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Abstract :

We introduce a Bayesian discrete-time framework for switching-interaction analysis
under uncertainty, in which latent interactions, switching pattern and signal states and
dynamics are inferred from noisy and possibly missing observations of these signals.
We propose reasoning over posterior distribution of these latent variables as a means of
combating and characterizing uncertainty. This approach also allows for answering a
variety of questions probabilistically, which is suitable for exploratory pattern discovery
and post-analysis by human experts. This framework is based on a Bayesian learning
of the structure of a switching dynamic Bayesian network (DBN) and utilizes a state-
space approach to allow for noisy observations and missing data. It generalizes the
autoregressive switching interaction model of Siracusa et al. [50], which does not allow
observation noise, and the switching linear dynamic system model of Fox et al. [16],
which does not infer interactions among signals.

We develop a Gibbs sampling inference procedure, which is particularly efficient in
the case of linear Gaussian dynamics and observation models. We use a modular prior
over structures and a bound on the number of parent sets per signal to reduce the
number of structures to consider from super-exponential to polynomial. We provide a
procedure for setting the parameters of the prior and initializing latent variables that
leads to a successful application of the inference algorithm in practice, and leaves only
few general parameters to be set by the user. A detailed analysis of the computational
and memory complexity of each step of the algorithm is also provided.

We demonstrate the utility of our framework on different types of data. Different
benefits of the proposed approach are illustrated using synthetic data. Most real data do
not contain annotation of interactions. To demonstrate the ability of the algorithm to
infer interactions and the switching pattern from time-series data in a realistic setting,
joystick data is created, which is a controlled, human-generated data that implies ground
truth annotations by design. Climate data is a real data used to illustrate the variety
of applications and types of analyses enabled by the developed methodology.

Finally, we apply the developed model to the problem of structural health moni-
toring in civil engineering. Time-series data from accelerometers located at multiple
positions on a building are obtained for two laboratory model structures and a real
building. We analyze the results of interaction analysis and how the inferred dependen-
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cies among sensor signals relate to the physical structure and properties of the building,
as well as the environment and excitation conditions. We develop time-series classifi-
cation and single-class classification extensions of the model and apply them to the
problem of damage detection. We show that the method distinguishes time-series ob-
tained under different conditions with high accuracy, in both supervised and single-class
classification setups.

Thesis Supervisor: John W. Fisher III
Title: Senior Research Scientist, Electrical Engineering and Computer Science
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Chapter 1

Introduction

XAMPLES of interaction can be found everywhere. One can talk about an inter-

action of people in a social network, at an event, or in a street, interaction of
companies on a stock market, neurons in a brain, climate indices, and so on. Learning
such interactions is important, as that can further our understanding of the processes
among the involved entities, as well as lead to novel applications. However, while some
interactions can be easily detected by our senses, a lot of them are still hard to identify
by humans. Therefore, different sciences focus on inferring and analyzing interactions of
different types and in different domains from data that can be related to interactions.

In this thesis, we consider the problem of inference over interactions from time-series
data. The notion of interaction may be defined differently in different disciplines. For
example, interaction between two objects often assumes a two-way influence between
them. When more than two objects are involved, this would imply a two-way influence
between any pair of objects, and inferring interactions would reduce to inferring groups
(cliques) of objects that interact among each other. We are, however, interested in a
more general case, in which an interaction is defined as any set of directed (one-way)
influences among objects and the goal is to uncover such set of relationships, which we
refer to as the structure of interaction. More formally, an interaction graph is
defined as a directed graph G = (V, E), where V is the set of nodes that correspond to
objects, and E is the set of edges that correspond to directed influences [50]. In other
words, i — j € E if object ¢ influences (has an effect on) object j, in which case we also
say that object j depends on object i. We refer to the set of edges of the interaction
graph, E, as the interaction structure. In addition, we make the following assumptions:

e Dependencies that constitute an interaction are temporal causal relationships
[44], meaning that the behavior an object can only influence the future behavior
of another object (or set of objects).

e Objects are represented as multivariate time-series (discrete-time multivariate
signals). Therefore, we will often talk more abstractly about the interaction among
time-series, or signals, where it will be assumed that these signals correspond to
some objects or abstract entities, whose interaction is a subject of interest.!

INote that we have not done analysis on the relationship between object representation (in terms

17



18 CHAPTER 1. INTRODUCTION

Learning temporal interactions from time-series data is challenging for several rea-
sons:

o The number of possible interactions among a set of signals is extremely large —
super-exponential in the number of signals. Namely, if N is the number of signals,
the number of possible interactions among them is equal to the number of different
directed graphs, which is 2V 2.

e Interactions may change over time, and therefore the problem of learning interac-
tion becomes the problem of learning different interactions at different points in
time and the pattern of switching between these interactions.

e Underlying time-series are often not observed directly, but rather through some
noisy observation process. In addition, data is sometimes missing due to an error
or inability to collect observations at certain time points.

The first two problems have been addressed by the work of Siracusa and Fisher
[49, 50], in which they develop a Bayesian switching temporal interaction model for in-
ference over dynamically-varying temporal interaction structure from time-series data.
However, their model assumes that time-series are observed directly and does not ad-
dress the problem of noisy observations. On the other hand, switching state-space
models have been used to learn switching joint dynamics of time-series from noisy data
(e.g., [16,22]), but these models do not learn interactions among time-series. Our goal
is to fill in the gap and develop a method that addresses all three challenges above in
a single framework. To that end, we develop a state-space switching interaction
model (SSIM) [13], which combines the two approaches, as well as an efficient Gibbs
sampling algorithm for inference over latent time-series, interactions and the switching
pattern from noisy and (possibly) missing data in this model.

B 1.1 Bayesian Approach

In addition to the assumptions above, we also assume that there exists a discrete-
time stochastic process that generates future observations of time-series from their past
observations, such that each time-series possibly depends only on a subset of other
time-series. This naturally leads to a dynamic Bayesian network (DBN) repre-
sentation of the joint time-series model, and the problem of inference over switching
interaction is reduced to the problem of inference over a switching DBN structure (as
in [50]), which is depicted in Figure 1.1. A fist-order model, in which the dependency
is only on the values at the previous time point, is illustrated for simplicity. Moreover,
we will first derive the SSIM model with a first-order dependency among time-series.
However, we will later extend the model to allow higher-order dependencies.

of feature representation and sampling frequency) and the ability to infer temporal interactions using
statistical methods.
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Figure 1.1: Dynamic Bayesian Network (DBN) representation of switching interaction
among four signals. They initially evolve according to interaction graph E;. At time
point 4, the interaction pattern changes, and they evolve according to interaction graph
Es. Self-edges are assumed.

Inferring the structure of a (static or dynamic) Bayesian network presents a formidable
challenge owing to the super-exponential number of possible directed graphs. It is
known that the exact inference over such structures is NP-hard in general [10]. A
number of heuristic methods for finding a structure with the maximum a posteriori
(MAP) probability have been developed [7,11,27]. However, MAP estimates of net-
work structures are known to be brittle. With limited data available, there may exist
a large number of structures that explain the data well. Point estimates of structure
(e.g., MAP) are likely to yield incorrect interactions. The problem is exacerbated when
the structure varies over time and time-series state is not observed directly, but rather
by some noisy observation process. To alleviate this, sampling approaches have been
typically used to approximate the posterior distribution over structures with a number
of samples from that distribution [36]. Due to the a typically highly-multimodal pos-
terior landscape, efforts have been made to develop robust sampling algorithms that
do not get stuck in local optima [19,25,39]. On the other hand, Siracusa and Fisher
[50] use a modular prior assumption, which effectively allows independent inference
over parent sets of each time-series (that can be done in exponential time), and ad-
ditional constraints on possible parent sets (e.g., bounded in-degree), which result in
a polynomial-time exact inference over a non-switching dynamic Bayesian structure,
thus avoiding sampling over structure. These assumptions have also been exploited in
the context of static Bayesian networks, but since such networks must be acyclic, a
topological order of nodes must either be known a priori (7, 11,27] or sampled [19].
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We adopt the approach of Siracusa and Fisher [50] and use a modular bounded-
indegree prior on the interaction structure, which allows for efficient inference over
structures. Also, as discussed above, computing a posterior distribution over structures
quantifies the uncertainty in structure, and also allows for a robust estimate of structural
events, which are often of primary interest. Examples of such events are: “Does object
A depend on object B, given that it interacts with object C?” or “Which object is the
most influential, i.e., has the most objects that depend on it?”.

Note that the exact inference over structures is possible only if there is no switching
and observations are assumed perfect. In case of switching and/or observation noise,
exact joint inference over latent time-series, switching pattern and interaction struc-
tures is intractable. Similarly as in [50], we use a Gibbs sampling approach to joint
inference over these variables, in which an exact inference over interaction structures is
performed when conditioned on other variables. However, unlike [50], where switching
patterns obtained from different samples are aligned to produce a single most likely
switching pattern, we reason over the distribution of switching patterns. This allows
for computing statistics over switching patterns, such as the probability of two time
points being in the same switching state. Consequently, there is no posterior distri-
bution over structures defined for each switching state, since switching states are not
aligned across samples. Instead, the switching pattern is marginalized out, and the
posterior distribution over structure is computed for each time point separately, as it
can indeed be different at each time point as a result of marginalization.

H 1.2 Contributions

The main contribution of the thesis is the introduction of a new model, which we refer to
as the switching state-space interaction model (SSIM), and development of an efficient
algorithm for Bayesian inference over switching interaction structure among time-series
from noisy and possibly missing data [13], whereas the previous work assumes perfect
observations [49, 50]. There are many examples where time-series measurements are
noisy, such most data obtained through sensing, that motivate our method. For exam-
ple, tracking objects in a video necessarily introduces observation noise, regardless of
whether it is done by a human or an automatic tracker. Also, observations sometimes
cannot be made due to occlusions, which results in missing data.

We introduce a linear-Gaussian variant of the SSIM, in which both time-series de-
pendence and observation models are assumed linear and Gaussian. This specialization
of the model is widely applicable and enables a particularly efficient inference procedure.
We also introduce a latent-autoregressive linear-Gaussian SSIM, in which dependencies
on an arbitrary number of previous time points are allowed. This extension is critical
for many practical applications as first order models are often not sufficient to capture
important dependencies. These two variants can be paralleled to analogous variants of
the model of Siracusa and Fisher [49, 50], with the main distinction that their model
does not incorporate an observation model.
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Our approach extents the method of Siracusa and Fisher [49, 50] by introducing an
observation model and assuming that the underlying time-series are in the latent space.
While this extension is conceptually simple and intuitive, it poses several challenges that
we address in this thesis. First, an additional step in an inference procedure for sam-
pling latent time-series must be taken. Sequential sampling of state sequences is know
to converge slowly. Batch sampling can be done efficiently using an exact message-
passing algorithm only for some choices of dependence and observation models. For
example, this is the case when linear-Gaussian models are used. Otherwise, approxi-
mate methods, such as particle filtering [2], must be employed. We take the advantage
of the linear-Gaussian model and employ it in our work for efficient inference. How-
ever, a standard message-passing algorithm for sampling latent time-series shows to be
numerically unstable in cases when data is missing, in particular when there are several
consecutive time-points for which data is missing. To alleviate that, we develop an
alternative message-passing algorithm for this step that uses a different representation
and computation of messages that is numerically stable. Second, the latent space in the
SSIM model is very complex — latent interactions, switching pattern and time-series, as
well as parameters of dependence and observation models need to be inferred from noisy
and possibly missing observations. Jointly, these variables create a complex probability
space. The posterior distribution over these variables is highly multimodal and there
could be different suboptimal explanations of the data. For example, high variance of
the dependence or the observation model can explain the data well, but that is not the
explanation that is typically sought. Also, assigning time points to switching states is
effectively a clustering problem, and spaces of clusterings typically have multiple local
optima. To avoid undesired local optima and steer the inference into the regions of
posterior distribution that are of interest, we develop specific methods for setting the
prior and initializing latent variables. In addition, we often use multiple restarts to im-
prove the coverage of the posterior distributions with samples. These methods lead to
an algorithm that is mostly free of tuning, except for a few general model parameters.
The new way of setting the prior also improves the previous method of Siracusa and
Fisher [49, 50].

We demonstrate the utility of our approach on several datasets. Synthetic data is
generated to emphasize the advantage over other methods. Specifically, we show that
inference over the interaction structure as a graph is necessary, and that simply ana-
lyzing pairwise dependencies separately (as in Granger causality tests [24]) may lead
to a detection of spurious dependencies. We also show that our approach is advanta-
geous over the previous method that does not account for observation noise [50] on an
example in which the previous method assigns high probability to a spurious parent
of a signal, because the correct parent does not predict well that signal alone due to
the observation noise. When the observation noise is accounted for (our approach), the
probability of a spurious edge is significantly reduced.

Unfortunately, real datasets typically do not contain ground truth interactions. In-
teractions are not know and are also difficult to annotate by humans due to their
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complexity. This is, in the first place, a reason why learning interactions from data is
an important task. However, it also renders testing inferred interactions difficult. To be
able to test the results of interaction inference on non-synthetic data, we develop a new
dataset, called joystick data, in which interactions and a switching pattern are known
by design. Namely, five human players control points on a screen via joystick accord-
ing to predefined tasks and a switching pattern between tasks. For example, a player
can have an assignment to “follow” another player or to stay in the middle of the line
between two other players. Therefore, interactions are implied by the tasks. We show
that our method assigns high probability to the correct interactions and a switching
pattern, and assigns significant probability to very few other (spurious) edges, even in
the case of relatively high observation noise or if a significant portion (2/3) of data is
missing. We also show that our method recovers the interaction structure better than
the method of Siracusa and Fisher [50] in the case of high observation noise, as well as
that our method assigns higher uncertainty to an incorrect edge in the MAP structure
estimate, than to the correct ones. Lastly, we demonstrate the advantage of marginal-
ization over switching pattern, which we employ, over the previous method that only
considers a point estimate of the switching pattern.

In addition, we apply our method to real datasets. While we cannot formally test
the results of switching interaction analysis on them, we see that the results are co-
herent with prior knowledge in the domain or general intuition. The climate indices
dataset, Monthly atmospheric and ocean time series [40], consists of time-series of mea-
surements of climate indices over several decades. Structural health monitoring (SHM)
datasets are also used to perform interaction analysis. Buildings are instrumented with
sensors (accelerometers) that measure vibrations at different locations. Two laboratory
structures and one real building were used for experiments.

Finally, we develop extensions of the SSIM model for classification [14] and single-
class classification of sequences of measurements, using an assumption that switching
may only occur between sequences, and not within a sequence. These variants of the
SSIM are applied to the problem of damage detection in civil buildings, which is one of
the major problems in structural health monitoring. We demonstrate that our approach
can detect damage or significant changes in the environment or excitation of a building
with high accuracy, even in a single-class classification setup, in which only data from
an intact structure is available for training (which is a typical case). The probability of
a damage is in general higher for more severe damages. Also, the model can successfully
differentiate different types of damages.

M 1.3 Outline

The organization of the thesis is as follows. The necessary background material is
laid in Chapter 2. The SSIM, a framework for switching interaction analysis under
uncertainty, which is based on a Bayesian state-space switching structure inference,
is introduced in Chapter 3, along with the Gibbs sampling inference algorithm. The
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LG-SSIM, a specialization of the SSIM that uses linear-Gaussian dependence and ob-
servation models, as well as the corresponding specialization of the inference procedure,
are also presented in Chapter 3. Finally, the time and memory complexity analysis
of the inference algorithm is also presented here. Practical considerations regarding
setting the prior and initializing the latent variables are addressed in Chapter 4. Ex-
periments on synthetic, semi-real and real data, which demonstrate the utility of the
algorithm, are also presented in Chapter 4. Chapter 5 is devoted to the application
of the developed framework to the problem of damage detection in civil engineering.
Finally, conclusions and directions for future work are given in Chapter 6.
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Chapter 2

Background

E take a Bayesian approach (2.1) to learning of the structure of Dynamic Bayesian

networks (2.3.2), which are probabilistic graphical models (2.3) suitable for mod-
eling time-series data. The state-space modeling paradigm is used to extend the pre-
vious work ([49, 50], summarized in 2.7) to enable inference with imperfect (noisy and
missing) data. In particular, a switching state-space approach is used to model the
change in structure over time, in contrast to the switching auto-regressive approach
used in [49, 50]. The inference is performed using a Gibbs sampling algorithm (2.4.1),
which is a Markov chain Monte Carlo (MCMC) type of algorithm (2.4). A particular
choice of probability distributions with conjugate priors (2.2) used for the dependence
and observation models allows for efficient Gibbs sampling steps. Overview of the
Bayesian learning of a homogenous (non-switching) dependence structure is presented
in Section 2.6. Efficient inference over the space of structures, which is extremely large,
is enabled by the use of a modular prior and a bound on the node in-degree (2.6.2).

M 2.1 Bayesian Approach

In contrast to the classical (or frequentist) approach, in which parameters of a statisti-
cal model are assumed fixed, but unknown, in the Bayesian approach, parameters are
assumed to be drawn from some distribution (called prior distribution or simply prior)
and therefore treated as random variables. Let p(X|6) be a probabilistic model of a
phenomenon captured by a collection of variables X, with parameters 8, and let p(6; )
be the prior distribution of model parameters 8, parametrized by ~, which are typi-
cally called hyperparameters. The prior distribution is often assumed to be known, in
which case hyperparameters are treated as constants and are either chosen in advance
to reflect the prior belief in the parameters 8 (e.g., by a domain expert) or estimated
from data (empirical Bayes, [8]). Alternatively, in a hierarchical Bayesian approach,
hyperparameters are also treated as random variables and modeled via some distribu-
tion, parametrized by a next level of hyperparameters, and so on, up to some level of
hierarchy. ‘

The central computation in Bayesian inference is computing the posterior distribu-
tion of parameters @ given data samples D = {X, Xz, ... , Xn'}, namely, p(0| D; 7). If
the samples are independent, the data likelihood is p(D|6) = Hfil p(X = X;16). The
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posterior distribution can be computed using the Bayes rule:

p(8;7)p(D| 6) p(6;7) p(D|6)
p(0|D;v) = = . 2.1
O =20y = T,p(6:9) o(D10) a8 -
Note that the denominator p(D;«), the marginal likelihood of data, does not depend on
the parameters 6, which are “marginalized out”. Therefore, the posterior distribution

is proportional to the numerator:

p(0|D;) o p(8;7) p(D|6), (2.2)

while the denominator is simply a normalization constant.

Evaluating the numerator above for a specific value of parameters is easy, as it is
the product of the prior distribution and the data likelihood terms, which are specified
by the model. However, computing the full posterior distribution p(6|D;+), or even
evaluating it for a specific parameters value (which requires computing the marginal
likelihood p(D;~)), is in general difficult, as the posterior distribution and the marginal
likelihood may not have closed-form analytical expressions. Nonetheless, when the prior
distribution, p(8; ), is chosen to be a so-called conjugate distribution to the likelihood
distribution, p(X| @), the posterior distribution has the same form as the prior and can
be computed efficiently.

B 2.2 Conjugate Priors

If the posterior distribution from Equation 2.1, p(6|D;~), is in the same family as the
prior distribution, p(#;v), then p(#;+) is called a conjugate prior for the likelihood
function, p(D|0). In that case, we say that the probability distribution p(D|#8) has
a conjugate prior. As a consequence, if the prior distribution has a parametric form
(which we will assume in this thesis) and is a conjugate prior, then the posterior dis-
tribution has the same parametric form and differs from the prior only in the value of
hyperparameters, i.e., p(6|D;vy) = p(0;v') for some v/. Note that + is a function of
prior hyperparameters v and data D. Computing 4/ can be done analytically and is
commonly referred to as “updating” the prior with the data or performing a “conjugate
update”. '

Choosing a distribution that has a conjugate prior for a likelihood function and
its conjugate prior for the prior is convenient as it results in an analytic form of the
posterior, efficient computation of the posterior, and overall efficient inference in models
that use such distributions. Otherwise, a computationally more challenging methods
must be used, such as integration or sampling techniques. Also, interpreting conjugate
updates is typically more intuitive than interpreting the results of numerical or sampling
methods, as there is a meaning attached to the hyperparameters and how they are
changed after a conjugate update.

Not all probability distributions have a conjugate prior. However, all distributions
in the so-called exponential families, which includes a majority of well-known distri-
butions, have a conjugate prior, and are therefore a convenient choice. We will proceed
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by describing exponential families and the probability distributions that will be used in
this thesis, all of which belong to the exponential family.

W 2.2.1 Exponential Families

An exponential family in the case of vector-valued variable X and parameters 6
(which is the case we will usually need in this thesis) is a set of probability distributions -
of the form:

p(X16) = h(X) exp {n(9)"T(X) — A©)} , (2.3)

where 7n(8) is referred to as the natural parameter, T(X) as natural statistic or
sufficient statistic, h(X) as the base distribution, and A(f) as the cumulant
function or the log-partition function. Note that n(f) and T(X) are vectors, in
general. An exponentially family is uniquely defined by the choice of n(6), T(X) and
h(X), while A(f) is the logarithm of the normalization term implied by the previous
three functions: .

A(B) = log /Y R(X) exp {7(0)TT(X)} dX, (2.4)

where the integral is replaced with a summation if X is a discrete variable. The nor-
malization term, Z(0) = e is also called the partition function.

A linear exponential family is an exponential family whose natural parameter,
n(#), is equal to the underlying parameter, 6:

p(X]80) = h(X) exp {#TT(X) — A(§)} . (2.5)

Note that any exponential family can be converted into a linear exponential family
by changing parametrization, i.e., p(X|8') = h(X) exp {0’ Tr(x) — A9 )}, where ' =
n(0). However, finding the range of admissible values of 8’ and the log-partition function
A(#") may pose a challenge.

A canonical exponential family is a linear exponential family whose natural
statistics, T(X), is equal to the underlying variable, X:

p(X|6) = h(X) exp {67 X — A(0)} . (2.6)

Exponential families have many useful properties. For example, the log-partition
function play the role of a cumulant-generating function:

AX) ..
29, =E {Tz(X)] (2 7)
FAX) _ ooy (Ty(X)T;(X)] -

50,00,
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Also, the natural statistic, T(X), is a sufficient statistic, which implies that all infer-
ences about parameter 6 can be performed using T'(X) — once T(X) is computed, the
data X can be discarded. An important property of exponential families is that the
dimensionality of the sufficient statistic, dim (7'(X)), does not increase with the num-
ber of data samples. To see that, let X;, Xs,..., Xn be independent and identically
distributed (i.i.d.) random variables from a member of an exponential family defined
by Equation 2.3. Then, the joint probability distribution of these variables is:

N N
(X1, Xa, ..., XN|0) = (H h(Xi)) exp {ﬁ(e)T (Z T(Xz‘)) - NA(@)} - (28)
: i=1 i=1

Note that the sufficient statistic of all samples is simply the sum of sufficient statistics
of each individual variable X;.

The property of exponential families that will be the most important for us is that
every exponential family has a conjugate prior. If the likelihood model of joint
observations is given by Equation 2.8, then

p(6;T,np) x exp {TTn(G) - noA(())} (2.9)

is a conjugate prior for that family, where 7 and ng are hyperparameters. The posterior
distribution over parameter @ is

N T
p(01X;7,m0) x exp (T + ZT(X,)) n(0) — (ng + N) A(9) » . (2.10)
=1

Clearly, the posterior distribution is in the same form as the prior, i.e.,
p(01X;7,n0) =p(8;7',10") , (2.11)
where
N
T =r+) T(X)
i=1 (2.12)
no' =ng+ N.

Therefore, performing a conjugate update is reduced to simply updating hyperparamters
with the sufficient statistic and the sample count.

M 2.2.2 Multinomial (Categorical) Distribution

The multinomial distribution is a distribution over the possible ways of selecting N
items from the set of K items, with repetition. Let my,ms, ..., 7k be the probabilities
of choosing items 1,2, ..., K, respectively. Note that Efil m; = 1 must hold and N
choices are made independently. Let Xi, Xo,..., Xx be random variables, such that
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X; correspond to the number of times item 7 is selected. Then, the joint probability
over X, Xq,...,Xg is
N! X1, X X
Mult(Xq, Xo, ..., Xk; T1, 72, .., TK) = XX Xl m i tme g K (2.13)
where . X1, Xo, ..., Xk are non-negative integers such that Zfil X; = N. This proba-
bility can also be written using the gamma function as
r(TE Xi+1) ﬁ N
Mult( X1, X, ..., X 71,72, ..., TK) = 4 o, (2.14)

which is a convenient form for a comparison to its conjugate prior — the Dirichlet
distribution.
The mean and variance of a random variable X; and covariance between X; and X
are given as:
E[X;] = Nm;
Var [X;] = Nm;(1 — m;) (2.15)
Cov [Xi,Xj] = —N7r,~7rj, ) 75 ] .
The categorical distribution can be thought of as the multinomial distribution
with N =1, i.e.,

K
Cat(X1,Xa,...,Xk; m1,72,...,TK) = Hﬂ'iXi , (2.16)

where exactly one of the variables X, Xo,..., Xk is equal to 1, and the others are
equal to 0. The categorical distribution is sometimes referred to as the discrete dis-
tribution, since it is a distribution over a selection of one element from a discrete set
of elements, where 7; is the probability of selecting element i. It is also commonly

expressed using a single random variable X that takes a value from {1,2,...,K}:
K o
Cat(X; my,79,...,TK) = Hmlx:’] , (2.17)
i=1

where [X =] = 1if X =1 and [X = 1] = 0 otherwise. A connection to the represen-

tation given in Equation 2.16 is established via equality X; = [X = i]. Therefore, from
Equation 2.15, it follows that

E[X =] =E[X)] =m
Var [[X = i]] = Var [X;] = m(1 — 73) (2.18)
Cov (X =1i,[X =j]] = Cov[X;, Xj] = —mim;, i#7.
In machine learning, it is common to talk about a multinomial distribution when a
categorical distribution is actually meant. Note also that the binomial distribution

and the Bernoulli distribution are special cases of the multinomial and categorical
distributions, respectively, in which the number of items, K, is equal to 2.
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M 2.2.3 Dirichlet Prior

The Dirichlet distribution is a distribution over an open K —1-dimensional simple:v in
a K-dimensional space, which is defined as a set {(z1,...,zx) € RE |21 > 0,...,zx >
0, ZK 1 i = 1}. The probability density function of a Dlrlchlet distribution is given by

1
Dir(X1,..., XK; o1, .., = X;®l.. Xgox-1 2.19
ir(X1, K; o oK) Ble, ..., ar) 1 K ( )
where ay,a9,...,ax > 0 and B(ay,...,ak) is the Beta function, which can be ex-
pressed in terms of the gamma function as:
K
B(a,...,ak) = ===l [(as) (2.20)

F(Z'i:l ai)

The mean and variance of a random variable X; and covariance between X; and X
are given as:

Var [X;] = %3‘1’7) (2.21)
Cov [X;, X;] = —Ta}%—ﬁ i£7,

where ap = Zfil «;. Note that the mean of X does not depend on the absolute values
of parameters «;, but rather on their proportion. If all parameters «; are scaled by a
same factor, the mean does not change. However, if that factor is greater than 1 (i.e.,
if parameters o; increase proportionally) and assuming that initially o > 1, Vi, the
variance of each X; decreases, meaning that the distribution on X3, ..., Xx becomes
narrower around the mean.

Note that the support of the Dirichlet distribution is also the domain of possible
distributions over a discrete set of K elements. Furthermore, the Dirichlet distribution
is a conjugate prior to the multinomial (categorical) distribution. If the likelihood model

is given by Equation 2.13 and the prior on parameters #y,...,7g as

_ F(Zz— a'&) a;—1 R ag—1
)= T e )

and the observed valued are X; = ¢;,..., Xk = ck, then the posterior probability of
parameters is

Dir(ny, ..., TK; 01,...,0K

NG ANN
Dir(ny, ..., 7k; &1,...,d k) = Mma e (2.23)
i=1 F(ali)
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where o/1 = ay +c1,...,d'k = ax + cx. Therefore, a Dirichlet conjugate update is
performed by simply updating each parameter «; with the number of samples from
category ¢, ¢;. Parameters a; are also called pseudo counts as they are added to the
observed counts. Having a prior parameter «; is equivalent to having a prior parameter
a; — d; and adding d; pseudo observations from category i. Note from Equation 2.21
that the proportion of parameters c; determines the mean of probabilities 7;, while their
magnitude determines the variance of probabilities m; and thus reflects the strength
of belief in the mean values. In general, the larger o; values are (the more pseudo-
observations there are), the narrower the distribution on m; parameters is, meaning
that the belief is stronger. Conversely, small values of a; parameters result in a prior
with large variance, which is referred to as a weak (or broad) prior.

B 2.2.4 Normal Distribution

The (multivariate) normal distribution, also called the (multivariate) Gaussian
distribution, is a distribution over d-dimensional real vectors, X = [X1X>.. .Xd]T,
with a density function

exp(—3(X — )T (X — p))

N(X7ﬂ7 Z) - (27!')(1/2'2'1/2 bl

(2.24)

where u is a d-dimensional vector and ¥ is a positive definite matrix of size d x d, which
are also the mean and covariance matrix of X, respectively. Le.,

BIX]=u (2.25)
Cov[X]=Z, )
which is a shorthand for the set of equalities
E[X] =
Var [Xz] - Em (2.26)

Cov [X,, Xj] = Eij .

A conjugate prior to the normal distribution with a known covariance matrix is also
a normal distribution. If the likelihood models is given as

p(X | X) = N(X;p, %) (2:27)

and the prior on y as
p(u; po, Xo) = N (15 o, Zo) | (2:28)
and there are n independent samples of variable X, xi, ..., x,, then the posterior dis-

tribution of the mean p is

p(u|z1, .-, Tn; po, To) = N (u; 40, Z0) (2.29)
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where
Ho= (S0 +nE7) 7 (S0 o + nE7a) (2.30)
2/0 = (20_1 +n2‘1)-1 y B

- 1 n s p
and Z = -3 " | z; is the sample mean.

B 2.2.5 Inverse-Wishart Prior

The inverse-Wishart distribution is a distribution over positive-definite matrices of
a fixed dimension, d x d, with a density function

w2
254/2T 4(k/2)

where I'j() is the multivariate gamma function [30], K > d — 1 is a scalar parameter
called the degrees of freedom, and ¥ is a d x d positive definite matrix parameter called
the inverse scale matrix.

The mean and the mode of an inverse-Wishart distributed random matrix X are
not equal:

IW(X; T, 5) = | x|~ Gs+d D)2 exp(—-—;- er(TX1Y), (2.31)

¥

EX]= —— k>d+1
“_g‘l (2.32)

For larger values of « the variance of X is smaller, and therefore the distribution is
narrower around the mode.

The inverse-Wishart distribution is a conjugate prior to the normal distribution
with a known mean. If the likelihood models is given as

(X% u) = N(X; 1, %) (2.33)
and the prior on ¥ as
p(S: U, R) =TW(S; U, k), (2.34)
and there are n independent samples of variable X, z1,...,z,, then the posterior dis-
tribution of the covariance matrix ¥ is
(X |21, 20 U, 6) =IW(Z; ¥, K, (2.35)

where

U =T+ Z(:ci — ) (mi — p)*

=1

(2.36)
n':n—l—n.

