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Abstract
We introduce a Bayesian discrete-time framework for switching-interaction analysis
under uncertainty, in which latent interactions, switching pattern and signal states and
dynamics are inferred from noisy and possibly missing observations of these signals.
We propose reasoning over posterior distribution of these latent variables as a means of
combating and characterizing uncertainty. This approach also allows for answering a
variety of questions probabilistically, which is suitable for exploratory pattern discovery
and post-analysis by human experts. This framework is based on a Bayesian learning
of the structure of a switching dynamic Bayesian network (DBN) and utilizes a state-
space approach to allow for noisy observations and missing data. It generalizes the
autoregressive switching interaction model of Siracusa et al. [50], which does not allow
observation noise, and the switching linear dynamic system model of Fox et al. [16],
which does not infer interactions among signals.

We develop a Gibbs sampling inference procedure, which is particularly efficient in
the case of linear Gaussian dynamics and observation models. We use a modular prior
over structures and a bound on the number of parent sets per signal to reduce the
number of structures to consider from super-exponential to polynomial. We provide a
procedure for setting the parameters of the prior and initializing latent variables that
leads to a successful application of the inference algorithm in practice, and leaves only
few general parameters to be set by the user. A detailed analysis of the computational
and memory complexity of each step of the algorithm is also provided.

We demonstrate the utility of our framework on different types of data. Different
benefits of the proposed approach are illustrated using synthetic data. Most real data do
not contain annotation of interactions. To demonstrate the ability of the algorithm to
infer interactions and the switching pattern from time-series data in a realistic setting,
joystick data is created, which is a controlled, human-generated data that implies ground
truth annotations by design. Climate data is a real data used to illustrate the variety
of applications and types of analyses enabled by the developed methodology.

Finally, we apply the developed model to the problem of structural health moni-
toring in civil engineering. Time-series data from accelerometers located at multiple
positions on a building are obtained for two laboratory model structures and a real
building. We analyze the results of interaction analysis and how the inferred dependen-
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cies among sensor signals relate to the physical structure and properties of the building,
as well as the environment and excitation conditions. We develop time-series classifi-
cation and single-class classification extensions of the model and apply them to the
problem of damage detection. We show that the method distinguishes time-series ob-
tained under different conditions with high accuracy, in both supervised and single-class
classification setups.

Thesis Supervisor: John W. Fisher III
Title: Senior Research Scientist, Electrical Engineering and Computer Science
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Chapter 1

Introduction

E XAMPLES of interaction can be found everywhere. One can talk about an inter-
action of people in a social network, at an event, or in a street, interaction of

companies on a stock market, neurons in a brain, climate indices, and so on. Learning
such interactions is important, as that can further our understanding of the processes
among the involved entities, as well as lead to novel applications. However, while some
interactions can be easily detected by our senses, a lot of them are still hard to identify
by humans. Therefore, different sciences focus on inferring and analyzing interactions of
different types and in different domains from data that can be related to interactions.

In this thesis, we consider the problem of inference over interactions from time-series
data. The notion of interaction may be defined differently in different disciplines. For
example, interaction between two objects often assumes a two-way influence between
them. When more than two objects are involved, this would imply a two-way influence
between any pair of objects, and inferring interactions would reduce to inferring groups
(cliques) of objects that interact among each other. We are, however, interested in a
more general case, in which an interaction is defined as any set of directed (one-way)
influences among objects and the goal is to uncover such set of relationships, which we
refer to as the structure of interaction. More formally, an interaction graph is
defined as a directed graph G = (V, E), where V is the set of nodes that correspond to
objects, and E is the set of edges that correspond to directed influences [50]. In other
words, i -+ j E E if object i influences (has an effect on) object j, in which case we also
say that object j depends on object i. We refer to the set of edges of the interaction
graph, E, as the interaction structure. In addition, we make the following assumptions:

" Dependencies that constitute an interaction are temporal causal relationships
[44], meaning that the behavior an object can only influence the future behavior
of another object (or set of objects).

" Objects are represented as multivariate time-series (discrete-time multivariate
signals). Therefore, we will often talk more abstractly about the interaction among
time-series, or signals, where it will be assumed that these signals correspond to
some objects or abstract entities, whose interaction is a subject of interest.1

1Note that we have not done analysis on the relationship between object representation (in terms

17



CHAPTER 1. INTRODUCTION

Learning temporal interactions from time-series data is challenging for several rea-

sons:

" The number of possible interactions among a set of signals is extremely large -
super-exponential in the number of signals. Namely, if N is the number of signals,
the number of possible interactions among them is equal to the number of different
directed graphs, which is 2 N2

" Interactions may change over time, and therefore the problem of learning interac-

tion becomes the problem of learning different interactions at different points in

time and the pattern of switching between these interactions.

" Underlying time-series are often not observed directly, but rather through some
noisy observation process. In additibn, data is sometimes missing due to an error
or inability to collect observations at certain time points.

The first two problems have been addressed by the work of Siracusa and Fisher
[49, 50], in which they develop a Bayesian switching temporal interaction model for in-
ference over dynamically-varying temporal interaction structure from time-series data.
However, their model assumes that time-series are observed directly and does not ad-

dress the problem of noisy observations. On the other hand, switching state-space

models have been used to learn switching joint dynamics of time-series from noisy data

(e.g., [16,22]), but these models do not learn interactions among time-series. Our goal
is to fill in the gap and develop a method that addresses all three challenges above in
a single framework. To that end, we develop a state-space switching interaction
model (SSIM) [13], which combines the two approaches, as well as an efficient Gibbs

sampling algorithm for inference over latent time-series, interactions and the switching

pattern from noisy and (possibly) missing data in this model.

N 1.1 Bayesian Approach

In addition to the assumptions above, we also assume that there exists a discrete-
time stochastic process that generates future observations of time-series from their past
observations, such that each time-series possibly depends only on a subset of other
time-series. This naturally leads to a dynamic Bayesian network (DBN) repre-
sentation of the joint time-series model, and the problem of inference over switching
interaction is reduced to the problem of inference over a switching DBN structure (as
in [50]), which is depicted in Figure 1.1. A fist-order model, in which the dependency
is only on the values at the previous time point, is illustrated for simplicity. Moreover,
we will first derive the SSIM model with a first-order dependency among time-series.
However, we will later extend the model to allow higher-order dependencies.

of feature representation and sampling frequency) and the ability to infer temporal interactions using

statistical methods.
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Figure 1.1: Dynamic Bayesian Network (DBN) representation of switching interaction

among four signals. They initially evolve according to interaction graph El. At time

point 4, the interaction pattern changes, and they evolve according to interaction graph

E2 . Self-edges are assumed.

Inferring the structure of a (static or dynamic) Bayesian network presents a formidable

challenge owing to the super-exponential ninber of possible directed graphs. It, is

known that, the exact inference over such structures is NP-hard in general [10]. A

number of heuristic mnethods for finding a structure with the maximum a posteriori

(MAP) probability have been developed [7, 11, 27]. However, MAP estimates of net-

work structures are known to be brittle. With limited data available, there may exist

a large number of structures that explain the data well. Point estimates of structure

(e.g., MAP) are likely to yield incorrect interactions. The problem is exacerbated when

the structure varies over time and time-series state is not observed directly, but rather

by some noisy observation process. To alleviate this, sampling approaches have been

typically used to approximate the posterior distribution over structures with a number

of samples from that distribution [:9]. Due to the a typically highly-multimodal pos-

terior landscape, efforts have been made to develop robust sampling algorithms that

do not get stuck in local optinma , 25, 39]. On the other hand., Siracusa and Fisher

[5H] use a modular prior assumption, which effectively allows independent inference

over parent sets of each time-series (that can be done in exponential time), and ad-

ditional constraints on possible parent sets (e.g., bounded in-degree), which result in

a polynomial-time exact inference over a non-switching dynamic Bayesian structure,
thus avoiding sampling over structure. These assmnptions have also been exploited in

the context of static Bayesian networks, but since such networks imiust be acyclic. a

topological order of nodes must either be known a priori [7, 11, 27] or sampled [19].
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We adopt the approach of Siracusa and Fisher [50] and use a modular bounded-
indegree prior on the interaction structure, which allows for efficient inference over
structures. Also, as discussed above, computing a posterior distribution over structures
quantifies the uncertainty in structure, and also allows for a robust estimate of structural
events, which are often of primary interest. Examples of such events are: "Does object
A depend on object B, given that it interacts with object C?" or "Which object is the
most influential, i.e., has the most objects that depend on it?".

Note that the exact inference over structures is possible only if there is no switching
and observations are assumed perfect. In case of switching and/or observation noise,
exact joint inference over latent time-series, switching pattern and interaction struc-
tures is intractable. Similarly as in [50], we use a Gibbs sampling approach to joint
inference over these variables, in which an exact inference over interaction structures is
performed when conditioned on other variables. However, unlike [50], where switching
patterns obtained from different samples are aligned to produce a single most likely
switching pattern, we reason over the distribution of switching patterns. This allows
for computing statistics over switching patterns, such as the probability of two time
points being in the same switching state. Consequently, there is no posterior distri-
bution over structures defined for each switching state, since switching states are not
aligned across samples. Instead, the switching pattern is marginalized out, and the
posterior distribution over structure is computed for each time point separately, as it
can indeed be different at each time point as a result of marginalization.

1.2 Contributions

The main contribution of the thesis is the introduction of a new model, which we refer to
as the switching state-space interaction model (SSIM), and development of an efficient
algorithm for Bayesian inference over switching interaction structure among time-series
from noisy and possibly missing data [13], whereas the previous work assumes perfect
observations [49, 50]. There are many examples where time-series measurements are
noisy, such most data obtained through sensing, that motivate our method. For exam-
ple, tracking objects in a video necessarily introduces observation noise, regardless of
whether it is done by a human or an automatic tracker. Also, observations sometimes
cannot be made due to occlusions, which results in missing data.

We introduce a linear-Gaussian variant of the SSIM, in which both time-series de-
pendence and observation models are assumed linear and Gaussian. This specialization
of the model is widely applicable and enables a particularly efficient inference procedure.
We also introduce a latent-autoregressive linear-Gaussian SSIM, in which dependencies
on an arbitrary number of previous time points are allowed. This extension is critical
for many practical applications as first order models are often not sufficient to capture
important dependencies. These two variants can be paralleled to analogous variants of
the model of Siracusa and Fisher [49, 50], with the main distinction that their model
does not incorporate an observation model.

20



Our approach extents the method of Siracusa and Fisher [49, 50] by introducing an
observation model and assuming that the underlying time-series are in the latent space.
While this extension is conceptually simple and intuitive, it poses several challenges that
we address in this thesis. First, an additional step in an inference procedure for sam-
pling latent time-series must be taken. Sequential sampling of state sequences is know
to converge slowly. Batch sampling can be done efficiently using an exact message-
passing algorithm only for some choices of dependence and observation models. For
example, this is the case when linear-Gaussian models are used. Otherwise, approxi-
mate methods, such as particle filtering [2], must be employed. We take the advantage
of the linear-Gaussian model and employ it in our work for efficient inference. How-
ever, a standard message-passing algorithm for sampling latent time-series shows to be
numerically unstable in cases when data is missing, in particular when there are several
consecutive time-points for which data is missing. To alleviate that, we develop an
alternative message-passing algorithm for this step that uses a different representation
and computation of messages that is numerically stable. Second, the latent space in the
SSIM model is very complex - latent interactions, switching pattern and time-series, as
well as parameters of dependence and observation models need to be inferred from noisy
and possibly missing observations. Jointly, these variables create a complex probability
space. The posterior distribution over these variables is highly multimodal and there
could be different suboptimal explanations of the data. For example, high variance of
the dependence or the observation model can explain the data well, but that is not the
explanation that is typically sought. Also, assigning time points to switching states is
effectively a clustering problem, and spaces of clusterings typically have multiple local
optima. To avoid undesired local optima and steer the inference into the regions of

posterior distribution that are of interest, we develop specific methods for setting the

prior and initializing latent variables. In addition, we often use multiple restarts to im-

prove the coverage of the posterior distributions with samples. These methods lead to

an algorithm that is mostly free of tuning, except for a few general model parameters.

The new way of setting the prior also improves the previous method of Siracusa and

Fisher [49, 50].
We demonstrate the utility of our approach on several datasets. Synthetic data is

generated to emphasize the advantage over other methods. Specifically, we show that

inference over the interaction structure as a graph is necessary, and that simply ana-
lyzing pairwise dependencies separately (as in Granger causality tests [24]) may lead

to a detection of spurious dependencies. We also show that our approach is advanta-

geous over the previous method that does not account for observation noise [50] on an
example in which the previous method assigns high probability to a spurious parent

of a signal, because the correct parent does not predict well that signal alone due to

the observation noise. When the observation noise is accounted for (our approach), the
probability of a spurious edge is significantly reduced.

Unfortunately, real datasets typically do not contain ground truth interactions. In-
teractions are not know and are also difficult to annotate by humans due to their
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complexity. This is, in the first place, a reason why learning interactions from data is
an important task. However, it also renders testing inferred interactions difficult. To be
able to test the results of interaction inference on non-synthetic data, we develop a new
dataset, called joystick data, in which interactions and a switching pattern are known
by design. Namely, five human players control points on a screen via joystick accord-
ing to predefined tasks and a switching pattern between tasks. For example, a player
can have an assignment to "follow" another player or to stay in the middle of the line
between two other players. Therefore, interactions are implied by the tasks. We show
that our method assigns high probability to the correct interactions and a switching
pattern, and assigns significant probability to very few other (spurious) edges, even in
the case of relatively high observation noise or if a significant portion (2/3) of data is
missing. We also show that our method recovers the interaction structure better than
the method of Siracusa and Fisher [50] in the case of high observation noise, as well as
that our method assigns higher uncertainty to an incorrect edge in the MAP structure
estimate, than to the correct ones. Lastly, we demonstrate the advantage of marginal-
ization over switching pattern, which we employ,- over the previous method that only
considers a point estimate of the switching pattern.

In addition, we apply our method to real datasets. While we cannot formally test
the results of switching interaction analysis on them, we see that the results are co-
herent with prior knowledge in the domain or general intuition. The climate indices
dataset, Monthly atmospheric and ocean time series [40], consists of time-series of mea-
surements of climate indices over several decades. Structural health monitoring (SHM)
datasets are also used to perform interaction analysis. Buildings are instrumented with
sensors (accelerometers) that measure vibrations at different locations. Two laboratory
structures and one real building were used for experiments.

Finally, we develop extensions of the SSIM model for classification [14] and single-
class classification of sequences of measurements, using an assumption that switching
may only occur between sequences, and not within a sequence. These variants of the
SSIM are applied to the problem of damage detection in civil buildings, which is one of
the major problems in structural health monitoring. We demonstrate that our approach
can detect damage or significant changes in the environment or excitation of a building
with high accuracy, even in a single-class classification setup, in which only data from
an intact structure is available for training (which is a typical case). The probability of
a damage is in general higher for more severe damages. Also, the model can successfully
differentiate different types of damages.

* 1.3 Outline

The organization of the thesis is as follows. The necessary background material is
laid in Chapter 2. The SSIM, a framework for switching interaction analysis under
uncertainty, which is based on a Bayesian state-space switching structure inference,
is introduced in Chapter 3, along with the Gibbs sampling inference algorithm. The
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LG-SSIM, a specialization of the SSIM that uses linear-Gaussian dependence and ob-
servation models, as well as the corresponding specialization of the inference procedure,
are also presented in Chapter 3. Finally, the time and memory complexity analysis

of the inference algorithm is also presented here. Practical considerations regarding
setting the prior and initializing the latent variables are addressed in Chapter 4. Ex-

periments on synthetic, semi-real and real data, which demonstrate the utility of the
algorithm, are also presented in Chapter 4. Chapter 5 is devoted to the application

of the developed framework to the problem of damage detection in civil engineering.
Finally, conclusions and directions for future work are given in Chapter 6.
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Chapter 2

Background

W E take a Bayesian approach (2.1) to learning of the structure of Dynamic Bayesian
networks (2.3.2), which are probabilistic graphical models (2.3) suitable for mod-

eling time-series data. The state-space modeling paradigm is used to extend the pre-

vious work ([49, 50], summarized in 2.7) to enable inference with imperfect (noisy and
missing) data. In particular, a switching state-space approach is used to model the

change in structure over time, in contrast to the switching auto-regressive approach

used in [49, 50]. The inference is performed using a Gibbs sampling algorithm (2.4.1),
which is a Markov chain Monte Carlo (MCMC) type of algorithm (2.4). A particular

choice of probability distributions with conjugate priors (2.2) used for the dependence

and observation models allows for efficient Gibbs sampling steps. Overview of the

Bayesian learning of a homogenous (non-switching) dependence structure is presented

in Section 2.6. Efficient inference over the space of structures, which is extremely large,
is enabled by the use of a modular prior and a bound on the node in-degree (2.6.2).

N 2.1 Bayesian Approach

In contrast to the classical (or frequentist) approach, in which parameters of a statisti-

cal model are assumed fixed, but unknown, in the Bayesian approach, parameters are

assumed to be drawn from some distribution (called prior distribution or simply prior)

and therefore treated as random variables. Let p(X 9) be a probabilistic model of a

phenomenon captured by a collection of variables X, with parameters 9, and let p(G; 7)
be the prior distribution of model parameters 9, parametrized by /, which are typi-

cally called hyperparameters. The prior distribution is often assumed to be known, in

which case hyperparameters are treated as constants and are either chosen in advance

to reflect the prior belief in the parameters 9 (e.g., by a domain expert) or estimated

from data (empirical Bayes, [8]). Alternatively, in a hierarchical Bayesian approach,
hyperparameters are also treated as random variables and modeled via some distribu-

tion, parametrized by a next level of hyperparameters, and so on, up to some level of

hierarchy.
The central computation in Bayesian inference is computing the posterior distribu-

tion of parameters 9 given data samples D = {XI, X 2 , .. ., XN}, namely, p(9 I D; 7). If

the samples are independent, the data likelihood is p(1) 10) = kI p(X = JI 9). The
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posterior distribution can be computed using the Bayes rule:

AOI AY) -p(6; -y) p(D 1) _ p(; -Y) p(D ) (2.1)
A(D;Y) fop(6;y)p(D|1)dO

Note that the denominator p(D; -y), the marginal likelihood of data, does not depend on
the parameters 0, which are "marginalized out". Therefore, the posterior distribution
is proportional to the numerator:

A( I D; -Y) oc (0; -) p(D 10), (2.2)

while the denominator is simply a normalization constant.
Evaluating the numerator above for a specific value of parameters is easy, as it is

the product of the prior distribution and the data likelihood terms, which are specified
by the model. However, computing the full posterior distribution p(0 I D; -y), or even
evaluating it for a specific parameters value (which requires computing the marginal
likelihood p(D; -y)), is in general difficult, as the posterior distribution and the marginal
likelihood may not have closed-form analytical expressions. Nonetheless, when the prior
distribution, p(0; 7), is chosen to be a so-called conjugate distribution to the likelihood
distribution, p(X 6), the posterior distribution has the same form as the prior and can
be computed efficiently.

M 2.2 Conjugate Priors

If the posterior distribution from Equation 2.1, p(O D; -/), is in the same family as the
prior distribution, p(O; -y), then p(O; -y) is called a conjugate prior for the likelihood
function, p(D 0). In that case, we say that the probability distribution p(D 16) has
a conjugate prior. As a consequence, if the prior distribution has a parametric form
(which we will assume in this thesis) and is a conjugate prior, then the posterior dis-
tribution has the same parametric form and differs from the prior only in the value of
hyperparameters, i.e., p(O D; -y) = p(0; -y') for some -y'. Note that -y' is a function of
prior hyperparameters -y and data D. Computing ^y' can be done analytically and is
commonly referred to as "updating" the prior with the data or performing a "conjugate
update".

Choosing a distribution that has a conjugate prior for a likelihood function and
its conjugate prior for the prior is convenient as it results in an analytic form of the
posterior, efficient computation of the posterior, and overall efficient inference in models
that use such distributions. Otherwise, a computationally more challenging methods
must be used, such as integration or sampling techniques. Also, interpreting conjugate
updates is typically more intuitive than interpreting the results of numerical or sampling
methods, as there is a meaning attached to the hyperparameters and how they are
changed after a conjugate update.

Not all probability distributions have a conjugate prior. However, all distributions
in the so-called exponential families, which includes a majority of well-known distri-
butions, have a conjugate prior, and are therefore a convenient choice. We will proceed
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by describing exponential families and the probability distributions that will be used in

this thesis, all of which belong to the exponential family.

* 2.2.1 Exponential Families

An exponential family in the case of vector-valued variable X and parameters 6

(which is the case we will usually need in this thesis) is a set of probability distributions

of the form:

p(XI 0) = h(X) exp {(O) T T(X) - A(G)} , (2.3)

where j7(6) is referred to as the natural parameter, T(X) as natural statistic or
sufficient statistic, h(X) as the base distribution, and A(9) as the cumulant
function or the log-partition function. Note that q(O) and T(X) are vectors, in

general. An exponentially family is uniquely defined by the choice of 77(0), T(X) and
h(X), while A(9) is the logarithm of the normalization term implied by the previous
three functions:

A(O) = log J h(X) exp { 7(0) T T(X) } dX, (2.4)

where the integral is replaced with a summation if X is a discrete variable. The nor-
malization term, Z(O) - eA(O), is also called the partition function.

A linear exponential family is an exponential family whose natural parameter,
,q(O), is equal to the underlying parameter, 0:

p(X 0) = h(X) exp {OTT(X) - A(O)} . (2.5)

Note that any exponential family can be converted into a linear exponential family

by changing parametrization, i.e., p(XI0') =h(X) exp {OITT(X) - A(G')}, where '=

,(0). However, finding the range of admissible values of 0' and the log-partition function

A(O') may pose a challenge.
A canonical exponential family is a linear exponential family whose natural

statistics, T(X), is equal to the underlying variable, X:

p(XI 0) = h(X) exp {OTX - A(O)} . (2.6)

Exponential families have many useful properties. For example, the log-partition

function play the role of a cumulant-generating function:

OA(X )
=~ E [Ti (X)|

(2.7)
a2 A(X) (27
a2 Aox) Cov [T(X)T 3 (X)].
&0 i&0 j
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Also, the natural statistic, T(X), is a sufficient statistic, which implies that all infer-
ences about parameter 0 can be performed using T(X) - once T(X) is computed, the
data X can be discarded. An important property of exponential families is that the
dimensionality of the sufficient statistic, dim (T(X)), does not increase with the num-
ber of data samples. To see that, let X1, X 2 , ... , XN be independent and identically
distributed (i.i.d.) random variables from a member of an exponential family defined
by Equation 2.3. Then, the joint probability distribution of these variables is:

= N 
(N

p(X1, X 2 ,... ,XN 10) = ( h(Xi)) exp { 7 (O)T ( T(Xi) - NA(0) . (2.8)
i=1 =

Note that the sufficient statistic of all samples is simply the sum of sufficient statistics
of each individual variable Xi.

The property of exponential families that will be the most important for us is that
every exponential family has a conjugate prior. If the likelihood model of joint
observations is given by Equation 2.8, then

p(O; r, no) oc exp {f Tr(0) - noA(0)} (2.9)

is a conjugate prior for that family, where r and no are hyperparameters. The posterior
distribution over parameter 0 is

N )T

p( IX; r, no) oc exp {( + > T(Xi) r7(0) - (no + N) A(O) . (2.10)

Clearly, the posterior distribution is in the same form as the prior, i.e.,

p(0IX; r, no) = p(; r', no') , (2.11)

where

N

-T = + ZT(Xi) (2.12)
i=1

no' = no + N.

Therefore, performing a conjugate update is reduced to simply updating hyperparamters
with the sufficient statistic and the sample count.

* 2.2.2. Multinomial (Categorical) Distribution

The multinomial distribution is a distribution over the possible ways of selecting N
items from the set of K items, with repetition. Let i1, 72, - , IrK be the probabilities
of choosing items 1,2,... , K, respectively. Note that i_ 1 i =_ 1 must hold and N
choices are made independently. Let X 1 , X2,... , XK be random variables, such that



Xi correspond to the number of times item i is selected. Then, the joint probability
over X 1 , X 2 , . . ., XK is

N!
Mult(X1, X2 , ... , Xk; 71 l2, .- - K) = X1!XX1 7r 2 ... 7-K K, (2.13)

X1!X2! -.- XK!

where .X1, X2 ,. .. , XK are non-negative integers such that j= 1 Xi = N. This proba-

bility can also be written using the gamma function as

r(EKXi + ) K
Mult(X1, X 2 , .X.. ,Xk X 2 1, .2, ,1K) ) = (2.14)

Ui=1 r(Xi + 1) =1

which is a convenient form for a comparison to its conjugate prior - the Dirichlet

distribution.
The mean and variance of a random variable Xi and covariance between Xi and Xj

are given as:

E [Xi] Nxir

Var [Xi] Nrj(1 - 7rs) (2.15)

Cov [Xi, X]= -Nirxirj, i 3 j.

The categorical distribution can be thought of as the multinomial distribution
with N = 1, i.e.,

K

Cat(Xi, X 2 ,... , Xk; 7i1, 7r2, ... I IrK) 171- (2.16)
i=1.

where exactly one of the variables X 1 , X2 ,..., XK is equal to 1, and the others are

equal to 0. The categorical distribution is sometimes referred to as the discrete dis-
tribution, since it is a distribution over a selection of one element from a discrete set
of elements, where 7i is the probability of selecting element i. It is also commonly

expressed using a single random variable X that takes a value from {1, 2,..., K}:

K

Cat(X; 71, r2,--- ,7rK = fri~, (2.17)
i=1

where [X = i] = 1 if X = i and [X = i] 0 otherwise. A connection to the represen-

tation given in Equation 2.16 is established via equality Xi = [X = i]. Therefore, from

Equation 2.15, it follows that

E [[X -if]]= E[Xi] =7i

Var [[X =fl] = Var [Xi] =7ri(1 - 7ri) (2.18)

COV [[X = i] , [X =j]] = COV [Xi, Xj] = -7rigrj , i 54 j.

In machine learning, it is common to talk about a multinomial distribution when a

categorical distribution is actually meant. Note also that the binomial distribution
and the Bernoulli distribution are special cases of the multinomial and categorical

distributions, respectively, in which the number of items, K, is equal to 2.
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* 2.2.3 Dirichlet Prior

The Dirichlet distribution is a distribution over an open K-1-dimensional simplex in
a K-dimensional space, which is defined as a set {(Xi, ... , xK) E K X >0 - , XK >
0, Z:K 1 e= 1}. The probability density function of a Dirichlet distribution is given by

1
Dir(Xi, ... , XK; al,-, aK) = X1l- ... XKaK- 1 , (2.19)

B(a1, .. .,aK)

where Ce, a2,..., aK > 0 and B(ai,..., aK) is the Beta function, which can be ex-
pressed in terms of the gamma function as:

B(ai,..., CK) - 2=.l2
]p(EK_ 

(2.2)

The mean and variance of a random variable Xi and covariance between Xi and Xj
are given as:

E [Xi] =
ceo

Var [Xi] = (ao-aj) (2.21)
a2(ao + 1)

Cov [Xi, Xj] =-- ai e
ceo(Ceo + 1)

where ao = jai. Note that the mean of X does not depend on the absolute values
of parameters ai, but rather on their proportion. If all parameters a, are scaled by a
same factor, the mean does not change. However, if that factor is greater than 1 (i.e.,
if parameters cei increase proportionally) and assuming that initially ai ;; 1, Vi, the
variance of each Xi decreases, meaning that the distribution on X1 , ... , XK becomes

narrower around the mean.
Note that the support of the Dirichlet distribution is also the domain of possible

distributions over a discrete set of K elements. Furthermore, the Dirichlet distribution
is a conjugate prior to the multinomial (categorical) distribution. If the likelihood model
is given by Equation 2.13 and the prior on parameters 1,.. .,rK as

Dir(,.rl,...,rKK q. al, C-O- - aK = 1  l.I- K aK 1  (2.22)
j 1 F(ai)

and the observed valued are X1= c1 ,..., X = cK, then the posterior probability of
parameters is

'Dir(71, .. ., i=i i) 1, .e1_ .. -/ K l'-1 (2.23)~'K-

Si=_1 r(a'i)
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where a'1 = al + C, ... , a'K = aK + CK. Therefore, a Dirichlet conjugate update is
performed by simply updating each parameter ai with the number of samples from
category i, ci. Parameters ai are also called pseudo counts as they are added to the
observed counts. Having a prior parameter ai is equivalent to having a prior parameter
ai - di and adding di pseudo observations from category i. Note from Equation 2.21
that the proportion of parameters aj determines the mean of probabilities ri, while their
magnitude determines the variance of probabilities 7ri and thus reflects the strength
of belief in the mean values. In general, the larger ai values are (the more pseudo-
observations there are), the narrower the distribution on 7ri parameters is, meaning
that the belief is stronger. Conversely, small values of ai parameters result in a prior
with large variance, which is referred to as a weak (or broad) prior.

N 2.2.4 Normal Distribution

The (multivariate) normal distribution, also called the (multivariate) Gaussian
distribution, is a distribution over d-dimensional real vectors, X = [X1X2 ... Xd]T,
with a density function

exp(-!(X - p)TEl(X -
Ar(X; A, E) = 27r d/2 1/2 ,(2.24)

where p is a d-dimensional vector and E is a positive definite matrix of size d x d, which
are also the mean and covariance matrix of X, respectively. I.e.,

E [X] M (2.25)
Cov [X] =E,

which is a shorthand for the set of equalities

E [Xi] = pi

Var [Xi] =Ei (2.26)

Cov [Xi, Xi = E .

A conjugate prior to the normal distribution with a known covariance matrix is also
a normal distribution. If the likelihood models is given as

p(X I g; E) = M(X;Ay, E) (2.27)

and the prior on M as

p(p; tto, Eo) = A(,; go, Eo) , (2.28)

and there are n independent samples of variable X, xl, . .. , x", then the posterior dis-

tribution of the mean p is

(2.29)
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where

'= (Eo~- + n E-1 (Eo~tpo + n (2.30)

E/ = (Eo-1 + n E-')',

and t = 1 En 1 xi is the sample mean.

U 2.2.5 Inverse-Wishart Prior

The inverse-Wishart distribution is a distribution over positive-definite matrices of
a fixed dimension, d x d, with a density function

IV(X; T, ,) - IXI-(+d+l)/ 2 exp-1 tr(VX_ 1 )), (2.31)
2nd/ 2 'd(rs/2) 2

where dO is the multivariate gamma function [30], r, > d - 1 is a scalar parameter
called the degrees of freedom, and 4' is a d x d positive definite matrix parameter called
the inverse scale matrix.

The mean and the mode of an inverse-Wishart distributed random matrix X are
not equal:

E [X] = , > d+ 1
S,-d-1 (2.32)

Mode [X] = .r, + d + I
For larger values of , the variance of X is smaller, and therefore the distribution is
narrower around the mode.

The inverse-Wishart distribution is a conjugate prior to the normal distribution
with a known mean. If the likelihood models is given as

p(X I E; [) = Af(X; yu, E) (2.33)

and the prior on E as

p(E; T, K) = IW(E ; I, K), (2.34)

and there are n independent samples of variable X, X1..., ,n, then the posterior dis-
tribution of the covariance matrix E is

p(E I21 J. . . ,X"'; *, r) =IW(E; V, W'), (2.35)

where
n

T = 4 + ](xi - i)(xi - )(236)
i= 1

W' =, + n.

