband receiver since it can capture
a much larger bandwidth. This section aims to shed insight on this issue. We note three types of
noise: thermal noise, quantization noise and ADC jitter noise [2]. BigBand has higher thermal
noise due to bucketization. Specifically, since in our implementation, the 900 MHz bandwidth
is aliased into 50 MHz, it is expected that the thermal noise would increase by 18 x (12.5 dB).
However, quantization noise and ADC jitter noise do not alias, and hence do not increase. The
overall increase in noise depends on how the thermal noise compares to these other types of noise.

To understand the impact of thermal noise and quantify the SNR performance of BigBand we
compare it with a 50 MHz narrowband receiver that uses the same USRP hardware. We transmit
a 10 MHz signal, receive it on BigBand and the narrowband receiver, and compare the resulting
SNR. We connect BigBand and the narrowband receiver to the same antenna and ensure that both
receivers' rx-gains are set properly so that the received signal amplitude spans the same range on
both receivers. We run it for different receive signal strengths and measure the SNR on each. We
repeat the measurements for the ADC quantization set to 8 bits and 14 bits to better understand the
interaction between thermal noise and quantization noise.

Table 7.2 shows the mean and max reduction in SNR of a signal received on BigBand relative
to the narrowband USRP. The result shows that at 8 bit quantization, the reduction is a little less
than 3 dB which means that the 12 dB increase in thermal noise only translates to 3 dB reduction in
SNR due to quantization and jitter noise. At a quantization of 14 bits, the SNR reduction becomes
6 dB which means that the ADC jitter noise is still significantly higher than thermal noise. Though
this reduction in SNR is significant compared to narrowband receivers, one would require using
18 such receivers to capture in realtime the same 900 MHz bandwidth as BigBand which is not
practical in terms of cost and bulkiness.

7.9 D-BigBand's Sensing Results

In this section, we evaluate D-BigBand's ability to sense changes in spectrum occupancy indepen-
dent of sparsity. We implement D-BigBand as described in Section 7.6. We vary the percentage
of total occupied frequencies in the spectrum between 1% (sparse) to 95% (almost fully occu-
pied). We then change the number of frequencies that change occupancy every 1 ms by up to
1% (i.e., 10 MHz), and evaluate D-BigBand's accuracy in identifying the frequencies that change
occupancy.

As a function of spectrum occupancy, Figure 7-8 shows the false positives (i.e., frequencies

109

w

0.025 i0.2 False Negative
0.02 False Positive

0.015

2 0.01

0.005
...................... .I

0
................._......

0 10 20 30 40 50 60 70 80 90 100
Percentage of Spectrum Usage (Sparsity)

Figure 7-8: D-BigBand's Effectiveness as a Function of Spectrum Sparsity: Over a band of
1 GHz, D-BigBand can reliably detect changes in spectrum occupancy even when the spectrum is
9 5 % occupied, as long as the change in spectrum occupancy is less than 1% every ms.

whose occupancy has not changed, but D-BigBand erroneously declared as changed) and false

negatives (i.e., frequencies whose occupancy has changed, but D-BigBand erroneously declares as

unchanged). We see that D-BigBand robustly identifies changes in occupancy, with both the false

positive and the false negative probabilities remaining under 0.02 even for a spectrum occupancy

of 95%.

7.10 Conclusion

This chapter presented BigBand, a system that enables GHz-wide sensing and decoding using

commodity radios. As a spectrum sensing device, it could sense the occupancy of the spectrum

under both sparse and non-sparse cases. As a reception device, it is the first receiver that can decode

a sparse signal whose bandwidth is larger than its own digital bandwidth. Empirical evaluation

demonstrates that BigBand is able to sense the spectrum stably and dynamically under different

sparsity levels; we also demonstrate BigBand's effectiveness as a receiver to decode GHz-wide

sparse signals. We believe that BigBand enables multiple applications that would otherwise require

expensive and power hungry devices, e.g. realtime spectrum monitoring, dynamic spectrum access,
concurrent decoding of multiple transmitters in diverse parts of the spectrum.

110

Chapter 8

Faster GPS Synchronization

8.1 Introduction

The global positioning system (GPS) is one of the most pervasive wireless technologies. It is in-
corporated in more than one billion smartphones world-wide [78], and embedded in a wide variety
of devices, including personal navigation systems [168], sensors [39], digital cameras [135], and
even under-the-skin bio-chips [67]. The key functionality of a GPS receiver is to calculate a po-
sition, called a fix. Computing a fix involves locking on the GPS satellite signals and decoding
satellite orbit and time data. Most GPS receivers, however, are embedded with some other radio
(e.g., WiFi, cellular, or ZigBee) and, hence, can download the content of the GPS signal from as-
sisted GPS (A-GPS) servers instead of decoding it from the satellite signals [92].1 With assisted
GPS used widely in phones and other GPS-capable devices [50], the bulk of what a GPS receiver
does is to lock on the satellite signal (i.e., synchronize with it). This allows the receiver to cal-
culate the sub-millisecond synchronization delay necessary for computing its position [51]. The
importance of locking is further emphasized by the fact that current GPS receivers are typically
duty-cycled [22, 152]; hence, they need to re-synchronize with the satellite signals regularly. Syn-
chronizing with the satellite signal, however, is a costly process that requires tens of millions to a
few billion digital multiplications [167]. Many GPS-enabled devices (e.g., mobile phones, sensors,
etc.) have strict power limitations and would benefit from reducing the complexity of this process.

In this chapter, we aim to reduce the cost of synchronizing with weak signals like GPS. At a
high level, GPS synchronization works as follows: each satellite is assigned a CDMA code. For
each satellite, the receiver needs to align the corresponding CDMA code with the received signal.
The process is complicated because GPS signals are very weak (about 20 dB below the noise
level [144]). To find the right alignment of each satellite, a GPS receiver conducts a search process.
It computes the correlation of the CDMA code with the received signal for all possible shifts of the
code with respect to the signal. The correct shift is the one that maximizes the correlation.

So, how does a GPS receiver compute all these shifted correlations? The traditional approach
convolves the received signal with the CDMA code of each satellite in the time domain. The correct
alignment corresponds to the one that maximizes this convolution. This approach has a computa-

'The data includes almanac, ephemeris, reference time. AGPS may also provide other optional assistance data [92].

III

(b) Stepi: FFT (c) Step 2: Multiply

FFT correct shift

Received signal (time) Received signal (frequency) IFFT

FFT Product: Signal x Code Sparse Output : 1 spike

(frequency) at correct time shift

CDMA Code (time) CDMA Code (frequency)

Figure 8-1: FFT-Based GPS Synchronization Algorithm. The algorithm multiplies the FFTs of
the received signal with the FFT of the code, and takes the IFFT of the resulting signal. The output
of the IFFT spikes at the shift that correctly synchronizes the code with the satellite signal.

tional complexity of 0(n2), where rt is the number of samples.2 More recent GPS receivers lock
on the satellite using frequency domain computation. This approach leverages the fact that convo-
lution in the time domain corresponds to multiplication in the frequency domain. It proceeds in the
following three steps, shown in Figure 8-1: 1) The receiver takes the FFT of the received signal; 2)
It multiplies the output of this Fourier transform by the FFT of the CDMA code; and 3) It performs
the inverse FFT on the resulting signal. This 3-step process is mathematically equivalent to con-
volving the signal with the code; thus, the output of the inverse FFT will spike at the correct shift
that synchronizes the code with the received signal, as shown in Figure 8-1(d). The computational
complexity of this approach is 0(,n log n). For the past two decades, this has been the algorithm
with the lowest computational complexity for synchronizing a GPS receiver [167].

This chapter introduces the lowest complexity GPS synchronization algorithm to date. Our
synchronization algorithm is based on the following observations:

* First, we note that since the output of the synchronization process has a single major spike at the
correct shift, as shown in Figure 8-1(d), the inverse FFT is very sparse. We build on the Sparse
Fourier Transform algorithms from Part I of this thesis to significantly reduce the runtime of the
GPS synchronization algorithm. 3 However, the Sparse Fourier Transform algorithms presented
in Part I use relatively complex filters and estimation techniques to deal with the interaction of
multiple potential spikes at the output of the transform. In contrast, here, we exploit the fact that
the synchronization problem produces only one spike, and design a simple sublinear algorithm
that uses only aliasing to filter the signal. This allows us to reduce the complexity of the IFFT
step in Figure 8-1(d) to sublinear time.

2The CDMA code consists of 1023 chips transmitted at 1.023 MHz. For a GPS receiver that samples at 5 MHz, the
computational complexity of the shifted correlation is (1023 x 5/1.023)2, which is about 25 million multiplications of
complex signal samples. The GPS receiver has to repeat this process for multiple satellites (between 4 to 12 satellites)
and multiple Doppler shifts (between 21 to 41 shifts) for each satellite, which brings the number of multiplications to
over a billion. Further, correlating with one block of the signal may not be sufficient. For weak signals, the receiver
may need to repeat this process and sum up the output [96].

3 Sparse Fourier Transform algorithms are designed for the case where the output of the Fourier Transform contains
only a small number of spikes. Hence, they are applicable to both Sparse Fourier Transform and Sparse Inverse Fourier
Transform. For a more detailed description see Section 8.3.

112

(a) Input (d) Step 3: IFFT

* Although the output of the inverse FFT is sparse and can be quickly computed, the GPS signal
in the frequency domain is not sparse (Figure 8-1(b)) and, hence, the runtime of the forward
FFT cannot be reduced by applying a Sparse Fourier Transform. Thus, simply using Sparse
Inverse Fourier Transform does not reduce the overall complexity of the problem (which is still
0(n log n) due to the forward FFT). To address this issue, we note that the FFT in Figure 8-1(b)
is just an intermediate step that will be used as an input to the Sparse Inverse Fourier Transform.
Since the Sparse Inverse Fourier Transform algorithms operate only on a subset of their input
signal, we do not need to compute the values of all frequencies at the output of the forward
FFT. We leverage this property to compute only a subset of the frequencies and reduce the
complexity of the FFT step.

We provide an algorithm that, for any SNR, is as accurate as the original FFT-based (or
convolution-based) algorithm, but reduces the computational complexity from 0(n log n) opera-
tions to 0 (n /log n). Further, when the noise in the received signal can be bounded by 0 (n/ log2 n),
we prove that the same algorithm has a linear complexity, i.e., 0(n).'

We implement our design and test it on two datasets of GPS signals: We collected the first
dataset in the US using software radios. The second dataset was collected in Europe.5 The datasets
cover both urban and suburban areas. We compare our design against an FFT-based synchroniza-
tion algorithm. Our design reduces the number of multiplications for detecting the correct shift
by a median of 2.2x. Since a large fraction of GPS power is consumed by the synchronization
process (30% [141] to 75% [142] depending on the required accuracy), we expect the new design
to produce a significant reduction in GPS power consumption.

Finally, this chapter makes both algorithmic and systems contributions, which can be summa-
rized as follows:

" It presents the fastest algorithm to date for synchronizing GPS receivers with satellite signals.
The algorithm has multiple features: 1) It is adaptive, i.e., it can finish faster if the SNR is
higher; 2) it continues to work at very low SNRs; and 3) it is general, i.e., it can be used to
synchronize any signal with a random (or pseudo random) code.

" It provides an implementation and an empirical evaluation on real GPS signals, demonstrating
that the algorithmic gains translate into a significant reduction in the number of operations
performed by a GPS receiver.

8.2 GPS Primer

The key functionality of a GPS receiver is to calculate its position using the signal it receives
from the GPS satellites. To do so, the receiver computes the time needed for the signal to travel

4Note that n is not a constant and varies across GPS receivers. Specifically, different receivers sample the GPS
signal at different rates, hence obtaining a different number of samples per codeword. For example, for a receiver
whose sampling rate is 5MHz, n=5000, whereas for a 4MHz receiver, n=4000.

5The Europe dataset is courtesy of the GNSS-SDR team [49] at the Centre Tecnologic de Telecomunicacions de
Catalunya (CTTC).

113

B'

#d 3

Figure 8-2: GPS Trilateration: After determining the distance to different satellites, the receiver
can draw spheres centered at each of the satellites and whose radii are the respective distances.
These spheres should intersect at the receiver's position. A GPS receiver needs four satellites to
uniquely detennine its position [96]. Extra satellites can be used to correct for the lack of very tight
synchronization between the receiver's clock and those of the satellites.

from each satellite to itself. It then multiplies the computed time by the speed of light to obtain
its distance from each satellite. As a result, the receiver knows that it lies on a sphere centered
at that satellite and whose radius is the computed distance. It then determines its position as the
intersection of several such spheres through a method called trilateration [96] shown in Figure 8-2.

But how does the receiver compute the propagation time from the satellites? The propagation
time is obtained using a synchronization algorithm that allows the device to lock on the received
signal. Specifically, each satellite has its own CDMA code, called the C/A code, which consists of
1023 chips [96]. Assuming the receiver's and satellites' clocks are perfectly synchronized, a GPS
receiver generates the satellites' codes at the same time as the satellites. Due to propagation delay,
however, the signal arrives in a shifted version at the receiver by exactly the amount of time it took
the signal to travel from the satellite. By correlating with shifted versions of the satellite's code,
the receiver calculates the propagation time as the shift at which the correlation spikes [167]. In
practice, the receiver's clock is not fully synchronized with that of the satellites; this, however, can
be compensated for by increasing the number of satellites used in the trilateration process. 6

The motion of the satellites introduces a Doppler shift in the received signal. The signal does
not correlate with the C/A code unless the Doppler shift is corrected. To deal with this issue, a

6All GPS satellites use atomic clocks and are fully synchronized with each other [96]. Hence, a GPS receiver will
have the same clock skew with respect to all satellites and all the estimated propagation delays will have the same
error f. However, trilateration needs only 4 satellites to estimate the position and thus extra satellites can be used to to
estimate and correct e.

114

-10

Doppler Shifts 10 " IUUU Code Shifts
(KHz) 0 (samples)

Figure 8-3: 2D Search for Peak Correlation. The plot shows the result of correlating with a C/A
code for a satellite whose signal is present in the received signal. On the x-axis, we search 4000
different code shifts and on the y-axis 21 different Doppler shifts.

GPS device typically perfonrs a 2-dimensional search on the received signal [96]: one for time
(code shifts), and one for Doppler shifts. Specifically, the receiver tries all possible code shifts,
and 41 equally spaced Doppler shifts within +/-10 kHz of the center frequency [167], as shown in
Figure 8-3. Finally, the GPS satellites repeat the code 20 times for each data bit to enable the GPS
receiver to decode very weak signals. The receiver tries to use one code repetition to synchronize.
However, if the signal is too weak, the receiver repeats the 2D-search for multiple codes and sums
the result [96].

8.3 QuickSync

We describe QuickSync, a synchronization algorithm for GPS receivers. The algorithm works in
the frequency domain similar to the FFT-based algorithm described in Section 8. 1. QuickSync,
however, exploits the sparse nature of the synchronization problem, where only the correct align-
ment between the received GPS signal and the satellite code causes their cross-correlation to spike.
QuickSync harnesses this property to perfonn both the Fourier and inverse Fourier transforns in a
time faster than O(n log n), therefore reducing the overall complexity of GPS synchronization.

The next subsections formalize the problem and detail the algorithm.

8.3.1 Problem Formulation

The synchronization problem can be formulated as follows: Given a spreading code c = co, ... C.,
of size n and a received signal x =... , ,, find the time shift i that maximizes the correlation
between c and x, i.e., compute:

i = arg iaxC,, * x, (8.1)

115

where * is a circular convolution and c-, is the time reversed code; i.e. c_, = c1,.... , cO. Com-
puting this convolution in the time domain requires performing n correlations each of size n and
thus has complexity O(n2). However, convolution in the time domain corresponds to element-by-
element multiplication in the frequency domain. Therefore computing the convolution in Equa-
tion 8.1 can be done more efficiently by performing FFT on each of the code and the signal,
multiplying those FFTs, then performing an inverse FFT (IFFT) as shown below:

arg maxcn x = argmaxF-l{.F{c}* -. Ffx}}, (8.2)
t t

where F(.) is the FFT, F 1 (.) is the IFFT, * is the complex conjugate and t is any time sample in
the output vector of the convolution. This reduces the complexity of the synchronization process
to 0(n log(n)). Accordingly, in the remainder of this chapter, we only consider the FFT-based
synchronization algorithm as a baseline for evaluating QuickSync's performance.

8.3.2 Basics

Before introducing our synchronization algorithm, we remind the reader of a basic subsampling/aliasing
property of the Fourier transform, which we have introduced in Chapter 1 and have previously used
in Chapters 3, 5, and 7. However, here we will focus on the dual of this property which states that:
Aliasing a signal in the time domain is equivalent to subsampling it in the frequency domain, and
vice versa. Figure 8-4 illustrates this property.

Formally, let x be a discrete time signal of length n, and X its frequency representation. Let x'
be a version of x in which adjacent windows of size B (where B divides n) are aliased on top of
each other (i.e., samples that are p = n/B apart are summed together). Then, for t = 0 ... B - 1:

n/B-1

t = t+jB- k8-')
j=0

Thus, X', the FFT of x' is a subsampled version of X, and for f = 0 ... B - 1

X'f = XPf , (8.4)

where p = n/B, and the subscript in Xpf refers to the sample whose index is p x I.

8.3.3 The QuickSync Algorithm

We describe how QuickSync operates on a received GPS signal to synchronize it with an inter-
nally generated C/A code. For simplicity, we assume that the input signal neither exhibits a carrier
frequency offset nor a Doppler shift; in later sections, we extend the algorithm to deal with these
frequency offsets. Furthermore, in this section, we describe the algorithm in the context of synchro-
nizing the GPS receiver with the signal of only one satellite; the algorithm can be easily adapted
for synchronizing with multiple satellites.

116

Alias

1 2 3 4 5 6 7 8 9 10 time 1 2 3 4 5 time

FFT FFT

Subsample

1 2 3 4 5 6 81 9 10. frequency ! 2 3 5 frequency

Figure 8-4: The Duality of Aliasing and Subsampling. Aliasing in the time domain corresponds

to subsampling in the frequency domain and vice versa. Folding (aliasing) the time domain signal
in the top left results in the signal in the top right; specifically, time samples 1 and 6 add into

sample 1 in the aliased signal, samples 2 and 7 into sample 2, etc. In the Fourier domain, the FFT

of the aliased signal is a subsampled version of the FFT of the initial signal; namely, sample 1 in

the bottom right signal corresponds to sample 2 in the bottom left, sample 2 corresponds to sample

4, etc.

The key insight to our algorithm is that the IFFT perfonried in step 3 of the FFT-based syn-

chronization algorithm is sparse in the time domain, i.e., it has only one spike and, hence, can be

perfonred in sub-linear time. Further, a sub-linear time algorithm for computing the Sparse Inverse

Fourier Transform would require a sub-linear number of samples as input; thus, there is no need to

perforn a full n log n FFT on the received GPS signal and obtain all of its n frequency samples.

Rather, we only need to compute the frequency samples that will be used to perfonri the Sparse

Inverse Fourier Transform.

Below, we explain how we exploit these ideas to reduce the complexity of both the IFFT and

FFT performed to synchronize the signal with the code. We then put these components together in

a complete algorithm.

(a) Sparse Inverse Fourier Transform

We develop a simple algorithm to efficiently perfoni the IFFT step of GPS synchronization and

quickly identify the spike of the correlation between the received signal and the CDMA code. To

do so, our algorithm uses a sub-linear number of samples of the signal.

The Sparse Inverse Fourier Transform algorithm proceeds as follows. It first subsamples the

frequency domain signal of size n by a factor of p. It then computes the IFFT over these n/p
frequency samples. Recall that subsampling in the frequency domain is equivalent to aliasing in
the time domain. Thus, the output of our IFFT step is an aliased version of the output in the

original IFFT step shown in Figure 8-1. Aliasing here can be viewed as a fonn of hashing, where

117

the n original outputs samples, i.e. time shifts, are hashed into n/p buckets. Time shifts which are
n/p apart will be summed and hashed together in the same bucket af the output of our IFFT. Since
there is only one correlation spike in the output of the IFFT, the magnitude of the bucket it hashes
into will be significantly larger than that of other buckets where only noise samples hash to. Hence,
the algorithm chooses the bucket with the largest magnitude among the n/p buckets at the output
of our IFFT.

Out of the p time shifts that aliased (or hashed) into this chosen bucket, only one is the actual
correlation spike. To identify the spike among these p candidate shifts, the algorithm correlates
the received signal with each of those p shifts of the CDMA code. The shift that produces the
maximum correlation is the right spike.

(b) Subsampled FFT

With the sparse IFFT step in place, the algorithm does not need the whole n-point FFT of the
signal. Specifically, all the IFFT requires is a subsampled version of this signal. Thus, rather than
taking a full n-point FFT, QuickSync aliases the received signal in the time domain before taking
its FFT, as in Equation 8.3 (Said differently, QuickSync sums up blocks of size n/p and then
computes a smaller FFT of size n/p.) The output of this FFT, expressed in Equation 8.4, is exactly
the samples we need at the input of the sparse IFFT, described above.

A subsampled input to the IFFT (as described in Section 8.3.3(a)) results in an output spike of
smaller magnitude relative to the noise bed. To compensate for this loss, we alias p x n samples
instead of n into blocks of size n/p before performing the FFT.

(c) Full Algorithm

The QuickSync algorithm proceeds in the following steps:

1. Aliasing: Alias p x n samples of the GPS signal into B = n/p samples as described in
Equation 8.3, where p = N/log n.

2. Subsampled FFT: Perform an FFT of size n/p on the aliased time signal. This is ef-
fectively equivalent to performing an FFT of size pn and subsampling the output by p2

according to Equation 8.4.

3. Multiplying with the code: Subsample the FFT of the satellite CDMA code of length n
by p, and multiply the resulting samples by the n/p samples at the output of step 2, above.
Note that the algorithm can precompute the FFT of the CDMA code and store it in the
frequency domain.

4. Sparse Inverse Fourier Transform: Perform an IFFT on the n/p resulting samples.
Since the input of this IFFT was subsampled, its output is aliased in the time domain. Specif-
ically, each of the n/p buckets at the output of this stage is effectively the sum of p aliased
time samples 7 as described in Section 8.3.3(a).

7 Note that we only get p candidate shifts (and not p2) because the actual code is of size n; hence, all shifts mod n
are the same. Thus, although the total number of samples is np and they are aliased into n/p buckets, we only have p

118

5. Find the unique solution: Find the bucket with the maximum magnitude among the
n/p buckets. Then, check the correlation of each of the p possible time shifts which are
aliased into this bucket, and pick the shift that gives the maximum correlation. Checking
the correlation can be done using only n/p samples as per Lemma F.3.3; therefore, it takes
a total of p x n/p = n to perform the correlation of the p shifts and pick the one that
maximizes the correlation.

(d) Runtime

The running time of the QuickSync algorithm may be computed as follows. Step 1 performs
np additions. Step 2 performs an FFT which takes n/p log(n/p). Step 3 performs n/p multi-
plications. Step 4 takes n/p log(n/p) to perform the IFFT, and finally Step 5 performs n oper-
ations to compute the correlations and find the solution. Thus, the complexity of QuickSync is
O(pn + (n/p) log(n/p)). To minimize this complexity, we set p = Vlog n which makes the
overall running time of QuickSync 0 (n Vlog n).

(e) Scaling with the SNR

If the signal is too weak, GPS receivers repeat the synchronization algorithm on subsequent signal
samples and sum up the output to average out the noise [167]. This approach allows the receiver
to scale the computation with the SNR of the signal. The approach can be applied independent of
the algorithm; hence, we also adopt it for QuickSync. However, QuickSync operates on blocks of
size pn whereas the traditional FFT-based algorithm operates on blocks of size n. Both QuickSync
and the traditional FFT-based algorithm compare the magnitude squared of the largest spike to
the noise variance in the received signal. If the largest spike's squared magnitude exceeds the
noise variance by a desired margin, the algorithm terminates the search and declares the time shift
corresponding to the largest spike as the correct alignment. Otherwise, the algorithm repeats the
same process on the subsequent signal samples, and sums the new output with the previous one.
Since the spike corresponding to the correct synchronization is at the same time shift in each run,
it becomes more prominent. In contrast, noise spikes are random and hence they tend to average
out when combining the output of multiple runs of the synchronization algorithm.

(f) Linear Time Algorithm

The algorithm described in Section 8.3.3(c) above can be made linear-time by modifying Step 1:
instead of taking pn samples, we take only n samples and alias them into n/p buckets, where
p = log n. The rest of the steps are unmodified. This reduces the complexity of Step 1 to n, and
the total complexity of the algorithm to 0(n + (n/p) log(n/p)) = 0(n).

This linear-time algorithm has weaker guarantees than the above super-linear algorithm and
may not always work at very low SNRs, as detailed in Section 8.4. One can try this algorithm first.
If a spike is detected with the required margin, the algorithm terminates. Otherwise, one can fall
back to the super-linear algorithm in Section 8.3.3(c).

distinct shifts per bucket.

119

8.4 Theoretical Guarantees

In this section, we analyze the performance of the baseline and QuickSync algorithms (both the
linear and super-linear variants), under natural probabilistic assumptions about the input signal x.
In particular, we show that both the baseline and the super-linear QuickSync are correct under the
same asymptotic assumptions about the variance of the noise in the signal x. At the same time,
the running time of our algorithm is equal to O(pn + (n/p) log(n/p)), where p is the number of
blocks used. This improves over the baseline algorithm which has O(n log n) runtime as long as
the term pn is smaller than (n/p) log(n/p). In particular, by setting p = Vlog n, we achieve the
running time of O(nlog in).

8.4.1 Assumptions

Recall that we use c = co ... caa to denote the spreading code. We use c(t) to denote the code c
shifted by t = 0 ... n - 1, i.e., c t = Ct+i mod n. We have that x = c(t) + g for some shift t, where
g denotes the noise vector. We make the following assumptions:

1. The coordinates go... gn_1 of the noise vector g are independent and identically dis-
tributed random variables that follow a normal distribution with zero mean and variance -.
That is, we assume additive white Gaussian noise (AWGN).

2. The coordinates co ... c,- of the spreading code c are independent and identically dis-
tributed random variables with values in {-1, 1}, such that Pr[ci = 1] = Pr[c= -1] =

1/2. This assumption models the fact that the CDMA code, c, is pseudorandom.

8.4.2 Combining Multiple Runs

As described in Section 8.3.3(e), both the baseline and our algorithm can sum the output of multiple
runs to average out the noise and increase the probability of identifying the correct spike. The
analysis of such multi-run scenario can be derived directly from a single run. Specifically, say the
algorithm runs L times and sum up the outputs of these L runs. This is equivalent to reducing the
noise variance to a' = o-/L. Therefore, the L-run scenario can be analyzed by reducing it to the
case of a single run, with variance divided by L.

8.4.3 Guarantees

Here, we walk the reader through the guarantees. The proofs of the guarantees can be found in
Appendix F. We start by stating the sufficient condition for the baseline algorithm to work with
probability approaching 1.

Theorem 8.4.1. Assume that a < c(n)n/ in n for c(n) = o(1). Then the baseline algorithm is
correct with probability 1 - o(1).

The proof is in Appendix F. 1. The above condition is also tight. Specifically,

120

Theorem 8.4.2. There exists a constant c > 0 such that for - > cn/ In n, the baseline algorithm
is incorrect with probability 1 - o(1).

The proof is in Appendix F.2. We then proceed with the analysis of the two variants of the
QuickSync algorithm. The first statement holds for the super-linear variant, and shows that the al-
gorithm works with probability approaching 1 under the same condition as the baseline algorithm,
while being faster.

Theorem 8.4.3. Assume that - < c(n)n/ln nfor c(n) = o(1), and that p = o(n1/6). Then, the
QuickSync algorithm that aliases p blocks of size n into n/p buckets is correct with probability
1 - o (1). The running time of the algorithm is O (pn + (n /p) log (n /p)), which is O (n I/log n) for
p = z/log n. Moreover the algorithm performs only O (n + (n/p) log (n/p)) multiplications, for
any p.

Finally, we analyze the linear-time variant of the QuickSync algorithm.

Theorem 8.4.4. Assume that - < c(n) n for c(n) = o(1), and that p = o (n1/ 6). Then, the
QuickSync algorithm that aliases one block of n samples into n/p buckets is correct with proba-
bility 1 - o(1). The running time of the algorithm is O(rn + (n/p) log(n/p)), which is 0(n) for
p > log n.

The proof of the above two theorems can be found in Appendix F.3.

8.5 Doppler Shift & Frequency Offset

GPS satellites orbit the Earth at very high speeds. Consequently, the GPS signal arrives at the
receiver with a Doppler shift. This shift is modeled as a frequency offset fd which is a function of
the relative speed of the satellite (see Chapter 2 in [64] for exact calculations). Furthermore, the
discrepancy between the RF oscillators of the GPS satellite and the GPS receiver induces a carrier
frequency offset Afc. The total frequency offset Af = fd + Afc typically ranges from -10 kHz
to 10 kHz [167] and is modeled as a phase shift in the received samples. Formally, if x and x are
respectively the signal without and with a frequency offset then:

. t = xt Ce2r*, (8.5)

where t is time in seconds.
Like past synchronization algorithms, QuickSync must search and correct for the frequency

offset in the received GPS signal in order for the correlation to spike at the correct code shift. How-
ever, since QuickSync processes p x n samples as opposed to n samples in past algorithms(see
Section 8.3), it needs to deal with larger phase shifts that accumulate over pn samples. In order
to overcome this limitation, QuickSync performs a finer grained frequency offset search, which
introduces an overhead to the 2D search. This overhead, however, is amortized across all satellites
in the GPS signal since correcting for this frequency offset is done on the received signal before
it is multiplied by each satellite's C/A code. In Section 8.7.2, we show that despite this overhead,

121

(a) Sampler (b) Antenna

Figure 8-5: The SciGe GN3S Sampler. The sampler is used to collect raw GPS data. It down-

coverts the received signal and delivers the I and Q samples to the computer.

QuickSync still provides a significant reduction in the computational complexity of GPS synchro-

nization. Furthennore, the frequency offset changes slowly (see Section 8.7.2); hence, the receiver

can cache its value from recent GPS readings, and does not need to search for it for every GPS
synchronization event.

8.6 Testing Environment

8.6.1 Data Collection

We test our algorithm on a data set consisting of 40 GPS signal traces captured from urban and

suburban areas in US and Europe. The traces in US are collected using the SciGe GN3S Sampler

v3 [45] shown in Figure 8-5(a). The GN3S is a form of software radio that collects raw complex

GPS signal samples. We set the sampling rate of the GN3S to 4.092 MHz and its carrier frequency

to 1575.42 MHz. The traces from Europe are collected using the USRP2 software radio [47] and the

DBSRX2 daughterboard, which operates in the 1575.42 MHz range and is capable of powering up

active GPS antennas [47]. The Europe traces are collected with a sampling frequency of 4 MHz.

We also use a 3V magnetic mount active GPS antenna shown in Figure 8-5(b). These datasets

allow us to test the performance of QuickSync in different geographical areas and for different
GPS receiver hardware.

8.6.2 Baseline Algorithm

We compare our algorithm against a baseline that uses the traditional FFT-based synchroniza-
tion [176]. The baseline algorithm operates on blocks of size n. If a spike is not detected after
processing the first block, the algorithm repeats the computation on the next block, i.e., the next set
of n samples, and sums up the output of the IFFTs. The algorithm keeps processing more blocks
until the magnitude of the peak crosses a certain threshold (as described in Section 8.7.1). Note
that the algorithm must sum up the magnitudes of the output of the IFFTs rather than the actual
complex values; otherwise, samples would combine incoherently due to the accumulated phase
caused by the Doppler shift (see Section 8.5).

122

8.6.3 Implementation

We implement both QuickSync and the FFT-based algorithm in Matlab and run them on the col-
lected GPS traces. Both algorithms use the FFTW [54] implementation internally to compute the
Fourier transform (though the baseline computes an n-point transform while QuickSync computes
an n/p-point transform).

8.6.4 Metrics

We use two metrics for comparing the algorithms: number of multiplications, and number of
floating point operations (FLOPs). We mainly focus on the number of real multiplications exe-
cuted until an algorithm finds the synchronization offset. This metric is particularly important for
hardware-based GPS synchronization, where multiplications are significantly more expensive than
additions [148], and serve as standard metric to estimate the complexity of a potential hardware
implementation [30, 165].

Some GPS-enabled devices do not have a full fledged GPS receiver hardware to reduce cost and
form factor [121]. They use a GPS radio to collect signal samples, but offload the synchronization
algorithm to the main CPU of the device, where it is done in software. To evaluate QuickSync's
performance on software-based GPS receivers, we count the number of FLOPs executed by both
QuickSync and the baseline. FLOPs is a standard metric used to evaluate software implementations
of algorithms, including FFTW [54]. It includes both multiplications and additions.

We count the FLOPs using OProfile, a standard profiler for Linux systems [139]. We run the
code in Matlab R201 lb under Ubuntu 11. 10 on a 64-bit machine with Intel i7 processor. We run
OProfile from within Matlab in order to profile the part of the code executed by each algorithm,
and get a more accurate estimate of the number of FLOPs. We program OProfile to log the counter
INSTRETIRED (the number of executed floating point operations on the Intel i7 processor [139]).