Note that setting a small value of k defines a weak (broad) prior on ¥, and that x can
also be thought of as a pseudo-count.
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W 2.2.6 Matrix-Normal Inverse-Wishart Prior

Here, we consider a linear Gaussian model of a multivariate signal X¢,
Xt =AX¢ 1 +wy, Wt ~ N(O, Q) ’ (237)

with parameters A (transition matrix) and @ (noise covariance matrix).
We assume that © = (A, Q) follows a matrix-normal inverse-Wishart distribution,
which is a conjugate prior to the dependence model N (X;; AX;_ 1, Q):
p(A,Q; M, Q¥ k) = MN-IW(A,Q; M,Q, ¥, k)
= MN(A; M,Q, ) ITW(Q; T, k) . (2.38)
It is a product of (1) the matrix-normal distribution
exp (-1 tr [Q7 (A4 - M)TQ (A - M)))
CALE R |

where d and | are the dimensions of matrix A (Agxi), while Mgy, Qixqg and Qpx
are the mean, the column covariance and the row covariance parameters; and (2) the
inverse-Wishart distribution

MN (A M,Q,Q) = (2.39)

¥/
259 y(x/2)

where d is the dimension of matrix Q (Q4xq4) and I'g() is a multivariate gamma function
while x and ¥4xg4 are the degree of freedom and the inverse scale matrix parameters.
Note how the two distributions are coupled. The matrix normal distribution of the
dependence matrix A depends on the covariance matrix @, which is sampled from the
inverse Wishart distribution.

Due to conjugacy, the posterior distribution of parameters A and @ given data

IW(Q; ¥, k) = Q| (rFer1/2 exp(—% tr(TQ™Y), (2.40)

sequence Xo, X1, ..., X7 is also a matrix-normal inverse-Wishart distribution:
p(Ar QlXO:T; Afa Q: III’ K’) = MN—ZW(Aa Q; M” Q/, \Ijlr ’1/)
= MN(A;M,Q,V)IW(Q; V', k'), (2.41)
where

T-1 -1
Q= (sz-l +> X x7 )

t=0

T
M = MQ! X, XTI
( +tz:; t H) (2.42)

K =k+T
T

V =0+ XX] + MO 'MT - MY TMT.
t=1
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B 2.3 Graphical Models

In general, full representation of a probability distribution over N variables is in-
tractable. If these are discrete variables that take value from a set with cardinality
S, the full representation of an arbitrary joint distribution among them requires SN —1
parameters, as there is freedom in setting the probability for each combination of vari-
able values except for one (since they have to sum to 1). Similarly, for continuous
variables, the most general representation would require infinitely many parameters.
Therefore, only distributions that can be represented compactly are used in practice,
as is the case with all known families of distributions. In probabilistic modeling, a
probability mass or distribution function is typically assumed to take some parametric
form with a finite number of parameters. For example, a (multivariate) Gaussian dis-
tribution over N univariate continuous variables, N(-;u, X), is represented with mean
i, which is a vector of length N, and covariance matrix ¥ of size N x N. In an-
other example, let us assume that D is a discrete random variable that takes a value
from {1,2,..., K} and is distributed according to a multinomial distribution with pa-
rameters m = (w1, 72,...,TK), (1; > 0, Zfil m; = 1), while 7 itself is a multivariate
random variable that is distributed according to a Dirichlet distribution with param-
eters o = (aj,Qa,....ak). Then, the joint distribution of # and D can be written as
p(m, D; o) = p(m; ) p(D | 7) = Dirichlet(r; o) Mult(D; ).

Graphical models are a language that uses graphs to compactly represent families of
joint probability distributions among multiple variables that respect certain constraints
dictated by a graph. There are two common types: undirected graphical models (also
called Markov random fields) and directed graphical models (Bayesian networks), which
use undirected and acyclic directed graphs, respectively, to form such constraints. In
both cases, nodes of a graph correspond to the variables which joint distribution is
modeled. In an undirected graphical model, a joint probability distribution is assumed
to be proportional to a product of nonnegative functions (called potentials) over graph
cliques (fully connected subgraphs). In a Bayesian network, a distribution is assumed
to be a product of conditional distributions of each variable given its parents in the
graph. Examples of both types of graphical models are shown in Figure 2.1. In both
types of models, a distribution is represented as or proportional to a product of factors
— potentials in undirected and conditional distributions in directed model. While each
factor may still require some compact representation, such as a parametric function or
a table of values (in discrete case), the complexity of this representation depends on
the size of a factor (i.e., the number of variables involved in a factor) instead of on
the total number of variables. Therefore, the overall complexity of a graphical model
representation (and consequently inference algorithms) is typically dominated by large
factors.
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Figure 2.1: (a) Undirected graphical model example: P(A, B,C, D, E) « fi(A, B) f2(4,C)
f3(B, D) fi(C,D) fs(B,D,E). (b) Directed graphical model example: P(4,B,C,D,E) =
P(A) P(B|A) P(C) P(D|A, B,C) P(E|B, D).

B 2.3.1 Directed Graphical Models (Bayesian Networks)

A Bayesian network (BN) consists of a directed acyclic graph G = (V, E), whose
nodes X;,X>,..., Xy represent random variables, and a set of conditional distribu-
tions p(X;| pa(X;)), i =1,..., N, where pa(X;) is a set of variables that correspond to
the parent nodes (parents) of node X;. Since G is acyclic, its nodes can be arranged
in a so-called topological order, such that all parents of a node are its predecessors in
the topological order (i.e., all edges go from left to right with respect to the topological
order). Let’s assume, without loss of generality, that X3, Xo,..., XN is a topological
order of nodes in graph G. Then, pa(X;) € {X3, X2,...,X;-1}. Note that any joint
distribution among N variables can be written as

N
p(X1, Xa, -, Xn) = p(X1) p(XalX1) - p(XNI X0, - Xno1) = [[ (Xl X1, -, Xicn) -
=1

A Bayesian network with associated graph G represents a family of distributions of the
form

N
p(X].)X?) .. 7XN) = Hp(XtIpa(Xi)) ’
i=1

i.e., in which each variable X;, when conditioned on its parents pa(X;), is independent
of all other predecessors in a topological sort (X;1L{X1,...,Xi—1} \ pa(X;) | pa(X;)).t
Conditional distributions p(X;| pa(X;)) are typically assumed to have some parametric
form p(X;| pa(X;), 6;), in which case learning a Bayesian network means learning param-
eters 6;. If, in addition, graph G is unknown, the inference of this graph is commonly
referred to as learning the structure of a Bayesian network.

Figure 2.2 shows two additional examples of Bayesian networks. In Figure 2.2a,
Dy, Ds,...,Dy are discrete random variables with values from {1,2,..., K} that are
drawn independently from a multinomial distribution with parameters m = (my, m,..., 7k),
(m; > 0,55, m; = 1), while 7 itself is a random vector drawn from a Dirichlet distri-
bution with parameters a = (o, a2, ....ax). Then, the overall joint distribution can

!There can be multiple topological sorts for the same graph. This holds for any of them.
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Figure 2.2: Two examples of Bayesian networks.

be written as

N N
p(w, D1, Do, ...,Dn;a) = p(m;a) Hp(Di | 7) = Dirichlet(r; «) HMult(Di;ﬂ) .

i=1 =1

Note that if constant parameters are shown in a graphical model diagram (a in this
case), they are written inside a square (as here) or simply without an associated graphi-
cal symbol. In Figure 2.2b, X7, X5, ..., Xy are jointly Gaussian univariate random vari-
ables with an additional constraint that, for each 7, X; is independent of Xi,..., X;_2
when conditioned on X;_; (first order Markov assumption):

N N
P(X1,Xa,...,XN) = P(X1) [[ P(XilXiz1) = N(Xy; 1, 09) [[ N (X5 a5 Xio1,02).

Note that this model requires only 2N parameters, compared to N + N2 required for a
general multivariate Gaussian model. If for example, parameters a; and cr? are assumed
the same for all 4, the number of parameters is further reduced to 3.

W 2.3.2 Temporal Directed Graphical Models (Dynamic Bayesian Networks)

Dynamic Bayesian networks (DBNs) are Bayesian networks that model sequential data,
such as time-series. In a DBN, random variables are indexed with discrete numbers
0,1,2,...,T (we choose to start with 0 for convenience, but starting index can be
arbitrary). We will refer to such index as time, although it may not be time-related in
general (for example, it can be an index into a genome sequence or a word in a sentence).
Each signal in a model is therefore represented with a sequence of random variables that
correspond to its value at different indices, or discrete time points. Edges are allowed
only from a variable with a lower index to a variable with a higher index (i.e., they must
“point” forward in time). Let X} denote a random variables that takes the value of signal
i at time ¢. Then, if there is an edge from Xtil to sz, to > t; must hold. Furthermore,
edges are often restricted to connect variables at neighboring time points, i.e., they are
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of the form X; — th+1‘ This assumption results in a first-order Markov model over
time — signal values at time ¢ are independent of the past given their values at time ¢ —1.
We will assume such models throughout this paper. Let pa(i,t) be the set of parents of
signal 7 at time ¢. Then, the associated conditional probability distributions are of the
form p(X} |Xff(f’t) ), where Xffg”t) denotes a collection of variables { X} _;; v € pa(i,t)}.
In homogenous DBNs (which are often assumed by the terrn DBN) edges between
signals (i.e., parent sets) and conditional distributions are assumed time-invariant. On
the other hand, in time-varying DBNs both edges and conditional distributions may
vary over time. Figure 1.1 shows an example of a time-varying DBN which is piecewise
homogenous (switching).

M 2.4 Markov Chain Monte Carlo Sampling

Markov chain Monte Carlo (MCMC) sampling isa class of algorithms for gen-
erating samples from a distribution p*(z) via a random walk on a Markov chain that
has distribution p*(z) as its stationary distribution. A Markov chain is a stochastic
process defined as a sequence of random variables X3, Xo, X3, ... that satisfy Markov
property:

p(Xn|Xn_1,Xn_2,...,X1) :p(Xn |X _1), Vn>1. (243)

In other words, the value of the random variable X,, depends only on the value of the
previous random variable, X, 1. p(Xy, | Xp—1) is a distribution of X, given X,,_1, which
is referred to as the transition distribution from time n — 1 to time n. A homogenous
Markov chain is a Markov chain for which the transition distribution is the same over
time, i.e., p(Xp =y | Xn-1 = %) = p(Xn-1 =y | Xn—2 = z), ¥n > 1. Let g(y|x) be this
distribution, and let X be the domain of variables X,,, which is also called the state
space of a Markov chain. Then, a homogenous Markov chain is described by the state
space X and a transition distribution ¢(y|z), Vz,y € X. In the rest of this Section we
will assume that Markov chains are homogenous.

A stationary distribution of a homogenous Markov chain is a distribution p*(-)
over the state space that is invariant under the transition distribution:

p*(y) = ] _P@aylads, WeX. (2.44)

State y is reachable from state x if there exists n > 0 such that p(X, =y| X1 =) >0
(i-e., if there exists a sequence of transitions that reach state y from state x. State x
is aperiodic if there exists ng such that p(X, = x| X1 = x) > 0 Vn > ng. If all states
are aperiodic and reachable from each other, a Markov chain is said to be ergodic and
' converges to a unique stationary distribution starting from any state X;. In other words,
a distribution p(X,) will become closer to the stationary distribution as n approaches
infinity.
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The convergence property of ergodic Markov chains is exploited in the MCMC
sampling approach. Namely, if the transition distribution of a Markov chain is defined
in such a way that the chain is ergodic and the stationary distribution is equal to a
target distribution p*(-), then the Markov chain converges to the target distribution.
Samples from the target distribution are generated by simulating the Markov chain.

There are several practical considerations regarding MCMC methods. The target
distribution is never truly achieved in finite number of steps. However, after certain
number of transitions, ng, p(Xp,) becomes close enough to the target distribution p*(-)
that it can be assumed equal to p*(-) for practical purposes. The same then hold
for any n > ng. But, the question is how big ng should be? That depends on a
particular application and is typically estimated empirically. The time ng after which
the distribution of X,, can be assumed equal to the target distribution is called burn-in
period. In addition, samples generated via Markov chain are correlated. The correlation
between two samples is higher when they are closer to each other in the chain. Therefore,
to obtain approximately independent samples from the target distribution, they should
be taken at some distance apart from each other. Finally, if the target distribution is
multimodal, a sampler may “get stuck” in one of the modes for a very long time. To
explore the entire space more efficiently, multiple simulations of a Markov chain with
different (random) initial states are often performed, and a number of samples are taken
from each chain. That reduces bias towards a particular subspace of the state space.

To complete the MCMC sampling method, it remains, for a given target distribution
p*(+), to find a transition distribution ¢(y | z) that defines an ergodic Markov chain, and
for which p*() is the stationary distribution. One possible approach is to find a transition
distribution that satisfies the detailed balance:

p*(x)qly|z) = p*(v) q(x|y), Vr,yecX. (2.45)

If this equation is satisfied, p*(-) is guaranteed to be a stationary distribution of a
Markov chain.

B 2.4.1 Gibbs Sampling

Gibbs sampling is an MCMC sampling method that is used for sampling from a joint
distribution of variables Xi, Xo,..., X5 when direct sampling from the joint distri-
bution is difficult, but sampling from conditional distributions p(X; | X_;) is feasible,
where X_; denotes the collection of all variables except X;. The following transition
distribution is used. Let z1, 22, ..., xn be the current state. Index i is drawn randomly,
and a value z/; is sampled from the conditional distribution p(X;|X_; = z_;). The
new state is then zy,...,%;1,2';, Zi41, .- -, Zn- It can be shown that the transition dis-
tribution implied by this procedure satisfies the detailed balance. Furthermore, instead
of drawing a value of index i randomly, 7 can loop through all indices in a deterministic
fashion, and that procedure still converges to the stationary distribution, which is in
this case the joint distribution over X1, Xs, ..., Xy.
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B 2.5 Interaction graphs and DBN

Our goal is to reason over time-varying interactions (dependence structures) between
N multivariate signals. We assume that signals evolve according to a Markov process
over discrete time points ¢ = 0,1,...,T. The latent state associated with signal 7 at
time point ¢ > 0 depends on the state of a subset of signals pa(i,t) at time point ¢ — 1.
We refer to pa(i,t) as a parent set of signal ¢ at time point t. While the preceding
implies a first-order Markov process, the approach extends to higher-ordered Markov
processes. A collection of directed edges E; = {(v,i); 1 =1,...,N, v € pa(i,t)} forms
an interaction graph at time point ¢, Gy = (V, Ey), where V = {1,..., N} is the set of
all signals. That is, there is an edge from j to ¢ in G; if and only if signal ¢ at time
point ¢ depends on signal j at time point ¢ — 1. We say that the parent signals pa(i, t)
influence signal 7 at time t.

Let X} denote a (multivariate) random variable that describes the latent state as-
sociated to signal i at time point ¢t. Then, signal i depends on its parents at time ¢
according to a probabilistic model p(X§|XP*" gi) parametrized by 6%, where XP*"")
denotes a collection of variables {X}_1; v € pa(i,t)}. Furthermore, we assume that
conditioned on their parents at the previous time point, signals are independent of each
other:

N
P(Xel Xo-1, B, 0) = [ [ (X1 X750, 65) (2.46)
i=1
where X; = {X{}Y, (i-e., X; is a collection of variables of all signals at time point t)
and 0, = {6} }f;l Structure E; and parameters 6; determine a dependence model at
time t, My = (E¢, 6;). Finally, we express a joint probability of all variables at all time
points, X, as

T
p(X) = p(Xol6o) | | p(Xe| Xs-1, Ex, 64)
t=1

N T N
= [T p(xélod) TT T pCxiixres?, 6. (2.47)
=1

t=11=1

The stochastic process of Eq. 2.47 can be represented using a dynamic Bayesian
network (DBN), such that there is a one-to-one correspondence between the network
and the collection of interaction graphs over time, as shown in Figure 1.1.

B 2.6 Bayesian Learning of a Time-Homogenous Dependence Structure

Even when the dependence model does not change over time and observations are
assumed perfect, learning a dependence structure is an NP-hard problem in general [10].
On the other hand, if we cannot solve this problem, we have little hope of solving a more
complex problem of reasoning over time-changing interaction from imperfect data stated
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DBN

Figure 2.3: Dynamic Bayesian Network (DBN) representation of a homogenous inter-
action among four signals with interaction graph E. Self-edges are assumed.

in this thesis. Therefore, it is of critical importance that we have a tractable solution
to the simplified problem. Furthermore, the inference over homogenous dependence
structure from “perfect” data will serve as one step in the inference procedure for the
full model, given in Section 3.4.

Let us first describe the homogenous interaction model more formally following the
notation introduced in Section 2.5. We assume here that the dependence model is
homogenous in time, i.e., By = E, pa(i, t) = pa(i), and 6; = 6. Equation 2.46 can now
be rewritten as

N
p(Xi|Xe1, E, 0) = [[ p(X31 X720, 6) (2.48)
=1

and Equation 2.47 as

T
p(X|E,0) = p(Xol6o) | [ p(Xel X1, E, 6)
t==]1

N T N
= [T »xiied) TTTT e(xi1 X740, 6% - (2.49)
=1

t=11i=1

This stochastic process is illustrated in Figure 2.3. In the rest of this section, we will
assume that the parameters of the initial model, 6y, are known, and focus solely on
inference over the dependence model.

The goal of structure learning is to infer the dependence structure E from observed
time-series X. Parameters of the dependence model, 8, may be inferred as well, or
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Figure 2.4: Frequentist homogenous temporal interaction model.

treated as nuisance variables. There are different approaches to structure learning,
which are summarized in Section 2.6.5. We make two important distinctions here. The
first one is between frequentist and Bayesian approaches. The second distinction is
between point estimation of a structure and a evaluating the full posterior distribution
over structures.

M 2.6.1 Frequentist vs. Bayesian approach
Frequentist approach

In a frequentist approach, unknown variables are treated as deterministic (just un-
known). The graphical model of a homogenous interaction in a frequentist approach is
shown in Figure 2.4. In this case, the structure £ and parameters ¢ of the dependence
model (Equations 2.48 and 2.49) are unknown. The box around these two variables sig-
nifies that they are treated as a single “unit” (which we also call a dependence model),
and each variable X; depends on both of them (so, there is no need to clutter the figure
by drawing a separate edge from E to X; and from € to X3).

Bayesian approach

On the other hand, in a Bayesian approach, unknown variables are treated as random
variables whose values are assumed to be generated from some prior distribution (prior
to data generation). Let p(E;3) be the prior probability of structure E, parameterized
by 3. In the most general form, 3 is a collection of parameters {fg} (one parameter
for each structure), such that S is proportional to the prior probability of E:

p(B;B) = %6 o B, (250)

where B =} g is a normalization constant.

Let p(@|E;~) be the prior probability of 8, parameterized by ~. For now, we do not
assume any particular form of the dependence models, p(X §|Xff(lz), 6%). Note however
that the prior on parameters, €, may depend on the structure. Since different struc-
tures may differ in the number of parents (for some signals), they may also require
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Figure 2.5: Bayesian homogenous temporal interaction model.

parameters of different dimensionality. Thus, v is indeed a collection {yg} of sets of
hyperparameters, such that p(8|E;~) = p(0;vE)-

The Bayesian model described above is shown in Figure 2.5. The posterior distri-
bution over dependence model structure and parameters can be written as

p(X|E,0) p(E,6;8,7)
p(X;8.7) '

Here, p(E,8;3,v) = p(E;8) p(# |E;~) is the joint prior on E and 6. The denominator
p(X; B,7), which serves as a normalization constant, is the marginal probability of data:

p(E, 0| X;8,7) =

(2.51)

p(X:6.7) = 2 [ pOX1E.0) (5. 0:8.7) db. (2.52)
.

Note that for discrete 8, the integral above should be replaced by a summation. Also,
if only some components of @ are discrete, there would be a combination of a sum and
an integral instead.

Similarly as with the prior, the posterior in Equation 2.51 can be decomposed as a
product of the posterior over structure and the posterior over parameters given struc-
ture:

p(E,0| X;8,7) =p(E| X;8,7)p(0| E, X;7) . (2.53)
The posterior over structure can be obtained as

, _ p(E;B8)p(X |E;v)
p(E|X;8,7) = o5

Here, p(X |E;~) is the marginal probability of data given structure E, where the
marginalization is over parameters 0:

(2.54)

p(X | E;) = /9 p(X,01E;7) df = /9 p(X|E,0)p(0|E:y)do.  (255)

Note that p(X |E;~) depends on  — the hyperparameters associated with the prior on
6. More precisely, it depends on g, which are the hyperparameters associated with the
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prior on @ given E. Thus, we can write p(X |E;v) = p(X |E;~vg). If one marginalizes
over the parameters 6, then Eq. 2.52 can be written as

p(X;8,7) =D p(X,E;B,7) = Y p(E; B) p(X |E; ) - (2.56)

E E

Finally, the posterior over parameters 8 given structure can be written as

(0] E,X; ) = p(O|E;) p(X |E,0) (2.57)

p(X |E;7)
Note that p(X |E;+), the marginal probability of data given structure, serves as a
normalization constant when evaluating the posterior over parameters given structure
(Eq. 2.57), while it has the role of a likelihood function when evaluating the posterior
over structure (Eq. 2.54).

M 2.6.2 Point estimation vs. full posterior distribution evaluation
Point estimation

A point estimate of a structure is commonly obtained as a structure that maximizes
some objective function exactly or approximately (e.g., using a heuristic search) [11].

For example, a maximum likelihood (ML) estimate of a homogenous structure
is obtained as

Eyp = arg max max p(X|E,0). (2.58)
E

The problem of structure learning can also be thought of as a model selection problem.
For each structure F, p(X|FE,0) represents a statistical model of time series X - the
one indexed by E, parametrized by #. The maximum likelihood estimate of parameters
of this model is obtained as

éMLIE = argmax p(X|E,0). (2.59)
[

Thus, the ML estimate of a structure is the structure that yields a model for which the
highest likelihood is achieved:

Enp = arg max p(X|E,0p15)- (2.60)

In general, this criterion may lead to severe overfitting. For example, let structures
E; and Ej; satisfy E; C E,, and models p(X|E1,0) and p(X|FE2,6) be such that the
model for By “contains” the model for ;. In other words, V81 € Q1,305 € 5 such
that p(X|Es, 6;) = p(X|E1, 01),? where ©; and (2 are the parameter spaces of the first
and second model, respectively. Then, p(X|E1,0p1|5,) < p(X|E2, 001 E,) necessarily

*ie., VX,p(X|Ez,62) = p(X|E1,61)
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holds. This is often the case in practice. For example, if the two models are chosen from
the same parametric family, the model for Es reduces to the model for E; when the
edges in E3\ E; are ignored (e.g., when the corresponding parameters are set to 0, or in
some other way, depending on the actual family). Thus, the model for Es is at least as
good of a fit as the model for Eq, and likely better, which results in selecting a maximal
structure (fully-connected graph) as an ML estimate, and, consequently, overfitting.

A penalty on model complexity is typically imposed in order to prevent overfitting.
Two commonly used objectives that incorporate model complexity are Aikike informa-
tion criterion (AIC) [1] and Bayesian information criterion (BIC) [48]. AIC value of a
model is defined as

AIC =2m —2In(L), (2.61)

where L is the maximized value of data likelihood under that model, and m is the num-
ber of independent parameters of the model. AIC criterion, which has an information-
theoretic justification, states that the model with the smallest AIC value should be
selected. While the negative log-likelihood generally decreases with the model complex-
ity, the number of parameters on the other hand increases, thus providing a penalty
on model complexity. In the homogenous-structure learning problem, the maximized
likelihood of a model for a given structure E is

L(E) = p(X|E,0p1)E) (2.62)
and Aikike information criterion is then
AIC(E) = 2m(E) — 2lnp(X|E, 01| 5) , (2.63)

where m(F) is the number of independent parameters of the model p(X|E, 8) (i.e., the
true dimensionality of 6g).
The BIC value of a model is defined as

BIC =mIn(T) —2In(L), (2.64)

where T is the number of data points, and m and L are as above. It is derived as an
approximation to the marginal data likelihood assuming a “flat” prior on parameters
(i.e., assuming that p(@|E) « 1) [5]. Again, the model with the smallest BIC value
should be selected according to the BIC criterion. Note that the BIC score differs from
the AIC score in that the penalty term also depends on thé number of data points, T
When T is large enough, the BIC score penalizes model complexity more aggressively
than the AIC score, which often proves better in practice. Also, the AICe (corrected
AIC) criterion [28], which is a modified version of AIC, tends to work better than AIC
for small sample sizes.

A maximum a posteriori (MAP) estimate of the joint configuration of structure
and parameters is

(Er é)MAPC = al"gEIgaXP(Ea o I X; ﬁ77) = arg}grgaxp(X |E> 0) p(E: 6; :By ’7) 3 (265)
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where the last equality follows from Equation 2.51 and recognizing that the normal-
ization factor does not depend on E and 6. Here, the prior p(E,6;3,) can also be
thought of as a regularization term that can be used to penalize model complexity. For
example, the prior on structure, p(E; (), can be constructed to incur higher penalty on
structures with higher number of edges in order to prevent overfitting. The structure
component of the joint MAP estimate can alternatively be written as

Enapc = arg maxmexp(X |E,0) p(E, 6; 8,7)
E
= arg maxp(E; ) max p(80;7) (X |E, 0)
E

= argglaXP(E; B8) p(Orrap &) (X |E, éMAPlE) , (2.66)

where 6 map|E is the MAP estimate of parameters @ for a given structure E, ie.,
Orvap| e = arg max p(6;7) (X | E, ). (2.67)

Note that Equation 2.66 differs from Equation 2.58 only in the presence of prior,
p(E, 8; 8,7). Therefore, an ML estimate of a structure can be thought of as a structure
that belongs to the joint MAP estimate of the structure and parameters when their
prior is “flat”.

If we are only concerned about learning the structure (and treat parameters as
nuisance variables), an alternative MAP estimate of a structure can be obtained by
maximizing its marginal posterior distribution:

Eyvapu = argénaxp(E | X;8,7) = arg ;naxp(X |E; ) p(E; B) . (2.68)

This can again be thought of as a model selection criterion, in which the model implied
by structure E is evaluated by averaging data likelihood over all possible values of
parameters for that structure, weighted by the prior probability of parameters (Equation
2.55), while the prior probability of structure serves as a model penalty. It is important
to note however that Bayesian averaging over parameters (as in p(X | E; 7)) accounts for
model complexity on its own. Namely, since the (weighted) average data likelihood is
used instead of the maximum likelihood to evaluate a model, a more complex model is
not necessarily better than a simpler one, even if the simpler model is contained within
the complex model. Therefore, it is not necessarily the case that the prior on structure
has to be used as a means of penalizing model complexity. For example, even if larger
structures have higher prior probability, that may not necessarily result in overfitting.

Evaluatiing full posterior distribution

An alternative to structure point estimation is to compute the posterior distribution
of all structures, as given by Equation 2.54, and then evaluate the probability of any
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event of interest by a Bayesian averaging over structures. For example, the posterior
probability of an edge A — B belonging to the interaction structure can be computed
as

P(A— B|X;8,7) =) W(A— BeE)p(E|X;B,7)
FE
= Y. p(E|X;87), (2.69)
E:A—BeFE

where I is the indicator function.® This can be generalized to any event A:

PA| X;8,7) = 3 p(A| B;7) p(E| X;8,7) - (2.70)
E

If A(F) is an event that only depends on structure E, which we will call a structural
event, then

P(A|X;8,7) = Y T(A(E)) p(E| X; 8,7)
E
= > p(E|X;B7). (2.71)
E: A(E)

For instance, an event that an edge A — B belongs to the interaction structure, given
in Equation 2.69 above, is an example of a structural event.

Similarly, the posterior probability of an edge A — C conditioned on the presence
of edges A — B and B — C can be computed as

P(A—-C|A—- B,B—C,X;8,7)

_P(A—-C,A—B,B—~C|X;8,7)
- P(A— B,B—C|X;B,7)

_ YE:{A->C,A-B,Boc)es P(E| X;8,7)

— , (2.72)
>_B:(a-B,Bcyer PIE| X;8,7)
which can again be generalized to arbitrary events A and B:
P(A,B|X;B,7)
P(A|B,X;8,7) =
B0 = "pB1x:5,7)
E; E|X;

Y. ep(BlE;Y)p(E| X;8,7)

3I(cond) = 1 if cond is satisfied, 0 otherwise.
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Finally, we define a conditional structural event A|B(F) as an event that A(F)
holds assuming that B(E) holds, whose probability can be computed as

> e aEn8E) PELX;B,7)
g5 P(E|X;B,7)

An example of a conditional structural event is given in Equation 2.72.
Let us illustrate the variety of possible structural events with some more examples.
The probability of an event that signal A has at most m parents, indeg(A) = |pa(A)| <

m,* can be computed as

P(lpa(A)| <m|X;8,7)= D>,  pEIX:B,7)- (2.75)
E:Ipa(A)lSm

P(A|B,X;8,7) =

(2.74)

Another example is an event that signal A is a parent to at least m signals, outdeg(A) =
S"5I(A — B € E) > m.S5 The probability of this event can be computed as

P(outdeg(A) > m|X;B8,v)= Y,  p(E|X;B,7). (2.76)
E :outdeg(A)>m

Note that a point estimate of a structure only provides a prediction whether a
structural event holds or not, and does not characterize the uncertainty of that estimate,
which is, on the other hand, captured by evaluating the full posterior over structures.
While this argument holds for any type of variable, and is the basis for using the
Bayesian approach in the first place, it is particularly important in the case of structure
inference. The number of possible structures is extremely large (superexponential in
the number of nodes), with possibly many of them providing similarly good fit to the
same data, even for relatively large data sizes. The uncertainty in the inferred structure
is further increased in the cases when limited data is available and the data is imperfect
(noisy and/or missing).

Note also that a frequentist approach can only be paired with maximum-likelihood
point estimation, since it does not treat parameters (structure and parameters in this
case) as probabilistic variables and therefore does not allow for computing their pos-
terior distribution. It should be mentioned that various techniques for computing the
confidence of estimated values or their statistical significance have been developed in the
frequentist setting, but they have a different meaning — they only provide confidence in
estimated values and therefore do not allow reasoning over different parameter values.
For example, one may construct a hypothesis testing procedure that tests whether an
edge A — B exists in the interaction structure. However, the result of such a procedure
would be a conclusion whether the hypothesis should be accepted or not and an asso-
ciated statistics that supports the decision (e.g., p-value). Furthermore, it may be the
case that none of the hypothesis (presence or absence of an edge) is strongly supported

4The number of parents of a node is also called node in-degree.
5The number of children of a node is also called node out-degree.
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by the data, but the associated statistics could not be used to compute the edge proba-
bility. Also, if hypotheses are made about the graph, it is very likely, due to the inherent
uncertainty mentioned above, that none of the graphs would be “accepted”. On the
other hand, a Bayesian approach can be paired with maximum-a-posteriori point esti-
mation, as well as as with evaluating the full posterior distribution, which characterizes
the uncertainty in parameter values by computing their full posterior distribution, and
thus is the approach of our choice in this thesis.

The examples above demonstrate the posterior analysis in the case of structural
events, which are binary functions of the structure. The same type of analysis can
be performed for any type of function by evaluating the posterior probability® of each
possible outcome. For example, the posterior distribution of a node out-degree can be
computed as :

P(outdeg(A) =m|X;8,v)= >  p(E|X;8,7). (2.77)
E:outdeg(A)=m

More generally, if f(E) is an arbitrary function of the structure E, which we will refer
to as a structural property, the posterior probability that it takes a particular value
v can be computed as

P(f(B)=v|X;8,7) = >, pE|X;8,7). (2.78)

E:f(E)=v

Note that structural events are a special case of structural properties — binary properties.
It is worth noting that binary properties exhibit the weakness of point estimation the
most. If the point estimation of such property is wrong, it misleads further analysis. On
the other hand, estimates of some properties can be useful even if they are wrong. For
example a point estimate of a property whose value lives in an “ordered” space, such
as node out-degree, provides insight into which area of the space its value may belong
to (e.g., whether the out-degree of a node is high or low). Still, even in such cases, the
Bayesian approach provides more information about such a property by evaluating its
entire posterior distribution.