Note that setting a small value of , defines a weak (broad) prior on E, and that /- can
also be thought of as a pseudo-count.
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* 2.2.6 Matrix-Normal Inverse-Wishart Prior

Here, we consider a linear Gaussian model of a multivariate signal Xt,

Xt = A Xt-1 + wt , wt ~ Af(0, Q) , (2.37)

with parameters A (transition matrix) and Q (noise covariance matrix).
We assume that ( = (A, Q) follows a matrix-normal inverse-Wishart distribution,

which is a conjugate prior to the dependence model A/(Xt; AXt_ 1, Q):

p(A, Q; M, Q, T, r,) = M1N-1W(A, Q; M, Q, T, r,)

= M(A; M, Q, Q) IW(Q; T, n). (2.38)

It is a product of (1) the matrix-normal distribution

exp (-1 tr [Q- 1(A - M)T 1(A - M)])
MNj(A; M, Q, Q) = 2 (2rd/ QId2IQ12-7 (2.39)

where d and 1 are the dimensions of matrix A (Adxl), while Mdxl, Qdxd and Qjxj
are the mean, the column covariance and the row covariance parameters; and (2) the
inverse-Wishart distribution

-TW(Q; T, r,) =_2%/ IQI--(K+d+1)/2exp(_- tr(TQ-1)) , (2.40)
2n/2d(r,/2) 2

where d is the dimension of matrix Q (Qdxd) and E(do is a multivariate gamma function
while K and Td,,d are the degree of freedom and the inverse scale matrix parameters.
Note how the two distributions are coupled. The matrix normal distribution of the
dependence matrix A depends on the covariance matrix Q, which is sampled from the
inverse Wishart distribution.

Due to conjugacy, the posterior distribution of parameters A and Q given data
sequence Xo, X 1 ... , XT is also a matrix-normal inverse-Wishart distribution:

p(A, QIXO:T; M, Q, T, ) = MA-IV(A, Q; M', Q', V', ,K')
= MA (A; M', Q, Q') IW(Q; ', W'), (2.41)

where

T-1 1

'= (Q- + ZXtXt)
t=O

T

M/ = M-1 + I: Xt XT_1 '2.2
(MQ ~t=1 t ,(.2

n'=n+ T
T

-' = + ZXtXT + MQ-lMT - M'QlM'T.

t=1
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E 2.3 Graphical Models

In general, full representation of a probability distribution over N variables is in-
tractable. If these are discrete variables that take value from a set with cardinality
S, the full representation of an arbitrary joint distribution among them requires SN _ 1
parameters, as there is freedom in setting the probability for each combination of vari-
able values except for one (since they have to sum to 1). Similarly, for continuous
variables, the most general representation would require infinitely many parameters.
Therefore, only distributions that can be represented compactly are used in practice,
as is the case with all known families of distributions. In probabilistic modeling, a
probability mass or distribution function is typically assumed to take some parametric
form with a finite number of parameters. For example, a (multivariate) Gaussian dis-
tribution over N univariate continuous variables, Af(- ; y, E), is represented with mean
p, which is a vector of length N, and covariance matrix E of size N x N. In an-
other example, let us assume that D is a discrete random variable that takes a value
from {1, 2,..., K} and is distributed according to a multinomial distribution with pa-
rameters i= (1, r2, - -- , rK), (7r, 0, 1 i = 1), while r itself is a multivariate
random variable that is distributed according to a Dirichlet distribution with param-
eters a = (al, a2.....aK). Then, the joint distribution of 7r and D can be written as
p(7r, D; a) = p(7r; a) p(D 17r) = Dirichlet(7r; a)Mult(D; ir).

Graphical models are a language that uses graphs to compactly represent families of
joint probability distributions among multiple variables that respect certain constraints
dictated by a graph. There are two common types: undirected graphical models (also
called Markov random fields) and directed graphical models (Bayesian networks), which
use undirected and acyclic directed graphs, respectively, to form such constraints. In
both cases, nodes of a graph correspond to the variables which joint distribution is
modeled. In an undirected graphical model, a joint probability distribution is assumed
to be proportional to a product of nonnegative functions (called potentials) over graph
cliques (fully connected subgraphs). In a Bayesian network, a distribution is assumed
to be a product of conditional distributions of each variable given its parents in the
graph. Examples of both types of graphical models are shown in Figure 2.1. In both
types of models, a distribution is represented as or proportional to a product of factors
- potentials in undirected and conditional distributions in directed model. While each
factor may still require some compact representation, such as a parametric function or
a table of values (in discrete case), the complexity of this representation depends on
the size of a factor (i.e., the number of variables involved in a factor) instead of on
the total number of variables. Therefore, the overall complexity of a graphical model
representation (and consequently inference algorithms) is typically dominated by large
factors.
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C D C D
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Figure 2.1: (a) Undirected graphical model example: P(A, B, C, D, E) 0c f,(A, B) f2 (A, C)
f3 (B, D) f4 (C, D) f5 (B, D, E). (b) Directed graphical model example: P(A, B, C, D, E) =

P(A) P(BIA) P(C) P(DIA, B, C) P(EIB, D).

* 2.3.1 Directed Graphical Models (Bayesian Networks)
A Bayesian network (BN) consists of a directed acyclic graph G = (V, E), whose
nodes X 1 , X 2 , ... , XN represent random variables, and a set of conditional distribu-
tions p(Xil pa(Xi)), i = 1, ... , N, where pa(Xi) is a set of variables that correspond to
the parent nodes (parents) of node Xi. Since G is acyclic, its nodes can be arranged
in a so-called topological order, such that all parents of a node are its predecessors in
the topological order (i.e., all edges go from left to right with respect to the topological
order). Let's assume, without loss of generality, that X 1 , X2 , ... , XN is a topological
order of nodes in graph G. Then, pa(Xi) E {X 1, X2,..., Xi- 1}. Note that any joint
distribution among N variables can be written as

N

p(X1, X 2 ,..., XN) = p(X1)p(X2 |X1) ... p(XNIX1,..., XN-1) = Jp(XilX, ... , Xi_ 1).
i=1

A Bayesian network with associated graph G represents a family of distributions of the
form

N

p(X1, X2 ,. .. ,XN) = p(XiIpa(Xi)),
i=1

i.e., in which each variable Xi, when conditioned on its parents pa(Xi), is independent
of all other predecessors in a topological sort (XiIL{X1 , ... , Xi- 1} \ pa(Xi) Ipa(Xi))1
Conditional distributions p(XiI pa(Xi)) are typically assumed to have some parametric
form p(Xi I pa(Xi), i), in which case learning a Bayesian network means learning param-
eters Oi. If, in addition, graph G is unknown, the inference of this graph is commonly
referred to as learning the structure of a Bayesian network.

Figure 2.2 shows two additional examples of Bayesian networks. In Figure 2.2a,
D1 , D2 , ... , DN are discrete random variables with values from {1, 2, ... , K} that are
drawn independently from a multinomial distribution with parameters -r = (7r1, 7 2, ... , rK

(xi > 0, Z 1 xir = 1), while 7r itself is a random vector drawn from a Dirichlet distri-
bution with parameters a = (ai, a2,....aK). Then, the overall joint distribution can

'There can be multiple topological sorts for the same graph. This holds for any of them.

35Sec. 2.3. Graphical Models



CHAPTER 2. BACKGROUND

a

D, D2 DN..

(a) (b)

Figure 2.2: Two examples of Bayesian networks.

be written as

N N

p(7r, D1, D2, ... ., DN; Ce) = p(,7; a) H P(D I 7r) = Dirichlet(7r; a) Mult(Di; 7r).
i=1 i=1

Note that if constant parameters are shown in a graphical model diagram (a in this
case), they are written inside a square (as here) or simply without an associated graphi-
cal symbol. In Figure 2.2b, X 1, X2 ,. . ., XN are jointly Gaussian univariate random vari-
ables with an additional constraint that, for each i, Xi is independent of X1,..., Xi-2
when conditioned on Xi- 1 (first order Markov assumption):

N N

P(X1, X2, ... , XN) = P(Xi) 1 P(XilXi_ 1) = A(X 1 ; pi, o) J7JV(Xi; aiXi_ 1, oa).
i=2 i=2

Note that this model requires only 2N parameters, compared to N + N 2 required for a
general multivariate Gaussian model. If for example, parameters ai and oa? are assumed

the same for all i, the number of parameters is further reduced to 3.

N 2.3.2 Temporal Directed Graphical Models (Dynamic Bayesian Networks)
Dynamic Bayesian networks (DBNs) are Bayesian networks that model sequential data,
such as time-series. In a DBN, random variables are indexed with discrete numbers
0, 1,2,... , T (we choose to start with 0 for convenience, but starting index can be
arbitrary). We will refer to such index as time, although it may not be time-related in
general (for example, it can be an index into a genome sequence or a word in a sentence).
Each signal in a model is therefore represented with a sequence of random variables that
correspond to its value at different indices, or discrete time points. Edges are allowed
only from a variable with a lower index to a variable with a higher index (i.e., they must
"point" forward in time). Let Xl denote a random variables that takes the value of signal
i at time t. Then, if there is an edge from X1 to X 2, t 2 > t1 must hold. Furthermore,
edges are often restricted to connect variables at neighboring time points, i.e., they are
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of the form Xt -+ XN1 . This assumption results in a first-order Markov model over
time - signal values at time t are independent of the past given their values at time t -1.
We will assume such models throughout this paper. Let pa(i, t) be the set of parents of

signal i at time t. Then, the associated conditional probability distributions are of the

form p(X IXP("t), where X"('t) denotes a collection of variables {Xt_ 1 ; v E pa(i, t)}.

In homogenous DBNs (which are often assumed by the term DBN) edges between

signals (i.e., parent sets) and conditional distributions are assumed time-invariant. On

the other hand, in time-varying DBNs both edges and conditional distributions may

vary over time. Figure 1.1 shows an example of a time-varying DBN which is piecewise

homogenous (switching).

* 2.4 Markov Chain Monte Carlo Sampling

Markov chain Monte Carlo (MCMC) sampling is -a class of algorithms for gen-

erating samples from a distribution p*(x) via a random walk on a Markov chain that

has distribution p*(x) as its stationary distribution. A Markov chain is a stochastic
process defined as a sequence of random variables X 1 , X2, X3,. .. that satisfy Markov

property:

p(X Xn_ 1 , Xn- 2 ,. .. ,X) =p(XnlXn-1), Vn>1. (2.43)

In other words, the value of the random variable Xn depends only on the value of the

previous random variable, Xn_1 . p(Xn I Xn- 1 ) is a distribution of Xn given Xn- 1 , which

is referred to as the transition distribution from time n - 1 to time n. A homogenous

Markov chain is a Markov chain for which the transition distribution is the same over

time, i.e., p(Xn = yI Xn_1 = x) = p(Xn- 1 = Y IXn-2 = x), Vn > 1. Let q(y Ix) be this

distribution, and let X be the domain of variables Xn, which is also called the state

space of a Markov chain. Then, a homogenous Markov chain is described by the state

space X and a transition distribution q(y I x), Vx, y E X. In the rest of this Section we

will assume that Markov chains are homogenous.
A stationary distribution of a homogenous Markov chain is a distribution p*(-)

over the state space that is invariant under the transition distribution:

p*(y) f p*(x)q(ylx)dx, Vy E 'X. (2.44)

State y is reachable from state x if there exists n > 0 such that p(Xn = yIX1 = x) > 0
(i.e., if there exists a sequence of transitions that reach state y from state x. State x

is aperiodic if there exists no such that p(Xn = xIX, = x) > 0 Vn > no. If all states

are aperiodic and reachable from each other, a Markov chain is said to be ergodic and

converges to a unique stationary distribution starting from any state X1. In other words,

a distribution p(Xn) will become closer to the stationary distribution as n approaches

infinity.
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The convergence property of ergodic Markov chains is exploited in the MCMC
sampling approach. Namely, if the transition distribution of a Markov chain is defined
in such a way that the chain is ergodic and the stationary distribution is equal to a
target distribution p*(.), then the Markov chain converges to the target distribution.
Samples from the target distribution are generated by simulating the Markov chain.

There are several practical considerations regarding MCMC methods. The target
distribution is never truly achieved in finite number of steps. However, after certain
number of transitions, no, p(X.0 ) becomes close enough to the target distribution p* (.)
that it can be assumed equal to p*(-) for practical purposes. The same then hold
for any n > no. But, the question is how big no should be? That depends on a
particular application and is typically estimated empirically. The time no after which
the distribution of X, can be assumed equal to the target distribution is called burn-in
period. In addition, samples generated via Markov chain are correlated. The correlation
between two samples is higher when they are closer to each other in the chain. Therefore,
to obtain approximately independent samples from the target distribution, they should
be taken at some distance apart from each other. Finally, if the target distribution is
multimodal, a sampler may "get stuck" in one of the modes for a very long time. To
explore the entire space more efficiently, multiple simulations of a Markov chain with
different (random) initial states are often performed, and a number of samples are taken
from each chain. That reduces bias towards a particular subspace of the state space.

To complete the MCMC sampling method, it remains, for a given target distribution

p*(.), to find a transition distribution q(y I x) that defines an ergodic Markov chain, and
for which p* () is the stationary distribution. One possible approach is to find a transition
distribution that satisfies the detailed balance:

p*(x)q(y x)=p*(y)q(x y), Vx,yEX. (2.45)

If this equation is satisfied, p*(-) is guaranteed to be a stationary distribution of a
Markov chain.

M 2.4.1 Gibbs Sampling

Gibbs sampling is an MCMC sampling method that is used for sampling from a joint
distribution of variables X 1, X 2 ,. .. , XN when direct sampling from the joint distri-
bution is difficult, but sampling from conditional distributions p(Xi I Xi) is feasible,
where X-i denotes the collection of all variables except Xi. The following transition
distribution is used. Let X1, X2, .. . , XN be the current state. Index i is drawn randomly,
and a value x'i is sampled from the conditional distribution p(Xi I X-i = x-i). The
new state is then x1, ... , x 1 , x', i+ 1, - . , XN. It can be shown that the transition dis-
tribution implied by this procedure satisfies the detailed balance. Furthermore, instead
of drawing a value of index i randomly, i can loop through all indices in a deterministic
fashion, and that procedure still converges to the stationary distribution, which is in
this case the joint distribution over X 1 , X 2 , ... , XN-
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N 2.5 Interaction graphs and DBN

Our goal is to reason over time-varying interactions (dependence structures) between
N multivariate signals. We assume that signals evolve according to a Markov process
over discrete time points t - 0,1,. . . , T. The latent state associated with signal i at
time point t > 0 depends on the state of a subset of signals pa(i, t) at time point t - 1.
We refer to pa(i, t) as a parent set of signal i at time point t. While the preceding
implies a first-order Markov process, the approach extends to higher-ordered Markov
processes. A collection of directed edges Et = {(v, i); i = 1, .. . , N, v E pa(i, t)} forms
an interaction graph at time point t, Gt = (V, Et), where V = {1,.. , N) is the set of
all signals. That is, there is an edge from j to i in Gt if and only if signal i at time
point t depends on signal j at time point t - 1. We say that the parent signals pa(i, t)
influence signal i at time t.

Let Xt denote a (multivariate) random variable that describes the latent state as-
sociated to signal i at time point t. Then, signal i depends on its parents at time t
according to a probabilistic model p(X Xp_2i't), Oz) parametrized by Ot, where Xpa(i,t)

denotes a collection of variables {Xt_ 1 ; v E pa(i, t)}. Furthermore, we assume that
conditioned on their parents at the previous time point, signals are independent of each
other:

N

p(XtIXti1, Et Ot) = (p(XtiXpli', 0i , (2.46)
i=1

where Xt = {Xt}f 1 (i.e., Xt is a collection of variables of all signals at time point t)
and Ot = {9|}f 1. Structure Et and parameters Ot determine a dependence model at
time t, Mt = (Et, Ot). Finally, we express a joint probability of all variables at all time
points, X, as

T

p(X) = p(Xo 60o) 1 p(Xt|Xt--_, Et, Ot)
t=1

N T N

= 7p(X0,) fJp(Xi|X'a(i, ,). (2.47)
i=1 t=7 i=1

The stochastic process of Eq. 2.47 can be represented using a dynamic Bayesian
network (DBN), such that there is a one-to-one correspondence between the network
and the collection of interaction graphs over time, as shown in Figure 1.1.

* 2.6 Bayesian Learning of a Time-Homogenous Dependence Structure

Even when the dependence model does not change over time and observations are
assumed perfect, learning a dependence structure is an NP-hard problem in general [10].
On the other hand, if we cannot solve this problem, we have little hope of solving a more
complex problem of reasoning over time-changing interaction from imperfect data stated
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Figure 2.3: Dynamic Bayesian Network (DBN) representation of a homogenous inter-

action among four signals with interaction graph E. Self-edges are assumed.

in this thesis. Therefore, it is of critical importance that we have a tractable solution

to the simplified problem. Furthermore, the inference over homogenous dependence

structure from "perfect" data will serve as one step in the inference procedure for the

full model, given in Section 31.

Let us first describe the homogenous interaction model more formally following the

notation introduced in Section 2.5. We assume here that the dependence model is

homnogenous in time, i.e., Et E, pa(i, t) = pa(i), and Ot = 0. Equation 2. IG can now

be rewritten as
N

p(XjIXt_-, E, 0) = fJp (XjrXpa o , ) (2.48)

and Equation 2.-7 as

T

p(X|E, 0) p(X|oOo) f p(XtIXt 1,, 0)
t=1

N T N

Hnp(X 0) Hfp(XIXt 0). (2.49)
i=1 t=1 i=1

This stochastic process is illustrated in Figure 2.3. In the rest of this section, we will

assume that the parameters of the initial model, 0 o, are known, and focus solely on

inference over the dependence model.

The goal of structure learning is to infer the dependence structure E from observed

time-series X. Paranieters of the dependence model. 0, may be inferred as well, or

- I- I- - -- -I- - MW US
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Figure 2.4: Freqix(untist hoiogeno1s temporal interaction model.

treated as nuisance variables. There are different approaches to structure learning,
which are summarized in Section2.6.5. We make two important distinctions here. The

first one is between frequentist and Bayesian approaches. The second distinction is

between point estimation of a structure and a evaluating the full posterior distribution

ov'i structures.

* 2.6.1 Frequentist vs. Bayesian approach

Frequentist approach

In a frequentist approach, unknown variables are treated as deterministic (just uui-
known). The graphical model of a homogenous interaction in a frequentist approach is

shown in Figure 2.4. In this case, the structure E and parameters 0 of the dependence

model (Equations 2-S and 2. 1f) are unknown. The box around these two variables sig-

nifies that they are treated as a single "unit" (which we also call a dependence model),
and each variable Xt depends on both of then (so, there is no need to clutter the figure

by drawing a separate edge from E to X, and from 0 to Xt).

Bayesian approach

On the other hand, in a Bayesian approach, unknown variables are treated as random

variables whose values are assumed to be generated from some prior distribution (prior

to data generation). Let p(E; ) be the prior probability of structure E, parameterized

by 3. In the most general form, 3 is a collection of parameters {OE} (one parameter

for each structure), such that 3 E is proportional to the prior probability of E:

p(E; 3) = 3E DC OE, (2.50)

where B = EE OE is a normalization constant.
Let p(O E;) be the prior probability of 0, parameterized by -y. For now, we do not

assume any particular form of the dependence models, p(X'lXP(T,) 0). Note however

that the prior on parameters, 0, may depend on the structure. Since different struc-

tures may differ in the iimnber of parents (for some signals), they may also require

MM
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1
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Figure 2.5: Bayesian homogenous temporal interaction model.

parameters of different dimensionality. Thus, 2' is indeed a collection {bE } of sets of

hyperparameters, such that p(O E; ) P(O; 2E)-

The Bayesian model described above is shown in Figure 2.5. The posterior distri-

bution over dependence model structure and parameters can be written as

p(E, 0 1X; 3, -y)
p(X IE, 0) p(E, 0; /, 2)

p(X; 3, 2')

Here, p(E, 0;, ) p(E; /) p(O IE; -) is the joint prior on E and 0. The denominator

p(X; /, 2), which serves as a normalization constant, is the marginal probability of data:

p(X IE, 0) p(E, 0; /, 2) dO. (2.52)

Note that for discrete 0, the integral above should be replaced by a summation. Also,

if only sorme components of 0 are discrete, there would be a combination of a sum and

an integral instead.

Similarly as with the prior, the posterior in Equation 2.51 can be decomposed as a

product of the posterior over structure and the posterior over parameters given struc-

ture:

p(E,01X; ,2') p(EI X;0, 2 ') p(0I E, X; -) .

The posterior over structure can be obtained as

p(F~;/3.) _p(E;/3) p(X IF; 2 )p(E I X 0, ) . (2.54)

Here, p(X IE;2) is the marginal probability of data given structure E, where the

marginalization is over parameters 0:

(2.55)
p(X IE, 0) p(O IE; 2) dO.

Note that p(X IE; 2') depends on the hyperparameters associated with the prior on

0. More precisely, it depends on 2'E, which are the hyperparameters associated with the

(2.51)

(2.53)
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prior on 0 given E. Thus, we can write p(X I E;y) = p(X E; YE). If one marginalizes
over the parameters 9, then Eq. 2.52 can be written as

p(X; 0, -y) = E p(X, E; , 7) = > p(E; #) p(X IE; yE). (2.56)
E E

Finally, the posterior over parameters 9 given structure can be written as

p(9E, X;y) - p(9IE; ) p(X IE, 0)p((XIEX; )).=(2.57)p(X I E; -)

Note that p(X IE; -y), the marginal probability of data given structure, serves as a
normalization constant when evaluating the posterior over parameters given structure
(Eq. 2.57), while it has the role of a likelihood function when evaluating the posterior

over structure (Eq. 2.54).

N 2.6.2 Point estimation vs. full posterior distribution evaluation

Point estimation

A point estimate of a structure is commonly obtained as a structure that maximizes

some objective function exactly or approximately (e.g., using a heuristic search) [11].
For example, a maximum likelihood (ML) estimate of a homogenous structure

is obtained as

EML = arg maxmax p(XIE, 0). (2.58)
E 0

The problem of structure learning can also be thought of as a model selection problem.
For each structure E, p(XIE, 0) represents a statistical model of time series X - the
one indexed by E, parametrized by 9. The maximum likelihood estimate of parameters

of this model is obtained as

OML I E = arg max p(XIE, 9). (2.59)
8

Thus, the ML estimate of a structure is the structure that yields a model for which the
highest likelihood is achieved:

EML arg max p(X IE, OML I E). (2.60)
E

In general, this criterion may lead to severe overfitting. For example, let structures
E1 and E2 satisfy E1 c E2 , and models p(X IE1 , 9) and p(XIE 2 , 0) be such that the

model for E2 "contains" the model for E1 . In other words, V9 1 E Ql, ]02 E Q2 such
that p(XIE 2 , 92) = p(XIEI, 91), 2 where Q 1 and Q 2 are the parameter spaces of the first

and second model, respectively. Then, p(XIE1, OML i E,) <_ p(XIE2, ML I E2 ) necessarily

2i.e., VX,p(XIE 2 , 0 2 ) = p(XIE1, 01)



holds. This is often the case in practice. For example, if the two models are chosen from
the same parametric family, the model for E2 reduces to the model for E1 when the
edges in E2 \ E1 are ignored (e.g., when the corresponding parameters are set to 0, or in
some other way, depending on the actual family). Thus, the model for E 2 is at least as
good of a fit as the model for El, and likely better, which results in selecting a maximal
structure (fully-connected graph) as an ML estimate, and, consequently, overfitting.

A penalty on model complexity is typically imposed in order to prevent overfitting.
Two commonly used objectives that incorporate model complexity are Aikike informa-
tion criterion (AIC) [1] and Bayesian information criterion (BIC) [48]. AIC value of a
model is defined as

AIC = 2m - 2 ln(L), (2.61)

where L is the maximized value of data likelihood under that model, and m is the num-
ber of independent parameters of the model. AIC criterion, which has an information-
theoretic justification, states that the model with the smallest AIC value should be
selected. While the negative log-likelihood generally decreases with the model complex-
ity, the number of parameters on the other hand increases, thus providing a penalty
on model complexity. In the homogenous-structure learning problem, the maximized
likelihood of a model for a given structure E is

L(E) = p(XE, ML I E), (2.62)

and Aikike information criterion is then

AIC(E) = 2m(E) - 2 lnp(XIE, ML E), (2.63)

where m(E) is the number of independent parameters of the model p(X IE, 0) (i.e., the
true dimensionality of OE)-

The BIC value of a model is defined as

BIC = m ln(T) - 2 ln(L) , (2.64)

where T is the number of data points, and m and L are as above. It is derived as an
approximation to the marginal data likelihood assuming a "flat" prior on parameters
(i.e., assuming that p(9 IE) oc 1) [5]. Again, the model with the smallest BIC value
should be selected according to the BIC criterion. Note that the BIC score differs from
the AIC score in that the penalty term also depends on the number of data points, T.
When T is large enough, the BIC score penalizes model complexity more aggressively
than the AIC score, which often proves better in practice. Also, the AICc (corrected
AIC) criterion [28], which is a modified version of AIC, tends to work better than AIC
for small sample sizes.

A maximum a posteriori (MAP) estimate of the joint configuration of structure
and parameters is

(E, 9 )MAPC = arg maxp(E, 0 1 X;/3, -y) = arg maxp(X IE, 0) p(E, 0; 3, -y), (2.65)
E,O E,O
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where the last equality follows from Equation 2.51 and recognizing that the normal-

ization factor does not depend on E and 9. Here, the prior p(E, 9; #, -X) can also be
thought of as a regularization term that can be used to penalize model complexity. For
example, the prior on structure, p(E; #), can be constructed to incur higher penalty on
structures with higher number of edges in order to prevent overfitting. The structure
component of the joint MAP estimate can alternatively be written as

EMAPC = arg max max p(X IE, 9) p(E, 9; 3, -y)
E 0

= arg maxp(E; 3) max p(9; -y) p(X IE, 9)
E 0

arg maxp(E; ) P(OMAP I E; -/) p(X IE, OMAP IE), (2.66)
E

where OMAP E is the MAP estimate of parameters 0 for a given structure E, i.e.,

OMAP I E = arg max p(9 ; -y) p(X IE, 9). (2.67)
0

Note that Equation 2.66 differs from Equation 2.58 only in the presence of prior,
p(E, 9; /, -y). Therefore, an ML estimate of a structure can be thought of as a structure
that belongs to the joint MAP estimate of the structure and parameters when their
prior is "flat".

If we are only concerned about learning the structure (and treat parameters as

nuisance variables), an alternative MAP estimate of a structure can be obtained by
maximizing its marginal posterior distribution:

EMAPM = arg maxp(E I X; /, y) = arg maxp(X IE; y) p(E; #). (2.68)
E E

This can again be thought of as a model selection criterion, in which the model implied

by structure E is evaluated by averaging data likelihood over all possible values of

parameters for that structure, weighted by the prior probability of parameters (Equation

2.55), while the prior probability of structure serves as a model penalty. It is important
to note however that Bayesian averaging over parameters (as in p(X IE; -y)) accounts for

model complexity on its own. Namely, since the (weighted) average data likelihood is

used instead of the maximum likelihood to evaluate a model, a more complex model is
not necessarily better than a simpler one, even if the simpler model is contained within

the complex model. Therefore, it is not necessarily the case that the prior on structure

has to be used as a means of penalizing model complexity. For example, even if larger

structures have higher prior probability, that may not necessarily result in overfitting.

Evaluatiing full posterior distribution

An alternative to structure point estimation is to compute the posterior distribution
of all structures, as given by Equation 2.54, and then evaluate the probability of any
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event of interest by a Bayesian averaging over structures. For example, the posterior
probability of an edge A -+ B belonging to the interaction structure can be computed
as

P(A -+ BI X; , ) Z (A -+ B E E) p(EIX;3, y)
E

= p(EIX; 3, (2.69)
E: A-+BEE

where IL is the indicator function.3 This can be generalized to any event A:

P(A I X; , y) = p(A I E; y) p(EIX; , -y) . (2.70)
E

If A(E) is an event that only depends on structure E, which we will call a structural
event, then

P(A I X; , y) = 51 (A(E)) p(EIX;3, y)
E

E p(EIX; , ). (2.71)
E: A(E)

For instance, an event that an edge A -+ B belongs to the interaction structure, given
in Equation 2.69 above, is an example of a structural event.

Similarly, the posterior probability of an edge A -+ C conditioned on the presence
of edges A -+ B and B -+ C can be computed as

P(A -+ C A -+ B, B -+ C, X;3,'y)

P(A -+ C, A -+ B,B -+ CIX;,3,)

P(A -- B,B -+ CIX;,3y)

E: {A-+C,A--+B,B-+C}EE p(E I X; /, y) (2.72)
ZE: {A-+B,B-+C}EE p(E I X; #, -y)

which can again be generalized to arbitrary events A and B:

P(A, B I X; #,g)
P(AB, X;, P() = IX; Y)

_ Ep(AI BE;y)p(EIX;#,y) (2.73)
EE p(B1 E; y) p(E I X;,v) (73

3 E(cond) = 1 if cond is satisfied, 0 otherwise.
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Finally, we define a conditional structural event AIB(E) as an event that A(E)
holds assuming that B(E) holds, whose probability can be computed as

P(A113,X;,3,y) - EE: A(E)AB(E) p(E I X; 0, ()
P(A BX; # y)= .(2.74)

E: 13(E) p(E I X;3, y)

An example of a conditional structural event is given in Equation 2.72.
Let us illustrate the variety of possible structural events with some more examples.

The probability of an event that signal A has at most m parents, indeg(A) =Ipa(A) I<
m, 4 can be computed as

P(Ipa(A) I mIX; 0, y) = p(E X; #, y). (2.75)
E: Ipa(A)I_<m

Another example is an event that signal A is a parent to at least m signals, outdeg(A)

Z:B l(A -+ B c E) > m. 5 The probability of this event can be computed as

P(outdeg(A) > m IX; 0, -y) =_ p(E I X; 0, -y) .(2.76)
E:outdeg(A)>m

Note that a point estimate of a structure only provides a prediction whether a
structural event holds or not, and does not characterize the uncertainty of that estimate,
which is, on the other hand, captured by evaluating the full posterior over structures.
While this argument holds for any type of variable, and is the basis for using the
Bayesian approach in the first place, it is particularly important in the case of structure
inference. The number of possible structures is extremely large (superexponential in
the number of nodes), with possibly many of them providing similarly good fit to the
same data, even for relatively large data sizes. The uncertainty in the inferred structure
is further increased in the cases when limited data is available and the data is imperfect

(noisy and/or missing).
Note also that a frequentist approach can only be paired with maximum-likelihood

point estimation, since it does not treat parameters (structure and parameters in this
case) as probabilistic variables and therefore does not allow for computing their pos-
terior distribution. It should be mentioned that various techniques for computing the
confidence of estimated values or their statistical significance have been developed in the
frequentist setting, but they have a different meaning - they only provide confidence in
estimated values and therefore do not allow reasoning over different parameter values.
For example, one may construct a hypothesis testing procedure that tests whether an
edge A -+ B exists in the interaction structure. However, the result of such a procedure
would be a conclusion whether the hypothesis should be accepted or not and an asso-
ciated statistics that supports the decision (e.g., p-value). Furthermore, it may be the
case that none of the hypothesis (presence or absence of an edge) is strongly supported

4 The number of parents of a node is also called node in-degree.
5 The number of children of a node is also called node out-degree.
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by the data, but the associated statistics could not be used to compute the edge proba-
bility. Also, if hypotheses are made about the graph, it is very likely, due to the inherent
uncertainty mentioned above, that none of the graphs would be "accepted". On the
other hand, a Bayesian approach can be paired with maximum-a-posteriori point esti-
mation, as well as as with evaluating the full posterior distribution, which characterizes
the uncertainty in parameter values by computing their full posterior distribution, and
thus is the approach of our choice in this thesis.

The examples above demonstrate the posterior analysis in the case of structural
events, which are binary functions of the structure. The same type of analysis can
be performed for any type of function by evaluating the posterior probability6 of each
possible outcome. For example, the posterior distribution of a node out-degree can be
computed as

P(outdeg(A) = mIX; , v) = p(E I X; , -y) . (2.77)
E: outdeg(A)=m

More generally, if f(E) is an arbitrary function of the structure E, which we will refer
to as a structural property, the posterior probability that it takes a particular value
v can be computed as

P(f(E) = vIX; ,) = p(EIX; ,-y) . (2.78)
E:f(E)=v

Note that structural events are a special case of structural properties - binary properties.
It is worth noting that binary properties exhibit the weakness of point estimation the
most. If the point estimation of such property is wrong, it misleads further analysis. On
the other hand, estimates of some properties can be useful even if they are wrong. For
example a point estimate of a property whose value lives in an "ordered" space, such
as node out-degree, provides insight into which area of the space its value may belong
to (e.g., whether the out-degree of a node is high or low). Still, even in such cases, the
Bayesian approach provides more information about such a property by evaluating its
entire posterior distribution.