8.7 Results

8.7.1 Setting the Synchronization Threshold

As explained in Section 8.3.3(e), both QuickSync and the FFT-based synchronization algorithm
check that there is a sufficient margin between the detected maximum spike and the noise level,
before accepting the spike as the one that identifies the correct alignment. Specifically, they check
that the ratio of the spike's magnitude squared to the noise variance exceeds a particular threshold.
This threshold defines how large the spike has to be in comparison to the bed of noise to ensure
enough confidence that the spike is not due to noise and is indeed due to the code matching. Hence,
the threshold is a measure of the SNR of the spike and is not dependent on the data. In particular,
if the GPS data is noisy as in an urban area, the algorithm will continue processing more data until
the threshold is crossed (as discussed in Section 8.6). In contrast, if the GPS data is less noisy
as in an open suburban area, the algorithm will terminate early on since the spike will cross the
threshold after processing one or two blocks.

123

1 QuickSync (EU Traces)
0 8QuickSync (US Traces)-0.8 FFT Based (EU Traces)

FFT Based (US Traces)
o 0.6

~ 0.4
.0
0 0.2

0
20 40 60 80 100 120 140 160 180 200

Threshold

Figure 8-6: Probability of Error Versus the Threshold. The plot shows that the probability of

error decreases sharply for both algorithms, and that a threshold of 90 for QuickSync and 100 for

the baseline produce a zero error probability.

In this section, we aim to verify that there is such a threshold that works for all datasets. Thus,
we perform the following experiment. We vary the threshold between a value of 1 and 200, and

for each of those values, we run both algorithms on a subset of the GPS traces from both datasets.

We define the probability of error as the ratio of runs that output a false positive (i.e., in which the

algorithm terminates by returning an invalid shift) to the total number of runs at a given threshold.

Figure 8-6 plots the probability of errors versus the preset threshold. The plot shows that setting

the threshold to 90 for QuickSync and 100 for the baseline produces a zero error probability. The

baseline has a slightly higher error probability than QuickSync. This is because the baseline takes

an n-point IFFT and, hence, has to ensure that none of the n - 1 noise spikes exceeds the correct

spike that corresponds to the proper alignment. In contrast, QuickSync takes an n/p-point IFFT

and hence has fewer noise spikes that have to be kept below the threshold.

The figure also shows that the used metric is stable, i.e.: (1) the metric is consistent across

traces captured from two continents, and (2) the probability of error decreases monotonically as

the threshold increases. This shows that the threshold is independent of the location of the GPS

receiver.

In the experiments that follow, we set the thresholds to 90 and 100 for QuickSync and the base-

line respectively. We also use a different set of traces from those used in testing for this threshold

to ensure separation between testing and training.

8.7.2 Performance in Terms of Hardware Multiplications

We start by evaluating the perfonance gain of QuickSync over FFT-based synchronization in

terms of the number of hardware multiplications. We run each of QuickSync and the FFT-based

algorithm on both traces collected in US and Europe. We run the experiment 1000 times; each time

taking a different subset of samples from these datasets. We compare the total number of multipli-

cations required by each of the algorithms to synchronize with the signals of satellites present in

the GPS traces. Figure 8-7 shows a CDF of the gain. The gain is calculated as the number of mul-

124

EU Traces
0.8 US Traces

0.6

0.4

0.2

0
0 0.5 1 1.5 2 2.5 3 3.5 4

GAIN

Figure 8-7: Gain of QuickSync Over the FFT-based Algorithm in Number of Multiplica-
tions. The two curves show the CDFs of the QuickSync's gains for the US and Europe datasets.

QuickSync achieves a median gain of around 2.2x and a maximum gain of 3.3 x.

5.
QuickSync

o FFT Based Aig.
E 4

C,
0

3cu

75 20

E

5 9 12 14 15 17 18 22 30
Satalite PRN Code (Data Set 1)

Figure 8-8: Number of Multiplications on a Per Satellite Basis for the Europe Trace. The gain

of QuickSync over the FFT-based algorithm varies among different satellites and ranges between

and 1.5 x and 4 x.

tiplications needed by the FFT-based algorithm divided by the number of multiplications required

by QuickSync. The figure shows that QuickSync always outperforms the FFT-based synchroniza-

tion on both the US and EU traces with a median gain of 2.2x. This means that QuickSync can

save on average twice the number of hardware multiplications.

To better understand the performance of QuickSync we zoom in on the number of multipli-

cations required by each algorithm for each of the satellites. Specifically, each point in the CDFs

in Figure 8-7 corresponds to a full GPS reading with all satellites. However, because different

satellites have different Doppler shifts and signal strengths, we expect the gains to vary from one

satellite to another. Specifically, for each of the satellites detected in the Europe traces, and for each

GPS reading, we measure the number of multiplications required by both algorithms to perform

the synchronization. We repeat this experiment 1000 times on different subset of the samples and

plot the average results in Figure 8-8.

125

Satellite C
Mean (Hz)
Max (Hz):

ode: 9 12 14 15 18 21 22 25 27
75 100 150 175 75 75 175 25 125

300 200 300 300 300 200 300 100 300

Table 8.1: Variation in the Doppler Shift in the US Traces. For a given satellite, the Doppler shift
of the received signal varies very little over a period of 2 hours and in an area of 2-mile diameter.

Figure 8-8 shows that each of the satellites, on average, requires less multiplications using
QuickSync. However, the gains vary considerably among those satellites. For example, satellites 5
and 18 have an average gain of 4 x whereas satellites 14 and 15 have an average gain of only 1.5 x.
Examining the Doppler shifts of these satellites we find that satellites 5 and 18 have Doppler shifts
of 6000 Hz and 1000 Hz respectively while satellites 14 and 15 have Doppler shifts of 600 Hz and
6800 Hz. This shows that the latter require a finer grain Doppler search as explained in Section 8.5.
However, because QuickSync is opportunistic, it first attempts to search at courser grain shifts (the
same as the baseline), but falls back to finer resolutions when it fails to detect a peak that passes the
threshold. Even in such scenarios, however, it consistently outperforms the baseline as the figure
shows.

In many scenarios, the receiver knows the Doppler shift a priori. The reason for this is that the
Doppler shift varies only slightly between nearby locations and over a time period of about an hour.
In order to test how much the Doppler shift varies, we measure the Doppler shift of satellite signals
in the GPS traces captured at different locations within a 2-mile diameter geographical area over a
period of 2 hours. For each of those satellites, we calculate the mean and the maximum variation
in the Doppler shift of all those signals and record them in Table 8.1. The mean change is around
100 Hz and the maximum is 300 Hz. Accordingly, since GPS receivers are duty cycled, whenever
the receiver wakes up, it may use the Doppler shift it calculated before going to sleep rather than
performing an exhaustive search for it. Alternatively, assisted GPS receivers may download the
measureu oppler sHiftufrim an adjacent base station ['J. in both of these situations, the GPS
receiver can significantly reduce the overhead of searching for the right Doppler shift.

In order to measure the gains of QuickSync without the Doppler search, we repeat the first
experiment but this time by providing each of the synchronization algorithms with the correct
Doppler shift for each satellite. Figure 8-9 shows a CDF of QuickSync's gain over the FFT-based
algorithm in terms of number of multiplications over all the runs on both traces. For both traces,
QuickSync achieves a median gain of 4.8 x. This shows that QuickSync's gains increase when the
receiver caches the correct Doppler shift across readings. We note that some of the traces benefit
from QuickSync much more than others; the reason is that these runs have higher SNRs such that
QuickSync can synchronize to their signals using the linear-time algorithm without falling back to
the super-linear variant.

8.7.3 Performance on software based GPS receivers

In this section, we test the performance of QuickSync on software based GPS receivers in terms of
the number of floating point operations (FLOPs). We run QuickSync and the FFT-based algorithm

126

1

0.8

S0.6

0.4

0.2

0

EU Traces
US Traces

0 2 4 6

GAIN

8 10 12

Figure 8-9: Gain of QuickSync Over the FFT-based Algorithm When the Doppler Shift is

Known. The two curves show the CDFs of the gain in number of multiplications for both of our

GPS traces. QuickSync achieves a median gain of 4.8 x.

1

0.8

0.6

0.4

0.2

0

EU Traces
US Traces

0 0.5 1 1.5

I!

2 2.5 3 3.5 4

GAIN

Figure 8-10: Gain of QuickSync Over the FFT-based Algorithm in FLOPs. This metric illus-

trates the gains of QuickSync for a software based implementation. The CDFs show a median gain

about 2.2 x and a maximum gain of around 3.7 x.

I
on the US and Europe traces and use OProfile to count the number of FLOPs as described in

Section 8.6. We run the experiment 1000 times with a different subset samples of the traces and

calculate the gain as the ratio of the number of FLOPs required by the FFT-based algorithm to the

number of FLOPs required by QuickSync. We do not assume in this experiment that the Doppler

shift is known and we let both algorithms search for the right Doppler shift. Figure 8-10 shows a

CDF of the gains. QuickSync achieves a median gain of 2 x and 2.3 x over the FFT-based algorithm

for the US and Europe traces respectively. This shows that QuickSync can reduce the number of

CPU computation on average by half in software based GPS receivers.

127

LL
0
0

8.8 Related Work

FFT-based GPS synchronization was first proposed by Nee et al. [176] who showed that it reduces
synchronization complexity from 0(n2) to 0(nlog(n)), where n is the number of samples per
C/A code. QuickSync builds on this technique and and leverages the Sparse Fourier Transform to
further reduce the synchronization complexity.

Our approach is related to past work on GPS block-averaging [128, 167], which sums up con-
secutive signal blocks before performing the FFT. QuickSync however differs from that work along
two axes: First, on the algorithmic front, past work performs a full size FFT of n points. One cannot
simply replace this n-point FFT with the Sparse Inverse Fourier Transform because, as explained
in Section 8.1, the output of the FFT is not sparse. In contrast, QuickSync introduces a design that
can harness the Sparse Fourier Transform. This enables QuickSync to operate with a smaller FFT
of size n/p, which provides faster synchronization. Second, past work on block-averaging focuses
on weak GPS signals and does not provide an adaptive design that works for the whole range of
GPS SNRs. Applying their approach to the whole SNR range can incur unnecessary overhead. This
is because they average and pre-process many blocks independent of the SNR. As a result, these
schemes increase the synchronization delay for scenarios in which only one (or a few) blocks are
sufficient for detecting the spike. In contrast, our algorithm adaptively processes more data when
the spike is too low for detection, and hence gracefully scales with the SNR of the received GPS
signal.

Signal synchronization is a general problem that applies to other wireless technologies, e.g.,
WiFi and cellular. However, synchronization in these technologies is simpler because the noise
level in the received signals is much lower than in GPS. For example, WiFi receivers can lock on
the signal simply by detecting an increase in the received power [76]. This is not possible in GPS
since the signal is received at 20 dB below the noise floor [144]. Cellular systems also operate at
much higher SNRs than GPS, which allows them to synchronize with relatively low overhead [97].

QuickSync is also related to the general class of work on reducing GPS power consumption.
The most common approach uses assisted-GPS [92, 150], which involves connecting to an assisted
GPS server through a WiFi or cellular network. The server provides the GPS receiver with the
GPS data decoded from each satellite signal, which allows the receiver to avoid decoding the
GPS signal. The device can also offload GPS computations to the cloud after acquiring the GPS
signal [50, 113, 136]. The latter approach, however, reduces the complexity of the device but still
requires the device to transmit the GPS signal to the cellular tower (thus consuming transmission
power and even bandwidth [50]). Other approaches for reducing GPS power consumption leverage
WiFi, sensors, or the cellular signal to localize the receiver [24, 134, 170]. These schemes typically
are less accurate than GPS and are more constrained in terms of where they can be deployed. Our
work contributes to this effort by tackling the complexity of the GPS receiver itself.

8.9 Conclusion

This chapter presents the fastest synchronization algorithm for GPS receivers to date. The gains
of the algorithm are also empirically demonstrated for software GPS implementations as well

128

as potential hardware architectures. Because synchronization consumes a significant amount of
power, we expect the reduced complexity to decrease GPS power consumption. Further, we believe
that the sparse synchronization algorithm we introduced has other applications in signal processing
and pattern matching. We plan to explore those applications in future work.

129

130

Chapter 9

Light Field Reconstruction Using
Continuous Fourier Sparsity

9.1 Introduction

Fourier analysis is a critical tool in rendering and computational photography. It tells us how
to choose sampling rates, e.g., [42, 43, 75, 126], predict upper bounds on sharpness, e.g., [109,
110, 132], do fast calculations, e.g., [161], model wave optics, e.g., [65, 188], perform light field
multiplexing [177], and do compressive sensing, e.g., [26]. In particular, the sparsity of natural
spectra, such as those of light fields, makes it possible to reconstruct them from smaller sets of
samples, e.g., [106, 177]. This sparsity derives naturally from the continuous Fourier transform,
where continuous-valued depth in a scene translates to 2D subspaces in the Fourier domain. How-
ever, practical algorithms for reconstruction, including the Sparse Fourier Transform algorithms
from Part I of this thesis, usually operate on the Discrete Fourier Transform (DFT). Unfortunately,
little attention is usually paid to the impact of going from the continuous Fourier domain to the
discrete one, and it is often assumed that the sparsity derived from continuous principles holds for
discrete sampling and computation. In this chapter, we make the critical observation that much of
the sparsity in continuous spectra is lost in the discrete domain, and that this loss of sparsity can
severely limit reconstruction quality. We propose a new approach to reconstruction that recovers a
discrete signal by optimizing for sparsity in the continuous domain. We first describe our approach
in general terms, then demonstrate its application in the context of 4D light field acquisition and
reconstruction, where we show that it enables high-quality reconstruction of dense light fields from
fewer samples without requiring extra priors or assumptions such as Lambertian scenes.

The difference between continuous and discrete sparsity is due to the windowing effect. Sam-
pling a signal, such as a light field, inside some finite window is analogous to multiplying that
signal by a box function. In the frequency domain, this multiplication becomes convolution by an
infinite sinc. If the nonzero frequencies of the spectrum are not perfectly aligned with the resulting
discretization of the frequency domain (and therefore the zero crossings of the sinc), this convolu-
tion destroys much of the sparsity that existed in the continuous domain. This effect is shown in
Figure 9-1(a) which plots a 2D angular slice of the 4D light field spectrum of the Stanford crystal

131

(a) Sparsity in the discrete \s (h) Sampled viewpoint Images (c) Reconstruction of unsampled (d) Reconstruction of unsampled
continuous spectrum viewpoint image: blue in (b) viewpoint image: green in (b)

Figure 9- 1: Sparsity in the Discrete vs. Continuous Fourier Domain, and Our Reconstruc-
tion Results: (a) The discrete Fourier transform (top) of a particular 2D angular slice a:,,. &, of

the crystal ball's light field, and its reconstructed continuous version (bottom). (b) A grid showing

the original images from the Stanford light field archive. The images used by our algorithm are

highlighted (courtesy of [163]); (c) and (d) Two examples of reconstructed viewpoints showing

successful reconstruction of this highly non-Lambertian scene which exhibits caustics, speculari-

ties, and nonlinear parallax. The uv locations of (c) and (d) are shown as blue and green boxes in

(b).

ball. In practice, natural spectra, including those of light fields, are never so conveniently aligned,
and this loss of sparsity is always observed.

We introduce an approach to recover the sparsity of the original continuous spectrum based on

nonlinear gradient descent. Starting with some initial approximation of the spectrum, we optimize

for sparsity in the continuous frequency domain through careful modeling of the projection of con-

tinuous sparse spectra into the discrete domain. The output of this process is an approximation

of the continuous spectrum. In the case of a light field, this approximation can be used to recon-

struct high quality views that were never captured and even extrapolate to new images outside the

aperture of recorded samples.

Our approach effectively reduces the sampling requirements of 4D light fields by recovering

the sparsity of the original continuous spectrum. We show that it enables the reconstruction of full

4D light fields from only a ID trajectory of viewpoints, which could greatly simplify light field

capture. We demonstrate a prototype of our algorithm on multiple datasets to show that it is able to

accurately reconstruct even highly non-Lambertian scenes. Figures 9-1(b), 9-1(c), and 9-1(d) show

our reconstruction of a highly non-Lambertian scene and the 1 D trajectory of viewpoints used by

our implementation.

We believe that our observations on continuous versus discrete sparsity and careful handling of

sampling effects when going from a sparse continuous Fourier transform into the discrete Fourier

domain can also have important applications for computational photography beyond light field

reconstruction as well as other areas like medical imaging as we will see in Chapter 10.

132

9.2 Related work

Light field capture is challenging because of the 4D nature of light fields and the high sampling
rate they require. Capture can be done with a micro lens array at the cost of spatial resolution, e.g.
[4, 55, 133], using robotic gantries [111], using camera arrays [179], or with a handheld camera
moved over time around the scene [23, 37, 66]. All these solutions require extra hardware or time,
which has motivated the development of techniques that can reconstruct dense light fields from
fewer samples.

[106, 108] argue that the fundamental differences between reconstruction strategies can be
seen as a difference in prior assumptions made about the light field. Such priors usually assume a
particular structure of sparsity in the frequency domain.

Perhaps the most common prior on light fields assumes that a captured scene is made up of
Lambertian objects at known depths. Conditioning on depth, the energy corresponding to a Lam-
bertian surface is restricted to a plane in the frequency domain. Intuitively, this means that given a
single image and its corresponding depth map we could reconstruct all 4 dimensions of the light
field (as is done in many image based rendering techniques). The problems with this approach are
that the Lambertian assumption does not always hold and that depth estimation usually involves
fragile nonlinear inference that depends on angular information, meaning that sampling require-
ments are not reduced to 2D in practice. However, paired with a coded aperture [107, 177] or
plenoptic camera [18], this prior can be used to recover superresolution for Lambertian scenes in
the spatial or angular domain.

Levin and Durand [106] use a Lambertian prior, but do not assume that depth is known. This
corresponds to a prior that puts energy in a 3D subspace of the light field spectrum, and reduces
reconstruction to a linear inference problem. As a result they require only 3 dimensions of sam-
pling, typically in the form of a focal stack. Like our example application, their technique can also
reconstruct a light field from a ID set of viewpoints. However, they still rely on the Lambertian
assumption and the views they reconstruct are limited to the aperture of input views. In contrast,
we show how our approach can be used to synthesize higher quality views both inside and outside
the convex hull of input images without making the Lambertian assumption. For a comparison, see
Section 9.7.

The work of [118] assumes a different kind of structure to the sparsity of light fields. This
structure is learned from training data. Specifically, they use sparse coding techniques to learn a
dictionary of basis vectors for representing light fields. The dictionary is chosen so that training
light fields may be represented as sparse vectors. Their underlying assumption is that new light
fields will have similar structure to those in their training data.

9.3 Sparsity in the Discrete vs. Continuous Fourier Domain

In this section, we show how the discretization of a signal that is sparse in the continuous Fourier
domain results in a loss of sparsity. We then give an overview of our approach for recovering sparse
continuous spectra. In subsequent sections, we will describe in detail one application of this theory,
namely, reconstructing full 4 dimensional light fields from a few ID viewpoint segments. We will

133

also show results of this application on real light field data.
A signal x(t) of length N is k-sparse in the continuous Fourier domain if it can be represented

as a combination of k non-zero continuous frequency coefficients:

1 k 27jtw
x(t) = i ai exp N (9.1)

i=O

where {w,} are the continuous positions of frequencies (i.e., each wi is not necessarily an inte-
ger), and { a } k 0 are the coefficients or values corresponding to these frequencies. The same signal
is sparse in the discrete Fourier domain only if all of the wi's happen to be integers. In this case,
the output of its N-point DFT has only k non-zero coefficients. Consequently, any signal that is k-
sparse in the discrete Fourier domain is also k-sparse in the continuous Fourier domain; however,
as we will show next, a signal that is sparse in the continuous Fourier domain is not necessarily
sparse in the discrete Fourier domain.

9.3.1 The Windowing Effect

The windowing effect is a general phenomenon that occurs when one computes the discrete Fourier
transform (DFT) of a signal using a finite window of samples. Since it is not limited to the light
field, we will explain the concept using one-dimensional signals. It naturally extends to higher
dimensions.

Consider computing the discrete Fourier transform of a time signal y(t). To do so, we would
sample the signal over a time window [-, IA], then compute the DFT of the samples. Since the
samples come from a limited window, it is as if we multiplied the original signal y(t) by a box
function that is zero everywhere outside of this acquisition window. Multiplication in the time
domain translates into convolution in the Fourier domain. Since acquisition multiplies the signal
by a box, the resulting DFT returns the spectrum of the original signal y(t) convolved with a sinc
function.

Convolution with a sinc, in most cases, significantly reduces the sparsity of the original sig-
nal. To see how, consider a simple example where the signal y(t) is one sinusoid, i.e., y(t) =

exp (-2j7rt). The frequency domain of this signal has a single impulse at CD. Say we sample the
signal over a window [-4 , A), and take its DFT. The spectrum will be convolved with a sinc, as
explained above. The DFT will discretize this spectrum to the DFT grid points located at integer
multiples of 1 . Because a sinc function of width ' has zero crossings at multiples of _", (as can be
seen in Figure 9-2(a)), if CD is an integer multiple of 1 then the grid points of the DFT will lie on
the zeros of the sinc(.) function and we will get a single spike in the output of the DFT. However,
if C is a not an integer multiple of ,then the output of the DFT will have a sinc tail as shown in
Figure 9-2(b).

Like most natural signals, the sparsity of natural light fields is not generally aligned with any
sampling grid. Thus, the windowing effect is almost always observed in the DFT of light fields
along spatial and angular dimensions. Consider the effect of windowing in the angular domain
(which tends to be more limited in the number of samples, and consequently exhibits a stronger
windowing effect). Light fields' are sampled within a limited 2D window of uv coordinates. As

134

6(53)

4 3 2 1 0 1 2 43 2 0 1 2 4 3 2 1 2

A A A A A A A A A A A A A A A A A A

(a) Frequency lies on a DFT grid point

6(C + 0.5/A)

4 3 2 _ 0 1 2 4 3 2 10 2
A A A A A A A A A A A A A A A A A

(b) Frequency does not lie on a DFT grid point

Figure 9-2: The Windowing Effect: Limiting samples to an aperture .4 is equivalent to convolving

the spectrum with a sinc function. (a) If a frequency spike lies on a DFT grid point then the sinc

disappears when it is discretized, and the original sparsity of the spectrum is preserved. (b) If the

frequency spike is not on the DFT grid, once we discretize we get a sinc tail and the spectrum is

no longer as sparse as in the continuous domain.

a result, the DFT of each 2D angular slice, L ('. &), is convolved with a 2D sinc function,

reducing sparsity. Figure 9-3(a) shows the DFT of an angular slice from the crystal ball light field.

As can be seen in the figure, the slice shows a sparse number of peaks but these peaks exhibit

tails that decay very slowly. These tails ruin sparsity and make reconstruction more difficult. We

propose an approach to light field reconstruction that removes the windowing effect by optimizing

for sparsity in the continuous spectrum. Figure 9-3(b) shows a continuous Fourier transform of the

same crystal ball slice, recovered using our approach. Note that the peak tails caused by windowing

have been removed and the underlying sparsity of light fields has been recovered.

9.3.2 Recovering the Sparse Continuous Fourier Spectrum

From sparse recovery theory we know that signals with sparse Fourier spectra can be reconstructed

from a number of time samples proportional to sparsity in the Fourier domain. Most practical sparse

recovery algorithms work in the discrete Fourier domain. However, as described above, the non-

zero frequency coefficients of most light fields are not integers. As a result, the windowing effect

ruins sparsity in the discrete Fourier domain and can cause existing sparse recovery algorithms to

135

WU (0

(a) Discrete Spectrum

(10U WV

(AOU v

(b) Continuous Spectrum

Figure 9-3: Light Field Spectrum in the Discrete and Continuous Fourier Domains: A 2D

angular slice of the 4D light field spectrum of the Stanford crystal ball for (), 1) = (50. 50). (a)

In the discrete Fourier domain, we have sinc tails and the spectrum is not very sparse. (b) In the

continuous Fourier domain, as reconstructed by our algorithm, the spectrum is much sparser. It is

fonrmed of 4 peaks which do not fall on the grid points of the DFT.

1

fail. Our approach is based on the same principle of sparse recovery, but operates in the continuous
Fourier domain where the sparsity of light fields is preserved.

Recall our model in Equation 9.1 of a signal that is sparse in the continuous Fourier domain.
Given a set of discrete time samples of x(t), our goal is to recover the unknown positions {'}>_
and values {ai},' of the non-zero frequency coefficients. From Equation 9.1, we see that this
problem is linear in the values {a,}_k) and non-linear in the positions { }(_) of the non-zero
coefficients. Thus, to recover the values and positions, we use a combination of a linear and non-
linear solver.

Recovering coefficient values { a, Iki: If we know the positions of non-zero coefficients (i.e.
each w,) then Equation 9.1 becomes a system of linear equations with unknowns { a,}k } , and
given > A discrete samples of r (t), we can form an over-determined system allowing us to solve
for each ai.

Recovering continuous positions {L}{_ : We use nonlinear gradient descent to find the contin-
uous positions { L}4i that minimize the square error between observed discrete samples of :(t)
and the reconstruction of these samples given by our current coefficient positions and values. Thus,

136

the error function we wish to minimize can be written as

2
1 k 27T ,tw

e = Z(t) N di exp N (9.2)
t~ i0O

where di and cDi are our estimates of a, and wi and the above summation is taken over all the
observed discrete samples.

As with any gradient descent algorithm, in practice, we begin with some initial guess of discrete

integer positions { }_. We use the discrete sparse Fourier transform algorithm described in
Section 9.5.2 for our initialization. From this initial guess, we use gradient descent on {w}i 0 to
minimize our error function. In practice, the gradient is approximated using finite differences. In
other words, we calculate error for perturbed peak locations {w) + 62} and update our {W }
with the Ei that result in the smallest error. We keep updating until the error converges.

Once we have recovered both a and wi, we can reconstruct the signal x(t) for any sample t
using Equation 9.1.

9.4 Light Field Notation

A 4D light field L (x, y, u, v) characterizes the light rays between two parallel planes: the uv cam-
era plane and the xy image plane, which we refer to as angular and spatial dimensions respectively.
Each (u, v) coordinate corresponds to the location of the viewpoint of a camera and each (x, y)
coordinate corresponds to a pixel location. L (wy, wy, WU, w) characterizes the 4D spectrum of this
light field. We will use LW'WY (WU, WV) to denote a 2D angular slice of this 4D spectrum for fixed
spatial frequencies (wi, wy). Similarly, L,, (x, y) denotes the 2D image captured by a camera with
its center of projection at location (u, v). Table 9.1 presents a list of terms used throughout this
chapter.

9.5 Light Field Reconstruction Algorithm

To demonstrate the power of sparse recovery in the continuous Fourier domain, we show how it
can be used to reconstruct light fields from ID viewpoint trajectories. We choose to work with ID
trajectories because it simplifies the initialization of our gradient descent. However, the continuous
Fourier recovery described in the previous section is general and does not require this assumption.

In this section, we describe the Sparse Fourier Transform used for our initialization as well
as our sparse continuous Fourier recovery. The reconstruction algorithm described in this sec-
tion is shown in Algorithm 9.4.1. The initialization is given by the SPARSEDISCRETERECOVERY
procedure shown in Algorithm 9.5.1 and the continuous recovery is given by the SPARSECONTIN-

UoUSRECOVERY procedure shown in Algorithm 9.5.2.

137

Table 9.1: Light Field Notation

procedure SPARSELIGHTFIELD(Lis)

I22,(W2, wy) = FFT(Lu,v(x, y)) for u, v C S
for w, Y E [M] do

Le ,,(ci, wi) = 2DSPARSEFFT(LT,Wy(u, V)Is)
L(x, y, u, v) = IFFT((w, wo, WU, wV))
return L

procedure 2DSPARSEFFT(Xis)
P = SPARSEDISCRETERECOVERY(XIs)

F, e = SPARSECONTINOUSRECOVERY(XIS, P)

X(U, v) =F a - exp (2j7u u vw) for a, E [N]

X = FFT(X)
return X

9.4.1: Light Field Reconstruction Algorithm

138

Term Definition

uv Angular/camera plane coordinates
x, y Spatial plane coordinates
wU, WV Angular frequencies
WX, wY Spatial frequencies
L(x, y, U, v) 4D light field kernel
L(wx, wY, , WV) 4D light spectrum
LWa'WY (, wV) A 2D angular slice of the 4D light spectrum
L" "Y (u, v) A 2D slice for fixed spatial frequencies
X 2D slice =L ,(u, v)
S Set of samples (u, v)
XIs 2D X with only samples in S
Xs XIs reordered as 1 x ISI vector
P Set of frequency positions (wa, wv)
P 1 x IP vector of frequency coefficients

F Set of positions and coefficients (Pu, wv, a)
[N] The set {,1, -... N - 1}
y ID signal or line segment
M x M Number of image pixels in spatial domain
N x N Number of camera locations

(a)(b

Figure 9-4: Light Field Sampling Patterns: Our algorithm samples the (u, v) angular dom-ain

along discrete lines. (a) Box and 2 diagonals (b) Box and 2 lines with slopes = 2. Note that in
this case the discrete line wraps around.

9.5.1 Input

Our input is restricted to I D viewpoint trajectories that consist of discrete lines. A discrete line in
the angular domain is defined by the set of (u. v) points such that:

(1, = 0,, + T,, 11od N . o -(]
I = (T, t + T,, 1m1d N . o E[J(9.3)

where () < o!, n, T,. TI < N and GCD((iog, wj) = t

This lets us use the Fourier projection-slice theoremn to recover a sparse discrete spectrum, which
we use to initialize our gradient descent. Figure 9-4 shows the specific sampling patterns used in
our experiments.

For a light field L(J., y, i. i), our algorithm operates in the intermiediate domain, L.,(u)
which describes spatial frequencies as a function of viewpoint. We start by taking the 2D DFT of
each input image, which gives us the spatial frequencies (.) at a set of viewpoints S consisting
of our I D input lines. We call this set of known samples L,,,,(u,, v) Is. Our task is to recover the

2D angular spectrum s (U"11') for each spatial frequency (W,,, W.,) from the known samples

LC_ (,a, c). For generality and parallelism we do this at each spatial frequency independently,
but one could possibly use a prior on the relationship between different (Wor.o L~) to improve our
current implementation.

9.5.2 Initialization

The goal of our initialization is to calculate some initial guess for the positions {W,1 },,=(of our
non-zero frequency coefficients. We do this using a Sparse Fourier Transform algorithm that lever-

ages the Fourier projection-slice theorem in a voting scheme similar to a Hough transform. By the

proj ecti on- slice theorem, taking the DFT of an input discrete line gives us the projection of our

light field spectrum onto the line. Each projection gives the sum of several coefficients in our spec-
trum. Different projections provide us with different sums, and each sum above a given threshold
votes for the discrete positions of coefficients that it sums similar to the voting scheme described in

Chapter 3. The Sparse Fourier Transform algorithmn then selects the discrete positions that receive

139

-.... --------- -- , iI

(a) (b) (c) (d)

Figure 9-5: Discrete Fourier Projections: Computing the DFT of a discrete line of a 2D signal is

equivalent to projecting the 2D spectrum onto the line. The top i-ow of figures shows the sampled
lines and the bottom row of figures shows how the spectrum is projected. Frequencies of the same
color are projected onto the same point. (a) row projection (b) column projection (c) diagonal
projection (d) line with slope =2.

a vote from every input projection and returns these as its initial guess. We refer to this algorithm
as DISCRETESPARSERECOVERY and it is shown in Algorithm 9.5.1.

Computing Projections

To simplify our discussion of slices, we will use X to denote the 2D slice Is, 1 (i. i) in our

intermediate domain and X to denote its DFT, I.,~ ,(wa. w). Thus, our input is given by a subset
of sample slices Xis, where the set S gives the coordinates of our input samples (('u. u) viewpoint
positions).

For each slice X in our input Xi>, the views in X lie on a discrete line. We perform a lD DFT

for each of these discrete lines, which yields the projection of our 2D spectrum onto a correspond-
ing line in the Fourier domain. Specifically, let y be the lD discrete line corresponding to a 2D
slice X, (parameterized by t E [N])

y(t) = X(n6 t + TJ mod N,t t-Tr mod N) (9.4)

where U < os as Tr 1 T, < N and GCD(m1 . ,) =1.

Then, y, the DFT of y, is a projection of X onto this line. That is, each point in y is a summation
of the N frequencies that lie on a discrete line orthogonal to y, as shown in Figure 9-5. Specifically,
the frequencies (w11 , w) that satisfy (a UW + (so = & mod N project together onto yT(w) (recall
that discrete lines may 'wrap around' the input window).