B 2.6.3 Complexity of Bayesian network structure inference

Bayesian network structure learning is a hard problem ~ NP-complete in general [10].
First of all, the number of possible static Bayesian networks with N nodes is huge. It
is the same as the number of directed acyclic graphs (DAGs) with N nodes, which we
denote as gn. It can be shown that gy is superexonential in N with exponent ©(N2).

Lemma 2.6.1. gy > 2(12\()

Proof. Let m = (i1,12,...,in) be an arbitrary permutation of node indices 1,2,..., N.
Let us consider only directed graphs in which each edge (i; — ix) must satisfy j < &k

Sor density in the case of continuous-valued functions
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(i-e., edges must point from left to right with respect to the permutation). We will
say that these graphs “respect” the permutation =, or that = is a topological order for
them.” They can be constructed by choosing independently for each pair of indices
j < k whether to have an edge i; — it or not. There are (1;] ) such pairs. Therefore,

the number of graphs that respect the permutation 7 is g, = 2(1'3), for any permutation
of N nodes. Such graphs are DAGs, since any cycle would have to contain at least one
edge going from right to left in the permutation, from which it follows that gy > g,. W

Lemma 2.6.2. gy < 3(2’)

Proof. Let us consider all directed graphs with N nodes that do not contain cycles of
length 1 (self-loops) nor cycles of length 2 (pairs of edges ¢ — j and j — i, for any ¢ and
7). They can be constructed by choosing independently for each pair of nodes i # j
whether there is an edge i — j, an edge j — 4, or no edge between them. Therefore,
there are 3@/) such graphs. These graphs necessarily include all DAGs, from which the
statement of the Lemma follows. |

Theorem 2.6.1. gy = 200V,

Proof. From Lemmas 2.6.1 and 2.6.2

N(N -1 N(N -1
(—2—')‘ < logy(gn) < 108'2(3)'-(“2"-”) .
ffom which the statement of the theorem follows. [ |

From the proof of Lemma 2.6.1, one may attempt to conclude that gy = N !2(2’),
as there are N! possible permutations of nodes and 2(’}’) possible DAGs that respect
each permutation. This is however not true because some DAGs respect more than
one permutation and are therefore counted more than once. For example, a graph with
no edges is a DAG that respects all permutations. On the other hand, since N! 2(3)
is an overestimate of the number of DAGs, it can serve as an upper bound. In fact,
it is asymptotically a tighter upper bound than 3(2) from Lemma 2.6.2. To see that,
note that log N! = S logi = ©(NlogN) = o(N?)? from which it follows that
log N'! 2(3) = o(N?) + Mj—g"—l), which is clearly smaller than 3(3) = log,(3) N(g_l) for
large enough N. The exact number of DAGs with N nodes can be computed recursively
due to Robinson [47] as

N N
gy =y (-1)™! (m) 2 N=gN (2.79)
m=1

starting with go = 1 (there is only one DAG with 0 nodes — empty graph).

"Note that each graph can have multiple topological orders.
83N logi = O(N log N) follows simply from ¥ log & < 3"V  logi < NlogN.
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Theorem 2.6.1 shows that the number of possible static Bayesian networks is super-
exponential in the number of nodes. Therefore, the complexity of evaluating the full
posterior over such networks is also superexponential, since the posterior probabilty of
each possible structure must be evaluated. It does not immediately follow that struc-
ture point estimation incurs the same complexity (many optimization problems with
exponential number of possible solutions are solvable in polynomial time by exploring
some structure in the solution space — e.g., Dijskstra’s algorithm for finding the shortest
paths in a graph). However, Chickering [10] has shown that finding the “best” structure
is NP-complete under very general assumptions — existence of a structure scoring func-
tion (e.g., marginal data likelihood given structure as in Equation 2.55) and structure
penalty function (e.g., AIC/BIC penalty or structure prior probability). Hence, both
ML and MAP structure estimation (as well as any other “reasonable” point estimation
method) are NP-complete problems.

Learning a homogenous dynamic Bayesian network is a very similar problem. The
number of possible such networks with N signals, dy, is also superexponential in the
number of signals.

Theorem 2.6.2. dy = oN?

Proof. All homogenous dynamic Bayesian networks with N signals, X!, X2 ..., XV
are fully determined by the edges between variables at any two neighboring time points
t — 1 and t. For each pair of variables X} ; and X7, there are two choices: there is

no edge between them or there is an edge X} ; — X]. There are N2 such pairs, and

each choice for an edge can be made independently. Therefore, there are 2V 2 possible
structures. Note that this is exactly the number of bipartite graphs between two sets
of nodes of size N. n

Consequently, dy is also the number of possible interaction graphs between N sig-
nals at any given time. Note that calculating this number is simpler than calculating
the number of static Bayesian networks. The main reason is that dynamic Bayesian
networks implictly assume ordering of nodes (which is temporal ordering) and thus do
not involve permutation selection. As a consequence, each edge can be chosen indepen-
dently. The same does not hold for static networks — choosing a subset of edges may
prevent choosing some other edges in order to satisfy graph acyclicity (edges can only
be chosen independently when conditioned on a particular permutation).

Obviously, the complexity of the Bayesian inference over homogenous DBNs is also
superexponential, which is of our primary concern. On the other hand, to the best
of our knowledge, it is not clear from the existing literature whether the result of
Chickering holds in this case as well. In other words, it is not cleat whether homogenous
DBN structure point estimation is necessarily NP-complete under the same assumptions
and whether there are some specific instances of that problem in which the simplified
structure of the solution space (no permutations involved) can be exploited to obtain
polynomial-time algorithms. While this is certainly a very important and interesting
problem, it will not be of a concern in this thesis, as we are primarily interested in the
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# nodes | # static BNs | # interactions
1 1 7
2 ! 3 16
3 25 512
4 543 65,536
5 20,281 33,554,432
6 3,781,503 6.87 x 1010
7 1.14 % 1099 5.63 * 1014
8 7.84 x 1011 1.84 % 1019
9 1.21 % 1019 2.42 x 1024
10 4.18 % 1018 1.27 % 1030

Table 2.1: The number of possible static Bayesian networks and homogenous interaction
structures as a function of the number of nodes.
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Figure 2.6: There are 16 possible interaction structures among 2 signals.

& &

G
©
©!
o
©!

cl
0
GO
cy

Bayesian approach.

B 2.6.4 Prior for efficient structure inference

Exact Bayesian inference over both static Bayesian networks and homogenous DBNs
(or, equivalently, homogenous interaction structures) is computationally tractable only
when the number of nodes or signals is very small. The number of possible structures
for both types of networks as a function of the number of nodes/signals is shown in
Table 2.1. For example, even for only 2 nodes there are already 16 possible interaction
structures, which are shown in Figure 2.6.

In order to allow for tractable inference over structure, an approximate algorithm
must be employed or some assumptions must be made in order to reduce the space of
allowed structures (or both). The most widely used class of algorithms for approximate
Bayesian inference over structures are sampling algorithms. For example, Markov chain
Monte Carlo (MCMC) simulation has been used to generate samples from the poste-
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rior distribution over structures [19, 36], which can be used to estimate the posterior
probability of any structural property:

N
P(f(E) =v| X;8,7) z—];,1——le(f(E¢) =), (2.80)
$i=1

where E1, ..., ENs ~ P(FE|X;B,~) are Ny samples from the structure posterior. The
key challenge in such approaches is to construct a proposal distribution that leads to
efficient exploration of the space of structures with respect to their posterior probability.

We choose the latter approach to tractable inference over structures, which is to
impose constraints that reduce the space of possible structures and perform exact in-
ference over the remaining structures. We follow the work of Siracusa and Fisher [50]
and use the following two assumptions: (1) modular prior assumption, which allows
independent reasoning over parent sets of signals and reduces the complexity of infer-
ence to exponential, and (2) additional constraints on parent sets, such as bounded
in-degree assumption, which further reduce the complexity of inference to polynomial
in the number of signals.

A modular prior on structure and parameters (7,11, 19, 27] is based on the follow-
ing assumptions:

e p(E;pB) = Hf;l p(pa(i); B) (structure modularity)
e p(0|E;~) = Hfil p(6*|E;v) (global parameter independence)
e p(6*|E;~) = p(&|pa(i);y) (param. modularity).

The “structure modularity” assumption states that the parent sets of different sig-
nals are independent of each other with respect to the prior probability of structure.
The “global parameter independence” assumption states that the parameters of the
dependence models of different signals are independent of each other with respect to
their prior probability given structure. Finally, the “parameter modularity” assumption
states that the prior probability of parameters of the dependence model of a signal only
depends on the parent set of that signal, and is therefore independent of the parent
sets of other signals. These three assumptions can thus be written in the form of prior

independence statements:
e pa(i)llpa(j), Vi,j : i # j (structure modularity)

e UG |E, Vi, j:i+# j(global parameter independence)
e # 1l pa(j), Vi,j:i# j (param. modularity),

as well as summarized in the following statement: The modular prior on structure and
parameters decomposes as a product of priors on parent sets of individual signals and
associated parameters,

N
p(E,6;8,7) = [ [ plpali); B) p(6* | pa(i); ) - (2.81)
=1
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Modular prior on structure and parameters can be constructed in the following way.
There is a separate prior distribution for a parent set of each node 7, which has a general
form

p(pai); B) = g;ﬂ,-,m@ % Bigaiyr (2.82)

where B; = ) 5 s are normalization constants. § is no longer a collection of parame-
ters per structure (as in Equation 2.50), but rather a collection of parameters { ﬂi,pa(i)}
(one parameter for each possible parent set of each signal). Similarly, v is a collection
of hyperparameters {7; po(;) }, such that p(8%pa(i);y) = p(ei;%m(,—)).

Modularity is also reflected in the posterior:

N .
p(E,8|X;8,v) = Hp(pa(i) | X; 8) p(6° | X, pa(i); y) - (2.83)

i=1

For static Bayesian networks, the modular prior assumptions are meaningful when
the ordering (permutation) of nodes is fixed. The reason for that is that, in general,
parent sets of nodes cannot be chosen independently as that may result in creating a
cycle, which is a global relationship. However, when the ordering of nodes is fixed, and,
for each node, only the parent sets that respect that ordering are allowed (i.e., only
. parents that are to the left of a node with respect to the permutation), then parent
sets of nodes can indeed be chosen independently, as any combination of choices would
result in a structure that respects the permutation. This property was first exploited by
Buntine [7] and Cooper and Dietterich [11], which assume that the order of variables is
known (e.g., determined by a domain expert), while Friedman and Koller [19] combine
it with a procedure for sampling node permutations from their posterior distribution.

On the other hand, the modular prior assumptions can be applied unconditionally
(i-e., without any further assumption) in the case of interaction graphs. This follows
simply from the fact that interaction graphs do not need to be acyclic (i.e., any directed
graph is permitted) and parent sets can be chosen independently for each signal [50].

As a result, parent sets can be chosen independently for each signal [50], and the
total number of parent sets to consider is N2V, which is exponential in the number of
signals.

If, in addition, the number of parents of each signal is bounded by some constant M
(a structure with bounded in-degree [11,19,27]), the number of parent sets to evaluate
is further reduced to O(N™+1), which is polynomial in N.

W 2.6.5 Related Work

Learning Bayesian network structure (under reasonable assumptions) is NP hard [10].
However, there has been an extensive body of work on exact and approximate methods.
While some work employs direct causality testing (constraint-based methods) [53,57],
most researchers focus on a Bayesian approach, or a score-based approach that possibly
has a Bayesian interpretation. A number of heuristic methods for finding a structure
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with the maximum a posteriori (MAP) probability have been developed [7,11,27]. A
few assumptions are typically introduced to reduce the search space. Assuming a known
ordering of variables (e.g., [7,11]), for which edges are always directed from “left”
to “right”, eliminates a global constraint of the structure being acyclic — namely, a
parent set of each node can be chosen independently and the graph will still be acyclic.
If, in addition, a prior on the structure and parameters is modular (e.g., [7,11,19,
27]), inference over each node’s parent set can be performed independently, and the
complexity of structure inference is reduced from superexponential to exponential in
the number of nodes. Introducing a bound on the number of parents of each node
further reduces the complexity to polynomial (e.g., [11, 19, 27]).

Learning the best structure from limited data is challenging. There may be many
structures that are similarly “good”. Also, the probability of learning the correct struc-
ture decreases rapidly with the number of objects. Therefore, for all but small problems,
a large amount of data is needed to avoid errors. In addition, there are typically mul-
tiple structures that encode the same set of independences among involved variables
(Markov equivalence class), leading to identifiability issues. On the other hand, in most
cases, the structure itself is not of direct interest, but rather some of its properties. For
example, is there an edge between two nodes? Instead of reading these properties from
a potentially incorrect single learned structure, it is possible to compute their posterior
probabilities via Bayesian structure averaging, as suggested by Cooper and Herskovits
[11]. This approach does not provide definite answers. However, it fully characterizes
uncertainty in the structure and any of its properties. This additional information is
especially valuable when decisions that follow the analysis are postponed to a further
analysis (e.g., by a domain expert). Note that another important goal of structure
learning is to obtain better predictive models. It has been shown that Bayesian av-
eraging improves predictive performance over inference based on a single model (e.g.,
[36]).

The powerful methodology of MCMC [58] was first used for Bayesian structure
averaging by Madigan et al. [36]. However, this method tends to mix poorly and
does not explore well the space of structures, due to the local nature of MCMC moves
(at most one edge is added or removed from the graph in a single step). Friedman
and Koller [19] developed a method that combines MCMC sampling over orders of
variables with exact inference over structures for a given order (which is polynomial
in the number of nodes by the assumption of modular prior and bounded number of
parents). The space of orders is much smoother in the posterior over structures than the
whole space of structures, leading to a significantly better performance of the MCMC
method. Niinimé&ki et al. [39] further improve MCMC performance by sampling over
even smoother space of partial orders. One drawback of the methods that sample
from linear or partial orders of variables is their inability to explicitly specify priors
on structures. Grzegorczyk and Husmeier [25] improved the original MCMC algorithm
over structures (DAGs) by introducing a new edge reversal proposal move.

Similarly, learning DBN’s has been addressed by Friedman et al. [20]. The number
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of structures to consider can again be reduced by imposing constraints, for example, by
bounding the number of allowed parents per object (Friedman and Koller [19], Siracusa
and Fisher [50]). For some special classes of structures, such as trees, it is possible to
reason over marginal events efficiently without explicit enumeration (Meila and Jaakkola
[37], Siracusa and Fisher [50]).

B 2.7 Bayesian Learning of Switching Dependence Structure

In order to learn time-varying interaction from time-series data, Siracusa and Fisher [49,
50] assume that the dependence model switches over time between K distinct models,
My, = (E’k,ék), k=1,...,K. More formally, for each time point ¢, M; = M), for some
k, 1 <k < K. One interaction may be active for some period of time, followed by a
different interaction over another period of time, and so on, switching between a pool of
possible interactions. This is illustrated in Figure 1.1. Let Z;, 1 <t < T, be a discrete
random variable that represents an index of a dependence model active at time point
t; ie., My = Mzt, Zy € {1,...,K}. Equation 2.46 can now be rewritten as

p(Xt[Xt—I, Zt: Er é) = p(XtIXt—17 EZ:: éZt)

N
= [[p(xiIxP079, 63, (2.84)

i=1

where (E, 0) - {(Ex,0x) Y | is a collection of all K models and pa(i, k) is a parent set
of signal ¢ in Fy, and Equation 2.47 as

T
p(X|Z, E,6) = p(Xolbo) [ | p(Xe| Xi-1, 21, E, 6), (2-85)
t=1

where Z = {Z;}L_,. To distinguish from signal state, we call Z; a switching state (at
time ¢) and Z a switching sequence. Furthermore, it is assumed that Z forms a first
order Markov chain:

T T
p(2) =p(Z1) [ p(2e) Ze-1) = 72, [ 720,20 (2.86)
1=2 t=2

where 7; ; is a transition probability from state i to state j and 7; is the initial proba-
bility of state .

The full STIM generative model, shown in Figure 2.7, incorporates probabilistic
models described above along with priors on structures and parameters:

e Multinomials 7 are sampled from Dirichlet priors parametrized by o as
(71'1, ‘e ,7I'K) ~ ’Dir(al, e ,aK),
(71‘,;,1, . e ,7r,~,K) ~ 'DiT(Oz,;’l, vy ai,K) Vi.
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Figure 2.7: Switching temporal interaction model of Siracusa and Fisher [50].

e K structures Elk and parameters 6, are sampled from the corresponding priors as
Ey ~ p(E; B), O ~ p(0]Ex; ), Vk.

e Initial value Xy is generated as Xo ~ p(Xo|6o)-

e For each t =1,2,...,T (in that order), values of Z; and X; are sampled as
Zy ~ Mult(mz, 1, Tz, ,,K) OF
Zy ~ Mult(my, ..., 7g) ift =1,
X ~ p(X¢|Xt_1, E.Zt,! 0z,).

Algorithm 2.1 STIM Gibbs sampler

1. Z ~p(Z|X, E,0,7)
2. w~p(7|Z; )

Inference in the STIM is done using a Gibbs sampling procedure shown in Algorithm
2.1. Sampling of the K dependence models (structures and parameters) is done as if
each of these models is homogenous. Namely, since this step the switching sequence Z
is conditioned on in this step and is therefore assumed know, pairs (X;—1, X;) pertained
to each state are pulled together to perform an update on that states’ model. This
procedure is shown in Algorithm 2.2. Note that this step is efficient when a modular
bounded-indegreee prior on structures is used in conjunction with a conjugate prior on
dependence model parameters (Algorithm 2.3). In case of a linear Gaussian dependence
model with a matrix-normal inverse-Wishart prior, the procedure is shown in Algorithm
2.4. The procedure for sampling parameters 7 of multinomials given the switching
sequence Z (step 2) is straightforward as the Dirichlet distribution is conjugate to the
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multinomial, and is shown in Algorithm 2.5. Given the state sequence X and the
dependence models {Ek, 9k}£{= 1» @ sample of a switching sequence (step 1) is generated
via a backward message-passing forward sampling algorithm, which we now discuss in
more detail.

Algorithm 2.2 Sampling structures and parameters of the K dependence models:
E,0 ~p(E,0|1Z,X;8,7)

for k=1,... K
for E €&
rk

B =P P ({Xt}t:thk | {X¢-1}t:2,=k, B ’YE)
Ejy ~ Categorical ({5/%}Eesk) /| P(Ex = E) x 8%
O ~ P (@e | {X¢e, Xe1}ezo=k> Bk ’7,%)

Algorithm 2.3 Sampling structures and parameters of the K dependence models with
modular prior: E,60 ~ p(E,0|Z,X;5,7)

for k=1,...,K

fori=1,...,N

for s € PAL
,Z’C,s = Isz:s P ({Xf}t:Zt=kl {th—l}t:Zt=k7 3;’725)

. . - . k
pa(i, k) ~ Categorical ({B,f’s}se'p‘Ak) // P(pa(i, k) = s) ﬂ'i’s
- . ik .
0 ~ P (04100, X0 Yz, Bl K, Wiy

W 2.7.1 Batch sampling of the switching state sequence (step 1)

A conditional distribution of Z can be decomposed as

T
P(Z|X,E,0,7) = P(%1|X,E,6,7) | | P(Z| Z1.4-1, X, E, b, 7). (2.87)
t=2



Algorithm 2.4 Sampling structures and parameters of the K dependence models with
modular prior in LG-SSIM: FE,0 ~ p(E, 6|2, X; 3,7)

fork=1,....K
fori=1,...,N

for s € PAL
-1

tk k1 8 s T

Qio= %, + Z Xt 11X
t:Zy=k
Mlk - ]\/fk Qk -1 + Z Xsz T Qlk
2,8 2,8%%,8 tt—-1 1,8
t:Zv=k

1k k . _
Kis zﬂi,s'*']{t'zt_k}‘

tk gk i yril kok ~LakT ko yk ~1y ok T
U, =V + Z Xi Xy + MY, M, + MG QG MY

t:Zi=k

k ’
. [ E |2 W |72 Ta(y)
P ({XYezomn | {XE Y zimp, 875, ) = ’ =
(ot bt sohe) = o b T (2

BY, = 85 P ({X ez | (X 1Yozt 550y
pa(i, k) ~ Categorical ({8'%}sepa, ) // P(Fali, k) = 5) B,
At A i1 Al k k k k
(A}, Qb ~ MNIW (A Qs M0 Y Eaiior ¥ bty W)

Algorithm 2.5 Sampling of the switching sequence multinomials: 7 ~ p(7|Z; @)

Dirichlet priors conjugate update

o =a
oly = dlg +1
fort=2,...,T

oz, 7z, =g 7z, +1
Sampling multinomials
(71,...,7x) ~ Dir(d, ..., k)
fori=1,.. K ‘
(M1, TiK) ~ Dir(a;,l, . ag,K)
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Therefore, the following forward sampling procedure:

Zy~ P(Zy|X,E,8,7)
Zy ~ P(Z2|ZIaX1 E,é,ﬂ')

Zr ~ P(Zr|Zy7-1, X, E, 0, 7) (2.88)

generates a joint sample of variables Z1, . .., Zr from the above conditional distribution.
Here, “forward” refers to the temporal order in which switching variables are sampled.
P(Z1|X,E,,r) can be computed in the following way:

P(ZI|X7 Ea 9771’)

« P(Zy,X|E, 0, )

= Z P(Zl, ZZ:T, XlE, é, 71')

Za:T

T
=Y P(Xo) [ [ P(2e|Ze-1,7) P(Xe| Xi-1, Ez,, 0z,)

Za:T t=1
T-1 _ ~
< > | P2 Zer, m)P(Xs| Xi1, Ezt,ezt)}
Zy.r—1 Li=1

X Z P(ZTIZT-—la W)P(XTIXT—la EZTa gZT)
Zr

s

mT=(Z7_1)

-2
= > HP(Ztlzt--l,w)P(Xt|Xt~1,Ezt,ézt)}

Zar—2 Lt=1

X Z P(Zp_1|Zp—2, 7)P(Xr_1|XT-2, Ezpp_,, 020 ) mT Y (Z7_1)

Zr 1
N

S

mT=2(Zy _3)

= P(leﬂ)P(XﬂXOvEZnéZl)ZP(ZQIZIJF)P(X?IXMEZzaézz)m2(Z2)
Z3

vl

mlE'Zl)
= P(leﬂ)P(X1|XO,E~|Z]7éZ1)ml(Zl)7 (289)
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where P(Z,|Zy) = P(Z,) for convenience, and messages are defined recursively as
mT(z)=1, Vz=1,...,K
mt(z) = Z P(Zyi1|z, m)P( X1l Xe, Bz, 1, 02,00) M (Zeg1),

Ziv1

Ve=1,... K, Vt=1,...,T 1. (2.90)

Note that the message m%(z) = 1 is introduced for initialization convenience. It rep-
resents a uniform distribution, which can be interpreted as that no information about
timme point T + 1 is “coming into” time point 7. Messages can also be written in a
non-recursive form as

T T
mi(z) = Y P(Zwnlz,m) [ P(ZilZi1,m) || P(XilXi1, Bz, 0z,),
ZtA|_1:T ’I:=t+2 i=t+1

Ve=1,...,K, Vt=1,...,T—1. (2.91)

Finally, P(Z¢|Z1.¢-1, X, E,0,7), for each t =2,...,T, can be computed as:
P(Zy|Z1.4-1,X,E,0,7)
« P(Zs, X|Z14-1, E,0,7)
= Y P(Z, Zeyrq, X|Z141, B,0,7)

Zt+1:T
X Z P(Zt7 Zt+1:T7 Xt:TIZt~1> Xt—h E7 g: 7[')

Zt+1:T

T
= P(Zy|Z4—1,m)P(Xe|Xt-1, Ez,,02,) > [ P(Zi|Zio1,7)P(Xi| Xiz1, Ez,,02z,)

Zyyr.r i=t+1
= P(Z4|Zs—1,7)P(X¢| Xe—1, Ez,,02,) m*(Zy). (2.92)

Observe that the messages, previosly computed in-a backward fashion, are reused
to shortcut the computation of each P(Z;|Z1.4_1,X, E, 8, ), which are computed in a
forward fashion.

The full procedure is given in Algoritm 2.6. Evaluating P(Xt|Xt_1,E'Zt,§Zt), t =
1,...,T, Zz = 1,...,K, requires O(TKN) time in total.® Computing all messages
recursively takes O(TK?) time (computing each mf(z) for t < T requires a summation
over K values). Finally, once the messages are computed, forward sampling of sequence
Z requires O(T'K) time. Therefore, the total time needed for sampling Z is O(TK (K +
N)).

“Recall that X is a collection of variables of N signals.




Algorithm 2.6 Batch sampling of the switching state sequence: Z ~ p(Z|X, E, 8, )

Backward message passing
mi(z)=1, Vz=1,...,K
fort=T-1,...,1
mi(z) = Y P(Zepa|2)P(Xes1| Xe, Bz, 1, 02,0,) M (Zega), Vz=1,.. K
Ziy1
Forward sampling

P(Zy| X, E,0) «< P(Z)P(X1|Xo, Ez,,0z,) m!(Z;)

Zy ~ P(Z)| X, E, §)

fort=2,...,T
P(Zy|Zy4-1, X, E, 0) < P(Ze| Zy_)P(X4| X¢-1, Ez,,0z,) m*(Z;)
Zy ~ P(Zy| Z14-1, X, E, 0)
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Chapter 3

SSIM: State-Space
Switching Interaction Models

E present the state-space switching interaction model (SSIM) that allows

Bayesian discrete-time interaction analysis and accounts for switching interac-
tions, as well as noisy and missing observations. We extend the basic model to include
a variant in which interactions switch independently at the object (rather than group)
level. SSIM is based on the assumptions that we made in Chapter 1 that allow us to
represent an interaction as a structure of a dynamic Bayesian network (DBN). There-
fore, SSIM can be viewed as a framework for Bayesian learning of a structure of a
switching DBN from imperfect data. This problem of structure inference is hard (see
Section 2.6.3). In fact, even learning a structure of a homogenous (non-switching) DBN
from perfect time-series data is NP hard in general [10]. Moreover, for a fixed time-
window of data, the uncertainty about the correct structure may grow with the number
of time-series involved in an interaction since the number of possible structures grows
super-exponentially with the number of time-series (Theorem 2.6.2) and there could
possibly be many structures that explain the data well (i.e., that result in a model
for which the likelihood of the data is high). The problem is further exacerbated by
allowing an interaction to switch over time and by having noisy and missing data.

We will incorporate uncertainty using a Bayesian approach, in which we compute the
posterior distribution over interactions, switching pattern and latent time-series. This
allows us to characterize uncertainty and formulate various analyses as probabilistic
events, such as “What is the probability of an edge A — B in the interaction structure
at time point ¢7”, “What is the probability of an edge A — C, assuming the presence of
edges A — B and B — C7”, “What is the probability that a change of behavior (i.e.,
switching) occurs within time window (t1,t2)?”, and so on. Since inference in SSIM is in
general intractable, we employ a Gibbs sampling approach (Section 2.4.1). However, in
each step of the Gibbs sampler, which includes drawing samples of structures, inference
will be performed exactly. To deal with the complexity of inference over structures, we
employ a modular prior assumption and impose additional constraints on the structure
(such as the bounded-indegree constraint), described in Section 2.6.2, that reduce the
complexity to polynomial. These choices result in a tractable general inference proce-

63



64 CHAPTER 3. SSIM: STATE-SPACE SWITCHING INTERACTION MODELS

dure for the SSIM model. However, the efficiency of particular steps of this procedure
also depends on specific choices of probabilistic models that describe the evolution of
time-series and the observation process. In particular, we introduce a linear Gaussian
SSIM model (LG-SSIM) in which both temporal dependence and observation models
are linear Gaussian. This model allows for efficient exact inference of latent time-series
conditioned on other variables, which is another critical step in the sampling procedure.
Finally, we use conjugate priors on parameters of the model, which further simplifies
inference.

Related work is summarized in Section 3.1. In Section 3.2, we introduce the SSIM
framework for Bayesian inference over switching time-series interaction structure under
uncertainty, which extends the work of Siracusa and Fisher [49, 50] by allowing for noisy
and missing observations of time-series. In Section 3.3, we introduce a linear Gaussian
SSIM model (LG-SSIM), in which both dynamics and observation models are linear
Gaussian models, thus extending Gaussian state-space switching models (e.g., [21]) to
include structural inference. In this Section, we also introduce a latent-AR variant of
the LG-SSIM, in which an autoregressive (AR) model of an arbitrary order is allowed
among the latent state variables. Both LG-SSIM and latent-AR LG-SSIM can be par-
alleled to analogous extensions of the model of Siracusa and Fisher [49, 50], in which
direct observations of time-series are assumed. In Section 3.4, we develop a Gibbs
sampling procedure for inference in SSIM, which simultaneously reasons over interac-
tion structures and parameters, the pattern of switching between different interactions,
latent states associated with time-series, and observation model parameters. The algo-
rithm extends the Gibbs sampling inference procedure of Siracusa and Fisher [49, 50]
(Algorithm 2.1 in Section 2.7) to include steps in which latent states and observation
model parameters are sampled. We also develop a specialization of the inference pro-
cedure for the LG-SSIM. In particular, we develop a numerically stable algorithm for
block-sampling of latent states trajectories given observations that could be noisy and
‘missing, and for dynamic models that allow for deterministic dependencies among state
variables, such as in latent-AR LG-SSIM. Finally, we provide in-depth time and mem-
ory complexity analysis of the Gibbs sampling inference algorithm for the LG-SSIM in
Section 3.5.

H 3.1 Related Work

The proposed model integrates inference over structures, dynamic switching, and latent
state-space models. All have been the subject of extensive research. Change point de-
tection was first a subject of interest in the area of quality control, but has since become
an important problem in time-series analysis domains. A huge number of online and
offline, Bayesian and non-Bayesian, parametric and nonparametric methods have been
developed. Basseville and Nikiforov [3] and Polunchenko and Tartakovsky {45] provide
an overview of these methods. Most of these methods assume segment independence.
In contrast, switching dynamic systems (SDS) — also called state-space switching mod-
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els (SSM) - allow coupling between segments through dynamics parameters, which is
typically modeled via latent switching states. They combine state-space modeling with
switching point detection. Inference in SDS models is done via approximate methods
(Pavlovic et al. [42,43]), EM algorithm (Oh et al. [41]), or sampling (Fox et al. [16,17}).
Most of related work deals with switching linear dynamic systems (SLDS) since they
allow for simpler inference but are still widely applicable.

In recent years, a number of methods for learning changing structure among time-
series have been suggested. For example, Xuan and Murphy [59] combine inference
over undirected graphs with change-point detection. Optimization techniques have
been used to estimate time-varying undirected networks (Kolar et al. [32]), as well as
time-varying DBNs (Song et al. [52]). Jiang et al. [31] use EM algorithm to obtain
the MAP estimate of a switching DBN. Lebre et al. [35] and Robinson and Hartemink
[46] use MCMC sampling method to learn time-varying DBNs. However, the number
of sampled structures may not be sufficient to adequately represent the posterior over
structures. Siracusa and Fisher [50] develop a method based on prior modularity for
efficient reasoning over the structure posterior. The model we propose is most closely
related to the work of [50]. It differs (in fact, from most available methods) in that
we do not assume direct observation and allow for missing data. The result is a more
expressive and robust model at the cost of a more complex inference procedure.