U 2.6.3 Complexity of Bayesian network structure inference

Bayesian network structure learning is a hard problem - NP-complete in general [10].
First of all, the number of possible static Bayesian networks with N nodes is huge. It
is the same as the number of directed acyclic graphs (DAGs) with N nodes, which we
denote as 9N. It can be shown that 9N is superexonential in N with exponent 1(N 2 ).

Lemma 2.6.1. gN > 2(2)

Proof. Let ir = (ii, i 2 , .-. ,iN) be an arbitrary permutation of node indices 1, 2, . . ., N.
Let us consider only directed graphs in which each edge (ij -+ ik) must satisfy j < k

6 or density in the case of continuous-valued functions
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(i.e., edges must point from left to right with respect to the permutation). We will
say that these graphs "respect" the permutation 7r, or that ir is a topological order for
them.7 They can be constructed by choosing independently for each pair of indices

j < k whether to have an edge ij -+ ik or not. There are (N) such pairs. Therefore,

the number of graphs that respect the permutation 7r is g, = 22), for any permutation
of N nodes. Such graphs are DAGs, since any cycle would have to contain at least one
edge going from right to left in the permutation, from which it follows that gN 9,r- U

Lemma 2.6.2. gN 3 (2-

Proof. Let us consider all directed graphs with N nodes that do not contain cycles of
length 1 (self-loops) nor cycles of length 2 (pairs of edges i -+ j and j -+ i, for any i and
j). They can be constructed by choosing independently for each pair of nodes i # j
whether there is an edge i -+ j, an edge j -+ i, or no edge between them. Therefore,

there are 3() such graphs. These graphs necessarily include all DAGs, from which the
statement of the Lemma follows. N

Theorem 2.6.1. gN - 2E(N2)

Proof. From Lemmas 2.6.1 and 2.6.2

N(N - 1) 10 g2 (3)N(N - 1)

2 2 log2(gN) 2

from which the statement of the theorem follows. N

From the proof of Lemma 2.6.1, one may attempt to conclude that gN = N!2M,
as there are N! possible permutations of nodes and 2() possible DAGs that respect
each permutation. This is however not true because some DAGs respect more than

one permutation and are therefore counted more than once. For example, a graph with

no edges is a DAG that respects all permutations. On the other hand, since N! 2()

is an overestimate of the number of DAGs, it can serve as an upper bound. In fact,
it is asymptotically a tighter upper bound than 3() from Lemma 2.6.2. To see that,
note that log N! =_ XN1log i = (N log N) = o(N2 ),8 from which it follows that

log N!2(2 =o(N2 ) + N( 1), which is clearly smaller than 32) = log2(3)N(N-1) for
large enough N. The exact number of DAGs with N nodes can be computed recursively

due to Robinson [47] as

gN ?n-1 I() m(N-m9- (2.79)
m=1

starting with go = 1 (there is only one DAG with 0 nodes -- empty graph).

7Note that each graph can have multiple topological orders.

8Y$N log i = 9(Nlog N) follows simply from j log N ; N logi NlogN.
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Theorem 2.6.1 shows that the number of possible static Bayesian networks is super-
exponential in the number of nodes. Therefore, the complexity of evaluating the full
posterior over such networks is also superexponential, since the posterior probabilty of
each possible structure must be evaluated. It does not immediately follow that struc-
ture point estimation incurs the same complexity (many optimization problems with
exponential number of possible solutions are solvable in polynomial time by exploring
some structure in the solution space - e.g., Dijskstra's algorithm for finding the shortest
paths in a graph). However, Chickering [10] has shown that finding the "best" structure
is NP-complete under very general assumptions - existence of a structure scoring func-
tion (e.g., marginal data likelihood given structure as in Equation 2.55) and structure
penalty function (e.g., AIC/BIC penalty or structure prior probability). Hence, both
ML and MAP structure estimation (as well as any other "reasonable" point estimation
method) are NP-complete problems.

Learning a homogenous dynamic Bayesian network is a very similar problem. The
number of possible such networks with N signals, dN, is also superexponential in the
number of signals.

Theorem 2.6.2. dN - 2 N

Proof. All homogenous dynamic Bayesian networks with N signals, X1 , X 2 , ... ,XN
are fully determined by the edges between variables at any two neighboring time points
t - 1 and t. For each pair of variables Xt_ 1 and XL, there are two choices: there is

no edge between them or there is an edge Xt_ 1 -+ X . There are N2 such pairs, and

each choice for an edge can be made independently. Therefore, there are 2 N2 possible
structures. Note that this is exactly the number of bipartite graphs between two sets
of nodes of size N. U

Consequently, dN is also the number of possible interaction graphs between N sig-
nals at any given time. Note that calculating this number is simpler than calculating
the number of static Bayesian networks. The main reason is that dynamic Bayesian
networks implictly assume ordering of nodes (which is temporal ordering) and thus do
not involve permutation selection. As a consequence, each edge can be chosen indepen-
dently. The same does not hold for static networks - choosing a subset of edges may
prevent choosing some other edges in order to satisfy graph acyclicity (edges can only
be chosen independently when conditioned on a particular permutation).

Obviously, the complexity of the Bayesian inference over homogenous DBNs is also
superexponential, which is of our primary concern. On the other hand, to the best
of our knowledge, it is not clear from the existing literature whether the result of
Chickering holds in this case as well. In other words, it is not cleat whether homogenous
DBN structure point estimation is necessarily NP-complete under the same assumptions
and whether there are some specific instances of that problem in which the simplified
structure of the solution space (no permutations involved) can be exploited to obtain
polynomial-time algorithms. While this is certainly a very important and interesting
problem, it will not be of a concern in this thesis, as we are primarily interested in the
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# nodes # static BNs # interactions

1 1 2

2 3 16
3 25 512
4 543 65.536
5 29,281 33,554,432

6 13781,503 6.87 * 1010
7 1.14 * 1009 5.63 * 1014

8 7.84 * 10l 1.84 * 1019
9 1.21 * 1015 2.42 * 1024

10 4.18 * 1018 1.27 * 103 0

Table 2.1: The nuniber of possible static Bayesian networks and homogenous interaction

structures as a function of the iiumber of nodes.

Figure 2.6: There are 16 possible interaction structures among 2 signals.

Bayesian approach.

U 2.6.4 Prior for efficient structure inference

Exact Bayesiati inference over both static Bayesian networks and honogenous DBNs

(or, equivalently, homnogeno(s interaction structures) is computationally tractable only

when the number of nodes or signals is very small. The number of possible structures

for both types of networks as a function of the number of nodes/signals is shown in

Table 2. 1. For examlple, even for only 2 nodes there are already 16 possible interaction

structures, which are shown in Figure 2..

In order to allow for tractable inference over structure, an approximate algorithm

miust be employed or sonic assumptions mnust be made in order to reduce the space of

allowed structures (or both). The most widely used class of algorithms for approximate

Bay(sian inference over structures are sampling algorithms. For example, Markov chain

Monte Carlo (MCMC) simulationi has been used to generate samples from the poste-
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rior distribution over structures [19, 36], which can be used to estimate the posterior
probability of any structural property:

N.

P(f(E) = vI X; /, Y) ~ E I(f(i) =v) , (2.80)
=1

where E1 , . . . , EN, ~ P(E I X; 3, -y) are N, samples from the structure posterior. The
key challenge in such approaches is to construct a proposal distribution that leads to
efficient exploration of the space of structures with respect to their posterior probability.

We choose the latter approach to tractable inference over structures, which is to
impose constraints that reduce the space of possible structures and perform exact in-
ference over the remaining structures. We follow the work of Siracusa and Fisher [50]
and use the following two assumptions: (1) modular prior assumption, which allows
independent reasoning over parent sets of signals and reduces the complexity of infer-
ence to exponential, and (2) additional constraints on parent sets, such as bounded
in-degree assumption, which further reduce the complexity of inference to polynomial
in the number of signals.

A modular prior on structure and parameters [7,11,19, 27] is based on the follow-
ing assumptions:

" p(E;#) = F p(pa(i); #) (structure modularity)

* p(OIE; '') = Hf_ p(O'E; -y) (global parameter independence)

" p(9Zl E; -y) p(O'lpa(i); -y) (param. modularity).

The "structure modularity" assuiption states that the parent sets of different sig-
nals are independent of each other with respect to the prior probability of structure.
The "global parameter independence" assumption states that the parameters of the
dependence models of different signals are independent of each other with respect to
their prior probability given structure. Finally, the "parameter modularity" assumption
states that the prior probability of parameters of the dependence model of a signal only
depends on the parent set of that signal, and is therefore independent of the parent
sets of other signals. These three assumptions can thus be written in the form of prior
independence statements:

" pa(i)lLpa(j), Vi, j : i : j (structure modularity)

" Gi L6 I E, Vi, j : i :4 j (global parameter independence)

" 0'i1Lpa(j), Vi, j : i : j (param. modularity),

as well as summarized in the following statement: The modular prior on structure and
parameters decomposes as a product of priors on parent sets of individual signals and
associated parameters,

N

p(E, 0; 3, -y) = fi p(pa(i); 3) p(G' I pa(i); -y) (
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Modular prior on structure and parameters can be constructed in the following way.
There is a separate prior distribution for a parent set of each node i, which has a general
form

1
p(pa(i); #) = 1#i,pa(i) o /i,pa(i), (2.82)

where Bi = E, 3i,, are normalization constants. # is no longer a collection of parame-
ters per structure (as in Equation 2.50), but rather a collection of parameters {Pi,a(i) I
(one parameter for each possible parent set of each signal). Similarly, -Y is a collection
of hyperparameters {yi,pa(i) }, such that p(9'Ipa(i);) = p(9i; Yi,pa(i)).

Modularity is also reflected in the posterior:

N
p(E, 0 IX; 0, -y) = fJ p(pa(i) I X; #) p(O I X, pa(i);y) . (2.83)

i=1

For static Bayesian networks, the modular prior assumptions are meaningful when
the ordering (permutation) of nodes is fixed. The reason for that is that, in general,
parent sets of nodes cannot be chosen independently as that may result in creating a
cycle, which is a global relationship. However, when the ordering of nodes is fixed, and,
for each node, only the parent sets that respect that ordering are allowed (i.e., only
parents that are to the left of a node with respect to the permutation), then parent
sets of nodes can indeed be chosen independently, as any combination of choices would
result in a structure that respects the permutation. This property was first exploited by
Buntine [7] and Cooper and Dietterich [11], which assume that the order of variables is
known (e.g., determined by a domain expert), while Friedman and Koller [19] combine
it with a procedure for sampling node permutations from their posterior distribution.

On the other hand, the modular prior assumptions can be applied unconditionally
(i.e., without any further assumption) in the case of interaction graphs. This follows
simply from the fact that interaction graphs do not need to be acyclic (i.e., any directed
graph is permitted) and parent sets can be chosen independently for each signal [50].

As a result, parent sets can be chosen independently for each signal [50], and the

total number of parent sets to consider is N2N, which is exponential in the number of
signals.

If, in addition, the number of parents of each signal is bounded by some constant M

(a structure with bounded in-degree [11, 19,27]), the number of parent sets to evaluate
is further reduced to O(NM+l), which is polynomial in N.

0 2.6.5 Related Work

Learning Bayesian network structure (under reasonable assumptions) is NP hard [10].
However, there has been an extensive body of work on exact and approximate methods.
While some work employs direct causality testing (constraint-based methods) [53, 57],
most researchers focus on a Bayesian approach, or a score-based approach that possibly
has a Bayesian interpretation. A number of heuristic methods for finding a structure
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with the maximum a posteriori (MAP) probability have been developed [7, 11,27]. A
few assumptions are typically introduced to reduce the search space. Assuming a known
ordering of variables (e.g., [7, 11]), for which edges are always directed from "left"
to "right", eliminates a global constraint of the structure being acyclic - namely, a
parent set of each node can be chosen independently and the graph will still be acyclic.
If, in addition, a prior on the structure and parameters is modular (e.g., [7, 11, 19,
27]), inference over each node's parent set can be performed independently, and the
complexity of structure inference is reduced from superexponential to exponential in
the number of nodes. Introducing a bound on the number of parents of each node
further reduces the complexity to polynomial (e.g., [11, 19, 27]).

Learning the best structure from limited data is challenging. There may be many
structures that are similarly "good". Also, the probability of learning the correct struc-
ture decreases rapidly with the number of objects. Therefore, for all but small problems,
a large amount of data is needed to avoid errors. In addition, there are typically mul-
tiple structures that encode the same set of independences among involved variables
(Markov equivalence class), leading to identifiability issues. On the other hand, in most
cases, the structure itself is not of direct interest, but rather some of its properties. For
example, is there an edge between two nodes? Instead of reading these properties from
a potentially incorrect single learned structure, it is possible to compute their posterior
probabilities via Bayesian structure averaging, as suggested by Cooper and Herskovits
[11]. This approach does not provide definite answers. However, it fully characterizes
uncertainty in the structure and any of its properties. This additional information is
especially valuable when decisions that follow the analysis are postponed to a further
analysis (e.g., by a domain expert). Note that another important goal of structure
learning is to obtain better predictive models. It has been shown that Bayesian av-
eraging improves predictive performance over inference based on a single model (e.g.,
[36]).

The powerful methodology of MCMC [58] was first used for Bayesian structure
averaging by Madigan et al. [36]. However, this method tends to mix poorly and
does not explore well the space of structures, due to the local nature of MCMC moves
(at most one edge is added or removed from the graph in a single step). Friedman
and Koller [19] developed a method that combines MCMC sampling over orders of
variables with exact inference over structures for a given order (which is polynomial
in the number of nodes by the assumption of modular prior and bounded number of
parents). The space of orders is much smoother in the posterior over structures than the
whole space of structures, leading to a significantly better performance of the MCMC
method. Niinimdki et al. [39] further improve MCMC performance by sampling over
even smoother space of partial orders. One drawback of the methods that sample
from linear or partial orders of variables is their inability to explicitly specify priors
on structures. Grzegorczyk and Husmeier [25] improved the original MCMC algorithm
over structures (DAGs) by introducing a new edge reversal proposal move.

Similarly, learning DBN's has been addressed by Friedman et al. [20]. The number
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of structures to consider can again be reduced by imposing constraints, for example, by
bounding the number of allowed parents per object (Friedman and Koller [19], Siracusa
and Fisher [50]). For some special classes of structures, such as trees, it is possible to
reason over marginal events efficiently without explicit enumeration (Meila and Jaakkola
[37], Siracusa and Fisher [50]).

* 2.7 Bayesian Learning of Switching Dependence Structure

In order to learn time-varying interaction from time-series data, Siracusa and Fisher [49,
50] assume that the dependence model switches over time between K distinct models,
MAk (Ek, 0), k = 1, . . . , K. More formally, for each time point t, Mt =MAk for some
k, 1 < k < K. One interaction may be active for some period of time, followed by a
different interaction over another period of time, and so on, switching between a pool of
possible interactions. This is illustrated in Figure 1.1. Let Zt, 1 < t < T, be a discrete
random variable that represents an index of a dependence model active at time point
t; i.e., Mt = Mze, Zt E {1,..., K}. Equation 2.46 can now be rewritten as

g(Xt|Xt _, i, S, k =P( Xt|Xt-1, zet,) Ozt )
N

= f p(X|Xt.i,Zt), N) , (2.84)

where (E, 0) {(Ek, fk)k1 is a collection of all K models and a(i, k) is a parent set
of signal i in Ek, and Equation 2.47 as

T

p(X|Z k, ) = p(Xo100) 11 p(XtiXt i, Zt, , 0) , (2.85)
t=1

where Z = {ZtI}t=. To distinguish from signal state, we call Zt a switching state (at
time t) and Z a switching sequence. Furthermore, it is assumed that Z forms a first
order Markov chain:

T T

p(Z) =p(Z)f p(ZtlZt_1) = rzi Flwzes3 zt , (2.86)
t=2 t=2

where Kirg is a transition probability from state i to state j and Ii is the initial proba-
bility of state i.

The full STIM generative model, shown in Figure 2.7, incorporates probabilistic
models described above along with priors on structures and parameters:

* Multinomials 7r are sampled from Dirichlet priors parametrized by a as

(71, - - - , 7rK)~ 5 1 - -- a , CK),

(7ri,, -.. - Wi,K) ~ a(i1 i,K) V -
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X1 X X3  ...

Figure 2.7: Switching temporal interaction model of Siracusa and Fisher [50)].

e K structures Ek and parameters 0 k are sampled from the corresponding priors as

Ek ~ p(E; ), k ~ p(OlE5; y), Vk.

o Initial value X0 is generated as X0 ~ p(Xl0o).

o For each t = 1, 2, ... , T (in that order), values of Zt and Xt are sampled as

Zt ~ Mult(TZi_1, i. - TZ 1 K) or

Zt ~A4ult(r -... , rK) if t = 1,

Xt ~ P (XtI|X, _1 E z, z ).

Algorithm 2.1 STIM Gibbs sampler

1. Z ~ p(ZIX, E, 0, 7)

2. & ~ paZ; a)

i. E,O~p(5,O|Z, X;3,5 )

Inference in the STIM is done using a Gibbs sampling procedure shown in Algorithm

2. 1. Sampling of the K dependence models (structures and parameters) is clone as if

each of these models is homogenous. Namely, since this step the switching sequence Z

is conditioned on in this step and is therefore assumed know, pairs (Xt 1, Xt) pertained

to each state are pulled together to perform an update on that states' model. This

procedure is shown in Algorithm 2.2. Note that this step is efficient when a modular

bounded-indegreee prior on structures is used in conjunction with a conjugate prior on

dependence model parameters (Algorithm 2.8). In case of a linear Gaussian dependence

model with a matrix-normal inverse-Wishart prior, the procedure is shown in Algorithm

2.4. The procedure for sampling parameters 7r of multinomials given the switching

sequence Z (step 2) is straightforward as the Dirichlet distribution is conjugate to the
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multinomial, and is shown in Algorithm 2.5. Given the state sequence X and the
dependence models {Ek, k}k, a sample of a switching sequence (step 1) is generated
via a backward message-passing forward sampling algorithm, which we now discuss in
more detail.

Algorithm 2.2 Sampling structures and parameters of the K depenjence models:

E, 0 p(E, OIZ, X; 0, -y)

for k = I,., K

f or E Ek

/'E- = p ({ Xt}t:Zt=k | {Xt_1}t:Z,=k, E; y7)

Ek Categorical ({#'EE,,) P(Ek E) oc 3'k

Ok ~ P (6k I { Xt, Xt_1}t:Zt=k, Ek,7

Algorithm 2.3 Sampling structures and parameters of the K dependence models with
modular prior: F, p(E, 61Z, X; ,7 y)

for k K

for

for s E PA'

',,= i 3#,s P ({X/}t:ZtkI {X _}t:zkt k, s;

pa(i, k) ~ Categorical ({1'i}sEPAk) // P(a(i, k) = s) oc',

5, ~ P ( 7154(,k))

* 2.7.1 Batch sampling of the switching state sequence (step 1)

A conditional distribution of Z can be decomposed as

T

P(ZIX, E, 0, 7r) = P(ZijX, E, ,7r) H P(ZtlZi:t-, X, E,,r).
t=2

(2.87)
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Algorithm 2.4 Sampling structures and parameters of the K dependence models with
modular prior in LG-SSIM: E, 0 ~ p(E, 01Z, X; ,, y)

for k 1,. .. ,K

for 1,... N

for s E PAk

Q-k (Q
i' Tk s + E xg 1X -

t
E
:Zt=k

S i + ,+{t:Z k}|

XtXtM +M k M- +Mk 'ik - k T?"s ZS ' +,S ,S Z,S 2,8s

P ({Xt}t:Zt=k {Xt'_1 }t:Zt=k, s; -- s
2,S Id/2

is k, P {Xji}t:Z=k I {X'_1 }t:Zt=k, S;

d/21T %i,rz /2 r (f

lyks 1 r.,. /22

(lk, Qk) ~Mk-lW ( , Q; i(i,k) , i,15a(i,k) , i,2a(i,k), ~I:a(i,k)

Algorithm 2.5 Sampling of the switching sequence multinomials: 7 ~ p(,7rZ; a)

/k/1P( 15Ta(i, k) -s) o /3',

Dirichlet priors conjugate update

a' = a
a' = a' 1 +1

for t=2,...,T
I I/
Zt-,,Zt = a Z 1,Zt

Sampling multinomials

(Or, . , 7rK) ~ Di r(C'4,.... , a'e )

for 1,...,K

(ri,, . . ., lri,K) - Dir(a',1 , -- , ,K)

XXT) 0

i's Zs+ 
t:Zt=k

P-a(i, k) ~ Categorical ({,s

mtk

A
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Therefore, the following forward sampling procedure:

Z1 ~ P(Zi1X,E ,k , 7r)

Z2 ~ P(Z2jZ1 ,X, ,r)

ZT ~ P(ZTIZ1:T-1, X, E, 9, 7r) (2.88)

generates a joint sample of variables Z1,.. . , ZT from the above conditional distribution.
Here, "forward" refers to the temporal order in which switching variables are sampled.
P(Z1 IX, E, 9, 7r) can be computed in the following way:

P(Zi IX , , 7r)

oc P(Z1, X I, , 7r)

= P(Z, Z2:T, XI5,, r)
Z2:T

T

= 3 P(Xo) fJ P( ZtI I , r)P(XtIXt-, Ez, Oz,,)

Z2:T t=1

ZT

MT (ZTl)

oc11 P(ZtlZt-_1, gr)P(XtlXt-1, kZt., 6zt)
Z2:r-1 -t=1

x 1 P(Z1IZT_2,-)P(XT-1XT2,E TZT Tz)(ZT1)

ZT- )

TT-2(Z7 -- 2)

= P(Z I7r)P(X1IXo, Ezi, 6zi) E P(Z2 Z, ,r)P(X2 X1, Ez 2, 9z 2) m 2 (Z2)
Z2

- P(ZI 7r)P(X1IXo, E Z, 9z) m1 (Zi) , (2.89)



where P(Z1 IZo) = P(ZI) for convenience, and messages are defined recursively as

m T(Z) =1, VZ =1,..., IK

m'(z) = P(Zt+1z, 7r)P(Xt+iIXi, E 5z iZt1) mt+1(Zt+i),
Zt+1

Vz = 1,'..., K, Vt = 1, ... IT - 1. (2.90)

Note that the message mT(z) = 1 is introduced for initialization convenience. It rep-
resents a uniform distribution, which can be interpreted as that no information about
time point T + 1 is "coming into" time point T. Messages can also be written in a
non-recursive form as

T T

mt(z) = P(Z~iz,ir) J7 P(ZiIZi_1,r) H P(XiIXi_1,kEzi,6z),
Zt+1:T i=t+2 i=t+1

Vz = 1, .. , K, Vt=1, ... , T - 1. (2.91)

Finally, P(ZtIZi:t_1, X, E, , 0r), for each t = 2, . .. , T, can be computed as:

P(ZtIZi:ti, X, F, 6,7r)

oc P(Zt, X IZ1:t_1 I , , 7r)

= P(Zt,Zt+1:T,XIZl:t1,E,9,7r)
Zt+1:T

OC E P(Zt,Zt+1:T,Xt:T|Zt_1,Xt-1,5, 0,,r)

Zt+1:T

T

=P(ZtIZti1,ir)P(Xt|Xt-1,Ezt,Ozt) > 1 P(Zi|Zi_1,,F)P(Xi|Xi-1,z ,6zi)
Zt+I:T i=t+1

= P(ZtIZt1, r)P(XtIXti_, zt , zt() Mt(Z ). (2.92)

Observe that the messages, previosly computed in a backward fashion, are reused
to shortcut the computation of each P(ZtIZi:t_ 1 , X, , 6,7r), which are computed in a
forward fashion.

The full procedure is given in Algoritm 2.6. Evaluating P(XtIXti1, Ezt, 6zI), t =
1, ... ,T, Zt = 1, ... ,K, requires O(TKN) time in total.9 Computing all messages
recursively takes O(TK 2 ) time (computing each mt(z) for t < T requires a summation
over K values). Finally, once the messages are computed, forward sampling of sequence
Z requires O(TK) time. Therefore, the total time needed for sampling Z is O(TK(K +
N)).

gRecall that Xt is a collection of variables of N signals.
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Algorithm 2.6 Batch sampling of the switching state sequence: Z ~ p(ZIX, E, 0, 7r)

Backward message passing

mT(Z)= VZ=,.K

for t =T- 1,...,

M'(Z) = EP(Zt+1Iz)P(Xt+1|Xt, tI 5z, Zte) mt+1(Zt+l), Vz = 1, .. ., K
Zt+1

Forward sampling

P(ZIXE,9 ) Oc P(Zi)P(X1IXo, Ez, 0z 1) mi (Zi)

Z, ~ P(ZIX, F, k)
for t =2,

P(Zt|Z:t-, X, F, 0) C P(Zt|Zti_)P( Xt|Xi, z , OZt) mt(Zt)

Zt ~ P(Zt IZi:t_ 1, X, E, 6)
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Chapter 3

SSIM: State-Space
Switching Interaction Models

W E present the state-space switching interaction model (SSIM) that allows
Bayesian discrete-time interaction analysis and accounts for switching interac-

tions, as well as noisy and missing observations. We extend the basic model to include
a variant in which interactions switch independently at the object (rather than group)
level. SSIM is based on the assumptions that we made in Chapter 1 that allow us to
represent an interaction as a structure of a dynamic Bayesian network (DBN). There-
fore, SSIM can be viewed as a framework for Bayesian learning of a structure of a
switching DBN from imperfect data. This problem of structure inference is hard (see
Section 2.6.3). In fact, even learning a structure of a homogenous (non-switching) DBN
from perfect time-series data is NP hard in general [10]. Moreover, for a fixed time-
window of data, the uncertainty about the correct structure may grow with the number
of time-series involved in an interaction since the number of possible structures grows
super-exponentially with the number of time-series (Theorem 2.6.2) and there could
possibly be many structures that explain the data well (i.e., that result in a model
for which the likelihood of the data is high). The problem is further exacerbated by
allowing an interaction to switch over time and by having noisy and missing data.

We will incorporate uncertainty using a Bayesian approach, in which we compute the
posterior distribution over interactions, switching pattern and latent time-series. This
allows us to characterize uncertainty and formulate various analyses as probabilistic
events, such as "What is the probability of an edge A -+ B in the interaction structure
at time point t?", "What is the probability of an edge A -+ C, assuming the presence of
edges A -+ B and B -+ C?", "What is the probability that a change of behavior (i.e.,
switching) occurs within time window (ti, t2 )?", and so on. Since inference in SSIM is in
general intractable, we employ a Gibbs sampling approach (Section 2.4.1). However, in
each step of the Gibbs sampler, which includes drawing samples of structures, inference
will be performed exactly. To deal with the complexity of inference over structures, we
employ a modular prior assumption and impose additional constraints on the structure
(such as the bounded-indegree constraint), described in Section 2.6.2, that reduce the
complexity to polynomial. These choices result in a tractable general inference proce-
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dure for the SSIM model. However, the efficiency of particular steps of this procedure
also depends on specific choices of probabilistic models that describe the evolution of
time-series and the observation process. In particular, we introduce a linear Gaussian
SSIM model (LG-SSIM) in which both temporal dependence and observation models
are linear Gaussian. This model allows for efficient exact inference of latent time-series
conditioned on other variables, which is another critical step in the sampling procedure.
Finally, we use conjugate priors on parameters of the model, which further simplifies
inference.

Related work is summarized in Section 3.1. In Section 3.2, we introduce the SSIM
framework for Bayesian inference over switching time-series interaction structure under
uncertainty, which extends the work of Siracusa and Fisher [49, 50] by allowing for noisy
and missing observations of time-series. In Section 3.3, we introduce a linear Gaussian
SSIM model (LG-SSIM), in which both dynamics and observation models are linear
Gaussian models, thus extending Gaussian state-space switching models (e.g., [21]) to
include structural inference. In this Section, we also introduce a latent-AR variant of
the LG-SSIM, in which an autoregressive (AR) model of an arbitrary order is allowed
among the latent state variables. Both LG-SSIM and latent-AR LG-SSIM can be par-
alleled to analogous extensions of the model of Siracusa and Fisher [49, 50], in which
direct observations of time-series are assumed. In Section 3.4, we develop a Gibbs
sampling procedure for inference in SSIM, which simultaneously reasons over interac-
tion structures and parameters, the pattern of switching between different interactions,
latent states associated with time-series, and observation model parameters. The algo-
rithm extends the Gibbs sampling inference procedure of Siracusa and Fisher [49, 50]
(Algorithm 2.1 in Section 2.7) to include steps in which latent states and observation
model parameters are sampled. We also develop a specialization of the inference pro-
cedure for the LG-SSIM. In particular, we develop a numerically stable algorithm for
block-sampling of latent states trajectories given observations that could be noisy and
missing, and for dynamic models that allow for deterministic dependencies among state
variables, such as in latent-AR LG-SSIM. Finally, we provide in-depth time and mem-
ory complexity analysis of the Gibbs sampling inference algorithm for the LG-SSIM in
Section 3.5.

* 3.1 Related Work

The proposed model integrates inference over structures, dynamic switching, and latent
state-space models. All have been the subject of extensive research. Change point de-
tection was first a subject of interest in the area of quality control, but has since become
an important problem in time-series analysis domains. A huge number of online and
offline, Bayesian and non-Bayesian, parametric and nonparametric methods have been
developed. Basseville and Nikiforov [3] and Polunchenko and Tartakovsky [45] provide
an overview of these methods. Most of these methods assume segment independence.
In contrast, switching dynamic systems (SDS) - also called state-space switching mod-
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els (SSM) -- allow coupling between segments through dynamics parameters, which is

typically modeled via latent switching states. They combine state-space modeling with

switching point detection. Inference in SDS models is done via approximate methods

(Pavlovic et al. [42,43]), EM algorithm (Oh et al. [41]), or sampling (Fox et al. [16, 17]).
Most of related work deals with switching linear dynamic systems (SLDS) since they

allow for simpler inference but are still widely applicable.
In recent years, a number of methods for learning changing structure among time-

series have been suggested. For example, Xuan and Murphy [59] combine inference
over undirected graphs with change-point detection. Optimization techniques have

been used to estimate time-varying undirected networks (Kolar et al. [32]), as well as

time-varying DBNs (Song et al. [52]). Jiang et al. [31] use EM algorithm to obtain
the MAP estimate of a switching DBN. Lebre et al. [35] and Robinson and Hartemink

[46] use MCMC sampling method to learn time-varying DBNs. However, the number

of sampled structures may not be sufficient to adequately represent the posterior over
structures. Siracusa and Fisher [50] develop a method based on prior modularity for

efficient reasoning over the structure posterior. The model we propose is most closely
related to the work of [50]. It differs (in fact, from most available methods) in that

we do not assume direct observation and allow for missing data. The result is a more

expressive and robust model at the cost of a more complex inference procedure.

* 3.2 SSIM Framework

The switching state-space interaction model (SSIM) is an extension of the switching

temporal interaction model of Siracusa and Fisher (STIM) [49, 50] that allows for noisy
observation processes. In fact, the SSIM model subsumes the STIM model, which

is presented in Section 2.7. Here, we assume the notation and parts of the model

introduced in Section 2.7 and only describe the difference from it.
We model that the observed value Y of signal i at time t is generated from its state

Xt via a probabilistic observation model p(YtjXt, t) parametrized by (. For simplicity,
we assume that the observation model is independent of the state ( V = (, Vt, i),

T N

p(YlX, o) = H Q p(Yt Xt,") (3.1)
t=O i=1

where Y {Yt} 1 is the observation sequence and is the collection of parameters

{ % that describe the measurement process, including the observation noise. The
model does not presume that the observation noise model is completely known (only

its parametric form), and parameters are also inferred.
The full SSIM generative model, shown in Figure 3.1, incorporates probabilistic

models described above along with priors on structures and parameters:

* Multinomials ir are drawn from Dirichlet priors parametrized by a as

(7r1, .. -. , 7rK) ~ Dir(ce1, - - - 7 0K),

(7ri,1, - - - 7 ri,K)- D i (ai,,- -, ai,K) Vi-
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a

Z1 Z2 Z3 --- ZT- ZT

x0 x x xx x

T3. YTI;

Figure 3.1: State-space switching interaction model (SSIM).