140

K U Project on row Voting Scores Project on row Voting Scores
5 9

Project on

Project on Diagonal -

* U 5f Diagonal
t Project on g Project on

columnolumn
9 a

2D Spectrum 1ote 2votes votes 2D Spectrum "Vte 2 votes avotes

(a) Voting Example 1 (b) Voting Example 2

Figure 9-6: Voting Based Frequency Estimation: Two examples of the voting approach used
to recover the discrete positions of the large frequencies from projections on discrete lines. The
2D spectrum is projected on a row, a column and a diagonal. Each large projection votes for the
frequencies that map to it. Using only projections on a row and column, many frequencies get
two votes. By adding a 3rd projection on the diagonal, only the large frequencies get 3 votes. (a)
Frequencies (5,5), (5,9), and (9,5) are large and only they get 3 votes. (b) Some frequencies on the
diagonal are large and only these frequencies get 3 votes.

Voting

To recover the discrete positions of the nonzero frequency coefficients, we use a voting approach.
For each line projection, the projected sums which are above some threshold vote for the frequen-
cies that map to them (similar to a Hough transform). Since the spectrum is sparse, most projected
values are very small and only the coefficients of large frequencies receive votes from every line
projection. Thus, by selecting frequencies that receive votes from every projection, we get an esti-
mate of the discrete positions of nonzero coefficients.

To better illustrate how voting works, consider the simple example shown in Figure 9-6(a).
The 2D spectrum has only 3 large frequencies at (5. 5). (5. 9) and (9. 5). When we project along
the rows of our grid the 5th and 9th entry of the projection will be large and this projection will
vote for all frequencies in the 5th and 9th columns. Similarly, when we project along columns
the projection will vote for all frequencies in the 5th and 9th rows. At this point, frequencies
(5. 5). (5. 9), (9. 5). (9. 9) have two votes. However, when we project on the diagonal, frequency
(9. 9) will not get a vote. After 3 projections only the 3 correct frequencies get 3 votes. Another
example is shown in Figure 9-6(b).

9.5.3 Optimization in the Continuous Fourier Domain

Recall from Section 9.3.2 that our optimization takes the initial positions {w<}>1 and a subset of
discrete samples as input. With both provided by the input and initialization, we now minimize the
error function of our reconstruction using the gradient descent approach outlined in Section 9.3.2.
This optimization is shown in Algorithm 9.5.2.

141

procedure SPARSEDISCRETERECOVERY(XIS)

yi = PROJECTLINE(XIs, 0, 1, 0, 0)

y2 = PROJECTLINE(XIs, 1, 0, 0, 0)
93 = PROJECTLINE(XIs, 1, 1, 0, 0)

y4 = PROJECTLINE(XIs, 0, 1, N - 1, 0)

y5= PROJECTLINE(XIs, 1, 0,0, N - 1)

k6 = PROJECTLINE(XIs, 1, -1, 0, N - 1)
P = RECOVERPOSITIONS(yi, y2 , k343, 4, y5, y6)
return P

procedure PROJECTLINE(XIs, Oz, O,, T,,T)

y(i) = X(iau + Tr, iav + TV) for i E [N]}
k = FFT(y)
return k

procedure RECOVERPOSITIONS(yi, y2, y3, k4, k5, k6)

VI = VOTE(yi, 0, 1, 0, 0, 0)
V2 = VOTE(y 2 , 1, 0, 0, 0, 0)
V3 = VOTE(y 3 , 1, 1, 00, 0)
V4 = VOTE(y 4 ,0, 1, N - 1,0,0)
V5 = VOTE(y5, 1, 0, 0, N - 1, 0)
V6 = VOTE(y6, 1, -1, 0, N - 1, 0)
P =vnlV2 flV3flV4A V5flv6

return P

procedure VOTE(y, au, av, 0)

I = i || (i)| > 0}
V ={(u, W) .: auwu + avwv = i'where i E 1}
return V

> :Power threshold

9.5.1: Sparse Discrete Fourier Recovery Algorithm

142

Recovering Frequency Coefficients

As we discussed in Section 9.3.2, when we fix the coefficient positions {w 0 }{_, Equation 9.1
becomes linear in the coefficient values { a} } 0. To solve for the full light field spectrum at each
iteration of our gradient descent we express each of our known discrete input samples as a linear
combination of the complex exponentials given by our current choice of {w, I} .

With the appropriate system of linear equations we can solve for the coefficient values that
minimize the error function described in Equation 9.2. To construct our system of linear equations,
we concatenate the discrete input (U, v) samples from X Is into an IS x 1 vector which we denote
as xs. Given the set P of frequency positions we let Rp be the IP x 1 vector of the frequency
coefficients we want to recover (with each coefficient in Rp corresponding to a frequency position
in P). Finally, let Ap be a matrix of IS x IPI entries. Each row of Ap corresponds to a (u, v)
sample, each column corresponds to an (w, WV) frequency, and the value of each entry is given by
a complex exponential:

Ap((u, v), (u), wc)) = exp 27rJ N VWv (9.5)
N

Now our system of linear equations becomes:

xs = ARp (9.6)

We then use the the pseudo-inverse of Ap to calculate the vector R* of coefficient values that
minimize our error function:

R* = At xs (9.7)

The above is given by the procedure RECOVERCOEFFICIENTS shown in Algorithm 9.5.2.'

Gradient Descent

Recall from Section 9.3.2 that our gradient descent algorithm minimizes the error function, which
we can now rewrite as:

minimize e(P) = xs - ApAt xs|2 (9.8)

In the above equation, the frequency positions in the list P are continuous, but the input samples
xs that we use to compute our error are discrete. Thus, our optimization minimizes error in the
discrete reconstruction of our light field by finding optimal continuous frequency positions.

In our gradient descent, each iteration of the algorithm updates the list of frequency positions
P. For each recovered frequency position in P, we fix all other frequencies and shift the position
of this frequency by a small fractional step 6 < 1. We shift it in all 8 directions as shown in
Figure 9-7 and compute the new error e (P) given the new position. We then pick the direction that
best minimizes the error e (P) and change the position of the frequency in that direction. If none of

'Note that we did not specify the threshold used to determine a 'vote' in our initialization. Rather than using a
fixed threshold, we choose the smallest threshold such that the system of equations from Equation 9.6 becomes well
determined.

143

(3.4) (3,5) (3.6) (3,4) (3 5) (3,6) (3,4) (3,5) (3,6)

(3 5525)

(3.75 5525)

(444)6) (44) (4,6) (44) (4,5) (4.6)

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 9-7: Optimizing the Continuous Frequency Positions: The gradient descent shifts the
frequency by a small step in every iteration. The frequency is shifted in the direction that minimizes
the error. (a) Frequency (4,5) is shifted to a non-integer position that best reduces the error. (b) The
frequency is shifted again to minimize the error. (c) The frequency position converges since shifting
in any direction will increase the error.

the directions minimize the error, we do not change the position of this frequency. We repeat this
for every frequency position in P.

Our gradient descent ensures that from iteration i to iteration (i + 1), we always reduce error,
i.e., e(PMi+')) < e(P(1). The algorithm keeps iterating over the frequencies until the error e(P)
falls below a minimum acceptable error c. Once we have a final list of continuous frequency posi-
tions, we can recover their coefficients using Equation 9.7. The above gradient descent is given by
the procedure GRADIENTSEARCH shown in Algorithm 9.5.2.

9.5.4 Reconstructing the Viewpoints

As explained in Section 9.3.2, once we have the continuous positions and values of our non-zero
frequency coefficients, we can reconstruct the missing viewpoints by expressing Equation 9.1 in
terms of our data:

L (a N exp 2j7r N) (9.9)
(a.p)CF

By setting (U, v) to the missing viewpoints, we are able to reconstruct the full light fields. Fig-
ure 9-8 shows a flow chart of the entire reconstruction.

Note that the above equation lets us reconstruct any (U, v) position. We can interpolate between
input views and even extend our reconstruction to images that are outside the convex hull of our
input. This would not be possible if our sparse coefficients were limited to the discrete Fourier
domain, since the above equation would be periodic modulo N. This would create a wrapping
effect, and attempting to reconstruct views outside the span of our input would simply replicate
views inside the span of our input. In other words, the discrete spectrum assumes that our signal
repeats itself outside of the sampling window, but by recovering the continuous spectrum we can
relax this assumption and extend our reconstruction to new views.

144

U

procedure SPARSECONTINUOUSRECOVERY(XI s, P)
F(O), e(0) = RECOVERCOEFFICIENT(Xis, P)
i = 0
while e > c do

F(i+l), e('+l) = GRADIENTSEARCH(Xis, F(i), e(i))

return F(i), e()

procedure GRADIENTSEARCH(XIs, F, e)

P = {(w,, o) : (a, w,, w,) E F}
for (w,, w,) E P do

(Au, Av) = GETGRADIENT(XIs, P, e, w, w,)

(Wu, WV) = (Wu, WV) + (6AU, 6A v)
F', e' = RECOVERCOEFFICIENT(XIs, P)
return F', e'

procedure GETGRADIENT(XIs, P, e, w,, w,)
A = {(-1,-1), (-1,0), (-1,1), (0,-i), (0,1), (1, -1), (1, 0), (1,1)}
for (du, dv) E A do

P' = P - {(Wu,WV)}
P' = P U{(wu + 6du, w + 6dv)}
F, e'= RECOVERCOEFFICIENT,(Xls, P')
dedu,dv = (e - e')/ I(du, dv)|I

(du*, dv*) = argmax(duldv) Adedu,dv

return (du*, dv*)

procedure RECOVERCOEFFICIENT(XIs, P)

A = 01sixipi

XS = 01sIXi
foriCE{0,- ,- Sj-1}do

(U, v) = S,
xs(i) = X(u, v)
fork c {0,-.. ,PI- 1}do

(Lu, WV) = Pk
A(i, k) exp (2j7r uwu"v")

Rp = Atxs > At is the pseudo-inverse of A
e = I1xs - Asp 12

F = {(a, wu, wv) : a = Rk (k), (Wu, WV) - P lF_}h
return F, e

9.5.2: Sparse Continuous Fourier Recovery Algorithm

145

2D Slice Reconstruction
Initialization Sparse Continuous Recovery

Compute Gradient Search

Projections For each Freq.
position
Calculate Recover Error Reconstruct

Gradient Coefficients gna41/1 Voting for I-r- .-A I&
nonzero

coefficients sit

Figure 9-8: Flow Chart of the 2D Sparse Light Field Reconstruction Algorithm: The algorithm

takes a set of sampled discrete lines. The initialization, Discrete Recovery, has 2 steps: computing

the projections and recovering the discrete positions of the large frequency coefficients. In the

sparse continuous recovery, the gradient search tries to shift the positions of the frequencies to

non-integer locations and recover their coefficients. We keep repeating this gradient search until

we get a small enough error. This stage will output a list of continuous frequency positions and

their coefficients, which can then be used to reconstruct the full 2D slice.

9.6 Experiments

We experimented with several data sets where full 4D coverage of the light field was available for

comparison. For each of these data sets we extracted a small number of 1 D segments, which we

then used to reconstruct the full 2D set of viewpoints. We compare our reconstructed light fields

against the complete original data sets in our accompanying videos.

Three of our data sets, the Stanford Bunny, the Amethyst, and the Crystal Ball data sets, were

taken from the Stanford light field archive [163]. Each of the Stanford data sets consists of a 17x17

grid of viewpoints and was reconstructed using the box-and-X pattern shown in Figure 9-4(a). On

these datasets, we perfonned our reconstruction in the YUV color space. The U and V channels

were reconstructed at half the resolution of the Y channel.

To show how our method scales with the number of input images we are given, we captured

a larger dataset (the Gnome) consisting of 5 1 x5 1 viewpoints. This dataset was captured using a

robotic gantry similar to the one from [163], and the double X pattern in Figure 9-4(b) was used

to select our input. The total number of input images is the same for both the single X pattern and

the double X pattern, as the effective spacing between input views along diagonals is changed. For

this dataset our input consists of less than 12% of the original images.

Our code was designed for flexible experimentation and is currently slow. However, the al-

gorithm is highly parallelizable and we run it on a PC cluster. The code is written in C++ using

the Eigen library. The w1 . w slices of a light field are divided among different machines, and the

results are collected once all of the machines have finished.

Load balancing, variability in the number of machines used, and different convergence char-

acteristics for different inputs make it difficult to estimate exact run times. Using a cluster of up

to 14 machines at a time (averaging 5-6 cores each), typical runtimes ranged from 2 to 3 hours

146

Figure 9-9: Reconstruction of Stanford Bunny Data Set: On the left and in the middle are the

reference figure and the reconstruction from [Levin and Durand 2010](courtesy of Levin). The

sampling pattern we used is the box-and-X pattern shown in Figure 9-4(a). Though we used more
samples than Levin & Durand used, we did a much better job in terms of less blurring, preserving
the textures and having less noise.

for a colored data set (3 channels). There are several ways to accelerate the method - for exam-
ple, one could leverage the coherence across slices or replace finite differences with a method that

converges faster, but we leave this for future work.

9.7 Results

9.7.1 Viewing our results

Our results are best experienced by watching the accompanying videos which are available online

through this link: http://netmit.csail.mit.edu/LFSparseRecon/.

9.7.2 The Stanford Bunny

The Stanford Bunny dataset is our simplest test case. The scene is Lambertian and therefore es-

pecially sparse in the frequency domain. The spacing between input views is also very narrow, so

there is little aliasing. Each image is 512x512 pixels. Our reconstruction of the Bunny is difficult to

distinguish from the full light field captured by [163], as shown in Figure 9-9. Figure 9-10 shows

that the reconstruction error is small.

9.7.3 Amethyst

The amethyst dataset is highly non-Lambertian. It exhibits both specular reflections and refraction.

Again it is difficult to distinguish our reconstruction from the full captured light field, as shown in
Figure 9-11. We reconstruct most of the reflected details, with the exception of some undersampled

147

20

18

16

14

12

10

8

6

4

2

0

Figure 9-10: Reconstruction Error: A color map of the difference in the Y channel between a
reference view and a reconstructed view from the Stanford Bunny dataset. In about half of the
pixels the difference is zero. There is some unstructured noise, but it is hard to tell whether this
comes from the reference figure or our reconstruction. There is also some structured noise on the
edge of the bunny, but again it is difficult to tell whether this comes from reconstruction error or
an error in the pose estimate of the reference image.

features that move so fast they do not appear at all in the input. Figure 9-12 gives an example of
this.

9.7.4 Crystal Ball

The Crystal Ball scene is extremely non-Lambertian, exhibiting caustics, reflections, specularities,
and nonlinear parallax. We are able to reproduce most of the complex properties that make this
scene shown in Figure 9-13 so challenging, as can be seen in our accompanying video online. If
one looks closely, our reconstruction of this light field contains a small amount of structured noise
which we discuss in Section 9.8.

9.7.5 Gnome

We acquired a new dataset consisting of 52x52 viewpoints. The resolution of each image is 640x480,
and we reconstructed all channels at full resolution.

The Gnome scene is mostly Lambertian with a few specular highlights. In tenms of the sub-
ject being captured, the difficulty of this scene sits somewhere between the Stanford Bunny and
the Amethyst datasets. However, what makes this data more challenging is the level of noise in
our input. The captured images of the Gnome have noticeable shot noise, flickering artifacts, and

148

(a) Reference (b) Levin&D)uirand (c)Our Reconstircioi()f

Figure 9-11: Reconstruction of the Amethyst Data Set: Our reconstruction of Amethyst data set

(right), the reference figure (left) and the reconstruction from [106] (middle, courtesy of Levin). We

are using the box-and-X sampling pattern shown in Figure 9-4(a), which is more than the number

of samples used in [106]. However, we are able to reconstruct this highly non-Lambertian view

and it is hard to distinguish our reconstruction from the full captured light field.

registration errors ("camera jitter"). Since these artifacts are not sparse in the frequency domain,
our algorithm does not reproduce them in the output shown in Figure 9-14. For most of these arti-
facts, the result is a kind of denoising, making our output arguably better than the reference images
available for comparison. This is especially clear in the case of camera jitter, where the effect of

denoising can be seen clearly in an epipolar image shown in Figure 9-16. However, some of the

shot noise in our input is reconstructed with greater structure. We have a more general discussion

of noise in Section 9.8.

9.7.6 Extending views

Reversing the windowing effect in the second step of our algorithm makes it possible to reconstruct

views outside the original window of our input. To demonstrate this we extend each of the u and i

dimensions in our Bunny dataset by an additional 4 views, increasing the size of our reconstructed

aperture by 53% (see Figure 9-15). These results are best appreciated in our accompanying video.

9.7.7 Informal comparison with Levin and Durand 120101

Like us, Levin and Durand [106] reconstruct light fields from a ID set of input images. Their

technique is based on a Lambertian prior with unknown depth. We provide an informal compari-

son with their approach, but the different sampling patterns of the two techniques make it difficult

to hold constant the number of input views used by each technique. Levin and Durand's recon-

149

Figure 9-12: Reconsrution of Specularities: One example of a reconstructed view from
Amethyst dataset where we lose some reflection details. The missing specular reflection does
appear in any of our input views, so it cannot be recovered.

SN IA'
p

474.

01

F.

yk

Reference

%%

Our Reconstruction

Figure 9-13: Reconstruction of the Crystal Ball Data Set: We show one (1. v) view from the
reconstruction of the Crystal Ball dataset. We are using the box plus diagonals sampling pattern
(as shown in the blue box in the center). The red dot shows the position of reconstructed view in
the angular domain. Despite the fact that the scene is extremely non-Lambertian and has complex
structures, we are still able to reconstruct most details of the light field.

struction uses fewer images but is restricted to synthesizing views within the convex hull of input
viewpoints. Our sampling patterns use slightly more images, but lets us synthesize views outside

150

the
not

1 fer'iUi

Our

Figure 9-14: Reconstruction of the Gnome Data Set: We show one (u. u) view from our recon-

struction of the Gnome dataset. We use the sample pattern from Figure 9-4(b), as shown by the blue

box in the bottom right. The red marker shows where the view is in the angular domain. Although

the captured dataset is noisy, we are still able to reconstruct it in good detail.

the convex hull of our input. Simall differences in input aside, the comparison in Figure 9-9 and

Figure 9-11 shows that our reconstruction is less blurry and does not have some of the ringing

artifacts that appear in their results.

9.8 Discussion

9.8.1 Viewpoint Denoising

One advantage of reconstruction based on a sparse prior is the potential for denoising. Noisy input

tends to create low power high frequencies that are not part of our scene. These frequencies make

the spectrum less sparse and are usually zeroed out by our algorithm.

Since our reconstruction is based on sparsity in the w, w domain, we remove noise in U. e.

This noise corresponds to 'jitter,' usually caused by registration errors or camera shake. We can see

151

(a) (a, v) = (-2, -2)

Figure 9-15: Extending Views: We extend our reconstruction of the Stanford

ure 9-9) and extend the camera views. The original view is 0 < a < 16 and 0

we show our extension to (-2. -2) and (18, 18).

A
A

Bunny dataset (Fig-
< u < 16, and here

Reference
EPI

Reconstructed
EPI

Figure 9-16: Viewpoint Denoising: Top: We see noise in the a. v dimensions of our reference

data caused by registration errors. This error shows up as camera shake in the reference images.

Bottom: Our algorithm effectively removes this noise in the reconstruction, essentially performing

camera stabilization.

the effect of this denoising by examining a r. y slice of our light field, like the one in Figure 9-16.

These slices are often referred to as epipolar plane images (EPI) in computer vision. To observe

the visual effect of this denoising, the reader should watch our accompanying Gnome video. The

reconstructed camera motion in this video is much smoother than the reference camera motion.

One way to think of this effect is as a kind of video stabilization.

Our ability to denoise in u. i is limited by the number of input slices we have and the sparsity

of the spectrum we are reconstructing. If the noise affects the sparsity of our scene too much, some

of its power might be projected onto existing spikes from our signal, changing their estimated

power. We can see some of this in the Gnome data set, where some of the shot noise in our input

is reconstructed with slight structure along the dominant orientation of our scene.

152

(b) (a. v) - (18S. 18)

9.8.2 Importance of Continuous Fourier Recovery

To better understand how operating in the continuous Fourier domain affects our reconstruction,
we examine the impact of our continuous recovery on the reconstructed Bunny light field. We
choose this light field because our results are almost indistinguishable from the reference data, so
we can reasonably assume that the sparsity estimated by our full algorithm reflects the true sparsity
of the captured scene.

We first compare our sparse continuous recovery in Figure 9-17(c) with the sparse discrete re-
covery used to initialize our gradient descent (shown in Figure 9-17(a)). The error in Figure 9-17(a)
shows how existing sparse recovery theory is limited by the the lack of sparsity in the discrete light
field spectrum. However, this result does not necessarily isolate the effects of working in the dis-
crete domain. To better isolate these limits, we generate a third reconstruction in Figure 9-17(b)
by rounding the coefficients of our final reconstruction Figure 9-17(c) to the nearest discrete fre-
quency positions and removing the sinc tails that result from this rounding. This reconstruction
approximates the discrete spectrum that is closest to our continuous spectrum while exhibiting the
same sparsity.

As we see in Figure 9-17, the effect of discretization predicted by our experiment is a kind of
ghosting. To understand why, recall that the discrete Fourier transform assumes that signals are
periodic in the primal domain, and that given a finite number of frequencies our reconstruction
will be band limited. As a result, the IDFT will attempt to smooth between images at opposite
ends of the primal domain. If we look at Figure 9-18 we can see this effect across the set of
viewpoints in our light field. When viewpoints near the center are averaged (smoothed) with their
neighbors the artifact is less noticeable because their neighbors are very similar. However, when
this smoothing wraps around the edges of our aperture, we average between more dissimilar images
and the ghosting becomes more severe.

9.8.3 Potential Applications

Our reconstruction from ID viewpoint trajectories is directly applicable to capture techniques that
seek to acquire a dense 2D sampling of viewpoints on a grid. One could, for instance, use it to sig-
nificantly reduce the number of cameras needed by a camera array. Alternatively, for applications
where light fields are captured by a single moving camera (such as [23, 37, 66]), the algorithm
could be used to greatly increase the speed of capture. In both of these cases, the sparse continuous
spectrum we recover could also be used as a highly compressed representation of the light field.

The theory of continuous recovery has many potential applications beyond our reconstruction
from ID viewpoint segments. Sparsity in the continuous Fourier domain is a powerful prior that
is more general than Lambertianality, making it an exciting new direction for research. While our
choice of initialization uses viewpoint sampling patterns that consist of discrete lines, one can
imagine different initialization strategies that work with different input. That input could come
from plenoptic or mask-based light field cameras, or even some combination of multiview stereo
and image based rendering algorithms. However, continuous recovery is not necessarily convex,
so proper initialization strategies will be an important and possibly non-trivial part of applying our
continuous recovery approach to different types of data.

153

Initialization Result I *
Figure 9-17: Comparison of Our Final Reconstruction in the Continuous Domain to Two
Alternative Reconstructions in the Discrete Domain: We compare our result (right) with the
output of only our initialization (left), as well as the discrete approximation of our result with sinc
tails removed (middle).

Lr V w r Frr

Figure 9-18: The Ghosting Effect: A demonstration of the ghosting that happens when we simply
remove sine tails in the frequency domain. We removed the sinc tails from the spectrum of the
Stanford Bunny dataset and selected the same inset from each 'a, 'v image (we chose the same inset
as in Figure 9-17). This figure shows how the inset changes across the (a, u) aperture (note that we
subsampled the 17x17 aperture by 2). Ghosting gets worse closer to the edge of the input views.

154

9.9 Conclusion

In this chapter, we have made the important observation that natural signals like light fields are
much sparser in the continuous Fourier domain than in the discrete Fourier domain, and we have
shown how this difference in sparsity is the result of a windowing effect. Based on our observations,
we presented an approach to light field reconstruction that optimizes for sparsity in the continuous
Fourier domain. We then showed how to use this approach to reduce sampling requirements and
improve reconstruction quality by applying it to the task of recovering high quality non-Lambertian
light fields from a small number of ID viewpoint trajectories. We believe that our strategy of
optimizing for sparsity in the discrete spectrum will lead to exciting new research in light field
capture and reconstruction. Furthermore, we hope that our observations on sparsity in the discrete
vs. continuous domain will have an impact on areas of computational photography beyond light
field reconstruction.

155

156

Chapter 10

Fast In-Vivo MRS Acquisition with Artifact

Suppression

10.1 Introduction

Magnetic Resonance Spectroscopy (MRS) enables non-invasive analysis of the biomolecular con-
tent of the brain. It is an advanced MRI technique that allows us to zoom into specific voxels in
the brain and discover the concentration of various metabolites which are used as indicators of
diseases like cancer, strokes, seizures, Alzheimer's disease, autism, etc. These metabolites create
MR signals that appear as frequency peaks in the MRS spectrum. 2D Correlation Spectroscopy
(COSY) is one type of MRS that allows the unambiguous assignment of MR signals in crowded
spectra and as such can be used in vivo to detect and disentangle the spectral overlap of metabo-
lites. Several methods were demonstrated to acquire localized COSY spectra in vivo [10, 171] and
showed great utility in detecting new molecular biomarkers of diseases [9, 46].

Despite its potential, the in vivo use of 2D COSY is not largely spread due to several challenges
and limitations. The two main challenges are long acquisition time which requires the patients to
spend a long time in the MRI machine and the presence of artifacts in the output images. These are
a direct result of the acquisition of the additional frequency dimension fi, which requires sufficient
evolution time t1 that significantly prolongs the acquisition time. Typically, because of time limi-
tation with in vivo acquisitions, the indirect t1 time dimension cannot be sampled long enough and
the corresponding fi spectral dimension suffers from severe truncation artifacts resulting from the
ringing tails of diagonal peaks.' Figure 10-1 shows an example of an in vivo 2D COSY spectrum
where the strong diagonal peaks of NAA, Choline and Creatine have large ringing tails that ob-
scure cross-diagonal peaks of important metabolites. Signal processing methods such as the use of
filtering windows (QSINE) or prediction algorithms (linear prediction) may improve the spectral
appearance but significant artifacts are left and the signal to noise ratio (SNR) may be downgraded.
Hence, there is a need for a method that recovers the information along fi while preserving SNR.

'The t 2 time dimension corresponds to the directly measured dimension and hence can be sampled long enough to
avoid truncation artifacts along the f2 frequency dimension. We refer the reader to [137] for additional background on
MR.

157

2.5 - -

NAA

4- Asp
3

3.5

4 -A

4,5 4 35 3 25 2 15 1

f, (H' ppm)

Figure 10-1: Artifacts in In-Vivo 2D COSY Spectrum: Truncating the signal in time results

ringing tails along the AI dimension which create artifacts. There artifacts are hard to distinguish
from cross diagonal peaks of important metabolites labeled in red.

2D MRS spectra are highly sparse and the problem of optimizing in-vivo 2D MRS lends itself

naturally to the Sparse Fourier Transform. The Sparse Fourier Transform can subsample the 2D
COSY signal along the t1 dimension and hence reduce the acquisition time. However, the arti-
facts caused by the ringing tails shown in Figure 10-1 significantly reduce the sparsity of the 2D
spectrum and hence a straightforward application of the Sparse Fourier Transfonr would result in

a poor reconstruction of the MRS peaks. As we have shown in Section 9.3.1, ringing tails are a
direct result of truncating and discretizing the continuous time signal. Since the frequency peaks

of natural signals like MR are not aligned with the Fourier discretization grid, i.e., peaks lie on

off grid positions, MR signals that are highly sparse in the continuous domain, lose there sparsity

in the discrete domain.

In this chapter, we introduce MRS-SFT, a new MRS processing system that adapts the Sparse
Fourier Transform to the continuous domain in order to reduce the acquisition time while out-
putting clearer images with less clutter and artifacts. It estimates and suppresses the ringing tails
by recovering the sparsity in the original continuous spectrum while using the minimum number
of input samples along the t1 dimension.

We demonstrated the performance of MRS-SFT on 2D COSY for single and multi-voxel ac-

quisitions in brain phantoms (mixture of non-living samples) and healthy human volunteers. We
compared the results obtained by MRS-SFT and other sparse methods such as compressed sens-

ing (CS) to a fully the sampled FFT and a truncated FFT. We show that MRS-SFT reduces the

acquisition time by a factor of three on average. It also eliminates the t truncation artifacts which

improves the SNR by 8 - 14 dB and the resolution of cross-peaks by 25 - 40% resulting in much

clearer and measurable cross diagonal peaks.

158

10.2 MRS-SFT

10.2.1 Algorithm

We will explain our algorithm for general ID signals. In the following subsection, we will explain
how to use this algorithm to reconstruct a 2D COSY spectrum. Let x(t) be a signal of length N
that is k-sparse in the continuous Fourier domain. Then,

1 k 27rji
x(t) = E ai exp (10.1)

"'N i=o 0

where {fjk } are the continuous positions of frequencies and { a} } k are the complex values
corresponding to these frequencies. The same signal is sparse in the discrete Fourier domain only
if all of the f 's happen to be integers, i.e., the large frequency coefficients lie on-the-grid.

However, for most natural signals like MRS, the large frequency coefficients are more likely
to lie off-the-grid. We have shown in Section 9.3.1 that while these off-grid frequencies are sparse
in the continuous Fourier domain, they are not sparse in the discrete Fourier domain. Recall that
truncating the signal in time is equivalent to multiplying it with a rectangular function which re-
sults in a convolution with a sinc function in the frequency domain. The sinc function has ringing
tails which create truncation artifacts like the ones shown in Figure 10-1. We refer the reader to
Section 9.3.1 for a detailed description of this discretization process and the difference in sparsity
between the continuous and discrete Fourier domains.

MRS-SFT adapts the Sparse Fourier Transform to optimize for the sparsity in the continuous
Fourier domain. The MRS-SFT algorithm has two phases:

" On-Grid Recovery: recovers the spectrum assuming frequencies are only located on integer
multiples of the discrete Fourier grid. This step only gives an initial estimate of the spectrum
and alone cannot give a good quality reconstruction

" Off-Grid Recovery: refines the frequencies discovered in the previous stage, allowing them to
take non-integer positions. As such it attempts to approximate the continuous spectrum.

As input, the algorithm takes only subsamples of the signal x which for MRS translates into
a reduction in acquisition time. In both of the above phases, the algorithm outputs a list of the
positions fi and the complex values di of the non-zero frequency coefficients. In the first phase,
the fi's are integers, i.e., the coefficient lie on-the-grid, whereas in the second phase they can be
non-integers, i.e., they lie off-the-grid.

PHASE 1: On-Grid Recovery

Our on-grid recovery can be divided into three steps:

1. Frequency Bucketization: Recall from previous chapters that in this step, the Sparse Fourier
Transform by hashes the frequency coefficients in the spectrum into buckets. Since the spectrum
is sparsely occupied, many buckets will be empty and can be simply discarded without additional
processing. To hash frequency coefficients into buckets, MRS-SFT uses the aliasing filter presented

159

in Section 1.1.2. Recall that, this filter works by subsampling the signal in the time domain which
results in aliasing the frequency domain. Aliasing is a form of hashing in which frequencies equally
spaced by N/p map to the same bucket where p is the subsampling factor.

2. Recovering Frequency Positions: In this step, we aim to find the positions of the non-zero fre-
quency coefficients. For each of the occupied buckets, we want to discover out of all the frequency
coefficients that map into the bucket, which one is the non-zero coefficient i.e., the one that has
energy.

To do this, we bucketize the frequencies with different aliasing filters, so that different fre-
quency coefficients will hash to different buckets each time. In other words, we repeat the sub-
sampling again at a different subsampling rate. For example, if we bucketized using a subsampling
factor pi, we repeat the process using a different factor P2. This randomizes the hashing since a
frequency coefficient f will hash to bucket f mod N/pi in the first bucketization and to different
bucket f mod N/p 2 in the second bucketization. Recall that the best choice of subsampling is to
use co-prime factor. Co-prime aliasing aliasing guarantees that any two frequencies that collide in
one bucketization will not collide in the other bucketization, which best randomizes the voting.

We then use the voting based approach presented in Section 1.1.2 where occupied buckets vote
for the frequencies that map to them. Since the spectrum is sparse, most of the buckets do not have
energy and hence only few frequencies get votes each time. Non-zero frequency coefficients will
always get votes since they create energy in the buckets they map to. The number of bucketizations
needed typically depends on the sparsity of the signal but after performing a few bucketizations,
the non-zeros frequency coefficients will have the largest number of votes. Hence, this gives us a
list of the large frequency coefficients, i.e., {ff}o

3. Recovering the Frequency Values: Now that we have a list of positions of non-zero frequency co-
efficients {fj}/_, we want to find their complex values { aji %o. Given our model in Equation 10.1
of a sparse signal: if we know the positions of non-zero frequencies (i.e., fi), then Equation 10.1
becomes a system of linear equations with unknowns { ai }'.. Given s > k discrete input samples
of x, we can form an overdetermined system allowing us to solve for each aj.

To construct the system of linear equations, we concatenate the input time samples into an s x 1
vector which we denote as xS. We let RK be a k x 1 vector of the frequency coefficients which we
want to recover. Each coefficient in RK corresponds to one position fi of the non-zero frequencies.
Finally, let A be a matrix of s x k entries. Each row corresponds to an input time sample and
each column corresponds to a non-zero frequency coefficient and the value of each entry will be a
complex exponential:

1 (27r t]
A(tf) = exp j (10.2)

N ~N

Thus, our system of linear equations becomes:

XS = ARK (10.3)

160

The standard minimal square error solver is to multiply by the pseudo-inverse of A:

= Atxs (10.4)

where At is the pseudo-inverse of A. Once we calculate R* , each coefficient will correspond to
the position of a non-zero frequency fi. This procedure of recovering frequency coefficients given
their positions does not assume that the frequencies are integers and hence we can use it again in
second phase.