B 3.2 SSIM Framework

The switching state-space interaction model (SSIM) is an extension of the switching
temporal interaction model of Siracusa and Fisher (STIM) [49, 50] that allows for noisy
observation processes. In fact, the SSIM model subsumes the STIM model, which
is presented in Section 2.7. Here, we assume the notation and parts of the model
introduced in Section 2.7 and only describe the difference from it.

We model that the observed value Y} of signal i at time ¢ is generated from its state
X} via a probabilistic observation model (Y| X}, &) parametrized by ¢i. For simplicity,
we assume that the observation model is independent of the state (&} = &%, V¢, 1),

T N
p(Y1X,6) = [T [ p(¥¢1%,€), (3.1)
=0 i=1
where Y = {V;}L, is the observation sequence and ¢ is the collection of parameters
{¢}V, that describe the measurement process, including the observation noise. The
model does not presume that the observation noise model is completely known (only
its parametric form), and parameters £ are also inferred.
The full SSIM generative model, shown in Figure 3.1, incorporates probabilistic
models described above along with priors on structures and parameters:

e Multinomials m are drawn from Dirichlet priors parametrized by o as
(71,...,7K) ~ Dir(ay, ..., ak),
(7r¢,1, N a“i,K) ~ Dir(ai,l, e ,ai,K) Vi.
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Figure 3.1: State-space switching interaction model (SSIM).

K structures E:k and parameters ) are drawn from the corresponding priors as
Ey ~ p(E; B), 0k ~ p(6| Ex; ), VE. |

Parameters of the observation model are drawn as £ ~ p(£%8), Vi.

Initial values Xo and Yj are drawn as Xo ~ p(Xo|6o) and Yy ~ p(Yo|Xo,&).

For each t = 1,2,...,T (in that order), values of Z;, X; and Y; are drawn as
Zt ~ Mult(’!rzt_hl, i ’Tth—ng) or

Zy ~ Mult(m, .. ., ‘}TK) ift=1,

Xy ~ p(X¢|Xs-1, Ez,,0z2,) and Yy ~ p(¥2| X¢, §).

The choice of dependence and observations models is application specific and will
impact the complexity of some of the inference steps. For example, commonly used
linear Gaussian models (Section 3.3) allow efficient inference in state space models,
which is a sub-procedure in our sampling algorithm (step 1 in Algorithm 3.1). Also, the
choice of conjugate priors on parameters of dependence and observation models results
in closed form expressions for sampling steps 4 and 5 in Algorithm 3.1, respectively. In
this paper, we focus on linear Gaussian models and their conjugate priors, as described
in Section 3.3.

Here, /3 are the hyperparameters of the prior on dependence structure, p(E;f3),
and v are the hyperparameters of the prior on dependence model parameters given
structure, p(6| E;~y). We assume that these priors are the same for all K models. Since
the distribution on structure is discrete, in the most general form, £ is a collection of
parameters {8g} (one parameter for each structure), such that Sg is proportional to
the prior probability of E:

p(E;B) = 365 « B, - (3.2)
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where B = " g is a normalization constant. Note that the prior on parameters,
p(0|E;~), may depend on the structure and 7 is, in general, a collection {vg} of sets of
hyperparameters, such that p(6|E; v) = p(8;vE)-

Learning Bayesian network structures (under reasonable assumptions) is NP hard
[10]. The number of possible structures is superexponential in the number of nodes, and,
in the worst case, it may be necessary to calculate the posterior of each one separately.
The same holds in the case of inference of a dependence structure described above (i.e.,
a de}%endence structure of a homogenous DBN). The number of possible such structures
is 27V,

We employ two fairly general assumptions in order to reduce the complexity of
inference over structures. First, we assume a modular prior on structure and parameters
[7,11,19,27], which decomposes as a product of priors on parent sets of individual
signals and associated parameters:

N
p(E,0]8,7) = [ [ p(pali) | B) p(6" | pa(i); 7) - (3:3)
=1

As a result, parent sets can be chosen independently for each signal [50], and the total
number of parent sets to consider is N2V, which is exponential in the number of signals.
Also, 8 is no longer a collection of parameters per structure, but rather a collection of
parameters {f; pq(;)} (one parameter for each possible parent set of each signal), such
that

1
p(pa(i); B) = Eﬁi,pa(i) X B; pa(i) » (3.4)

where B; = Y, f; s are normalization constants. Modularity is also reflected in the
posterior:

N
p(E,0|X;8,7) = [ [ plpa(i) | X; B) p(6° | X, pa(i); ) - (3.5)
i=1
If, in addition, the number of parents of each signal is bounded by some constant M (a
structure with bounded in-degree [11, 19, 27]), the number of parent sets to evaluate is
further reduced to O(N™*1), which is polynomial in N.

M 3.3 Linear Gaussian SSIM (LG-SSIM)

So far, we have described the general SSIM. Particular choices of dependence and obser-
vation models and priors may lead to specific classes of models with special properties.

Linear Gaussian state-space switching interaction models (LG-SSIM) are
an instance of SSIM in which the dependence and observation models of each signal i
at each time point ¢ are linear and Gaussian:

Xt = A, XEG) 4l uf ~N(0,05)

i __ vy % i i (3‘6)
S/;——CXt'}"'Ut, ’UtNN(O,R).
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’fl and Q}c are the dependence matrix and the noise covariance matrix of signal ¢ in the
kth dependence model (i.e. Bk = (A3, Q’ )), while C* and R? are the observation matrix
and the noise covariance matrix of the observation model of signal i (i.e., £& = (C*, R%)).
In addition, we assume that the value of the joint latent state at time O (initial state)
is drawn from a Gaussian distribution with mean pg and covariance Qg:

Xo ~ N (0, Qo) - (3.7)

We utilize the well known matrix normal inverse Wishart distribution (Section 2.2.6)
as a conjugate prior on the parameters (A, Q) of a linear Gaussian model:

P(A,Q; M, Q, 5, ¥) = MN(4; M, Q, Q) IW(Q; 5, 1) . (3.8)

Here, k and ¥ are the degree of freedom and the inverse scale matrix parameters of the
inverse Wishart distribution, while M, Q and @ are the mean, the row covariance and
the column covariance parameters of the matrix normal distribution. Note that the two
distributions are coupled. The matrix normal distribution of the parameter A depends
on the parameter ) that is sampled from the inverse Wishart distribution.

Recall that, due to the prior modularity assumption, for each signal ¢ there can be
a different prior on dependence model parameters for each possible parent set, and, in
general, for each of the K (switching) dependence models:

(A‘L , Qi; |p’“a(,i k). M"'vph(%k) szffa’(z’k) "I'ép-a(?‘vk) \Ilz,p‘b'(iak))
— MN(Az : ,Pa(z k) Q’wpa’(" k), Qt )IW(Q/L ,pa(z k) ‘I’zzfa(i’k)) . (39)

Throughout this thesis, we will assume that, for each signal i, C? is known for
each particular application and can be treated as a constant. For example, if a signal
represents a 2D object whose noisy position is observed over time, while the state space
associated wth that signal is defined as its 3" order kinematic state (position, velocity
and acceleration), then

- i
Dot

i | vk i | P i_ (1 0
e[| i) oo

where p, v and a stand for position, velocity and accelemtion respectively, x and Y
mdlces refer to  and y coordinates, while pi, and pyt are noisy observations of p?,
and pyt, respectively. We this assumption, we only need a prior on the observation
covariance matrix, R?,

(R kb, W) = IW (RS Ky, Uh) . (3.11)
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Furthermore, if the signals are uniform in representation and the observation process is
the same across signals, then the model in which signals share their observation model
parameters is suitable:

Yi=C% X} +f, vt ~ N(0,R?). (3.12)
In that case, the prior on the observation covariance matrix is
p(R%; k%, Ug) = IW (R K}, ¥E) - (3.13)

For example, if signals represent people whose positions are estimated (e.g., by a tracker)
or annotated (e.g., by a same person), then the same observation model can be assumed
for all signals.

The assumption that C* matrices are known is made for two reasons. First, prior
knowledge of any model parameters reduces the complexity of the space of solutions
and therefore removes part of uncertainty in the inference result. Second, fixing the
definition of latent state variables helps interpret the result of interaction inference.
Note that, regardless of whether the meaning of latent state variables is predefined or
not, it is important that they are related to the observations and that the complexity of
the latent state is controlled such that it does not allow for arbitrary (overfitting) expla-
nations. Besides the connection to the observations, (deterministic and probabilistic)
constraints among latent state variables also reduce the complexity of the latent space.
For example, if objects are represented by their kinematic state, equations of motion
must be encoded into the model in order to maintain that representation, which, in
turn, controls the complexity of that space.

We will also assume that the parameters of the initial state model, ug and Qo, are
given, hence there will be no prior distribution on these two parameters.! One reason
for doing this is that we do not aim at learning the initial state distribution, but rather
at learning the (time-varying) dependence model. Another reason is that in most (if
not all) experiments in this thesis, we will deal with a single observation sequence.
Therefore, there will only be a single data sample for the initial state, which is not
sufficient to learn the initial distribution. On the other hand, in cases when there are
multiple observation sequences, learning the initial distribution would be plausible.

Finally, it is sometimes convenient to look at the dependence and observation models
at the level of all signal jointly. For that purpose, we assume that the joint latent state,
X3, is a vector that is obtained by concatenating the latent states of signals:

_ th -

x?
, (3.14)

Xy

*Technically, this can be thought of as putting a degenerate prior distribution on o and Qo that
has all probability mass on given values.
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The joint dependence model can now be written as

we ~ N(07 QZ:) )

where

X = Azt Xto1+we,

?

Qz =

o

_let .
0 Q%
0 0

0
0

AN
Q% |

(3.15)

, (3.16)

and AlZit is such that its columns that correspond to pa(i, Z;) are equal to the columns
of A% , while its other columns are equal to 0 (in other words, A% is an “expanded”

Z Z _
version of A% that is multiplied by X;_; to predict X}, ie., A/ZitXt_l =AY, tifgz’z‘)).
Similarly, the joint observation model can be written as

Y'tZCXt—i—’Ut, Vt NN(O,R), (317)
where
(cl o0 ... 0o (gt o0 ... o]
0 C? ... 0 0 R2 ... 0
C = . , R= (3.18)
0 0 cN 0 0 RN

W 3.3.1 Latent autoregressive LG-SSIM

The LG-SSIM model above implies a first order Markov process in the latent space.
However, it extends to a higher, r?* order process by defining a new state at time ¢ as

Xt
X
xi=| (3.19)

Xirs1

i.e., by incorporating a history of length r as a basis for predicting a state at time ¢ +1.
Thus, an rt* order autoregressive model among states Xj,
Xe=AnXe 1+ ...+ Ay Xpor +we,

Wy ~ N(O, Qt) N (320)
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transforms into a first-order AR model among states Xj:

X Al Xi 1 w;
~ - _\ ~ - — % — /‘_-J\_\
Xt A Ap A - Ap-1 An X1 Wy
Xi—1 1 0 o .- 0 0 Xi_o 0
X9 0 1 o --- 0 0 Xi_3 0 (3.21)
. =1 . . .. . . . + 1 .|,
Xt—ry2 0 0 0 0 0 Xt—r41 0
Xioq1] LO 0 0 1 0] | Xer | O]
where
Q: 0 0
, , , 0O 0 --- 0 )
w;~NO,Q), Q=1{. . . |- (3.22)
0 0 --- 0

We will refer to this model as a latent autoregressive LG-SSIM (Latent-AR
LG-SSIM) of AR order r, since the autoregressive modeling is done in the latent space.
The matrix A} has a specific form: the first row consists of (matrix-valued) coeflicients
of the AR model of X;, subdiagonal entries equal 1 and the rest of the matrix is filled
with zeroes. Subdiagonal “ones” serve to simply copy the history of the expanded state,
Xi1,-.-, X¢_ry1, from the expanded state at the previous time point. Therefore, the
relationship between X] and X|_; is partially deterministic, which is reflected in the
structure of the matrix @} — only the first block (the one corresponding to the noisy
relationship of X; to the past) is non-zero. Thus, @} is a singular matrix, and the
Gaussian distribution of w} above is degenerate, as long as the order of the AR model is
higher than 1. This is important to have in mind when developing inference algorithms
for the Latent-AR LG-SSIM model, as we will discuss in Section 3.4.2.

Note that the latent-AR extension of the SSIM model, as given in Equation 3.21, is
pertinent to LG-SSIM due to the linearity and Gaussianity assumptions. However, the
state expansion of Equation 3.19 results in an r** order latent Markov process in any
SSIM model — just, the dependence model of X, may have a different form.

Finally, the observation model in Latent-AR LG-SSIM allows for the observation of
signal i at time ¢, Y, to be a linear function (up to Gaussian noise) of the expanded
state, X'3: ‘

Yi=C"X"t+ 4}, i~ N(0,RY). (3.23)

In other words, Y can depend on the original state at time ¢, X}, as well as its value
at the previous r — 1 time points. Still, in all cases considered in this thesis, Y will
depend only on the instant value of the original state X}, as in Equation 3.6, which

?Recall that the expanded state is introduced artificially in-order to model higher order dependencies
in the latent space.
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can be written as:

o . (3.24)
+ul, vl ~N(0,R).

%

t—r+2

2
_Xt—7*+1_

The joint observation model can be written as
V; =C'X]+v, vi~N(0,R), (3.25)
and, in the case of a dependence on the original state only,

Xi
——
X
o’ ) §t—l
A~ ~ —9 3.26
T tu, w~N(OR). (3.26)

Xery2
| Xt—r41]

B 3.4 Gibbs Sampling Inference

Exact inference for the SSIM is generally intractable. Consequently, we develop a
Gibbs sampling procedure as described in Algorithm 3.1, which extends the inference
algorithm of Siracusa and Fisher [50], described as Algorithm 2.1 in Section 2.7, with
the steps in which latent states and parameters of the observation model are sampled
(steps 1 and 5, respectively).

Algorithm 3.1 SSIM Gibbs sampler

X ~p(X|Z,Y,E,6,¢)
Z ~p(Z|X,E,8,r)
7~ p(n|Z; )

E,0 ~p(E,012,X;8,)
£ ~p(¢lX,Y;0)

Bl

Note that the steps 2, 3 and 4 are the same as in Algorithm 2.1 and their respective
algorithms are described in detail in Section 2.7. The complexity of sampling parameters
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¢ (step 5) depends on the particular choice of the observation model. When a conjugate
prior is used, this step is similarly straightforward. This is the case in LG-SSIM, in which
an inverse-Wishart prior on the observation noise covariance matrix is chosen, as it is a
conjugate distribution for the Gaussian distribution with a known mean. The procedure
for sampling the observation noise covariance matrix in LG-SSIM that assumes an
observation model shared across all signals (i.e., £ = RY) is shown in Algorithm 3.2. We
proceed with the details of step 1, which is the most complicated part of the inference
procedure in the SSIM model.

Algorithm 3.2 Sampling of the observation model parameters in LG-SSIM with uni-
form observation model and known observation matrix: R® ~ p(RO|X,Y’; k%, U%)

Inverse Wishart prior conjugate update

0
K'p =K%

0
V'p=0%
fort=0,....T
fori=1,...,N
if Y} is observed
K =K% +1
. . . . T
Oy =%+ (Vi - COXP) (Y - C°X})
Sampling observation noise covariance
RO~ IW (R k', V')

B 3.4.1 Batch sampling of the state sequence (step 1)

Conceptually, sampling a state sequence X when all other variables in the model are
known can be performed via the same backward message-passing forward sampling
algorithm as in step 2. Similar to Z, a conditional distribution of X can be decomposed
as

T
P(X|Z,Y,E,0,¢) = P(X0|2,Y, E,0,&) | | P(Xt| Xo4-1, 2, Y, E,6,¢),  (3.27)
t=1

suggesting the following forward sampling procedure:
XO ~ P(XolZ,Y,E, 575)
X1 ~ P(X1|Xo,2,Y,E,6,¢)

Xr ~ P(X7|Xor-1,Z,Y,E,0,8). (3.28)
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P(Xy|Z,Y,E,0,¢) can be computed in the following way:

P(X0|Zay: E> é)f)
x P(XO)YIZ;Ea é)é-)

= P(Xo,X11,Y|Z,E,0,6) dX 1.7
Xl:T

= P(Xo|60)P(Yo|Xo,&) /X

1:T

T
HP(Xt'Xt»hEZt,éZt)P(YHXtaf)] dXy.r
t=1

T-1 o

11 P(thXt—l,EZNGZg)P(Ytlxtyf)} dX17-1
t=1

x| P(X1\Xr_1,Ez,,02.)P(Yr| X1, 8) dXT
T

— P(Xolf0) P(¥| X0, €) /X

—1

o

mT“l&T—l)_
T-2 _ .
= P(Xo|0o) P(Yo| Xo,£) fX {H P(Xt|Xt_1,Ez,,ezt)P(Ytht,f)] X175
1:T-2

t=1

></X P(Xr_1|X1_2,Ez;_,,02,_ ) P(Yr_1|X7_1,6) mT Y (X1_1) dX7_4
T-—1

- e

%

mT=2(Xp_3)

=P(Xo|9o)P(YolXo,§)/X P(X1|Xo, Ez,,02,) P(Y1|X1,6) m!(X1) dX3

s

mOCXO)
= P(Xo|60) P(Yo| X0, &) m°(Xo) . (3.29)

Messages are defined recursively as
mT(z) =1, VreRND=
mi(z) = /Xt+1 P(Xenlz, Ez,yy, 02, P(Yera| Xes1, ) M (Xpp1) d Xt
Vz e RNP= wt=0,...,T -1, (3.30)

where N is the number of signals and D, is the dimensionality of the latent state of
each signal (or average dimensionality if they are not uniform). Messages can also be
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defined non-recursively as

T T
mt(z) = / P(Xilz, Bz, 1, 02,.,) [] P(XilXio1, Bz, 0z2) [] P(YilXi,€) dXi1r

XeprT 1=t+4-2 t=t+1

Vz e RND= vt=0,...,T—1. (3.31)
Note that the meaning of a backward message is
mt(z) x P(Yey1,...,Yr|Xs =x,Z,E,8,¢). (3.32)
Finally, P(X¢|Xot-1,2,Y, E.0, €), foreach t =1,...,T, can be computed as:
P(X¢|Xo14-1,2,Y,E,0,¢)
x P(X¢, Y| Xo:t-1,2Z, E,6,€)

- / P(Xtht-l-liT?YlXO:t—h 27E7§7 5) dXt+1:T
Xt+1:T

x / P(X4, Xev1m, Yer| Xe1, Z, E,0,€) dX i1
Xt+1:T

T
= POGX1, B 02)POX0e) [ T] POGIXr, By B2) POGIX ) dXernr

X171 =t+1

= P(XtiXt—h EZH éZt)P(}/dXt,f) mt(—Xt) . (333)

The derived algorithm is presented in Algorithm 3.3. In general, exact computa-
tion of messages is not possible since there is an infinite number of values to compute
(x € RNP=), and, thus, one may need to resort to an approximate method such as
particle filtering [2]. However, in some particular cases, messages have a nice func-
tional form that can be represented with finite number of parameters,® resulting in
exact and efficient backward message passing (and forward sampling, provided that
P(X¢|Xo4-1,2,Y,E, 6, &) has a functional form that is easy to sample from). '

W 3.4.2 Batch sampling of the state sequence in LG-SSIM model

In LG-SSIM, as we will see, each message represents a Gaussian distribution:*
m(z) = N (@ 1, 7). (3.34)

Therefore, computing a message reduces to computing its mean and covariance.

3sufficient statistics
“Messages, as computed by Equation 3.30, are only proportional to a Gaussian distribution, but
they can be normalized after each step.
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Algorithm 3.3 Batch sampling of the state sequence: X ~ p(X|Z,Y, E, 6, ¢)

Backward message passing
mT(z) =1, Vz
fort=T-1,...,0
m'(z) = P(Xe|®, Bz, 1,02, ) P(Yer1| Xet1, §) mH (X)) dXern, Vo

X+
Forward sampling

P(Xo|2,Y, E,8,€) o P(Xo|60)P(Yo| Xo, &) m°(Xo)

Xo ~ P(Xo|Z,Y,E,6,¢)

fort=1,...,T
P(Xi|Xo0:t-1,2,Y, E,0,€) < P(X¢|X4-1, Ez,,02,) P(Y:| X, &) mt(Xy)
X; ~ P(X¢| Xo:4-1, Z, Y, E, 0, ¢)

Recall that in LG-SSIM the joint dependence model is
thAZt Xt—l + we thN(O’QZt): t:17"'aTa (3‘35)

where flzt and Q z, have the form given in Equation 3.16, the joint observation model
is
E:CXt+'Ut, ’UtNN(O,R), tZO,...,T, (336)

where C' and R have the form given in Equation 3.18, and the initial state model is
Xo ~ N (40, Qo) - (3-37)
Our algorithm allows defining the distribution of X to be improper uniform distribution
| P(Xp) «x const, YXgeR"”, (3.38)

which is obtained by setting the inverse covariance, Qp~?, to 0.

Since matrices Ay, Qk, C, and R are assumed known in this inference step, the
assumption that there is only a small set of different such matrices that switch over
time in not critical. Therefore, we will consider a more general model here, in which
these matrices can possibly be different at each time point:

-XO ~ N(MO) QO) >

Xt = AtXt-—l +we, W NN(O,Qt), t= 1,...,T, (339)
K"_‘CtXt"_fUt) ’Ut’\-’N(O,Rt), t:07"'7T7
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and keep in mind that A; = Az,, Q; = Qz,, C¢ = C and R; = R in LG-SSIM. Note
that Equation 3.39 represents a standard linear Gaussian state-space model.

In this model, messages have the form of a Gaussian distribution (Equation 3.34)
whose mean and covariance parameters can be computed recursively as (see Appendix
A for derivation):

=H =0
P~ =0, (3.40)
which is equivalent to m% (x) « 1, and, for t =0,...,T — 1,

(Z7) 7 = Al Qi — QEhZiQ ) Avnt
— —1 «x* -1
(E)uf = AL Qrh T kg (341)
where
-1 _ —
577! = G Ry Cen + 35,7
S2 7y = Cla R Yer + Sl iy
ot=Qpl +xeh. (3.42)
Note that these are standard information filter recursive equations (e.g., as in Fox et
al. [16]). In particular, p = ¥~y and A = ¥~ can be used equivalently to parametrize
a Gaussian distribution M (g, £), where A, the inverse of the covariance matrix, is called
a precision matrix. Therefore, we could have written the above recursive equations
in terms of AT* = ()71 and p* = (X*)~!uf®, which are indeed the values being
computed. However, we choose to explicitely use terms (£7*)~! and (Z7*)~u}® in order
to make their meaning clearer, even though ui® and £J* are never computed explicitely.
One advantage of the information filter form of update equations is that it is easy to
represent complete uncertainty (missing information) about the variable of interest or
some parts of it (assuming that it is a vector). For example, the initial message, m” (z),
represents an improper Gaussian distribution — with infinite variance on all components
of z, which is easily encoded by setting the inverse covariance of the message to 0.
Finally, P(Xo|Z,Y,E,,¢) and P(X¢| Xo.t-1,2Z,Y, E,6,€) are also Gaussian distri-
butions in LG-SSIM, allowing for computationally efficient forward sampling equations:
P(XOIZ$ Y7 E~'7 é? 5) = N(X07 MB: 6)
5 =Cg Ry Co+(ZF) !
up = %o [CF Ry Yo + (S5 g (3.43)
and, fort=1,...,T,
P(Xt|Xo:t-1,Z,Y, E,0,8) = N (Xy; 1, 5t)
o =Q + O RYIC+ (3
pe = T4 [Q7 AsXe1 + CT R WYy + (B7) 1] (3.44)
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A summary of the algorithm for batch sampling of the state sequence X in a
linear Gaussian state-space model (Eq. 3.39) when parameters pg,Qo, Ai,-.., AT,
Q1,...,Qr, Co,...,Cr, Ry, ..., Rr are given is shown in Algorithm 3.4.

Note that missing observations require only a slight modification of the algorithm.
Namely, for each t = 0,...,T, rows of matrix C; corresponding to missing observations
at time ¢ should be set to zero.

Algorithm 3.4 Batch sampling of the state sequence in a linear Gaussian state-space
model: X ~ p(XI Ho, QO) Al:Ta Ql:T, CO:T7 RO:T)

Backward message passing
EPH=0, EP)TWE=0 (ie, m'(z)x1)
fort=T-1,...,0
£ = Cha R Cen + 5
227 0g = Cha R Yim + 50 7 ulh
5 = Qb+ 5
=M= A{+1(Qt_+11 — QrhZIQr ) A
(EZ")‘lu{” = AZHQ;LIlEZE?“lN?
mi(z) = (S 7' (B = Nz i, 2)
Forward sampling
2y = C§ Ry'Co + (55!
4o = b [CF By Yo + (S3) 4]
Xo ~ N (Xo; 4o, Zo)
fort=1,...,T
2 =@ + CT R+ (2
M=% [Q7 Aoy + OF R + (Z7) 7 1]
Xi ~ N(Xe; pg, Tt)

Algorithm with improved numerical stability

For long sequences of missing data, X7* approaches Q41 and intermediate values Q. +11 —
Qx- _I_IIZ;‘ Qp are close to singular. In addition, we want to allow Q; matrices to be
singular, which is for example the case in the latent-AR LGSSIM. Algorithm 3.4 however
requires inversion of these matrices and is therefore unusable in this case.’

5Pseudoinverses could possibly be used, and that would require verifying the correcness of calcula-
tions.
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Via the matrix equality (A + B)™! = A™! — (I + A™1B)"'A"1BA~!, we derive
alternative recursive equations that yields a numerically stable algorithm and allows
for singular covariance matrices, which we exploit to impose deterministic constraints
between variables across time:

=M = AL ER 2 A

K _ (3.45)
EP) 7 = AL ZR T g
where
£yt = Ch R Con + 30,7
S g = Cha R Yo + 570 il
A= (T +271 Q). (3.46)

Similarly, we derive equations for the mean u; and the covariance matrix ¥} in
the forward sampling procedure that do not require inversion of dependence covariance
matrices:

p =Gt (Glpg) , %y =GeQy, where
Gil=T+QCIR'Cy + Q (™)1 (3.47)
Gilpy = AXe1 + QuCERTY + Qe (57 1uf®

The above procedure is summarized in in Algorithm 3.5.

B 3.5 Algorithmic Complexity

We analyze the time and memory complexity of each step of the Gibbs sampling algo-
rithm (Algorithm 3.1) for inference in the LG-SSIM model in terms of various problem
parameters.

Table 3.1 contains a description of problem parameters that govern the complexity
of inference in the LG-SSIM model. We assume here for simplicity that all signals
have the same observed and latent dimensionality. Also, we assume the latent-AR
extension of LG-SSIM and include the order of the latent AR model, R, as a parameter
of interest, while the latent dimensionality of a signal refers to its dimensionality prior
to state expansion (i.e., the one inherent to a single time point). If the basic LG-SSIM
model is considered instead, R should be ignored (or, equivalently, treated as R = 1). In
addition, a modular bounded-indegree prior on interactions is assumed, where M is the
maximum number of parents per signal allowed. Note that the number of signals, NV,
their observed dimensionality, D,, and the sequence length, T', are determined purely by
the data that is an input to the algorithm. On the other hand, the latent dimensionality
of signals, D, the number of switching structures, K, the maximum number of parents
per signal, M, and thé latent-AR order, R, can be set arbitrarily (to some extent) in



Algorithm 3.5 Numerically stable batch sampling of the state sequence in a linear
Gaussian state-space model: X ~ p(X| o, Qo, Ar.1, Q1.1, Co., Ro.T)

Backward message passing
EHr=0, EHTUE=0 (e, m'(z) x 1)
fort=T-1,...,0
2t = CL R Co + 27!
27 e = CHAR Y + 500
5P =T+ Q) !
(ZP) 7 = AL E A
(Z) ' = AL
mi(x) = (S 7w, (B 7Y = N ", Z)
Forward sampling
>'5" = CI R Co + (=)
b = 6 [CF Rg ™Yo + (S5 4f]
Xo ~ N (Xo; 1, Zo)
fort=1,...,T
Gl =I+QCIR'Cy + Q@ (=) 7!
Gyl = ArXe 1+ Qe CE R, + Qe (57 1l
= Ge (Gy )
¥ =Gt Q
Xt ~ N(Xi; iz, Bt)
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Param. Meaning Determined by
N number of signals/objects data
D, observed dim. of each signal data
T sequence length data
D, latent dim. of each signal data/setup
K number of switching structures data/setup
M maximum number of parents data/setup
R order of AR model data/setup

Table 3.1: Description of problem parameters.

the inference setup.® However, they should be set to best capture properties of the
problem of interest and the particular data used for inference, and may therefore be
influenced by the data. For example, the number of switching structures may be set
to a number that exceeds our prior expectation for the possible number of different
behaviors (dynamics), the maximum number of parents may be set to exceed our prior
expectation on how many signals can simultaneously influence a single signal (unless it
must be set lower for computational purposes), and the order of the latent AR order
should be set to encompass a large enough window of history, such that important
dependencies can be captured (again, as long as computational resources allow that).

The asymptotic time and memory complexities of each step of the Gibbs sampling
algorithm for inference in LG-SSIM in terms of the above parameters are summarized in
Tables 3.2 and 3.4, respectively, while more detailed analyses for the complexities of each
step are given in the subsections below. We make a few additional assumptions here.
First, we assume that K < T, such that K? < T is satisfied. This is showed in the time
complexity analysis of step 3. We also assume that M is not higher than a fraction of
N, where the fraction constant is smaller than 1/2, i.e., that M/N < ¢ < 1/2, as well as
that K max(MRD,, Dy) <T. These two assumptions have an implication for the time
complexity of step 4. Table 3.3 summarizes expressions for the time complexity of this
step under different conditions, as discussed in Section 3.5.4. The last row of the table
refers to the assumption M/N < ¢ < 1/2, while the assumption K max(MRD;, D) <
T simplifies the expression to the one showed in Table 3.2. In addition, we do not
account for missing data here. Some of the computations may be reduced by a fraction
of non-missing data, although not the ones that present bottleneck.

In terms of the time complexity, steps 1 and 4 are critical. Step 3 is dominated by
step 2, step 5 is dominated by steps 1 and 4, while step 2 is dominated by steps 1 and

SWell, the latent dimensionality of a signal, D.., must be set according to the choice of the observation
and dependence models. Typically, these models would be chosen based on the problem description
and would not be changed (or not changed often) during the experimenting phase.
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SSIM Gibbs sampler Alg. in LG-SSIM Complexity O(-)

1. X ~p(X|2,Y,E,0,¢) | Gaussian-MP N3RD, (D, + (RD;)?) T
2. Z ~p(Z|X,E,b,T) discrete-MP K (RD,*NM + K)T

3. m~p(n|Z; ) conjugate update T+K?=T

4. E. 0 ~ p(E’,5|Z,X;ﬁ,'y) conjugate update \(1\!) ((MRD;)? 4 l.)_f) T
5. & ~ p(€|X,Y;6) conjugate update | Df + Dy(Dy + RD,)NT

Table 3.2: Time complexity of LG-SSIM Gibbs sampling steps. Common bottlenecks
are shown in red.