K K structures B& and parameters Ok are drawn from the corresponding priors as

Bk ~ p(E; B), Ok ~ p(jEgk). Vk.

" Parameters of the observation mnodel are drawn as ~ p((; 6), V1.

" Initial values Xo and Yo are drawn as Xo ~ p(X01o) and Yo ~ p(YojXo, ).

" For each t 1, 2,..., T (in that order), values of Zt, Xt and Y are drawn as

Zt, ~ mvult(7z,_"1,-- 7-Z,-K) or
Zt ~ Mult(71, . .. , AK) if t 1
Xt ~ p(Xt IXt-z, ,z z,) and Y ~ p(YtIXt,).

The choice of dependence and observations models is application specific and will

impact the complexity of some of the inference steps. For example, connonly used

linear Gaussian models (Section 3.8) allow efficient inference in state space models,

which is a sub-procedure in our sampling algorithm (step 1 in Algorithn 8.1). Also, the

choice of conjugate priors on parameters of dependence and observation models results

in closed form expressions for sampling steps 4 and 5 in Algorithm 8.1, respectively. In

this paper, we focus on linear Gaussian models and their conjugate priors, as described

in Section 8.8.

Here, 0 are the hyperparameters of the prior on dependence structure, p(E;),

and -' are the hyperparameters of the prior on dependence model parameters given

structure, p(OfE; -y). We assume that these priors are the same for all K models. Since

the distribution on structure is discrete, in the most general form, 3 is a collection of

parameters {OE} (one parameter for each structure), such that OE is proportional to

the prior probability of E:

p(E; 0) = OE Dc E (3.2)
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where B = EE OE is a normalization constant. Note that the prior on parameters,
p(OJE; -y), may depend on the structure and -y is, in general, a collection {ryEl of sets of
hyperparameters, such that p(8jE; -y) = p(9; 7E)-

Learning Bayesian network structures (under reasonable assumptions) is NP hard
[10]. The number of possible structures is superexponential in the number of nodes, and,
in the worst case, it may be necessary to calculate the posterior of each one separately.
The same holds in the case of inference of a dependence structure described above (i.e.,
a dependence structure of a homogenous DBN). The number of possible such structures
is 2N

We employ two fairly general assumptions in order to reduce the complexity of
inference over structures. First, we assume a modular prior on structure and parameters
[7, 11, 19, 27], which decomposes as a product of priors on parent sets of individual
signals and associated parameters:

N

p(E, 0f/, 7) =7p(pa(i) 10) p(O' I pa(i); y) . (3.3)

As a result, parent sets can be chosen independently for each signal [50], and the total
number of parent sets to consider is N2N, which is exponential in the number of signals.
Also, / is no longer a collection of parameters per structure, but rather a collection of
parameters {/3i,pa(i)} (one parameter for each possible parent set of each signal), such
that

p (p a (i) ; 3 ) = - i e ) 0w 0 , a ( ) , (3 .4 )

where Bi = E8 /3,, are normalization constants. Modularity is also reflected in the
posterior:

N

p(E, 6 X; /3, ) = p(pa(i) I X; /) p(' I X, pa(i); -y) . (3.5)
i=1

If, in addition, the number of parents of each signal is bounded by some constant M (a
structure with bounded in-degree [11, 19, 27]), the number of parent sets to evaluate is
further reduced to O(NM+1), which is polynomial in N.

* 3.3 Linear Gaussian SSIM (LG-SSIM)

So far, we have described the general SSIM. Particular choices of dependence and obser-
vation models and priors may lead to specific classes of models with special properties.

Linear Gaussian state-space switching interaction models (LG-SSIM) are
an instance of SSIM in which the dependence and observation models of each signal i
at each time point t are linear and Gaussian:

Xts = A X X , +w, W ~ W rK(0, )(
. . i. t 7 t Zt(3.6)

Y'Z = CS Xts +v , V~ ',R I
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A and Q' are the dependence matrix and the noise covariance matrix of signal i in the
kth dependence model (i.e., 61 = (Ai, Qi)), while Ci and R' are the observation matrix
and the noise covariance matrix of the observation model of signal i (i.e., y (C', Ri)).
In addition, we assume that the value of the joint latent state at time 0 (initial state)
is drawn from a Gaussian distribution with mean po and covariance Qo:

Xo ~ Ar(po, Qo) . (3.7)

We utilize the well known matrix normal inverse Wishart distribution (Section 2.2.6)
as a conjugate prior on the parameters (A, Q) of a linear Gaussian model:

p(A, Q; M, Q, n, *) = MN(A; M, Q, Q) IW(Q; n, T) . (3.8)

Here, r, and xP are the degree of freedom and the inverse scale matrix parameters of the
inverse Wishart distribution, while M, Q and Q are the mean, the row covariance and
the column covariance parameters of the matrix normal distribution. Note that the two
distributions are coupled. The matrix normal distribution of the parameter A depends
on the parameter Q that is sampled from the inverse Wishart distribution.

Recall that, due to the prior modularity assumption, for each signal i there can be
a different prior on dependence model parameters for each possible parent set, and, in
general, for each of the K (switching) dependence models:

p(A', Q' I 1pa(i, k); M i'~a(ik), Q i'T6a(ik) i,a(i,k) 41i5a(ik))

= MN(Zi; Mk '1~4(i''" , 'a(i,k), Qi ) -TW(Qi; i''14(i'k), I* T i15(i,k)) (3.9)

Throughout this thesis, we will assume that, for each signal i, C' is known for
each particular application and can be treated as a constant. For example, if a signal
represents a 2D object whose noisy position is observed over time, while the state space
associated wth that signal is defined as its 3,d order kinematic state (position, velocity
and acceleration), then

P~t
Pyt

X2 - vo t C [1 0 0 0 0 0 (.0Foi F 1 0 0 0 0 0 (310

vyt p 0 1 0 0 0 0-

where p, v and a stand for position, velocity and acceleration, respectively, x and y
indices refer to x and y coordinates, while 't, and P*, are noisy observations of p"t
and p't, respectively. We this assumption, we only need a prior on the observation
covariance matrix, Rt,

(3.11)
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Furthermore, if the signals are uniform in representation and the observation process is
the same across signals, then the model in which signals share their observation model
parameters is suitable:

Y,= C X' + , -~F(0, RO). (3.12)

In that case, the prior on the observation covariance matrix is

p(R;i A, 'ITo) = -W(R; A, TO). (3.13)

For example, if signals represent people whose positions are estimated (e.g., by a tracker)
or annotated (e.g., by a same person), then the same observation model can be assumed
for all signals.

The assumption that C' matrices are known is made for two reasons. First, prior
knowledge of any model parameters reduces the complexity of the space of solutions
and therefore removes part of uncertainty in the inference result. Second, fixing the
definition of latent state variables helps interpret the result of interaction inference.
Note that, regardless of whether the meaning of latent state variables is predefined or
not, it is important that they are related to the observations and that the complexity of
the latent state is controlled such that it does not allow for arbitrary (overfitting) expla-
nations. Besides the connection to the observations, (deterministic and probabilistic)
constraints among latent state variables also reduce the complexity of the latent space.
For example, if objects are represented by their kinematic state, equations of motion
must be encoded into the model in order to maintain that representation, which, in
turn, controls the complexity of that space.

We will also assume that the parameters of the initial state model, Ao and Qo, are
given, hence there will be no prior distribution on these two parameters.1 One reason
for doing this is that we do not aim at learning the initial state distribution, but rather
at learning the (time-varying) dependence model. Another reason is that in most (if
not all) experiments in this thesis, we will deal with a single observation sequence.
Therefore, there will only be a single data sample for the initial state, which is not
sufficient to learn the initial distribution. On the other hand, in cases when there are
multiple observation sequences, learning the initial distribution would be plausible.

Finally, it is sometimes convenient to look at the dependence and observation models
at the level of all signal jointly. For that purpose, we assume that the joint latent state,
Xt, is a vector that is obtained by concatenating the latent states of signals:

Xt

Xj2
Xt = . .(3.14)

'Technically, this can be thought of as putting a degenerate prior distribution on po and Qo that
has all probability mass on given values.
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The joint dependence model can now be written as

Xt=AztXt-i+wt, wt~ r(0,Qz), (3.15)

where

A /

Azt =

1i 0

0

0 0

0

0

.N.
(3.16)

and A' is such that its columns that correspond to jia(i, Zt) are equal to the columns
of AZ, while its other columns are equal to 0 (in other words, A'2 is an "expanded"

version of A' that is multiplied by Xt_ 1 to predict XI, i.e., AXt-i A X ~a(i,zt)).
Similarly, the joint observation model can be written as

Y - C Xt + Vt,

C1 0

0 C2

0 0

0

0

... CN

vt ~ )(0, R) ,

R1

0
R= .

L0

0

R2

0

0

0

... RN

N 3.3.1 Latent autoregressive LG-SSIM

The LG-SSIM model above implies a first order Markov process in the latent space.
However, it extends to a higher, rth order process by defining a new state at time t as

x1, =

Xt-

Xt-r+l

1~ (3.19)

i.e., by incorporating a history of length r as a basis for predicting a state at time t +1.
Thus, an rth order autoregressive model among states Xt,

(3.20)

where

(3.17)

(3.18)

Xt =- At1 Xt-1 + ... + Atr Xt-r +Wt , Wt ~ Ar(0, Qt) ,
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transforms into a first-order AR model among states X':

Xt 'At1 At 2 At 3 ... Atr_1 Atr_ X 1  wt

Xt- 1 0 0 --. 0 0 Xt-2 0

Xt-2 0 1 0 0 0 Xt-3 0 (3.21)

Xt-r+2  0 0 0 ... 0 0 Xt-r+1 0

Xt-r+1 0 0 0 1 0 0 X_7 0

where

Qt 0 --- 0
0 0 -. 0

W' ~ A(0, Q'), Q' = (3.22)

0 0 ..-. 0]

We will refer to this model as a latent autoregressive LG-SSIM (Latent-AR
LG-SSIM) of AR order r, since the autoregressive modeling is done in the latent space.
The matrix A' has a specific form: the first row consists of (matrix-valued) coefficients
of the AR model of Xt, subdiagonal entries equal 1 and the rest of the matrix is filled
with zeroes. Subdiagonal "ones" serve to simply copy the history of the expanded state,

Xt-1,..., Xt-r+ , from the expanded state at the previous time point. Therefore, the
relationship between Xt and Xt_ 1 is partially deterministic, which is reflected in the
structure of the matrix Q' - only the first block (the one corresponding to the noisy
relationship of Xt to the past) is non-zero. Thus, Q' is a singular matrix, and the
Gaussian distribution of w' above is degenerate, as long as the order of the AR model is
higher than 1. This is important to have in mind when developing inference algorithms
for the Latent-AR LG-SSIM model, as we will discuss in Section 3.4.2.

Note that the latent-AR extension of the SSIM model, as given in Equation 3.21, is

pertinent to LG-SSIM due to the linearity and Gaussianity assumptions. However, the
state expansion of Equation 3.19 results in an r t order latent Markov process in any
SSIM model - just, the dependence model of X' may have a different form.

Finally, the observation model in Latent-AR LG-SSIM allows for the observation of
signal i at time t, Y, to be a linear function (up to Gaussian noise) of the expanded
state, X't:

Y =C'zX'+v, v ~A/(0, Ri). (3.23)

In other words, Yt can depend on the original state at time t, X1, as well as its value
at the previous r - 1 time points. Still, in all cases considered in this thesis, Y will
depend only on the instant value of the original state X , as in Equation 3.6,2 which

2 Recall that the expanded state is introduced artificially in-order to model higher order dependencies
in the latent space.
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can be written as:

C

Y|= (Ci 0 ... 0]

X 1
X11-2

Xt-r+2

LXtr+1.

(3.24)
+V,

The joint observation model can be written as

Y =i C'X' +vt , vt ~ o r(g, R) ,

and, in the case of a dependence on the original state only,

(3.25)

C,

Yt = [C 0 ... 0]

Xt
Xt- 1
Xt- 2

Xt-r+2

Xt-r+i.

(3.26)

* 3.4 Gibbs Sampling Inference

Exact inference for the SSIM is generally intractable. Consequently, we develop a
Gibbs sampling procedure as described in Algorithm 3.1, which extends the inference
algorithm of Siracusa and Fisher [50], described as Algorithm 2.1 in Section 2.7, with
the steps in which latent states and parameters of the observation model are sampled
(steps 1 and 5, respectively).

Algorithm 3.1 SSIM Gibbs sampler

1. X ~ p(X|Z, Y, E, 0,(

2. Z-.p(ZIX, E, 6,ir)

3. -7r ~p(-7rlZ; a)

4. E,~ -p(E,90Z,X;, y)

5. ~ p( |X, Y; 6)

Note that the steps 2, 3 and 4 are the same as in Algorithm 2.1 and their respective
algorithms are described in detail in Section 2.7. The complexity of sampling parameters
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(step 5) depends on the particular choice of the observation model. When a conjugate
prior is used, this step is similarly straightforward. This is the case in LG-SSIM, in which
an inverse-Wishart prior on the observation noise covariance matrix is chosen, as it is a
conjugate distribution for the Gaussian distribution with a known mean. The procedure
for sampling the observation noise covariance matrix in LG-SSIM that assumes an
observation model shared across all signals (i.e., = R0 ) is shown in Algorithm 3.2. We
proceed with the details of step 1, which is the most complicated part of the inference
procedure in the SSIM model.

Algorithm 3.2 Sampling of the observation model parameters in LG-SSIM with uni-
form observation model and known observation matrix: R~ p(R0 IX, Y; 4, o)

Inverse Wishart prior conjugate update

,'o oKR KR

R-

for t =0,...,T

for i= N

if Y is observed
10 /0

KR KR+1

o (Y|- COX) (YiCX )T

Sampling observation noise covariance

RO ~ _EW (R; K'", V0)

* 3.4.1 Batch sampling of the state sequence (step 1)

Conceptually, sampling a state sequence X when all other variables in the model are
known can be performed via the same backward message-passing forward sampling
algorithm as in step 2. Similar to Z, a conditional distribution of X can be decomposed
as

T

P(XZ, Y, E, , () = P(Xo IZ, YE, 0, ) 17 P(XtIXo:t-i, Z, Y, F, 0, (), (3.27)
t=1

suggesting the following forward sampling procedure:

X0 ~ P(XoIZ, YE5,9 ,)

X1 ~ P( X1|IX, Z, Y, Z, 6,)

XT ~ P(XTIXO:T-1, Z, Y, F, 0, ). (
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P(XoIZ, Y, E, 6, ) can be computed in the following way:

P(XoIZ, YE, , )

0c P(Xo,YIZ, , 6, )

= J P(Xo, X1:T, YJZ, F, 0, ) dX:T
X 1:T

P(XoIO)P(YoiXog)

P( Xo0o)P(YIXo, )
'X1:T-1

x T P(XT IXT_ 1, EzT, zT)P(YT|XT, ) dXT

- P(X0o0)P(YIXo,1)
'X1:T-2

mT-1 (XT 1)

TP-2

1 P( Xt|Xt-1, Ezt , zr)P(Yt|Xt ,0 d X1:T-2
t=1I

P(XT-1|XT-2, EzT_1, 6ZT_)P(YT-1|XT-1, 0 m 1 (XT_1) dXT_1

mT-2(XT-
2 )

- P(X0o)P(YoIXo10 )J

mo(Xo)
P(XoIOo)P(Yo IXo, ) m 0(Xo).

Messages are defined recursively as

mT(x) 1, Vx E 7NDX

mt(x) = P(Xt+ Ezt+1 1zt+1 P(Yt+1|Xt+1, mt1(Xt+1) dXt+1

Vx E RND-, Vt-

(3.29)

(3.30)

where N is the number of signals and D, is the dimensionality of the latent state of
each signal (or average dimensionality if they are not uniform). Messages can also be
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fx:TIP(X I|Xt-_1, kzt, z) P(Yt|IXt, ol dX1:T

'T-1~

f P( Xt|Xt-1,kzt1, zJ P(Yt|Xt, 0 dX1:T11
.t=1I

x J,_

P(XIXOIPZIIOZ,)P(Yllxi, )ml(xl)dXi



defined non-recursively as

T T

M'W) P(Xt+1|x,5Pzt+1,6zt+1J f P(Xi|Xi-1, kz ,6zj 1 P(Yi|Xi, ) dXt+1:T

Xt+1:T i=t+2 i=t+1

VxE RNDxVt=o...,T (3.31)

Note that the meaning of a backward message is

m'(x) oC P(Yt+1 , ... , YT I Xt = x, Z, , , ) . (3.32)

Finally, P(XtIXo:t_1, Z, Y, F, 6, (), for each t = 1, ... , T, can be computed as:

P (Xt IXO:t_ 1, Z, Y, k, 6, (

0c P(Xt, Y IXo:t_ 1, Z, E, 6, (

= T P(Xt, Xt+1:T, YIX:t-1, Z, , 9, ) dXt+1:T

Xt+1:T
OCf P(X& Xt+l:T, Yt:TlXt_1, Z, ,',( dXt+1:r

X t+1:T

= P(XtIXt-1, Ez , Ozt)P(Yt|Xt,) J J P(Xi|Xi-1, Ez , #z)P(Y|Xi, ) dXt+1:T

Xt+1:T i=t+1

= P(XtIXti1, zt,7 zt)P(YtIXt,) mt(Xt) . (3.33)

The derived algorithm is presented in Algorithm 3.3. In general, exact computa-

tion of messages is not possible since there is an infinite number of values to compute

(x E lZND-), and, thus, one may need to resort to an approximate method such as

particle filtering [2]. However, in some particular cases, messages have a nice func-

tional form that can be represented with finite number of parameters, 3 resulting in

exact and efficient backward message passing (and forward sampling, provided that
P(XtIXo:t_1, Z, Y, E 9, ) has a functional form that is easy to sample from).

N 3.4.2 Batch sampling of the state sequence in LG-SSIM model

In LG-SSIM, as we will see, each message represents a Gaussian distribution: 4

mt(x) = AV(x; p', E). (3.34)

Therefore, computing a message reduces to computing its mean and covariance.

3 sufficient statistics
4Messages, as computed by Equation 3.30, are only proportional to a Gaussian distribution, but

they can be normalized after each step.
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Algorithm 3.3 Batch sampling of the state sequence: X ~ p(XIZ, Y, , 9, g)

Backward message passing

mT(x) = 1, Vx

for t = T - 1, ... ,0

m, (x ) = J+ P( Xt+1|x, Zz,1, Nz,41)P(Yt+1|Xt+1,6) mt ( Xt+l) dXt+1 , Vx

Forward sampling

P(Xo|Z, Y, E, 9, ) oc P(Xo|0)P(YIXo, ) m0 (Xo)

X0 ~ P(Xo|IZ, Y, k, 6,{

for t = 1, ... , T

P(XtIXo:t-i, Z, Y, E, 0, ocx P(XtIXt_1, kzt, 6zt)P(Yt|Xt, ) mt(Xt)

Xt ~ P( Xt|IXo:t- 1, Z, Yk Z,

Recall that in LG-SSIM the joint dependence model is

Xt-= zt Xt-1 + wt, wt ~ r(0, @:zJ), t = 1, ...,I T, (3.35)

where Az and Qzt have the form given in Equation 3.16, the joint observation model
is

Y = C Xt +Vt , vt ~f(0, R) , t-=0,...,IT, (3.36)

where C and R have the form given in Equation 3.18, and the initial state model is

Xo ~ J(po, Qo). (3.37)

Our algorithm allows defining the distribution of Xo to be improper uniform distribution

P(Xo) oc const, VXo E z", (3.38)

which is obtained by setting the inverse covariance, Qo-1, to 0.
Since matrices Ak, Qk, C, and R are assumed known in this inference step, the

assumption that there is only a small set of different such matrices that switch over
time in not critical. Therefore, we will consider a more general model here, in which
these matrices can possibly be different at each time point:

X0 ~ JV(po, Q0),

Xt= AtXt-1+wt, wt-~r(0,Qt), t=1,...,T, (3.39)

Yt =Ct Xt + V, vt~-A(0, Rt), t=-_0,..., T,
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and keep in mind that At = Azt, Qt = Qzt, Ct = C and Rt = R in LG-SSIM. Note
that Equation 3.39 represents a standard linear Gaussian state-space model.

In this model, messages have the form of a Gaussian distribution (Equation 3.34)
whose mean and covariance parameters can be computed recursively as (see Appendix
A for derivation):

(EM)~1 =0
(Em)-lp = 0, (3.40)

which is equivalent to mT(x) oc 1, and, for t = 0, ... , T - 1,

(Zr)l = At 1(Q741 - Q7, 1 Z*Q-4i)At+lAt+ t+1 - t+1 t Ot+1 A+

4t) A = A * Q_ -p4(3.41)

where

=C+ 1R-1Ct+ 1 + 1

t = Ct+1Rt+1 t+1 E+1 t+1
E*Z Q-1 + ~1. (3.42)

Note that these are standard information filter recursive equations (e.g., as in Fox et
al. [161). In particular, p = E-p and A = E-1 can be used equivalently to parametrize
a Gaussian distribution AP(p, E), where A, the inverse of the covariance matrix, is called
a precision matrix. Therefore, we could have written the above recursive equations
in terms of An = (En)-1 and pin = (Ern)-yI/n, which are indeed the values being
computed. However, we choose to explicitely use terms (E"n)-1 and (Ern) p/t in order
to make their meaning clearer, even though pm and Em are never computed explicitely.
One advantage of the information filter form of update equations is that it is easy to
represent complete uncertainty (missing information) about the variable of interest or
some parts of it (assuming that it is a vector). For example, the initial message, mT(X),
represents an improper Gaussian distribution -- with infinite variance on all components
of x, which is easily encoded by setting the inverse covariance of the message to 0.

Finally, P(XoIZ, Y, P, 0,O ) and P(XtIXo:t-i, Z, Y, F, 0, ) are also Gaussian distri-
butions in LG-SSIM, allowing for computationally efficient forward sampling equations:

P(Xo I Z, Y, 5k, 0, A)= (Xo; /t', E')

I- = CT R'C0 + (Er")-1

P' = E' (CTR Yo ( _m)" po"n] (3.43)

and, fort= 1,...,T,

P(XtXo:t i1, Z, Y, t,0, ) = A(Xt; A', ' r)

- Q-1 + CQ X 1  C + Y E) - (

p Et Qi A X-1+CT Ri Y + (Em)-1p]. (3.44)
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A summary of the algorithm for batch sampling of the state sequence X in a
linear Gaussian state-space model (Eq. 3.39) when parameters po,Qo, A 1 , ... , AT,

Q1, ... , Qr, C0,. .., 0C Ro, ... , RT are given is shown in Algorithm 3.4.
Note that missing observations require only a slight modification of the algorithm.

Namely, for each t = 0,. . . , T, rows of matrix Ct corresponding to missing observations

at time t should be set to zero.

Algorithm 3.4 Batch sampling of the state sequence in a linear Gaussian state-space
model: X p(XI po, Qo, A1:T, Q1:T, CO:T, RO:T)

Backward message passing

(Em)-l = 0, (E)~1  = 0 (i.e., mT(x) oc 1)
for t=T-1, ... 0

E - = Cf+1R7- 1 C1 + EM

ZtOL = CT 1R71Yt++ 1

E*~1 = Q-1 + E0-1

(yjn)-1~~ = AT Q-1 +1 't0)At+

( ~ t E - f t+ t t
mt(x) = ((Em) -1,, (Em)- 1) =K(x; pT, EM)

Forward sampling

E'-1 = CYT + 
C m + 1

Po = 0' (C0 Ro 'Yo + (Em 0
Xo ~ Ar(Xo ; /to / I E

for t = 1, ... ,T

E't - Q~1 + CT R 1 Ct + (E)-1

A' = [Q 1A X- 1 + Ct RT[1Y + (fl?)1R Yl t]

Xt ~ N(Xt ; /'4, t

Algorithm with improved numerical stability

For long sequences of missing data, En approaches Qt+l and intermediate values Q7-
QtXE Q+ 1 are close to singular. In addition, we want to allow Qt matrices to be
singular, which is for example the case in the latent-AR LGSSIM. Algorithm 3.4 however

requires inversion of these matrices and is therefore unusable in this case.5

5 Pseudoinverses could possibly be used, and that would require verifying the correcness of calcula-

tions.
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Via the matrix equality (A + B)- 1 - A- 1 - (I + A-'B)1 A1 BA- 1 , we derive
alternative recursive equations that yields a numerically stable algorithm and allows
for singular covariance matrices, which we exploit to impose deterministic constraints
between variables across time:

(E"m)-l AT 1EA E*-'At+l- A[ ? t A (3.45)
(E~n-1, - AT 1EA ZE 1 ,

where

E*-=O C+ 1 Rt+1it+1 + E" 1

- (i + EO Qt+i)-. (3.46)

Similarly, we derive equations for the mean p' and the covariance matrix E' in
the forward sampling procedure that do not require inversion of dependence covariance
matrices:

A' Gt (G- 1 '-) , = Gt Qt, where

Gt-1I + Qt CtR-1Ct + Qt ( Tf) 1  (3.47)

Gil p'4 = AtXti + Qt CTR- 1 Y + Qt (ZEr") p< .

The above procedure is summarized in in Algorithm 3.5.

* 3.5 Algorithmic Complexity

We analyze the time and memory complexity of each step of the Gibbs sampling algo-
rithm (Algorithm 3.1) for inference in the LG-SSIM model in terms of various problem
parameters.

Table 3.1 contains a description of problem parameters that govern the complexity
of inference in the LG-SSIM model. We assume here for simplicity that all signals
have the same observed and latent dimensionality. Also, we assume the latent-AR
extension of LG-SSIM and include the order of the latent AR model, R, as a parameter
of interest, while the latent dimensionality of a signal refers to its dimensionality prior
to state expansion (i.e., the one inherent to a single time point). If the basic LG-SSIM
model is considered instead, R should be ignored (or, equivalently, treated as R = 1). In
addition, a modular bounded-indegree prior on interactions is assumed, where M is the
maximum number of parents per signal allowed. Note that the number of signals, N,
their observed dimensionality, D., and the sequence length, T, are determined purely by
the data that is an input to the algorithm. On the other hand, the latent dimensionality
of signals, Dz, the number of switching structures, K, the maximum number of parents
per signal, M, and the latent-AR order, R, can be set arbitrarily (to some extent) in
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Algorithm 3.5 Numerically stable batch sampling of the state sequence in a linear
Gaussian state-space model: X ~ p(X I po, Qo, A1:T, Q1:T, CO:T, Ro:T)

Backward message passing
(EM)~ = 0, = 0 (i.e.,

for t = T - 1, .. C. ,0
C-1= O R-1\C +1 + Em 1

p = +1 t+ t+1 + E1

( t Qt+1)
(E)~-1 = A[+ 1EA "~1 At+l

( Em)~-' = + t t t

M'(x)= ((EtM)-1PT, (Emt)~1) =

mT(x) oC 1)

-1 mgPtM

AF(x; Pf, E T')
Forward sampling

L'-1 = Cry R Co + ( E0"* ~1

= E/ oT R-Yo + (Em"j}-po]

Xo ~ Ai(Xo; , E')

for t-= 1,..T

G-1 = I + Qt CTRT 1 C + Qt ( E)-1

G-11p= AtXt- 1 + QtCf RT 1Y + Qt (ZEm 1 p4"

= Gt (G- 1p')

E' = Gt Qt

Xt ~ N( Xt; /t, E's)
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Param. Meaning Determined by

N number of signals/objects data

DY observed dim. of each signal data

T sequence length data

Dx latent dim. of each signal data/setup

K number of switching structures data/setup

M maximum number of parents data/setup

R order of AR model data/setup

Table 3.1: Description of problem parameters.

the inference setup.6 However, they should be set to best capture properties of the
problem of interest and the particular data used for inference, and may therefore be

influenced by the data. For example, the number of switching structures may be set

to a number that exceeds our prior expectation for the possible number of different

behaviors (dynamics), the maximum number of parents may be set to exceed our prior

expectation on how many signals can simultaneously influence a single signal (unless it
must be set lower for computational purposes), and the order of the latent AR order

should be set to encompass a large enough window of history, such that important

dependencies can be captured (again, as long as computational resources allow that).
The asymptotic time and memory complexities of each step of the Gibbs sampling

algorithm for inference in LG-SSIM in terms of the above parameters are summarized in

Tables 3.2 and 3.4, respectively, while more detailed analyses for the complexities of each

step are given in the subsections below. We make a few additional assumptions here.
First, we assume that K < T, such that K2 < T is satisfied. This is showed in the time

complexity analysis of step 3. We also assume that M is not higher than a fraction of

N, where the fraction constant is smaller than 1/2, i.e., that M/N < c < 1/2, as well as
that K max(MRDx, D.) < T. These two assumptions have an implication for the time

complexity of step 4. Table 3.3 summarizes expressions for the time complexity of this

step under different conditions, as discussed in Section 3.5.4. The last row of the table
refers to the assumption M/N < c < 1/2, while the assumption K max(MRD2, D,)
T simplifies the expression to the one showed in Table 3.2. In addition, we do not

account for missing data here. Some of the computations may be reduced by a fraction

of non-missing data, although not the ones that present bottleneck.

In terms of the time complexity, steps 1 and 4 are critical. Step 3 is dominated by
step 2, step 5 is dominated by steps 1 and 4, while step 2 is dominated by steps 1 and

6Well, the latent dimensionality of a signal, D,, must be set according to the choice of the observation
and dependence models. Typically, these models would be chosen based on the problem description
and would not be changed (or not changed often) during the experimenting phase.
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SSIM Gibbs sampler Alg. in LG-SSIM Complexity (-)

1. X ~ p(X|Z, Y, , 0, ) Gaussian-MP

2. Z ~ p(ZIX, F, 0, ir) discrete-MP K (RD)NM + K) T

3. 7r p(-rZ; a) conjugate update T + K 2 ~ T

4. E, 0 ~ p(E, 01Z, X; 0, ,) conjugate update

5. ( p( IX, Y; 6) conjugate update D2 Dy(Dy + RDJ)NT

Table 3.2: Time complexity of LG-SSIM Gibbs sampling steps. Common bottlenecks

are shown in red.

4 unless the number of switching states, K, is large and the number of signals, their

dimensionality, and AR order are small. This is however not the case in the majority

of practical scenarios, so we will focus on steps 1 and 4 as bottlenecks. For M < 2, step
1 is dominant. Otherwise, the complexity of step 4 is higher as a function of N due to

a higher polynomial degree and is dominant for sufficiently large N.

Table 3.4 shows, in addition to the space required for each step of the Gibbs sampler,

the space required for variables that are kept outside of these steps, i.e., variables that

represent the data and the model, variables that represent the current state of the

sampler (latent variables in particular). For each of the five sampling steps, only the

additional required memory is analyzed (input variables are excluded as they are global

to the algorithm). Step 3 along with storing Z, r and a are dominated by step 2 (recall

that K < T). Step 5 does not introduce any new complexity. Storing X is dominated

by step 1. Storing Y is also most likely dominated by step 1 as D. < N(RD) 2 is true

in most cases (and certainly in the experiments in this thesis). Step 4 is dominated

by the requirement for storing prior parameters.' Finally, step 2 is in most scenarios

dominated by step 1 and/or prior parameters, unless K is large and N, R and D,

are very small (in which case memory is most likely not a critical resource anyway).

Thus, the common bottlenecks for running the Gibbs sampling inference algorithm in

LG-SSIM are step 1 and storing parameters of the prior on structure and dependence

models. If the number of data points, T is very large, then step I can pose a memory

bottleneck. On the other hand, if the number of allowed parent sets is huge (it grows

very quickly with M, even for relatively small N), then storing prior parameters is a

bottleneck.
7 Unless there is a compact way of storing these parameters, such as sone parametric form. Here,

we assume the general case in which each parameter can be set arbitrarily.
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Condition Complexity ()(.)

general < N2 N ((NRD,)2 + DY 2 ) T + N2N ((NRD,)3 + Dy 3 ) K

Al > N/2 N2N ((NvRD )2 + DY2 ) T + N2N ((NRDx) 3 + DY 3 ) K

M = const N11+1 ((RDx) 2 + DY 2 ) T + N"+' ((RDx) 3 + Dy 3 ) K

M/N < c < 1/2 N(N) ((MRDx) 2 + Dy 2) T + N( ) ((MRD )3 + D(N) K

Table 3.3: Time complexity of step 4 of LG-SSIM Gibbs sampling algorithmi, .E. 0
p(E, O5Z, X; /, i), uider different assumptions. Note that this assumptions are not

disjoint; they simply represent (lifferent assumptions that are reasonable to make in

different circumstances.