PHASE 2: Off-Grid Recovery

The off-grid recovery process refines the frequencies discovered in the on-grid stage, allowing them
to take non-integer positions.The algorithm formulates this as an optimization problem and uses
nonlinear gradient descent to estimate the continuous positions {f}ik_ that minimize the square
error between observed discrete samples of x (t) and the reconstruction of these samples given by
our current coefficient positions and values. Thus, the error function we wish to minimize can be
written as:

) 2

e Z -E x(t) - 1 kiex 27rtf' (10.5)

where a di and fi are our estimates of ai and fi, and the above summation is taken over all the
observed discrete samples. We can rewrite the error of this optimization problem using our vector
notation from Equation 10.3 as:

e = Ixs - AAtxs (10.6)

To solve the above optimization problem we use a gradient descent algorithm based on finite
differences. Each iteration of the algorithm updates the list of frequency positions {fl}. For each
recovered frequency position in {fi}, we fix all other frequencies and shift the position of this
frequency by a small fractional step 6 < 1. We shift it in the positive and negative directions and
compute the new error e given the new position. We then pick the direction that best minimizes
the error e and change the position of the frequency in that direction. 2 We repeat this for every
frequency position {fi }. Figure 10-2 shows an example of the gradient descent algorithm.

The gradient descent ensures that from iteration i to iteration i + 1, we are always reducing
the residual error, i.e., e (+1) < e (') where e M denotes the error in iteration i. The algorithm keeps
iterating over the frequencies until the error falls below a minimum acceptable error E. Once we
have a final list of positions, we can use the same procedure described in the On-Grid recovery to
recover the values of these frequency coefficients.

2 1t is possible that none of the directions can minimize error in which case we do not change the position of this
frequency.

161

4 4.1

0 1 2 3 4 5 0 1 2 3 4 5

Iteration 1, e = 0.97 Iteration 2, e = 0.49

42 f=4.2
[4.2 A ,II + 4 p I

0 1 2 3 4 5 0 1 2 3 4 5

Iteration 3, e = 0 Iteration 4, converged'

Figure 10-2: Off-Grid Recovery Using Gradient Descent: Consider a continuous spectrum with

a single peak at position f = 4.2. The on-grid recovery stage estimates the initial peak position

to the nearest integer of f = 4. We set the fractional step size 6 of the gradient descent to 0.1.

In iteration 1, we calculate the error e = 0.97. If we shift the peak to the left, the error becomes

e = 0.99 and if we shift it to the right, e = 0.49. Since shifting the peak to the right will reduce

the error the, we shift the peak position to f = 4.1. We do the same thing in iteration 2 and shift

the peak to the right again. In iteration 3, f = 4.2 and neither shifting the peak to the left or right

will reduce the error. At this stage the algorithm converges and the off-grid position of the peak

has been recovered correctly.

10.2.2 Reconstructing the 2D COSY Spectrum

In the previous section, we introduced a general algorithm for 1D signals. In this section, we will

show how we use this algorithm to reconstruct 2D COSY spectra. A 2D COSY signal has two time

dimensions:

0 t2 dimension: The t2 dimension is directly measured, i.e., it is fully acquired and hence we

can compute the full 1 D FFT along this dimension. Furthermore, since we often have sufficient

t2 samples, the truncation artifacts are not as severe as in the ti dimension. We can simply

multiple the t2 samples by the QSINE weighting functions to suppress the tails. Thus, for each

value of t1, we multiply the t2 samples by the QSINE function and take a ID FFT along t2 .3 At

the end of this step, we get a signal in an intermediate domain x'(ti, f2).

3Note that to compute a full Fourier transform of a 2D matrix x, the FFT algorithm computes ID FFTs along the

rows of x followed by ID FFTs of the columns of x.

162

M

MRS-SFT

Remove t

I1

MRS-SFT

he Tails :

Figure 10-3: Iterating Between Recovering Diagonal Peaks and Cross-Diagonal Peaks: MRS-

SFT starts by recovering the large diagonal peaks. It then subtracts these peaks and their ringing

tails from the signal which allows it to recover the smaller cross diagonal peaks. Once both peaks

are recovered, MRS-SFT reconstructs the spectrum by removing the ringing tails resulting from

the off-grid positions of the peaks.

* ti dimension: Since acquiring ti increments can be very time consuming, we only acquire a

subset of the tj samples in order to reduce the acquisition time. We run our MRS-SFT algorithm

only along the ti dimension. Thus, for each value of L, we run the ID MRS-SFT algorithm

over x'(tf .j) to recover the 2D COSY frequency spectrum 5C(f].).

Directly applying the MRS-SFT algorithm for each value of/s, however, does not work due to

the huge amplitude difference between the diagonal and cross-diagonal peaks. The cross-diagonal

peaks might be immersed in the tails of the diagonal peaks, and simply running MRS-SFT will

only recover the diagonal peaks but treat the cross-diagonal peaks as noises. To cope with this, we

need to recover the diagonal peaks first. We start by running the MRS-SFT algorithm but restrict

our recovery to the diagonal peaks. Once we have the Off-Grid positions and values of the diagonal

peaks, we can reconstruct the truncation artifacts and subtract them from our discrete input signal.

After subtracting the diagonal peaks and their tails, the cross diagonal peaks emerge. We can then

run the MRS-SFT algorithm to recover the cross-diagonal peaks. Figure 10-3 demonstrates this

process.

163

The question that remains is: How to construct and suppress the truncation artifacts caused by
the off-grid frequency peaks? Given a list of continuous peaks { (f1, f21), - - - , (fib, f2k)} and their
values { , - , k} we can compute the discrete Fourier spectrum at integer positions (fi, f2):

k

-I, f2) = i x T N,N 2 (A , -f1if2 -A2) (10.7)
i=O

where N and N2 are the total number of increments before subsampling along t and t2 respec-
tively. !N1,N 2 (-,-) is the discretized sinc function which creates the artifacts. It can be written as:

sin(7rfi) sin(irf2) N 1 -I N2 - I
N1,N2(l, f2) = N2 f2j (10.8)

N1 , N2

In our final reconstruction of the output spectrum, we simply suppress the sinc tails by truncating
the sinc function:

1 N1 ,N2 (flI f2 N1 ,N2 (fl, f2) x RECT(fi, f 2) (10.9)

where RECT(fi, f2) is defined to be 1 in the rectangle -1 < fl, f2 < 1. The output of our final
reconstruction without ringing tails can be written as:

k

2(f, (f) =- ix*NN 11li, f2 ~ j2i) (10.10)

i=O

10.3 Methods

10.3.1 Single Voxel Experiments

We% pJrfoed eIJLJpemLets Uj a VV1oi..-UUuy 3T A1 sCiix Cann (TIni Tiu 1 Ieens11WILB, Erlange;1i). VV

used the COSY-LASER sequence (TR = 1.5 s, TE = 30 ms) [10] to acquire 2D COSY spectra on
3 volunteers and a brain phantom. The acquired MRS data was post-processed in MATLAB using
four methods:

" MRS-SFT: The method proposed in this chapter uses 60 ti increments on volunteers and 64 ti
increments on brain phantom.

" FFT: A truncated FFT which uses 60 t1 increments on volunteers and 64 ti increments on brain
phantom.

* Full-FFT: Longer sampled FFT which uses 160 t1 increments on volunteers and 180 ti incre-
ments on brain phantom.

" Compressive Sensing (CS): 4 An iterative thresholding based compressive sensing algorithm
which uses 60 t1 increments on volunteers and 64 ti increments on brain phantom.

4We experimented with several compressive sensing algorithms and we present here the best compressive sensing
results which we obtained.

164

For FFT, Full FFT, and CS, we pre-process the samples by multiplying with a QSINE window and
using linear prediction to improve the cross peaks and reduce artifacts.

10.3.2 Multi Voxel Experiments

Correlation chemical shift imaging was acquired with an adiabatic spiral COSY sequence [11]
which was here improved with MRS-SFT. The experiments were performed on a whole-body 3T
MR scanner (Tim Trio, Siemens, Erlangen). Acquisition parameters included: TR = 1.8 s, TE
= 30 ins, 72 sparse t1 samples out of 252 consecutive samples, 380 points in t2 zero filled to
512, 10 ppm spectral window in both fi and f2 dimensions, 4 averages, a 16 x 16 voxel matrix,
FOV= 200 x 200 mm, and an acquisition time of 17 min and 32 s. The acquired MRS data was
post-process in MATLAB using the MRS-SFT with 72 ti samples and the Full-FFT with 252 t1
samples.

The f1 dimension of 2D COSY is also particularly susceptible to scan instabilities arising from
frequency drifts and patient motion. Post-processing methods have limited ability to recover spec-
tral quality in particular downgraded water suppression due to frequency drift or change in metabo-
lite signal amplitude due to shift of voxel position across a time series. To alleviate these problems,
we incorporated into our 2D COSY acquisition a recently developed real-time motion correction
and shim update sequence module.

10.4 MRS Results

10.4.1 Single Voxel Results

The result for phantom data is shown in Figure 10-4 for the four methods described above (MRS-
SFT, FFT, Full-FFT, and CS). The figure shows the 2D MRS spectrum recovered by each method.
As can be seen, MRS-SFT is able to eliminate the truncation artifacts while maintaining the cross
diagonal peaks. For example, the metabolite Myo-inositol is clearly present only in the MRS-SFT
and Full-FFT results. However, the Full-FFT data requires 180/64 = 2.8 x more time to acquire
all the measurements. The figure also shows that despite using the QSINE window and linear
prediction, the other techniques still suffer from significant truncation artifacts. Note that all four
spectra have the same scaling along the iso-contour lines and hence changing the window setting
to suppress the artifacts would also eliminate the cross diagonal peaks.

In the case of in-vivo data, i.e., experiments ran on human volunteers, the truncation artifacts
are even more severe as shown in Figure 10-5. In this case, the ringing tails are highly prominent
in the FFT, Full-FFT and CS results and hence cause a lot of truncation artifacts which are hard
to distinguish from the actual cross diagonal peaks. MRS-SFT, however, can model and subtract
these ringing tails making the cross diagonal peaks much more apparent. For example, Choline
(Cho) is much clearer in the MRS-SFT result as can be seen in Figure 10-5. In this case, even the
Full-FFT, which requires 160/60 = 2.67x longer measurement time than MRS-SFT, continues to
suffer from artifacts.

165

45 4 35 F 15 I
f? H ctc

(a) MRS-SFT (N = 64)

3 1

Gl

;MYO 1

45 4 3 5 3 5 2
I H ppnm

(c) Full FFT (N1 = 180)

-NAA;

1 0

Figure 10-4: MRS-SFT Recovery Results on Brain Phantom Data: The figure shows that MRS-
SFT can recover all the metabolites similar to a Full FFT while using 180/64=2.8 x less samples.
For the same number of samples, a truncated FFT or CS loose some of the metabolites (e.g. Myo)
and degrade the quality of the peaks. The following metabolites have been labeled for reference:
Choline (Cho), N-Acetylaspartate (NAA), Myo-Inositol (Myo), and Glutamate (Glu).

I
166

2

CL

N41

2-114AA

4,,0

2 NAA 4

.14 14

4.35

4 5 *

4 35 52 2 5

12 - pm

(b) FFT (N1 64)

3 -

3 .

00'

45 4 35 3 25 2 5
2 I H ppm

(d) CS (Ni = 64)

3

35

4

45

CL

N\AA

S 4 05 IN A A5
'2

2H ppm

(a) MRS-SFT (N1 60)

NAA

) F ()

gAA

$ Asp

I~ 0

.4,

(b) FFT (Ni1 60)

4,

0Q

ho

(d) CS (N1 = 60)

Figure 10-5: MRS-SFT Recovery Results on In-Vivo Data: The figure shows that MRS-SFT has

significantly less clutter making it much easier to distinguish artifacts from cross diagonal peaks.

For Full FFT, FFT and CS, it is very hard to distinguish the metabolites from the artifacts and for

FFT and CS, some of the metabolites are lost. The following metabolites have been labeled for

reference: Choline (Cho), N-Acetylaspartate (NAA), Aspartate (Asp), and Glutamine (Glu).

167

E
~2

3

35

2

E

T

4

1 5

2

3

35

4

V, t "

4

1

Table 10.1: Signal to Artifact Ratio (dB) Table 10.2: Line Width of NAA (ppm)

To quantify the above results, we compute the Signal to Artifact Ratio of the cross diagonal
peaks recovered by each of the four methods. The results are shown in Table 10.1. As can be
seen, MRS-SFT has the highest signal to artifact ratio and which is 8 dB higher than Full-FFT for
phantom data and 14 dB higher for in vivo data. MRS-SFT also reduces the average FWHM (Full
Width at Half Maximum) of cross-peaks by 40% for in vivo and 25% for phantom compared to the
Full-FFT. For example, the line width of NAA (N-acetyl aspartate) is reduced from 0.23 ppm to
0.17 ppm in phantom data and from 0.24 ppm to 0.15 ppm in in vivo data as shown in Table 10.2.

10.4.2 Multi Voxel Results

In the case of correlation chemical shift imaging, we demonstrate that by using MRS-SFT com-
bined with real-time motion correction, we can recover multi-voxel MRS spectra which does not
suffer from artifacts and ringing tails. Figures 10-6(a) and (b) show the resulting spectra of a 4 x 4
matrix sampled from the 16 x 16 voxels which were acquired and processed using MRS-SFT and
Full-FFT respectively. For all voxels, MRS-SFT can eliminate the t1 . truncation artifacts while
reducing the measurement time by a factor of 3.5 x (252/72).

The above single voxel and multi-voxel results demonstrate that by using MRS-SFT can:

1) Reduce the measurement time by almost a factor of three.
2) Eliminate the t! truncation artifacts resulting from the ringing tails of the diagonal.
3) Improve the SNR and resolution of cross-peaks.

10.5 Conclusion

In this chapter, we presented MRS-SFT; a system that leverages the Sparse Fourier Transform to
reduce the time the patient spends in an MRI machine while generating clearer images for 2D
COSY MRS experiments. Our results indicate the MRS-SFT can reduce the acquisition time by a
factor of 3 and suppress truncation artifacts. MRS-SFT is also superior to Compressed Sensing in
terms of reducing the fi ringing and enhancing the SNR. Typically, 2D COSY spectra reconstructed
with conventional FFT use windowing functions such as QSINE and linear prediction to improve
cross-peaks and reduce the artifacts. However, QSINE windowing selectively enhances only some
of the cross-peaks and linear prediction reduces the SNR and introduces spiking artifacts. The
Sparse Fourier Transform is less biased in finding the cross-peaks and, hence provides a more
robust method in dealing with the limitations of in vivo MRS.

168

Phantom In Vivo
MRS-SFT 13.78 2.05
Full-FFT 4.29 -11.7

FFT 0.84 -11.6
CS -0.65 -13.3

Phantom In Vivo
MRS-SFT 0.17 0.15
Full-FFT 0.23 0.24

FFT 0.15 0.15
CS 0.21 0.13

$4 41

404

I p

-- 4'8 - 4 -2 15

-151
-7.'- -7- -1

-FFT 1q

(a) N

& 4*'

FF 38
FFT 8. 7

lit

4,

A

FFT . 9

*2

-4

Af T

RS-SFT (N1 72)

~4i

FFT: 8.10

.1.

-4

FFT:1 I

A>A.

FFT .

FFT: 1 8

(b) Full FFT

FFT: 9

FFT 1 9

(NI=252)

It
1

FFT: 1, 1:

I .

Figure 10-6: Multi-Voxel Recovery Results for MRS-SFT vs. Full FFT

169

-Z -.1

4b4

J.
-$ -7.1 - IA

IFFT: 1, 1

, -1: 7

vie

A-

P.7

Ari

4

170

Chapter 11

Fast Multi-Dimensional NMR Acquisition
and Processing

11.1 Introduction

Multi-dimensional NMR (Nuclear Magnetic Resonance) spectroscopy is an invaluable biophysical
tool in chemistry, structural biology, and many other applications. However, from its introduction
in 1970s, the technique is impeded by long measurement times, heavy computations and large
data storage requirements. These problems stem from the huge number of data points needed for
quantifying the frequency domain spectrum with the required resolution.

With the traditional systematic data sampling in the time domain, the duration of an NMR
experiment increases exponentially with spectral dimensionality and polynomially with resolu-
tion. The rapid development in the field of fast spectroscopy with non-uniform sampling reduces
the measurement time by decreasing number of the acquired data points [17, 33, 85, 140]. Non-
uniform sampling (NUS) has enabled the acquisition and analysis of practical high-resolution ex-
periments of dimensionality up to 7D [81, 100, 129]. Success of the NUS techniques is explained
by the notion that the NMR spectrum is sparse in the frequency domain, i.e. only a small fraction of
the spectrum contains signals, while the rest contains only baseline noise. Moreover, typically the
higher the spectrum dimensionality and resolution are, the sparser the frequency domain spectrum
is. While the numerous NUS spectra reconstruction algorithms differ in their underlying assump-
tions, the common theme is that all information about the spectral signals can be obtained from
a relatively small number of measurements, which is linear to the number of signals and nearly
independent on the spectrum dimensionality and resolution.

NMR measurements are performed in the time domain and, in the case of traditional Fourier
spectroscopy, the time signal is converted to the frequency spectrum by the Discrete Fourier Trans-
forms (DFT). For a d-dimensional spectrum with N points for each spectral dimension, we need
to sample Nd experimental points, perform DFT with O(Nd log Nd) elementary mathematical
operations and allocate O(Nd) bytes for spectrum processing, storage, and analysis. For example,
a moderate-resolution 5D spectrum with N=256 for all dimensions requires 4 TB of storage. Even
if such spectrum can be computed, it cannot be easily handled in the downstream analysis. Algo-

171

rithms used for reconstructing the complete spectrum from the NUS data, require at least the same
and often significantly larger computations and storage than the traditional Fourier based approach.
For example, for the Compressed Sensing (CS) [83, 99], storage is O(Nd) and the amount of cal-
culations is polynomial on Nd. Moreover, these algorithms are iterative and thus are impractical,
when data do not fit into computer operative memory. Modem computers meet the computational
and storage requirements for 2D, 3D, and relatively low-resolution 4D spectra. Yet, spectra of
higher dimensionality and/or resolution are still beyond reach, unless the analysis is performed in
low dimensional projections or is reduced to small regions restricted in several spectral dimensions.
In this work, we demonstrate for the first time a new approach allowing reconstruction, storage,
and handling of high dimensionality and resolution spectra.

Reconstructing a spectrum with computational complexity and storage, which are sub-linear
in respect to the number of points in the full spectrum (Nd) may only work by using NUS in
the time domain and by computing a sparse representation of the spectrum, i.e. without produc-
ing the complete spectrum at any stage of the procedure. The latter requirement excludes powerful
non-parametric NUS processing algorithms designed to reconstruct the full spectrum, such as Max-
imum Entropy (ME) [15, 82], Projection Reconstruction (PR) [52], Spectroscopy by Integration
of Frequency and Time Domain Information (SIFT) [53, 120], Compressed Sensing [83, 99], and
Low Rank reconstruction [147]. The parametric methods such as Bayesian [21], maximum like-
lihood [31], and multidimensional decomposition (MDD) [93] approximate the spectrum using
a relatively small number of adjustable parameters, and thus are not limited in spectral dimen-
sionality and resolution. However, due to the intrinsic problems of choosing the right model and
convergence, the parametric algorithms cannot guaranty the detection of all significant signals in a
large spectrum. Another approach Multidimensional Fourier Transform (MFT) [98] for large spec-
tra exploits prior knowledge about the signal positions in some or all of the spectral dimensions.
MFT reconstructs only small regions around known spectral peaks and thus requires less computa-
tions and storage. The Signal Separation Algorithm (SSA) [162], represents a combination of the
parametric and MFT methods and to some extent inherits strong and weak points of both. Notably,
the SSA also avoids dealing with the full spectrum matrices in time and frequency domains and
can deal with large spectra. The method was demonstrated for high-resolution 4D spectra with the
corresponding full sizes of tens of gigabytes.

The Sparse Fourier Transform is the first non-parametric algorithm capable of producing a high
quality sparse representation for high resolution and dimensionality spectra. The Sparse Fourier
Transform offers fast processing and requires manageable data storage, which are sub-linear to the
total number of points in the frequency spectrum. It also allows reconstruction of complete high
quality ND spectra of any size and dimensionality. It is most useful for high-resolution spectra of
four and more dimensions, where methods like CS require too much computations and storage.

In this chapter, we will describe the multi-dimensional version of the Sparse Fourier Transform
algorithm which we use for NMR spectra. We will also demonstrate its effectiveness as recovering
NMR spectra from only 6.4% of the input samples through experiments on a 4D BEST-HNCOCA
spectrum of ubiquitin.

172

Signal Subsampling Freq. Bucketization Signal Subsampling Freq. Bucketization

(a) Subsampling by 3 (b) Subsampling by 4

Figure 11-1: 2D Bucketization Using Co-prime Aliasing on a 12 x 12 signal. (a) Subsampling

by a factor of 3 folds (aliases) the spectrum by 3. Frequencies with the same color sum up together

in the same bucket. (b) Subsampling by a factor of 4, which is co-prime to 3 ensures that the

frequencies will be bucketized differently avoiding collisions.

11.2 Multi-Dimensional Sparse Fourier Transform

In this section, we adapt the Sparse Fourier Transform algorithms for multi-dimensional NMR

spectra. We will describe the Sparse Fourier Transform algorithm for 2D signals of size N x N.

However, the algorithm can be easily extended to any dimension. We will use X to denote the

2D time signal and X to denote its 2D discrete Fourier transform (DFT). We will use (J> Jh) to

denote a frequency position and X(f. /) to denote the spectral value at this frequency position.

For simplicity, we will refer to frequencies that have no signal energy, i.e.just noise, as the zero

frequencies and the frequencies that have signal energy as the non-zero frequencies.

Recall the two key components of the Sparse Fourier Transform operates : bucketization and

estimation. The bucketization step divides the frequency spectrum into buckets where the value

of each bucket represents the sum of the values of frequencies that map to that bucket. Since the

spectrum is sparse, many buckets will be empty and can be discarded. The algorithm then focuses

on the non-empty buckets and computes the frequencies with large values in those buckets in the

estimation step. Below we describe in details the bucketization and estimation techniques we use

for NMR. Some of the concepts below have been introduced in previous chapters. However, here

we formalize them for multi-dimensional signals and put them in the context of NMR experimen-

tation.

11.2.1 Multi-Dimensional Frequency Bucketization

Bucketization Using Co-Prime Aliasing

Bucketization through co-prime aliasing previously appeared in Chapters 1 and 7. Here, we for-

malize it for multi-dimensional signals. Let B be a sub-sampled version of X, i.e., B(t1 . ti)

X(p . tj, p - t) where p is the sub-sampling factor. Then, B, the FFT of B, is an aliased version of

X, i.e.:

B(b1. 1)2) = X(b 1 + N/p, 1)2 j N/p) (11.1)
/,=O j-0

173

C:C

MO) E

LLLL

(a) Slope = cx (b) Slope =0 (c) Slope = 1 (d) Slope = 1/2 (e) Slope =3 (f) Slope =4/5

Figure 11-2: Bucketization Using Discrete Line Projections. The top shows the disciete line,
which was sampled and the bottom shows how the frequencies are projected. Frequencies with the
same color will sum up together in the same bucket. This is shown for different slope (a)-(f) Since
the lines are discrete, they wrap around and can result in pseudo random sampling and projection

patterns as can be seen in (f).

Thus, frequencies equally spaced by an interval N/p along each dimension map to the same
bucket, i.e., frequency (fi. ti) maps to bucket number (b1 b2) such that:

(. 1. 2) (fi mod N/p. . mod N/p) (11.2)

Further, recall that the value of each bucket is the sum of the values of only the frequencies that

map to the bucket as carl be seen from Equation 11 .1. Now that we mapped the frequencies into
buckets, we can leverage the fact that the spectrum of interest is sparse and hence most buckets
have noise and no signal. We compare the energy (i.e., the magnitude squared) of a bucket with

the noise level and considers all buckets whose energy is below a threshold to be empty. We then
focus on the occupied buckets and ignore empty buckets.

Recall that most of the occupied buckets will have a single non-zero frequency. However, some
buckets will have more than one non-zero frequency i.e., collisions. Recall, that we can resolve
collisions by repeating the bucketization with a different sampling factor p' that is co-prime with
p. Co-prime aliasing guarantees that any two frequencies that collide in the first bucketization
will not collide in the second bucketization. Figure 11-1 shows an example of bucketization using
co-prime aliasing of a 2D spectrum.

Bucketization Using Discrete Line Projections

Bucketization using discrete line projections previously appeared in Chapters 1 and 9. We repeat
the formalization of this form of bucketization here and put in the context of multi-dimensional
NMR spectra. Recall that, performing a D DFT of a discrete line, yields the projection of the
spectrum onto a corresponding line in the Fourier domain. Specifically, let y be the ID discrete
line corresponding to a 2D signal X, parameterized by t e [ma-n-u- . N - o:

174

y(t) = X(ait mod N,a2t mod N)

where a1 ,a2 are integers whose greatest common divisor is invertible modulo N such that
0 < a1 , a2 < N. a1/a2 represents the slope of the line. Then y, the DFT of y, is a projection
of X onto this line. That is each point in k is a summation of the N frequencies that lie on a
discrete line orthogonal to y as shown in Figure 11-2. Specifically, the frequencies (fif2) that
satisfy a1fi + a2f 2 = f mod N will project together into the same bucket f and sum up to y(f).
Figure 11-2 shows some examples of discrete lines and their projections. Note that discrete lines
from Equation 11.3 wrap around as can be seen in Figures 1 1-2(d),(e),(f) and hence bucketization
can result in a pseudo random non-uniform sampling as shown in Figure 11-2(f). Also note that
this can be extended to any number of dimensions. In that case, we can take projections of discrete
lines, planes or hyper-planes.

The above procedure is based on the Fourier projection-slice theorem [20] and thus bears re-
semblance to the reduced dimensionality techniques and radial sampling [19, 33, 80, 164]. The
important difference, however, is that the sampling defined by Equation 11.3 is performed on the
Nyquist time domain grid of the full multidimensional experiment, while the traditional radial sam-
pling is off-grid. As it is described in the next section, having all sampled point on the grid allows
direct frequency estimation without resorting to the often problematic inverse Radon transform
used in the traditional projection reconstruction [101].

Further, discrete projections can benefit from the complex virtual echo representation [122],
which improves the sparsity. Specifically, for this representation, once we sample a discrete line
passing through the origin (0, 0), we automatically obtain the samples of another discrete line
which is symmetric to the first line with respect to one of the axes i.e. if we sample a line with
slope a1/a 2 , we directly get the line with slope -a1/a 2. For higher dimensions the gain is larger.
If we sample a discrete line in a d-dimensional signal, we automatically get the samples of 2d - 1
other discrete lines. For example, in 3D for a discrete line with slope (ai, a 2, a3), we get the
samples of three other discrete lines which are (-ai, a2 , a3), (ai, -a 2 , a3), (ai, a 2 , - 3). Note
that (-ai, -a 2, a3) and (ai, a2 , -a 3) define the same projections and thus only one of these is
needed.

Choosing the Bucketization and Number of Buckets in NMR

The choice of bucketization and number of buckets depends on the sparsity. If the signal has k non-
zero frequency peaks, then the number of buckets in each bucketization should be at least 0(k) or
larger. The discrete projections and aliasing approaches give us a lot of flexibility in choosing the
number of buckets. For example, in a 4D signal, if k is very large we can project on 2D discrete
planes to get N 2 buckets or 3D discrete hyper-planes to get N3 buckets. If k is small, we can project
on ID discrete lines to get N buckets. We can also combine discrete projections with aliasing to
accommodate almost any value of k. For example, we can project on sub-sampled lines as shown
in Figures 11-3(a),(b) to get N/2 or N/3 buckets. We can also project on sub-sampled plane as
shown in Figure 11-3(c) to get 2N buckets.

175

(11.3)

rD L -- - -

bD E --

U4

------ - . .

LiL

(a) Projection on line (b) Projection on line (c) Projection on 2 lines
sub-sampled by 2. sub-sampled by 3

Figure 11-3: Combining Discrete Projections with Aliasing. (a, b) Projection on sub-sampled
discrete line gives number of buckets less than N. (c) Projection on two lines (i.e. sub-sampled
plane) gives number of buckets larger than N. Frequencies with the same color sum up together in
the same bucket.

11.2.2 Multi-Dimensional Frequency Estimation

Here we describe the frequency estimation step we use in the context of NMR. Recall that in this
step, for each of the occupied buckets we want to identify which frequencies created the energy in
these buckets, and what are the values of these frequencies.

To identify the frequencies, we will use the voting based approach which we previously in-
troduced in Chapters 1, 3 and 9. In this approach, occupied buckets vote for the frequencies that
map to them. Since the spectrum is sparse, most of the buckets are empty and hence only few
frequencies get votes each time. Because by definition the non-zero frequencies will end up in
occupied buckets, they will get a vote every time we perform a new bucketization. In practice, a
non-zero frequency may miss the votes in some of the bucketizations. This may happen when the
corresponding spectral peak is very weak and/or is cancelled by superposition with a peak of the
opposite sign. Such negative peaks may be present in the spectrum, for example, in case of the peak
aliasing when the acquisition is started from half-dwell time. Nevertheless, after performing a few
random bucketizations by using co-prime aliasing or discrete lines with different slopes, the non-
zero frequencies will have the largest number of votes, which allows the algorithm to identify these
frequencies. An illustrative example of this voting based estimation can be found in Section 9.5.2.

Now that we have a list of non-zero frequencies (f 2), we want to estimate the values X(ti, 1)
of these frequencies. We may use a simple approach analogous to those used in the method of
projection reconstruction [101]. It would estimate the value of each non-zero frequency as the
median value of the different buckets to which this frequency was mapped across the different
bucketizations. However, this approach may yield a poor reconstruction in the presence of noise

176

and significant signal overlap. Instead, we can compute better estimates of the values of the non-
zero frequencies by harnessing the fact that all these frequencies are defined at the same Nyquist
grid. The values of the occupied buckets can be viewed as linear combinations of the values of the
non-zero frequencies. Hence, we can construct a linear system of equations:

Ax = b (11.4)

where the unknown vector x corresponds to the values of the non-zero frequencies and the
known vector b corresponds to the values of the buckets. The matrix A is a sparse binary matrix
that specifies which frequency values contribute to which buckets. In general, this system is over-
determined since the number of occupied buckets can be as large as the number of non-zero fre-
quencies times the number of bucketizations. Hence, the solution that minimizes the mean square
error of the frequency values is:

x* = Atb (11.5)

where At is the is the pseudo inverse of A. This approach of computing the values of non-zero
frequencies is more robust to noise and can correct for errors by estimating the falsely presumed
non-zero frequencies to near zero values. This comes at the cost of the additional computational
complexity associated with computing the pseudo inverse. However, since the number of non-zero
frequencies is small, the size of the matrix A is still small.

11.3 Materials and Methods

The 4D fully sampled BEST-HNCOCA [105] spectrum of 1.7 mM human ubiquitin sample (H20/D20
9:1, pH 4.6) was acquired at 25 'C on 800 MHz Bruker AVANCE III HD spectrometer equipped
with 5 mm CP-TCI probe with the Nyquist grid of 16 x 16 x 16 complex time points (acquisition
times 12 ms, 10 ms and 4.4 ms) for the 15N, "CO and "Ca spectral dimensions, respectively. The
amide region of the full reference 4D spectrum (9.7 -7.0 1H ppm, 174 points) was processed using
NMRPipe software [38]. For the Sparse Fourier Transform processing, only the directly detected
dimension was processed in NMRPipe followed by extraction of the same amide region.

The hyper-complex time domain data were converted to the complex virtual echo (VE) rep-
resentation [122] with dimensions 174 x 32 x 32 x 32. Unlike the original hyper-complex data
representation, the VE is directly amenable for the multi-dimensional Sparse Fourier Transform
processing and improves the result of the reconstruction from the NUS data. However, the VE re-
lies on the prior knowledge of the phase and requires the linear phase correction in the indirectly
detect dimensions of the ND spectrum to be multiple of 7r (i.e. 0, 7r, 27, - .).

Two independent sampling tables were generated using Discrete Line Projections given by
Equation 11.3. Each of the tables contained 6 orthogonal projections, i.e. (1, 0, 0), (0 1 0), (1
1 0), (1 0 1), (0 1 1), (1 1 1), and 16 projections obtained by random combinations of prime
numbers less than 32 (i.e. 0 1 2 3 5 7 11 13 17 23 29 31). As described in the theory, these 6 +
16 unique line projections were augmented by 7 + 48 symmetric projections, respectively, which
resulted in total 77 line projections in the Sparse Fourier Transform calculations. In total, each

177

E 6

2

0

6

4

2

a

C

b

d

0 10 20 30 0 10 20 point

Figure 11-4: Discrete Line Projections Obtained on 4D BEST-HNCOCA Spectrum of Ubiqui-
tin: at IH frequency of 8.05 ppm for with prime numbers for line slopes [(11. ()'). ()] : (a) [1,0,31],
(b) [17,1,23], (c) [31,7,3], (d) [1 1,1,29]. Horizontal dashed lines in each panel indicate the Sparse
Fourier Transforn adaptive threshold used for frequency identification.