4 unless the number of switching states, K, is large and the number of signals, their
dimensionality, and AR order are small. This is however not the case in the majority
of practical scenarios, so we will focus on steps 1 and 4 as bottlenecks. For M < 2, step
1 is dominant. Otherwise, the complexity of step 4 is higher as a function of N due to
a higher polynomial degree and is dominant for sufficiently large N.

Table 3.4 shows, in addition to the space required for each step of the Gibbs sampler,
the space required for variables that are kept outside of these steps, i.e., variables that
represent the data and the model, variables that represent the current state of the
sampler (latent variables in particular). For each of the five sampling steps, only the
additional required memory is analyzed (input variables are excluded as they are global
to the algorithm). Step 3 along with storing Z, = and « are dominated by step 2 (recall
that K < T). Step 5 does not introduce any new complexity. Storing X is dominated
by step 1. Storing Y is also most likely dominated by step 1 as D, < N(RD;)? is true
in most cases (and certainly in the experiments in this thesis). Step 4 is dominated
by the requirement for storing prior parameters.” Finally, step 2 is in most scenarios
dominated by step 1 and/or prior parameters, unless K is large and N, R and D,
are very small (in which case memory is most likely not a critical resource anyway).
Thus, the common bottlenecks for running the Gibbs sampling inference algorithm in
LG-SSIM are step 1 and storing parameters of the prior on structure and dependence
models. If the number of data points, T is very large, then step 1 can pose a memory
bottleneck. On the other hand, if the number of allowed parent sets is huge (it grows
very quickly with M, even for relatively small N), then storing prior parameters is a
bottleneck.

"Unless there is a compact way of storing these parameters, such as some parametric form. Here,
we assume the general case in which each parameter can be set arbitrarily.



Condition Complexity ©(-)
general < N2V ((NRD;)? + D) T + N2V ((NRD,)® + D,*) K
M > N/2 N2V ((NRD;)? + D,?) T + N2N (NRD;)®* + D*) K
M = const NM+1((RD;)? + D,®) T + NM+!1 (RD,)* + D) K
M/N <c<1/2 | N(J) (MRD;)>+ D) T+ N(5) ((MRD;)* + D,*) K

Table 3.3: Time complexity of step 4 of LG-SSIM Gibbs sampling algorithm, E,6 ~
p(E.0|1Z,X;3,7), under different assumptions. Note that this assumptions are not
disjoint; they simply represent different assumptions that are reasonable to make in

different circumstances.

SSIM Gibbs sampler

Alg. in LG-SSIM

Complexity O(-)

observed sequence, Y
latent sequence, X
switching sequence, 2

m and «

C, Rand ¢

prior parameters, 8 and ~
1. X ~p(X|2,Y,E,0,¢)
2. Z ~p(Z|X,E,0,7)
3.~ p(r|Z;a)

4. E,0 ~p(E,0|Z,X;5,7)
5. &~ p(€]X,Y;6)

Gaussian-MP
discrete-MP
conjugate update
conjugate update

conjugate update

ND,T
NRD,T
T
K2
(NRD;, + Dy)D,
N(N) ((MRD,)? + D,2) K
(NRD,)*T
KT
K’?
(N + NDy(MRD, + Dy)K
(Dy + RD;)NT

Table 3.4: Memory complexity of LG-SSIM Gibbs sampling steps. The complexity
of step 5 could be reduced to just @(Dz) of additional space (see Section 3.5.5 for
discussion), but that is not critical. Common bottlenecks are shown in red.
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B 3.5.1 Complexity of inference in LG-SSIM: step 1

Algorithm 3.4 describes a procedure for batch sampling of the state sequence in the
LG-SSIM model. Note that, in the latent-AR variant, the dimensionality of the latent
state (jointly, over all signals) is NRD,. Thus, transition matrices, A;, and dependence
model covariance matrices, Q¢, are of dimension N RD, x NRD,. Consequently, the
mean of each message, ui*, has a dimension NRD,, while the covariance matrix of
each message, X7*, has dimension NRD, x NRD,. Also, each observation matrix, Ct,
has dimension NRD, x ND,, and each observation noise covariance matrix, R; has
dimension NDy x ND,,.

Computing a message at each time point requires a constant number of matrix
(or vector) multiplications, additions and inversions. For simplicity, we will assume a
“naive” algorithm for matrix multiplication, which runs in &(n,nyn,.) time for matrices
of dimensions n, X np and np X n.. For a square matrix of dimension n x n, that com-
plexity is ©(n3). It should be noted that there are algorithms for matrix multiplication
that run in asymptotically lower time. For example, the famous Strassen’s algorithm
[54] runs in ©(n?8%7) time and, although numerically less stable, is occasionally used
in practice. On the other hand, an algorithm with the currently lowest asymptotic
complexity, due to Le Gall [33], runs in ©(n?373) time, but is impractical due to an
extremely large constant factor involved. The same holds for matrix inversion as it can
be reduced to matrix multiplication.

By looking at Algorithm 3.4, we can see that the operations involved in message
computation that dominate computational time are multiplication and inversion of
matrices of dimension NRD, x NRD, and multiplication of matrices of dimension
NRD, x ND, with matrices of NDy x ND,. Therefore, assuming naive matrix mul-
tiplication and inversion algorithms, computing a message at any time point takes
(S] ((NRDQB)3 + NRD;(NDy)?) = © (N3RD,;((RD3)2 + Dy2)) time. Note that Al-
gorithm 3.4 also involves inversion of matrices R;, which takes ©(N3Dy3). If these
matrices are different at different time points, one such inversion must be computed
for each message, and the time complexity of computing a single message would be
© ((NRD;)® + (NRD;)>NDy + (ND,)?)). However, while this is true for the general
form of Algorithm 3.4, recall that the SSIM model assumes a single observation model
applied at all time points, which requires only a single inversion of the observation noise
covariance matrix in total, which can be ignored in the complexity analysis. This would
be the case in many other applications as well, since it is not realistic to expect that
the number of observation models is on the same order as the number of time points.
Finally, we can conclude that the time complexity of computing all messages (over all
time points) is © (N3RD,((RD,)? + D,®)T). Operations of the same complexity are
required in the forward sampling part of the algorithm, and so this is as well the time
complexity of the whole algorithm.

Note that in many cases, the dimensionality of an observation of a signal, Dy, will
be smaller than the dimensionality of the latent state associated to that signal, RD,.
For example, this will be the case if a latent representation of an object consists of its
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position, velocity and acceleration, but only its position is observed. In such cases, D,
can be ignored in the time complexity analysis, and we can say that Algorithm 3.4 runs
in © ((NRD;)®)T) time. However, there may be applications in which the opposite
is true (Dy > RD;). This would for example be the case if R is small and there are
multiple observations/measurements of a signal-at each time point.

The memory bottleneck of Algorithm 3.4 is storing inverse covariance matrices of
messages, (Em)“1 These matrices are of dimension NRD; x NRD,. Therefore, the
total memory complexity is © ((NRD;)*T).

Lastly, Algorithm 3.5, which is a numerically stable version of Algorlthm 3.4 that
we use in practice, requires the same types of computations (matrix multiplications and
inversions) and stores the same messages as Algorithm 3.4, and thus has the same time
and memory complexity.

M 3.5.2 Complexity of inference in LG-SSIM: step 2

Algorithm 2.6 describes a procedure for batch sampling of the switching state se-
quence in the LG-SSIM model. Evaluating P(thXt_l,E’k,ék) for any t and k re-
quires ©(RD,2NM) time. To see this, note that in the Latent-AR LG-SSIM model
P(X}| X4-1, Ex,0) = N(X}; AL X'P“(”“ ,Q%). Vector X} is of length Dy, while the
maximum length of vector X 'ff(f k) is M RD,, since M is the maximum number of par-
ent signals and RD, is the length of an expanded state of a signal. Therefore, matrix
A% has a maximum dimension Dy x MRD,, and computing the product A% X ’ff‘_(f’k)
takes at most ©(M RD,?) time.® Evaluating the above Gaussian density takes ©(D,?)
since the matrix Q}c is of dimension Dy x D;. Overall, evaluating P(X} 4 X;_1, By, Ok)
‘takes O(MRD.?) time. Therefore, evaluating P(XtIXt_l,Ek,Ok) for any t and k
takes ©(NMRD,?) time. Finally, evaluating P(X¢|X;_ 1,Ek,0k) for all ¢ and k takes
O(KTNMRD 2) in total. Once these probabilities are computed, computing messages
takes ©(TK?) time, since there are in total T messages, each message consists of K
values (probabilities), and computing each value requires a summation over K terms.
Finally, forward sampling takes O(TK) time, since at each time point the probability
P(Zy|Z1.4-1, X, E, ) is computed for each of K possible values of Z; and then sampling
from that multinomial distribution also takes ©(K) time. Therefore, the total time re-
quired for Algorithm 2.6 is @ KTNMRD,? +TK? + TK) = 6(K(RD,?NM + K)T).

Storing probabilities P(X¢|X;—1, Ex, ) for all ¢ and k requires ©(TK) memory.
The same holds for storing messages, since there are T' messages and each consists of
K values. Finally, storing samples of switching state variables, Z;, takes ©(T) time.
Therefore, the overall memory complexity of Algorithm 2.6 is ©(KT).

8We will evaluate the worst case scenario and assume that the number of parents per signal is ©(M).
One may attempt to argue that that is also the average case. However, the distribution of the number
of pazents is unknown and may not be uniform, for which reasons such a conclusion cannot always be
drawn.
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M 3.5.3 Complexity of inference in LG-SSIM: step 3

Algorithm 2.5 describes a procedure for sampling parameters of multinomial distribu-
tions that govern the evolution of the switching sequence. This step is universal for
all SSIM models. Updating Dirichlet prior distributions on the initial and transition
multinomials, 7, with a given switching sequence, Z, requires counting the number
of times that each initial switching state® and each switching state transition i — j
(1 <€ i4,j7 < K) appears in the switching sequence, and adding those counts to the
prior hyperparameters (pseudocounts), a, to obtain values of hyperparameters of the
posterior. This can be done in ©(T) time, as each pair of values (Z;, Z; ;1) needs to be
counted. While the total number of hyperparameters is K (K +1) = ©(K?), only 6(T)
of them need to be updated.!® Once the pseudocounts are updated, sampling of K + 1
multinomial distributions from the corresponding Dirichlet distributions takes ©(K?)
time on total, as each multinomial is K-variate.!! Therefore, the total time complexity
of this sampling step is O(T + K?). Note that K is typically much smaller than T,
and, in most cases, it is safe to assume K? < T' and thus ignore K2 term in the time
complexity analysis.

The memory complexity of this step is ©(K?), what is required for storing the initial
and transition counts of switching states obtained from the data. This could even be
reduced to ©(1) if each individual count (at each time point) is immediately added to
the appropriate pseudocount, but, again, that is not a critical part since the output
multinomial distributions already take ©(K?) space.

B 3.5.4 Complexity of inference in LG-SSIM: step 4

A procedure for sampling structures and parameters of switching dependence models
in LG-SSIM with modular prior is given in Algorithm 2.4. Vector X'; ; is of length
|s| RDy, where |s| is the number of signals in the parent set s. Therefore, multiplication
x5 x"5_,T takes © ((|s| RD,)?) time. Similarly multiplications X¢X"$ ;7 and xixit
take © (Dy|s|RD;) and © (Dy2), respectively, since vector X} is of length Dy. Ty such
multiplications are performed, where Ty, = |[{t : Z; = k}| is the number of time points in

“If there is only one data sequence, counting initial states is trivial — there is only one such state in
the data. However, the algorithm allows for multiple sequences as well, in which case there would be
multiple initial state appearances in the data.

YFor simplicity, in our implementation, an array of counts of initial states and state transitions is
computed from the data (in a separate function) and then added to the pseudocounts. Initializing
these counts and adding them to the pseudocounts takes ©(K?) time, and therefore the counting step
technically takes ©(T + K?) time in our implementation. However, that does not alter the overall time
complexity of this step in the inference procedure, as will see that it is ©(T + K?) anyway.

1Generating a sample from a Dirichlet distribution is reduced to generating a sample from a gamma
distribution (see [12], Theorem 4.1. on p. 594), which is obtained using a rejection sampling approach
(Jonk’s algorithm, see [12], p. 418). Computational time of a rejection sampling algorithm depends
on the actual values of parameters of a distribution (Dirichlet distribution in this case), and therefore
can vary depending on data properties. For simplicity, we assume that there is a constant bound per
dimension for generating these samples in practical examples.
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which k** model is active, yielding a time complexity © (((|s|RD5)? + Dy|s|RDy + Dy?) Tk).
Since Dy|s|RD; < (|s|RD;)? + Dy?, the term Dy|s|RD, can be ignored in the asymp-
totic time complexity analysis. The total time complexity of these multiplications is
therefore © (ZkK SN 2 sePAL ((Is|RDz)? + Dy?) Tk) In addition, matrices st,
Mz s and \Iff s» 85 well as their posterior-updated versions, are of dimension |s|RD, X
|S|RDw, Dy x |s|RDy; and Dy x Dy, respectlvely Computations with these matrices
that are of highest complexity are Qz’s ' and |Q 5|, which take © ((|s|RDz)3) time,
Mfsﬂfs , which takes © (Dy(|s|RDz)?) time, and |¥ 1-,3|, which takes © (Dy%) time.
Again, © (Dy(|s|RD;)?) term can be ignored since Dy(|s|RDz)* < (|s|RDz)3 + D3
Since there is a constant number of these computations in each loop iteration, their
total time complexity is © (Zk DD P AL (Is|RDz)3 + Dy3). Finally, since all
other steps of Algorithm 2.4 are dominated by these ones, the total time complexity
of this algorithm is © (Zkﬂ >y, Y seP AL ((Is|RD3)? + Dy?) Ty, + (Is|RD5)3 + Dy3).
Note that if Ty, > max(N RD;, Dy), i.e., if the number of time points assigned to each

model is greater or equal to the dimensionality of expanded latent state and observation
state, which holds in many applications, the overall time complexity of Algorithm 2.4

can be reduced to © (Zk—l >y L1 sePAL ((IsIRD3)? + Dy?) Tk>.

A simple bound can be obtained using inequalities |s| < N, Vs, and [PAL| < 2V,
vk, i:

M=
M

((|s|RDz)? + Dy?) Tk + (|s|RDs)* + D,® | =

= iMw
i
A
A}
}>

N
o > > ((NRD:)*+D,*) T + (NRD;)* + D,? | =
k=11i=1 scPA;

K N ' K N .

o ( (NRD.)* + D)%) Y > [PAT: + (NRD;)* + D,*) > ) IPA}CI) =
k=11=1 k=1 1=1

N K N

o (((NRD D) Y "> 9oNT + (NRD,)* + D,®) ZZzN) =

k=1 i=1 k=1 i=1
O (((NRD;)? + D,?) 2N NT + ((NRD,)? + D,*) 2V NK) . (3.48)

Again, in most practical cases, T > max{(NRD,, Dy) K, and the above bound can be
reduced to O (((N RD;)% + Dy2) 2NN T) . This bound is asymptotically achieved when
all parent sets are allowed (for all signals in all models). In that case, |PAL| = 2V,
Vi, k, and at least half of the subsets have size at least N/2 (excluding subsets of size
N/2 if N is even, there is the same number of subsets of size smaller than N/2 as the
number of subsets of size larger than N/2, which follows from equality (g) = ( N]:l m))-
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Let PA*}, C PAj denote a set of subsets of N elements whose length is at least N/2.
Then, |[PA*| > 2V/2, and

K N .
’ (ZZ >_ ((sIRD,)* + Dy*) Ty + (Is|RDz)* + Dy3) -

k=11=1 seP AL

K N
’ (ZZ > ((iisDx)Z+Dy2>Tk+<|isDz>3+Df) )

k=11i=1 sepA*}

K N
Q (ZZ S" ((N/2RD,)? + D,?) Ty + (N/2RD,)* + Dy3) -

k=11=1 sepg*i

K N
Q(((NRDx)2+D ) D> IPATIT, + (NRD,)? ZZ]PA*)

k=1 i=1 1i4=1

k=1 1=1 k=1 i=1

K N K N
Q (((NRD;)2+D ) D> 2Ny + (NRD,)? ZZQN—I) =
Q (((NRD,)* + D,*) 2V NT + ((NRD;)* + D,*) 2V NK) . (3.49)

In fact, the same holds even if each set ’PA?C contains only a constant fraction of all
possible parent sets. To show that, note that if |P.AL| = c¢2V for some constant ¢
(0 < ¢ < 1), then at least half of the parent sets in P.A% are of size at least cN/2.

A different simplification of the time complexity expression can be obtained by
making an assumption that allowed parent sets of each node are the same in all K
models, i.e., that P AL = P.A*. In that case,

K N
° (ZZ 2 ((sIRD.)"+ D)) Tk+(|s|RDz)3+Dy3) _

k=1i=1 sepAi

I

k=1i=1 sepAi

K N
° (ZZ 2 ((sIRD.)* + D7) Tk+<|isDz)3+Dy3>

N
e (Z > ((IslRD2)* + D,?) T + ((Is|RD,)* + D,°) K) —

seP A

e( [( > [s|2) (RD,)? 4 |PA’|D,?
i=1 sEPA

Let us now assume a bounded in-degree prior on parent sets with the maximum

M= T

* [( 2. Isl3) (RD,)* + [PA'|D,?

sEPA*

(3.50)
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number of parents equal M for all signals and dependence models.!? Then |PAY| =

M
m=0

M (N 2 _
m=0 (m)’ ZSEPAi |s, -
tion 3.50 can be written as:

K N
O (ZZ > ((sIRD2)? + Dy?) Ti + (Is|RD;)* + D,®

k=1i=1 sepAi

[&

@(i

i=1

<) ([(RDx)zné (Z) m? + ng (Z)

+ [(RDx)3 2]‘; (WNJ m3 + Dféijo (Z)

|

Unfortunately, there is no closed-forin formula for expressions Z,I;;‘LO (f:i),

|s|2> (RDy)? +|PA' D | T + l(
J

NT

(m)m?, and Eoep g lsl® =

):

> sl

sePA*

M
m=0

) (RD;)? + [PA*|D,3

M
m=0

(

(rjx) m?3, and Equa-

)

(3.51)

2

N)m 7

m.

(m) m3. However, under some additional assumptions, these expressions can

be simplified in the asymptotic analysis. For example, if M > N/2, then the following

a‘nd Z'r]\rfzo
holds:
M [N/2] oN
505 ()25
m=0 m m=0 m
M [N/2]
= E ()
m m
m=0 m=[N/4]
M [N/2]
> ()mz 3 ()m
m m
m=0 m=[N/4]
as well as

(3.53)

2For simplicity, we assume here the same bound on the number of parents across all signals.
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Combining the previous two sets of inequalities, it follows:

M
2 ) =0
M

> (Z) m? = 02N N?) (3.54)

m=0
ﬁl: (Z)m3 =0(2NVN?3).

m=0

After plugging this result into Equation 3.51, we obtain
M M
N N
2 2 2
@( (RDy) E (m)m + Dy E (m)} NT
m=0 m=0
M M
N N
3 3 3
+ [(RDZ) _;_ <m>m + D, E (m)] NK)

m=0 m=0

= O ([(RD;)?2" N? + D,*2"] NT + [(RD,)*2" N3 + D,%2"] NK)
= O ([(NRD,)? + D,*] 2 NT + [(NRD,)? + D,*] 2" NK) . (3.55)

Note that this is exactly the same result as the one in Equation 3.49, which holds
whenever at least a constant fraction of subsets is allowed (1/2 in this case).

If the number of allowed parents, M, is small, a better (lower) time complexity
could be achieved. In many scenarios, M does not depend on the number of signals,
N. For example, it is reasonable to assume that there is a limit on how many people
one person can simultaneously react to, which is independent on the number of people
in a scene, and so the same bound can be used whether there is only a handful of
people or a large crowd in it. In such scenarios, M can be treated as a constant, and
the expressions Z%:o (f:i), nAf___O (ﬁ)mz, and Z%:o (T]X)m3 all have the complexity
O(NM) (N(N-1)...(N—M+1) is an M*"-order polynomial in N, and the summation
is over M terms, which is a constant number). Now, Equation 3.51 can be reduced to:

@( (RDx)Qé(Z)m2+Dy2né(Z) NT

sl £ 02 £ )

NK)

= O ([(RD;)?N™ + D2NM] NT + [(RD.)’N™ + D,3NM] NK)
=0 ([(RDx)2 + DyQ] NM+1p 4 [(RDx)S +Dy3] NM+1K) ) (3.56)
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On the other hand, if M is not treated as a constant, or simply a more precise statement
about time complexity is needed - one that describes the dependence on M as well
(whether a constant or not), then a simple bound can be obtained as:

e ( (RD,C)?i:O (Z)mQ + Dyzé (Z)
+ [(RDx)s ]ZV[: (ﬁi) m® + D,° f: (Z)} NK)

m=0 m=0

=0 ([(112517:,5)2 (ﬁ) M?+ D,? (Z) M] NT + [(Rpm)3 (AAD M*+ D,® (J\JD M} NK)

N
M

NT

=0 ([(J\uwm)2 + Dy/?] ( )MNT + [((MRD,)® + D, (Z) MNK) : (3.57)
Here, we used the fact that (](\)’) < (]Y) < ... < (Ml\il) < (ﬁ) for M < N/2, and,
consequently, that S o (M) < M(}}). A better bound can in fact be obtained under
the assumption that M/N < ¢, where c is a constant smaller than 1/2. In other words,
we now allow that M grows as N grows, as long as M/N does not grow. Under this

assumption, it holds that

N
m—-l) m M cN c .

= < < < <1 .
(g) N-m+1"N-M+1~" N—-cN+1 " 1-c (3.58)

for1<m < M. Let ¢ =¢/(1 —c). It follows that

(3) =)
and
S Eem(Eo () vw

where the last equality follows from ¢’ < 1. Similarly,

M
N ,_ 1 (NY,.,
< -
> (m)m = 1—c'(M)M

m=0 (3.61)
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On the other hand, the three sums are also bounded below as

3 ()= ()

m=0

f: (Z ) m? > (Z)MQ (3.62)

m=0

5 (e (2o

m=0 )

Finally, from Equations 3.60, 3.61 and 3.62, it follows that

> () =e ()

3 (e -o( (o)
5 ()= ().

which, when plugged into Equation 3.51, yields the time complexity of

) ( (RDx)Qni:o (Z)mQ +Dy2§:0 (g) NT

NK )
m=0 m=0

—o ( [(RDz)z (Z) M? 4 D2 G‘;)] NT + {(RDQC)3 (Aj\/_f,) M? 4 D3 ( J‘A;)] NK)

N
M

+ [(RDm)"’ §M: (Z ) m? + D3 i (z )

=0 ([(MRDz)z + D] ( y

)NT + [(MRD,)? + D,?] (N ) NK) . (3.64)
Note that this is a tighter bound than the one in Equation 3.57 by a factor of M, due
to a more precise analysis of the complexity of the sum of binomial coefficients when
M/N is bounded, which also encompasses the case of small (constant) M.

In Algorithm 2.4, for every model and every signal, updated hyperparameters are
computed for each allowed parent set. These hyparameters are only used here to com-
pute the marginal data likelihood and update the prior parameter on the parent set.
To minimize memory requirements, these hyparameters can be discarded, and only the
updated parameter of the parent set prior, 5’ f, s can be kept for each allowed parent set,
which takes © (|’P.A}s|) space. However, after a parent set is sampled, these values are
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not needed any more, and so the total memory requirement for storing “beta” values
is © (maxx; |[PAL|) = O (2V). In the case of a bounded-indegree prior, this is equal

to © (2) if M > N/2 and to @((ﬁ)) if M/N < ¢ < 1/2. In addition, a sample of

a parent set, pa(i, k), and parameters of the dependence model, A}; and Q}c, is stored
for every model k and every signal i. The size of pa(i, k) is N in the worst case. If a
bounded-indegree prior is employed, it is M in the worst case. The average case analysis
depends on the particular value of the prior and the data. Here, we will assume that
the average size of a parent set is ©(M). The dimensions of parameters A}; and Q}c are
Dy x |pa(i, k)|RD; and D, x Dy, respectively. Thus, the total memory requirement for
~storing samples is O (NDy(NRD, + D,)K) in general, and O (NDy(MRD, + Dy)K)
if a bounded-indegree prior is used. Finally, the overall memory complexity of Algorithm
77 is O (2N + ND,(NED; + D,)K) in general and © ((3) + ND,(MRD, + D,)K )
in case of a bounded indegree prior in which M/N < ¢ < 1/2.
It is important to note that in our implementation, posterior over parent sets and
dependence model parameters is computed and stored for all models and signals. Stor-

ing parameters of these posteriors takes © (Z,ﬁil Zfil Y oseP A ((IsIRDz)? + Dyz))
space, which is in general bounded by O (((NRD;)? + D,?)2VNK) and is equal to
S] (((M RD.)? + Dyz) (AA,;) NK ) in case of a bounded-indegree prior with small M or

if M/N < ¢ < 1/2 is satisfied. Although this significantly increases the space required
for this step, it does not increase the overall space complexity of the inference proce-
dure, since the same space is required for storing parameters of prior distributions in
general.!3

W 3.5.5 Complexity of inference in LG-SSIM: step 5

Algorithm 3.2 describes a procedure for sampling the observation noise covariance ma-
trix in LG-SSIM that assumes the same observation model for all signals and all time
points. For each time point, ¢, and each signal, 4, the value (Y7 —C°X"2)(Yi—C°X"H)T
is a statistic that must be computed in order to update the inverse-Wishart prior on the
observation noise covariance matrix. Here, Y}’ is a vector of length Dy, X'; is a vector
of length RD,, and C'° is a matrix of dimension Dy x RD;. Therefore, computing
C" X"} takes ©(DyRD;) time and evaluating the product (Y; — C"°X"})(Y¢ — C°X"})T
takes @(Dg) time. These are computationally dominant steps, and thus, updating the
prior takes © (Dy(RD, + Dy)NT) time in total. That can also be considered the over-
all complexity of Algorithm 3.2, since generating a sample from the inverse-Wishart
distribution takes @(Dg) time!* and does not depend on the number of time points T,

3In general, prior on dependence model parameters can be set independently for each parent set of
each signal in each switching model. However, if these priors are constructed in some parametric way,
thy may be represented more compactly.

14The implementation of an algorithm for sampling from an inverse-Wishart distribution that we are
using performs matrix operations that are cubic in time (such as QR-decomposition).
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which is typically much larger than D,,.

Note that, in general, we assume that an observation of a signal, Y}, is a function
of the corresponding expanded state, X'y, which means that it is a function of a signal
value over some window of time in the past. However, in most practical scenarios, it
will be the case that an observation of a signal is only a function of its current state, X}.
With that assumption, an equivalent computation (Y; — COX¥)(Yy — COX}H)T can be
used instead, where matrix C° is of dimension Dy x Dy, which would reduce the total
time complexity of this step to © (Dy(Dy + Dy)NT). However, this is not critical for
the performance of the overall Gibbs sampling procedure (Algorithm 3.1) as this step is
far less computationally demanding than steps 1 and 2 even without such optimization.

Algorithm 3.2 does not require significant additional space, except for storing the
value of an updated hyparameter \If’% of dimension D, x Dy, as well as matrices
of the same size during the sampling substep. However, for convenience, our im-
plementation creates copies of the state and observation sequences in a “reshaped”
format convenient for applying matrix operations in MATLAB, and therefore takes
O (Dg + (RD; + Dy)NT) of additional space. Still, that is of the same memory com-
plexity as the input to this step, and significantly cheaper than the space required for
step 1, and thus not critical.



Chapter 4

SSIM Experiments

HE main goal of this thesis is to develop tools for learning time-varying interac-

tions among signals from noisy observations of these signals. In doing that, we
employ a Bayesian approach that characterizes uncertainty of latent variables via their
posterior distribution. The goal of this Chapter is twofold. First, it aims at illustrating
a variety of analyses that could be performed and questions that could be answered
(probabilistically) using the SSIM framework. Second, it demonstrates the advantage
of the SSIM model over the previous work by comparing results of interaction analysis
obtained by the SSIM with the ones obtained by the model that does not account for
noisy observations [49, 50].

We present experimental results on three datasets: synthetic data, joystick data,
and climate data. Synthetic data is generated to demonstrate specific advantages of
the SSIM model. Most real data does not contain annotation of interactions. Further-
more, ground truth interactions are in most cases hard to label even by domain experts.
Joystick data is generated by humans in an experiment that is specifically devised
for testing the SSIM inference algorithm in a realistic scenario. In this experiment,
players control a point on a screen via joystick in such a way that they interact with
only a predetermined subset of players in a specific way. Patterns of interaction change
over time also by a predetermined schedule. Thus, joystick data contains ground truth
interactions and switching pattern by design, and is therefore suitable for testing in-
teraction analysis. Finally, climate data is a real-world data of historical values of
different climate indices that cover various aspects of climate. It is still largely unknown
how climate exactly works and uncovering relationships among climate indices is one
of the tasks that may contribute towards its understanding. As the ground truth is not
known, this dataset is mainly used to demonstrate the variety of applications and types
of analyses enabled by the methodology developed in this thesis.

Note that in this thesis we focus on continuous-valued time-series data, in which
inference can be done using the LG-SSIM model. This is indeed the case with the three
datasets used in this Chapter.

In addition, there are practical considerations that are critical to address for a
successful employment of the Gibbs sampling procedure for LG-SSIM: setting hyper-
parameters, initializing latent variables, choosing a Gibbs sampling scehdule, and ex-
tracting statistics from the posterior samples. We discuss these first and then present

95



96 » CHAPTER 4. SSIM EXPERIMENTS

experimental results.

In Section 4.1, we provide guidelines for setting the prior (i.e., hyperparameters)
in the LG-SSIM model, initializing latent variables, and performing a Gibbs sampling
procedure. We also provide a procedure for evaluating a posterior distribution over a
huge number of structures given a limited (much smaller) number of posterior samples
obtained by the Gibbs sampling inference procedure. In Sections 4.2, we use synthetic
data to demonstrate the advantage of interaction analysis over testing pairwise rela-
tionships, and the advantage of the SSIM model over the model of Siracusa and Fisher
[49, 50], which does not account for observation noise. In Section 4.3, we introduce
a novel dataset, the joystick data, which is created specifically for testing results of
interaction analysis in realistic conditions. It is developed in such a way that ground
truth interactions are known by design, but it is human-generated and not synthesized
from the model. We demonstrate the ability of the SSIM model to infer interactions
and a switching pattern even in the presence of relatively high observation noise or if
a significant fraction of data is missing, and that it is advantageous over the STIM
model of Siracusa and Fisher [49, 50], as the STIM model does not handle missing data
and performs worse in the presence of high observation noise. We also demonstrate the
advantage of reasoning over structure posterior over MAP estimation, as spurious edges
in a MAP structure estimate are typically assigned higher uncertainty (lower probabil-
ity) in the posterior than the correct edges. Finally, in Section 4.4, we apply the SSIM
model to a real-world problem and show types of analyses that it enables.

B 4.1 Implementation and Practical Considerations

Inference in LG-SSIM (and SSIM in general) is inherently hard. Since exact inference
is intractable, we employ a Gibbs sampling procedure described in 3.4 for approximate
inference. However, although Gibbs sampling has a theoretical guarantee that the
obtained samples will converge to the correct posterior distribution, obtaining a repre-
sentative set of samples from the posterior in limited time is challenging in LG-SSIM.
The space of latent variables and model parameters is very complex. The posterior dis-
tribution is highly multimodal, and there may be many local optima, and, as a result,
the sampling algorithm may easily get stuck in a wrong subspace of solutions.