SSIM Gibbs sampler

observed sequence, Y

latent sequence, X

switching sequence, Z

7T and a

C, R and

prior parameters, 3 and 7

1. X ~P(X IZ,. Y, E, 6"()

2. Z ~p(ZIX, E, , r)

3. 7r ~p(7r1Z;1 a)

4. 5, 6 p(E, 61Z, X; 3 ,')

5. p(QjX, Y; 6)

Alg. in LG-SSIM

Gaussian-MP

discrete-MP

C(onjugate update

comijugate update

conjugate update

Comiplexity (-)

NDYT

NRDrT

T

K
2

( NRDx + Dy)Dy

KT

K
2

( ) + NDy(MRDx + Dy)K

(Dy + RDx)NT

Table 3.4: Memory complexity of LG-SSIM Gibbs sampling steps. The complexity
of step 5 could be reduced to just y(D ) of additional space (see Section 3.5.- for

discussion), but that is not critical. Commnon bottlenecks are shown in red.
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* 3.5.1 Complexity of inference in LG-SSIM: step 1

Algorithm 3.4 describes a procedure for batch sampling of the state sequence in the
LG-SSIM model. Note that, in the latent-AR variant, the dimensionality of the latent
state (jointly, over all signals) is NRD,. Thus, transition matrices, At, and dependence

model covariance matrices, Qt, are of dimension NRD x NRD. Consequently, the
mean of each message, pLp, has a dimension NRD, while the covariance matrix of
each message, E', has dimension NRD, x NRD. Also, each observation matrix, C,
has dimension NRD, x ND., and each observation noise covariance matrix, Rt has
dimension NDy x NDy.

Computing a message at each time point requires a constant number of matrix
(or vector) multiplications, additions and inversions. For simplicity, we will assume a
"naifve" algorithm for matrix multiplication, which runs in (narnbnc) time for matrices
of dimensions na x nb and nb x n. For a square matrix of dimension n x n, that com-
plexity is 0(n3). It should be noted that there are algorithms for matrix multiplication
that run in asymptotically lower time. For example, the famous Strassen's algorithm
[54] runs in 1(n2.8 07 ) time and, although numerically less stable, is occasionally used
in practice. On the other hand, an algorithm with the currently lowest asymptotic
complexity, due to Le Gall [33], runs in 0(n2.3 73 ) time, but is impractical due to an
extremely large constant factor involved. The same holds for matrix inversion as it can
be reduced to matrix multiplication.

By looking at Algorithm 3.4, we can see that the operations involved in message
computation that dominate computational time are multiplication and inversion of
matrices of dimension NRD x NRD and multiplication of matrices of dimension
NRD, x NDy with matrices of ND, x NDy. Therefore, assuming naive matrix mul-
tiplication and inversion algorithms, computing a message at any time point takes
E ((NRDx)3 + NRDx(NDy) 2) = 0 (N3 RDx((RDx) 2 + Dt 2)) time. Note that Al-
gorithm 3.4 also involves inversion of matrices Rt, which takes O(N 3 DY 3 ). If these
matrices are different at different time points, one such inversion must be computed
for each message, and the time complexity of computing a single message would be
E ((NRDx) 3 + (NRDx)2NDy + (ND,) 3 )). However, while this is true for the general
form of Algorithm 3.4, recall that the SSIM model assumes a single observation model
applied at all time points, which requires only a single inversion of the observation noise
covariance matrix in total, which can be ignored in the complexity analysis. This would
be the case in many other applications as well, since it is not realistic to expect that
the number of observation models is on the same order as the number of time points.
Finally, we can conclude that the time complexity of computing all messages (over all
time points) is 9 (N3 RDx((RDx) 2 + DY 2)T). Operations of the same complexity are
required in the forward sampling part of the algorithm, and so this is as well the time
complexity of the whole algorithm.

Note that in many cases, the dimensionality of an observation of a signal, DY, will
be smaller than the dimensionality of the latent state associated to that signal, RD,.

For example, this will be the case if a latent representation of an object consists of its
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position, velocity and acceleration, but only its position is observed. In such cases, D.
can be ignored in the time complexity analysis, and we can say that Algorithm 3.4 runs
in E ((NRD,)3)T) time. However, there may be applications in which the opposite
is true (D. > RD,). This would for example be the case if R is small and there are
multiple observations/measurements of a signal at each time point.

The memory bottleneck of Algorithm 3.4 is storing inverse covariance matrices of
messages, (E')-1. These matrices are of dimension NRD, x NRD. Therefore, the
total memory complexity is E ((NRDx) 2T).

Lastly, Algorithm 3.5, which is a numerically stable version of Algorithm 3.4 that
we use in practice, requires the same types of computations (matrix multiplications and
inversions) and stores the same messages as Algorithm 3.4, and thus has the same time
and memory complexity.

N 3.5.2 Complexity of inference in LG-SSIM: step 2

Algorithm 2.6 describes a procedure for batch sampling of the switching state se-
quence in the LG-SSIM model. Evaluating P(XtIXt_, Ek,#k) for any t and k re-
quires 0(RD 2 NM) time. To see this, note that in the Latent-AR, LG-SSIM model

P(X;IXt1,Ek,9k) = A(Xi;l X'1(1i') , Qi). Vector Xt is of length D,, while the

maximum length of vector X'1~4(ik) is MRD, since M is the maximum number of par-t-i
ent signals and RD, is the length of an expanded state of a signal. Therefore, matrix

A' has a maximum dimension D. x MRD, and computing the product Ai X'fa(i,k)

takes at most E(MRDz2 ) time.8 Evaluating the above Gaussian density takes 9(D. 2 )
since the matrix Q' is of dimension D. x D,. Overall, evaluating P(XlXt -1, Ek, 0)

takes 0(MRD. 2) time. Therefore, evaluating P(XtIXt-1, E, Ok) for any t and k
takes 0(NMRD 2) time. Finally, evaluating P(XtIXt1, Ek, dk) for all t and k takes
0(KTNMRD 2 ) in total. Once these probabilities are computed, computing messages
takes O(TK 2) time, since there are in total T messages, each message consists of K
values (probabilities), and computing each value requires a summation over K terms.
Finally, forward sampling takes 0(TK) time, since at each time point the probability

P(ZtIZi:t-I, X, E, 6) is computed for each of K possible values of Zt and then sampling
from that multinomial distribution also takes 0(K) time. Therefore, the total time re-
quired for Algorithm 2.6 is 0(KTNMRD 2 +TK 2 + TK) = 0(K(RDx 2NM + K)T).

Storing probabilities P(XtIXt_1, Ek, k) for all t and k requires 0(TK) memory.
The same holds for storing messages, since there are T messages and each consists of
K values. Finally, storing samples of switching state variables, Zt, takes 0(T) time.
Therefore, the overall memory complexity of Algorithm 2.6 is O(KT).

8 We will evaluate the worst case scenario and assume that the number of parents per signal is 9(M).
One may attempt to argue that that is also the average case. However, the distribution of the number
of paxents is unknown and may not be uniform, for which reasons such a conclusion cannot always be
drawn.
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E 3.5.3 Complexity of inference in LG-SSIM: step 3

Algorithm 2.5 describes a procedure for sampling parameters of multinomial distribu-
tions that govern the evolution of the switching sequence. This step is universal for
all SSIM models. Updating Dirichlet prior distributions on the initial and transition
multinomials, 7r, with a given switching sequence, Z, requires counting the number
of times that each initial switching state9 and each switching state transition i -+ j
(1 < i, j K) appears in the switching sequence, and adding those counts to the
prior hyperparameters (pseudocounts), a, to obtain values of hyperparameters of the
posterior. This can be done in 9(T) time, as each pair of values (Zt, Zt+,) needs to be
counted. While the total number of hyperparameters is K(K + 1) = e(K2 ), only 9(T)
of them need to be updated.1 0 Once the pseudocounts are updated, sampling of K + 1

multinomial distribution$ from the corresponding Dirichlet distributions takes 0(K2 )
time on total, as each multinomial is K-variate."1 Therefore, the total time complexity
of this sampling step is 0(T + K2 ). Note that K is typically much smaller than T,
and, in most cases, it is safe to assume K2 < T and thus ignore K 2 term in the time
complexity analysis.

The memory complexity of this step is 0(K2 ), what is required for storing the initial
and transition counts of switching states obtained from the data. This could even be
reduced to 0(1) if each individual count (at each time point) is immediately added to
the appropriate pseudocount, but, again, that is not a critical part since the output
multinomial distributions already take 0(K 2) space.

* 3.5.4 Complexity of inference in LG-SSIM: step 4

A procedure- for sampling structures and parameters of switching dependence models
in LG-SSIM with modular prior is given in Algorithm 2.4. Vector X'_1 is of length

IsIRD2, where IsI is the number of signals in the parent set s. Therefore, multiplication

X'_1X'_1 takes 0 ((IsIRD2) 2) time. Similarly multiplications XtX'_1 and XiXiT
take 0 (DylsIRDx) and 0 (D 2 ), respectively, since vector Xt is of length Dy. Tk such
multiplications are performed, where Tk = I{t : Zt = k}I is the number of time points in

"If there is only one data sequence, counting initial states is trivial - there is only one such state in
the data. However, the algorithm allows for multiple sequences as well, in which case there would be
multiple initial state appearances in the data.

10For simplicity, in our implementation, an array of counts of initial states and state transitions is
computed from the data (in a separate function) and then added to the pseudocounts. Initializing
these counts and adding them to the pseudocounts takes O(K 2) time, and therefore the counting step
technically takes O(T + K2) time in our implementation. However, that does not alter the overall time
complexity of this step in the inference procedure, as will see that it is 1(T + K2) anyway.

"Generating a sample from a Dirichlet distribution is reduced to generating a sample from a gamma
distribution (see [12], Theorem 4.1. on p. 594), which is obtained using a rejection sampling approach
(Jonk's algorithm, see [12], p. 418). Computational time of a rejection sampling algorithm depends
on the actual values of parameters of a distribution (Dirichlet distribution in this case), and therefore
can vary depending on data properties. For simplicity, we assume that there is a constant bound per
dimension for generating these samples in practical examples.
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which kth model is active, yielding a time complexity 9 (((IsIRDx) 2 + DyIsIRDx + DY 2 ) Tk)
Since Dy!sIRDx (jsIRDx)2 + DY 2 , the term DyIsjRDx can be ignored in the asymp-
totic time complexity analysis. The total time complexity of these multiplications is
therefore 9 (K Zi ((IsIRDx) 2 + DY 2 ) Tk. In addition, matrices Q,

M, and 'I,, as well as their posterior-updated versions, are of dimension IslRDx x

lsIRDx, DY x lsIRDx and DY x Dy, respectively. Computations with these matrices
that are of highest complexity are Qlj- and J ,I, which take 9 ((IsIRDx) 3) time,
Mk Q,- 1, which takes 9 (DV(IsIRDx) 2) time, and JT&i, which takes 9 (DY 3) time.i,,8 ,3 5 1 t

Again, 9 (Dy(|s|RDx)2) term can be ignored since Dy(IsIRDx) 2 < (IsIRDx)3 + DV 3 .
Since there is a constant number of these computations in each loop iteration, their

total time complexity is 9 (zJ Z= Z pk(IsIRDx)3 + D, . Finally, since all

other steps of Algorithm 2.4 are dominated by these ones, the total time complexity

of this algorithm is 6 (Q k= Z= ((IsIRDx) 2 + Dy2 ) Tk + (IsIRDx) 3 + DY).
Note that if Tk > max(NRDx, Dy), i.e., if the number of time points assigned to each
model is greater or equal to the dimensionality of expanded latent state and observation
state, which holds in many applications, the overall time complexity of Algorithm 2.4
can be reduced to 9 (K 1 E spA ((IslRD) 2 + D 2) Tk).

A simple bound can be obtained using inequalities Is K N, Vs, and jPAj < 2N
Vk, i:

K N

9 S( ( ((Is|RD)2+DY2) Tk+(s|RDX)3 DY3)

E) s (( RDxV D2 Tk (NsRDx )3  D3'
k=1 i=1 sPA 

/K N

o ((D ((NRD2+D 2Tk + (NRDx)3  D = I
k=1 i=1 sEPAI

K N K N

k=1 i=1 k=1 i=1
K N K N

( ((NRDx2+ D E2 1: 2Nk +((NRDx)3 + D, ( 2N
k=1 i=1 k=1 i=1

o (((NARD,) 2 + DY 2 ) 2NNT 4 ((N RD,)3 + DY 3 ) 2NNK) . (3.48)

Again, in most practical cases, T > max(NRDx, Dy) K, and the above bound can be
reduced to 0 (((NRDx) 2 + D. 2) 2NNT). This bound is asymptotically achieved when
all parent sets are allowed (for all signals in all models). In that case, IPAj = 2
Vi, k, and at least half of the subsets have size at least N/2 (excluding subsets of size
N/2 if N is even, there is the same number of subsets of size smaller than N/2 as the
number of subsets of size larger than N/2, which follows from equality (N) N m))
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Let PA*' c PA' denote a set of subsets of N elements whose length is at least N/2.
Then, IPA*' I > 2 N/ 2 , and

K

( E
(k=1

K N

sk=1 i=1 sEPA*k

k=1

((IsIRDx)2 + Dy2 ) Tk + (IsIRDx) 3 + DY3

((IsIRDx) 2 +D 2 )Tk + (IsIRDx+)3  =

((N/2RD) 2 + DY 2 ) Tk + (N/2RDx )3 + DY3)
i=1 sE7PA*A

Q ((NRDx)2

Q ((NRDx)2

K N K N

+D 2 )5 IPA*I|Tk + ((NRDX) 3 + DV 3) 55PA*|=
k=1 i=1 k=1 i=1

K N K N

+DY 2)121-2k+ ((NRDx)3 +D 3) ( 2 N-1"_

k=1 i=1 k=1 = 1 J

Q (((NRDx) 2 + DY 2 ) 2NNT + ((NRD )3 + Dy') 2NNK) . (3.49)

In fact, the same holds even if each set PA' contains only a constant fraction of all
possible parent sets. To show that, note that if IPA'I c2N for some constant c
(0 < c < 1), then at least half of the parent sets in PA1 are of size at least cN/2.

A different simplification of the time complexity expression can be obtained by
making an assumption that allowed parent sets of each node are the same in all K
models, i.e., that PA = PAI. In that case,

K

k=1

N

i=1 se-T>A'k
((IsIRDx)2 + D 2 ) Tk + (IsRDx)3 +DY3

K N

k= i= s5 A(sIR~ 2 D 2  (sR~ 3 +D 3
N

0 E 1: ((1 s IRDx )2 + DY2 ) T + ((Is|IRDx )3 + D Y3) K =
(i=1 SEPA

(z: [( s 12 (RDx) 2 + IPAi|Dy2 T + ( |s13 (RDx)3 + IPAIDY3 K)
i=l - sEPA' (sPA'

(3.50)

Let us now assume a bounded in-degree prior on parent sets with the maximum
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number of parents equal M for all signals and dependence models. 12 Then IPAtI =

M=0 m ZsEPA 2 r2= and ,sEPAi |sj3 n )m, and Equa-
tion 3.50 can be written as:

K N

E E S ((IsIRD,) 2 + DY 2 ) Tk + (IsIRD,) 3 + DY3(k= 1 i= sEPA~

IV[

L (=1 L sEPA
M

(RD, ) 2 E
m=O

IS2) (RDx) 2 + IPA|DY 2 T + ( |s13 (RDx)3 + IPAi|DY3 K
- sEPA

(N)M2 +

(RD)3 m()3 +

M

Dy 2 E
m-O

M

DV 3 E
?n=Q

(N)MI NT

(N)]NK .

Unfortunately, there is no closed-form formula for expressions EM= (N), jM=0 (m) n 2

and ( )m 3 . However, under some additional assumptions, these expressions can
be simplified in the asymptotic analysis. For example, if M > N/2, then the following
holds:

M

M

m=0

M

mn=0

(N 
) 

2[N

N >

(N M>

(N) M>

as well as

M

E
M-O

M

E
rn=O

M

E
M=0

[N/21

m= [N/41
[N/21

m= [N/41

(N)

(N)M

2N (N )2

4 4kN

(N)
kin

2NN 2

43
(3.52)

3 2N N 3 2NN3

<f (N) 2 NN 2

M 2 (N)m 2 N 3

(3.53)

1 2For simplicity, we assume here the same bound on the number of patents across all signals.

/
il

(3.51)
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Combining the previous two sets of inequalities, it follows:

E (N~) =E(
(N) M 2 =(2NN 2) (3.54)

M=0

(N)n3 - 0(2NN 3 ).
M=0

After plugging this result into Equation 3.51, we obtain

o ((RDx)2 E (Nm2+Dy2 S (N)] NT
M=0 rn=0

(RDx)3 3+ DY 3  NK)

=) ([(RDx)2 2NN 2 + DY 2 2N] NT + [(RDx)32NN 3 + D. 3 2N] NK)

= 9 ([(NRDx) 2 + DY 2] 2NNT + [(NRDx)3 + D, 3 ] 2NNK) . (3.55)

Note that this is exactly the same result as the one in Equation 3.49, which holds
whenever at least a constant fraction of subsets is allowed (1/2 in this case).

If the number of allowed parents, M, is small, a better (lower) time complexity
could be achieved. In many scenarios, M does not depend on the number of signals,
N. For example, it is reasonable to assume that there is a limit on how many people
one person can simultaneously react to, which is independent on the number of people
in a scene, and so the same bound can be used whether there is only a handful of
people or a large crowd in it. In such scenarios, M can be treated as a constant, and
the expressions EM=0 (N), FM=0 (N)m2, and jmM=0 (M3 all have the complexity
8(NM) (N(N-1) . . . (N-M+1) is an Mth-order polynomial in N, and the summation
is over M terms, which is a constant number). Now, Equation 3.51 can be reduced to:

RDX)2 E (N)m2+Dy2 Z ( NT

+ [(RD)3 ()m3 + D 3  ( NK

- E ([(RDx) 2NM + DY 2 NM] NT + [(RDx )3 NM + DY 3 NM] NK)

= e ([(RDx) 2 + DY 2] NM+1T + [(RDx)3 + DY 3] NM+1K) . (3.56)
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On the other hand, if M is not treated as a constant, or simply a more precise statement
about time complexity is needed -- one that describes the dependence on M as well

(whether a constant or not), then a simple bound can be obtained as:

e ( {RDx) 2  )m 2 + DY 2 Z (N) NT

+ [(RDx) 3 fz (N)3+D3 (N)D] NK

0 ([RD 2 (N)M3 + DY 2 (i) MI NT + (RDx)3 (N) M 4 + DY 3 (N) M NK

0 [(MRDx)2 + DY 2 ] (N) MNT + [(MRD )3 + DY 3 ] (N) MNK). (3.57)

Here, we used the fact that (N) < (N) < ... < < ) for M < N/2, and,

consequently, that E _ (N) M(N). A better bound can in fact be obtained under

the assumption that M/N < c, where c is a constant smaller than 1/2. In other words,
we now allow that M grows as N grows, as long as M/N does not grow. Under this
assumption, it holds that

-(M-1 ) _ m M < cN < C < 1 (3.58)
( N - m + 1 N- +M 1 - N-cN+1 - 1-c

for 1 < m < M. Let c' = c/(1 - c). It follows that

()<CIN--m ()(3.59)

and

(N) (N)McIN--m E (r) z 1 ( (3.60)
M M M ' M(

where the last equality follows from c' < 1. Similarly,

: (N) 2 < 1 (N)M2

M=0 M1CM,(3.61)

E (N)m 3 <1 (NQ M3
m I C' M
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On the other hand, the three sums are also bounded below as

~ Nm 2  (j~M2 (3.62)

(N)3 ( )M3

Finally, from Equations 3.60, 3.61 and 3.62, it follows that

E (N)2 = ( )M2 (3.63)

(N)m3 = >(N)M3)

which, when plugged into Equation 3.51, yieldslte thime complexity of

RD)2 m2 + D2 ( NT

+ [(RD) (N(m 3 +D (3 NK)

=O (RDx)2 ()M 2 + Dy2 () NT + [(RDx)3 (p)M3 + D 3 ( ]NK)
= ( [(MRDX) 2 + Dy2] (c)NT + [(MRDx)3  Dy3] ()NK) . (3.64)

Note that this is a tighter bound than the one in Equation 3.57 by a factor of M, due
to a more precise analysis of the complexity of the sum of binomial coefficients when
M/N is bounded, which also encompasses the case of small (constant) M.

In Algorithm 2.4, for every model and every signal, updated hyperparameters are
computed for each allowed parent set. These hyparameters are only used here to com-
pute the marginal data likelihood and update the prior parameter on the parent set.
To minimize memory requirements, these hyparameters can be discarded, and only the
updated parameter of the parent set prior, 's, can be kept for each allowed parent set,
which takes 0 ('PA Il) space. However, after a parent set is sampled, these values are
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not needed any more, and so the total memory requirement for storing "beta" values
is e (maxk,i -PAkj) - 0 (2 N). In the case of a bounded-indegree prior, this is equal

to 0 (2 N) if M > N/2 and to E ((N)) if M/N < c < 1/2. In addition, a sample of

a parent set, iia(i, k), and parameters of the dependence model, A' and Qi, is stored
for every model k and every signal i. The size of jia(i, k) is N in the worst case. If a
bounded-indegree prior is employed, it is M in the worst case. The average case analysis
depends on the particular value of the prior and the data. Here, we will assume that
the average size of a parent set is 0(M). The dimensions of parameters A" and Q' are
Dy x 1p5a(i, k)IRDx and Dy x DY, respectively. Thus, the total memory requirement for
storing samples is 0 (NDY(NRDX + Dy)K) in general, and 0 (NDy(MRDX + DY)K)
if a bounded-indegree prior is used. Finally, the overall memory complexity of Algorithm

?? is 0 (2N + NDy(NRDx + Dy)K) in general and 0 (() + NDy(MRDx + Dy)K)

in case of a bounded indegree prior in which M/N < c < 1/2.
It is important to note that in our implementation, posterior over parent sets and

dependence model parameters is computed and stored for all models and signals. Stor-

ing parameters of these posteriors takes E (zK=EN 1  (E ((IsIRDx) 2 + D 2)

space, which is in general bounded by 0 (((NRD,)2 + Dy 2 ) 2NNK) and is equal to

E (((MRDx)2 + DY 2) (N)NK) in case of a bounded-indegree prior with small M or

if M/N < c < 1/2 is satisfied. Although this significantly increases the space required
for this step, it does not increase the overall space complexity of the inference proce-
dure, since the same space is required for storing parameters of prior distributions in
general. 13

* 3.5.5 Complexity of inference in LG-SSIM: step 5

Algorithm 3.2 describes a procedure for sampling the observation noise covariance ma-
trix in LG-SSIM that assumes the same observation model for all signals and all time
points. For each time point, t, and each signal, i, the value (Y- C'X' (Y- C'OX' )T

is a statistic that must be computed in order to update the inverse-Wishart prior on the
observation noise covariance matrix. Here, Y is a vector of length Dy, X'" is a vector

of length RDx, and C'0 is a matrix of dimension D, x RD,. Therefore, computing

C'0 X' takes O(DyRDx) time and evaluating the product (Y - C'0X' )(Yt -t

takes O(D 2) time. These are computationally dominant steps, and thus, updating the
prior takes E (Dy(RDx + Dy)NT) time in total. That can also be considered the over-
all complexity of Algorithm 3.2, since generating a sample from the inverse-Wishart
distribution takes O(D ) time14 and does not depend on the number of time points T,

3 1n general, prior on dependence model parameters can be set independently for each parent set of
each signal in each switching model. However, if these priors are constructed in some parametric way,
thy may be represented more compactly.

1 4The implementation of an algorithm for sampling from an inverse-Wishart distribution that we are
using performs matrix operations that are cubic in time (such as QR-decomposition).
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which is typically much larger than DY.
Note that, in general, we assume that an observation of a signal, Y, is a function

of the corresponding expanded state, X'", which means that it is a function of a signal
value over some window of time in the past. However, in most practical scenarios, it
will be the case that an observation of a signal is only a function of its current state, Xt.
With that assumption, an equivalent computation (Yti - C0 Xt)(Yt' - COXt)T can be
used instead, where matrix C0 is of dimension Dy x D2, which would reduce the total
time complexity of this step to 9 (Dy(D. + Dy)NT). However, this is not critical for
the performance of the overall Gibbs sampling procedure (Algorithm 3.1) as this step is
far less computationally demanding than steps 1 and 2 even without such optimization.

Algorithm 3.2 does not require significant additional space, except for storing the
value of an updated hyparameter Vo of dimension Dy x Dy, as well as matrices
of the same size during the sampling substep. However, for convenience, our im-
plementation creates copies of the state and observation sequences in a "reshaped"
format convenient for applying matrix operations in MATLAB, and therefore takes
O (D2 + (RDx + Dy)NT) of additional space. Still, that is of the same memory com-
plexity as the input to this step, and significantly cheaper than the space required for
step 1, and thus not critical.
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Chapter 4

SSIM Experiments

T H E main goal of this thesis is to develop tools for learning time-varying interac-
tions among signals from noisy observations of these signals. In doing that, we

employ a Bayesian approach that characterizes uncertainty of latent variables via their
posterior distribution. The goal of this Chapter is twofold. First, it aims at illustrating
a variety of analyses that could be performed and questions that could be answered
(probabilistically) using the SSIM framework. Second, it demonstrates the advantage
of the SSIM model over the previous work by comparing results of interaction analysis
obtained by the SSIM with the ones obtained by the model that does not account for
noisy observations [49, 50].

We present experimental results on three datasets: synthetic data, joystick data,
and climate data. Synthetic data is generated to demonstrate specific advantages of
the SSIM model. Most real data does not contain annotation of interactions. Further-
more, ground truth interactions are in most cases hard to label even by domain experts.
Joystick data is generated by humans in an experiment that is specifically devised
for testing the SSIM inference algorithm in a realistic scenario. In this experiment,
players control a point on a screen via joystick in such a way that they interact with
only a predetermined subset of players in a specific way. Patterns of interaction change
over time also by a predetermined schedule. Thus, joystick data contains ground truth
interactions and switching pattern by design, and is therefore suitable for testing in-
teraction analysis. Finally, climate data is a real-world data of historical values of
different climate indices that cover various aspects of climate. It is still largely unknown
how climate exactly works and uncovering relationships among climate indices is one
of the tasks that may contribute towards its understanding. As the ground truth is not
known, this dataset is mainly used to demonstrate the variety of applications and types
of analyses enabled by the methodology developed in this thesis.

Note that in this thesis we focus on continuous-valued time-series data, in which
inference can be done using the LG-SSIM model. This is indeed the case with the three
datasets used in this Chapter.

In addition, there are practical considerations that are critical to address for a
successful employment of the Gibbs sampling procedure for LG-SSIM: setting hyper-
parameters, initializing latent variables, choosing a Gibbs sampling scehdule, and ex-
tracting statistics from the posterior samples. We discuss these first and then present
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experimental results.
In Section 4.1, we provide guidelines for setting the prior (i.e., hyperparameters)

in the LG-SSIM model, initializing latent variables, and performing a Gibbs sampling
procedure. We also provide a procedure for evaluating a posterior distribution over a
huge number of structures given a limited (much smaller) number of posterior samples
obtained by the Gibbs sampling inference procedure. In Sections 4.2, we use synthetic
data to demonstrate the advantage of interaction analysis over testing pairwise rela-
tionships, and the advantage of the SSIM model over the model of Siracusa and Fisher
[49, 50], which does not account for observation noise. In Section 4.3, we introduce
a novel dataset, the joystick data, which is created specifically for testing results of
interaction analysis in realistic conditions. It is developed in such a way that ground
truth interactions are known by design, but it is human-generated and not synthesized
from the model. We demonstrate the ability of the SSIM model to infer interactions
and a switching pattern even in the presence of relatively high observation noise or if
a significant fraction of data is missing, and that it is advantageous over the STIM
model of Siracusa and Fisher [49, 50], as the STIM model does not handle missing data
and performs worse in the presence of high observation noise. We also demonstrate the
advantage of reasoning over structure posterior over MAP estimation, as spurious edges
in a MAP structure estimate are typically assigned higher uncertainty (lower probabil-
ity) in the posterior than the correct edges. Finally, in Section 4.4, we apply the SSIM
model to a real-world problem and show types of analyses that it enables.

N 4.1 Implementation and Practical Considerations

Inference in LG-SSIM (and SSIM in general) is inherently hard. Since exact inference
is intractable, we employ a Gibbs sampling procedure described in 3.4 for approximate
inference. However, although Gibbs sampling has a theoretical guarantee that the
obtained samples will converge to the correct posterior distribution, obtaining a repre-
sentative set of samples from the posterior in limited time is challenging in LG-SSIM.
The space of latent variables and model parameters is very complex. The posterior dis-
tribution is highly multimodal, and there may be many local optima, and, as a result,
the sampling algorithm may easily get stuck in a wrong subspace of solutions.

Here, we discuss practical considerations that need to be addressed in order to
successfully employ LG-SSIM. First, the results of inference can be very sensitive to
the value of the parameters of the prior (i.e., hyperparameters) and the initial values of
latent variables. The values of hyperparameters directly bias the posterior distribution,
especially when only a limited data is available, which is a regime of particular interest
in this thesis. Therefore, the closer the prior is to the "truth", the better the results will
be. In order to set the prior as good as possible, we use common sense, prior knowledge,
as well as data itself as a guide. Furthermore, setting the values of hyperparameters
and initial values of latent variables properly is instrumental in focusing the Gibbs
sampler into a region of interest. This is of critical importance since the posterior
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distribution under the SSIM model is highly multimodal due to a very high complexity
of the latent space. Also, the exact sampling schedule (the order of steps, the burn-in
period, the distance between samples taken from a chain, and the number of restarts)
plays a critical role in efficiently traversing the posterior space and generating valid
samples from the posterior distribution. Finally, due to a huge number of structures to

reason over, the number of posterior samples that can be generated in reasonable time
is typically much smaller than that, and therefore only a small fraction of structures

would be assigned a non-zero posterior probability. In order to overcome such sparsity
and obtain a more precise posterior picture, we modify the posterior analysis in such a
way that conditioned on each joint sample of other latent variables in the model, a full
probability distribution over structures is constructed, and the final result is obtained
by averaging over these distributions.

N 4.1.1 Setting Up The Prior

Prior on LG-SSIM can be thought of as a collection of priors on different parts of

the model. Here, we analyze how each of them may influence results of inference and
provide guidelines on how to set hyperparameters.

Prior on switching model

The switching model consists of K +1 multinomial distribution, Mult(1r, ... , rK) and

Mult(rk.1,... 7rk,K), k 1, ... , K, that govern the evolution of the switching sequence:

Zi ~ Mult(ni, ... , 7rK)(41

Zt ~ Mult(rzt_1,1, .. - -7 Zt'_1,K) ,t = 2' - -.7T -

The prior on the switching model consists of K +1 Dirchlet distributions that are priors

to the corresponding multinomials:

(7r1, . . ., 7rK) - Dir(a1, - K -(-.,2)

(lk,1, ... , 7rk,K) - Dir(ok,1, -.- , ak,K) . . , K.(.2

Recall that the mean of this prior is:

K

Eprior [((1, - - -, =K)= (a1, - - -, afK) / ak

kz-1K (4.3)
k=1

Eprior (rk,1, .. . , 7Fk,K)] = (oak, - , COk,K)/] k,wk'= 1,...-, K .
k'=1

Therefore, the prior on the switching model introduces a bias towards these values

of initial and transition probabilities. The strength of this bias is controlled by the
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variance , which is

Varprior [irk] - , k = 1,.. K
ao(ao + 1)

CO kkI) (4.4)
Var [i7rk,k' = 1 , k, k = 1,... , K,

k ,0 (ak,O + 1

where ao = k1 ak and ak,O ak,k/. Note that the variance decreases with
the sum of hyperparameters, and consequently, the strength of the prior increases.
In conclusion, the parameters ak,1, .. . , ak,K are proportional to the expected prior
transition probabilities, while their sum, ak,O, controls the strength of the prior. These
parameters are called pseudocounts, as increasing ak,k, by an integer value has the same
effect on the posterior as if there were that many additional observed transitions from
k to k'.