NUS data set included 2096 (6.4%) out of total 32K complex time domain points in the indirectly
detected dimensions. Figure 11-4 shows a few examples of the obtained discrete line projections.
The number of used samples or discrete lines depends on the sparsity of the 3D spectra. Since, for
all 174 directly detected points, the same indirectly detected points are used, the minimum number
of samples needed is bounded by the 3D sub-spectrum with the lowest sparsity, i.e. the largest part
occupied by signals.

Although, the same discrete lines are used in all 3D sub-spectra, the cut-off threshold for select-
ing frequencies varies for different directly detected points. The Sparse Fourier Transforn adap-
tively sets the cut-off threshold by ensuring that the system of linear equations in Equation 11.4
is well determined. This allows lowering the cut-off and thus improving sensitivity for regions
with small number of signals. Finally, the Sparse Fourier Transforn calculations were performed
in MATLAB with the resulting spectrum exported to NMRPipe fornat for comparison with the
reference spectrum.

11.4 Results

We demonstrate the Sparse Fourier Transform ability to reconstruct 4D HNCOCA spectrum using
a NUS data set extracted from the complete experiment, which is acquired with 512 x 16 x 16 x 16
complex time points for the 'H, 15N, 13CO and "Co spectral dimensions, respectively. After con-
ventional Fourier processing of the directly detected 'H dimension and extraction of the amide
region 9.7 - 7.0 1 H ppm (174 points), the Discrete Line Projections which were used for bucketiza-
tion selected 262 (6.4%) hyper complex time domain points in the indirectly detected dimensions.

178

In a real experiment, of course, only these selected data points need to be acquired, thus reduc-
ing the measurement time to 6.4% of the full experiment. The selected hyper-complex data points
were converted to the complex virtual echo representation [53, 122], which contained 174 x 2096
points out of the full complex array with dimensions 174 x 32 x 32 x 32. Then, in the frequency
domain, the Sparse Fourier Transform voting algorithm identified 10588 non-zero points, which
correspond to approximately 100 peaks with 100 data points per peak in the 4D spectrum. In the
resulting spectrum, only these non-zero intensities were stored, which constitute to less than 0.2 %
of the full reference spectrum.

The running time of the Sparse Fourier Transform is dominated by the time to compute the
projections and perform the pseudo inverse. For the current experiment, the time to compute all
projections in MATLAB is 0.25 ms and the time to perform the pseudoinverse is around 150 ms.
CS based algorithms like IST would require between 10-100 iteration while performing a full FFT
on 3D spectra and hence take between 30-300 ms. The computational advantage of the Sparse
Fourier Transform is expected to increase for higher resolution and dimensions. However, a more
thorough analysis of runtime would require implementing the Sparse Fourier Transform algorithm
in C/ C++ and is thus is left for future work.

A few points are worth noting. First, the pseudoinverse matrix is computed separately for each
point in the directly detected dimension. Thus, the size of this matrix depends on the number of
peaks in each of the 3D spectra of indirectly detected dimensions as opposed to the number of peaks
in the entire 4D spectrum. The pseudoinverse of the matrix used in our work (ca 2000 x 250), takes
0.15 sec. Hence, calculating the pseudoinverse fits well in to a desktop computer memory. Even
for a more demanding case of quadruple matrix size required for a large system or NOESY type
spectrum, the calculation will take less than 40 seconds per point in the directly detected spectral
dimension. Second, the Sparse Fourier Transform can naturally benefit from prior knowledge about
the dark regions in the spectrum in a similar manner to the SIFT method. For example, we can
compute the pseudoinverse only for the peaks, which we want to estimate. We can also avoid
collecting votes for frequencies we know do not contain energy.

Figure 11-5 illustrates the Sparse Fourier Transform reconstructed spectrum using two differ-
ent approaches for the evaluation of the frequency values. Comparison of panels (a),(b) and (c),(d)
in Figure 11-5 shows that the spectrum obtained using the matrix inversion from Equation 11.5 is
very similar to the full reference spectrum. This visual impression is corroborated by the correla-
tion in Figure 11-5(e) of the cross-peak intensities between the full reference and Sparse Fourier
Transform reconstructed spectrum. It can be seen that most of the peaks found in the reference
spectrum (red circles) are faithfully reproduced in the Sparse Fourier Transform reconstruction.

Results of spectral reconstructions from NUS may vary for different sampling schedules [12].
In order to check this, we calculated the Sparse Fourier Transform spectrum with an alternative
set of randomly selected projections. The two independent Sparse Fourier Transform spectral re-
constructions had comparable quality. Pairwise correlations between the peak intensities in the
reference spectrum and in the two independent Sparse Fourier Transform reconstructions were
very similar as can be seen in Figure 11-6. 98 peaks were detected in the reference spectrum using
the peak-picker program from NMRPipe software [38] with the noise level of 0.01 (in the scale
used in Figure 1 1-5(e),(f)) and peak detection threshold 0.05. Thanks to the high spectral sensitiv-

179

9.5 9.0 8.5 8.0 7.5 9.5 9.0 8.5 8.0 1H, ppm
a b ai i

0 1 2 3 4 5

c

3

2

0
I I I I I I I 1

6 0 1 2 3 4 intensity, a.u.

Figure 11-5: NMR Reconstruction Results: 4D BEST-HNCOCA spectrum of ubiquitin. Orthog-
onal IH/15N (a, b) and (c, d) '3 CO/1 3 Ca projections of fully sampled and FFT processed (a, c) and
6.4% NUS processed with the Sparse Fourier Transform (b, d). (e, f) Correlation of peak intensities
measured in the full reference spectrum (abscissa) and the Sparse Fourier Transform reconstruc-
tion (ordinate) using the matrix inversion (e) and median estimation (f). Dark red circles and blue
crosses show intensities measured at the positions of peaks picked in the reference and Sparse
Fourier Transform spectra, respectively.

I
180

~ '1' {

C d

-, N-

178 176 174 13 C0, PPM178 176 174 172

e

++

f

+
4.

+ J. 4.
I*+

+

'.

I

- - #'Mr'ft .

ba z

115

120

125
45

50

55

cJ,

3

a b ,/

ft- /
SI I

1 2I
FP e4C

0epciey (b C3rlto 4f peak3 intensities mesrdi w preF irTa.on u e. n

stgreti -6s c relatdiong diffPeakentnstiesrandol seeD e prT-NOjCtioSetu fUiut

i(yf) the .7 iMntbqitiin saremeuresga yiag in the fl reference spectrum (asis)adteSared

F:5,uie Tsterangeor rcntyia ond uin the maipie resnverexpermets fortie assinen

masrd a tce the dystinami ofpage icke 4D teYfrneadSaseFuirTa r spectra

11.5 Discussion

Practical sensitivity in a spectrum can be defined as a level of reliable signal detection, i.e. separa-
tion of true signals fromn noise and spectral artefacts. The weakest detected peak in the reference

spectrum has intensity 0. 12. Out of total 98, five weakest peaks with intensity up to 0.25 were lost

in the Sparse Fourier Transfonin reconstruction. No peaks above this level were missing. The ob-

served decrease of the sensitivity seems reasonable considering that duration of the Sparse Fourier

Transfonrn experiment is only 6.4% of the reference and thus up to four times drop of sensitivity is
expected for the Sparse Fourier Transform reconstruction.

In the Sparse Fourier Transfonrn voting algorithm, the frequency detection is limited by the
sensitivity in the individual projections, whose measurement time was 1/77 of the total Sparse
Fourier Transform experiment time. On the other hand, combined analysis of many projections

provides efficient cross-validation of the selected frequencies and allows lowering of the detection

threshold in the individual projections as can be seen in Figure 11-6. Similar to the geometric

181

analysis of projections (GAPRO) algorithm in APSY [80], the Sparse Fourier Transform voting
procedure, recovers large part of the sensitivity that is lost due to short measurement time of the
projections. It should be noted also that in Sparse Fourier Transform, the purpose of the frequency
identification voting algorithm is not to find peaks but to select frequencies, which are worth for the
evaluation. The detection limit corresponds to a trade-off between the number of points selected
for the evaluation and the requirements for low computational complexity and data storage. Thus,
lowering of the detection threshold does not lead to many additional false peaks but only increases
the computational complexity and storage. Whatever threshold level is used, the weakest peaks are
inevitably lost at the frequency identification step of the Sparse Fourier Transform algorithm and
consequently have zero intensities in the Sparse Fourier Transform reconstruction. Thus, the Sparse
Fourier Transform, as well as many other NUS processing methods, should be used with caution
for spectra with high dynamic range and when detection of the peaks close to the signal-to-nose
limit is important, e.g. for NOESY's.

The correlation for the peaks picked in the Sparse Fourier Transform spectrum is shown in Fig-
ure 11-5(e), (f) with blue crosses. The peaks were detected by NMRPipe peak-picker with the same
noise and detection threshold parameters as for the reference spectrum. This plot is intended for
revealing peaks in the Sparse Fourier Transform reconstruction that are not present in the reference
spectrum, i.e. false positives. As it is seen in Figure 1 1-5(e),(f), while the median algorithm for the
frequency evaluation resulted in many false peaks, no false peaks were detected when the Sparse
Fourier Transform reconstruction was obtained using the matrix inversion method. As expected,
the median method also provided less accurate peak intensities. Notably, both methods evaluate
intensity of the same set of frequencies, which are defined at the common frequency identification
step of the Sparse Fourier Transform algorithms. Thus, the matrix inversion method effectively
suppresses the false positive peaks.

Apart from the signals, which were identified by the peak-picker as peaks, the Sparse Fourier
Transform spectrum obtained by the matrix inversion method contained a number of signals with
intensities lower than the peak detection cut-off. In addition, there were several relatively low
intensity (< 0.3) signals, which didn't pass the peak quality checks as can be seen in the example in
Figure 11-7. In most cases such signals were represented by only one point in two or more spectral
dimensions. The reduced dimensionality data collection used by the Sparse Fourier Transform
may be prone to false peak artefacts that are not, in general, the result of a method used to compute
spectra, but are intrinsic for this type of data sampling [127], especially in the case of signals
with high dynamic range. Thus, it is unlikely that the Sparse Fourier Transform will be able to
produce reconstructions for small and medium size spectra that are better than the modern NUS-
based techniques, such as CS. On the other hand, the computational and storage efficiency of
the Sparse Fourier Transform are well suited for the large spectra, i.e. 4Ds and above, where the
full spectral reconstructions and computationally demanding algorithms often fail while methods
based on the radial sampling (e.g. APSY) are efficiently used. For example we envisage that Sparse
Fourier Transform will be instrumental in high-dimensional spectra of the Intrinsically Disordered
Proteins that often exhibit long transverse relaxation times and heavy peak overlap [129].

Typically, the number of cross-peaks does not increase with spectrum dimensionality and reso-
lution. Consequently, the number of non-zero frequencies, which is related to the number of cross-

182

-110 eference (full)
-112 -112

-114 -114

15N 15N
HN -ppm ppm

-118 -118

-120 -120

-122 -122

-124 -124

I I I I I f

60 58 56 54 52 50 48 46 60 58 56 54 52 50 48 46

13C(ppm 13C" ppm

Figure 11-7: Co-N Plane from the 4D BEST-HNCOCA Experiment: (a) the Sparse Fourier

Transform reconstruction, (b) the reference spectrum. The planes are plotted at the same contour

level. The first contour is drawn at the level of 0.01 at the scale of Figure 1l-5(e),(f). In (a), two

colored peaks exemplify true (left) and false (right) signals. In (a), the peaks appearance in the pre-

ceding and subsequent planes in the directly detected HN dimension is indicated by gray contours.

The dashed gray circles indicate absence of the peaks in the adjacent planes. The false peak, which

has relatively low intensity (0.2), was not picked by the peak-picker, because it has the distorted

line shape and is represented only by a single point in the directly detected dimension. The true

peak has the maximum in the second subsequent plane and was picked there in both the reference

and Sparse Fourier Transforn spectra.

peaks, only moderately increases proportionally to dimensionality and resolution of the spectrum.

This makes it possible for the Sparse Fourier Transform to handle very large spectra.

Another good feature of the technique is that the data sampling using the discrete line projec-

tions and voting algorithm used by the Sparse Fourier Transforn for the identification of non-zero

frequencies are fully compatible with the optimization by incremental data collection and analy-

sis [44, 94]. For example we can envisage an approach where an experiment is continued until the

list of identified frequencies stabilizes and reaches a plateau. Thus, the number of projections can

be adjusted for every experiment.

11.6 Conclusion

From the NMR perspective, the Sparse Fourier Transform for the first time combines the best

features of so far distinctly different approaches known as reduced dimensionality and compressed

sensing. The fonner is robust and computationally very efficient, the later provides highest quality

spectral reconstructions. In this chapter, we presented the NMR tailored version of the Sparse

Fourier Transforn algorithm and demonstrated its performance for 4D BEST-HNCOCA spectrum

of ubiquitin.

183

(a) SFFT (NUS 6%) (b) F

184

Chapter 12

Conclusion

The widespread use of the Fourier transform coupled with the emergence of big data applications
has generated a pressing need for new algorithms that compute the Fourier transform in sublinear
time, faster than the FFT algorithm. This thesis addresses this need by developing the Sparse
Fourier Transform algorithms and building practical systems that use these algorithms to solve key
problems in the areas of wireless networks, mobile systems, computer graphics, medical imaging,
biochemistry and digital circuits.

The Sparse Fourier Transform algorithms are a family of sublinear time algorithms that lever-
age the sparsity of the signals in the frequency domain to compute the Fourier transform faster
than the FFT. The thesis presents state-of-the-art algorithms with the lowest runtime complexity
known to date. Specifically, these algorithms run in O(k log n) time for exactly sparse signals and
0(k log n log (n/k)) time for approximately sparse signals. The algorithms are faster than FFT,
which has a runtime of 0(n log n), for any sparsity k = o(n). The thesis also presents algorithms
with the optimal sampling complexity for average case inputs. These algorithms use the minimum
number of input samples, i.e., O(k) samples for exactly sparse signals and O(k log n) samples for
approximately sparse signals, and hence reduce acquisition cost.

The thesis also develops software and hardware systems that leverage the Sparse Fourier Trans-
form to address challenges in practical applications. Specifically, in the area of wireless networks,
the thesis shows how to use commodity hardware to build a wireless receiver that captures GHz-
wide signals that are 6 x larger than its digital sampling rate. The thesis also show how to design a
GPS receiver that consumes 2 x lower power on mobile systems. In the area of computer graphics,
the thesis demonstrates that reconstructing light field images using the Sparse Fourier Transform
reduces sampling requirements and improves image reconstruction quality. The thesis also shows
how the Sparse Fourier Transform can be used to generate clearer MRS images while reducing the
time the patient spends in an MRI machine. In the area of biochemistry, the thesis demonstrates
that the Sparse Fourier Transform can reduce an NMR experiment time by 16 x. Finally, the thesis
presents a Sparse Fourier Transform chip that delivers the largest Fourier transform chip to date
for sparse data while consuming 40 x less power than traditional FFT chips.

This thesis lays the foundational grounds of the Sparse Fourier Transform. It develops a theo-
retical and practical framework which researchers can use and build on to improve the performance
of their specific applications.

185

12.1 Future Directions

Looking forward, the Sparse Fourier Transform can help address further challenges in building
practical systems that benefit many more applications, beyond what has been demonstrated in this
thesis. Below we highlight some of the future applications of the Sparse Fourier Transform.

* Discovering the Brain's Connectivity: Understanding the structure and function of the connec-
tions between neurons in the brain is a major ongoing research project. High dimensional MRI
tests like 6D diffusion MRI enable discovering the communication channels between different
parts of the brain. However, going to higher dimensions requires collecting more data, which
translates into the patient spending much longer time in the MRI machine. Similar to MRS,
diffusion MRI data is sparse in the frequency domain. Hence, the Sparse Fourier Transform
can help enable high dimensional MRI tests using very few sub-samples of the data to reduce
the time the patient spends in the machine.

" Optical Coherence Tomography (OCT): OCT is an established medical imaging technique that
uses optical scattering in biological tissues to provide diagnostic images of the eye, the retina,
the coronary arteries, the face, and the finger tips. OCT generates a lot of data which makes it
difficult to provide the images to doctors in realtime. However, OCT images are generated in
the frequency domain which is typically sparse and hence can benefit from the Sparse Fourier
Transform to quickly process the data and generate the medical images in realtime.

" DNA Sequencing: The post processing of DNA sequencing data is typically very computational
intensive and there are many attempts in computational biology to create faster processing
tools. Applications like antibody sequence alignment require finding the right genes that match
the DNA sequence and discovering where each gene starts in the sequence. This problem is
very similar to the GPS code alignment problem from Chapter 8 and hence it can benefit from
the Sparse Fourier Transform to speed up the sequence alignment problem.

" Radio Astronomy: The Square Kilometer Array (SKA) is a radio telescope in development
in Australia and South Africa. It spreads over an area of one square kilometer providing the
highest resolution images ever captured in astronomy. To generate images of the sky, SKA
performs a Fourier transform over the sampled data. However, the amount of incoming data
will be larger than terabytes per second which is hard to process with today's computational
power. The output images are sparse since at any point in time there are few events occurring in
the universe. Thus, the Sparse Fourier Transform can help generate these images much faster
than FFT which significantly reduces the required computational load.

" Wireless Localization: Antenna arrays have become the key component in localizing RF de-
vices in a variety of applications such as indoor navigation and location-based marketing. In
these systems, a Fourier transform is computed across the samples from the antennas in or-
der to identify the spatial direction along which a wireless signal arrives. Large antenna arrays
provide high resolution in measuring the angle of arrival but are very costly since they require
a large number of synchronized RF-receivers. The direction of arrival of wireless signals is

186

typically sparse and hence we can use the Sparse Fourier Transform to subsample the antennas
and reduce the number of receivers needed compute the direction of arrival.

e Radar Systems: Radar chirps are signals in which the frequency sweeps over the bandwidth
of operation during a given time period. Detecting and acquiring chirps transmitted by an un-
known source is a challenging problem in radar. Since the parameters of the chirp are unknown,
it is hard to capture the signal. For example, if we do not know the frequency which the chirp
is sweeping, the chirp can be anywhere in a multi-GHz spectrum but only sweeping over few
MHz of bandwidth. Moreover, if we do not know the sweeping function of chirp (e.g. the slope
of linear sweep), we cannot pick the right time window over which we should perform the
Fourier transform. Chirps, however, are extremely sparse in frequency domain. Exploiting this
sparsity would allow us to design radar acquisition systems with lower computational overhead
and the high accuracy.

In addition to the above applications, the Sparse Fourier Transform can be leveraged to speed
up processes like feature extraction in speech recognition, optical proximity correction (OPC) in
computational lithography, seismic data analysis in oil and gas exploration, analysis of boolean
functions, proximity queries in databases, anomaly detection in data centers, as well as many more
applications.

187

188

Appendix A

Proofs

A.1 Proof of Lemma 3.2.1

Lemma 3.2.1 Let S be the support of the largest k coefficients of &, and h^s contain the rest. Then
for any c < 1,

Pr |- 2
O-,T,b

Proof By the definitions in Section 2.2,

Consider the case that X^ is zero everywhere but at i, so supp(Po,7 ,bX) = {o-(i -

convolution of G and PT ,bx, and G is symmetric, so

b)}. Then - is the

Yo-(i-b)-o,,b(i) (i-b)-o b(i) -0 , b,() P oyb X (i-b)

GOa, b(i) XiW

which shows that s = i in this case. But -ij' - i is linear in -, so in general we can assume = 0
and bound iIjl. Since i4fl = IZh, b(j)/ Go,) < IZh b(i)l7(- 6 =) Y(i-b)-O,b(i)/(1 -- 6), it is

sufficient to bound I _(i -b)- o,(i)I.

189

E B| 12 | + 362 11^1
k X- 2 3 X1

Define T = {j c [n] I u(i - b - j) E [-2n/B, 2n/B]}. We have that

Yo(i-b)-o, (i)1 =

n-1 2

E O b t (i-b)-t-,b(i)
t=O

n-1 2

- =G (ib-j)o b(i)

< 2 E(PUTbX)j Ga(ib-j
jET

2

< 2(1 + 6)2 S()
jET

2

-+2 ti) >+

+ 262 E

2

Or Go, _i b-j)_O,,(0)-2 Z(PT,x)
jOT

2

(P r),j
T

In the last step, the left term follows from IGa 1 + 6 for all a. The right term is because for
j (T, la(i - b-j) - oa,b(i)l > o(i - b - j) - Ob(i) > 2n/B - n/(2B) > n/B, and

Ga I < 6 for Ial > n/B. By Claim 2.2.6, this becomes:

2

YQa(i-b)-ob() 2 + 2(1 + 6)2 5 i j + 262112
jGT

Define V = ZJT xT 2. As a choice over T, V is the energy of a random Fourier coefficient
of the vector XT so we can bound the expectation over T:

E[V] = |2 H.

1Now, for each coorudinat j / L - U, Pr1 ,bLJ I T 0/ Ly LUmma 2.2.7. bU Lrb[S _ T I

0] < 8k /B, so with probability 1 - 8k/B over a and b we have

|I T = XT\S H2

Let E be the event that this occurs, so E is 0 with probability 8k/B and 1 otherwise. We have

E[EV] = IE [E| X|T2 = E [ExT\S |] E [1| |T\S 2
A,b,-r ob o,b b

Furthermore, we know

E[EV] <: E [11 4\ 27sO -,br -,b

8 JI- S 11

= _j 12 Pr [a(i - b - j) e [-2n/B, 2n/B]]
jS a,b

by Lemma 2.2.7. Therefore, by Markov's inequality and a union bound, we have for any C > 0

190

that

Pr V > 8 |s|| < Pr E=OUEV
[b, IB , b, L

Hence

p I- O(i)2 > 16 (1+ 6)21 -s112 +1 2+2H|I| < 8 + 1/C.
Rpa in C B B

Replacing C with 6 B /(3 2k) and using ~I <' - 5I < YaI j~~,)/ (I - 65) gives

Pr [, -x2 >

which implies the result. E

A.2 Proof of Lemma 3.2.2

Lemma 3.2.2 Define E = h|tjs 1+2 3+3621112

for any i C [n] with 1^&1 > 4E,

Pr[i I] < 0

to be the error tolerated in Lemma 3.2.1. Then

k+I

Proof With probability at least 1- O(), 1jj > I^ - E > 3E. In this case >hai) > 3(1-6)E.
Thus it is sufficient to show that, with probability at least 1 - 0(), there are at most dk locations
j E [B] with I- I > 3(1 - 6)E. Since each z, corresponds to n/B locations in [n], we will
show that with probability at least 1 - 0('), there are at most dkn/B locations j C [n] with
1 jl ;> 3(1 - 6) 2 E.

Let U {j c [n] I I5I > E}, and V = {j E [n] I JJj - I > E}. Therefore {j E[n] I 2 | >
2E} C U U V. Since 2 < 3(1 - 6) 2 , we have

{i 1 1.jj > 3(1 - 6) 2E} < I UU V.

We also know

UI < k+ s < k(+ 1/c)

and by Lemma 3.2.1,

E[I Vl < O().
-cB

191

> C E [E V] < 8-k + 11/C .01, b,T I D

X-2| + 1 62|| I-

k
(8 + 32/c) - '

Thus by Markov's inequality Pr[I V I ;> dkj1 < 0('),or

2 B -- c
Pr[I U U VI > -dk + k(1 +1/c)] < 0()

Since the RHS is only meaningful for d = Q(1/c) we can assume dk > k(1 + 1/c). Therefore

Pr[IUU V I > dk n, <

and thus

Pr[I{j E [B] I I- I > 3(1 - 6)E}| > kd] < 0(1)cd
Hence a union bound over this and the probability that s.< - ^ I < E gives

Pr[iz I] < 0 +
- EB Ed

as desired.

A.3 Proof of Lemma 4.2.4

Lemma 4.2.4 Suppose B divides n. The output ii of HASHTOBINS satisfies

iii Z (-)~G W ~ aci 611

Let = {i E supp(2) Eoff()} .The runningtime of HASHTOBINS is 0(log(n/
(log (n/6)).

E

6) + 114o +

Proof Define the flat window functions G GB,6,a and G' GIB,6,a- We have

G Poa,bX = G * PabX

* P,,a(X - z) + (G -) * PabX

By Claim 2.2.6, the coordinates of P,,a,bx and j have the same magnitudes, just different ordering
and phase. Therefore

II(G - G') * P,,abXH00 |I G - ' o CHPyabX1 - 61PI11

192

and hence

j y'n/B = G'I(Paa(- z))JBi l B+ k 6fl1
|ll<n/(2B)

=- S G'jnB-rb(i)(POa,b(X z))kb(i 6 1

17ao(i)-jn/B I<0/2B)

= - O'_Z (i)(- Z)Wa, 6 2
h, b (i)=j

as desired.
We can compute HASHToBINS via the following method:

1. Compute y with ly llo = O(B log(n/6)) in O(B log(n/6)) time.

2. Compute v E CB given by vi = Ej Yi+jB-

3. Because B divides n, by the definition of the Fourier transform (see also Claim 2.2.8 from Chap-
ter 3) we have jn/B =ij for all j. Hence we can compute it with a B-dimensional FFT in
O(B log B) time.

4. For each coordinate i E supp(2), decrease Ujh,,,(i) by G'o b(i)ziw a'. This takes O(112l|o +
(log(n/6)) time, since computing G'_Oa () takes O(log(n/6)) time if Eoff(i) holds and 0(1)
otherwise.

A.4 Proof of Lemma 4.2.5

Lemma 4.2.5 Consider any i E S such that neither Ecoll(i) nor Eoff (i) holds. Let j ha,b(i).
Then

round(#(ii/if)) 2r = i (mod n),

round(ii) = j - 2j,

and j E J.

Proof We know that I || i k 11< c k I kL < nL. Then by Lemma 4.2.4 and Ecol(i) not holding,

ii (= () b(j) i nL.

Because Eoff (i) does not hold, ' o) =1, SO

ii= (x - z)i 3nL. (A.1)

Similarly,
i = (X - 6nL

193

< <1 (x-z)i , the phase is

O(ii3) = 0 sin-'(6nL) = 0 26nL

and #(iij) =--i~ t 26L. Thus #(Z/) =if 4nL o 1/n by the choice of 6.
Therefore

round(#(ii /ii)) = -i (mod n).

Also, by Equation (A.1), round(iij) = js - %. Finally, Iround(itj) I= I - 2iI >
1/2. Thus j E J.

1, so V ij ;>
El

A.5 Proof of Lemma 4.3.2

Lemma 4.3.2 Let a C [n] uniformly at random, B divide n, and the other parameters be arbitrary
in

U = HASHTOBINS(x, 2, Pya,b,, B, 6,).

Then for any i c [n] withj ha,b(i) and none of Ecoll(i), Eoff (i), or Enose (Z) holding,

E[ui 2] < 2
aB

Proof Let '=G'B, 6 ,a.Let T =h(j) \ {i}. We have that Tn S {} and G'_ o (i) = 1. By
Lemma 4.2.4,

i- piWaoi >3 f: ifaail 6 4I
i' cT

Because the i' are distinct for i' c T, we have by Parseval's theorem

a
2'E T

2

S acri'x i/w i ('. (i):'i,) 2 T1
~'e T

Since IX + Y <2 IX2X +2 + Y12 for any X, Y, we get

E[Byj -:ij a'i" 2] < 2||x 112+ 262jp 1

- 2 2 62 1 +' 112 2
< 2 Err2 (x', k)/(aB) + 262

< 2p2/(aB).

D-

194

Then because 6nL

A.6 Proof of Lemma 4.3.4

Lemma 4.3.4 Let i E S. Suppose none of E,, 1 (i), Eoff (i), and Enose (i) hold, and letj h,,b(i).
Consider any run of LOCATEINNER with 1r,,b(i) E [1j ,j + w] . Let f > 0 be a parameter such that

B- Ck
Be =E

for C larger than some fixed constant. Then T,b(i) E [1j, i; + 4w/t] with probability at least
1 - tfQ(Rioc),

Proof Let T =F,(- b) (mod n), and for any j E [n] define

2wr
Oj* = 2(j + a-b) (mod 27)

n

so 6*, = 2;"o-i. Let g = (f'/ 3), and C' = = e(1/g 3).
To get the result, we divide [lj, 1j + w] into t "regions", Qq = [4j + T w, 4j + -w] for q E [t].

We will first show that in each round r, cj is close to 03* with 1 - g probability. This will imply
that Qq gets a "vote," meaning Vj,q increases, with 1 - g probability for the q' with T E Qq'. It
will also imply that Vj,q increases with only g probability when Iq - q'I > 3. Then Rlc rounds will
suffice to separate the two with 1 -f -Q(Rioc) probability. We get that with 1 - tf -(R1o) probability,
the recovered Q* has Iq - q'I < 3 for all q C Q*. If we take the minimum q E Q* and the next
three subregions, we find r to within 4 regions, or 4w/t locations, as desired.

In any round r, define i = ii(r) and a = ar. We have by Lemma 4.3.2 and that i E S that

E[ao- ris' 2] 2 = k 2
aB BaE

2 2 1
= / Ct - '22

Note that #(wai) -aO*. Thus for any p > 0, with probability 1 - p we have

Xj)j acr)I9 < 2in

110(ii) - (#(W's) - a/) o sin-(2

where lix - y I = minczJx - y + 27-yI denotes the "circular distance" between x and y. The
analogous fact holds for #(u'j) relative to 0(x'j) - (a + #)9*. Therefore with at least 1 - 2p

195

probability,

||cj - 00*1|o = 10(ii) - #(23) - #06*b|

= (#(Qj) -- (#(x'2) - a0*)) - (O()- (0(' 2) - (a +)0*))
T 0

K5Q0(iij) - (#(' 2) - aO*)||o + ||#(u') - (#('P) - (a + 3)6*)IO

2
< 2 sin- 1 (Cp

by the triangle inequality. Thus for any s = E(g) and p = e(g), we can set C' = 2

E(1/g 3) so that

IIcj - 00*3 0 < s7r/2 (A.2)

with probability at least 1 - 2p.

Equation (A.2) shows that c is a good estimate for i with good probability. We will now show
that this means the appropriate "region" Qq, gets a "vote" with "large" probability.

For the q' with T E [3 + q- w, l + sw, we have that mj,qi = lj + - 1/2 satisfies

T - mj, q| I
- 2t

so
so|10 * - O , | < 2 w .

n 2t

Hence by Equation (A.2), the triangle inequality, and the choice of B < s,

22||cj - 00j,q'||o 11 |Cj -0 11*0| + |110 * 00,q'110

2 nt
SWT S7

_2 2
S7.

Thus, Vj,ql will increase in each round with probability at least 1 - 2p.
Now, consider q with Iq - q'I > 3. Then IT - mj,q > !w, and (from the definition of/# >)

we have

7sii 3sri
IT - mj,ql ;> > 3. (A.3)

8 4

We now consider two cases. First, suppose that Ir - mj,q I < . In this case, from the definition
of / it follows that

IT - mj,q n/2.

196

Together with Equation (A.3) this implies

Pr[(T - mj,q) mod n c [-3sn/4, 3sn/4]] = 0.

On the other hand, suppose that IT - Mj,q > !. In this case, we use Lemma 4.3.3 with param-
eters l = 3sn/2, m = 7j, t = s, i = (T - m3,q) and n = n, to conclude that

4w T- mj 3| 3sn st 4w
Pr[(T - mj,q) mod n c [-3sn/4, 3sn/4]] < - + 2 ' + 3s +

snt n 2 wsnt
4w 2w

< - +9s
-snt n

< B +9s
sB

< I0s

where we used that LI w < n/B, the assumption w < i , t > 1, s < 1, and that S2 > 6/B
(because s = 6(g) and B = w(1/g 3)).

Thus in either case, with probability at least 1 - 10s we have

-27rO(mj,q - T) >2- 3sn 3
n n 4 2

for any q with I q - q'I > 3. Therefore we have

||cj - /3Oj,qjo ||0fj,q - #3*O1 - ||Cj - /0*||0 > S7

with probability at least 1 - 10s - 2p, and Vj,q is not incremented.

To summarize: in each round, vj,q, is incremented with probability at least 1 - 2p and Vj,q is
incremented with probability at most 10s + 2p for Iq - q'I > 3. The probabilities corresponding
to different rounds are independent.

Set s = g/20 and p = g/4. Then Vj,q1 is incremented with probability at least 1 - g and Vj,q is
incremented with probability less than g. Then after Rjoc rounds, if I q - q'I > 3,

Pr[vj,q > R1,/2] < R 10c 2 Rioc/
2 Rj, /2 _ Q(Rice)

for g = f1/ 3/4. Similarly,
Pr[v,ql < Rioc/2] < fQ(Rioc).