Here, we discuss practical considerations that need to be addressed in order to
successfully employ LG-SSIM. First, the results of inference can be very sensitive to
the value of the parameters of the prior (i-e., hyperparameters) and the initial values of
latent variables. The values of hyperparameters directly bias the posterior distribution,
especially when only a limited data is available, which is a regime of particular interest
in this thesis. Therefore, the closer the prior is to the “truth”, the better the results will
be. In order to set the prior as good as possible, we use common sense, prior knowledge,
as well as data itself as a guide. Furthermore, setting the values of hyperparameters
and initial values of latent variables properly is instrumental in focusing the Gibbs
sampler into a region of interest. This is of critical importance since the posterior
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distribution under the SSIM model is highly multimodal due to a very high complexity
of the latent space. Also, the exact sampling schedule (the order of steps, the burn-in
period, the distance between samples taken from a chain, and the number of restarts)
plays a critical role in efficiently traversing the posterior space and generating valid
samples from the posterior distribution. Finally, due to a huge number of structures to
reason over, the number of posterior samples that can be generated in reasonable time
is typically much smaller than that, and therefore only a small fraction of structures
would be assigned a non-zero posterior probability. In order to overcome such sparsity
and obtain a more precise posterior picture, we modify the posterior analysis in such a
way that conditioned on each joint sample of other latent variables in the model, a full
probability distribution over structures is constructed, and the final result is obtained
by averaging over these distributions.

M 4.1.1 Setting Up The Prior

Prior on LG-SSIM can be thought of as a collection of priors on different parts of
the model. Here, we analyze how each of them may influence results of inference and
provide guidelines on how to set hyperparameters. :

Prior on switching model
The switching model consists of K + 1 multinomial distribution, Mult(ny,...,7x) and
Mult(mgy,. .., T k), k =1,..., K, that govern the evolution of the switching sequence:

Zy ~ Mult(ry, ..., 7x)

(4.1)
Zy ~ M'U'lt('/TZt_l,l, - 77er,—1,K) , t=2,...,T.

The prior on the switching model consists of K +1 Dirchlet distributions that are priors
to the corresponding multinomials:

(71'1,...,71’}'{)NDi’I"(Oq,‘..,aK) (42)
(7Tk71,...,7r;c,K) NDiT(ak,l, ,ak,K), k=1,....K.
Recall that the mean of this prior is:
K
Eprior (71, 1)) = (01, - -y ax0) / 3 o
k=1 (4.3)

K
Eprior [(1rk,1,.. -,Wk,K)] = (Ozkyl, .. .,ak,K)/ Z Ok k! k=1,...,K.
k=1

Therefore, the prior on the switching model introduces a bias towards these values
of initial and transition probabilities. The strength of this bias is controlled by the
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variance , which is
ag(oo — o)
ad(ag+1)

ag k(0 — k)
Varprior [T | = — ’ :
prior [Tk ] o2 (oo +1)

Varppior [Tk| = k=1,... K
(4.4)

) k7k/:17"’7K)

where o = Zszl o and agp = Z,{f:l ok k- Note that the variance decreases with
the sum of hyperparameters, and consequently, the strength of the prior increases.
In conclusion, the parameters oy, ...,ak kx are proportional to the expected prior
transition probabilities, while their sum, o4 g, controls the strength of the prior. These
parameters are called pseudocounts, as increasing oy 4 by an integer value has the same
effect on the posterior as if there were that many additional observed transitions from
kto K.

We treat all states equally in the prior. In most applications, self-transitions
are much more likely than transitions to other states. Note that mj /(1 — k) =
o/ (Zk,?gk op ). Thus, to set the prior such that from state k self-transition is m
times more likely than a transition to another state, we set oy g = ag x/(m(K —1)) for
k' # k. Unless there is prior knowledge of frequent switching, we set m to be T'/(K —1).
In other words, the prior expectation is to see approximately K — 1 transitions within
the sequence of length T”. Therefore, agr = agi/T’. For example, agp = 1 for
k' # k and agx = T’ is a common setting that we use, for some 77 > 100. Note that
this implies that for relatively short sequences the pseudo-count is on the order of the
length of the sequence. While that is a moderately strong prior on switching param-
eters, note that the posterior of the switching sequence Z is heavily influenced by the
observed time-series, and not just switching parameters. In addition, we set o = 1
for Kk = 1,...,K. Note that this prior is not very influential — initial state is mostly
driven by the data. If there is only one sequence, as is the case in many applications
we consider, this prior is not important.

Prior on dependence models

Each of the K dependence models consists of a dependence graph, Ej, and a set of
linear Gaussian models,

Xp= A XEPD uf, wi~NO,QY), (45)
one for each signal i = 1,..., N, parametrized by the dependence matrix ./1}; and noise
covariance matrix Q. The prior on k*® dependence model can be written as

(B, O3 B*,7*) = p(Ex; B*) p(Ok | Exs ") , (4.6)

where 8}, = {(A%, Q%) }Y, in the case of LG-SSIM. Since we use a modular prior, it can
be decomposed as a product of priors on parent sets and parameters associated with
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each signal’s evolution model:

N
p(Ex, 0k; 8,7°) = [ [ p(Ba(i, k); %) p(6} | Pa(s, k); ) - (4.7)

i=1

The prior on a parent set of signal ¢ has a general form:
. 1
p(pa(z,k);ﬂk) = —B?’szh(’iak) ) (4.8)
2

where Bf = Zp”a(i,k) ﬁﬁph@k) is a normalization constant. Since the set of possible
parent sets of a signal is large (2%V), it is critical, even for moderate N, to work with
a subset of manageable size. Domain knowledge should be utilized to consider only a
fraction of parent sets that are most likely a priori. Excluded parent sets can be treated
as having prior probability 0. Ideally, if excluded parent sets are unlikely, that is an
accurate reflection of the prior knowledge. However, if that is not the case, but these
parent sets must be excluded for practical reasons, thus obtained model can be thought
of as a tractable approximation to the real world. Alternatively, the dependence model
of an individual signal can be thought of as a mixture model, where the mixture is over
a selected subset of parent sets.

Let SF be the set of allowed parent sets of signal i in the k** model. We assume the
following form of the prior on its parent set:

1
—— ,s5c Sk
B, =< (lsl + 1)bx.i : (4.9)

0 , 0.W.

In other words, the prior probability of a parent set is inversely proportional to the size
of the parent set (plus one, to accommodate an empty set), raised to an exponent. If
bi: > 0, the prior favors smaller parent sets. If by ; < 0, the prior favors larger parent
sets. Finally, If by; = 0, the prior probability of all parent sets is equal. Note that
when b ; > 0, the prior acts as a regularization term on the number of parents.

One would be tempted to conclude that it is critical to use such a prior, which
penalizes large parent sets, as in the case with AIC and BIC model selection criteria.
However, that is not necessarily the case in SSIM since parameters are marginalized out
to compute the posterior distribution of a parent set. Marginalization of parameters has
the effect of averaging data likelihood over all parameter values, weighted by the prior
on parameters. A larger parent set results in larger number parameters, but that does
not mean that averaging over a larger set of parameters would yield a higher likelihood.
In fact, if an additional parameter is not relevant (i.e., if the best model that includes it
is not significantly better than the best model without it), then likely most of its values
would contribute to the decrease of the average likelihood. Of course, that also depends
on the prior on parameters, due to weighting. The exact relationship between the prior
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and the average likelihood (obtained by marginalizing parameters) is complicated and
we do not investigate it here (it would be an important future work).

On the other hand, if a joint MAP estimation of a parent set and parameters is
performed, then some form of regularization is needed — either via a prior on parent set
that penalizes large sets (bg; > 0), or via a prior on parameters that promotes sparsity
(L1 penalty may be needed instead of Ly).

We typically use by ; > 0, and commonly 1 < bg; < 10 (default being bx; = 1), so
that there is no high bias for smaller parent sets, and the posterior is mostly guided
by the data and parameter averaging, but still favors smaller sets in order to provide
regularization when data size is small. Since the SSIM model is only an approximation
to the true process of interest in a particular application (time discretization and the
assumption of a linear Gaussian transition model), the MAP parent set may not re-
flect the causal structure even with unlimited data. by ; may be set significantly higher
(or progressively increasing in repeated experiments) to “prune” the parent sets fur-
ther. This can be done in an exploratory analysis in an attempt to uncover possible
causal structures. When exactly this would be possible or beneficial requires further
investigation.

Also, we typically constrain the set of parent sets by assuming that a signal is always
included in in its parent set (which is true in most applications) and that there can be
at most M parents (bounded-indegree prior), 1mply1ng Sk={s|ies,|s| > M}.

The prior on parameters associated with ¢ 's1gnal evolution model, Ak and ka
is & matrix normal inverse-Wishart distribution:

_ MN(A ,Pa(" k) Qz,pa(z k) , Qk) IW(Q" LK ;Pa(z k) \If 1,pa(i, k)) (410)

Note that this prior is conditioned on the parent set, p”a(i,k). Therefore, for each

possible value of the parent set, there are separate hyperparameters, nfc’f a(i’k), \Iffc’ﬁa(i’k),

M, ;’p 8 and Q}c’p (%) We observe that the results of the Gibbs sampling inference pro-
cedure for LG-SSIM are very sensitive to these hyperparameters and we pay particular
attention to setting them appropriately.

Since the prior on the transition matrix, At is conditioned on the noise covariance

matrix, Qk, it is natural to consider first the prior on QZ Recall that in the inverse-
Wishart prior, nk’p (%) has a role of a pseudocount, while \Ilk’p a(ik) i proportional to
the mean of Q5:

\IJi,ph(i,k)

Eprior @k 1006, B)| = —eb—— (411)
(3 %

where d; is the number of rows / columns of Q¢ , and does not depend on the parent

set. Pseudocount, n?f a(ik) , has the effect as if there were that many samples of the

b i,pa(i,k) i,pa(i,k) / 1,pa(i,k)

covariance matrix whose sum equals (or, are U} on average).
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ipa(isk) small, which implies a weak prior on Q}c Specifically, in most
experiments we use n;c’p a(ik) d; + 3, which is only slightly higher than d; — 1, the
minimum allowed value for parameter mzph @k We set \Ilz’ph(i’k) in the following way.
The noise covariance of signal 7 is estimated from data using a simpler model that is a
vector autoregressive model of signal 4:

We typically set x;

th = A’%nd X/:—l + w27 W ~ N(O de (4'12)

. : T
where X';_; = [ t‘_lT. ..XZ_TT] . Note that this model does not take into account

switching, observation noise, as well as other signals, and therefore estimation can be
done independent of the prior on other parts of the LG-SSIM. The maximum likelihood
estimates of A , and Q} ; are computed as

-1

~s . T . T
1 — 7 17 17 It
nd — E : Xt X t—1 E : t—1 t—1

t€Tobs te’robs (4 13)
md T, Z (Xt X,;Lt 1)(Xt md '1-1)T ’
| Obsl te€Tobs

where Tops is a set of time indices for which observations of both X} and X’ 2_1 exist.
Alternatively, some of the missing values can be added, e.g., by interpolation, to extend
Tobs- That may be particularly important if r is large and the frequency of missing
data is large The estimated driving noise variance of signal ¢ components (diagonal
terms of Q ) can be thought of as an upper bound to the correspondmg variance in
any of the K dependence models in LG-SSIM (diagonal terms of Q‘) since by adding
other signals, allowing switching, and modeling observation process necessarily result
in a model that fits the data better. Finally, ¥y Pa(ik) is set as such that the mean of

the inverse-Wishart prior on Q1 (Equation 4. 11) is equal to Qi . ie.,

nd’
\If i,pa(t,k) Qz 7P0'(z k) —d; — 1) . (4.14)

Now, we discuss setting the prior on the transition matrix, fi};. Recall that it is
conditioned on @Q%, and has the form

p(Az Ip?.l(i, k)7 Qz’ M]iyfa(i,k)’ Qzﬁa(i,k)) — MN(A}C, Mli,ph(i,k), Q:ph(z’,k), Qz;) - (415)

The transition matrix is not know in advance, and we want to set its prior to be close to
a uniform distribution. To achieve that, we set the column covariance matrix parameter,

Qi’f a(ik) , such that its diagonal values are very high (e.g., 10? divided by the average
diagonal element of Q:n 4» such that the variance of each element of A} is approximately
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equal to 10* on average).! Note that this setting is very different from other works

(e.g., [? ]), in which O} (k) s set to identity. The reason is that in these works
there is no inference on parent sets (a signal is influenced by all other signals), and the
transition matrix is regularized by a prior that encourages small values. Here, model
selection is performed via a posterior distribution on parent sets, while the transition
matrix, ~§c, is allowed to be arbitrary. In fact, such a setting is essential in LG-SSIM for
proper inference of parent sets, since regularizing the transition matrix may render some
parent sets unlikely simply due to a constraint on the transition matrix, while allowing
an arbitrary transition matrix may result in their high posterior probability. Finally,

the mean of the matrix normal distribution, M, ,Z’ph (i’k), is set to zero, although it is less

relevant due to the large width of the prior. Alternatively, elements of M,i’ph(i’k) that

correspond to self prediction of a signal may be set to flﬁnd, which is their maximum
likelihood estimate in the model of that signal individually (Equation 4.13).

Prior on the observation model

We assume that the observation model is shared across all signals and is given by
(Equation 3.12):

Yi=C X+, vi ~ N(0, R%). (4.16)

We also assume that the observation matrix C? is known and equal to identity, and that
the prior on the covariance matrix R? is the inverse-Wishart conjugate prior (Equation
3.13):

p(R%; k%, ¥%) = ZTW(RC; k%, U%) . 4.17
R R R R

We typically set 5(}{ small (e.g., n% = d + 2, where d is the dimension of each signal),
which implies a weak prior on R°. The mean of the prior is set to be smaller than the
the one on the dependence model noise (on average, over all signals). We typically set

N
1 . A
Vg =075 Y E [dxag(Q;nd ] (5% — d — DInaxna, (4.18)
=1
where % Zf\i E [diag(Qﬁn d ] is the average value of the upper bound on variance across
all variables in all signals (recall that Q’:M) is estimated using Equation 4.13), and
IngxNg is an identity matrix of dimension Nd x Nd. The diagonal terms of the prior
mean on the observation noise covariance (terms that correspond to variances of indi-
vidual signal variables) are set slightly lower than the corresponding terms of the prior
mean on the dependence noise covariance in order to prevent explaining the data just
with a high observation noise.

1The~r.1rla.trix normal distribution of Equation 4.15 is equivalent to a multivariate normal distribution
on vec(AL) with covariance matrix Q7% @ Qi
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M 4.1.2 Setting up the Gibbs Sampler

A Gibbs sampling algorithm is guaranteed to converge to the correct posterior distri-
bution. However, the convergence may be very slow, especially if a distribution has
multiple local maxima. Since samples are typically highly correlated with the previous
samples, it may take a very long time for the sampler to “escape” one local maximum.
The resulting samples can therefore depend significantly on the initial value of latent
variables and parameters, as well as on which samples are taken from a Markov chain
and the number of times the chain is reinitialzied.

Initializing Latent Variables

Initial values of latent variables and parameters in the SSIM can significantly influence
the distribution of the samples obtained in a reasonable time due to the high complexity
of the latent space. Guessing the K dependence models a priori is difficult, as there is
typically no evidence of what they should be (and inferring their interaction structures
is in fact the main goal of the thesis). Setting them randomly may bias the algorithm
towards wrong explanations of the data. Therefore, we initialize other variables first
and then sample dependence models conditioned on other variables, as in the Gibbs
sampling procedure. Guessing the switching sequence, Z, is also difficult (unless there
is some strong prior knowledge). We typically initialize it randomly, such that the
value of the switching sequence at each time point is drawn independently from a
uniform distribution over the possible switching states. That avoids the bias towards
any particular pattern, as well as bias towards self-transitions, which helps make larger
moves through the posterior in the initial rounds of the sampler. We initialize the latent
time-series state sequence, X, using a simplified linear Gaussian state-space model in
which there is no switching and each signal depends on all other signals:

XZ = AiXt—l + "i ’ ni ~ N(()’ Qz)

ot ‘ (4.19)
Yy = X{ + vy, v; ~ N(0, R).

The values of the parameters of this model are sampled from the prior on a single
dependence model, assuming that the interaction graph is the full graph. The initial
value of the latent time-series state sequence, X, is then generated as a sample from this
model. Finally, given initial values of the switching sequence and the state sequence,
the initial values of the K dependence models, parameters of the Markov model on the
switching sequence, and parameters of the observation model are sampled conditioned
on them, as in the full Gibbs sampling procedure.

Gibbs Sampling Schedule

We find that in the examples we explore, it takes a few dozen iterations (e.g., 50-100)
for a sampler to converge (to at least a local optimum) and that skipping every few
dozen iterations (e.g., 50) to extract a sample results in uncorrelated samples (again, at
least conditioned on being in a neighborhood of a local optimum). We typically perform
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several restarts to see if there is a significant variation in the results due to different
initialization. If that is a case, then we perform multiple restarts (again, typically few
dozen) and extract a small number of samples from each of them (typically only one).
We also find that even as few as several dozen (e.g., 50) extracted samples can describe
the posterior well using the procedure for evaluating the posterior over structures given
in the next section.

B 4.1.3 Evaluating the Posterior

The output of the Gibbs sampling inference algorithm for the SSIM (Algorithm 3.1) is
a set of S samples from the joint posteriori over latent variables and model parameters:

(X%, 20,35, B0 0.8, s=1,....8, (4.20)

where, in sample s, X is the state sequence, 75 is the switching state sequence, 7° are
the parameters of the Markov model on the switching sequence, (E*, 6°) = {(E2, ~;°é) K
is a collection of the K dependence models, and £° are the parameters of the observation

model. Recall that E; = Ezt is the interaction structure at time point ¢ in the SSIM.
The posterior probability of this structure can be approximated as

S
P(E; = E) = E[I(E; = E)] ~ -15-211(%%? —E
(4.21)
I{S = E}|
& :

where () is the indicator function. Note that Es is the dependence model indexed

by the switching variable at time ¢ in sample s. Also note that the final expression in
Equation 4.21 is the fraction among samples of the structures valid at time point ¢ that
are equal to E. Furthermore, the posterior probability of any structural event at any
time point ¢, given by an indicator function f(E}), can be approximated as

S A
P(f(E) =1) =E[f(E)] ~ ¢ 3 £(By,). (4.22)

An example of a structural event indicator is a function f(E) = {1 — 2 € F), which
indicates whether an edge 1 — 2 exists in the interaction structure E. Then, the
probability that signal 1 influences signal 2 at time point ¢, using Equation 4.22, can
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also be written as

P(1—>2€Et)=E[]I(1—)2€Et)]

S
~ Y I0 52 By
s=1
{s:1>2€Eg}
—_— t
= 5 ,
which is the fraction among samples of the structures valid at time point ¢ that contain
edge 1 — 2.

A problem with the above procedure for computing structure posterior probabilities
is that the number of possible structures can be very large, even under the modular
and bounded in-degree prior assumptions, and many of the structures may not be rep-
resented at all in the posterior samples. Similarly, for any low-probability structural
event, a very large number of samples is required to estimate that probability reliably.
The same holds for conditional events that may have high probability but are condi-
tioned on a low probability event. For example, if one is interested in answering a
hypothetical question “What would be the probability that signal 2 influences signal 3
assuming that signal 1 influences signal 37”, but the probability that 1 influences 3 is
low, a large number of samples is needed to collect enough samples in which 1 indeed
influences 3 in order to estimate the conditional probability.

To alleviate this problem, we estimate the posterior distribution over interaction
structure at time point ¢ in the following way:

(4.23)

P(E,=E) :;/XP(E} =E,Z,X)dX

- / P(E, = E| Z, X)P(2, X) dX
X

(4.24)
P(E, = E|Z°,X°)

Q
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P(Es, = E|2°,X°),

where P(E‘»ts = E|Z°%,X°) is the probability distribution over structures of the de-

pendence model indexed by Zf, conditioned on the state and switching sequences from
sample s. Note that computing P(E pe = E| Z%,X?) is equivalent to the problem of
computing the posterior distribution over a homogenous structure from perfect data,
since both the switching pattern and the latent time-series are assumed to be known.
Recall that this computation can be done efficiently if a modular bounded in-degree
prior on structure and a conjugate prior on parameters of the dependence model are
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used, which is the case in this thesis. In other words, samples from the joint poste-
rior distribution in the SSIM are generated first, sampled structures are discarded, and
the posterior distribution over structures of each dependence model is then evaluated
conditioned on other variables, for each sample. Thus obtained distributions are then
averaged for each time point to compute the posterior distribution over structure at
that time point. Note that the dependence models do not depend on parameters 7 and
¢ when conditioned on the latent state sequence X and the switching state sequence
Z, and thus #° and £° are irrelevant for computing the posterior over structures as in
Equation 4.24. Hyperparameters are omitted from equations for brevity.

Siracusa and Fisher [49, 50] evaluate the posterior distribution over switching inter-
action structure in the STIM model in the following way. After posterior samples from
the joint distribution are generated, a single representative switching sequence, Z , is
determined as the one with the smallest Hamming distance from all samples of switch-
ing sequences, {Z s ‘5:1. Then, the posterior distribution over structure is computed for
each switching state exactly, as in the homogenous model (recall that the time-series,
X, are assumed known in the STIM). Therefore, their method also resolves the problem
of sparse samples of structure. However, the advantage of our method is that the un-
certainty in the switching sequence is accounted for when computing the posterior over
the interaction structure over time. Furthermore, by marginalizing over the switching
sequence, the posterior distribution over structure can be different at every possible
time point, whereas in the method of Siracusa and Fisher there are at most K different
structures.

Finally, we evaluate the uncertainty in the switching pattern by estimating the
probability that any two time points, t; and o, are in the same switching state:

s
1 . .

P(Zy =2y,) = 5 E WZ = 7). (4.25)
S s=1

B 4.2 Synthetic Data Experiments

We present several experiments with synthetic data that test different aspects of the
interaction structure learning problem.

B 4.2.1 Structure Inference vs. Pairwise Test

Learning interaction graphs under the modular prior assumption (Section 2.6.4) in
general requires testing each possible parent set of each node. If parents of a node are
tested individually, the most likely parents may not necessarily be the correct ones.
To demonstrate that, we generate two examples from the LG-SSIM model. In both
examples, there is no switching and observations are assumed perfect. There are 4
univariate signals in both examples, and the first-order AR model is assumed.

The interaction structure for the first example is shown in Figure 4.1a, and the
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Figure 4.1: The interaction structure in the two examples that demonstrate the necessity
to consider parent sets rather than parent candidates individually.

linear Gaussian models for each node are:
X} =02X},4+06X2,+01XL, +n},
X2 =0.2X2,+07X3 , +n2,
Xg = Og_Xta_l + n? y
X} =09x}, +nf,

(4.26)

where n}, n2, n} and n} are L.LD. samples from N(0,0.1). A data sequence of length

T = 1000 is sampled from this model.

When the inference is performed on these data without any restrictions on possible
parents (except for self-dependencies, which are always assumed), the correct structure
is recovered (posterior probabilities of true and false edges are approximately equal to
1 and 0, respectively). However, by looking at the effect of each signal separately, in
addition to self-dependency, possible pareuts of signal 1 are sorted as 2, 3, 4, in the
order of decreasing posterior likelihood. Therefore, the posterior likelihood of the false
edge 1 < 3 is higher than the likelihood of true edge 1 < 4. This result stems from the
fact that the true dependency of signal 1 on signal 4 is relatively weak (with coefficient
0.1), while its indirect dependency on signal 3 is stronger. Note that this is essentially a
test for Granger causality [23].2 The test is performed in the LG-SSIM model simply by
bounding the number of parents to 2 (i.e., 1 in addition to the assumed self-dependency).
Finally, if signal 2 is excluded from the analysis, but there is no restriction on the number
of other parents, the posterior probability of edges 1 < 3 and 1 + 4 are 1 and 0.7,
respectively. This shows that, in the absence of signal 2, signal 3 “takes over” its role
in explaining signal 1, together with signal 4. Since the relationship between signals
1 and 3 is noisier than between signals 1 and 2, the probability of this explanation is
lower (probability of edge 1 - 3 equal to 1 means that the probability of 3 alone being
a parent is 1 — 0.7 = 0.3, while the probability of a parent set {3,4} is 0.7).

In the second example, a sequence of length 7' = 1000 is sampled from the model
with the interaction structure shown in Figure 4.1b and the following linear Gaussian

2Except that the parameters are marginalized out instead of looking at the maximum-likelihood
parameters.
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Figure 4.2: An example that demonstrates the advantage of modeling observation noise.
(a) True interaction structure. (b) Posterior probability of edges obtained by inference
in the STIM model (which does not model observation noise). (b) Posterior probability
of edges obtained by inference in the SSIM model (which models observation noise).
The value at row i and column j is the probability of edge i — j. Self-edges are blacked
out, while the correct edges are marked with a white dot. Note that the STIM assigns
probability 1 to a false edge 1 « 3. Even though signal 1 depends only indirectly on
signal 3 in the generative model, signal 3 helps explain signal 1 since the observations
of signal 2 are noisy. On the other hand, it the SSIM is used for inference, the posterior
probability of edge 1 + 3 is significantly reduced. Note also that the probability of
edge 3 < 2 has increased, which means that the additional flexibility of the model may
allow for different explanation of the data in the latent space.

models:

X! =01Xx!; +04X3, +04X}, +nf,
X2 =01X2,+04X} | +04X}, +n2,

X2 =09X3,+n?,
Xt =09Xx}, +n},

(4.27)

where n}, n?, nj and n} are LLD. samples from N(0,0.1). Again, when all parent

sets are considered, inference yields the posterior probability of the correct structure
approximately equal to 1. However, when parents are considered individually, the most
likely parent of node 2 is node 1, with probability 0.94. This can be explained by the
fact that both signal 1 and signal 2 depend on signals 3 and 4 in the same way, and can
thus be similar to each other. In this case, it happens that signal 1 helps predict signal
2 better than either of signals 3 and 4 individually.

M 4.2.2 Observation Noise vs. No Observation Noise

We demonstrate the advantage of the SSIM model over the STIM model of Siracusa and
Fisher [49,50] described in Section 2.7, which does not account for observation noise.
We generate an example from the LG-SSIM model in which there are 3 univariate
signals, there is no switching, and the first-order AR model is assumed. A sequence of
length 7" = 1000 of 3 signals is sampled from the LG-SSIM model with the interaction
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structure shown in Figure 4.2a and the following first-order linear Gaussian models:

X} =02X} , +07X2, +9},
X2 =02X2, +0.7X2 ; +v7, (4.28)
X2 =09Xx3, +v3,
where v}, vZ and v} are LLD. samples from N(0,0.1). There is no switching. Signals 1
and 3 are observed directly, while signal 2 is observed via a noisy process:

Y2 =X2+w?,  wl~N(0,0.1). (4.29)

When the linear Gaussian STIM model, which assumes perfect observations, is used
for inference, the posterior probability of edges is shown in Figure 4.2b. Note that
the probability of a false edge 1 + 3 is 1. Even though signal 1 depends directly on
signal 2 and only indirectly on signal 3 in the generative model, the observed signal 3
helps explain signal 1 since the observations of signal 2 are noisy. On the other hand,
if the LG-SSIM model, in which observation noise is allowed, is used for inference, the
posterior probability of edges is shown in Figure 4.2c. Clearly, the posterior probability
of edge 1 « 3 is significantly reduced. Note that the probability of edge 3 « 2
has increased, which means that the additional flexibility of the model may allow for
different explanation of the data. In this case, some of the posterior probability mass
is centered on the explanation in which signal 3 depends on signal 2. Still, the most
certain edges are the correct ones. In addition, the expected value of the latent signal
2 in the posterior distribution is closer to its true value than the observed signal is in
terms of L.; and Lg norm.

B 4.3 Joystick Interaction Game

Most available temporal data is not annotated for interactions. Furthermore, obtaining
ground truth interactions is difficult and, in most cases, subjective. While that amplifies
the importance of developing algorithms that aid in uncovering such interactions, it
also makes the testing of these algorithms difficult. Consequently, we created a simple
experiment, from so-called “joystick” data, where the structure is known (although the
parameterization is not). In the experiment, five players control a joystick to move an
object on the screen in order to accomplish a task. There are three different assignments
of tasks shown in the top of Figure 4.3. Assignments switch over time over the duration
of 4.5 minutes, as shown in the bottom of the figure. To remove bias, a player only sees
the objects on which it depends. Positional (2D) data is recorded every 1/10sec., so
there is a total of 2701 time points, including the initial one. This data is realistic since
it is human-generated and not synthesised from the model. In addition, it contains
interaction annotations by design and is useful for validating the model.

We find that the best results are obtained when the data is downsampled 3 times
(total of 901 time points) and AR order is 5, which we use in all experiments. This order
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Figure 4.3: (top) Three assignments of tasks. Individual tasks can be: F — “follow”, M
— “stay in the middle between”, and “move arbitrarily” (otherwise). (bottom) Order
and duration of assignments.

corresponds to a lag of 1.5 seconds. A 3 times higher AR order would be required with
the original data in order to capture the dependencies of the same length. However,
the original data does not provide much additional information due to high correlation
of samples at neighboring time points.

In all of the experiments, self-dependencies are assumed and are included in the
count of parents. Results with K = 3, b = 10, and maximum number of parents set to
3 and 5, respectively, are shown in Figure 4.4. The top row presents the switching-state
pairwise probability matrix, whose entry (i,j) is the posterior probability that time
points i and j are assigned the same switching state. There is an obvious switching
pattern that coincides with the setup of the experiment. The bottom row shows the
posterior probabilities of edges at 0.5, 1.25 and 2 min, which correspond to the three
different assignments. The value in it" row and j* column is the probability of edge
i — j. Self-edges are “blacked out”, while the assignment (“correct”) edges are marked
with a white dot. The algorithm assigns high posterior probability to all correct edges.
In addition, a few spurious edges are assigned medium to high probability. We note that
these are typically edges between players that follow a common other player, possibly
via intermediate players. For example., 2 and 3 both follow 5 in the first assignment,
while 4 and 5 (via 2) both follow 3 in the second assignment. We also note that the
results are better when fewer parents are allowed, since the number of possible incorrect
choices of parents is reduced.

We set maximum number of parents to 3 in the rest of the experiments. Interestingly,
when only two switching states are allowed, the switching pattern still indicates the
presence of three states, as shown in Figure 4.5. Namely, states 1 and 2 are combined
into a single state in some samples, while states 2 and 3 are combined in other samples.
On the other hand, when K = 5 states are allowed, only 3 of them are actually used,
yielding similar results as with K = 3.
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Figure 4.4: Interaction analysis on Joystick data when the maximum number of parents
is 3 (left) and 5 (right). Top row are the switching-state pairwise probability matrices.
Value at a position (¢1,t2) is the probability that time points t; and f3 are assigned the
same switching state, i.e., P(Z;, = Z;,). Note that in both cases there is an obvious
switching pattern that coincides with the setup of the experiment. A red block on the
diagonal shows high probability that the corresponding time segment is homogenous in
terms of interaction (i.e., corresponds to a single switching state). A red off-diagonal
block shows that time segments corresponding to its projections onto xr and y axes
have the same interaction (are in the same switching state). Bottom row are edge
posterior matrices at times 0.5, 1.25 and 2 min, which correspond to the three different
assignments. The value at row i and colmmn j is the probability of edge i — j. Self-
edges are blacked out, while the correct edges are marked with a white dot. Note
that the SSIM assigns high probability to all correct edges and to a few spurious edges.
Those errors commonly occur when two players have very similar behavior (e.g., players
2 and 3 both follow player 5 in the first assignment). Note also that there results are
slightly worse when the maximum number of parents is 5, which is higher than needed.