We treat all states equally in the prior. In most applications, self-transitions
are much more likely than transitions to other states. Note that 7rk,k/(1 - irk,k) =
Oek,k(k'#k ak,k'). Thus, to set the prior such that from state k self-transition is m
times more likely than a transition to another state, we set ak,k' = a,k/(m(K - 1)) for
k' $ k. Unless there is prior knowledge of frequent switching, we set m to be T'/ (K - 1).
In other words, the prior expectation is to see approximately K - 1 transitions within
the sequence of length T'. Therefore, ae,kl = ak,k/T'. For example, ak,k/ = 1 for
k' # k and ak,k = T' is a common setting that we use, for some T' > 100. Note that
this implies that for relatively short sequences the pseudo-count is on the order of the
length of the sequence. While that is a moderately strong prior on switching param-
eters, note that the posterior of the switching sequence Z is heavily influenced by the
observed time-series, and not just switching parameters. In addition, we set ak = 1
for k = 1, ... , K. Note that this prior is not very influential - initial state is mostly
driven by the data. If there is only one sequence, as is the case in many applications
we consider, this prior is not important.

Prior on dependence models

Each of the K dependence models consists of a dependence graph, Ek, and a set of
linear Gaussian models,

X. X A' ';aik + W , Ar ~ N ( i) (4.5)

one for each signal i = 1,... , N, parametrized by the dependence matrix A' and noise
covariance matrix Q(. The prior on kth dependence model can be written as

P(Ek, Ok;13k ,-k p(Ek;/k) P(Ok I Ek;') , (4.6)

where 9 k = {(Ai, )Qif)~ 1 in the case of LG-SSIM. Since we use a modular prior, it can

be decomposed as a product of priors on parent sets and parameters associated with
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each signal's evolution model:

N

p(Zk, #k;, /k) = 1 p(ia(i, k); 3k) p(#t | p7a(ik); k) (4.7)
i=1

The prior on a parent set of signal i has a general form:

p(2ja(i, k);f3k) = 1 ,k (4.8)

where B = ipa(ik) /p(ik) is a normalization constant. Since the set of possible

parent sets of a signal is large (2 N), it is critical, even for moderate N, to work with

a subset of manageable size. Domain knowledge should be utilized to consider only a

fraction of parent sets that are most likely a priori. Excluded parent sets can be treated

as having prior probability 0. Ideally, if excluded parent sets are unlikely, that is an

accurate reflection of the prior knowledge. However, if that is not the case, but these

parent sets must be excluded for practical reasons, thus obtained model can be thought

of as a tractable approximation to the real world. Alternatively, the dependence model

of an individual signal can be thought of as a mixture model, where the mixture is over

a selected subset of parent sets.
Let S be the set of allowed parent sets of signal i in the kth model. We assume the

following form of the prior on its parent set:

k29 = (IsI + 1)bk, ' (4.9)
0 , o.w.

In other words, the prior probability of a parent set is inversely proportional to the size

of the parent set (plus one, to accommodate an empty set), raised to an exponent. If

bk,i > 0, the prior favors smaller parent sets. If bk,i < 0, the prior favors larger parent

sets. Finally, If bk,i = 0, the prior probability of all parent sets is equal. Note that

when bk,i > 0, the prior acts as a regularization term on the number of parents.

One would be tempted to conclude that it is critical to use such a prior, which

penalizes large parent sets, as in the case with AIC and BIC model selection criteria.

However, that is not necessarily the case in SSIM since parameters are marginalized out

to compute the posterior distribution of a parent set. Marginalization of parameters has

the effect of averaging data likelihood over all parameter values, weighted by the prior

on parameters. A larger parent set results in larger number parameters, but that does

not mean that averaging over a larger set of parameters would yield a higher likelihood.

In fact, if an additional parameter is not relevant (i.e., if the best model that includes it

is not significantly better than the best model without it), then likely most of its values

would contribute to the decrease of the average likelihood. Of course, that also depends

on the prior on parameters, due to weighting. The exact relationship between the prior
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and the average likelihood (obtained by marginalizing parameters) is complicated and

we do not investigate it here (it would be an important future work).
On the other hand, if a joint MAP estimation of a parent set and parameters is

performed, then some form of regularization is needed - either via a prior on parent set

that penalizes large sets (bk,i > 0), or via a prior on parameters that promotes sparsity

(Li penalty may be needed instead of L 2 ).
We typically use bk,i 0, and commonly 1 < bk,i 10 (default being bk,i = 1), SO

that there is no high bias for smaller parent sets, and the posterior is mostly guided
by the data and parameter averaging, but still favors smaller sets in order to provide

regularization when data size is small. Since the SSIM model is only an approximation

to the true process of interest in a particular application (time discretization and the

assumption of a linear Gaussian transition model), the MAP parent set may not re-

flect the causal structure even with unlimited data. bk,i may be set significantly higher

(or progressively increasing in repeated experiments) to "prune" the parent sets fur-
ther. This can be done in an exploratory analysis in an attempt to uncover possible

causal structures. When exactly this would be possible or beneficial requires further

investigation.
Also, we typically constrain the set of parent sets by assuming that a signal is always

included in in its parent set (which is true in most applications), and that there can be

at most M parents (bounded-indegree prior), implying Sk - {s I i E s, sI > M}.

The prior on parameters associated with ith signal evolution model, A and Q1,
is a matrix normal inverse-Wishart distribution:

p(Zi, Qi I p(a(i, k); Mi'c~(i'), Q5 a(ik) i,15a(i,k) i (i,k)

= M N (Ai; Mi'a(i'k) Qij5a(ik) Qi ( fai , k a(i,k) (4.10)k k k ,k) -EW(Qk;~

Note that this prior is conditioned on the parent set, p5a(i, k). Therefore, for each

possible value of the parent set, there are separate hyperparameters, K ipa(ik) giX~a(ik)

Mi,Pa(i,k) and k). We observe that the results of the Gibbs sampling inference pro-

cedure for LG-SSIM are very sensitive to these hyperparameters and we pay particular

attention to setting them appropriately.
Since the prior on the transition matrix, A', is conditioned on the noise covariance

matrix, Q', it is natural to consider first the prior on Q'. Recall that in the inverse-

Wishart prior, r,'i,'k(i,k) has a role of a pseudocount, while &i'f~(i'k) is proportional to

the mean of Qi:

Eprior [Qk' I 5a(i, k)l ~ ,~ik) (4.11)
i,15a4(i,k) -d,

where di is the number of rows / columns of Qi, and does not depend on the parent
kkset. Pseudocount, ws s(i'm) has the e ffect as if there were that many samples of the

covariance matrix whose sum equals T i,fa(i,k) (or, are *i'pfa(i,k) / i ,f-a(i,k) on average).
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We typically set ni,:~a(i,k) small, which implies a weak prior on Q . Specifically, in most

experiments we use i,5a(i,k) = di + 3, which is only slightly higher than di - 1, the
. Tia(i,k) pipTa(i,k)

minimum allowed value for parameter rk , . We set in the following way.

The noise covariance of signal i is estimated from data using a simpler model that is a

vector autoregressive model of signal i:

Xt = A'X'_ 1 +W , We ~ '(OQind) , (4.12)

where X'_ 1 = [XT ... Xr . Note that this model does not take into account

switching, observation noise, as well as other signals, and therefore estimation can be

done independent of the prior on other parts of the LG-SSIM. The maximum likelihood
estimates of Aisn and Q are computed as

/ t -1

(4.13)

T (X' - A X' _1)(Xt - Ai X)T,
tETobX

where Tob, is a set of time indices for which observations of both Xt and X'_ 1 exist.
Alternatively, some of the missing values can be added, e.g., by interpolation, to extend

Tob,. That may be particularly important if r is large and the frequency of missing
data is large. The estimated driving noise variance of signal i components (diagonal
terms of Q ) can be thought of as an upper bound to the corresponding variance in

any of the K dependence models in LG-SSIM (diagonal terms of Q'), since by adding

other signals, allowing switching, and modeling observation process necessarily result

in a model that fits the data better. Finally, T,'p5a(i,k) is set as such that the mean of

the inverse-Wishart prior on Q1 (Equation 4.11) is equal to i.e.,

T iOPa(ik) _ Q ,pa(ik) - di - 1). (4.14)

Now, we discuss setting the prior on the transition matrix, A'. Recall that it is

conditioned on Q, and has the form

p (A" I Pa(i, k), Q'; ,a( i,k) ka(ik), Q). (4.15)

The transition matrix is not know in advance, and we want to set its prior to be close to

a uniform distribution. To achieve that, we set the column covariance matrix parameter,
Q ija(ik) such that its diagonal values are very high (e.g., 10 4 divided by the averagek A
diagonal element of Q ~d such that the variance of each element of A' is approximately
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equal to 104 on average).' Note that this setting is very different from other works

(e.g., [? ]), in which Qi'1,a(ik) is set to identity. The reason is that in these works
there is no inference on parent sets (a signal is influenced by all other signals), and the
transition matrix is regularized by a prior that encourages small values. Here, model
selection is performed via a posterior distribution on parent sets, while the transition
matrix, A, is allowed to be arbitrary. In fact, such a setting is essential in LG-SSIM for
proper inference of parent sets, since regularizing the transition matrix may render some
parent sets unlikely simply due to a constraint on the transition matrix, while allowing
an arbitrary transition matrix may result in their high posterior probability. Finally,
the mean of the matrix normal distribution, Mki'"(iz'), is set to zero, although it is less

relevant due to the large width of the prior. Alternatively, elements of M ,14(i,k) that

correspond to self prediction of a signal may be set to A , which is their maximum
likelihood estimate in the model of that signal individually (Equation 4.13).

Prior on the observation model

We assume that the observation model is shared across all signals and is given by
(Equation 3.12):

Yg=C0 Xi+v , v -A(0, R0 ). (4.16)

We also assume that the observation matrix C0 is known and equal to identity, and that
the prior on the covariance matrix R0 is the inverse-Wishart conjugate prior (Equation
3.13):

p(RO; As, q/0)= IW(RO; A~s TO) (4.17)

We typically set n small (e.g., 4 = d + 2, where d is the dimension of each signal),
which implies a weak prior on Rf. The mean of the prior is set to be smaller than the
the one on the dependence model noise (on average, over all signals). We typically set

N

40 =0.75 E [diag(ind)l (Aon - d - 1)INdxNd, (4.18)

where _ I E [diag(Qifl) is the average value of the upper bound on variance across

all variables in all signals (recall that On) is estimated using Equation 4.13), and

INdxNd is an identity matrix of dimension Nd x Nd. The diagonal terms of the prior
mean on the observation noise covariance (terms that correspond to variances of indi-
vidual signal variables) are set slightly lower than the corresponding terms of the prior
mean on the dependence noise covariance in order to prevent explaining the data just
with a high observation noise.

'The matrix normal distribution of Equation 4.15 is equivalent to a multivariate normal distribution
on vec(A ) with covariance matrix (D C G.
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* 4.1.2 Setting up the Gibbs Sampler

A Gibbs sampling algorithm is guaranteed to converge to the correct posterior distri-

bution. However, the convergence may be very slow, especially if a distribution has

multiple local maxima. Since samples are typically highly correlated with the previous

samples, it may take a very long time for the sampler to "escape" one local maximum.
The resulting samples can therefore depend significantly on the initial value of latent

variables and parameters, as well as on which samples are taken from a Markov chain

and the number of times the chain is reinitialzied.

Initializing Latent Variables

Initial values of latent variables and parameters in the SSIM can significantly influence

the distribution of the samples obtained in a reasonable time due to the high complexity

of the latent space. Guessing the K dependence models a priori is difficult, as there is

typically no evidence of what they should be (and inferring their interaction structures
is in fact the main goal of the thesis). Setting them randomly may bias the algorithm

towards wrong explanations of the data. Therefore, we initialize other variables first

and then sample dependence models conditioned on other variables, as in the Gibbs

sampling procedure. Guessing the switching sequence, Z, is also difficult (unless there

is some strong prior knowledge). We typically initialize it randomly, such that the

value of the switching sequence at each time point is drawn independently from a

uniform distribution over the possible switching states. That avoids the bias towards

any particular pattern, as well as bias towards self-transitions, which helps make larger

moves through the posterior in the initial rounds of the sampler. We initialize the latent

time-series state sequence, X, using a simplified linear Gaussian state-space model in

which there is no switching and each signal depends on all other signals:

X = A Xu + nr, n~ N(O,Qi)
t t (4.19)

Yt" = XtZ + V, , ~N(, R).

The values of the parameters of this model are sampled from the prior on a single

dependence model, assuming that the interaction graph is the full graph. The initial

value of the latent time-series state sequence, X, is then generated as a sample from this

model. Finally, given initial values of the switching sequence and the state sequence,
the initial values of the K dependence models, parameters of the Markov model on the

switching sequence, and parameters of the observation model are sampled conditioned

on them, as in the full Gibbs sampling procedure.

Gibbs Sampling Schedule

We find that in the examples we explore, it takes a few dozen iterations (e.g., 50-100)

for a sampler to converge (to at least a local optimum) and that skipping every few

dozen iterations (e.g., 50) to extract a sample results in uncorrelated samples (again, at

least conditioned on being in a neighborhood of a local optimum). We typically perform
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several restarts to see if there is a significant variation in the results due to different
initialization. If that is a case, then we perform multiple restarts (again, typically few
dozen) and extract a small number of samples from each of them (typically only one).
We also find that even as few as several dozen (e.g., 50) extracted samples can describe
the posterior well using the procedure for evaluating the posterior over structures given
in the next section.

M 4.1.3 Evaluating the Posterior

The output of the Gibbs sampling inference algorithm for the SSIM (Algorithm 3.1) is
a set of S samples from the joint posteriori over latent variables and model parameters:

(k, ZS, r$ 0, s) s =1,...,S, (4.20)

where, in sample s, Zk is the state sequence, ZS is the switching state sequence, 7r' are

the parameters of the Markov model on the switching sequence, (Es, Os) {(Ek, 6)}
is a collection of the K dependence models, and (S are the parameters of the observation
model. Recall that Et = Ez, is the interaction structure at time point t in the SSIM.
The posterior probability of this structure can be approximated as

S
P(Et = E) = E [(Et = E)~ Z (E = E)

s=1 (4.21)

1{s : E = E}

S

where li() is the indicator function. Note that E is the dependence model indexed

by the switching variable at time t in sample s. Also note that the final expression in
Equation 4.21 is the fraction among samples of the structures valid at time point t that
are equal to E. Furthermore, the posterior probability of any structural event at any
time point t, given by an indicator function f(Et), can be approximated as

P (f(Et) = 1) = E [f(Et)] ~ f(M.9). (4.22)
S=1

An example of a structural event indicator is a function f(E) = 1(1 -+ 2 E E), which
indicates whether an edge 1 -+ 2 exists in the interaction structure E. Then, the
probability that signal 1 influences signal 2 at time point t, using Equation 4.22, can
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also be written as

P (1 -- 2 E Et) E [1(1 -+ 2 E Et)]
S

~ - I(1 -+ 2 E E.)S ,t (4.23)

I{s : 1 -+ 2 E E5 } i
S

which is the fraction among samples of the structures valid at time point t that contain
edge 1 - 2.

A problem with the above procedure for computing structure posterior probabilities
is that the number of possible structures can be very large, even under the modular
and bounded in-degree prior assumptions, and many of the structures may not be rep-
resented at all in the posterior samples. Similarly, for any low-probability structural
event, a very large number of samples is required to estimate that probability reliably.
The same holds for conditional events that may have high probability but are condi-
tioned on a low probability event. For example, if one is interested in answering a
hypothetical question "What would be the probability that signal 2 influences signal 3
assuming that signal 1 influences signal 3?", but the probability that 1 influences 3 is
low, a large number of samples is needed to collect enough samples in which 1 indeed
influences 3 in order to estimate the conditional probability.

To alleviate this problem, we estimate the posterior distribution over interaction
structure at time point t in the following way:

P(Et = E) = ZJ P(Et = E,Z,X)dX

EZ/P(Et = EIZ,X)P(Z,X)dX
z A

S (4.24)
~ : P( E, = E | Z,XS)

SS=1
S

~ P(k,=E|Z, s),
S=1

where P(E,= E I Z', X) is the probability distribution over structures of the de-

pendence model indexed by Z, conditioned on the state and switching sequences from
sample s. Note that computing P(E8I = E l Z', X') is equivalent to the problem of
computing the posterior distribution over a homogenous structure from perfect data,
since both the switching pattern and the latent time-series are assumed to be known.
Recall that this computation can be done efficiently if a modular bounded in-degree
prior on structure and a conjugate prior on parameters of the dependence model are
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used, which is the case in this thesis. In other words, samples from the joint poste-
rior distribution in the SSIM are generated first, sampled structures are discarded, and
the posterior distribution over structures of each dependence model is then evaluated
conditioned on other variables, for each sample. Thus obtained distributions are then
averaged for each time point to compute the posterior distribution over structure at
that time point. Note that the dependence models do not depend on parameters 7r and
( when conditioned on the latent state sequence X and the switching state sequence
Z, and thus f^rj and (' are irrelevant for computing the posterior over structures as in
Equation 4.24. Hyperparameters are omitted from equations for brevity.

Siracusa and Fisher [49, 50] evaluate the posterior distribution over switching inter-
action structure in the STIM model in the following way. After posterior samples from
the joint distribution are generated, a single representative switching sequence, Z, is
determined as the one with the smallest Hamming distance from all samples of switch-
ing sequences, {Z} 1 . Then, the posterior distribution over structure is computed for
each switching state exactly, as in the homogenous model (recall that the time-series,
X, are assumed known in the STIM). Therefore, their method also resolves the problem
of sparse samples of structure. However, the advantage of our method is that the un-
certainty in the switching sequence is accounted for when computing the posterior over
the interaction structure over time. Furthermore, by marginalizing over the switching
sequence, the posterior distribution over structure can be different at every possible
time point, whereas in the method of Siracusa and Fisher there are at most K different
structures.

Finally, we evaluate the uncertainty in the switching pattern by estimating the
probability that any two time points, ti and t2 , are in the same switching state:

P(Z = Zt2) - (Zi Z2). (4.25)
S=1

N 4.2 Synthetic Data Experiments

We present several experiments with synthetic data that test different aspects of the
interaction structure learning problem.

* 4.2.1 Structure Inference vs. Pairwise Test

Learning interaction graphs under the modular prior assumption (Section 2.6.4) in
general requires testing each possible parent set of each node. If parents of a node are
tested individually, the most likely parents may not necessarily be the correct ones.
To demonstrate that, we generate two examples from the LG-SSIM model. In both
examples, there is no switching and observations are assumed perfect. There are 4

univariate signals in both examples, and the first-order AR model is assumed.
The interaction structure for the first example is shown in Figure 4.1a, and the
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Figure 4.1: The interaction structure in the two examples that demonstrate the necessity
to consider parent sets rather than parent candidates individually.

linear Gaussian models for each node are:

X = 0.2X_ 1 0.6X_ 1 + 0.1X_1 + n,

X2=0.2X 1+ 0.7Xt_1 2= 0 . IX t 1 + -1~ + t (4 .2 6 )
X3 =0.9X3_1 3

S 0.9X 1 + nt,

where nt, n , nt and n? are I.I.D. samples from A(0, 0.1). A data sequence of length
T = 1000 is sampled from this model.

When the inference is performed on these data without any restrictions on possible
parents (except for self-dependencies, which are always assumed), the correct structure
is recovered (posterior probabilities of true and false edges are approximately equal to
1 and 0, respectively). However, by looking at the effect of each signal separately, in
addition to self-dependency, possible parents of signal 1 are sorted as 2, 3, 4, in the
order of decreasing posterior likelihood. Therefore, the posterior likelihood of the false
edge 1 +- 3 is higher than the likelihood of true edge 1 +- 4. This result stems from the
fact that the true dependency of signal 1 on signal 4 is relatively weak (with coefficient
0.1), while its indirect dependency on signal 3 is stronger. Note that this is essentially a
test for Granger causality [23].2 The test is performed in the LG-SSIM model simply by
bounding the number of parents to 2 (i.e., 1 in addition to the assumed self-dependency).
Finally, if signal 2 is excluded from the analysis, but there is no restriction on the number
of other parents, the posterior probability of edges 1 +- 3 and 1 +- 4 are 1 and 0.7,
respectively. This shows that, in the absence of signal 2, signal 3 "takes over" its role
in explaining signal 1, together with signal 4. Since the relationship between signals
1 and 3 is noisier than between signals 1 and 2, the probability of this explanation is
lower (probability of edge 1 +- 3 equal to 1 means that the probability of 3 alone being
a parent is 1 - 0.7 = 0.3, while the probability of a parent set {3, 4} is 0.7).

In the second example, a sequence of length T = 1000 is sampled from the model
with the interaction structure shown in Figure 4.1b and the following linear Gaussian

2 Except that the parameters are marginalized out instead of looking at the maximum-likelihood
parameters.

Sec. 4.2. Synthetic Data Experiments
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Figunrc 4.2: An exainple that deiionstrates the adviit ag' f it iltdeliug olbservatitn iuse.

(a) True int-eractin structuire. (b) 1Posttrir pilability tf edges ibtaiiied by Inference

in the STIM miodel (which dtis hot itidtl b)hservatOlln ltise). (b) Posterimr priAbaUbility

)f tdges ibtainied by iiferencs in Ih SSI\ iodel (which indels 1 bservatio nmise).

The vilie at itw iid ttdu'i j is t) ihaiility if edge i -> j . Self-edges Cre blacked

(mt, while the corret edges are iarked witl a white tit t. Not tlat the STIM assigns

probaubility 1 to a false edge 1 &3. Even tiougli signal I depends oIily indirectly on
signal 3 in the genterative l del, snal 3 h ielps explail signal 1 since the observat-io1S

of sig'nal 2 are nolsy. On the thtr iaid, it the SSI\M is used for inference, the p) sttritur

pr)oabilityi tf edge 1 <- 3 is significantly reduiced. Nott also that the proability tof

edge 3 <- 2 has increased, which ineans t It the addit ional flt'xibility of the idel iiay

allow for ditferent explanatil of t dat a in t h itt t space.

iid 1s

XN1  01I V + 0.4XI + 0.4XI + "'t

X 2 = 
I .1X t + 0. 4X 3_I + A.4XII + 12, , 0 14 t (4.27)

X3 , ().!)X 3 + 0,

X4 0.+X4  +

whre ny Ol and nf an I.D. saipiles from n(0. 0.1). Again, when all parent

st'ts are uisidtrtd. inference yields the posteri t pri1bbil)y of the crtect struict ilt'

approximately equal to 1. Howevtr, when pizllteis are oisidltd individially, the nitst

likely parent tif node 2 is node 1 with pr)dability 0.94. T1his can be explained by the

fact that bthli signal 1 and signal 2 depend tn sa igls 3 iad 4 in the saine way, and can

thus be siilar to each (ither,. in this case, it Iiappt as thiati sign11al 1 helps predict signal
2 better thanl 'ithier tif signals 3 and 4 individually.

U 4.2.2 Observation Noise vs. No Observation Noise

We dellinstrate the advantagt' t the SSII ill iver th' SIll ldell t f SiiaCusa and

Fisher [ 19, 20) describd ill Sectiti 2., which does not accolnt for tservatitin lise.

WAe generate an exanple frtin the LG-SSIM liiiodel in which there are 3 univariate

signals, there is no switchling, and the first-irde' AB R idA is assumned. A sequence of

length T = 1000 t f 3 signals is samupled from the LG-SSIM model with the ilteractiOl
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structure shown in Figure 4.2a and the following first-order linear Gaussian models:

S 0.2X 1 + 0.7XA 1 + vt ,

Xt 0.2X;_ 1 + 0.7X/_ 1 + Vt , (4.28)

X = 0.9X_ 1 +v3,

where vi, v2 and v3 are I.I.D. samples from K(O, 0.1). There is no switching. Signals 1
and 3 are observed directly, while signal 2 is observed via a noisy process:

Y = + w, wt ~ A(0, 0.1). (4.29)

When the linear Gaussian STIM model, which assumes perfect observations, is used
for inference, the posterior probability of edges is shown in Figure 4.2b. Note that
the probability of a false edge 1 +- 3 is 1. Even though signal 1 depends directly on
signal 2 and only indirectly on signal 3 in the generative model, the observed signal 3
helps explain signal 1 since the observations of signal 2 are noisy. On the other hand,
if the LG-SSIM model, in which observation noise is allowed, is used for inference, the
posterior probability of edges is shown in Figure 4.2c. Clearly, the posterior probability
of edge 1 +- 3 is significantly reduced. Note that the probability of edge 3 +- 2
has increased, which means that the additional flexibility of the model may allow for
different explanation of the data. In this case, some of the posterior probability mass
is centered on the explanation in which signal 3 depends on signal 2. Still, the most
certain edges are the correct ones. In addition, the expected value of the latent signal
2 in the posterior distribution is closer to its true value than the observed signal is in
terms of L1 and L2 norm.

* 4.3 Joystick Interaction Game

Most available temporal data is not annotated for interactions. Furthermore, obtaining
ground truth interactions is difficult and, in most cases, subjective. While that amplifies
the importance of developing algorithms that aid in uncovering such interactions, it
also makes the testing of these algorithms difficult. Consequently, we created a simple
experiment, from so-called "joystick" data, where the structure is known (although the
parameterization is not). In the experiment, five players control a joystick to move an
object on the screen in order to accomplish a task. There are three different assignments
of tasks shown in the top of Figure 4.3. Assignments switch over time over the duration
of 4.5 minutes, as shown in the bottom of the figure. To remove bias, a player only sees
the objects on which it depends. Positional (2D) data is recorded every 1/10sec., so
there is a total of 2701 time points, including the initial one. This data is realistic since
it is human-generated and not synthesised from the model. In addition, it contains
interaction annotations by design and is useful for validating the model.

We find that the best results are obtained when the data is downsampled 3 times
(total of 901 time points) and AR order is 5, which we use in all experiments. This order
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M- F F ----- 5

FF F O F 9
F| 

d|

I II III I III II
5 4

1 min 30 sec 1 min 30 sec 30 sec 1 min

Figure 4.3: (top) Three assignments of tasks. Individual tasks can be: F "follow", M

"stay in the middle between", and 'nove arbitrarily" (otherwise). (bottom) Order

and duration of assignments.

corresponds to a lag of 1.5 seconds. A 3 times higher AR order would be required with

the original data in order to capture the dependencies of the same length. However,

the original data does not provide much additional information due to high correlation

of samples at neighboring time points.

In all of the experiments, self-dependencies are assumed and are included in the

count of parents. Results with K = 3,. b = 10, and maximum number of parents set to

3 and 5, respectively, are shown in Figure 4. 1. The top row presents the switching-state

pairwise probability matrix, whose entry (i, j) is the posterior probability that time

points i and j are assigned the same switching state. There is an obvious switching

pattern that coincides with the setup of the experiment. The bottom row shows the

posterior probabilities of edges at 0.5, 1.25 and 2 mmi, which correspond to the three

different assignments. The value in ith row and jth column is the probability of edge

i j j. Self-edges are "blacked out", while the assignment ("correct") edges are marked

with a white dot. The algorithm assigns high posterior probability to all correct edges.

In addition, a few spurious edges are assigned medium to high probability. We note that

these are typically edges between players that follow a coinnon other player, possibly

via intermediate players. For example., 2 and 3 both follow 5 in the first assignment,

while 4 and 5 (via 2) both follow 3 in the second assignment. We also note that the

results are better when fewer parents are allowed, since the number of possible incorrect

choices of parents is reduced.

"We set maximum number of parents to 3 in the rest of the experiments. Interestingly,

when only two switching states are allowed, the switching pattern still indicates the

presence of three states, as shown in Figure 4.5. Namely, states 1 and 2 are combined

into a single state in some samples, while states 2 and 3 are combined in other samples.

On the other hand, when K = 5 states are allowed, only 3 of them are actually used,

yielding similar results as with K = 3.

-W
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#max. parents = 3 #max. parents = 5
1 - - -1

1 0.8 0.8

2 0.6 0.6

0.4 0.4
-E3

0.2 0.2
4

0 0
1 2 3 4 1 2 3 4

time (min) time (min)

2 2? A 2 2 26
3 Q3 3 5

5 5 5 MM 5 5 asma
1 2 34 5 1 2 3 4 5 1 2 45 1 2 3 4 5 1 2 3 4 5

t=0.5 t=1.25 t=2 t=0.5 t=1.25 t=2

Fgiire 44: bit (eracto 11 ai dilysis 511 .J( ystick data wlell the llxinuXIII liii llbei1 of parle-ts

is ' (left) a.id 5 (right). Tp w are Ole switchi jg-st ate pririXwis pr()babIlity ntrices.

VXalne at. a position (t, t) is the probhability that tile pojilts ti and t) ir( wssigned the

-ai.lw( hg s tat( 1 (. P(Zil =Z ). No11.' that. il hoth)(1 cases lir is ai1 obvioiis

swi'(-hig pattern hat ( ()ii( id(ls with the setup of the experiuent . A red bhlwk oIn the l

diagoinal sh511(Ws high probi11y th i the (Irresp)idig titrie segmiient is iOgiiois in
terms (of interacti(on (i c( )espaids to a single switchig state). A red off-diag ( nal

i)1( Ick sh()ws that time seO Imiets 00resp(nding t() its [rB jecti(1 oit X d111(1 y xs

have( the same i11(4 1t)11 i 1n he samIie switchiuig state). Botto r w are edge

po steiri( i matrices at tinis 0.5, 1.25 ad 2 itii, which (-( rresp()nid to the t hree (diffevlli

assliients. The valie at row i aind ((liu is th( pro)ability (f dge i - j. Self-
edges ae blacked (lit. wile the irrect edges are( i iiar-ked with a while dot. Notw

that tle SSIM assigns high prlobbility to l i rrect u Id-es n111d t o few Lprols edges.

Those erio)is c()Iilily occ u when tWo players have vry simiiiar 1ehavior (e.g., players

2 a 1d :8 4 follth 1W player 5 ii the first assinmit) Note also that there results are

slightly Xv(wrse when t1 mawxIian1 1111lnlber (of paruts is 5 whieh is higher thti1 needed.

Finallv, we lest ()Ill alg( ri ini III tlie scenririos (f higher incertauiity. In the first

experiment , wc add Guissiai i se (oIf a fixed varlaiie tI l (bservtiois. Seecti 

of Xariaiie 1() des it change the results. The resiilts with variance I)- Sh1(1W

higher iricertaiiity in siMie ()f the edges (Figrine . ( K left). Als, fihrn the switehijag

p)t teri we U that stllts 2 mid :)) are 1i(t distiligulisiihed fro1 each (0Iier iii SOUM ' of the

sailples. Whenlii Iise variance is f irthei icreisel to -( to- ne of the three states is

recogiized. III tli( secid lll eXpel] umemit. We trmeat a svubset of the Odata as missing. Whemi

"The maxim1111 d1I istaiv(, ;1.11 ohj 1 . i ta vel b 'et H tw i tim p iuts is (.75.

ill
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K=2 K=5

1 0.80.

0.6
2 0.6

04

3024

4. 0.2 No2

1 2 3 4 1 2 3 4

time (min) time (min)

2?2 2 2*
3 3 3 3 3 3
4 4 WM 3 4 4 4

55 5 5- -

12345 12345 12345 12345 12345 12345

t=0.5 t=1.25 t=2 t=0.5 t=1.25 t=2

Figurll 4.: R esults Oil Jostick data, weii the number (f switchiig state K is 2 (left) and

5 (riglit). Top i)ow are switchii siilarity imiat rices. Bttoiii OW ar edge posteriors

at tiiumes 0.5, 1.25 and 2 mii. Note that eveil wheii K is lOwer thanii the actual numiilber

of switch11 states (K 2), the switchiing similarity matrix iiidicates the presenlce

(if 3 states, a1d there are also three dist lict iliitractioll structiircs. The first result

hiightighits the dvngeof l()( king at the eiitir( psteri(I istribtion rather than at

a MAP assigrnmenit. The secontd result is due t N) miarginalizatior Of the switchiiig state

stqinci. Note also that when K is higher i Inha tl( actual niuilber 41 switching states

(K = 5), the results are suiilar to those (obtaid witl the cIrrect nner (4 states

(Figure . k left), which inilcates that the aIditi(ial states all( wed are in t assigned

aniv new bel)havior that coisistelitv appears ill a large iiiuiiiber o(If saniples.

every 2 ,4 value is ()bserved, the results d( noit change. Tho results when every 3 1 value

is ()bserved (Figure 1.fi, right) show higher iiicertainty ()f somhe edg(es.