Hence with probability at least 1 - tfQ(Rc) we have q' E Q* and I q - q'I < 3 for all q E Q*. But
then T - 1j c [0, 4w/t] as desired.

Because E[L{i c supp(2) I Eoff(i)}|] = cejW||o, the expected running time is O(R 0cBt +
Rjoc' log(n/6) + Rjocj0 2|o(1 + a log(n/6))). l

197

A.7 Proof of Lemma 4.3.5

Lemma 4.3.5 Suppose B = ; for C larger than some fixed constant. The procedure LOCATES-
IGNAL returns a set L of size ILI < B such that for any i E S, Pr[i E L] > 1 - 0(a). Moreover
the procedure runs in expected time

0((B log(n/6) + 121lo(l + a log(n/6))) log(n/B)).
a

Proof Consider any i c S such that none of Ec 11 (i), Eff (i), and Eoise (i) hold, as happens with
probability 1 - 0(a).

Set t = log n, t' = t/4 and Rl0c = 0(logl/,(t/a)). Let wo = n/B and WD W0 / D(t)1

SO WDrra+1 < 1 for Dmax = logt,(wo + 1) < t. In each round D, Lemma 4.3.4 implies that

if 7x,(i) E [6}D) D) + WD] then 7,,b(i) E [l(D+1) D+1) + WD+1 with probability at least
1 - a"(RiI) = 1 - a/t. By a union bound, with probability at least 1 - a we have 7y,,~i) E

(Dma +1) Dax +1) + WDm(1 Dmax+1)}. Thus i = 7 -I (Dmai+1)

Since RiocDmax = 0(logl/(t/a) logr(n/B)) = 0(log(n/B)), the running time is

B
O(Dmax(Roc B log(n/6) + Rc112| 1(1 I+ a log(n/6))))

a

- 0((log(n/6) + j||o(1+ a log(n/6)))log(n/B)).
a

A.8 Proof of Lemma 4.3.6

Lemma 4.3.6 For any i E L,

Pr[e - P'2 > [121< -Q(Rct)

if B > c for some constant C.

Proof Define e, - x'jW in each round r. Suppose none of E (i), E (i), and
E,(j's (i) hold, as happens with probability 1 - 0(a). Then by Lemma 4.3.2,

E[erCl P - 2k 222
E ' [| 12] < 2 = - P2 < _ 2

aaB acB"' C"

Hence with 3/4 - 0(a) > 5/8 probability in total,

|er12 82 < P2/2

198

for sufficiently large C. Then with probability at least 1 - e-Q(Rst), both of the following occur:

2

median real(er) < p2/2

2

median imag(er) < p2/2.

If this is the case, then |median, er|2 < p 2 . Since i = :' + median er, the result follows. E

A.9 Proof of Lemma 4.3.7

Lemma 4.3.7 Let Rest > C log B for some constant C and parameters -y, f > 0. Then if ESTI-

MATEVALUES is run with input k' 3k, it returns iTh for IJI = 3k satisfying

Err 2 (4 - 'i3, jk) < Err2(x, k) + O(kp2)

with probability at least 1 - -y.

Proof By Lemma 4.3.6, each index i E L has

P 2 2 yfk
Pr I7,x' >/12 B

Let U = {i E L I Si - x' 2 > p2}. With probability 1 - 7, 1 U I < Jk; assume this happens. Then

'-)L\U11 2 <P2. (A.4)

Let T contain the top 2k coordinates of WL\ U. By the analysis of Count-Sketch (most specifically,
Theorem 3.1 of [146]), the f,, guarantee in Equation (A.4) means that

|1X'L\U - VT 2 - Err2 (x'L\u, k) + 3kp2 . (A.5)

Because J is the top 3k > (2 +f)k coordinates of iOLj, T c J. Let J' J \ (T U U), so |J'| I k.
Then

Err 2 (;L - ifjk) < x- - w

= 0 'L\(UUJ')WT21W - 20J

<_ |XL\ U - 'WJT 20

< Err2 (:'L\U, k) + 3kp 2 + kpY 2

= Err2 (X'L\u, k) + O(k / 2)

where we used Equations A.4 and A.5. D

199

A.10 Proof of Lemma 4.3.8

Lemma 4.3.8 Define i(r) 2- .(r) Consider any one loop r of SPARSEFFT, running with
parameters (B, k, a) = (Br, kr, ar) such that B > S; for some C larger than some fixed constant.
Then for any f > 0,

Err2 ((r+1),lk) < (1 + c) Err 2(g(), k) + Q(c 2 n

with probability 1 - O(a/f), and the running time is

B1
O((1 |2(r) |(1 + a log(n/3)) + - log(n/6))(log + log(n/B))).

a ac

Proof We use Rest = (log) =(log y;) rounds inside ESTIMATEVALUES.

The running time for LOCATESIGNAL is

B
0((- log(n/6) + 112() (1 + a log(n/6))) log(n/B)),

and for ESTIMATEVALUES is

0((- log(n/6) + 112(') 1(1 + a log(n/6))) log I)a a

for a total running time as given.

Recall that in round r, = (Err2(r), k) + 6 2 n I 2) and S {i c [n]) > p} By

Lemma 4.3.5, each i E S lies in L, with probability at least 1 - 0(a). Hence S \ L < 1k with
probability at least 1 - 0(a/f). Then

Err2 (- L) _ I [Ij \(Ljs) 2

< Err2 (rK), k) + kj Xin(L) 11[r n])\(LUS) [n]\(LUS) 00

Err2(k) k) + k2 (A.6)

Let = -(r+() - = (r - 2(r+1) by the vector recovered by ESTIMATEVALUES. Then

supp(@) c L, so

Err 2 (_(r+l), 21k) = Err2 ((r) - @, 21k)
2 L (k) + r2 -(r) - KErr~(i~~ k Err2 (VL - k)

KErr 2(ji (r) 2 Er(- (r),I k) + 0(k P2)

200

by Lemma 4.3.7. But by Equation (A.6), this gives

Err2 ((r+l), 2Jk) < Err2([, k) + Err2(r), k) + O(k P2)

< Err2 ((r), k) + O(kP2)

(1 + 0(c)) Err2 (g I), k) + O(n2 W 1

The result follows from rescaling f and c by constant factors.

A.11 Proof of Theorem 4.3.9

Theorem 4.3.9 With 2/3 probability, SPARSEFFT recovers 2(R+1) such that

jy - 2(R+11 2 < (1 + c) Err(i, k)+ 61-6 |2

in O(log(n/k) log(n/6)) time.

Proof Define f, O(l/r2) s0 Zf, < 1/4. Choose R s0 H,<R f, 1/k H,<Rfr. Then
R = 0(log k/ log log k), since H,<R f, < (fR/ 2) R/ 2 = (2/R)R.

Set E, = frE, ar = e(f,2), kr = k Hi<,fi, Br = O(arfr). Then B, = w(k), so for
sufficiently large constant the constraint of Lemma 4.3.8 is satisfied. For appropriate constants,
Lemma 4.3.8 says that in each round r,

Err2 (g(+1), kr+1) = Err2(g(+l),frkr) . (1 + frc) Err2(), kr) + 0(fre6 2 nri 1

with probability at least 1 - fr. The error accumulates, so in round r we have

Err 2 (j(r), kr) Err2 (2, k) JJ(1 +fi6) + E O(fr662r| f|)
i<r i<r

H (1+f)
i<j<r

with probability at least 1 - Z%<rfi > 3/4. Hence in the end, since kR+1= k li<R fi < 1,

f2(R+1) = Err2 ((R+l), kR+l) < Err2 (2, k) 17(1 +fic) + O(RE6 2r||K||) J (1 +Cf)
i<R i<R

with probability at least 3/4. We also have

Q(I+ fi E) < e' <

making
f(i + fiE) < 1 + e fiE < 1 + 2c.

Thus we get the approximation factor

2 -(11 < (1 + 2c) Err2(2, k) + 0((log k)C62n 1)

201

D

(A.7)

with at least 3/4 probability. Rescaling 6 by poly(n), using ||2|j < n||j 12, and taking the square
root gives the desired

xp - (R+1) 2 < (1 + c) Err(j, k) + 6||W||2-

Now we analyze the running time. The update r(r+1) -(r) in round r has support size 3kr, so in
round r

||2('r)jo < >i3kr O(k).
i<r

Thus the expected running time in round r is

0((k(1 + a, log(n/6)) + Br
Cfr

1
log(n/6))(log + log(n/Br)))

k k r 2
= 0((k + 4 log(n/6) + 2 log(n/6))(log- + log(nE/k) + log r))

r (r E
k

= 0((k + 2 log(n /6))(log r + log(n/k)))

We split the terms multiplying k and k log(n/6), and sum over r. First,

R

E (log r +
r= 1

R

log(n/k)) < R log R + R log(n/k)

< O(log k + log k log(n/k))
= 0(log k log(n/k)).

1

Z -(log r + log(n/k)) = 0(log(n/k))
r=1 '_

Thus the total running time is

O(k log k log(n/k) +
k

log(n/6)log(n/k)) = (
C

log(n/6) log(n/k)).

A.12 Proof of Lemma 5.2.2

Lemma 5.2.2 The probability that any 1-sparsity test invoked by the algorithm is incorrect is at
most 0(1/n(c-5)/ 2)_

To prove Lemma 5.2.2, we first need the following lemma.

Lemma A.12.1. Let y E C' be drawn from a permutation invariant distribution with r > 2
nonzero values. Let T = [2c]. Then the probability that there exists a y' such that ||y'| 0 1 and

202

Next,

El

- = 0 is at most c .

Proof Let A = FT be the first 2c rows of the inverse Fourier matrix. Because any 2c x 2c
submatrix of A is Vandermonde and hence non-singular, the system of linear equations

Az= b

has at most one c-sparse solution in z, for any b.
If r < c - 1, then fly - y'1lo < c so A(y - y') = 0 implies y - y' 0. But r > 2 so

y -- y' Io > 0. This is a contradiction, so if r < c then the probability that (T -) = 0 is zero.
Henceforth, we assume r > c.

When drawing y, first place r - (c - 1) coordinates into u then place the other c - 1 values
into v, so that y = u + v. Condition on u, so v is a permutation distribution over m - r + c - 1
coordinates. We know there exists at most one c-sparse vector w with Aw = -Au. Then,

Pr[3y': A(y - y') = 0 and ly'llo < 1]
y

Pr[]y': A(v - y') = -Au and ly'llo < 1]
V

< Pr[y': v - y' = w andlly'llo 1] = Pr[jjv - wljo < 1]

< Pr[supp(v) A supp(w)| 11

M - + C - c c-2
m-r+c-1

C
c-1 m

where the penultimate inequality follows from considering the cases IIw IIo E {c - 2, c - 1, c}
separately.

We now proceed with the proof of Lemma 5.2.2.

Proof W.L.O.G. consider the row case. Let y be the jth row of 1. Note that _,= f. Observe that
with probability at least 1 - 1/nc we have IIy IIo < r for r = c log n. Moreover, the distribution
of y is permutation-invariant, and the test in BAsIcESTFREQ corresponds to checking whether
(- ') = 0 for some 1-sparse y' = aei. Hence, Lemma A.12.1 with m = n implies the
probability that any specific test fails is less than c(2c/v)c-2. Taking a union bound over the
V' log n total tests gives a failure probability of 4c 3 log n(2c/ rt)c- 4 < O(1/n(c- 5)/2). El

A.13 Proof of Lemma 5.3.1

Lemma 5.3.1 Consider the recovery of a column/row j in ROBUSTESTIMATECOL, where ii and
i' are the results of FOLDToBINS on 1. Let y c CVE denote the jth column/row of 1. Sup-
pose y is drawn from a permutation invariant distribution y = y head + Y residue + ygauss, where
miniEsupp(hcad) I I L, yresidue 1i < cL, and yga,,s is drawn from the # -dimensional normal

distribution Nc(0, o. 2 I) with standard deviation a = eL/n/ 4 in each coordinate on both real

203

and imaginary axes. We do not require that y head, y residue and ygauss are independent except for
the permutation invariance of their sum.

Consider the following bad events:

" False negative: supp(yhead) {i} and ROBUSTESTIMATECOL does not update coordinate i.

* False positive: ROBUSTESTIMATECOL updates some coordinate i but supp(yhead) # {f

* Bad update: supp(yhead) = {i} and coordinate i is estimated by b with b - yhead > yresidue -+

log log n
log n

For any constant c and E below a sufficiently small constant, there exists a distribution over sets
T, T' of size 0 (log n), such that as a distribution over y and T, T' we have

* The probability of a false negative is 1/ log' n.

" The probability of a false positive is 1/nc.

* The probability of a bad update is 1/ loge n

Proof Let - denote the 1-dimensional inverse DFT of y. Note that

U3 j YT

by definition. Therefore, the goal of ROBUSTESTIMATECOL is simply to perform reliable 1-sparse
recovery with O(log n) queries. Fortunately, Algorithm 4.3.2 solved basically the same problem,
although with more false positives than we want here.

We choose T' according to the LOCATEINNER procedure from Algorithm 4.3.2; the set T is
chosen uniformly at random from [,/i]j. We have that

ii (T ibj-i

This is exactly what the procedure HASHToBINS of Algorithm 4.3.2 approximates up to a small
error term. Therefore, the same analysis goes through (Lemma 4.3.5) to get that LOCATESIGNAL
returns i with 1 - 1/ log' n probability if Iyi ;> y-i l2, where we define y_, := yg] .

Define A (E CI TX V to be the rows of the inverse Fourier matrix indexed by T, normalized so
IA| I= 1. Then -jT) (A y)T.

First, we prove

IIyreidue + ygauss 2 = O(eL) (A.8)

with all but n-' probability. We have that E[|Iygauss 11] = 2C2 L2 , so ||ygss|2 < 3L with all
but e-(v') < 1/nc probability by concentration of chi-square variables. We also have that

||yresidue |2 < ||yresidue | I EL.

204

Next, we show

||A(yresidue + ygauss")" 2 = O(EL TI) (A.9)

with all but n--c probability. We have that A ygauss is drawn from Nc (0, E 2 L2 I TI) by the rotation
invariance of Gaussians, so

IA y 9 |auss 12 3EL TI (A.10)

with all but e --Q(1 T 1) < n -c probability. Furthermore, A has entries of magnitude 1 so IA yesidueH1 2 <

l yresidue|1 = c L TI.
Consider the case where supp(yhead) = {i. From Equation (A.8) we have

11y-2il1 < |ly"Uss + yresidue112 < O(C 2 L2) < L2 < 11yi 12 (A.11)

so i is located with 1 - 1/ log' n probability by LOCATESIGNAL.

Next, we note that for any i, as a distribution over T E [V/n],

-(T)T Tir

and so (analogously to Lemma 4.3.6 from Chapter 4 and for any i), since a medianTE T iiW

we have

la- y 12 < 5|1y-2f1 (A.12)

with probability 1 - e-Q(ITI) = 1 -1/nc for some constant c. Hence if {j} supp(yhead), we
have |a - y, 2 O (E2 L2) and therefore |a| > L/2, passing the first check on whether i is valid.

For the other check, we have that with 1 - 1/nc probability

(E T u - aw-)12 - ||A(y - aei)||2

IA(y gauss _yresidue + (Yhead - a) ei) 1 2

_ IIA(y "aus + yresidue) 112 + yhead - a

IA(Y gaus + yresidue)1 12 + (residue + Ygauss + jy- aj) JTI

O(EL TI).

where the last step uses Equation (A.9). This gives

u j - aw- = O(c2 L2 TI) < L2 I Tj /10
TET

so the true coordinate i passes both checks. Hence the probability of a false negative is 1/loge n
as desired.

205

Now we bound the probability of a false positive. First consider what happens to any other
coordinate i' # i when 1supp(yhead) = {i}. We get some estimate a' of its value. Since A/ I TI
satisfies an RIP of order 2 and constant 1/4, by the triangle inequality and Equation (A.9) we have
that with 1 - n- probability,

A(y - a'ei')112 >)IA (ylead ei - a'e)1|2 - IIA (ygauss + yresidue)

> yhead T - (3/4) - O(eL T1)

> L T|/2.

Hence the second condition will be violated, and i' will not pass. Thus if supp(yhead) 1, the
probability of a false positive is at most n-C.

Next, consider what happens to the result i of LOCATESIGNAL when SUpp(yhead) = 0. From

Equation (A.8) and Equation (A.9) we have that with 1 - n-' probability:

la - y4| 2 < 51y-i 12 < O(E 2 L2).

Therefore, from Equation (A.8),

a < yij + ja - yij < |y residue + y"gauss 2 + a - yi = O(EL) < L/2

so the first check is not passed and i is not recovered.

Now suppose ISUPP(Yhead) > 1. Lemma 5.3.2 says that with 1 n - c probability over the
permutation, no (i, a) satisfies

I I A t head - 112 -r T i ri

IK1AO - aci)11 2 -L I5

But then, from Equation (A. 10)

A(y - ae) 112 > I|A(yhead - aei) 2 - ygauss2

> L T|/5 - O(EL T 1)

> L 0T| /10

so no i will pass the second check. Thus, the probability of a false positive is 1/nc.

Finally, consider the probability of a bad update. We have that

b = mean(Ay),w = head + mean(A y residue + Aya
Te T i T T

and so
hb - y <ea < mean(Ayresidue)rwTi + mean(A ygauss) ri

i TET T T

206

We have that
mean(Ayesidue)-w7i < max (Ayresiduei 5 bresidue||1

-eT TcT d

We know that Aygau's is NC(0, E2 L2 JITI). Hence its mean is a complex Gaussian with standard

deviation EL/ TI in both the real and imaginary axes. This means the probability that

b - yhead residue||1 + tEL I

is at most eQ-t . Setting t = Vlog logc n gives a 1/ log' n chance of a bad update, for sufficiently
large | T = O(log n).

A.14 Proof of Lemma 5.3.2

Lemma 5.3.2 Let y E Cm be drawn from a permutation invariant distribution with r > 2 nonzero
values. Suppose that all the nonzero entries of y have absolute value at least L. Choose T c [in]
uniformly at random with t := I T I = O(c3 log M).

Then, the probability that there exists a y' with IIy'HIo < 1 and

||(Y - y')T1 < 2 L2t/

is at most c 3 (c c-2 whenevere < 1/8.

Proof Let A = ltFT, be lIt times the submatrix of the Fourier matrix with rows from T,
so

- Y)T112 = |IA(y - y')112t/n.

By a coherence bound (see Section 5.3), with 1 - 1/mc probability A satisfies the RIP of order 2c
with constant 0.5. We would like to bound

P := Pr[3y' : ||A(y - y') < cL 2 andlly'llo < 1]

If r < c - 1, then y - y' is c-sparse and

|A(y - y') 11 ;> y -Yy'12/2

> (r-1)L2 /2
>eL

as long as c < 1/2, giving P = 0. Henceforth, we can assume r > c. When drawing y, first place
r - (c - 1) coordinates into u then place the other c - 1 values into v, so that y = u + v. Condition
on u, so v is a permutation distribution over m - r + c - 1 coordinates. We would like to bound

P = Pr[py': IA(u + v - y')11 < EL2 andlly'llo < 1].
V2

207

Let w be any c-sparse vector such that I|A(u + w)l|| < EL2 (and note that if no such w
exists, then since v - y' is c-sparse, P = 0). Then recalling that for any norm |1-11, la 112

2||b||2 + 2 ||a + b|12 and hence I|a + b||2 ||a||2 /2 - ||b||2,

||A(u + v - y')| > A(v - y' -- W||1 2 - ||A(u + w)||1

> -I _Y' + W112 /4 - EL L2.

Hence
P < Pr[ly': v - y' + w < 8EL2 andlly'llo < 1].

Furthermore, we know that Ily - y' + W| 12 L2 (supp(v) \ supp(w)I - 1). Thus if E < 1/8,

P < Pr[supp(v) \ supp(w)I < 11

< c + (m - r + c - 1)c(c - 1)/2
m-r+c-1)

C-1

< C3{ C c-2

m - r

as desired.

A.15 Proof of Lemma 5.3.4

Lemma 5.3.4 Let ROBUST2DSFFT' be a modified ROBUST2DSFFT that avoids false negatives
or bad updates: whenever a false negative or bad update would occur, an oracle corrects the al-
gorithm. With large constant probability, ROBUST2DSFFT' recovers 2 such that there exists a
(k/ logc n)-sparse 2' satisfying

|2 -- - 2l < 6oa2n.

Furthermore, only 0 (k/ log' n) false negatives or bad updates are caught by the oracle.

Proof One can choose the random ? by first selecting the topology of the graph G, and then
selecting the random ordering of the columns and rows of the matrix. Note that reordering the
vertices only affects the ideal ordering by a permutation within each stage of recovery; the set of
edges recovered at each stage in the ideal ordering depends only on the topology of G. Suppose
that the choice of the topology of the graph satisfies the thesis of Lemma 5.3.3 (which occurs with
large constant probability). We will show that with large constant probability (over the space of
random permutations of the rows and columns), ROBUST2DSFFT' follows the ideal ordering and
the requirements of Lemma 5.3.1 are satisfied at every stage.

For a recovered edge e, we define the "residue" X*e - 2e. We will show that if e has rank r,
then e - e log log nL.

- plog nDuring attempted recovery at any vertex v during the ideal ordering (including attempts on
vertices which do not have exactly one incident edge), let y C C'- be the associated column/row
of j-2. We split y into three parts y = yhead +Yresidue - y gauss, where yhead contains the elements of

208

x* not in supp(2), yresidue contains x -2 over the support of 2, and ygau"s contains i-v (all restricted

to the column/row corresponding to v). Let S = supp(yreidue) contain the set of edges incident
on v that have been recovered so far. We have by the inductive hypothesis that IIyresidue I1

ZeES rank(e) / elo cL. Since the algorithm verifies that EeeS rank(e) < log log n, we have

eiynduell log 3 lgnc
log n

Furthermore, y is permutation invariant: if we condition on the values and permute the rows

and columns of the matrix, the algorithm will consider the permuted y in the same stage of the
algorithm.

Therefore, the conditions for Lemma 5.3.1 hold. This means that the chance of a false positive
is 1/n', so by a union bound, this never occurs. Because false negatives never occur by assump-

tion, this means we continue following the ideal ordering. Because bad updates never occur, new

residuals have magnitude at most

lyresidue log+ log nEL
logun

Because yresidue 1/ (1!1OnEL) EeEs rank(e) = rank(v) = rank(e) -1, each new residual
has magnitude at most

rank(e) log log EL <EL. (A.13)
log n

as needed to complete the induction.
Given that we follow the ideal ordering, we recover every edge of rank at most log log n.

Furthermore, the residue on every edge we recover is at most EL. By Lemma 5.3.3, there are at
most k/ log' n edges that we do not recover. From Equation (A. 13), the squared f2 norm of the
residues is at most E2 L2 k = E2 C2 c 2 n/k - k < c72 n for e small enough. Since II@ 1 < 2a 2 n with
overwhelming probability, there exists a 2' so that

||2 - - 2'|1 < 2||2 -? - 2'||1 + 2||w| 6r2n.

Finally, we need to bound the number of times the oracle catches false negatives or bad updates.
The algorithm applies Lemma 5.3.1 only 2 -n + 0(k) = 0(k) times. Each time has a 1/ log' n
chance of a false negatives or bad update. Hence the expected number of false negatives or bad
updates is O(k/ log' n). E

209

210

Appendix B

The Optimality of the Exactly k-Sparse

Algorithm 4.2.1

If we assume that FFT is optimal and hence the DFT cannot be computed in less than O(n log n)
time, then Algorithm 4.2.1 described in Section 4.2 for the exactly k-sparse case is optimal as long
as k = 0('). Under the In this appendix, we show that by reducing a k-dimensional DFT to the
an exact k-sparse n-dimensional DFT.

Assume that k divides n.

Lemma B.O.1. Suppose that there is an algorithm A that, given an n-dimensional vector y such
that ^ is k-sparse, computes ^ in time T(k). Then there is an algorithm A' that given a k-
dimensional vector -x computes ^ in time O (T (k))).

Proof Given a k-dimensional vector x, we define yj = x% mod k, for i = 0 ... n - 1. Whenever A
requests a sample yi, we compute it from x in constant time. Moreover, we have that Yi = Xi/(n/k)

if i is a multiple of (n/k), and -, = 0 otherwise. Thus - is k-sparse. Since X- can be immediately
recovered from y, the lemma follows. D

Corollary B.O.2. Assume that the n-dimensional DFT cannot be computed in o(n log n) time.
Then any algorithmfor the k -sparse DFT (for vectors of arbitrary dimension) must run in Q(k log k)
time.

211

212

Appendix C

Lower Bound of the Sparse Fourier
Transform in the General Case

In this appendix, we show any algorithm satisfying Equation (4.1) must access Q(k log(n/k)/ log log n)
samples of x.

We translate this problem into the language of compressive sensing:

Theorem C.O.3. Let F e Cflxf be orthonormal and satisfy IF| 1/ fi for all i, j. Suppose an
algorithm takes m adaptive samples of Fx and computes x' with

||x - x'1| 2 < 2 min ||x - x*||2
k-sparse x*

for any x, with probability at least 3/4. Then it must have m = Q(k log(n/ k)/ log log n).

Corollary C.O.4. Any algorithm computing the approximate Fourier transform must access Q (k log (n/ k)/ log
samples from the time domain.

If the samples were chosen non-adaptively, we would immediately have m = Q(k log(n/k))
by [146]. However, an algorithm could choose samples based on the values of previous samples. In
the sparse recovery framework allowing general linear measurements, this adaptivity can decrease
the number of measurements to O(k log log(n/k)) [86]; in this section, we show that adaptivity is
much less effective in our setting where adaptivity only allows the choice of Fourier coefficients.

We follow the framework of Section 4 of [146]. In this section we use standard notation from
information theory, including I(x; y) for mutual information, H(x) for discrete entropy, and h(x)
for continuous entropy. Consult a reference such as [36] for details.

Let F c {S c [n] : S= 1} be a family of k-sparse supports such that:

I S G S'l > k for S # S' E F, where e denotes the exclusive difference between two sets, and

* log |FI = Q(k log(n/k)).

This is possible; for example, a random code on [n/k]k with relative distance 1/2 has these prop-
erties.

213

For each S C F, let Xs = { { , }" supp(Xs) = S}. Let x c Xs uniformly at
random. The variables xi, i E S, are i.i.d. subgaussian random variables with parameter .2 1,
so for any row F of F, Fj x is subgaussian with parameter 0 2 = k/n. Therefore

Pr [lFjxl > t k/n] < 2e- 2/2

hence for each S, we can choose an xS E XS with

|Fxsl<O(k log n). (C.1)n

Let X = {xs I S F} be the set of such xS
Let w - N(O, a kI) be i.i.d. normal with variance ak/n in each coordinate.
Consider the following process:

Procedure. First, Alice chooses S c F uniformly at random, then selects the x E X with
supp(x) = S. Alice independently chooses w ~ N(0, a In) for a parameter a = E(1) suffi-
ciently small. For j E [in], Bob chooses i1 c [n] and observes yj = F,, (x + w). He then computes
the result x' ~ x of sparse recovery, rounds to X by - = arg min1 .*x"* - x'11 2 , and sets
S' = supp(2). This gives a Markov chain S -+ x -+ y -+ x' -4 X -+ S'.

We will show that deterministic sparse recovery algorithms require large m to succeed on this
input distribution x + w with 3/4 probability. By Yao's minimax principle, this means randomized
sparse recovery algorithms also require large m to succeed with 3/4 probability.

Our strategy is to give upper and lower bounds on I(S; S'), the mutual information between S
and S'.

Lemma C.O.5 (Analog of Lemma 4.3 of [146] for E = U(1)). There exists a constant a' > 0 such
that if a < a', then I(S; S') = Q(k log(n/k)) .

Proof Assuming the sparse recovery succeeds (as happens with 3/4 probability), we have |Ix' -
(X + W)11 2 22W 112, which implies ||X' - X112 3||wI|2. Therefore

- 2 |1x - X'112 + | |' - X||2

< 2\\x' -X112

< 6||W||2-

We also know lX'-X"|| 2 > \/k for all distinct x', x" E X by construction. Because E[I Iw 1] = a k,
with probability at least 3/4 we have IIwI12 < v/4ok < \//6 for sufficiently small a. But then

112- 2< , so ^ = x and S = S'. Thus Pr[S S'] 1/2.
Fano's inequality states H(S S') < 1 + Pr[S / S'] log JFY. Thus

1
I(S; S') = H(S) - H(S I S') > -1 + - log FI = Q(k log(n/k))

2

214

We next show an analog of their upper bound (Lemma 4.1 of [146]) on I(S; S') for adaptive
measurements of bounded f, norm. The proof follows the lines of [146], but is more careful about
dependencies and needs the f, bound on Fx.

Lemma C.O.6.
1

I(S; S') < O(m log(1I + -- log n)).

Proof Let Aj = F, for j E [m], and let wl = Ajw. The w, are independent normal variables
with variance a k. Because the A3 are orthonormal and w is drawn from a rotationally invariant
distribution, the w' are also independent of x.

Let y, = Ajx + wj. We know I(S; S') < I(x; y) because S -+ x -+ y - S' is a Markov
chain. Because the variables A3 are deterministic given yi,... , yj _1

I(X; yj | y1, ... , yj,) = I(x; Ax z+ w I y1, ..., yj_1)
= h(Ax + w' yi,..., yj-i) - h(Ajx+ x w , yi,..., Yj-1)

= h(Aix + w' y1, ... , yj-i) - h(wj).

By the chain rule for information,

I(S; S') < I(X; y)

= : I(X; y, I y1, ... ,yy -1)
j=1

= h(Aj x + w y1, . .. , yj _1) - h(wj) -
j=1

< Eh(A x + wj') - h (wj).
j=1

Thus it suffices to show h(Aj x + w,) - h(w,) = O(log(1 + log n)) for all j.
Note that Aj depends only on y1, . . . , yj_, so it is independent of w'. Thus

E[(Ay +)/2] = [)A) 2] + IE[(w)2] < O(k log n k
n n

by Equation (C.1). Because the maximum entropy distribution under an t2 constraint is a Gaussian,
we have

/ klogni k k
h(Aj x + wj') - h(w,) < h(N(O, O() + a-)) - h(N(O, a-))

n n n
I log(I+ O(log n)

2 a
1

= O(log(1 + - log n)).
a

215

as desired. El

as desired. E

Theorem C.O.3 follows from Lemma C.O.5 and Lemma C.O.6, with a = E(1).

216

Appendix D

Efficient Constructions of Window
Functions

In this appendix, we show how to efficiently implement our flat window functions which we use
in Chapters 3 and 4.

Claim D.O.7. Let cdf denote the standard Gaussian cumulative distribution function. Then:

1. cdf(t) = 1 - cdf(-t).

2. cdf(t) < e-t/2 for t < 0.

3. cdf(t) < 6for t < - 2log(1/6).

4. fx_= cdf(x)dx < 6for t < -2log(3/6).

5. For any 6, there exists afunction cd f6 (t) computable in O (log (1 /6)) time such that cdf -cd f6((<

6.

Proof

1. Follows from the symmetry of Gaussian distribution.

2. Follows from standard moment generating function bound on Gaussian random variables.

3. Follows from (2).

4. Property (2) implies that cdf(t) is at most v/2 < 3 times larger than the Gaussian pdf. Then
apply (3).

5. By (1) and (3), cdf(t) can be computed as 6 or 1 6 unless ItI < 2(log(1/6)). But then
an efficient expansion around 0 only requires O(log(1/6)) terms to achieve precision 6. For
example, we can truncate the representation [117]

1 e-_t/2 0o 0o C
cdf(t)= + te+ 3 +3- + 3- -+

at O(log(1/6)) terms.

217

D-

Claim D.O.8. Define the continuous Fourier transform of f (t) by

f(s)= J e- 2 istf(t)dt.

For t G [n], define

gt= E f(t + nj)
j=-0

and

g'= 1 f(t/n +j).
j=-O0

Then y = g', where y is the n-dimensional DFT of g.

Proof Let A1 (t) denote the Dirac comb of period 1: A 1(t) is a Dirac delta function when t is an
integer and zero elsewhere. Then A1 A,. For any t E [n], we have

n 00

-I: = : f (s + nj*) e-2its/n

s=1 j=-Oc
n 00

= E Z f (s + nj)e-27it(s+nj)/n
s=1 j=-O

00

S00

= f(s)A1(s)e-27its/nds

= (f- A1)(t/n)

= (f *A /n)
00

= S f(t/n+j)
j=-00

Lemma D.O.9. For any parameters B > 1, 6 > 0, and a > 0, there exist flat window functions G
and G' such that G can be computed in O(B log(n/6)) time, andfor each i G'i can be evaluated
in O(log(n/6)) time.

Proof We will show this for a function C' that is a Gaussian convolved with a box-car filter. First
we construct analogous window functions for the continuous Fourier transform. We then show that
discretizing these functions gives the desired result.

218

Let D be the pdf of a Gaussian with standard deviation - > 1 to be determined later, so
b is the pdf of a Gaussian with standard deviation 1/-. Let F be a box-car filter of length 2 C
for some parameter C < 1; that is, let F(t) _= 1 for It| < C and F(t) = 0 otherwise, so
F(t) = 2Csinc(t/(2C)). Let G* = D - F, so G* = D * F.