Finally, we test our algorithin in the scenarios of higher uncertainty. In the first
experiment, we add Gaussian noise of a fixed variance to all observations. Selection
of variance 107° does not change the results.® The results with variance 1074 show
higher uncertainty in some of the edges (Figure 4.6, left). Also, from the switching
pattern we see that states 2 and 3 are not distingnished from each other in some of the
samples. When noise variance is further increased to 1072, none of the three states is
recognized. In the second experiment, we treat a subset of the data as missing. When

T g : N . . . .
The maximum distance an object can travel between two time points is 0.075.
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Figure 4.5: Results on Joystick data when the number of switching state K is 2 (left) and
5 (right). Top row are switching similarity matrices. Bottom row are edge posteriors
at times 0.5, 1.25 and 2 min. Note that even when K is lower than the actual number
of switching states (K = 2), the switching similarity matrix indicates the presence
of 3 states, and there are also three distinct interaction structures. The first result
highlights the advantage of looking at the entire posterior distribution rather than at
a MAP assignment. The second result is due to marginalization of the switching state
sequence. Note also that when K is higher than the actual number of switching states
(K = 5), the results are similar to those obtained with the correct number of states
(Figure 4.4, left), which indicates that the additional states allowed are not assigned
any new behavior that consistently appears in a large number of samples.

every 274 value is observed, the results do not change. The results when every 37 value
is observed (Figure 4.6, right) show higher uncertainty of some edges.

B 4.3.1 Comparison to other approaches

We illustrate the advantage of the SSIM model, which accounts for the observation
noise, over the previous model of Siracusa and Fisher [50] (STIM), which assumes
perfect observations. A subset of the joystick data that correspond to the last 1-minute
segment is taken and Gaussian noise with variance 1073 (high noise) is added to all
observations. Note that there is no switching during this segment and the correct
interaction structure is that of the second assignment in Figure 4.3. Posterior edge
probabilities obtained by inference using the SSIM and STIM models with a single
switching state are shown in Figure 1.7. The STIM model assigns high probability to
only one correct edge and does not infer other edges due to high observation noise. On
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noise variance = 1074
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Figure 4.6: Resnlts on Joystick data when observation noise variance is 10~ (left) and
when every 3™ value is observed (right). Top row are switching similarity matrices.
Bottom row are edge posteriors at times 0.5, 1.25 and 2 min. Note that these results
are qualitatively similar to those obtained from pertect data (Figure 4.4, left), even
though relatively high noise is added to observation in one case and a large fraction
(2/3) of observations are dropped in the second case. The uncertainty in the observation
sequence is reflected in the posterior as a (slightly) higher uncertainty in the interaction
structures and the switching pattern.

the other hand, the SSIM model assigns high probability to 3 out of 4 correct edges,
which is an evidence that it can infer interactions among the latent time-series that are
not detectable from the observed time-series directly.

Note that while the SSIM model assigns significant posterior probability to incorrect
edges 3 — 5 and 4 — 5, there is some uncertainty in these edges. This is to compare
with the MAP estimate of the structure, also shown in Figure 4.7, which simply presents
a single most likely parent set of node 5 (as well as for other nodes) and does not account
for the uncertainty in the estimated structure.

M 4.4 Climate Indices Interaction Analysis

Here, we apply the LG-SSIM model to real-world climate data. In doing so, we wish
to emphasize that one should be careful in drawing scientific conclusions from these
results. In particular, the interactions amongst these data sets are likely not linear (as
assimed by the LG-SSIM) and consequently, inferred structures may not necessarily be
indicative of explicit causality. Nevertheless, the analysis may yield interesting details.
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bW N =

Ao W=

12345 12345 12345
SSIM STIM MAP

Figure 4.7: Results of structure inference on a segment of Joystick data that corresponds
to the second assignment (no switching), and to which high noise is added (variance
of 1073), obtained via: full inference in the SSIM model (left), full inference in the
STIM model of Siracusa and Fisher [50] that does not account for the observation noise
(middle), and MAP estimate in the SSIM model (right). Note that the SSIM assigns
high probability to 3 out of 4 correct edges, while the STIM assigns high probability
to only one of them. Also note that the SSIM assigns a reduced probability (higher
uncertainty) to the incorrect edge in the MAP structure (edge 4 — 5).

Following Jiang et al. [31], we use data on a subset of 16 climate indices from
the repository maintained by the Earth System Research Laboratory of the National
Oceanic and Atmospheric Administration (NOAA) [10], which are described in Table
1.1. These indices are compiled monthly and span various characteristics of the climate
system. For the purpose of comparison, we use the data from 1951 to 2007, as in Jiang
et al., and apply linear and quadratic detrending. Note that a small fraction of the
data in this span is missing, which our model addresses naturally.

[ #  abbrev. | description
AMM | Atlantic Meridional Mode SST
2 AO Arctic Oscillation
3 | EP/NP | East Pacific/North Pacific Oscillation
4 GMT Global Mean Lan/Ocean Temperature
5 Nino3d | Eastern Tropical Pacific SST
6 Ninod Central Tropical Pacific SST
T Ninol2 | Extreme Eastern Tropical Pacific SST
8 Nino34 East Central Tropical Pacific SST
9 NOI Northern Oscillation Index
10 ONI | Oceanic Nino Index
11 | PDO Pacific Decadal Oscillation
12 PNA Pacific North American Index [
| 13 SOI Southern Oscillation Index
| 14 Solar Solar Flux (10.7cm)
15 SWM South Western USA Monsoon
16 | WP | Western Pacific Index

Table 4.1: Description of climate indices.

We run inference using the SSIM latent-AR model with two switching states. We
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Figure 4.8: Analysis of the climate data using SSIM model. Top row is the switching-
state pairwise probability matrix. Middle row is the Solar flux time series. Bottom row
are the posterior probabilities of edges: Ninol2 — GMT (blue), Ninol2 — Nino4 (red),
Ninol2 — Nino34 (green). Note that the switching pattern exhibits a cyclic behavior
that coincides with the cycles of Solar lux. The two states correspond to the low and
high activity of Solar flux.

bound the number of parents per node to 3 and require a minimum of 1 parent with
enforcing self-edges. The top row of Figure 4.8 shows the switching-state pairwise
probability matrix. Unlike Jiang et al., whose results suggest a single switch point in
1978, this result suggests that there is a cyclic behavior. Figure 4.10 shows two matrices
of posterior probabilitics of edges that correspond to June 1963 (left) and August 1992
(right), which belong to the opposite phases of the cycle. We observe that Nino indices
and ONI index are the most influential overall, confirming that they are important
predictors of climate [60]. Interestingly, the only significant dependence of ONI index
is on Southern Oscillation Index.

Note that there are a few differences between the two posteriors. For example, as
shown in the bottom row of Figure 1.8, influence of Ninol2 index onto GMT, Nino4 and
Nino34 indices fluctuates dramatically. As noted above, these may not necessarily be
changes in explicit cansality. Still, they represent the best explanations of the structural
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Figure 4.9: Ninol2 (top) and ONI (bottom) time series.

dependencies in the two phases under the LG-SSIM model. In addition, the ambiguity in
the switching pattern between regimes may suggest that there exist transition periods
of several months to several years, rather than a sharp change. This may explain
the differences in the switchpoints reported in the literature [29, 31|, emphasizing the
advantage of Bayesian reasoning over point estimation.

Unlike Jiang et al. [31], in which Solar flux is the most influential index, the results
obtained here show no direct dependency on Solar flux, but suggest its indirect influence
via the switching state. Namely, we observe that the switching sequence largely corre-
sponds to the change of variance of Solar flux and that it is likely that a more complex,
nonlinear model describes it’s exact relationship to the remaining indices. Interestingly,
the Ninol2 index does not appear to correlate with the switching pattern (Figure 4.9);
however, its influence on the three other indices changes according to the behavior of
Solar flux. The same holds for other time series (e.g., ONI, also shown in Figure 4.9).

Finally, we note that the exact nature and magnitude of the influence of Solar vari-
ability on the climate is still largely unknown [26, 31| and presents an active area of
research. It is particularly hard to distinguish the Solar influence from that of green-
house gases and aerosols in the industrial era, to which the data used here belongs.
Therefore, it is not surprising that we do not discover direct short-term linear depen-
dency of climate indices on Solar flux, suggesting that nsing a nonlinear model and data
over a longer period of time or at a different time scale may be more adequate for that
particular task.
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Figure 4.10: Posterior edge probabilities on June 1963 (left) and August 1992 (right),
which belong to the opposite phases of the cycle. Note that Nino indices (5-8) and
ONTI index (10) are the most influential overall, confirming that they are important
predictors of climate. Interestingly, the only significant dependence of ONI index is on
Southern Oscillation Index (13).
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Chapter 5

Structural Health Monitoring with
SSIM

TRUCTURAL inspection has been necessary to ensure the integrity of infrastructure

for almost as long as structures have existed, ranging from informal subjective
methods such as visual or hammer testing, to quantitative modern methods including
ultrasound, x-ray, and radar non-destructive testing techniques. These testing methods
are relatively intensive as they depend on the experience of the inspector and the time to
inspect suspected damaged locations in the structure. Inspections are typically carried
out periodically, however if additional sensors could be added to the structure such that
some indication of where potential locations of damage might be such that they can
be closely inspected, it would be useful for reducing the time and effort necessary for
structural inspection.

Structural health monitoring (SHM) involves instrumenting a structure with sensors
and deriving some information from the data they collect in order to determine if the
structure has changed [6]. This change in the structure could then be attributed to
some sort of damage that would be more closely investigated. In general, data is
processed into features that may indicate these changes in the structure and in some
cases statistical or probabilistic discrimination of these features are used to separate
data collected from intact and changed structures [51]. Statistical methods are essential
for being able to discriminate feature changes as a result of structural changes from
measurement or environmental variability.

Bayesian inference can be used in a couple of different ways in SHM including
model updating of structural parameters [4], monitoring by inferring structural param-
eters over time [56], and determining the optimal placement of sensors [15]. Bayesian
inference can be used in either a model-based situation where a structural model is
either formulated or updated as a basis for damage detection, a data-based situation
where there is no prior information on the structural model and only the sensor data
is used, or a mixture of the two situations.

We apply the SSIM framwork to time-series data obtained from accelerometers
located at multiple positions on a building. By accounting for interactions between
sensor signals collected from the system in different locations, the hope is to infer a

119
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representation of the structural connections between locations in the structure or the
underlying physics without having any knowledge of the actual structural configuration
or dynamics. Assuming that the model learned from a set of data is exclusive to the
corresponding physical structural configuration and condition, a change in the model
parameters could be indicative of a change in the measured physical structure which
might be caused by damage. In order to see if these assumptions might hold true, we
test the methodology on data from model structures in various intact and damaged
conditions, as well as on data from a real building under ambient and non-ambient
conditions, such as fireworks and earthquake. These data consist of short sequences
of measurements, and it can be assumed that changes do not occur within a single
sequence. The problem of damage detection can then be cast as a problem of time-
series classification. If prior data from possible damage scenarios is available, then
this problem is a standard multi-class classification problem. However, in most real
scenarios, only data from an intact structure is available a priori. Then, the problem
of damage detection can be seen as a single-class classification problem.

We introduce the SSIM model for classification of time-series in Section 5.1 and its
single-class classification variant in Section 5.2. We describe the data and experimental
results on two laboratory model structures in Section 5.3 and MIT Green building in
Section 5.4. We perform interaction analysis on both datasets and show that inferred
edges correlate with an actual physical structure. On the laboratory data, we demon-
strate that the SSIM classification model can classify time-series obtained under intact
and different damage scenarios with high accuracy, in both standard and single-class
classification settings. Finally, on the MIT Green building data, we demonstrate that
the SSIM single-class classification model can distinguish time-series obtained under
conditions that differ form ambient conditions (from those obtained under ambient
conditions) and that it also predicts the “strength of deviation”.

B 5.1 Classification with SSIM

The SSIM model can simply be extended to multiple sequences, as shown in Figure
5.1. Here, L denotes the number of sequences. Each observation sequence ) =
(Yio, Yi1, - - -, Yi7y) has an associated state sequence A7 = (X0, X11, - - -, Xy1,) and switch-
ing sequence Z; = (Zy1, Zj2, .. ., Zi1y), where [ is a sequence index and T; denotes the
length of sequence I. The inference is still performed as in Algorithm 3.1, except that
steps 1 and 2 are repeated for each sequence separately, while the data needed in steps
3, 4, and 5 (i.e., values of X, Y and Z) is pulled from all sequences. We will use
Y={U},, X={Xx}, and Z = {Z1}£., to denote collections of observation, latent
state and switching sequences, respectively.

In some scenarios, changes in behavior (dependence model) are only expected across
different sequences, but not within each sequence. For example, this is the case in a
damage detection setup that we exploit, in which short sequences of measurements
(e.g., ~ 1min) are recorded far apart from each other (e.g., ~ lhour). Sequences are
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Figure 5.1: SSIM model with multiple sequences.

Figure 5.2: SSIM model with multiple homogenous sequences.

short enough such that changes within them are unlikely. If switching does not occur
within sequences, then each sequence can be assigned a single switching state variable,
Z;. We refer to this model as SSIM with multiple homogenous sequences, which is
shown in Figure 5.2. Since there are no transitions between switching states, this
model does not require transition probabilities and parameters of their corresponding
Dirichlet priors. Only initial probabilities are needed, and thus 7 = (my,...,7g) and
a = (ay,...,ax). In this context, we will refer to sequence switching states as sequence
labels. Inference over switching states (labels) in this model is essentially inference over
clusters of sequences according to their dynamics (i.e., dependence model).
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Classification of sequences can be reduced to the inference in SSIM with multiple
homogenous sequences by performing joint inference over training sequences and a test
sequence while fixing the labels of training sequences. The probability of any value of
the test sequence label is then the frequency of that value in the posterior samples.
However, these probabilities can be computed more directly in the following way.

We assume that in a classification problem there are K classes, and, for each class

ke {1,2,...,K}, a collection of NI training sequences V" = {Vf (P ’“1 is glven thus
implicitly assuming Z}%; = k for each j. In addition, we will use Zir = {Zk] } P
{E}NK" to denote a collectlon of labels associated with training sequences from class
k, where {k}N " denotes a collection of N} values equal to k. Given a test sequence
ytest and the training data, the goal is to ﬁnd the probability distribution of the test

sequence label, i.e., P(Z%t = k| ytest {yi, tf}gzl), for each k. This probability can
be computed in the following way:!

P(Ztest = k| Ytest (Yt t;}kff:l) (5.1)
x P(Ztt = |, ytest| {YEr, Zt?;}kszl)
= P(Zt = k| {yta;’ztr;}g:l) L p(Yrest| ztest — g { Y7, th}g:l)
= P(Z%t = k| {th}f,:l) . P(Ytest | gtest — | yir Zir
The last equality follows from the fact that the test label is independent of the training

sequences given training labels, and that the test sequence, assuming it belongs to class
k, only depends on the training data for that class.

The first term in Equation 5.1, P(Z%t = k| {th}gzl), is the probability of a test
sequence belonging to class k before seeing the sequence, given training labels. It can
be computed by marginalizing out multinomial parameters 7:

Pzt = k| {2f )5 _) = P(Z" = k| {28 o5 (5.2)
= /P(ZteSt:k|7r)P(7r]{Z }k’ ;o) dr

= / 7 - Dir(myoy + N o + NE ... ak + N¥)dr
iy

ag + NtT
Zk’—-l ay + N7

Note that P(r | { } w—15¢) is the posterior distribution of w given training labels,
which is again a D1r1chlet distribution (with updated parameters) due to conjugacy.
The final expression is obtained as the expectation of parameter 7rk with respect to that
distribution. For convenience, we will write P(Z%%t = k| {Z} } 1) = Pir (Ztest = k).

n this section, hyperparameters are omitted for brevity, but will be reinserted as needed.
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The second term in Equation 5.1, P(Ytest|ztest = k Yir Zi) s the marginal
likelihood of a test sequence under the class k model, given the training sequences Vi"
from that class. It is computed by marginalizing out k" model structure and parameters
(model averaging):

p(Ytest | Ztest — |, YT Zt) = Z/ P(Y't | Ey, 0k) P(Ex, 0k | VM) dOx . (5.3)

The term P(Ek, 0x | Vi) is the posterior distribution of k" model structure and param-
eters given the tralmng sequences Vi, which then serves as a prior for evaluating the
test sequence likelihood. For convenience, we will write P(Ytest| Ztest = g Yir ZiT) =
’(fk(ytest l y]ﬁr)

Finally, the posterior distribution of the test sequence label, Z*%, is obtained by
normalizing Equation 5.1:

Ptr(Ztest — k) fk(yt‘”t I y]tcr)

P Ztest k ytest ,’ K/ _ . 5.4
The maximum a posteriori (MAP) estimate is obtained as
Ztest — alglrcnax P(Zfest k I ytest { I\” t'y}g:l) (5.5)

= argmax Ptr(Ztest — k) ()(fk(ytest | y,tcr) .
k

Computing the likelihood in Eq. 5.3 in closed form is intractable in general. The
latent training and test state sequences, Af" and X test need to be marginalized out to
compute P(Ey, 0, |V ) and P(Ytet | Ey, Gk) rebpcctlvely, and simultaneous marginal-
ization of a state sequence and model structure and parameters is analytically in-
tractable. Instead, this likelihood can be computed via simulation:

LVt | Vi) = Zp(ytestw,,e) (E;,0;) ~ P(Ey, 0k | VET) . (5.6)

N, instances of dependence models, (Ej, 9}), are sampled from the posterior distribution
of the k* model given training sequences. The test sequence likelihood is evaluated
against each of the sampled models, and then averaged out. On the other hand, in an
approximate model which assumes no observation noise (i.e., X; = );), the likelihood in
Eq. 5.3 can be computed in closed form by updating the conjugate prior on dependence
structure and parameters with the training data and then evaluating the likelihood of
the test data against thus obtained posterior.
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B 5.2 Single-Class Classification with SSIM

In a typical real structural health monitoring scenario, there is no prior data for a
particular type of damage. Even if there has been damage to a structure in the past, it
is not likely that exactly the same type of damage will occur in the future, and thus the
multi-class classification procedure described in Section 5.1 cannot be applied. On the
other hand, data from an intact structure can be recorded easily. Damage detection
then becomes a single-class classification problem, in which the goal is to detect whether
new data sequences belong to the existing, intact case, or deviate from it and potentially
indicate damage.

In the SSIM framework, as a benefit of the Bayesian approach, single-class classi-
fication can be simply reduced to multi-class classification by assuming that there are
two classes (K = 2), that the first class indicates the intact scenario, and that there is
no data for the second (damage) class (Vi = 0, Z& = (), Ni" = 0). Equation 5.1 can
now be written as:

P(Ztest =k l ytest,yir’ Zfr) (5‘7)
x P(ztest =k l Z{r) . P(ytest I Ztest — k, yt‘r’ ZI?) ’
where, from Equation 5.2,

P(ztest =k | Zi'r‘)

It

Pyr(ZP° = k) (5.8)

tr
a1+NJ o
on+Nf"+ay k=1

Q2
o +NI+ao

and, from Equation 5.3,

szl(ytest l ytr) k=1
P(Ytest| gtest — | yir ziry — 1 ’ 5.9
(y ‘ y k ) {D%(thSt) , k=2 ( )
_ X5 J5, PV E1,61) P(Ev, 00| Yf) dBy k=1
Yz, Ja, P(V' | By, 02) P(Ey, 65) df; k=2

Here, P(Eg,éz | Vir = 0) = P(E’k,ék) is simply the prior probability of structure and
parameters for class 2 (damage scenario), while %, ()%*%) is the marginal likelihood of
the test sequence under that prior.

Finally, Equation 5.4 can now be specialized to:

P(Ztest =1 ' ytest’ yitr7 Zfr) (5.10)
_ Ptr( Ztest — 1) gl(ytest l y{r)
= PtT(ZteSt — 1)31 (ytest | y{‘r) + Br(Ztest — 2) gz(ytest)

P(Ztest =9 I ytest’ yifr, Zir)
_ Pﬁ(ztest — 2) $2(ytest)
- }?tr(Ztest — 1)31(ytest l y{r) + Ptr(Ztest — 2)0%(ytest) ’
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which are the probabilities of a given test sequence being “intact” or “damaged”, re-
spectively. The higher values of P(Z%st = 2| Ytest Yir Zir) mean that the dynamics
of the test sequence deviates more from the dynamics of intact (training) sequences,
which we relate to a higher probability of damage.

In practice, one may want to act upon the knowledge of damage probability. The
simplest rule would be to use a threshold, €44m, such that further investigation is re-
quired if this probability exceeds the threshold, i.e., if P(Z%*% = 2| ptest yir ziry >
€dam- A more sophisticated rule could be that different actions are taken for different
levels of damage probability (i.e., when exceeding different thresholds). By rewriting
the formula for damage probability as

Ptr( Ztest 2) ‘,202( ytest)
P,.(Ztest = 1) ) Ly (Ptest| Yir)
Ptr( Ztest — 2) 32 ( ytest) ’
B, (Ztest = 1) #y(Ytest|Yir)
we can see that it depends on the ratio of likelihoods of the test sequence under the intact
and prior models, ﬁ%, and on the ratio of damage and intact probabilities prior

to seeing a test sequence, w The first ratio may depend on the choice of the
g P (Z755F=1) Y

P(Ztest =9 I ytest7 yir7 Z{r —

(5.11)

1+

dependence model (e.g., linear Gaussian in LG-SSIM) and its hyperparameters (prior on
structure and paramaters), but, assuming that these are appropriate/reasonable choices,

it most importantly depends on the test sequence itself and how it differs from training
Ptr(ZtestZZ) . a

Ptr(Ztest:I) - a1+5\[1t1‘7
the prior parameters o and a2 and on the number of training sequences. By controlling

parameters o and as, this ratio can be set to an arbitrary value (assuming fixed training
data). Note that oy and as are pseudo-counts of intact and damaged sequences that
reflect our prior belief in the probability of intact versus damage scenario. Intuitively,
one should expect a low probability of damage, and thus ap < aj. On the other hand,
the prior probability of damage can be set higher than expected (e.g., az ~ a1), which
would reflect the “fear” of damage and increase the posterior probability that a test
sequence belongs to a damage scenario. That would simply mean that a larger number
of test sequences would “alarm” for damage. Note however the same effect could be
achieved by decreasing the “alarm” threshold, €4, Note also that, instead of using the
posterior probability of damage, P(Z*t = 2| Ytest, YI*| ZI"), to indicate the possibility
of damage, one can equivalently use the ratio of posterior probabilities of damage and
intact scenarios:

P(ztest =9 I ytest) y{r7 2{7) B Pa-(ZteSt — 2) ‘ gz(ytest)
P(Ztest = 1 I Ytest, J}i‘m’ Z?) - Ptr(Ztest — 1) A (Ytest | yir) )

and devise rules based on the value of this ratio (e.g., ratio of 1 is equivalent to the
damage probability of 0.5).

sequences. On the other hand, the second ratio,

depends only on

(5.12)
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(a) Bolted connection (b) Simple column structure (¢) 3 story 2 bay structure

Figure 5.3: Details of the laboratory setup

M 5.3 Experiments with Laboratory Structures Data

Two experimental test structures were used to generate data to test the approach for
application on a structure. Both structures are made of modular elements that are
based on steel columns that are 60 ¢cm x 5.08 cm x 0.64 ¢m, and bolted together by 4
bolts at each connection as shown in Fig. 5.3a as an example of a typical connection.
The structures are bolted to a heavy concrete foundation as a reaction mass. They
are instrumented with piezoelectric triaxial accelerometers that have a sampling rate of
6000 Hz, and the number used differs for each structure.

The first, simpler structure is a vertical cantilever beam that consists of three steel
column elements shown in Fig. 5.3h. Damage is introduced on one of the two middle
bolted connections in either a minor damage case where two of four bolts in the flexible
direction are removed, or a major damage case where the four bolts are loosened to
only be hand tight. This structure is instrumented with 4 accelerometers, one at each
connection, including the connection with the foundation, and at the top of the struc-
ture. In order to excite the cantilever beam, it is displaced by approximately 5 cm and
then released and allowed to freely vibrate for 10 seconds, during which data was col-
lected. There are 10 test sequences for each damage scenario, and they are summarized
in Table 5.1a.

The second structure is a 3 story 2 bay configuration with a footprint of 120 cm
% 60 cm as shown in Fig. 5.3¢. The structure consists of steel columns and beam
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Table 5.1: Test cases and damage scenarios for structural models.
(a) Column structure (b) 3 story 2 bay structure
Test Case Damage Scenario
Intact column

Minor damage at 17
Major damage at 17
Minor damage at 1

Major damage at 1

Major damage at 1 and 17

Test Case Damage Scenario

Intact column

Minor damage, lower joint
Major damage, lower joint
Minor damage, upper joint
Major damage, upper joint

QU W N~
S U W N

frames of similar dimensions for each story that are bolted together to form each story.
Damage is similarly introduced on the bolted connections with the minor and major
damage cases by removing two bolts or loosening all four at connections 1 and 17,
which are on opposite corners of the structure, with 1 being on the first story, and 17
being on the second. This structure is instrumented with 18 triaxial accelerometers
at each of the connections between elements. For this structure the excitation is a
small shaker with a weight of 0.91 kg and a piston weight of 0.17 kg that was attached
to the top corner of the structure at connection 18, which provided a random white
Gaussian noise excitation in the frequency range of 5 - 350 Hz in the flexible direction.
Test measurements lasted for 30 seconds, during which the shaker is always exciting
the structure, thus there is no ramp up or unforced section of the data. The damage
scenarios are sumiarized in Table 5.1b. For each damage scenario, 10 sequences were
acquired.

M 5.3.1 Interaction Analysis

We analyze the results of inference over dependence structure among signals from dif-
ferent sensors on the 3-story 2-bay structure. The number of parents of each node
is bounded to 4, including the assumed self-dependency (therefore, 3 additional parents
are allowed). Each data sequence is split into 18 subsequences that are 10,000 samples
long. For each class, the posterior distribution over edges is computed on 180 subse-
quences that belong to that class (10 original sequences, 18 subsequences each) and
then averaged out. The averaging is performed to get a stable result, since the poste-
rior distribution fluctuates across subsequences. A visualization of the parent and child
relationships for the intact structure is shown in Fig. 5.4. Colors represent the node the
relationship originates from, and the width of the line represents the edge probability
(wider is more likely). Specifically, relationships are plotted if their probability is higher
than 0.3, and in Fig. 5.4a, the parents of the nodes are plotted, while in Fig. 5.4b the
children of nodes are plotted. The nodes are vaguely arranged in the physical shape
of the structure, and we can see that a lot of the same possible relationships in the
physical structure, such as the columns, the beams, and the cross beams between the
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Figure 5.4: 3D Visualization of node parent and child relationships with probability
above 0.3.

two sides of the structure, also show up in the inferred dependence structure.

Edge posteriors are also visualized as a matrix where the rows are the parents,
and the columns are the child nodes, shown in Fig. 5.5a. We see that there are two
quadrants where the relationships are strong, the 1-9 parent child relationships, and the
10-18, which correspond to the two sides of the structure. Within these quadrants, we
see that there are strong relationships in groups of three, 1-3 for example, suggestive of
the columns in the structure. We also see that there are relationships between nodes
separated by three, such as 1 - 4 - 7, and similar for all the other nodes, which are
suggestive of the beams that connect the nodes in the same story of the structure.
Then, the other strong relationship is between the two sides of the structure, 1 - 10, 2
- 11, ete. which is seen as an off diagonal.

The results of inference for the other damage scenarios are also shown, and they
mostly resemble the structure for the intact scenario. Looking at Fig. 5.5b instead,
where for the damage cases, we show the difference from the intact scenario is shown,
a couple of differences become more obvious. For both of the minor damage scenarios,
the differences are minimal. However for major damage at node 1, we see that node 1
is now less likely a parent of nodes 2, 3, and 10. For example, the most likely parents of
node 2 in the intact structure are nodes 1, 5 and 11, but for major damage at node 1,
node 1 is replaced by node 3 on this list. Note that sensor 1 is actually slightly below
the joint, so the damaged joint stands between nodes 1 and 2. For major damage at
node 17, node 13 is much less often a parent of node 15, and the same for node 14, being
a parent of node 13, all nodes that are physically close to node 17. Also, the dependence
of node 18 on nodes 16 and 17 is reduced, as well as the dependence of node 17 on node
18. Note that the damaged joint stand between node 18 on one side and nodes 16 and
17 no the other side. Similarly, the dependence of node 11 on node 17, between which
the shortest path goes through the damaged joint, becomes less likely. Finally, in the



Sec. 5.3. Experiments with Laboratory Structures Data

129

15

Child Nodes.

Mintor damage 3t 17

Parent Nodes

B w8
Ched Nodes.

Parent bodos

Intact structure

1%

e
Ciild Nodas

Minor damage at 17

s 10
Child Nodes

Major dam age at 17

Major damage at 17 Winor damage st 1 Minor damage at 1

Parent Nodes.
Parent Hodes
Parent Nodes

Parent Nodes.

15

15

5 0 18
Child Nodes

10
Child Nodes

10 i
Chid Nodes Chig Nodes

Major damage ot 1 Major damage at 1 and 17 Major damage at 1 Major damage at1 and 17

Parent Nodes
Parent Nades
Parent Nodes.

H 0 15
Chid Nodes

15

s 1 s 10 15 10 It
Child Nodes Child Hodes Child Nodes

(a) Structure for 4 Parent Nodes (b) Inferred Structure, Difference from Intact

Figure 5.5: Probability of parent nodes over many tests for intact and damaged cases.

dual major damage scenario at both 1 and 17, both these effects are seen in the inferred
structure.

B 5.3.2 Classification Results

We consider the problem of classification of sequences according to the structure con-
dition, as described in Section 5.1. This problem is not directly applicable to real civil
structures, as either damage has never occurred or it is unlikely that exactly the same
damage scenario will occur in the future. However, it tells us how well the algorithm
can distinguish not only damage from intact, but also different damage scenarios from
each other. It is also worth noting that in some other damage detection problems, such
as with machine parts, classification may actually be a realistic approach, as there may
only be a handful of types of damages that typically occur and data from such scenarios
may be available.

In each dataset, there are 10 sequences of each class. We perform 10 rounds of
classification. In round j, sequence j from each class is inclnded in the training set,
while the other 9 sequences of each class are used for testing. Classification results are
then averaged over all 10 rounds. To reduce computation, a subsequence of length 5,000
is used from each sequence, except in the experiments that test the effect of training
and test sequence lengths. Although the results with longer sequences may be slightly
better. they are not qualitatively different.

We employ a latent-AR LG-SSIM model for classification. We find that AR order



130 CHAPTER 5. STRUCTURAL HEALTH MONITORING WITH SSIM

5 is sufficient to produce good classification result, although there is a slight advantage
by further increasing this order. Hyperparameter values are either estimated from data
or set in a general fashion (e.g., implying a broad prior distribution). In all experi-
ments, we assume presence of a self edge for each node in the dependence structure.
The bound on the number of additional allowed parents is set to 3 (maximum) in the
single column case. In the 3 story 2 bay structure data, however, we found that the
best classification results are obtained when no additional parents (other than self) are
allowed. Explaining this result requires further investigation.