* 4.3.1 Comparison to other approaches

We illustrate the advantage of the S'SIM dli(Il, which a-c(olunts for the observation

ioise, over the previ is ode1 of SiriC usa aid Fish(i [70] (STIM), which assuimies

perfect observat iois. A subset of th iystick data that correspond to the last 1-minute

segmo'nt is taken antid Gaussian Wols( with variance 10- (high n(ise) is addd to all

observations. Note that there is mo swit( ling d(ilrilg) this segienit and the (orre(t

iiteract ion structure is that, of the sect)nd assignment iin Figure 1 . Posterio( edge
pro )bablilit-ies o)btail(d by infieic usig the SSIM aid STIM inmodls with a single

switchiig state are shw(N ixi iiiglire . . The STIM iodel assigns high pr(bability to

Oilly ('to c(-Orrect edgc and d(es ioit infer other (dg(s due to high observation ioise. 0n
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noise variance = 10-4 every 3 rd observed
11

18 08

.0.6 0.6
2

0.4 0.4
E3

0.2 0.2

0
1 2 3 4 1 2 3 4

time (mmn) time (min)

1 4

5 M
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 /23 4

t=0.5 t=1.25 t=2 t=0.5 t=1.25 t=2

Figure 4.(: Besnlts o n tystick dlatzi when observaut'ii Hoist vria na is 1(1 0 (left) and
wlh'i every : xalit is observtd (right). ' p rw are switchimg sitiilarity niatries.

Bottilii i w at' (dg' psteIrS at t i1iHs 0.5, 1.25 and 2 11. Note that tlit se ('rsilt's

a'r qualitatively siiillar tt tht t's obtaild frtiiii pt'rteet dtiit (Fi e 1 mt lft), t'Vt'ii

t Igh relatively high in )ise is added to IIsrvatin in MW i ASt a'n(d a large fractiOi

(2/8) 4 ol bsrti.tds are dropped iII the seeiod ease. The nntc'rtaintv in the observati

set enece is refl( ttd iII t.h(' postir as a (slightl) higher iiiertity in the interactiOn

st rimetur ins atd tli switching patter] 1.

tli oF litr ihmd, he SSIM ianIdel assigns high prthility t) 3 t it. of 4 tto)rrtt t'dgt's,

whith is an t'vidtiit tiit it ian infr interattiis uitug the lattent tiin-striots that art

at dt (ltectahle froin lit bscrvt d tnne-serit's directly.

Not' that wTilt tht SSIMI nidt l tassigns signifheant Iosterir prt))bilIt t iriet

t'dges 3 -> 5 and 4 -+ 5, thr is 5(s)omie uInti nity in th litse edgts. This is It) Unitipar'

with thi' MAP estimate i tf th st[iuct uit, also shown in Figurt' iT. which simply prestts

a si4igle iost 1ikly paretnt sO I Uutd 5 (as wtell as for it her nt itodts) witd dis In ittt a mcc t

for the u nicertaintV in F li' t'stiiiated striictire.

* 4.4 Climate Indices Interaction Analysis

H1tre, we apply IIt' LG-SSIM ntd.l to r(t'al-world tlima t' data. 11 dtiig s , w " wish

tti iiplasiz that it sliild )t taifl i drawing sct'ietiic itiisins frit tF htst

rsults. Ill particilai, tins ongst tst data wt- ar- likely not licar (as

assiinitd by thl LG-SSIM) and ttnis 'nt ly inIerrt'd striiectirt's niay at ntcssarily b

itv f t xpl'ii c'ality. NFrt hdlss, iahe vlt 'ay yicld interestinIg details.
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5

2-

3 3 -
4 4
5 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
SSIM STIM MAP

Figuir 4.7: Results of structure inference oti a segient of Joystick data that corresip1ds
t) the secnd assigniment (no switchiung), a1(d to which high ut list' is added (xari1n0(

of 10) ol btaiied via: full ifetence i I the SSIM i1d1l (left), full inference in t he

STIM itd(l of Siraciisa aid Fisher ] ht does -it tt atc(unt for the obse rvatitn i Se

(iniddle), and MAP estimate I I tih SSIh M miodel (riiht). Note that the SSII assignus

hi11 probability tt 3 01t of 4 criect edges. while tht STIM assigns high probability

to oily one of then. Also note that the SSIM assigns a reduced prj)tbability (higher

lincertainlty) to the incorrect edge ili the MAP structure (edge 4 -+ 5).

Following .liang et al. [2 ], we use dat a mi a subset (f 116 clinate indices froni

the repository iaintained by the Earth System Research Laboratory of the National

Oceanic m(d Atmospheric Administration (NOAA) 110] which are described in Table

1. I. These indices are cmpiled imonthly a11d sp1a v5tH\arit a b hardcterstics If the dolnate

system. rr the purpose (If ctinpariso1, we use the data from 1951 to 2007, as in Jiang1
et al.. and apply linear and (1 ladratit detreldiiig. Note that a sinall fraction of the

data in this spa is Iissing, which (m1. itd)(it'l addresses naturally.

9'

1

4

6
7
8
9

10
11

12
13
14
15
16

abbrev.
AMM

AO
EP/NP
GMT
Nin03
Nino4

Ninol2
Nino34

N01
UNI
PDO
PNA
S )1

St a0
SWM
WP

description
Atlantic M tridional Mod SST

Arttic ()scillation
East Pacific/North Pacific Oscillation
Global MNean Lan/tc1an Telperatliit

Eastern Tropical Pacific SST
Central Tropical Pacific SST

Extrene Eastetn 1opical Pacifi SST
East Cintil Tropical Pacific SST

Northern Oscillation Indx
t ani Nino jdilx

Pacific Decadal Oscillation
Pacific North Aiinicaan Index

Southlerni Oscillation Index
Solar Flux (10.7eni)

South Western USA Monsoon
\estcrn 'Pacific Index

Table 4.1: Descriptioi of tliinate indicts.

We ruin inferetce using the SSIM latent-AR liodel with twoI switching states. We

1.14
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'59/4 L08

'67/8 A

'75/D s

'84/4 n a 0.4

'92/8

'00/D

Jan '51 Apr 59 A\ug e ug 92 D ' 00 Dec 07

2

0

Apr '59 Aug '67 Dec '75 Apr '84 Aug '92 Dec '00 Dec '07

0.5

0 -
Apr '59 Aug '67 Dec '75 Apr '84 Aug '92 Dec '00 Dec '07

time

FIiur 4.: Analysis of th ie lii at data using SSIM m(odel. Top r w is the switching-

state pairwise pr)bability iattrix. Middl r(w is Ilie Solar flux tinie series. Botftoin row

are thi( p)steror pr(babiliti('s (f)1 (d(s: Nino12 -+ GMT (bLue), Niuot2 -+ NiO4A (red),

NinO12 -- Nm(i o)4 (green). Not thlt the switlil ig pattern (xlibits a eyeiw behavioar

that c)iIc1(ides with i the eveles of Solar flux. TIhe two states corresp(id t,() the 101W and

high activity ()f Solar flux.

houid the lulhii(br (If pareits pr itode t( -aid require a inini lum of t pareht with

enf)rcing self-edges. The t(p row (f Figure I slitws tle switchiig-state pairwise

pr()bability inatrix. U nlik ,iang ( oh.t wh it o' rtsu ilts suig-est a single switch point iII

197, this result sug s that there is a eVole behavit r. Figuirie I slows two in t iie('s

of prsterior probabili ti( ol dgs that crrespod tt Jime 1 9( (Ieft) and August 1992

(right), which beloing to the pposi phases of the c lvele. W 1 (1bserve that Nino indiC(ies

and ONI index arc thc iosl influential Iverall, cinfirmiin' that they are IIaportaII

pr ( (1di to rs of ('liinatc [60]. Ilt(rest ingly. the oiilv significait (1pende e of ONI index

is 01i Southern Oscillation1 I]1cx.
Note that. there re a t( fx diffEreies betw 'en the two posteriors. For example, as

shw( I ill the 1)01otmi It aw o f Fire Niufluenc (I Niio12 index ito GM T. Ninio4 and

Nio34 Indices fluctiutes drt1i(icallv. As noted albo)ve, tlieso' m1y It iiecessarily be

chang'es ill explilit iiaisality. Still, tHiy eipes'cnit the hest explohtits 0f the structural
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4

2-

0

- 2 - ----- --
Apr '59 Aug '67 Dec '75 Apr '84 Aug '92 Dec '00 Dec '07
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Apr '59 Aug '67 Dec '75 Apr '84 Aug '92 Dec '00 Dec '07
time

Fiire -4.9: Nin)12 (1op) and ONI (b(ttoit) tami S( is.

d(pend(n(ies in the two phases iider the LG-SSJ\1 i mdel. In addition, the amibigiiity in
tie swit(hing pattern between rim ysuggest that there exist transition periods
of several months to several years, rather than a sharp change. This may explain
the difterences in the switchpoints reported in the literature [e, , emphasizing the
advantage of' Bayesian raS)1ing Ox p()oiilt estimatioln.

Unlike Jiang et al. [ 1], in wxxh iI Silar flux is tle 1m.st influential index, the results

obtained ien' show no direct depedli y (n Smlar fiux, but suggest its iidirect infiuen''
via the swithiing stati'. Namely, We oabserv that the switihing seulen(e largely 'orre-
Sfi1d to the change ' tar ianice f Solar flux anid that it is likely that a uoire coiplex,
nonlinear m11oIel describes it 's exaCt 1(lationship to the reinaiing iidices. Interestilglv
the Ninoi2 iii(i(x d)es not app'ar t( Iorrelati with the switching patt('ril (Fgmre .i);

h(we'ver, its influence on the three other indics ihanrges a(ording to the belaviOr of
Solar flux. The same holds for oti'r time series (e g.,ONI, also shown ill Figure )

Finally, we note that the exact natiire and navgnitlide I* the infiiumse of Solax Van-
ability on the lirnate is still largely unknown ['26, ] and pres'nt 5 an ac1 tix ara of
researi'. It is particularly hard to distinguish thl Soiar infirenc from that If greien-

house gases and ael s in the indust rial era, to I which the data iisd here belongs.

Therefiiore, it is not surprising that we ido nt disitiver dirut sh)rt-t(rn linear depen-

dencv of' ilimate indices on Silar flix, siwgesting that using a noiinlint'ar model and data

ovr a longem' piid of time or at a difFerent time sial' may be more adequate for that
part iudar t-ask.
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Whieh belmig to the )ppositc phases ()f the yole. Note that Nino indices (5-s) and

ONI i(ideX (10) are the iliost infl 1eiltial (vcral l.ll., oniilLling that t hey are iinpjrtant

predict(rs ) of (hiinat(. hIterestingly, the oulv sigificant depedeue of ONI index is ()II

SuIt hernIij Oscilati1 Index (13).
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Chapter 5

Structural Health Monitoring with
SSIM

S TRUCTU RAL inspection has been necessary to ensure the integrity of infrastructure
for almost as long as structures have existed, ranging from informal subjective

methods such as visual or hammer testing, to quantitative modern methods including

ultrasound, x-ray, and radar non-destructive testing techniques. These testing methods

are relatively intensive as they depend on the experience of the inspector and the time to

inspect suspected damaged locations in the structure. Inspections are typically carried

out periodically, however if additional sensors could be added to the structure such that

some indication of where potential locations of damage might be such that they can

be closely inspected, it would be useful for reducing the time and effort necessary for

structural inspection.
Structural health monitoring (SHM) involves instrumenting a structure with sensors

and deriving some information from the data they collect in order to determine if the

structure has changed [6]. This change in the structure could then be attributed to

some sort of damage that would be more closely investigated. In general, data is

processed into features that may indicate these changes in the structure and in some

cases statistical or probabilistic discrimination of these features are used to separate

data collected from intact and changed structures [51]. Statistical methods are essential

for being able to discriminate feature changes as a result of structural changes from

measurement or environmental variability.

Bayesian inference can be used in a couple of different ways in SHM including

model updating of structural parameters [4], monitoring by inferring structural param-

eters over time [56], and determining the optimal placement of sensors [15]. Bayesian

inference can be used in either a model-based situation where a structural model is

either formulated or updated as a basis for damage detection, a data-based situation

where there is no prior information on the structural model and only the sensor data

is used, or a mixture of the two situations.

We apply the SSIM framwork to time-series data obtained from accelerometers

located at multiple positions on a building. By accounting for interactions between

sensor signals collected from the system in different locations, the hope is to infer a

119



representation of the structural connections between locations in the structure or the

underlying physics without having any knowledge of the actual structural configuration

or dynamics. Assuming that the model learned from a set of data is exclusive to the

corresponding physical structural configuration and condition, a change in the model

parameters could be indicative of a change in the measured physical structure which

might be caused by damage. In order to see if these assumptions might hold true, we

test the methodology on data from model structures in various intact and damaged

conditions, as well as on data from a real building under ambient and non-ambient

conditions, such as fireworks and earthquake. These data consist of short sequences

of measurements, and it can be assumed that changes do not occur within a single

sequence. The problem of damage detection can then be cast as a problem of time-

series classification. If prior data from possible damage scenarios is available, then

this problem is a standard multi-class classification problem. However, in most real

scenarios, only data from an intact structure is available a priori. Then, the problem

of damage detection can be seen as a single-class classification problem.

We introduce the SSIM model for classification of time-series in Section 5.1 and its

single-class classification variant in Section 5.2. We describe the data and experimental

results on two laboratory model structures in Section 5.3 and MIT Green building in

Section 5.4. We perform interaction analysis on both datasets and show that inferred

edges correlate with an actual physical structure. On the laboratory data, we demon-

strate that the SSIM classification model can classify time-series obtained under intact

and different damage scenarios with high accuracy, in both standard and single-class

classification settings. Finally, on the MIT Green building data, we demonstrate that

the SSIM single-class classification model can distinguish time-series obtained under

conditions that differ form ambient conditions (from those obtained under ambient

conditions) and that it also predicts the "strength of deviation".

E 5.1 Classification with SSIM

The SSIM model can simply be extended to multiple sequences, as shown in Figure

5.1. Here, L denotes the number of sequences. Each observation sequence Y1 =

(Y10, Yii, . .. , YT,) has an associated state sequence X1 = (X10, X11, ... , Xu'1 ) and switch-

ing sequence ZI = (Z11 , Z12 ,... , ZT), where 1 is a sequence index and T denotes the

length of sequence 1. The inference is still performed as in Algorithm 3.1, except that

steps 1 and 2 are repeated for each sequence separately, while the data needed in steps

3, 4, and 5 (i.e., values of X, Y and Z) is pulled from all sequences. We will use

Y = {Yi}1 1, X - {X1}L 1 and Z = {Z1}[t 1 to denote collections of observation, latent

state and switching sequences, respectively.

In some scenarios, changes in behavior (dependence model) are only expected across

different sequences, but not within each sequence. For example, this is the case in a

damage detection setup that we exploit, in which short sequences of measurements

(e.g., - 1min) are recorded far apart from each other (e.g., - hour). Sequences are
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L Z11 Z12 Z13 -- Zn- Zrr

Figure 5.1: SSIM model with multiple sequences.

L ZI

X10 X11 X, Xe --- XmT I Xrr

Y K

Figure 5.2: SSIM model with 111utiple homoge(nous sequences.

short enough such that changes within them are unlikely. If switching does not occur

within sequences, then each se(qlience can be assigned a single switching state variable,

Z1. We refer to this model as SSIM with multiple homogenolus sequences, which is
shown in Figure 5.2. Since there are no transitions between switching states, this

model does not require transition probabilities and parameters of their corresponding

Dirichlet priors. Only initial probabilities are needed, and thus r (r,..., rK) and

a = (ai, . .. aK). In this co)IteXt, we will refer to sequence switching states as sequence

labels. Inference over switching states (labels) in this model is essentially inference over

clusters of sequeinces according to their dynamics (i.e., dependence model).
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Classification of sequences can be reduced to the inference in SSIM with multiple

homogenous sequences by performing joint inference over training sequences and a test

sequence while fixing the labels of training sequences. The probability of any value of

the test sequence label is then the frequency of that value in the posterior samples.

However, these probabilities can be computed more directly in the following way.

We assume that in a classification problem there are K classes, and, for each class

k E {1, 2, ... , K}, a collection of N' training sequences Yt }j is given, thus

implicitly assuming Z; = k for each j. In addition, we will use Zr = {Z&}j =

{k}NI to denote a collection of labels associated with training sequences from class

k, where {k}NIr denotes a collection of Nt values equal to k. Given a test sequence

ytest and the training data, the goal is to find the probability distribution of the test

sequence label, i.e., P(Zte*t = k I yte*t {Yff, Z1 i ) for each k. This probability can
be computed in the following way: 1

P(Ztest k Ytest, {yi, Z}tr ) (5.1)

cc P(Ztest k, ytest {Y, Z } )

P(Ztest k| {yf, Zkt}K ) .P(ytet Zjtest k, {YtZt}( )

P(Ztest k \ {zt}K1 ) - P(ytest Ztest = k, yr Zr).

The last equality follows from the fact that the test label is independent of the training

sequences given training labels, and that the test sequence, assuming it belongs to class

k, only depends on the training data for that class.

The first term in Equation 5.1, P(Z't = k {Zt}K ), is the probability of a test

sequence belonging to class k before seeing the sequence, given training labels. It can

be computed by marginalizing out multinomial parameters ir:

P(Ztest k I {V } ) P(Zest = k {Z } 1 ; o) (5.2)

=/P(Ztest = k |r) P(7 | {Zt ;a) dir

ir k - Dr(r; q + N , 2 + N, ... ,aK + N

ak + Ntr

k1 ak/ + Ntr1

Note that P( k {Zt}= ;a) is the posterior distribution of 7r given training labels,
which is again a Dirichlet distribution (with updated parameters) due to conjugacy.

The final expression is obtained as the expectation of parameter 7rk with respect to that

distribution. For convenience, we will write P(Zest = k I {ZT }>) Ptr(Ztest = k).

'In this section, hyperparameters are omitted for brevity, but will be reinserted as needed.
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The second term in Equation 5.1, P(Y'e-s I Ztest k, ykr, 7k), is the marginal

likelihood of a test sequence under the class k model, given the training sequences yIr

from that class. It is computed by marginalizing out kth model structure and parameters

(model averaging):

P(ytest I Ztest = k, ytr, Zt) = j p(ytest ZE, Ok) P(Ek, 0 k r ) dOk. (5.3)

k k

The term P(Ek, Ok I Ykt*).is the posterior distribution of kth model structure and param-

eters given the training sequences Ytr, which then serves as a prior for evaluating the

test sequence likelihood. For convenience, we will write P(Ytest I Zest = k, yfr, 7.)r

Yk(Y test | ytr
Finally, the posterior distribution of the test sequence label, Ztest, is obtained by

normalizing Equation 5.1:

P _ Z yr Zlt }K Ptr (Zt est = k ) 5(ytest |..r)
( k yt ' { k7k ) k =1 Pt& (Ztest = k') Yk1(ytest 5r.)

The maximum a posteriori (MAP) estimate is obtained as

Ztest = arg max P(Ztest k I ytet, {y 4k7 I ) (5.5)
k

=arg max Ptr(ZeSt =ky) 4x(ytes| t I Y).
k

Computing the likelihood in Eq. 5.3 in closed form is intractable in general. The

latent training and test state sequences, A7 and Xtest, need to be marginalized out to

compute P(Ek, Ok I Y'') and p(ytest I Ek, 0k), respectively, and simultaneous marginal-

ization of a state sequence and model structure and parameters is analytically in-

tractable. Instead, this likelihood can be computed via simulation:

pyes ty Itest~~ ,j 0, P(Ek kt r (5.6)

Nsj=1

N, instances of dependence models, (Ej, 0), are-sampled from the posterior distribution

of the kth model given training sequences. The test sequence likelihood is evaluated

against each of the sampled models, and then averaged out. On the other hand, in an

approximate model which assumes no observation noise (i.e., Xi - Yi), the likelihood in

Eq. 5.3 can be computed in closed form by updating the conjugate prior on dependence

structure and parameters with the training data and then evaluating the likelihood of

the test data against thus obtained posterior.

123Sec. 5.1. Classification with SSIM



CHAPTER 5. STRUCTURAL HEALTH MONITORING WITH SSIM

* 5.2 Single-Class Classification with SSIM

In a typical real structural health monitoring scenario, there is no prior data for a
particular type of damage. Even if there has been damage to a structure in the past, it
is not likely that exactly the same type of damage will occur in the future, and thus the
multi-class classification procedure described in Section 5.1 cannot be applied. On the
other hand, data from an intact structure can be recorded easily. Damage detection
then becomes a single-class classification problem, in which the goal is to detect whether
new data sequences belong to the existing, intact case, or deviate from it and potentially
indicate damage.

In the SSIM framework, as a benefit of the Bayesian approach, single-class classi-
fication can be simply reduced to multi-class classification by assuming that there are
two classes (K = 2), that the first class indicates the intact scenario, and that there is
no data for the second (damage) class (Yg 0, Zr = 0, N2 = 0). Equation 5.1 can
now be written as:

P(Ztest k I ytest, y', Zft ) (5.7)

oc P(Ztest k I Zr) - p(ytst Ztest k, y t, )

where, from Equation 5.2,

P(Ztest k Zit) Ptr(Zest k) (5.8)

a1+Nt'
a+Nfr +a2

a 

~ Nr2  k 1

ai +Nt +a2

and, from Equation 5.3,

P(ytest Ztest = tr yZt est yr k (5.9)
2k,2(Yte) , k = 2

_EJ 1 Z i1 P(Yt**t |$1, 1) P($, 1, 1 ytr)d1  , k =1

f62 P (Yte* 1$2, 62) P(k2, 62)2 , k = 2

Here, P(E 2 ,02 I Ytr 0) = P(Ek, 0k) is simply the prior probability of structure and
parameters for class 2 (damage scenario), while 2(Yt'st) is the marginal likelihood of
the test sequence under that prior.

Finally, Equation 5.4 can now be specialized to:

P(Ztest =1 ytest, yfr zr) (5.10)

Ptr (es t  1) We2 ( yt*I t y )

Ptr (Ztest = 1) Y1 (WtI Yf r ) + Pr (Zest 2) A(ytest)

P(Ztest = 2 | ytesty r

Pr (Ztest = 2) Y22(ytest)

Ptr(Ztest =1) Y 1 (West Iy1r) + Ptr(Zest 2) 2y2)test
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which are the probabilities of a given test sequence being "intact" or "damaged", re-

spectively. The higher values of P(Ztest - 2 1 ytest, ytr, Z T) mean that the dynamics

of the test sequence deviates more from the dynamics of intact (training) sequences,

which we relate to a higher probability of damage.
In practice, one may want to act upon the knowledge of damage probability. The

simplest rule would be to use a threshold, Edam, such that further investigation is re-

quired if this probability exceeds the threshold, i.e., if P(Ztest = 2 ytest, yr, ZI) >
Edam- A more sophisticated rule could be that different actions are taken for different

levels of damage probability (i.e., when exceeding different thresholds). By rewriting

the formula for damage probability as

Ptr(Ztest = 2) 2 (test)

Pt (Ztest 1) Y2
1( est I Y 51)

P( Ztes= 2I P(tet 2) Y2(ytest) (5.11)

Ptr(Ztest = 1) $/1(ytest | ytr
we can see that it depends on the ratio of likelihoods of the test sequence under the intact

and prior models, 2(Y test ), and on the ratio of damage and intact probabilities prior

to seeing a test sequence, . The first ratio may depend on the choice of the

dependence model (e.g., linear Gaussian in LG-SSIM) and its hyperparameters (prior on

structure and paramaters), but, assuming that these are appropriate/reasonable choices,
it most importantly depends on the test sequence itself and how it differs from training

sequences. On the other hand, the second ratio, P. (Zt t) =- r, depends only on
Ptr(Zte-9t~1) -lNlr

the prior parameters al and a2 and on the number of training sequences. By controlling
parameters ai and a2, this ratio can be set to an arbitrary value (assuming fixed training
data). Note that a1 and a2 are pseudo-counts of intact and damaged sequences that
reflect our prior belief in the probability of intact versus damage scenario. Intuitively,
one should expect a low probability of damage, and thus a2 < al. On the other hand,
the prior probability of damage can be set higher than expected (e.g., a2 ~ al), which
would reflect the "fear" of damage and increase the posterior probability that a test

sequence belongs to a damage scenario. That would simply mean that a larger number
of test sequences would "alarm" for damage. Note however the same effect could be
achieved by decreasing the "alarm" threshold, Edam. Note also that, instead of using the

posterior probability of damage, P(Ztest - 21 ytest, yr, Ztr), to indicate the possibility

of damage, one can equivalently use the ratio of posterior probabilities of damage and
intact scenarios:

P(Ztest = 2 ytest, Ir, Z1r _ Ptj-(Ztest__ 2) Y2(Ytest) (5.12)
P(Ztest =1 Ytest, Yr, Z) Pr (Ztest 1) 2 1 ( ytest I ytr) (.

and devise rules based on the value of this ratio (e.g., ratio of 1 is equivalent to the

damage probability of 0.5).
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N

(c) 3 story 2) ba stullctilre

Figure 5.3: Details o)f the l)()rtorv setup

S5.3 Experiments with Laboratory Structures Data

Two experiniental test. struicti1r1s 1 wer( llsed to elerate dita to test the approinach for

applicatioi oi a stru1ictuire. Both tr4-tuctuIres are ilade 0f110(dlar (lein(nts that are

based (m steel co(luins that are GO cin x 5.08 ci x 0.64 cmn, a bIilted t. iget her by 4

bIlts at each c(nlectioni as shown in Fig. 2 5as un exalliple of a typical cinnecti(yn.
The structures are bolted to a hevy cmOcrete 10)11dtion(ai as a reaction inass. They

are inst rimented with piezoelectric triaxMil a(celer(ileters that have a sainpling rate of

6000 Hz, and the numnber used dith rsfor each structure.

The first, simpler structuire is a v(rtical cantilever beani that consists of three steel

olu11 eleiients shioWil Ill Fig. . Dainag(' is intod)(uced Oii mw( of the two middle

b1(lted c( ilecti(os In e11 itho a 111111 ii. daig case where two )f fr 01ii l.)(Ilts in the flexible

directioii are reino Ved 01 ir ai inajor daimage case where the four )0lts are ( )(l)senle(d to

only be hand tight. This structure is instrinil1ted with 4 acceleromieters, one at each

connection, icllding the conn(ction with the foundation, and at the top of the stnic-

tiuire. In order to excite the cantilever beain, it is displaced by appro xiniately 5 cnm and

then released and allowed to freely vibrate fOr 10 ecoids, during which data was cl-

lected. There are 10 test se(ulences f)r each dallago sceilari.i, anid they are siuiniiniarized

in Table .
The second structure is a, 3 story 2 bay coofigiirati1( with a footprint, (of 120 cin

x 60) in as shown in Fig. .2 . The structure consists of steel coliihnns and beani

4
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Table 5.1: Test cases and damage scenarios for structural models.

(a) Colurn structure (b) 3 story 2 bay structure

Test Case Damage Scenario
Test Case Damage Scenarioi Inatclm

1 I Intact column

2 Minor damage, lower joint 2 Minor damage at 17
3 Major damage, lower joint 3 Major damage at 17

4 Minor damage, upper joint 4 Minor damage at 1

5 Major damage, upper joint 5 Major damage at 1
6 Major damage at 1 and 17

frames of similar dimensions for each story that are bolted together to form each story.

Damage is similarly introduced on the bolted connections with the minor and major

damage cases by removing two bolts or loosening all four at connections 1 and 17,
which are on opposite corners of the structure, with 1 being on the first story, and 17
being on the second. This structure is instrumented with 18 triaxial accelerometers
at each of the connections between elements. For this structure the excitation is a

small shaker with a weight of 0.91 kg and a piston weight of 0.17 kg that was attached

to the top corner of the structure at connection 18, which provided a random white

Gaussian noise excitation in the frequency range of 5 - 350 Hz in the flexible direction.

Test measurements lasted for 30 seconds, during which the shaker is always exciting

the structure, thus there is no ramp up or unforced section of the data. The damage

scenarios are summarized in Table 5.1b. For each damage scenario, 10 sequences were

acquired.

* 5.3.1 Interaction Analysis

We analyze the results of inference over dependence structure among signals from dif-

ferent sensors on the 3-story 2-bay structure. The number of parents of each node

is bounded to 4, including the assumed self-dependency (therefore, 3 additional parents

are allowed). Each data sequence is split into 18 subsequences that are 10,000 samples

long. For each class, the posterior distribution over edges is computed on 180 subse-

quences that belong to that class (10 original sequences, 18 subsequences each) and

then averaged out. The averaging is performed to get a stable result, since the poste-

rior distribution fluctuates across subsequences. A visualization of the parent and child

relationships for the intact structure is shown in Fig. 5.4. Colors represent the node the

relationship originates from, and the width of the line represents the edge probability

(wider is more likely). Specifically, relationships are plotted if their probability is higher

than 0.3, and in Fig. 5.4a, the parents of the nodes are plotted, while in Fig. 5.4b the

children of nodes are plotted. The nodes are vaguely arranged in the physical shape

of the structure, and we can see that a lot of the same possible relationships in the

physical structure, such as the columns, the beams, and the cross beams between the
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Parents of Nodes with Incidence Greater than 30%

18

3 ........ .-~fl ,* 4 9

C 0
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(a) Parents of Nodes

Figure 5.4: 3D Visualization of node parent

above 0.3.

Children of Nodes with Incidence Greater than 30%

2

0.5

0.5 1 15 2 0

(b) Children of Nodes

and child relationships with probability

two sides of the structure, also show up in the inferred dependence structure.

Edge posteriors are also visualized as a matrix where the rows are the parents,

and the columns are the child nodes, shown in Fig. 5.5 i. We see that there are two

quadrants where the relationships are strong, the 1-9 parent child relationships, and the

10-18, which correspond to the two sides of the structure. Within these quadrants, we

see that there are strong relationships in groups of three, 1-3 for example, suggestive of

the columns in the structure. We also see that there are relationships between nodes

separated by three, such as 1 - 4 - 7, and similar for all the other nodes, which are

suggestive of the beams that connect the nodes in the same story of the structure.

Then, the other strong relationship is between the two sides of the structure, 1 - 10, 2

- 11, etc. which is seen as an off diagonal.

The results of inference for the other damage scenarios are also shown, amid they

mostly resemble the structure for the intact scenario. Looking at Fig. 5.41) instead,

where for the damage cases, we show the difference from the intact scenario is shown,

a couple of differences become more obvious. For both of the minor damage scenarios,

the differences are minimal. However for major damage at node 1, we see that node 1

is now less likely a parent of nodes 2, 3, and 10. For example, the most likely parents of

node 2 in the intact structure are nodes 1, 5 and 11, but for major damnage at node 1,

node 1 is replaced by node 3 on this list. Note that sensor 1 is actually slightly below

the joint, so the damaged joint stands between nodes I an(d 2. For major damage at

node 17, node 13 is much less often a parent of node 15, and the same for node 14, being

a parent of node 13, all nodes that are physically close to node 17. Also, the dependence

of node 18 on nodes 16 and 17 is reduced, as well as the dependence of node 17 on node

18. Note that the damaged joint stand between node 18 on one side and nodes 16 and

17 no the other side. Similarly, the dependence of node 11 on node 17, between which

the shortest path goes through the damaged joint, becomes less likely. Finally, in the
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.Major d.m age at 17
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(b) ifiderre( Stritiiire, Difference rIn Jittact

Figure 5.5: Probability af parent nodes over inany tests for iiitact and (lainaged caSes.

(l11a inatr dalti,ge sceari) o1 1)1 t h 1 and 17. both these effects are seei in the ifalerted

strulctuire.