Then IG*(t)l < 2C ID(t)I < 2C6 for ItI > u 2log(1/6). Furthermore, G* is computable in
0(1) time.

Its Fourier transform is G* (t) = cdf(u-(t + C)) - cdf(o-(t - C)). By Claim D.0.7 we have

for It| > C + 2log (1/6)/- athat *(t) = 6. We also have, for It| < C - 2log(1/6)/u, that

G*(t) = 1 26.

Now, for i c [n] let Hi = nZn EOG G*(i+nj). By Claim D.0.8 it has DFT j = * (IH/n+
j). Furthermore,

z:
>I%>a 2log(1/6)

IG*(i) I 4 C

<4C 2log(1/6)
(

4 C (
ID(x)l dx + D(-u 21og(1/6)))

< 4 C(cdf(- 2log(1/6)) + D(-o 2 log(1/6)))

< 8C6 < 86.

Thus if we let
Gi = /_ E

ji<a 2log(1/6)
jmi (mod n)

G*(j)

for i| < 2log(1/6) and Gi = 0 otherwise, then ||G - H||1 < 86/1n_.

Now, note that for integer i with IiI < n/2,

- G*(i/n) = C *(i/n +j)
3 EZ

00

- C*(i/n) < 2 G*(-1/2 - j)
j=O

< 2 cdf(or(-1/2 -j + C))
j=0

< 2 cdf(o(x + C)) dx + 2 cdf(o-(-1/2 + C))

< 26/u + 26 < 46

219

S

by Claim D.O.7, as long as

or(1/2 - C) > 21og(3/6).

Let

r 1
G i 0

1 df6(o (Zi + C)/n) - df6(c-(z - C)/n)

jil < n(C - 210 g(1/6)/o-)

2 log(1/6)/o-)
otherwise

cdf6 (t) computes cdf(t) to precision 6 in O(log(1/6)) time,
G*(i/ n) 26 = Hi 66. Hence

as per Claim D.O.7. Then

||Gd - GI'O < II i' - R1100 + II -)7110

I if '- - 100 + HG - 2

= | '- K||o + ||G -H |2
< || '- H lo + JIG - HII1

< (8 'ii + 6)6.

Replacing 6 by 6/n and plugging in o- = 2 log(n/6)
have the required properties of flat window functions:

> 1 and C = (1 - a/2)/(2B) < 1, we

SGij =0 for IiI > Q(log(n/6))

* G' 1 for jil < (1 - a)n/(2B)

* G'= 0 for Iil > n/(2B)

* G' E[0, 1] for all i.

* || U' - G||o < 6.

* We can compute G over its entire support in O(B log(n/6)) total time.

* For any i, G'j can be computed in O(log(n/6)) time for Iil E [(1 - a)n/(2B), n/(2B)] and
0(1) time otherwise.

The only requirement was Equation (D.1), which is that

4B
___ V2 log (n /6)(1/ 2

1- a/2)
-2B

> 2log(3n/6).

This holds if B > 2. The B = 1 case is trivial using the constant function G'2 = 1.

220

(D.1)

where
G'i =

D

Appendix E

Sample Lower Bound for The Bernoulli
Distribution

We will show that the lower bound of Q(k log (n/k)) on f2/f2 recovery from [146] applies to our
Bernoulli distribution from Section 5.1.4. First, we state their bound:

Lemma E.O.10 ([146] section 4). For any k < n/ log n and constant c > 0, there exists a distribu-
tion Dk over k-sparse vectors in {0, 1, - }f such that, for every distribution of matrices A C R"
with m = o (k log(n/ k)) and recovery algorithms A,

Pr[HIA(A(x + w)) - X12 < VWk/5] < 1/2

as a distribution over x D and w ~ N(0, a 2f) with 0 2 = E k / n, as well as over A and A.

First, we note that we can replace Dk with Uk, the uniform distribution over k-sparse vectors
in {0, 1, -1} in Lemma E.0.10. To see this, suppose we have an (A, A) that works with 1/2
probability over Uk. Then for any k-sparse x C {0, 1, f-1}n, if we choose a random permutation
matrix P and sign flip matrix S, PSx ~ Uk. Hence, the distribution of matrices APS and algorithm
A'(x) = A((PS)-x) works with 1/2 probability for any x, and therefore on average over Dk.
This implies that A has Q(k log(n/k)) rows by Lemma E.0.10. Hence, we can set Dk = Uk in
Lemma E.O.10.

Our algorithm works with 3/4 probability over vectors x that are not necessarily k-sparse, but
have a binomial number B(n, k/n) of nonzeros. That is, it works over the distribution U that is
Uk, : k' ~ B(n, k/n). With 1 - e -(k) > 3/4 probability, k' E [k/2, 2k]. Hence, our algorithm
works with at least 1/2 probability over (Uk, : k' ~ B(n, k /n) n k' C [k /2, 2k]). By an averaging
argument, there must exist a k' C [k/2, 2k] where our algorithm works with at least 1/2 probability
over Uk,; but the lemma implies that it must therefore take Q(k'log(n/k')) = Q(k log(n/k))
samples.

221

222

Appendix F

Analysis of QuickSync System

F.1 Analysis of the baseline algorithm

The baseline algorithm computes ak = c(k) . x for all shifts k = 0.. . n - 1. The probability that
the algorithm reports an incorrect output is equal to

P(-) = Pr[at < max ak]
k 4t

To estimate the probability of success as a function of -, we derive the distribution of the coordi-
nates ak. From our assumptions we have that ak = c(k) . (c(t) + g) - Vk + Uk, where Vk = c(k) . c(t)
and Uk = c(k) . g. Note that Uk. has normal distribution with zero mean and variance

Var[uk] = Var[c (k) gi] = nVar[Ck)]Var[gi] = no
i=O

Regarding Vk, we have the following two cases:

" If k t, i.e., for the correct value of the shift, we have vt = c(t) -c(t) = n.

" If k # t, i.e., for an incorrect value of the shift the expectation of Vk is 0.

We need to bound P(a) = Pr[n + ut < maxk Vt Vk + Uk]. The following theorem establishes
the sufficient (and as we show later, necessary) condition for the baseline algorithm to be correct
with probability 1 - o(1), i.e., P(a) -40 as n - oo.

Lemma F.1.1. Assume that o- < c(n)n/ln nfor c(n) = o(1). Then P(o-) = o(1).

Proof We will bound the probabilities of the following events: E1 : kt Uk n/3; E2: ut < - n/3
; E3 : k:t Vk > n/3. If none of the events hold then the algorithm output is correct. We will show
that Pr[E] + Pr[E2] + Pr[E3] = o(1).

To analyze E1 and E2 recall the following fact:

223

Fact F.1.2. Let 1) (s) be the c.d.f of the normal distribution with zero mean and unit variance. Then
for s > 0

1 - 1(s) < e- 2/2/S

We can now bound

rn/3
Pr[E1] < n Pr[uk n/3] = n(1 - 4())3

VVar [Uk]

where k is any index distinct from t. Since Var[uk] = n- < c(n)n2/ In n, we have

Pr[EJ] < n(1 - F(In n/(9c(n)))) < e "nn- e = o(1)

The probability Pr[E2] can be bounded in the same way.
To bound Pr[E3], assume without loss of generality that t = 0. In this case

v - c(k) . c

= (ckco + k+1c + ... + cnck-l)+ (cocn-k + +... cklcnl)

Sk + Sk

The terms in the sum Sk + Sk are in general not independent. In particular, if k = n/2, then
Sk = Sk. However, we observe the following.

Claim F.1.3. Each of Sk and Sk is a sum of independent random variables taking values in { 1, 1}
with probability 1/2.

The claim enables us to bound each sum separately. We will bound Pr[Sk > n/6] first. If
k < n/6 then the probability is zero. Otherwise, by applying the Chernoff bound we have

Pr[Sk' > n/6] < e-(n/,)2/(2k) <e- n/72

The probability Pr[Sk > n/6] can be bounded in the same way. Hence Pr[E3] < ne-n/72

o(1). D

Theorem 8.4.1 follows from Lemma F. 1.1.

F.2 Tightness of the variance bound

In this section we show that the assumption on the noise variance used in Theorem 8.4.1 is asymp-
totically tight. Specifically, we show that if o- > cn/ In n for some large enough constant c > 0,
then there with probability 1 - o(1) the output of the baseline algorithm is incorrect. This will
prove Theorem 8.4.2.

Recalling the notation in Section F. 1, we have at = n + ut, ak = Vk + Uk for k $ t. We need
to show that P(o-) = Pr[at < maxkt ak] approaches 1 for c large enough. To this end, we first

224

observe that (i) Vk > -n holds always and (ii) Pr[ut > n = o(1) since ut is a normal variable
with variance no- = 0(n2 / In n), so the desired bound holds e.g., by Chebyshev inequality. Hence
it suffices to show that

Pr[supUk ! 3n] = o(1) (F. 1)
k t

The main difficulty in proving Equation F. 1 is the fact that the random variables Uk are not
independent. If they were, a simple calculation would show that the expected value of the maximum
of n independent normal variables with variance nu is at least m/n- In n = cn, which is larger than
at = n for a large enough c. This would then ensure that the reported shift is distinct from t with
constant probability. Unfortunately, the independence could be guaranteed only if the shifted codes
c(k) were orthogonal, which is not the case.

Instead, our argument utilizes the fact that the shifted codes c(k) are "almost" orthogonal.
Specifically, let C = {c(k) : k = t}. Since (as shown in the earlier section in the context of
the event E3) the probability that for any pair c # c' c C we have c - c' < n/3 is o(1), it follows
that I1c - c' 112 > n for all such c, c' c C with probability 1 - o(1).

We can now use a powerful inequality due to Sudakov [143] to show that the random variables

Uk are "almost" independent, and thus the expected value of the maximum is still uno- In n. In our
context, the inequality states the following.

Fact F.2.1. There exists a constant c2 > 0 such that if D is the Euclidean distance between the
closest pair of vectors in C, then:

E = E[max c - g] > c2D -ln n
cCC

Since D = mil, we obtain that

E > c 2V/ cn/ n n - In n = c2n

The lower bound on the expected value of the maximum can be then converted into an upper
bound on probability that the maximum is much lower than its expectation (this follows from
simple but somewhat tedious calculations). This leads to Equation F. 1 and completes the proof of
Theorem 8.4.2.

F.3 Analysis of the QuickSync algorithm

In this section we show that the probability of correctness for the QuickSync algorithm that aliases
into n/p buckets exhibits a similar behavior to the baseline algorithm, albeit with the bucket vari-
ance larger by a factor of 0(p). At the same time, the running time of our algorithm is equal to
O(pn+ (n/p) log(n/p)). This improves over the baseline algorithm which has O(n log n) runtime
as long as the term pn is smaller than (n/p) log(n/p).

Recall that the algorithm first computes the aliased spreading code c(p) and signal x(p), de-

225

fined as
p-1 p-1

c(p)j = ci+qn/p and x(p)j =Z Xi+qn/p
q=O q=O

for i = 0 . .. n/p - 1. The aliased noise vector g(p) is defined in an analogous way.
The application of FFT, coordinate-wise multiplication and inverse FFT computes

a(p)k = c(p)(k) X(P)

for all shifts k = 0 ... n/p - 1. The algorithm then selects a(p)k with the largest value. The last
step of the algorithm fails if for t' = t mod n/p we have a(p)t, < maxkt, a(p)k. Let P'(o) be
the probability of this event. We will show that as long as -= o(pnr/ In n) we have P'(-) = o(1).

Lemma F.3.1. Assume that a- < c(n)g 'for c(n) = o(1), and that p = o(nl/ 6). Then P'(o-)

o(1).

Proof We start by decomposing each term a(p)k:

n/p-1 p-1 p-/)P-1

a(P)g = E 1: Ci/ c~qn/ p + 1: gi+qn/ pi=a (q=) q= q=O

n/p-1 p-1 /P-1 tl n/p-1 p-1 P-1
) C + gi+qn/p

i=0 (q=O = i=O (q=0 (q=0

= Vk+ Uk

Consider the following events:

o E0 : vt, < n - n/4;
.1 IA.rp E1 : -Jkgt:F W at

* E2 : ut, < -n/4;
" E3 : lkot/Vk > n/4.

If none of the events hold, then the algorithm output is correct. We need to show that Pr[E] +
Pr[EI] + Pr[E2] + Pr[E3] = o(1).

Events E1 and E2 Let C, = 0 Cjiqn/p, = gE1+qn/p and m = n/p. Observe that

-c I p and -i's are i.i.d. random variables chosen from the normal distribution with mean zero
and variance pa-. Conditioned on the choice of -is, the random variable Uk = ci+k gi has
normal distribution with variance pp-, where p =E_ (0i+k) 2 . We first show that it 4pm
with very high probability, and then bound the tail of a normal random variable with variance
4pm.

The following fact is adapted from [119], Theorem 3.1.

Fact F.3.2. Let R 3, i = 0 . .. m - 1 andj =0.. . p - 1, be i.i.d. random variable taking values
uniformly at random from {-1, 1}. Let T, = 1/ m Z'LEP1 Rij. There is an absolute constant C

226

such that
rn-1

Pr[Z T 4p] > 1 - 2e-/C
i=O

Applying the fact to R = c (, we conclude that with probability 1 - o(1) we have p <
m EN1 T2 < 4pm = 4n. In that case Var~uk] 4np- 4npc(n)p - 4n 2 c(n)/ ln(n). We
then follow the proof of Lemma F. 1.1.

Event E0 Observe that vt' is a sum of terms qi = (E-1 C(t')2, where each qi is a square of
a sum of p independent random variables taking values in { -1, 1} with probability 1/2. It follows
that E[qi] = p, and therefore E[vt,] = n/p -p = n. To bound the deviation of vt, from its mean n,
we first compute its variance.

n/p-1

Var[vk] Var[E qj]
i=O

< n/p E[q2]
p-i

= n/p- E [(E Cin/,)4]
q=0

= n/p-((4) Z E[(c~Qq fl/)2(C~t'l)2] + Z E[(ct)1 Ip)4])2 q-Xq' Iq 1qnp q 1q

= n/p -(6p(p -1)+ p) < 7pn

We can now use Chebyshev's inequality:

Pr[lvt, - n7 > n/4] < Var[vt,]/(n/4) 2 < 7pn/(n/4) 2 = o(j)

Event E3 It suffices to bound Pr[E3]. To this end we bound Pr[vk > n/4]. Without loss of
generality we can assume t = 0. Then Vk = ZL-lCi Ci+k, where i + k is taken modulo n/p.

We first observe that in each term Bi i+k, the random variables ni and Ci+k are independent
(since k # 0). This implies E[4iJ+k] =E[a2]E[ci+k] = 0, and therefore E[vk] = 0.

To bound Pr[vk n/4], we compute the fourth moment of vt, (using the second moment does
not give strong enough probability bound). We have

n/p-1

E[vk] = E E i+k
i=0

n/p-1

= Ej3 E[&1&1+k * Ci2i2+k * j3bC+k ' ^4 1+]
i1,i2, i3,i4=0

Observe that the expectation of any term in the above sum that contains an odd power of ni is zero.
Hence the only remaining terms have the form E[2 2 2 ?], where Ji ... j4 are not necessarily

227

distinct. Let I be a set of such four-tuples (ji, j2, iJ, j4). We observe that for (jI, J2, J3, j4) to belong
in I, at least two disjoint pairs of indices in the sequence i1 , ii + k, i2 , i2 + k, i3 , i + k, Z4 , i4 + k
must be equal. This means that III = C(n/p)2 for some constant C. Since &ciI < p, we have

E[v4] < C(n/p)2p8 < Cn2p6 . Thus

Pr[vk > n/4] < E [v]/(n/4)4 < Cn2 p6 C -44 . p6 n 2
(n/4)4

This implies Pr[E3] < n Pr[vk > n/4] < C - 44. p 6/n which is o(1) if p - o(n1/6). E

We now show that if the noise variance o is "small" then one can check each shift using few
time domain samples.

Lemma F.3.3. Assume that c- < c(n) > . Consider an algorithm that, given a set K of p shifts,

computes

12 = c(k)[0 ... T - 1] -x[0 . .. T - 1]

for T = n/p, and selects the largest ak over k E K. Then

P"(-) = Pr[at < max ak] = o(1)
kht

Proof The argument is similar to the proof of Lemma F. 1.1. We verify it for an analog of the event
E1 ; the proofs for E2 and E3 are straightforward syntactic modifications of the original arguments.

First, observe that c(') [0 ... T - 1] -c(t)[0 . . . T - 1] = T. Let uk' = C (k) [0 ... T - 1] -g[0 . .. T -
1]. Consider the event E : 3kEKU' > T/3. We can bound

Pr[Ef] < p Pr[u' > T/3] = n(i - 4<(T/3
Var[u]

Since Var[u4] = To- < c(n) 2, we have

In(n)
Pr[Ef] < p(l - <b(ln n/(9c(n)))) < e""fei1i?) = o(1)

Proofs of Theorem 8.4.3 and Theorem 8.4.4 To prove Theorem 8.4.3, recall that given a sig-
nal x consisting of p blocks, each of length n and with noise variance or, QuickSync starts by
aliasing the p blocks into one. This creates one block of length n, with noise variance c-/p (after
normalization). We then apply Lemmas F.3.1 and F.3.3.

Theorem 8.4.4 follows from the assumption that o- = c(n) n and Lemma F.3.1.

228

Appendix G

A 0.75 Million Point Sparse Fourier
Transform Chip

In this appendix, we present the first VLSI implementation of the Sparse Fourier Transform al-
gorithm. The chip implements a 746,496-point Sparse Fourier Transform, in 0.6mm 2 of silicon
area. At 0.66V, it consumes 0.4pJ/sample and has an effective throughput of 36GS/s. The effective
throughput is computed over all frequencies but frequencies with negligible magnitudes are not
produced. The chip works for signals that occupy up to 0.1% of the transform frequency range
(0.1% sparse). It can be used to detect a signal that is frequency hopping in a wideband, to perform
pattern matching against a long code, or to detect a blocker location with very high frequency res-
olution. For example, it can detect and recover a signal that occupies 18 MHz randomly scattered
anywhere in an 18 GHz band with a frequency resolution of ~ 24 kHz.

G.1 The Algorithm

We start by describing the Sparse Fourier Transform algorithm implemented on this chip. Below
are bucketization, estimation, and collision resolution techniques we used for our implementation.

Bucketization: The algorithm starts by mapping the spectrum into buckets. This is done by
sub-sampling the signal and then performing an FFT. Sub-sampling in time causes aliasing in
frequency. Since the spectrum is sparsely occupied, most buckets will be either empty or have a
single active frequency, and only few buckets will have a collision of multiple active frequencies.
Empty buckets are discarded and non-empty buckets are passed to the estimation step.

Estimation: This step estimates the value and frequency number (i.e. location in the spectrum)
of each active frequency. In the absence of a collision, the value of an active frequency is the value
of its bucket. To find the frequency number, the algorithm repeats the bucketization on the original
signal after shifting it by 1 sample. A shift in time causes a phase change in the frequency domain
of 27rf T/N, where f is the frequency number, T is the time shift, and N is the Sparse Fourier
Transform size. Thus, the phase change can be used to compute the frequency number.

229

Memory Interface

Bucketization
C

FFT F 2 '-point

FFT 2 2 -point

FFT 3 2'--point

TF 4 - -point

FFT 5 3 6 point

FFT 6 3 6 -point

Reconstruction

Scheduler Update

Estimation Collision
Detection

Figure G-1: A Block Diagram of the 2") x 31)-point Sparse Fourier Transform: The I/O inter-

face, Bucketization and Reconstruction blocks operate in parallel on three different Sparse Fourier

Transfonrm frames. The figure also shows the input samples to the six FFTs.

Collision Resolution: The algorithm detects collisions as follows: If a bucket contains a collision

then repeating the bucketization with a time shift causes the bucket's magnitude to change since

the colliding frequencies rotate by different phases. In contrast, the magnitude does not change if

the bucket has a single active frequency. After detecting collisions, the algorithm resolves them by

using bucketization multiple times with co-prime sampling rates (FFTs with co-prime sizes). The

use of co-prime sampling rates guarantees that any two frequencies that collide in one bucketization

do not collide in other bucketizations.

G.2 The Architecture

The block diagram of the Sparse Fourier Transform chip is shown in Figure G-1. A 12-bit 746,496-

point (21(x 3-point) Sparse Fourier Transform is implemented. Two types of FFTs (2"' and 36-
point) are used for bucketization. The input to the 2 11 -point FFT is the signal sub-sampled by 36,
while the input to the 3-point FFT is the signal sub-sampled by 21(1. FFTs of sizes 2' and 36 were

chosen since they are co-prime and can be implemented with simple low-radix FFTs. Three FFTs

of each size are used with inputs shifted by 0, 1 or 32 time samples, as shown in Figure G-1. In

principle, shifts of 0 and 1 are sufficient. However, the third shift is used to increase the estimation

accuracy. One 1024-word and one 729-word SRAMs are used for three 2 1"-point and three 3"-
point FFTs, respectively. SRAMs are triplicated to enable pipelined operation of the I/O interface,

bucketization and reconstruction blocks. Thus, 3 Sparse Fourier Transform frames exist in the

230

IO interface

Control Registers

Scan Chain Driver

SRAM 5 SRAM6SRAM 1 1 SRAM 2 SRAM 3 SRAM 4

--.---- ---- ---- ------------- I a ea aBlock Floating Point Real Imag Real Imag

Current Frame Exponent FFT 3
FFT 2

124 0 12 012 ,0'12 FIFT I

Decision for Tracking : mag[11:912

next frame Overflow Reg
Real[11:9R

12 2

Xurrent Frame /uX >> C eF

14 142 2 2

Twiddle Factor ROM MUX MUX

a Reg
MUX MUX

Real 1,2,3 & mg 1,2,3 & 41

* R/ITWF I/R TWr1
Truncate values to 14b

L ------. ------ --------- 4o - --------- --- a

122

__________________ ___________________ Multiplication Result in

12 Carry Save Format
24 24 2U 24

a r 4 I

a + +++

24 24 24 24

Real 1 al l 2 Real 3 Real 4

Ima 3 ma 4

Multiply
MUX MUX

Accumulate unit
for Real part

--......---..---.--....----------------------------.

+ + +

24 24 24

Imag 1 Imag 2 Imag 3

Real

Multiply
MUX

Accumulate unit
for Imag part

-.......-...-......-...-.-..-.--------

24

Imag 4

3 Real 4

MUX

Figure G-2: The Micro-Architecture of the 2"1 -point FFT's. Block floating point (BFP) is used

to reduce the bit-width requirement during the computation of the FFT, while maintaining the

required resolution at the output.

pipeline.

The micro-architecture of the 2"1 -point FFT is shown in Figure G-2. Each 2 10-point FFT uses

one radix-4 butterfly to perform an in-place FFT, which is optimized to reduce area and power con-

sumption as follows: First, the FFT block performs read and write operations at even and odd clock

cycles, respectively, which enables the use of single port SRAMs. A single read operation provides

three complex values, one for each radix-4 butterfly. The complex multiplication is computcd over

two clock cycles using two multipliers for each butterfly. Second, a twiddle factor (TWF) control

231

Reading Inputs of Butterfly kWriting Outputs of Butterfly k-1

Collision Detection

Compakatoi

Mean

ml. ad

Estimation Freq Reccovery Freq Reccovery
(for 2(-point FFTs) (for 36-point FFTs)

) 01s 0 04 412+124

0 O Q AO) AO() AO AO -

~=3 0

h F-h7F7]dPhias Phase
/L] - LILIL- 13 "1a1 g

change

2) X

Chan6ge

I~jK~lII~L~?II 20I-

f7 - 17]10

covery. The complex values (ri. 4), (r2. 42) and (rs3. 4) are the output of Bucketization for time-

shifts 0, 1 and 32 samples. In Frequency Recovery, 3 bits of overlap are used to fix errors due to
concatenation (c1. (2).

unit is shared between the three butterflies. Third, the block floating point (BFP) technique is used
to minimize the quantization error [189]. BFP is implemented using a single exponent shared be-
tween FFTs, and scaling is done by shifting in case of overflow. Round-half-away-from-zero is

implemented by initializing the accumulator registers with 0.5LSB and truncating the results. The

316-point FFTs are similar, but use radix-3 butterflies.
The micro-architecture of estimation and collision detection is shown in Figure G-3. Phase

shift and phase detector units use the CORDIC algorithm. The estimation block operates in two
steps. First, time shifts of 1 and 32 samples are used to compute the MSBs and LSBs of the phase
change, respectively. A 3-bit overlap is used to fix errors due to concatenation. Since the 5 MSBs
of phase change are taken directly from the output of phase detectors, active frequencies have to
be 30dB above the quantization noise to be detected correctly. Frequencies below this level are
considered negligible. The frequency number is estimated from the phase change. This frequency
number may have errors in the LSBs due to quantization noise. The second step corrects any such
errors by using the bucket number to recover the LSBs of the frequency number. This is possible
because all frequencies in a bucket share the same remainder B (B =f mod A, where f is the
frequency number and is the FFT size), which is also the bucket number. Thus, in the frequency
recovery block associated with the 2'-point FeTs, the bucket number gives the 10 LSBs of the
frequency number. However, in the frequency recovery for the 36-point FFTs, the LSBs cannot be
directly replaced by the bucket number since A= 3s is not a power of 2. Instead, the remainder of

232

Freq. Reco\cvry

Technology 45 nm SOI CMOS
Core Area 0.6 mm x 1.0 mm

SRAM 3 x 75 kbits and 3 x 54 kbits
Core Supply Voltage 0.66-1.18V

Clock Frequency 0.5-1.5 GHz
Core Power 14.6-174.8 mW

Table G. 1: Sparse Fourier Transform Chip Features

dividing the frequency number by 36 is calculated and subtracted from the frequency number. The
bucket number is then added to the result of the subtraction. In our implementation, calculating
and subtracting the remainder is done indirectly by truncating the LSBs of the phase change.

The collision detection block in Figure G-3 compares the values of the buckets with and with-
out time-shifts. It uses the estimated frequency to remove the phase change in the time-shifted
bucketizations and compares the three complex values to detect collisions. In the case of no colli-
sion, the three values are averaged to reduce noise. The result is used to update the output of the
Sparse Fourier Transform in SRAMs.

G.3 The Chip

The testchip is fabricated in IBM's 45nm SOI technology. Table G. 1 shows the features of the
Sparse Fourier Transform chip and Figure G-4 shows the die photo of the testchip. The Sparse
Fourier Transform core occupies 0.6mm2 including SRAMs. At 1.18V supply, the chip operates
at a maximum frequency of 1.5 GHz, resulting in an effective throughput of 109 GS/s. At this
frequency, the measured energy efficiency is 1.2pJ per 746,49-point Fourier transform. Reducing
the clock frequency to 500 MHz enables an energy efficiency of 298nJ per Fourier transform
at 0.66V supply. Energy and operating frequency for a range of supply voltages are shown in
Figure G-5.

Since no prior ASIC implementations of the Sparse Fourier Transform exist, we compare with
recent low power implementations of the traditional FFT [29, 155, 182]. The measured energy is
normalized by the Fourier transform size to obtain the energy per sample (the Sparse Fourier Trans-
form chip, however, outputs only active frequencies). Table G.2 shows that the implementations
in [29, 155, 182] work for sparse and non-sparse signals while the Sparse Fourier Transform chip
works for signal sparsity up to 0.1%. However, for such sparse signals, the chip delivers ~ 40 x
lower energy per sample for a 36 x larger FFT size. Finally, the 746,496-point Sparse Fourier
Transform chip runs in 6.8ps when operated at 1.5 GHz which corresponds to an 88 x reduction in
runtime compared to the C++ implementation that takes 600ps on an Intel-Core i7 CPU operating
at 3.4 GHz.

233

Figure G-4: Die Photo of the Sparse Fourier Transform Chip

Energy/Sample 17.2 pJ 50 pJ 19.5-50.6 pJ

Table G.2: Comparison of Sparse Fourier Transform
energy efficiency and performance of the Sparse Fourier
FFTs. For applications with frequency-sparse signals, the
lower energy per sample.

Chip with FFT Chips The measured
Transform chip compared to published
Sparse Fourier Transform enables 43 x

234

Technology 65 nm 90 nm 65 nm 45 nm
Signal Type Any Signal Any Signal Any Signal Sparse Signal

Size 210 2' to 2" 3) x 210
Word Width 16 bits 10 bits 12 bits 12 bits

Area 8.29 mm 2 5.1 mm 2 1.37 mm 2 0.6 mm 2

Throughput 240 MS/s 2.4 GS/s 1.25-20 MS/s 36.4-109.2 GS/s

[155]

0.4-1.6 pJ

[29] [182] This Chip

0.7 0.8 0.9
VDD (V)

1

40 50 60 70 80
Effective Throughput (GS/s)

1.1

90 100

Figure G-5: Chip Measurement Results. Energy and frequency of operation for a range of volt-

age, and throughput versus Energy per sample for computing a 21L- x 3"-point Sparse Fourier

Transfonm.

235

1

1.5

C

C.,

U

0
0

1.0

0.5r

Clock Frequency -------
Energy per sFFT

.. - -

-f....... ...

0.6

1.5

1

0.

E
C,)

1500

0-

1000 LL.
U-

500 0

1.I

.2

110

0.5

ni
"30

I

...................-

......

.................

-..-..

-..

236

Bibliography

[1] 0. Abari, F. Chen, F. Lim, and V. Stojanovic. Performance trade-offs and design limitations
of analog-to-information converter front-ends. In ICASSP, 2012.

[2] 0. Abari, F. Lim, F. Chen, and V. Stojanovic. Why analog-to-information converters suffer
in high-bandwidth sparse signal applications. IEEE Transactions on Circuits and Systems I,
2013.

[3] Omid Abari, Ezzeldin Hamed, Haitham Hassanieh, Abhinav Agarwal, Dina Katabi, Anan-
tha Chandrakasan, and Vladimir Stojanovic. 27.4 a 0.75-million-point fourier-transform
chip for frequency-sparse signals. In Proceedings of the IEEE International Solid-State
Circuits Conference Digest of Technical Papers, ISSCC'14, pages 458-459, Feb 2014.

[4] E. H. Adelson and J. Y. A. Wang. Single lens stereo with a plenoptic camera. IEEE PAMI,
14(2):99-106, February 1992.

[5] R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence databases.
Int. Conf on Foundations of Data Organization and Algorithms, pages 69-84, 1993.

[6] A. Akavia. Deterministic sparse fourier approximation via fooling arithmetic progressions.
COLT, pages 381-393, 2010.

[7] A. Akavia, S. Goldwasser, and S. Safra. Proving hard-core predicates using list decoding.
FOCS, pages 146-, 2003.

[8] M. Akcakaya and V. Tarokh. A frame construction and a universal distortion bound for
sparse representations. Signal Processing, IEEE Transactions on, 56(6):2443 -2450, june
2008.

[9] 0. C. Andronesi, G. S. Kim, E. Gerstner, T. Batchelor, A. A. Tzika, V. R. Fantin, M. G. Van-
der Heiden, and A. G. Sorensen. Detection of 2-Hydroxyglutarate in IDH-mutated Glioma
Patients by Spectral-editing and 2D Correlation Magnetic Resonance Spectroscopy. Science
Translational Medicine, 4(116), 2012.

[10] 0. C. Andronesi, S. Ramadan, C. E. Mountford, and A. G. Sorensen. Low-Power Adi-
abatic Sequences for In Vivo Localized Two-Dimensional Chemical Shift Correlated MR
Spectroscopy. Magnetic Resonance in Medicine, 64:1542-1556, 2010.

237

[11] Ovidiu C. Andronesi, Borjan A. Gagoski, Elfar Adalsteinsson, and A. Gregory Sorensen.
Correlation Chemical Shift Imaging with Low-Power Adiabatic Pulses and Constant-
Density Spiral Trajectories. NMR Biomedicine, 25(2):195-209, 2012.

[12] P.C. Aoto, R.B. Fenwick, G.J.A. Kroon, and P.E. Wright. Accurate Scoring of Non-Uniform
Sampling Schemes for Quantitative NMR. Journal of Magnetic Resonance, 246:31-35,
2014.

[13] Paramvir Bahl, Ranveer Chandra, Thomas Moscibroda, Rohan Murty, and Matt Welsh.
White space networking with wi-fi like connectivity. In Proceedings ofthe A CMSIGCOMM
2009 conference on Data communication, 2009.

[14] V. Bahskarna and K. Konstantinides. Image and Video Compression Standards : Algorithms
and Architectures. Kluwer Academic Publishers, 1995.

[15] J.C.J. Barna, E.D. Laue, M.R. Mayger, J. Skilling, and S.J.P. Worrall. Exponential Sampling,
an Alternative Method for Sampling in Two-Dimensional NMR Experiments. Journal of
Magnetic Resonance, 73:69-77, 1987.

[16] T. Baykas, M. Kasslin, M. Cummings, Hyunduk Kang, J. Kwak, R. Paine, A. Reznik,
R. Saeed, and S.J. Shellhammer. Developing a standard for TV white space coexistence.
IEEE Wireless Communications, 19(1), 2012.