We compared the classification results obtained by the full SSIM model and an
approximate model which assumes no observation noise (Section 5.1) and found that
on the datasets presented here the full model performs only slightly better, but at
the significant additional computational cost (mainly due to step 1 in the inference
algorithm). Therefore, we present here detailed results obtained using the approximate
model.

Single column structure results

First, for each pair of classes i and j, we compute the average log-likelihood of a
test sequence from class ¢ given a training sequence from class j (the average is over
all pairs of sequences from classes i and j). Note that the average log-likelihoods
do not account for the variability within a class and thus can only partially predict
classification results. However, they can be considered as a measure of (asymmetric)
similarity between classes. In particular, the comparison of log-likelihoods of a test
class given different training classes is useful to indicate its possible “confusion” with
other classes. The log domain is chosen to bring likelihoods closer to each other for
the purpose of illusrtation, since the differences in likelihoods are huge in their original
domain.

The resulting class-class log-likelihood matrix is shown in Fig. 5.6a. For the purpose
of visualization, each column is normalized to contain values between 0 and 1, which
does not change the relative comparison of values within a column. A different visual-
ization of the same log-likelihood matrix is shown in Fig. 5.6b, in which each group of
bars corresponds to a single test class, while bars within a group correspond to different
training classes. Clearly, the average log-likelihood of each class is the highest when
conditioned on sequences from the same class (diagonal entries). This suggests that
the model indeed captures important features pertained to each class via posterior dis-
tribution of parameters. However, for some classes, the log-likelihood is also relatively
high when conditioned on some of the classes other than itself. For example, the intact
class (1) and the two minor damage classes (2 and 4) are the closest to each other
in that sense. Also, the two major damage classes (3 and 5) are close to each other,
although less than the previous three classes. On the other hand, there is a significantly
higher separation between the low- and high-damage classes, and, as we will see next,
a sequence. from one of these groups is rarely misclassified as belonging to a class from
the other group.
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Figure 5.6: Column structure data class-class log-likelihoods are shown as (a) matrix
and (b) bar groups. Similarly, classification frequencies are shown as (¢) matrix and
(d) bar groups.

Classification results are shown in Figs. 5.6¢ and 5.6d. Again, these are two different
visnalizations of the same results. For each pair of classes, test class i and training class
j, the frequency of classifying a test sequence from class ¢ as belonging to class j is
shown. Therefore, cach column in the matrix in Fig. 5.6c, as well as each group of bars
in Fig. 5.6d, must sum to one. Overall, sequences are classified correctly most of the
times (high diagonal values). Sequences from the two minor damage classes (2 and 4)
are occasionally misclassified as belonging to the intact class (1), while sequences from
the two major damage classes (3 and 5) are never misclassified as belonging to one of
the low-damage classes and occasionally misclassified as belonging to the other major
damage class.

Finally, we analyze classification accuracy as a function of training and test se-
quence lengths. Fig. 5.7a shows the overall classification -cu'('m'a('v (averaged over all
classes) for three different training sequence lengths, 1,000, 5,000 and 10,000, and ten
test sequence lengths ranging from 1, 000 to 10, 000. Int(‘l(:ﬁi.mgly, for a fixed training
sequence length, classification accuracy increases as the test sequence length increases
only until it becomes equal to the training sequence length, after which it start de-
creasing. This result suggests that the properties of these time-series data change over
time. Namely, subsequence for training and testing are always extracted starting at
the same time in all sequences. Therefore, when training and test sequences are of
the same length, they are aligned with respect to where they are in the measurement
process (assuming that different sequences are measured under the same or very similar
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Figure 5.7: (a) Overall classification accuracy on column structure data as a function of
training and test sequence lengths. (b) Classification frequencies (by test class) when
training and test sequence lengths are 5K and 1K, respectively.

conditions). However, when the test sequence length increases beyond the training se-
quence length, test sequences start to increasingly incorporate parts of the process that
was not included in training. Similarly, when test sequences are shorter than training
sequences, training sequences include characteristics of a broader window of the process
than is tested. This also can explain why the classification results are overall not better
when the training sequence length is 10, 000 than when it is 5,000. Likely, a window
of 10,000 is too broad and the additional amount of data, the second 5,000 samples,
does not help, since it differs in behavior than the first 5,000 time samples. Naturally,
there is a tradeoff between this behavior and the sequence length. For example, 1, 000
is too short, and the results with that length are clearly much worse. The phenomenon
explained here could be attributed to the nature of excitation used in this setup, which
is free vibration. The results with the shaker excitation, shown below, do not follow this
pattern and behave as with one’s expectations — more test or training data consistently
yields higher accuracy. Lastly, Fig. 5.7b shows classification results for training and
test sequence lengths equal to 5,000 and 1,000, respectively, which could be compared
to the results in Fig. 5.6d, in which both lengths are 5, 000.

3-story 2-bay structure results

We present the same set of results on the 3-story 2-bay structure data. Average log-
likelihoods between all pairs of classes are shown as a matrix in Fig. 5.8a and as bars
grouped by test class in Fig. 5.8b. Again, these log-likelihoods are normalized such that
cach column in the matrix are between 0 and 1. As with the single column structure,
the average log-likelihood of a sequence of one class is the highest when conditioned
on a sequence from that same class (diagonal elements), and the highest confusion is
between the low-damage classes, namely, the intact class, 1, and the two minor damage
classes, 2 and 4. The lesser major damage classes, 3 and 5, seem to be occasionally
confused as classes with either smaller or higher damage relative to them. Finally, the
greater major damage class, 6, is most similar to the lesser major damage classes.



Sec. 5.3. Experiments with Laboratory Structures Data 133

b= — 1
g ‘ 1}
g 08 | -:
=08 | | -
g =g
'§04- i 5
i 1 =
5 o DR W ||
1 2 3 4 5 6
test test
(a) log-likelihood matrix (b) log-likelihoods grouped by test class
1
[ | -
£08 | | -2
=
208 | .3
8 F‘*|4
;0.4
302
01
3 5
test test
(¢) classification frequencies matrix (d) classification frequencies grouped by test class

Figure 5.8: 3 story 2 bay structure data class-class log-likelihoods are shown as (a)
matrix and (b) bar groups. Similarly, classification frequencies are shown as (¢) matrix
and (d) bar groups.

Classification results in terms of frequencies (fraction of times a sequence from one
class is classified as belonging to another class) are shown as a matrix in Fig. 5.8¢ and
as bars grouped by test class in Fig. 5.3d. Sequences from major damage classes (3, 5
and 6) are classified almost perfectly. On the other hand, some confusion between the
three low-damage classes (1, 2 and 4) is present. In particular, sequences from the class
that corresponds to a minor damage at node 17 are often misclassified as belonging to
the intact class. This could possibly be attributed to the closeness of this node to the
shaker.

The overall classification accuracy as a function of training and test sequence lengths
is shown in Fig. 5.9a. Three different training sequence lengths were used, 1, 000, 5, 000
and 10,000, while the test sequence length is varied from 1,000 to 10,000. Unlike
with the single column structure results. classification acenracy on the 3 story 2 bay
structure data consistently improves with the increased length of either training or
a test sequence. This trend suggests that there is likely no significant variability in
the dynamics of a sequence over time, and, consequently, longer sequences represent
effectively more data. This is an expected behavior, since excitation provided by the
shaker is uniform over time. Finally., for comparison with the results in Fig. 5.8d, in
which both lengths are 5,000, Fig. 5.9b shows classification results when training and
test sequence lengths are 5, 000 and 1, 000.
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Figure 5.9: (a) Overall classification accuracy on 3 story 2 bay structure data as a
function of training and test sequence lengths. (b) Classification frequencies when
training and test sequence lengths are 5K and 1K, respectively.

B 5.3.3 Single-Class Classification Results

We evaluate the performance of single-class classification only on the 3-story 2-bay
structure data, as it presents a more challenging case than the single column structure

data. As in the evaluation of classification above, subsequences of length 5,000 are used
ﬂrz(az(yrc-:;t)

(T‘l(ytt:st | y{?‘)

is computed, where labels 1 and 2 correspond to intact and damage classes, as in Section

5.2. The test sequence is classified as anomalous if this value is above some threshold
p“‘(ztc st :2) i .
P (Z75T=1) 5

for training and testing. For each training and each test sequence, the value

€dam- Note that this is equivalent to using Equation 5.12, since the ratio
determined by the prior and can be absorbed into the threshold.

ROC curve [38], which represents the rate of true positives as a function of the rate
of false positives, is computed separately for each damage scenario by varying the value
of the threshold €gum,. Cross-validation is used to increase the number of training-test
pairs. In each round, one sequence from intact scenario is considered as a training
sequence, while the remaining 9 intact sequences and all 10 sequences from the chosen
damage scenario are treated as test sequences. The number of false positives and the
number true positives are computed as a function of €44y, and aggregated over all rounds
(i.e., over all choices of a training sequence).

Thus computed ROC curves for all damage classes are shown in Figure 5.10. ROC
curves are “perfect” for all major damage scenarios, in that there is a threshold for
which all test sequences are correctly classified (i.e., the value 7@#;'%
threshold for all intact test sequences and it is above the threshold for all sequences from
the damage case). Note that the ROC curves for scenarios 3 and 5 are not visible in
Figure 5.10 because they are overlayed by the curve for scenario 6. The ROC curve for
the case of minor damage at node 1 (scenario 4) is close to perfect, while the worst result
is for the case of minor damage at mode 17 (scenario 2). This is not surprising, given
that the we already found in the previous section that most errors in a classification

is below the
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Figure 5.10: ROC curves for each damage scenario on 3-story 2-bay structure data.
Points on the curves that correspond to the posterior probability of damage equal to
0.5 are marked with an 'x’.

setting occur when an intact sequence is misclassified as belonging to scenario 2, and
vice versa, i..e, that sequences from these two classes are most similar to each other.

In addition, for each damage scenario, a point that corresponds to the threshold
value €4am = 1 is shown in Figure 5.10 with an 'x’ mark. This threshold value corre-
sponds to the posterior probability of a test sequence being damaged equal to 0.5, under
the assumption that the prior probabilities of a test sequence being intact or damaged
are equal. Note that there are no false positives in any of the scenarios. In other words,
the posterior probability that a sequence is damages is never higher than 0.5 for intact
sequences. On the other hand, for the major damage scenarios, this probability is above
0.5 for almost all damaged sequences. However, only about 60% of damaged sequences
have posterior probability of damage above 0.5 in case of the minor damage at node 1,
and less than 15% of damaged sequences are classified as damaged by this rule in the
case of the minor damage at node 17.

If one wants to devise a threshold rule in practice, the threshold that corresponds
to the posterior probability of damage of 0.5 is not necessarily the right choice. From
Figure 5.10 we can see that, in the case of minor damages, this rule would classify a
sequence as damaged only when it’s very certain of it. If one wants to be less conser-
vative and detect more damaged cases (at the expense of false positives), the threshold
should be set to a lower value. However, choosing that number may not be as intuitive
as one may expect. The likelihood of a sequence depends on its length approximately
exponentially since the likelihoods of variables at each time point are multiplied to-
gether.? As the length of a sequence increases, its likelihood quickly converges to either

2Technically, this is the case for a specific value of model structure and parameters, and the over-
all likelihood is obtained by summing/integrating over possible values of structures and parameters,
weighted by their prior.
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0 or 1. Similarly, the ratio ﬁ%,
intact sequences, approaches 0 or 1 exponentially with sequence length, depending on
whether the test sequence is more likely under the prior model or under the posterior
model given the training sequence. In an ideal case, if the model perfectly matches the
data, one could simply “trust” these probabilities — i.e., if the model tells that the prob-
ability of damage is 1, that would indeed mean that there is almost certainly damage,
and, similarly, sequences with posterior probability of damage close to 0 would almost
certainly correspond to an intact structure. However, due to the fact that the statistical
model is only an approximation to the physical model, some sequences from a damage
scenario may actually have low posterior probability of damage or some sequences from
intact scenario may have high probability of damage. From the results above, we see
that the former is the case for the 3-story 2-bay structure data.

One approach to compensate for the effects of sequence length and model mismatch
is to adjust the threshold to account for them. However, that is a very hard problem,
as it is difficult to quantify these effects precisely (or even approximately). Instead,
we take a data driven approach to choosing a threshold. Since the assumption is
that the data from a damage scenario is not available a priori, we can only use the
data from the intact scenario. Specifically, we assume that one intact sequences is
used as a training sequence, 8 intact sequences are used for tuning, and the remaining
intact sequence is used for testing (along with all ten sequences from a damage scenario

which is used to discriminate damaged from

y est

that is tested). First, the value of the ratio Tﬁ%—g‘%‘ﬁ}‘_’) is computed for all tuning
1

sequences. Let L{re ... Lm denote these values. A threshold is computed as a

function of these values, which is then applied to classify the test sequences. This is
repeated for all possible choices of a training sequence and tuning sequences among
intact data, and the results are aggregated (which we refer to as “cross-validation” in
this context). It remains to discuss how to choose the threshold egum as a function of
values L{¥me ... L&, One possibility is to use the maximum of these values, which
would result in low false positive rates, and, if the damage sequences are relatively
different from intact sequences, would result in a large true positive rate. More generally,
if these values are sorted such that L{me > Lfme > . > L€ then, choosing a
threshold that is between it* and (i +1)%¢ value would approximately result in the false
positive rate of i/8. Therefore, the false positives rate can be controlled even though
the corresponding rate of true positives is not known a priori. Another approach is to
assume that these value come from a Gaussian distribution and compute their empirical
mean and standard deviation. The threshold can then be set as EL{¥"¢ 4 Ao Lt“"¢, for
some value of A (e.g., A = 2 would correspond to taking two standard deviations away
from the mean). Figure 5.11 shows the tradeoff between the rates of true positives and
false positives for these two approaches in the case of minor damage at node 17 (scenario
2). Figure 5.11a shows the tradeoff points when the threshold is set to L{*e, ..., L§,
respectively, assuming that-these values are sorted in the decreasing order. Figure
5.11b shows the tradeoff points for various values of A when he threshold is set to
ELfme + XgL®". Note that the points in both figures do not necessarily fall on
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Figure 5.11: Points of tradeoff between the rates of true positives and false positives
when: (a) The threshold is set to L{"¢ > Liwne > . > L€ repsectively. (b) The
threshold is set to EL{" 4 Ao Lt“"¢ for different values of A.

the ROC curve because thresholds are a function of tuning sets and are therefore not
necessarily uniform across all training-tuning sets.

M 5.4 Experiments with Green Building Data

The Green Building is a 21 story building on the campus of the Massachusetts Insti-
tute of Technology that has been instrumented by an accelerometer system, used as
a testbed for system identification and structural health monitoring studies [9]. The
building itself is shown in Fig. 5.12a and the locations and directions of the 36 uniaxial
accelerometers are shown in Fig. 5.12b. Data from these accelerometers was used to test
the methodology in a different situation from the experimental structure, where there is
no known damage or change in the structure between the different data collections. In-
stead, the excitation and environmental conditions for the structure vary greatly. They
are summarized in Table 5.2. The excitation conditions vary from typical ambient vi-
brations, to a day with 20 mph sustained winds, to a 4.0 magnitude earthquake located
approximately 100 miles away. The measurements were made in the months of April to
October, and with air temperatures typical of Spring, Summer and Fall, with tempera-
ture effects potentially inducing small changes in the structure due to internal stresses
from differential thermal expansion of materials. The goal with processing this data is
to use the ambient excitation data as a baseline for the structure and detect when an
anomalous event or excitation occurs, while not triggering false positives during similar
ambient excitations, while under different environmental conditions. We subdivided
the test cases into several sequences of 30,000 sample length. Some of the sequences
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Figure 5.12: MIT Green Building

are longer than the others, so there are multiple sequences for some of the test cases.
The test cases belonging to each excitation and/or environmental condition are given.

M 5.4.1 Interaction Analysis

We use a subsequence of length 10,000 from the 6/22/2012 ambient recording to infer
the dependence structure among sensor signals from the Green Building. An AR order
of 5 was used, with a maximum of 3 additional parents allowed. We plot a visualization
of the parent and child relationships in Fig. 5.13. The color in these plots shows the
direction of the sensor in the building, with red for E-W, blue for N-S, and green for
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Table 5.2: MIT Green Building Conditions.

Test Case Date Excitation/Condition
1 5/14/2012 Unknown Event
2-3 6,/22/2012 Ambient
4-6 7/4/2012 Fireworks
7 10/16/2012 Earthquake
8-10 4/15/2013 Ainbient

11-16  10/07/2013  Windy Day

vertical sensors. We see that there are many relationships between the sensors in the
same direction, and fewer between sensors in different directions. Most relationships
are between the sensors that are located close to each other. There is also a fair number
of relationships across the structure for the NS sensors.

A particularly interesting observation is the lack of relationships between the vertical
sensors except for the pairs of 3-4 and 5-6. This may be explained by the rocking
behavior found in the building [9], where sensors 3 and 4 move in phase, in opposition
to sensors 5 and 6.

These relationships are also visualized in a matrix shown in Fig. 5.14. The sensors

are grouped into vertical sensors, EW sensors, and then NS sensors, as given in the axis
labels.

M 5.4.2 Single-Class Classification

Fig. 5.15 shows the matrix of the logarithm of likelihood ratios, log %,
malized to be between 0 and 1 for the visualization purpose. The value at row ¢ and
column j corresponds to the ratio computed when sequence i is considered as a train-
ing sequence and sequence j as a test sequence. Recall from Equation 5.12 that this
ratio can be used to discriminate sequences that behave differently from the training
sequence. The higher the value of the ratio is, the more likely it is that the test sequence
will be labeled differently from the training sequence.

We can see that the events that are the most similar to each other are the events in
ambient conditions, windy conditions, but also the first two sequences for the fireworks
event. For the fireworks event, when the recording was made during the Boston July 4th
fireworks show, only the last sequence of the three occurs during when the fireworks are
being set off. The first two sequences are of the normal ambient structure, and thus they
have low likelihood ratio with respect to the other ambient structure test cases. The
windy condition measurements are not as dissimilar from the ambient measurements
as we would have expected as winds were sustained at 20mph with gusts at higher
speeds. The accelerations measured however are likely similar to ambient conditions
with slightly higher magnitudes, as the winds are random excitations.

The last sequence in the fireworks test case, the earthquake, and the 5/14/2012 event

nor-
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Figure 5.14: Matrix visualization of node incidence for Green Building. The sensors
are grouped into vertical sensors, EW sensors, and then NS sensors, as given in the axis
labels. Concentration of high probability edges around the diagonal shows that many
relationships are between the sensors in the same direction and close to each other.
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test cases all have significantly higher likelihood ratios with respect to the ambient
cases. What’s interesting is that the fireworks sequence is similar to the 5/14/2012
event, but both are dissimilar to the earthquake case. The 5/14/2012 event was when
the recording system was triggered to record because accelerations exceeded a preset
threshold, however there is no known event that corresponds to it. The time-series looks
like a single impulse, possibly suggesting similar behavior induced in the structure to
the series of impulses from the fireworks sequences. The third fireworks sequence seems
to be the most dissimilar from all the other sequences.

What these results tell us is that we can likely classify when the structure has been
excited in a significantly different way than typical ambient conditions. The differences
between random ambient excitations and impulse excitations or earthquake excitations
are clearly visible. We do not evaluate the performance of the single-class classification
formally, as we did with the laboratory data using ROC curves, since the number of
recorded sequences for the Green building is not that large. However, it is clear from
the likelihood ratio matrix in Figure 5.15 that using any of the ambient sequences as
a training sequence and a reasonable threshold rule (e.g., use other ambient sequences
as tuning data and take the highest ratio among them as a threshold) would perfectly
classify the sequences from the earthquake and the 5/14/2012 event and the third
fireworks sequence as non-ambient. Sequences from the windy condition would also
be classified as non-ambient in most cases, except when the second sequence of the
6/22/2012 ambient recording is used for training. In that case, the sequences from the
windy condition have lower likelihood ratio than those from the 4/15/2013 ambient
event. If the latter ones are used for tuning, the former ones would be classified as
ambient. Also, note that the two ambient recordings are slightly different from each
other, which could possibly be attributed to the temperature difference of 40°F between
‘these two recordings. This suggests that acquiring more ambient recordings over time
and in different conditions would be useful to understand the variation in them and
how that relates to the classification problem.
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Figure 5.15: Matrix of the log-likelihood ratios, log - SV ) . between Green Build-
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ing data sequences, normalized to be between 0 and 1. The !valllz(\ at row 7 and column j
corresponds to the ratio computed when sequence i is considered as a training sequence
and sequence j as a test sequence. The correspondence between sequence indices and
events is: 5/14/2012 Unknown Event (1), 6/22/2012 Ambient Event (2-3), Fireworks
(4-6), Earthquake (7), 4/15/2013 Ambient Event (8-10), and Windy Day (11-16). Note
that the events that are the most similar to cach other are the events in ambient condi-
tions, windy conditions, but also the first two sequences for the fireworks event, which
were recorded before the fireworks actually started. On the other hand, the last se-
quence in the fireworks test case, the earthquake, and the 5/14/2012 event test cases
all have significantly higher likelihood ratios with respect to the ambient cases. These
results suggest that we can likely classify when the structure has been excited in a
significantly different way than typical ambient conditions.
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Chapter 6

Conclusion

[y

E presented a state-space switching interaction model (SSIM), which represents

interactions as directed edges of a dynamic Bayesian network, allows switch-
ing between interactions, and allows arbitrary observation processes and missing data.
Furthermore, we employed Bayesian reasoning over structures to deal with uncertainty
in the data and due to the large number of possible structures. Efficient inference is
enabled by limiting the number of parents per signal, and is done via a Gibbs sampling
procedure. This model is expressive and can uncover different aspects of interactions
among time-series and their patterns, as we have demonstrated by experiments. In
addition, we developed a classification and a single-classification variants of the SSIM
and showed that these models can be successfully applied to the problem of damage
detection in civil structures.

M 6.1 Summary of Contributions

Modeling

We develop the SSIM framework for Bayesian inference over switching time-series in-
teraction structure under uncertainty, which extends the work of Siracusa and Fisher
[49, 50] by allowing for noisy and missing observations of time-series. We introduce a
linear Gaussian SSIM model (LG-SSIM), in which both dynamics and observation mod-
els are linear Gaussian models, thus extending Gaussian state-space switching models
to include structural inference. We also introduce a latent-AR variant of the LG-SSIM,
in which an autoregressive (AR) model of an arbitrary order is allowed among the latent
state variables. Both LG-SSIM and latent-AR LG-SSIM can be paralleled to analogous
extensions of the model of Siracusa and Fisher [49, 50], in which direct observations of
time-series are assumed.

Algorithms

We develop a Gibbs sampling procedure for inference in SSIM, which simultaneously
reasons over interaction structures and parameters, the pattern of switching between
different interactions, latent states associated with time-series, and observation model
parameters. The algorithm extends the Gibbs sampling inference procedure of Siracusa

145



146 CHAPTER 6. CONCLUSION

and Fisher [49, 50] to include steps in which latent states and observation model param-
eters are sampled. We also develop a specialization of the inference procedure for the
LG-SSIM. In particular, we develop a numerically stable algorithm for block-sampling
of latent states trajectories given observations that could be noisy and missing, and for
dynamic models that allow for deterministic dependencies among state variables, such
as in latent-AR LG-SSIM. In addition, we provide in-depth time and memory com-
plexity analysis of the Gibbs sampling inference algorithm for the LG-SSIM. Finally,
we provide guidelines for setting the prior (i.e., hyperparameters) in the LG-SSIM
model, initializing latent variables, and performing a Gibbs sampling procedure. We
also provide a procedure for evafuating a posterior distribution over a huge number of
structures given a limited (much smaller) number of posterior samples obtained by the
Gibbs sampling inference procedure.

Experiments

We use synthetic data to demonstrate the advantage of interaction analysis over testing
pairwise relationships, and the advantage of the SSIM model over the model of Sira-
cusa and Fisher [49, 50}, which does not account for observation noise. We introduce
a novel dataset, the joystick data, which is created specifically for testing results of
interaction analysis in realistic conditions. It is developed in such a way that ground
truth interactions are known by design, but it is human-generated and not synthesized
from the model. We demonstrate the ability of the SSIM model to infer interactions
and a switching pattern even in the presence of relatively high observation noise or if
a significant fraction of data is missing, and that it is advantageous over the STIM
model of Siracusa and Fisher [49, 50|, as the STIM model does not handle missing data
and performs worse in the presence of high observation noise. We also demonstrate the
advantage of reasoning over structure posterior over MAP estimation, as spurious edges
in a MAP structure estimate are typically assigned higher uncertainty (lower probabil-
ity) in the posterior than the correct edges. Finally, we apply the SSIM model to a
real-world problems and show types of analyses that it enables.

Structural Health Monitoring

We develop variants of the SSIM model for classification and single-class classification
of time-series. On data from two laboratory model structures, we demonstrate that the
SSIM classification model can classify time-series obtained under intact and different
damage scenarios with high accuracy, in both standard and single-class classification
settings. On the MIT Green building data, we demonstrate that the SSIM single-class
classification model can distinguish time-series obtained under conditions that differ
form ambient conditions (from those obtained under ambient conditions) and that it
also predicts the “strength of deviation”. We also perform interaction analysis on both
datasets and show that inferred edges correlate with an actual physical structure.
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B 6.2 Future Directions

We demonstrate the utility of the SSIM model for switching interaction analysis on two
real-world examples: learning interactions among climate indices and among sensor
data from civil structures. In addition, we apply the model to the problem of damage
detection in civil engineering. However, there are many domain where the methodology
developed her could be applied, such as finance / econometrics, social networks, neu-
roscience, health monitoring, transportation / traffic analysis, video analysis, sports /
games, etc. In addition to numerous possible applications, the model can be extended
or improved in various ways.

M 6.2.1 Scalable inference

Efficient inference over interaction structures in the SSIM model is enabled by using
a modular prior on structure with additional constraints, such as a bounded in-degree
constraint. While this approach significantly reduces the complexity of inference over
interactions — from super-exponential to polynomial, it is still not efficient enough for
applications on a very large number of signals. Further approximations to the model
and/or different approximate inference algorithms are needed to improve the scalability
of the approach.

For example, in step 4 of Algorithm 3.1, full parameter updates are computed prior
to drawing a sample of dependence models. However, that may be avoided by devel-
oping an MCMC algorithm for sampling dependence models (step 4) that is integrated
within the overall sampling algorithm. If the acceptance ratio is sufficiently high and
the algorithm traverses the posterior space of structures efficiently (e.g., by including
“jump” moves), such approach may be more efficient than exact sampling form the full
structure posterior. Full posterior distribution over structure could still be computed
in those sampling rounds from which a sample is extracted (as in Section 4.1.3), but
that is only a fraction of times (e.g., every 50** sampling round).

M 6.2.2 Nonparametric approaches

Currently, the SSIM model assumes that the number of possible switching states is
known in advance. Although we showed (at least in one example) that by marginaliz-
ing the switching sequence, the number of visually distinct inferred structures can be
correct even though the number of switching states is set incorrectly, setting the num-
ber of switching states properly yields better results and is in general beneficial. While
the number of switching states can sometimes be guessed, it is often not the case. If
that number is not known, one approach is to perform inference with different numbers
of states and analyze the results to see which one best fits the data. Clearly, having
an algorithm that automatically infers the number of switching states would be advan-
tageous. That can be done using a Bayesian nonparametric approach. In particular,
a sticky HDP-HMM model [18] of the switching state sequence can be used, which is
a Markov model of a sequence with possibly infinite number of states, paired with a
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hierarchical Dirichlet process prior [55] as a conjugate prior, and which also encourages
persistence of states over time. The number of inferred states is then a function of data.

The SSIM framework assumes no relationship between dependence models of differ-
ent signals, as well as those that pertain to different switching states. However, the same
pattern of interaction may repeat with different signals and in different regimes. For
example, the interaction “follow” appears in the joystick data between different pairs
of players in different assignments. Hierarchical nonparametric Bayesian methods can
be used to model “template” dependencies that are shared among different combina-
tions of signals and their parents across different switching states. Since the parameters
of the same type of dependency may vary to some degree when different signals are
involved, the hierarchical approach is suitable for modeling both the base distribution
of parameters and variations pertinent to different sets of signals. Also, a nonparam-
eteric approach is advantageous since the number of possible template interactions is
typically not known in advance. This approach is also applicable (and likely inevitable)
in scenarios in which objects appear and disappear from the scene frequently, and the
only hope to learn their behavior from data is that there might be a small number of
patterns that repeat for different objects. An example application is traffic monitoring
at an intersection: vehicles change all the time and their number is different, but there
is a limited number of scenarios that may occur.

B 6.2.3 Online learning

Many time-series data is constantly or periodically being collected, such as stock prices,
sensor data in structural health monitoring, climate data, etc. In addition, inferring
changes in interaction as soon as possible is very important in some domains. Therefore,
developing algorithms that can efficiently update existing and learn new interaction
models (and, in general, update the results of inference) with newly arrived data is
important. However, exact inference with new data requires repeating the full inference
procedure over all data because the posterior distribution of latent variables related to
the “old” time points may change given new evidence. In other words, new data may
influence our belief in the interaction structures and a switching pattern in the past. On
the other hand, one may expect that after sufficient amount of data is seen pertaining to
each interaction, the belief in that interaction should not change significantly. That can
be exploited to develop approaches that perform joint inference over the new sequence
of data and only selected time points from the past for which there is still significant
uncertainty in the interaction structure and the switching state.

B 6.2.4 Multi-scale interaction analysis

The SSIM model allows arbitrary orders of the AR model of latent time-series. However,
the computational complexity of the inference algorithm step in which latent time-series
states are sampled grows cubically with the order of the AR model (Table 3.2), Therefore
there is a limit to the order of the AR model that can be used in practice (e.g., up to
100), and it may be difficult to infer long-range dependencies. On the other hand, long-
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range dependencies are often among coarser versions of signals rather than the original
signals. For example, if a person follows another person from a close distance, he may
react quickly and to even small changes in behavior of the person he follows. On the
other hand, if he follows the other person from far away, he may only react to large
changes in behavior of the other person, and with a larger delay.

We refer to longer-range dependencies among coarser versions of signals as depen-
dencies at a coarse scale. Note that one (but not the only) way to define different signal
scales is to remove high frequency content and leave only frequencies up to some thresh-
old. The lower the threshold frequency is, the coarser the signal is. If coarse versions of
signals are down-sampled, long-range dependencies among the original signals becomne
short-range dependencies among down-sampled coarse signals. A possible way to learn
such dependencies is therefore to apply a low-pass filter to original signals, down-sample
them, and then perform interaction analysis on thus obtained signals using the SSIM
model. Note that this approach decouples interaction analysis at different scales, as
input signals are processed independently for each scale. That is fine when signals are
observed directly. However, if signals are observed through a noisy process, decoupling
inference at different scales may result in inferring different latent time-series that cor-
respond to a same signal. Furthermore, the method would require some way of dealing
with missing data that may not be principled. Developing a generative multi-scale
model of signals that incorporate interactions among signals would allow for a joint
inference over interactions at different scales and would deal with observation noise and
missing data in a principled way, as in the SSIM model.

B 6.3 Final Thoughts

Understanding interactions is an important question in many domains, but learning in-
teractions from data remains a challenging problem. This thesis attempts to extend the
arsenal of tools for tackling this problem by developing a method for efficient Bayesian
inference over switching temporal interaction structure from noisy data. I hope that
our work opens possibilities for new applications and will be helpful to others in their
own pursuits.
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Appendix A

Computing messages m'(z) in
LG-SSIM

Note that
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Messages m'(Xy), t =0,...,T — 1, are computed in the following way:
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and, from Equations A.1 and A.2,
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