U 5.3.2 Classification Results

We I cInsider th' (blem Iof (lassilica ti (f sequences a()frdlng to the strltulr( c 1-

dition, sd rib(d in Sectiom 1. Thwis ihlei is not directly applicable tI) real civil

stru lctllr's, as either datnage has never occirred or it is unlikcly tht exactly the samHI

(Lamag' sceINarT i will scaur iM the future. Ho iw('ver, it tellis us iio w well the algoritlinI

call distingiu ish nit wnlyl danmage from it act. but alsI I diffier'til (aage scetiarios from

each oth(er. It is Aso worth ma iO ag that in som l ther datag' detecti1 priblenis, slich

as with taohie parts, classiIheati ay aV t ilally be a r('alistic appro)ach, as there nmay
tly i haidlfill )f types I if dalliaiige(s that t ypically o(1ir 1(d datai frin Such sc'lia s

Hiay be avalablt.

III caci (Ib dset, thiiIre are Mi se5(' ce( s 1 f e11 class. Ve perforil 10 rondils of
classification. In rniad j, seqi nce ] fro ilauh clasS is iciuded iI the tramiing set,

whilI th' other 9 sequences of each (lass are ised for testing. Classificatio)1 resilits are

then aver(gedi ver all 1) ri inds. To red1ice comipitati n, a, subse(picuce )f length 5.000

is 115('( fri)i all seque-c, except in 1h ' experimuents that test the ('fFeet of training

and test sequience lengths. Alt ough ilie results with ho)ger sequences may b' slightly

iietter, they are iot qudit atively dlferent.

Wd' emphy a latent-AIR L- IM model Ifm ci(lassificatiln. We find that AB order

S S - - a
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5 is sufficient to produce good classification result, although there is a slight advantage

by further increasing this order. Hyperparameter values are either estimated from data

or set in a general fashion (e.g., implying a broad prior distribution). In all experi-

ments, we assume presence of a self edge for each node in the dependence structure.

The bound on the number of additional allowed parents is set to 3 (maximum) in the

single column case. In the 3 story 2 bay structure data, however, we found that the

best classification results are obtained when no additional parents (other than self) are

allowed. Explaining this result requires further investigation.

We compared the classification results obtained by the full SSIM model and an

approximate model which assumes no observation noise (Section 5.1) and found that

on the datasets presented here the full model performs only slightly better, but at

the significant additional computational cost (mainly due to step 1 in the inference

algorithm). Therefore, we present here detailed results obtained using the approximate

model.

Single column structure results

First, for each pair of classes i and j, we compute the average log-likelihood of a

test sequence from class i given a training sequence from class j (the average is over

all pairs of sequences from classes i and j). Note that the average log-likelihoods

do not account for the variability within a class and thus can only partially predict

classification results. However, they can be considered as a measure of (asymmetric)

similarity between classes. In particular, the comparison of log-likelihoods of a test

class given different training classes is useful to indicate its possible "confusion" with

other classes. The log domain is chosen to bring likelihoods closer to each other for

the purpose of illusrtation, since the differences in likelihoods are huge in their original

domain.
The resulting class-class log-likelihood matrix is shown in Fig. 5.6a. For the purpose

of visualization, each column is normalized to contain values between 0 and 1, which

does not change the relative comparison of values within a column. A different visual-

ization of the same log-likelihood matrix is shown in Fig. 5.6b, in which each group of

bars corresponds to a single test class, while bars within a group correspond to different

training classes. Clearly, the average log-likelihood of each class is the highest when

conditioned on sequences from the same class (diagonal entries). This suggests that

the model indeed captures important features pertained to each class via posterior dis-

tribution of parameters. However, for some classes, the log-likelihood is also relatively

high when conditioned on some of the classes other than itself. For example, the intact

class (1) and the two minor damage classes (2 and 4) are the closest to each other

in that sense. Also, the two major damage classes (3 and 5) are close to each other,

although less than the previous three classes. On the other hand, there is a significantly

higher separation between the low- and high-damage classes, and, as we will see next,

a sequence from one of these groups is rarely misclassified as belonging to a class from

the other group.
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times (high diagi aial values). Sequences froi Ite two iinor laiiage classes (2 Ad 4)

are occasOiiallv iisclassihed as helonging to the intact class (1), while sequences from
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the saiiie 'time in all s(qinces. Therefore. wliett training and t(st sequences ar( of
the same length, th(y Nr a digted with respeci to where they are in th' measi r'Ien(it

process (assimniing that difftrttiit 5'c(q1ct'lt('5 arc miasuriitXd und r the sai(' or very similar
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Ctiditions). However, when the test sequence lengih increases beyond the training Se-
(jtit'tt' lt'ngth test sequences start to increasingly 1nc rporate parts of the process that

was itt included in trailing Similarly, when test secpiences are shorter than training

setiences, training sequences inciide characteristics of a broader window of the process

than is tested. This also can explaill why Ihe classificatitn results are overall not, better

when the training stqtente length is 10, 000 than whenit i is 5, 000. Likely, a, window

of 10, 000 is too l)br(iad and the additim1al ai otiutt of data, the sec d 5, 000 samples,

do)s not help, since it differs in behavitr thain the first 5.000 time samples. Naturally,

there is a tradeiff between this behavi and tlit' sequence ltngth. For example, 1, 000

is too sh( at, and the restlts with that length are tltarly iiniih worse. The phenonienon

explained here c(ld be att ributed to the nat-tire t f excitation ttsed in this setip, whicih

is five vibratiin. The results with the siaker excitation, shown below,. (1 not follow this

pattern and behave as with ontes txlpetatills iior test or trailling (1d1ta6 consistlently

yields higher accracy. Lastly, FIg. 7.71 shows classificat ill rtstilts for training arid

test sequence lengths eqpal to 5, 000 ind 1 000, respectively, which(tld be (s inpared

to thit' results in Fig. 70 , in-Il which b leilngtlos art 5, 000.

3-story 2-bay structure results

We present the saint set of rt'suilts on thc 3-stt)ry 2-bay structurt data. Averagt ltg-

likelih oads betwtn all pairs of classes are shown as a timatrix in Fig. mi and as bars

grouped by test class in Fig. 5. C,1. Again, these l g-likelihoIds are normalized such that

each chumnn in the matrix are bttwen () and 1. As with the single column structtire,

the avr'tage log-likelihood tA* a seqptence tif (111' class is the highest wheii conditioned

Il a sequelic fIrmil that same class (diagoloal elements), and the highest conftsion is

betwet'n the Plw-damnage classes, innely. the intact class, 1, and the two minor damage

classes, 2 aid 4. Tht lessei maj t danage classes, 3 and 5, seem to be otcasiomoally

coifused as classes with ither smaller ()r higher damage' relative to them. Finally, the

greater imajor dainage las, 6, is to11ist similar to the ltsser majr (.1tnage classes.
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(d) tiassitifdi( ca t i ft lnies grouCd by t(st class

data class-class 1og-likeliho)(ds are showH as (a)

(lassificatih frquiteciiees are shown as (c) Imatrix

ClAifi'ati( ri l(stilts in t(ris of frequencies (fraction of tilies a se(jiince' froi ole
(1 as is classified as belonging to oiiottier lass) are shown as a natrix in Fig. .o ad

as bar" groiped by t(st class in Fi . 1-. Seqpictces fri imajor t(aunage classes (3, 5
anld 6) are (lasSifi(d ahiost perfec ty. (n the Other hand. sme conflisoni bet weei h

three ow-daliiage tlasses (1. 2 d11(1 4) 1" preseint Ii particular, s((iences fron th( (a5ss

that corespolds to a niiitor dl111 Ct ll(ode 17 are oftei i aiselassified as bleloging t

the intact class. This could possibly be atttribted t( thtie l seness of trhis tode ttoI the

shaker.
The (ovi(All classitiCatioll actlrCv as (a ftillcti f training apd test sequence lengths

is shown in FIgi. T Three diffelenlt traniling sejtlenlce l('ngttihs were used, 1, 000. 5, 000
aid 10, 000, While the test seqlenee length is varied froui 1,000 to 10, 000. Unlike

with thll(' sill l(' (( lt IIIII stri ict IIre results. (lassfication accuracy on t he st( ry 2 bay

strutur daita consistentl )prov5s with the i tcrea'sed leigthl of (ither t1ra1iting or

a1 k'st, scqunclicc. This 1r(1 lr()ests that hiere is likely no significant varibily il

the dyviailes (f a 5(jti( s (( v( tif(i'e. an1, conseq(icutly, longer set(lences represeit

effectively inore (aa. This is all (xp(ted lb(1iX ', sv (x(' tat t'ion Provided by the

shaker is iiiitfori Ov(r tilni(. Finally, for cortmparison with tlithe riesults in Fig. 7.7), in

which both lengths are 5, 000, Fig. b sl(ws cilasiiCat)i( results Wh('t training and

test. seqi ience leIgl is arc 5. 000 m id 1, 000.
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Figii ;5.9: (a) Overall classiticat-ion accir a'y n 3 st.rv 2 bay st.ructiire data as a

finition of traliig and test sequiwen lengths. (b) Classification frequlenwies wlheni

trLaning( and test seUfeiin( lengt hs ar, 5K and 1K, r(spectively.

U 5.3.3 Single-Class Classification Results

WX'e 'evalatllt( t Hie perfo rinallce of single-class classificati( o)i only on the 3-story 2-bay

structure data, as it presets a ii1r ) iallenging( case lan the single (-( ln 1 nittuire

(ata. As in the (-valuati() of (lassifiati( ab(v(, slbseuen of length 5.000 are used

for training and testing. For each training and each test sequence. the value (}

is c(mIpnlted, where labels 1 and 2 correspond to intact and dalage (lasses, Cis III S( ( tion

.2. The test seqenice is classified as anolma-l(s if t his valuie is a bov' s(mi thishAd

6dam.n Not~e that this is cqiiivalent to using Equiatioi I. in2. 5i(e the ratio p, z' =1)

deteriiined by the prio( r and (all be absmrbed into the thrles1( Ad.

ROC curve whih riepr esents the rate of true positives as a function of the rate

of false positives, is comput ed s parately folr each damagc scenari 0 by varying the value

of the threshold da. Cioss-xalidat( i 1 is sed to increase the numuliber ( )f training-test

pairs. In each round, u n s(ui(ice frmi intact sceiario is considered as a training

seq(iucuce, while the reminig 9 iiitact se(lences an(l all Wt sequellices from the (h(osen

daiage sceari() are treiatd as test seqliences. The niiiber (f false psitives and the

iiinber tr I( p)ositivcs are ((miiputed as a fllnct i( )i "f 0dam and aggreg ated over all roilnds

(i.).ver al ()1 ic5 of at trainiug 5e(ence).

Thus c(mputed R( C (lirves for all damiage classes arc sh( wn in Fgurne 5.I. R OC

(irves are "perfect" fr all laj( r (lamiage scenarios, in that ther is a threshold for

which all test se(qiueices are (( )rre(tly classified (i.e., the val e is bel(w the

t'h resl()ld for all intact test sequen(s ai(d it, is above the threshold for all se(quences fromi

the damage case). Note that the E,.(' C curveS for sceariis 3 and 5 are not visible iII

Figure 5.10 bcause thv are overlaved yI) the cirve for scenario 6. The ROC curve for

the case of mninor dalage at node 1 (scenario 4) is hlose t) perfect, while the worst result

is for the case of 1n10 damage at mode 17 (scenario 2). This is not surprising, given

that the we alradN fomund ilI the previous section that inost errors in a classification
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Figure 5.10: ROC curves for each damage scenario on 3-story 2-bay structure data.

Points on the curves that correspon( to the posterior probability of damage equal to

0.5 are marked with an 'x'.

setting occur when an intact sequence is misclassified as belonging to scenario 2, and

vice versa, i..e, that sequences fron these two classes are most similar to each other.
In addition, for each dailmage scenario, a point that corresponds to the threshold

value Edam = is shown in Figure 5.10 with ai 'x' mark. This threshold value corre-

sponds to the posterior probability of a test sequence being damaged equal to 0.5, under

the assumption that the prior probabilities of a test sequence being intact or damaged

are equal. Note that there are no false positives in any of the scenarios. In other words,

the posterior probability that a sequence is danages is never higher than 0.5 for intact

sequences. On the other hand, for the major damage scenarios. this probability is above

0.5 for almost all damaged sequences. However, only about (0% of damaged sequences

have posterior probability of damage above 0.5 in case of the minor damage at node 1,
and less than 15% of damaged sequences are classified as damaged by this rule in the

case of the minor damnage at nole 17.
If one wants to devise a threshold rule in practice, the threshold that corresponds

to the posterior probability of damage of 0.5 is not neces'sarily the right choice. Froni

Figure 5. 10 we can see that. in the case of tuinor damages, this rule would classify a

sequence as damaged only when it's very certain of it. If one wants to be less conser-

vative and detect more damaged cases (at the expense of false positives), the threshold

should be set to a lower value. However, choosing that number may not be as intuitive

as one may expect. The likelihood of a sequence depends on its length approximately

exponentially since the likelihoods of variables at each tine point are multiplied to-

gether.' As the length of a sequence increases, it-s likelihood quickly converges to either

2 Technically, this is the case for a specific value of model structure and paraineters, and the over-

all likelihood is obtained by suruning /int-grating over possible raluies of structures anrd parameters,

weighted by their prior.

M R11111111



o or 1. Similarly, the ratio 2 (Y), which is used to discriminate damaged from

intact sequences, approaches 0 or 1 exponentially with sequence length, depending on

whether the test sequence is more likely under the prior model or under the posterior

model given the training sequence. In an ideal case, if the model perfectly matches the

data, one could simply "trust" these probabilities - i.e., if the model tells that the prob-

ability of damage is 1, that would indeed mean that there is almost certainly damage,
and, similarly, sequences with posterior probability of damage close to 0 would almost

certainly correspond to an intact structure. However, due to the fact that the statistical

model is only an approximation to the physical model, some sequences from a damage

scenario may actually have low posterior probability of damage or some sequences from

intact scenario may have high probability of damage. From the results above, we see

that the former is the case for the 3-story 2-bay structure data.

One approach to compensate for the effects of sequence length and model mismatch

is to adjust the threshold to account for them. However, that is a very hard problem,
as it is difficult to quantify these effects precisely (or even approximately). Instead,
we take a data driven approach to choosing a threshold. Since the assumption is

that the data from a damage scenario is not available a priori, we can only use the

data from the intact scenario. Specifically, we assume that one intact sequences is

used as a training sequence, 8 intact sequences are used for tuning, and the remaining

intact sequence is used for testing (along with all ten sequences from a damage scenario
A9(Y t est )

that is tested). First, the value of the ratio . yt
r) is computed for all tuning

sequences. Let Lt",, LUne denote these values. A threshold is computed as a

function of these values, which is then applied to classify the test sequences. This is

repeated for all possible choices of a training sequence and tuning sequences among

intact data, and the results are aggregated (which we refer to as "cross-validation" in

this context). It remains to discuss how to choose the threshold cdam as a function of

values Lun2, ... L'une. One possibility is to use the maximum of these values, which

would result in low false positive rates, and, if the damage sequences are relatively

different from intact sequences, would result in a large true positive rate. More generally,
if these values are sorted such that Ltune > Lune > ... > Ltune, then, choosing a

threshold that is between ith and (i + 1)'t value would approximately result in the false

positive rate of i/8. Therefore, the false positives rate can be controlled even though

the corresponding rate of true positives is not known a priori. Another approach is to

assume that these value come from a Gaussian distribution and compute their empirical

mean and standard deviation. The threshold can then be set as ELiuf" + Auune, for

some value of A (e.g., A - 2 would correspond to taking two standard deviations away

from the mean). Figure 5.11 shows the tradeoff between the rates of true positives and

false positives for these two approaches in the case of minor damage at node 17 (scenario

2). Figure 5.1la shows the tradeoff points when the threshold is set to Lt", . .. , Lt" I
respectively, assuming that, these values are sorted in the decreasing order. Figure

5.11b shows the tradeoff points for various values of A when he threshold is set to

ELiufl + AuLfU". Note that the points in both figures do not necessarily fall on
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the ROC curve because thresholds are a function of tuning sets and are therefore not

necessarily uniform across all training-tuning sets.

U 5.4 Experiments with Green Building Data

The Green Building is a 21 story building on the campus of the Massachusetts Insti-

tute of Technology that has been instrumented by an accelerometer system, used as

a testbed for system identification and structural health monitoring studies [9]. The

building itself is shown in Fig. 5.12i and the locations and directions of the 36 uniaxial

accelerometers are shown in Fig . -.1)b. Data from these accelerometers was used to test

the methodology in a different situation from the experimental structure, where there is

no known damage or change in the structure between the different data collections. In-

stead, the excitation and environmental conditions for the structure vary greatly. They

are suImarized in Table 5.2. The excitation conditions vary from typical ambient vi-

brations, to a day with 20 mph sustained winds, to a 4.0 inagnitude earthquake located

approximately 100 miles away. The measurements were made in the months of April to

October, and with air temperatures typical of Spring, Sunner and Fall, with tempera-

ture effects potentially inducing small changes in the structure due to internal stresses

from differential thernal expansion of materials. The goal with processing this data is

to use the ambient excitation data as a baseline for the structure and detect when an

anomalous event, or excitation occurs, while not triggering false positives during similar

ambient excitations, while under different environmental conditions. We siibdivided

the test cases into several sequences of 30,000 sample length. Some of the sequences
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are loiger than tie (thers. s there are iniiiltiple seqneicies for s(ie f the test cases.

The test cases belonging to each excitat i(on aid/ r ('IIvirinentid cOn(ditinl are given.

U 5.4.1 Interaction Analysis

We use a subsequence f length 10,000 frioni the G/22/2012 anbilnt r((ording to infer

the dependence structure limong sensor signals fro)n the Green Bhil(ing(. Ai AR Older
of 5 was used, with a inaxinuli o3 additioial parents allowed. W( plot a visualizationi

of the parent, and (hild(1 relatioiships in Fig. 5. 1'. The (Ol(r in these plots shows the

direction )(f the sensora in the buildiing, with red foi- E-W, blue for N-S, and green for
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Table 5.2: MIT Green Building Conditions.

Test Case Date Excitation/Condition

1 5/14/2012 Unknown Event

2-3 6/22/2012 Ambient
4-6 7/4/2012 Fireworks

7 10/16/2012 Earthquake

8-10 4/15/2013 Ambient

11-16 10/07/2013 Windy Day

vertical sensors. We see that there are many relationships between the sensors in the

same direction, and fewer between sensors in different directions. Most relationships

are between the sensors that are located close to each other. There is also a fair number

of relationships across the structure for the NS sensors.

A particularly interesting observation is the lack of relationships between the vertical

sensors except for the pairs of 3-4 and 5-6. This may be explained by the rocking

behavior found in the building [9], where sensors 3 and 4 move in phase, in opposition

to sensors 5 and 6.
These relationships are also visualized in a matrix shown in Fig. 5.14. The sensors

are grouped into vertical sensors, EW sensors, and then NS sensors, as given in the axis

labels.

* 5.4.2 Single-Class Classification

Fig. 5.15 shows the matrix of the logarithm of likelihood ratios, log , (Y t) nor- , WetIyfr)~

nialized to be between 0 and 1 for the visualization purpose. The value at row i and

column j corresponds to the ratio computed when sequence i is considered as a train-

ing sequence and sequence j as a test sequence. Recall from Equation 5.12 that this

ratio can be used to discriminate sequences that behave differently from the training

sequence. The higher the value of the ratio is, the more likely it is that the test sequence

will be labeled differently from the training sequence.

We can see that the events that are the most similar to each other are the events in

ambient conditions, windy conditions, but also the first two sequences for the fireworks

event. For the fireworks event, when the recording was made during the Boston July 4 th

fireworks show, only the last sequence of the three occurs during when the fireworks are

being set off. The first two sequences are of the normal ambient structure, and thus they

have low likelihood ratio with respect to the other ambient structure test cases. The

windy condition measurements are not as dissimilar from the ambient measurements

as we would have expected as winds were sustained at 20mph with gusts at higher

speeds. The accelerations measured however are likely similar to ambient conditions

with slightly higher magnitudes, as the winds are random excitations.

The last sequence in the fireworks test case, the earthquake, and the 5/14/2012 event
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test cases all have significantly higher likelihood ratios with respect to the ambient

cases. What's interesting is that the fireworks sequence is similar to the 5/14/2012

event, but both are dissimilar to the earthquake case. The 5/14/2012 event was when

the recording system was triggered to record because accelerations exceeded a preset

threshold, however there is no known event that corresponds to it. The time-series looks

like a single impulse, possibly suggesting similar behavior induced in the structure to

the series of impulses from the fireworks sequences. The third fireworks sequence seems

to be the most dissimilar from all the other sequences.

What these results tell us is that we can likely classify when the structure has been

excited in a significantly different way than typical ambient conditions. The differences

between random ambient excitations and impulse excitations or earthquake excitations

are clearly visible. We do not evaluate the performance of the single-class classification

formally, as we did with the laboratory data using ROC curves, since the number of

recorded sequences for the Green building is not that large. However, it is clear from

the likelihood ratio matrix in Figure 5.15 that using any of the ambient sequences as

a training sequence and a reasonable threshold rule (e.g., use other ambient sequences

as tuning data and take the highest ratio among them as a threshold) would perfectly

classify the sequences from the earthquake and the 5/14/2012 event and the third

fireworks sequence as non-ambient. Sequences from the windy condition would also

be classified as non-ambient in most cases, except when the second sequence of the

6/22/2012 ambient recording is used for training. In that case, the sequences from the

windy condition have lower likelihood ratio than those from the 4/15/2013 ambient

event. If the latter ones are used for tuning, the former ones would be classified as

ambient. Also, note that the two ambient recordings are slightly different from each

other, which could possibly be attributed to the temperature difference of 40'F between

these two recordings. This suggests that acquiring more ambient recordings over time

and in different conditions would be useful to understand the variation in them and

how that relates to the classification problem.
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Chapter 6

Conclusion

W E presented a state-space switching interaction model (SSIM), which represents
interactions as directed edges of a dynamic Bayesian network, allows switch-

ing between interactions, and allows arbitrary observation processes and missing data.
Furthermore, we employed Bayesian reasoning over structures to deal with uncertainty
in the data and due to the large number of possible structures. Efficient inference is
enabled by limiting the number of parents per signal, and is done via a Gibbs sampling
procedure. This model is expressive and can uncover different aspects of interactions
among time-series and their patterns, as we have demonstrated by experiments. In
addition, we developed a classification and a single-classification variants of the SSIM
and showed that these models can be successfully applied to the problem of damage
detection in civil structures.

N6.1 Summary of Contributions

Modeling

We develop the SSIM framework for Bayesian inference over switching time-series in-
teraction structure under uncertainty, which extends the work of Siracusa and Fisher
[49, 50] by allowing for noisy and missing observations of time-series. We introduce a
linear Gaussian SSIM model (LG-SSIM), in which both dynamics and observation mod-
els are linear Gaussian models, thus extending Gaussian state-space switching models
to include structural inference. We also introduce a latent-AR variant of the LG-SSIM,
in which an autoregressive (AR.) model of an arbitrary order is allowed among the latent
state variables. Both LG-SSIM and latent-AR LG-SSIM can be paralleled to analogous
extensions of the model of Siracusa and Fisher [49, 50], in which direct observations of
time-series are assumed.

Algorithms

We develop a Gibbs sampling procedure for inference in SSIM, which simultaneously
reasons over interaction structures and parameters, the pattern of switching between
different interactions, latent states associated with time-series, and observation model
parameters. The algorithm extends the Gibbs sampling inference procedure of Siracusa
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and Fisher [49, 50] to include steps in which latent states and observation model param-
eters are sampled. We also develop a specialization of the inference procedure for the
LG-SSIM. In particular, we develop a numerically stable algorithm for block-sampling
of latent states trajectories given observations that could be noisy and missing, and for
dynamic models that allow for deterministic dependencies among state variables, such
as in latent-AR LG-SSIM. In addition, we provide in-depth time and memory com-
plexity analysis of the Gibbs sampling inference algorithm for the LG-SSIM. Finally,
we provide guidelines for setting the prior (i.e., hyperparameters) in the LG-SSIM
model, initializing latent variables, and performing a Gibbs sampling procedure. We
also provide a procedure for evaluating a posterior distribution over a huge number of
structures given a limited (much smaller) number of posterior samples obtained by the
Gibbs sampling inference procedure.

Experiments

We use synthetic data to demonstrate the advantage of interaction analysis over testing
pairwise relationships, and the advantage of the SSIM model over the model of Sira-
cusa and Fisher [49, 50], which does not account for observation noise. We introduce
a novel dataset, the joystick data, which is created specifically for testing results of
interaction analysis in realistic conditions. It is developed in such a way that ground
truth interactions are known by design, but it is human-generated and not synthesized
from the model. We demonstrate the ability of the SSIM model to infer interactions
and a switching pattern even in the presence of relatively high observation noise or if
a significant fraction of data is missing, and that it is advantageous over the STIM
model of Siracusa and Fisher [49, 50], as the STIM model does not handle missing data
and performs worse in the presence of high observation noise. We also demonstrate the
advantage of reasoning over structure posterior over MAP estimation, as spurious edges
in a MAP structure estimate are typically assigned higher uncertainty (lower probabil-
ity) in the posterior than the correct edges. Finally, we apply the SSIM model to a
real-world problems and show types of analyses that it enables.

Structural Health Monitoring

We develop variants of the SSIM model for classification and single-class classification
of time-series. On data from two laboratory model structures, we demonstrate that the
SSIM classification model can classify time-series obtained under intact and different
damage scenarios with high accuracy, in both standard and single-class classification
settings. On the MIT Green building data, we demonstrate that the SSIM single-class
classification model can distinguish time-series obtained under conditions that differ
form ambient conditions (from those obtained under ambient conditions) and that it
also predicts the "strength of deviation". We also perform interaction analysis on both
datasets and show that inferred edges correlate with an actual physical structure.
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* 6.2 Future Directions

We demonstrate the utility of the SSIM model for switching interaction analysis on two
real-world examples: learning interactions among climate indices and among sensor
data from civil structures. In addition, we apply the model to the problem of damage
detection in civil engineering. However, there are many domain where the methodology
developed her could be applied, such as finance / econometrics, social networks, neu-
roscience, health monitoring, transportation / traffic analysis, video analysis, sports /
games, etc. In addition to numerous possible applications, the model can be extended
or improved in various ways.

N 6.2.1 Scalable inference

Efficient inference over interaction structures in the SSIM model is enabled by using
a modular prior on structure with additional constraints, such as a bounded in-degree
constraint. While this approach significantly reduces the complexity of inference over
interactions -- from super-exponential to polynomial, it is still not efficient enough for
applications on a very large number of signals. Further approximations to the model
and/or different approximate inference algorithms are needed to improve the scalability
of the approach.

For example, in step 4 of Algorithm 3.1, full parameter updates are computed prior
to drawing a sample of dependence models. However, that may be avoided by devel-
oping an MCMC algorithm for sampling dependence models (step 4) that is integrated
within the overall sampling algorithm. If the acceptance ratio is sufficiently high and
the algorithm traverses the posterior space of structures efficiently (e.g., by including
"jump" moves), such approach may be more efficient than exact sampling form the full
structure posterior. Full posterior distribution over structure could still be computed
in those sampling rounds from which a sample is extracted (as in Section 4.1.3), but
that is only a fraction of times (e.g., every 5 0 th sampling round).

* 6.2.2 Nonparametric approaches

Currently, the SSIM model assumes that the number of possible switching states is
known in advance. Although we showed (at least in one example) that by marginaliz-
ing the switching sequence, the number of visually distinct inferred structures can be
correct even though the number of switching states is set incorrectly, setting the num-
ber of switching states properly yields better results and is in general beneficial. While
the number of switching states can sometimes be guessed, it is often not the case. If
that number is not known, one approach is to perform inference with different numbers

of states and analyze the results to see which one best fits the data. Clearly, having
an algorithm that automatically infers the number of switching states would be advan-
tageous. That can be done using a Bayesian nonparametric approach. In particular,
a sticky HDP-HMM model [18] of the switching state sequence can be used, which is
a Markov model of a sequence with possibly infinite number of states, paired with a
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hierarchical Dirichlet process prior [55] as a conjugate prior, and which also encourages
persistence of states over time. The number of inferred states is then a function of data.

The SSIM framework assumes no relationship between dependence models of differ-
ent signals, as well as those that pertain to different switching states. However, the same
pattern of interaction may repeat with different signals and in different regimes. For
example, the interaction "follow" appears in the joystick data between different pairs
of players in different assignments. Hierarchical nonparametric Bayesian methods can
be used to model "template" dependencies that are shared among different combina-
tions of signals and their parents across different switching states. Since the parameters
of the same type of dependency may vary to some degree when different signals are
involved, the hierarchical approach is suitable for modeling both the base distribution
of parameters and variations pertinent to different sets of signals. Also, a nonparam-
eteric approach is advantageous since the number of possible template interactions is
typically not known in advance. This approach is also applicable (and likely inevitable)
in scenarios in which objects appear and disappear from the scene frequently, and the
only hope to learn their behavior from data is that there might be a small number of
patterns that repeat for different objects. An example application is traffic monitoring
at an intersection: vehicles change all the time and their number is different, but there
is a limited number of scenarios that may occur.

N 6.2.3 Online learning

Many time-series data is constantly or periodically being collected, such as stock prices,
sensor data in structural health monitoring, climate data, etc. In addition, inferring
changes in interaction as soon as possible is very important in some domains. Therefore,
developing algorithms that can efficiently update existing and learn new interaction
models (and, in general, update the results of inference) with newly arrived data is
important. However, exact inference with new data requires repeating the full inference
procedure over all data because the posterior distribution of latent variables related to
the "old" time points may change given new evidence. In other words, new data may
influence our belief in the interaction structures and a switching pattern in the past. On
the other hand, one may expect that after sufficient amount of data is seen pertaining to
each interaction, the belief in that interaction should not change significantly. That can
be exploited to develop approaches that perform joint inference over the new sequence
of data and only selected time points from the past for which there is still significant
uncertainty in the interaction structure and the switching state.

N 6.2.4 Multi-scale interaction analysis

The SSIM model allows arbitrary orders of the AR model of latent time-series. However,
the computational complexity of the inference algorithm step in which latent time-series
states are sampled grows cubically with the order of the AR model (Table 3.2), Therefore
there is a limit to the order of the AR model that can be used in practice (e.g., up to
100), and it may be difficult to infer long-range dependencies. On the other hand, long-
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range dependencies are often among coarser versions of signals rather than the original
signals. For example, if a person follows another person from a close distance, he may
react quickly and to even small changes in behavior of the person he follows. On the
other hand, if he follows the other person from far away, he may only react to large
changes in behavior of the other person, and with a larger delay.

We refer to longer-range dependencies among coarser versions of signals as depen-
dencies at a coarse scale. Note that one (but not the only) way to define different signal
scales is to remove high frequency content and leave only frequencies up to some thresh-
old. The lower the threshold frequency is, the coarser the signal is. If coarse versions of
signals are down-sampled, long-range dependencies among the original signals become
short-range dependencies among down-sampled coarse signals. A possible way to learn
such dependencies is therefore to apply a low-pass filter to original signals, down-sample
them, and then perform interaction analysis on thus obtained signals using the SSIM
model. Note that this approach decouples interaction analysis at different scales, as
input signals are processed independently for each scale. That is fine when signals are
observed directly. However, if signals are observed through a noisy process, decoupling
inference at different scales may result in inferring different latent time-series that cor-
respond to a same signal. Furthermore, the method would require some way of dealing
with missing data that may not be principled. Developing a generative multi-scale
model of signals that incorporate interactions among signals would allow for a joint
inference over interactions at different scales and would deal with observation noise and
missing data in a principled way, as in the SSIM model.

* 6.3 Final Thoughts

Understanding interactions is an important question in many domains, but learning in-
teractions from data remains a challenging problem. This thesis attempts to extend the
arsenal of tools for tackling this problem by developing a method for efficient Bayesian
inference over switching temporal interaction structure from noisy data. I hope that
our work opens possibilities for new applications and will be helpful to others in their
own pursuits.
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Appendix A

Computing messages mt(x) in
LG-SSIM

Note that
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Messages m'(Xt), t = 0, ... , T - 1, are computed in the following way:
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