[17] M. Billeteri and V.Y. Orekhov. Preface: Fast NMR Methods Are Here to Stay. In:Novel
Sampling Approaches in Higher Dimensional NMR,. Springer, 316:ix-xiv, 2012.

[18] Tom E. Bishop, Sara Zanetti, and Paolo Favaro. Light field superresolution. In In IEEE
ICCP, 2009.

[19] G. Bodenhausen and R.R. Ernst. The Accordion Experiment, A Simple Approach to 3-
Dimensional NMR Spectroscopy. Journal of Magnetic Resonance, 45:367-373, 1981.

[20] R.N. Bracewell. Strip Integration in Radio Astronomy. Aust. Journal ofPhysics, 9:198-217,
1956.

[21] G.L. Bretthorst. Bayesian-Analysis. 1. Parameter-Estimation Using Quadrature NMR Mod-
els. Journal of Magnetic Resonance, 88:533-551, 1990.

[22] Bernhard Buchli, Felix Sutton, and Jan Beutel. GPS-equipped wireless sensor network node
for high-accuracy positioning applications. In EWSN 2012, Trento, Italy.

[23] Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen. Un-
structured lumigraph rendering. In SIGGRAPH '01, pages 425-432. ACM, 2001.

[24] N. Bulusu, J. Heidemann, and D. Estrin. GPS-less low-cost outdoor localization for very
small devices. IEEE Personal Communications, Oct. 2000.

238

[25] E. Candes and T. Tao. Near optimal signal recovery from random projections: Universal
encoding strategies. IEEE Trans. on Info. Theory, 2006.

[26] E.J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: exact signal reconstruc-
tion from highly incomplete frequency information. IEEE Transactions on Information
Theory,, 52(2):489-509, 2006.

[27] Y. Chan and V. Koo. An Introduction to Synthetic Aperture Radar (SAR). Progress In
Electromagnetics Research B, 2008.

[28] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos. Data driven signal processing: An ap-
proach for energy efficient computing. International Symposium on Low Power Electronics
and Design, 1996.

[29] Yuan Chen, Yu-Wei Lin, Yu-Chi Tsao, and Chen-Yi Lee. A 2.4-Gsample/s DVFS FFT Pro-
cessor for MIMO OFDM Communication Systems. IEEE Journal of Solid-State Circuits,,
43(5):1260-1273, May 2008.

[30] C. Cheng and K. Parhi. Low-cost fast VLSI algorithm for discrete fourier transform. IEEE
Transactions on Circuits and Systems, April 2007.

[31] R.A. Chylla and J.L. Markley. Theory And Application of The Maximum-Likelihood Prin-
ciple To NMR Parameter-Estimation of Multidimensional NMR Data. Journal ofBiomolec-
ularNMR, 5:245-258, 1995.

[32] Barry A. Cipra. The Best of the 20th Century: Editors Name Top 10 Algorithms. SIAM
News, 33(4), 2000.

[33] B.E. Coggins, R.A. Venters, and P. Zhou. Radial Sampling for Fast NMR: Concepts and
Practices Over Three Decades. Progress in Nuclear Magnetic Resonance, 57:381-419,
2010.

[34] J.W. Cooley and J.W. Tukey. An Algorithm for the Machine Calculation of Complex Fourier
Series. Math. Comp., 19:297-301, 1965.

[35] G. Cormode and S. Muthukrishnan. Combinatorial algorithms for compressed sensing.
SIROCCO, 2006.

[36] Thomas Cover and Joy Thomas. Elements ofInformation Theory. Wiley Interscience, 1991.

[37] Abe Davis, Marc Levoy, and Fredo Durand. Unstructured light fields. Comp. Graph. Forum,
31(21):305-314, May 2012.

[38] F. Delaglio, S. Grzesiek, G.W. Vuister, G. Zhu, J. Pfeifer, and A. Bax. NMRPipe: a Mul-
tidimensional Spectral Processing System Based on UNIX Pipes. Journal ofBiomolecular
NMR, 6:277-293, 1995.

239

[39] Dexter Industries. dGPS for LEGO MINDSTORMS NXT. http://dexterindustries.com.

[40] DigiKey, ADCs. http://www.digikey.com/.

[41] G.M. Djuknic and R.E. Richton. Geolocation and assisted GPS. Computer, 34(2):123 -125,
feb 2001.

[42] Fredo Durand, Nicolas Holzschuch, Cyril Soler, Eric Chan, and Franvois X. Sillion. A
frequency analysis of light transport. ACM Transactions on Graphics, 24(3):1115-1126,
August 2005.

[43] Kevin Egan, Yu-Ting Tseng, Nicolas Holzschuch, Frddo Durand, and Ravi Ramamoorthi.
Frequency analysis and sheared reconstruction for rendering motion blur. A CM Transactions
on Graphics, 28(3):93:1-93:13, July 2009.

[44] H.R. Eghbalnia, A. Bahrami, M. Tonelli, K. Hallenga, and J.L. Markley. High-Resolution
Iterative Frequency Identification for NMR as a General Strategy for Multidimensional Data
Collection. Journal of the American Chemical Society, 127:12528-12536, 2005.

[45] Sparkfun Electronics. Sige gn3s sampler v3. http://www.sparkfun.com.

[46] A. Elkhaled, L. E. Jalbert, J. J. Phillips, H. A. I. Yoshihara, R. Parvataneni, R. Srinivasan,
G. Bourne, M. S. Berger, S. M. Chang, S. Cha, and S. J. Nelson. Magnetic Resonance of 2-
Hydroxyglutarate in IDH 1-Mutated Low-Grade Gliomas. Science Translational Medicine,
4(116), 2012.

[47] Ettus Inc. USRP. http://ettus.com.

[48] FCC, Second Memorandum Opinion & Order 10-174. http://www.fcc.gov/encyclopedia/w
hite-space-database-administration.

[49] C. Fernandez-Prades, J. Arribas, P. Closas, C. Aviles, and L. Esteve. GNSS-SDR: an open
source tool for researchers and developers. In ION GNSS Conference, 2011.

[50] Glenn Fleishman. How the iphone knows where you are. Macworld, Aug. 2011.

[51] Glenn Fleishman. Inside assisted GPS: helping GPS help you. Arstechnica, Jan. 2009.

[52] R. Freeman and E. Kupce. New Methods for Fast Multidimensional NMR. Journal of
Biomolecular NMR, 27:101-113, 2003.

[53] M.A. Frey, Z.M. Sethna, G.A. Manley, S. Sengupta, K.W. Zilm, J.P. Loria, and S.E. Bar-
rettm. Accelerating Multidimensional NMR and MRI Experiments Using Iterated Maps.
Journal of Magnetic Resonance, 237:100-109, 2013.

[54] M. Frigo and S. G. Johnson. FFTW 3.2.3. http://www.fftw.org/.

240

[55] Todor Georgeiv, Ke Colin Zheng, Brian Curless, David Salesin, Shree Nayar, and Chintan
Intwala. Spatio-angular resolution tradeoff in integral photography. In In Eurographics
Symposium on Rendering, pages 263-272, 2006.

[56] Badih Ghazi, Haitham Hassanieh, Piotr Indyk, Dina Katabi, Eric Price, and Lixin Shi.
Sample-Optimal Average-Case Sparse Fourier Transform in Two Dimensions. In Proceed-
ings of the 51st Annual Allerton Conference on Communication, Control, and Computing,
Allerton'13, pages 1258-1265, Oct 2013.

[57] A. Gilbert, S. Guha, P. Indyk, M. Muthukrishnan, and M. Strauss. Near-optimal sparse
fourier representations via sampling. STOC, 2002.

[58] A. Gilbert and P. Indyk. Sparse recovery using sparse matrices. Proceedings ofIEEE, 2010.

[59] A. Gilbert, M. Muthukrishnan, and M. Strauss. Improved time bounds for near-optimal
space fourier representations. SPIE Conference, Wavelets, 2005.

[60] A. Gilbert, M. Muthukrishnan, and M. Strauss. Improved time bounds for near-optimal
space fourier representations. In SPIE, 2005.

[61] A.C. Gilbert, M.J. Strauss, and J. A. Tropp. A tutorial on fast fourier sampling. Signal
Processing Magazine, 2008.

[62] Anna C. Gilbert, Yi Li, Ely Porat, and Martin J. Strauss. Approximate sparse recovery:
optimizing time and measurements. In STOC, pages 475-484, 2010.

[63] 0. Goldreich and L. Levin. A hard-corepredicate for allone-way functions. pages 25-32,
1989.

[64] Andrea Goldsmith. Wireless Communications. Cambridge University Press, 2005.

[65] Joseph W. Goodman. Introduction To Fourier Optics. McGraw-Hill, 1996.

[66] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. The lumi-
graph. In SIGGRAPH '96, pages 43-54, New York, NY, USA, 1996. ACM.

[67] Sherrie Gossett. GPS implant makes debut. WND, May 2003.

[68] Y. M. Greshishchev, J. Aguirre, M. Besson, R. Gibbins, C. Falt, P. Flemke, N. Ben-Hamida,
D. Pollex, P. Schvan, and S. C. Wang. A 40 gs/s 6b adc in 65 nm cmos. In IEEE Solid-State
Circuits Conference (ISSCC), 2010.

[69] Haitham Hassanieh, Fadel Adib, Dina Katabi, and Piotr Indyk. Faster GPS via the Sparse
Fourier Transform. In Proceedings of the 18th Annual International Conference on Mobile
Computing and Networking, MOBICOM '12, pages 353-364, New York, NY, USA, 2012.
ACM.

241

[70] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Nearly Optimal Sparse
Fourier Transform. In Proceedings of the Forty-fourth Annual ACM Symposium on The-
ory of Computing, STOC '12, pages 563-578, New York, NY, USA, 2012. ACM.

[71] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. SFFT: Sparse Fast Fourier
Transform. 2012. http://www.sparsefft.com.

[72] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. Simple and Practical Algo-
rithm for Sparse Fourier Transform. In Proceedings of the Twenty-third Annual A CM-SIAM
Symposium on Discrete Algorithms, SODA '12, pages 1183-1194. SIAM, 2012.

[73] Haitham Hassanieh, Maxim Mayzel, Lixin Shi, Dina Katabi, and VladislavYu Orekhov.
Fast multi-dimensional NMR acquisition and processing using the sparse FFT. Journal of
Biomolecular NMR, 63(1):9-19, 2015.

[74] Haitham Hassanieh, Lixin Shi, Omid Abari, Ezzeldin Hamed, and Dina Katabi. GHz-Wide
Sensing and Decoding Using the Sparse Fourier Transform. In Proceedings of the IEEE
International Conference on Computer Communications, INFOCOM'14, pages 2256-2264,
April 2014.

[75] Paul Heckbert. Fundamentals of texture mapping and image warping. Master's thesis,
University of California at Berkeley, Computer Science Division, June 1989.

[76] J. Heiskala and J. Terry. OFDM Wireless LANs: A Theoretical and Practical Guide. Sams
Publishing, 2001.

[77] Juha Heiskala and John Terry, Ph.D. OFDM Wireless LANs: A Theoretical and Practical
Guide. Sams, Indianapolis, IN, USA, 2001.

[78] Aden Hepburn. Infographic: Mobile stats & facts 2011. Digital Buzz, April 2011.

[79] C. Herley and P.W. Wong. Minimum rate sampling and reconstruction of signals with ar-
bitrary frequency support. IEEE Transactions on Information Theory, 45(5):1555-1564,
1999.

[80] S. Hiller, F. Fiorito, K. Wuthrich, and G. Wider. Automated Projection Spectroscopy
(APSY). Proceedings of the National Academy of Science USA, 102:10876-10881, 2005.

[81] S. Hiller, C. Wasmer, G. Wider, and K. Wuthrich. Sequence-Specific Resonance Assignment
of SolubleNnonglobular Proteins by 7D APSY-NMR Spectroscopy. Journal ofthe American
Chemical Society, 129:10823-108-28, 2007.

[82] J.C. Hoch, M.W. Maciejewski, M. Mobli, A.D. Schuyler, and A.S. Stern. Nonuniform Sam-
pling and Maximum Entropy Reconstruction in Multidimensional NMR. Accounts of Chem-
ical Research, 47:708-717, 2014.

242

[83] D.J. Holland, M.J. Bostock, L.F. Gladden, and D. Nietlispach. Fast Multidimensional
NMR Spectroscopy Using Compressed Sensing. Angewandte Chemie International Edi-
tion, 50:6548-6551, 2011.

[84] Steven Siying Hong and Sachin Rajsekhar Katti. DOF: a local wireless information plane.
In ACM SIGCOMM, 2011.

[85] S.G. Hyberts, H. Arthanari, S.A. Robson, and G. Wagner. Perspectives in Magnetic Reso-
nance: NMR in the Post-FFT Era. Journal of Magnetic Resonance, 241:60-73, 2014.

[86] P. Indyk, E. Price, and D. P. Woodruff. On the power of adaptivity in sparse recovery. FOCS,
2011.

[87] M. Iwen. AAFFT (Ann Arbor Fast Fourier Transform). 2008.
http://sourceforge.net/projects/aafftannarborfa/.

[88] M. A. Iwen. Combinatorial sublinear-time fourier algorithms. Foundations of Computa-
tional Mathematics, 10:303 - 338, 2010.

[89] M. A. Iwen, A. Gilbert, and M. Strauss. Empirical evaluation of a sub-linear time sparse dft
algorithm. Communications in Mathematical Sciences, 5, 2007.

[90] M.A. Iwen. Improved approximation guarantees for sublinear-time fourier algorithms. Arxiv
preprint arXiv:1010.0014, 2010.

[91] Jackson Labs, Fury GPSDO. http://jackson-labs.com/.

[92] Jimmy LaMance Jani Jarvinen, Javier DeSalas. Assisted GPS: A low-infrastructure ap-
proach. GPSWorld, March 2002.

[93] V. Jaravine, I. Ibraghimov, and V.Y Orekhov. Removal of a Time Barrier for High-
Resolution Multidimensional NMR Spectroscopy. Nature Methods, 3:605-607, 2006.

[94] V.A. Jaravine and V.Y. Orekhov. Targeted Acquisition for Real-Time NMR Spectroscopy.
Journal of the American Chemical Society, 128:13421-13426, 2006.

[95] J. Kahn, G. Kalai, and N. Linial. The influence of variables on boolean functions. FOCS,
1988.

[96] Elliott D. Kaplan. Understanding GPS Principles and Applications. Artech House Publish-
ers, February 1996.

[97] M. Karim and M. Sarraf. W-CDMA and CDMA2000for 3G mobile networks. McGraw-Hill,
2002.

[98] K. Kazimierczuk, W. Kozminski, and I. Zhukov. Two-dimensional Fourier Rransform of
Arbitrarily Sampled NMR Data Sets. Journal of Magnetic Resonance, 179:323-328, 2006.

243

[99] K. Kazimierczuk and V.Y. Orekhov. Accelerated NMR Spectroscopy by Using Compressed
Sensing. Angewandte Chemie International Edition, 50:5556-5559, 2011.

[100] K. Kazimierczuk, A. Zawadzka-Kazimierczuk, and W. Kozminski. Non-Uniform Fre-
quency Domain for Optimal Exploitation of Non-Uniform Sampling. Journal of Magnetic
Resonance, 205:286-292, 2010.

[101] E. Kupce and R. Freeman. Projection-Reconstruction Technique for Speeding Up Multidi-
mensional NMR Spectroscopy. Journal of the American Checmial Society, 126:6429-6440,
2004.

[102] E. Kushilevitz and Y. Mansour. Learning decision trees using the fourier spectrum. STOC,
1991.

[103] J.N. Laska, W.F. Bradley, T.W. Rondeau, K.E. Nolan, and B. Vigoda. Compressive sensing
for dynamic spectrum access networks: Techniques and tradeoffs. In IEEE Symposium on
New Frontiers in Dynamic Spectrum Access Networks (DySPAN), 2011, 2011.

[104] D. Lawlor, Y. Wang, and A. Christlieb. Adaptive sub-linear time fourier algorithms.
arXiv:1207.6368, 2012.

[105] E. Lescop, P. Schanda, and B. Brutscher. A Set of BEST Triple-Resonance Experiments for
Time-Optimized Protein Resonance Assignment. Journal ofMagnetic Resonance, 187:163-
169, 2007.

[106] A. Levin and F. Durand. Linear view synthesis using a dimensionality gap light field prior.
In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages
1831-1838, 2010.

[107] Anat Levin, Rob Fergus, Fredo Durand, and William T. Freeman. Image and depth from a
conventional camera with a coded aperture. In ACMSIGGRAPH 2007papers, SIGGRAPH
'07, New York, NY, USA, 2007. ACM.

[108] Anat Levin, William T. Freeman, and FrAOdo Durand. Understanding camera trade-offs
through a bayesian analysis of light field projections. MIT CSAIL TR, 2008.

[109] Anat Levin, Samuel W Hasinoff, Paul Green, Fredo Durand, and William T Freeman. 4d
frequency analysis of computational cameras for depth of field extension. In A CM Transac-
tions on Graphics (TOG), volume 28, page 97. ACM, 2009.

[110] Anat Levin, Peter Sand, Taeg Sang Cho, Fredo Durand, and William T Freeman. Motion-
invariant photography. In ACM Transactions on Graphics (TOG), volume 27, page 71.
ACM, 2008.

[111] Marc Levoy and Pat Hanrahan. Light field rendering. In SIGGRAPH '96, pages 31-42,
New York, NY, USA, 1996. ACM.

244

[112] Mengda Lin, A. P. Vinod, and Chong Meng Samson See. A new flexible filter bank for low
complexity spectrum sensing in cognitive radios. Journal of Signal Processing Systems,
62(2):205-215, 2011.

[113] Jie Liu, Bodhi Priyantha, Ted Hart, Heitor Ramos, Antonio Loureiro, and Qiang Wang.
Energy Efficient GPS Sensing with Cloud Offloading. In SenSys, 2014.

[114] M. Lustig, D.L. Donoho, J.M. Santos, and J.M. Pauly. Compressed sensing mri. Signal
Processing Magazine, IEEE, 25(2):72-82, 2008.

[115] Richard Lyons. Understanding Digital Signal Processing. 1996.

[116] Y. Mansour. Randomized interpolation and approximation of sparse polynomials. ICALP,
1992.

[117] G. Marsaglia. Evaluating the normal distribution. Journal ofStatistical Software, 11(4):1-7,
2004.

[118] K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar. Compressive Light Field Photography
using Overcomplete Dictionaries and Optimized Projections. ACM Trans. Graph. (Proc.
SIGGRAPH), 32(4):1-11, 2013.

[119] J. Matousek. On variants of the johnson-lindenstrauss lemma. Random Structures & Algo-
rithms, 33(2), 2008.

[120] Y. Matsuki, M.T. Eddy, and J. Herzfeld. Spectroscopy by Integration of Frequency and Time
Domain Information for Fast Acquisition of High-Resolution Dark Spectra. Journal of the
American Checmial Society, 131:4648-4656, 2009.

[121] Maxim IC. MAX2745 single-chip global positioning system front-end downconverter.
http://www.maxim-ic.com.

[122] M. Mayzel, K. Kazimierczuk, and V.Y. Orekhov. The Causality Principle in the Reconstruc-
tion of Sparse NMR Spectra. Chemical Communications, 50:8947-8950, 2014.

[123] Microsoft Spectrum Observatory. http://spectrum-observatory.cloudapp.net.

[124] M. Mishali and YC. Eldar. From Theory to Practice: Sub-Nyquist Sampling of Sparse
Wideband Analog Signals. IEEE Journal of Selected Topics in Signal Processing, 4(2):375-
391, 2010.

[125] M. Mishali and Y.C. Eldar. Wideband Spectrum Sensing at Sub-Nyquist Rates. IEEE Signal
Processing Magazine, 28(4):102-135, 2011.

[126] Don P. Mitchell. Spectrally optimal sampling for distributed ray tracing. In Computer
Graphics (Proceedings of SIGGRAPH 91), volume 25, pages 157-164, July 1991.

245

[127] M. Mobli, A.S. Stem, and J.C. Hoch. Spectral Reconstruction Methods in Fast NMR: Re-
duced Dimensionality, Random Sampling and Maximum Entropy. Journal of Magnetic
Resonance, 182:96-105, 2006.

[128] Rene Jr. Landry Mohamed Sahmoudi, Moeness G. Amin. Acquisition of weak gnss signals
using a new block averaging pre-processing. In IEEE/ION Position, Location and Naviga-
tion Symposium 2008.

[129] V. Motackova, J. Novacek, A. Zawadzka-Kazimierczuk, K. Kazimierczuk, L. Zidek,
H. Sanderova, L. Krasny, W. Kozminski, and V. Sklenar. Strategy for Complete NMR As-
signment of Disordered Proteins with Highly Repetitive Sequences Based on Resolution-
Enhanced 5D Experiments. Journal ofBiomolecular NMR, 48:169-177, 2010.

[130] Abdullah Mueen, Suman Nath, and Jie Liu. Fast approximate correlation for massive time-
series data. In SIGMOD Conference, pages 171-182, 2010.

[131] B. Murmann. A/d converter trends: Power dissipation, scaling and digitally assisted archi-
tectures. In IEEE Custom Integrated Circuits Conference (C[CC), 2008.

[132] Ren Ng. Fourier slice photography. In ACM Transactions on Graphics (TOG), volume 24,
pages 735-744. ACM, 2005.

[133] Ren Ng, Marc Levoy, Mathieu Bredif, Gene Duval, Mark Horowitz, and Pat Hanrahan.
Light field photography with a hand-held plenoptic camera. Technical Report CSTR 2005-
02, Stanford University Computer Science, 2005.

[134] D. Niculescu and B. Nath. Ad hoc positioning system (APS). In IEEE GLOBECOM, 2001.

[135] Nikon USA. Coolpix p6000. http://www.nikonusa.com.

[136] Shahriar Nirjon, Jie Liu, Gerald DeJean, Bodhi Priyantha, Yuzhe Jin, and Ted Hart. COIN-
GPS: Indoor Localization from Direct GPS Receiving. In MobiSys, 2014.

[137] D. Nishimura. Principles of Magnetic Resonance Imaging. Society for Industrial and, 2010.

[138] A. Oppenheim, R. W. Schafer, and J. R. Buck. Discrete-time signal processing. Upper
Saddle River, N.J.: Prentice Hall. ISBN 0-13-754920-2., 1999.

[139] OProfile. Linux profiler. http://oprofile.sourceforge.net.

[140] V.Y. Orekhov and V.A. Jaravine. Analysis of Non-Unifornly Sampled Spectra with Multi-
Dimensional Decomposition. Progress in Nuclear Magnetic Spectroscopy, 59:271-292,
2011.

[141] OriginGPS. ORG447X series datasheet. http://www.acaltechnology.com.

[142] Perthold Engineering LLC. SkyTraq Venus 6 GPS Module. http://www.perthold.de.

246

[143] Gilles Pisier. The Volume of Convex Bodies and Banach Space Geometry. Cambridge
University Press, May 1999.

[144] Darius Plausinaitis. GPS receiver technology mm8. Danish GPS Center, http://kom.aau.dk.

[145] E. Porat and M. Strauss. Sublinear time, measurement-optimal, sparse recovery for all.
Manuscript, 2010.

[146] E. Price and D. P. Woodruff. (1 + c)-approximate sparse recovery. FOCS, 2011.

[147] X. Qu, M. Mayzel, J.F. Cai, Z. Chen, and V. Orekhov. Accelerated NMR Spectroscopy with
Low-Rank Reconstruction. Angewandte Chemie International Edition, 2014.

[148] J.M. Rabaey, A.P. Chandrakasan, and B. Nikolic. Digital integrated circuits. Prentice-Hall,
1996.

[149] Hariharan Rahul, Nate Kushman, Dina Katabi, Charles Sodini, and Farinaz Edalat. Learning
to Share: Narrowband-Friendly Wideband Networks. In ACMSIGCOMM, 2008.

[150] Heitor S. Ramos, Tao Zhang, Jie Liu, Nissanka B. Priyantha, and Aman Kansal. Leap: a low
energy assisted GPS for trajectory-based services. In ACM Ubicomp 2011, pages 335-344,
Beijing, China.

[151] M. Rashidi, K. Haghighi, A. Panahi, and M. Viberg. A NLLS based sub-nyquist rate spec-
trum sensing for wideband cognitive radio. In IEEE Symposium on New Frontiers in Dy-
namic Spectrum Access Networks (DySPAN), 2011, 2011.

[152] D. Raskovic and D. Giessel. Battery-Aware embedded GPS receiver node. In IEEE MobiQ-
uitous, 2007.

[153] RFeye Node. http://media.crfs.com/uploads/files/2/crfs-mdOOO 11 -cOO-rfeye-node.pdf.

[154] E. E. Schadt, M. D. Linderman, J. Sorenson, L. Lee, and G. P. Nolan. Computational solu-
tions to large-scale data management and analysis. 2011.

[155] Mingoo Seok, Dongsuk Jeon, C. Chakrabarti, D. Blaauw, and D. Sylvester. A 0.27V 30MHz
17.7nJ/Transform 1024-pt Complex FFT Core with Super-Pipelining. In IEEE International
Solid-State Circuits Conference Digest of Technical Papers, ISSCC'l 1, pages 342-344, Feb
2011.

[156] Lixin Shi, Ovidiu Andronesi, Haitham Hassanieh, Badih Ghazi, Dina Katabi, and Elfar
Adalsteinsson. MRS Sparse-FFT: Reducing Acquisition Time and Artifacts for In Vivo
2D Correlation Spectroscopy. In Proceedings of the International Society for Magnetic
Resonance in Medicine Annual Meeting & Exhibition, ISMRM'13, Salt Lake City, USA,
April 2013.

247

[157] Lixin Shi, Haitham Hassanieh, Abe Davis, Dina Katabi, and Fredo Durand. Light Field
Reconstruction Using Sparsity in the Continuous Fourier Domain. ACM Transactions on
Graphics, 34(1):12:1-12:13, December 2014.

[158] Emil Sidky. What does compressive sensing mean for X-ray CT and comparisons with its
MRI application. In Conference on Mathematics of Medical Imaging, 2011.

[159] Anthony Silva. Reconstruction of Undersampled Periodic Signals, 1986. MIT Technical
Report.

[160] Julius 0. Smith. Spectral Audio Signal Processing, October 2008 Draft. accessed 2011-07-
11. http://ccrma.stanford.edu/ jos/sasp/.

[161] Cyril Soler and Frangois X. Sillion. Fast calculation of soft shadow textures using convolu-
tion. In Computer Graphics Proceedings, Annual Conference Series, pages 321-332. ACM
SIGGRAPH, 1998.

[162] J. Stanek, R. Augustyniak, and W. Kozminski. Suppression of Sampling Artefacts in High-
Resolution Four-Dimensional NMR Spectra Using Signal Separation Algorithm. Journal of
Magnetic Resonance, 214:91-102, 2012.

[163] Stanford. Stanford Light Field Archive. http://lightfield.stanford.edu/, 2008. [Online; ac-
cessed 2013].

[164] T. Szyperski, G. Wider, J.H. Bushweller, and K. Wuthrich. Reduced Dimensionality
in Triple-Resonance NMR Experiments. Journal of the American Chemical Society,
115:9307-9308, 1993.

[165] T.C Tan, Guoan Bi, Yonghong Zeng, and H.N Tan. Dct hardware structure for seqientiallv
presented data. Signal Processing, 81(11), 2001.

[166] Y. Tanet, J. Duster, C-T. Fu, E. Alpman, A. Balankutty, C. Lee, A. Ravi, S. Pellerano,
K. Chandrashekar, H. Kim, B. Carlton, S. Suz uki, M. Shafi, Y. Palaskas, and H. Lakdawala.
A 2.4 ghz wlan transceiver with fully-integrated highly-linear 1.8 v 28.4 dbm pa, 34 dbm t/r
switch, 240 ms/s dac, 320 ms/s adc, and dpll in 32 nm soc cmos. In IEEE Symposium on
VLSI Technolagy and Circuits, 2012.

[167] AGI Creative Team. Fundamentals of Global Positioning System Receivers: A Software
Approach. Wiley-Interscience, 2000.

[168] Ted Schadler. GPS: Personal Navigation Device. Texas Instruments. http://www.ti.com.

[169] Tektronix Spectrum Analyzer. http://tek.com.

[170] Arvind Thiagarajan, Lenin Ravindranath, Hari Balakrishnan, Samuel Madden, and Lewis
Girod. Accurate, low-energy trajectory mapping for mobile devices. In NSDI 2011.

248

[171] M. Albert Thomas, Kenneth Yue, Nader Binesh, Pablo Davanzo, Anand Kumar, Benjamin
Siegel, Mark Frye, John Curran, Robert Lufkin, Paul Martin, and Barry Guze. Localized
Two-Dimensional Shift Correlated MR Spectroscopy of Human Brain. Magnetic Resonance
in Medicine, 46:58-67, 2001.

[172] J.A. Tropp, J.N. Laska, M.F. Duarte, J.K. Romberg, and R.G. Baraniuk. Beyond Nyquist:
Efficient Sampling of Sparse Bandlimited Signals. IEEE Transactions on Information The-
ory, 56(1):520-544, 2010.

[173] Nicholas Tzou, Debesh Bhatta, Sen-Wen Hsiao, Hyun Woo Choi, and Abhijit Chatterjee.
Low-Cost Wideband Periodic Signal Reconstruction Using Incoherent Undersampling and
Back-end Cost Optimization. In IEEE Inter Test Conference, 2012.

[174] PCAST: Realizing the full potential of government held spectrum to spur economic growth,
2012. http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast spectrum-repor
t-finaljuly_20_2012.pdf.

[175] P.P. Vaidyanathan and P. Pal. Sparse Sensing With Co-Prime Samplers and Arrays. IEEE
Transactions on Signal Processing, 59(2):573-586, 2011.

[176] D.J.R. Van Nee and A.J.R.M. Coenen. New fast GPS code-acquisition technique using FFT.
Electronics Letters, 27(2), Jan 1991.

[177] Ashok Veeraraghavan, Ramesh Raskar, Amit Agrawal, Ankit Mohan, and Jack Tumblin.
Dappled photography: Mask enhanced cameras for heterodyned light fields and coded aper-
ture refocusing. A CM Transactions on Graphics, 26(3):69, 2007.

[178] R. Venkataramani and Y. Bresler. Perfect reconstruction formulas and bounds on aliasing
error in sub-nyquist nonuniform sampling of multiband signals. IEEE Transactions on In-
formation Theory, 46(6):2173-2183, 2000.

[179] Bennett Wilburn, Neel Joshi, Vaibhav Vaish, Eino-Ville Talvala, Emilio Antunez, Adam
Barth, Andrew Adams, Mark Horowitz, and Marc Levoy. High performance imaging using
large camera arrays. A CM Trans. Graph., 24(3):765-776, 2005.

[180] X-G Xia. An efficient frequency-determination algorithm from multiple undersampled
waveforms. Signal Processing Letters, IEEE, 7(2):34-37, 2000.

[181] Xiang-Gen Xia. On estimation of multiple frequencies in undersampled complex valued
waveforms. Signal Processing, IEEE Transactions on, 47(12):3417-3419, 1999.

[182] Chia-Hsiang Yang, Tsung-Han Yu, and D. Markovic. Power and Area Minimization of Re-
configurable FFT Processors: A 3GPP-LTE Example. IEEE Journal of Solid-State Circuits,
47(3):757-768, March 2012.

[183] 0. Yilmaz. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic

Data. Society of Exploration Geophysicists, 2008.

249

[184] Juhwan Yoo, S. Becker, M. Loh, M. Monge, E. Candes, and A. E-Neyestanak. A 100MHz-
2GHz 12.5x subNyquist rate receiver in 90nm CMOS. In IEEE RFIC, 2012.

[185] Juhwan Yoo, Christopher Turnes, Eric Nakamura, Chi Le, Stephen Becker, Emilio Sovero,
Michael Wakin, Michael Grant, Justin Romberg, Azita Emami-Neyestanak, and Emmanuel
Candes. A compressed sensing parameter extraction platform for radar pulse signal acqui-
sition. IEE Journal on Emerging and Selected Topics in Circuits and Systems,, 2012.

[186] Sungro Yoon, Li Erran Li, Soung Liew, Romit Roy Choudhury, Kun Tan, and Injong Rhee.
Quicksense: Fast and energy-efficient channel sensing for dynamic spectrum access wireless
networks. In IEEE INFOCOM, 2013.

[187] T. Yucek and H. Arslan. A survey of spectrum sensing algorithms for cognitive radio appli-
cations. Communications Surveys Tutorials, IEEE, 11(1), 2009.

[188] Zhengyun Zhang and Marc Levoy. Wigner distributions and how they relate to the light
field. In Computational Photography (ICCP), 2009 IEEE International Conference on,
pages 1-10. IEEE, 2009.

[189] Guichang Zhong, Fan Xu, and Jr. Willson, A.N. A Power-Scalable Reconfigurable
FFT/IFFT IC Based on a Multi-Processor Ring. Solid-State Circuits, IEEE Journal of,
41(2):483-495, Feb 2006.

250

