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Abstract

Physical Unclonable Functions (PUFs) are a promising new cryptographic primitive

that leverage manufacturing variation to create unclonable secrets in embedded sys-

tems. In this case, the secret is no longer stored permanently in digital form, but

rather as the physical properties of the manufactured chip. Further, the recent pro-

posal of "Public Model Physical Unclonable Functions" (PPUFs) does not contain

any secrets at all. Instead, PPUFs propose to use a constant-factor computational

speedup to distinguish an unclonable hardware device from a digital simulation.

This thesis presents a new computational fuzzy extractor and stateless PUF lever-

aging Learning Parity with Noise (LPN). This method significantly improves over the

state-of-the-art in extracting stable secrets from PUFs and has a clear security re-

duction to a well-accepted cryptographic assumption (LPN).
In addition, this dissertation proposes for the first time a formalism describing

Public Model Physical Unclonable Functions based on ordinary differential equations

(ODEs), a conjecture on the form of ODE integrators, and a formal reduction of PPUF

security to this conjecture. This result is extended to compare analog and digital

computing more generally. Finally, this thesis provides direction for implementing a

PPUF.

Thesis Supervisor: Srinivas Devadas
Title: Professor of Electrical Engineering and Computer Science

2



Acknowledgments

First, I would like to thank my advisor, Srini for his guidance, excitement, and stead-

fast commitment to scholarship over the course of this research. In addition to the

material contained within this thesis, I know that I have obtained the tools required

to continue to learn and study and contribute to the academic community and the

field overall. I am excited to get started!

I would also like to thank Marten van Dijk for so many hours of his time discussing

and solving problems in many facets of my research. I am confident that I would not

have obtained many of the results contained in this thesis without our discussions,

and I am thankful for the his generosity and continued support, both academically

and professionally.

Next, I would like to thank Scott Aaronson for his guidance with respect to the

physics of computing. His insight and experience in this field were important to estab-

lishing what computational substrates were appropriate to consider for the theoretical

PPUF architecture.

I would like to thank the members of Hornet for many fun and interesting discus-

sions both regarding my research and each of your own (and sometimes altogether un-

related to anything whatsoever). Your collective intellectual curiosity and excitement

helped me sustain my own focus, especially through the many frustrating experiences

that come part and parcel with any research effort.

Finally, I would like to thank my family and especially my wife Tina for her

patience and support through the long hours of work. Tina, I love to share the

excitement of my research and discuss all of the esoteric and minute details with you.

I thank you for sharing the highs and lows of this journey with me.

3



Contents

1 Introduction 16

1.1 M otivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.1 POK Model ........ ............................ 19

1.1.2 Strong PUF Model . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.3 Limitations of POKs and Strong PUFs . . . . . . . . . . . . . 21

1.1.4 Public Model PUFs (PPUFs) . . . . . . . . . . . . . . . . . . 22

1.1.5 Limitations of Public Model Physical Unclonable Functions. . 24

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.2.1 Physically Obfuscated Keys . . . . . . . . . . . . . . . . . . . 25

1.2.2 Strong PUFs . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.2.3 Theory for Public Model Physical Unclonable Functions . . . 26

1.2.4 Theory for Complexity of Analog Computing vs. Digital Com-

puting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Physical Unclonable Functions Background and Related Work 28

2.1 Example Strong PUF Architectures . . . . . . . . . . . . . . . . . . . 29

2.1.1 Optical PUF . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.2 Arbiter PUF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Low-Cost Cryptographic Authentication: Strong PUFs . . . . . . . . 33

2.2.1 Authentication Protocol . . . . . . . . . . . . . . . . . . . . . 33

2.2.2 Arbiter PUF Topologies . . . . . . . . . . . . . . . . . . . . . 34

2.2.3 Arbiter PUF Implementation . . . . . . . . . . . . . . . . . . 35

2.2.4 Attacks on Arbiter PUFs . . . . . . . . . . . . . . . . . . . . . 36

4



2.2.5 Error Correction versus Tolerance . . . . . . . . . . . . . . . .

2.3 Cryptographic Key Generation: Physically Obfuscated Keys (POKs)

2.3.1 Key Generation Protocol . . . . . . . . . . . . . . . . . . . . .

2.3.2 SRAM PUF Implementation . . . . . . . . . . . . . . . . . . .

2.3.3 Ring Oscillator PUF Implementation . . . . . . . . . . . . . .

2.4 Shortcomings of Error Correction Techniques . . . . . . . . . . . . . .

2.4.1 Fuzzy Extractors for Silicon POKs . . . . . . . . . . . . . . .

2.4.2 Computational Fuzzy Extractors . . . . . . . . . . . . . . . .

2.4.3 Helper Data Manipulation . . . . . . . . . . . . . . . . . . . .

3 LPN Fuzzy Extractor

3.1 B ackground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.1.1 Confidence Information for Ring Oscillator POK . . . . . . . .

3.1.2 Learning Parity with Noise . . . . . . . . . . . . . . . . . . . .

3.2 Fuzzy Extractor Using LPN . . . . . . . . . . . . . . . . .

3.2.1 Intuitive Description . . . . . . . . . . . . . . . . .

3.2.2 Detailed Construction . . . . . . . . . . . . . . . .

3.3 Noise-Avoiding Trapdoors . . . . . . . . . . . . . . . . . .

3.3.1 Fabrication/Provisioning . . . . . . . . . . . . . . .

3.3.2 Projection/Extraction and Showing the "Trapdoor"

3.3.3 Setting m . . . . . . . . . . . . . . . . . . . . . . .

3.3.4 Improving on the Trapdoor . . . . . . . . . . . . .

3.4 LPN Fuzzy Extractor Security Analysis and Assumptions .

3.4.1 Assumptions on POK Outputs . . . . . . . . . . .

3.4.2 Security Parameter Derivation . . . . . . . . . . . .

3.5 Case Study using a Ring Oscillator POK . . . . . . . . . .

4 LPN Stateless PUF

4.1 Stateless PUF Construction . . . . . . . . . . . . . . . . . . . . . . .

4.1.1 Stateless PUF Definition . . . . . . . . . . . . . . . . . . . . .

4.1.2 The Construction . . . . . . . . . . . . . . . . . . . . . . . . .

5

39

40

41

41

44

46

47

49

50

51

51

51

52

. . . . 54

. . . . 55

. . . . 57

. . . . 59

. . . . 61

. . . . 62

. . . . 63

. . . . 64

. . . . 64

. . . . 65

. . . . 69

. . . . 70

75

75

75

77



4.1.3 Rem arks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Stateless PUF Security Analysis and Assumptions . . . . . . . . . . . 79

4.2.1 Reduction to LPN Assuming Independence Between Confidence

and econst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 Reduction to PER-LPN . . . . . . . . . . . . . . . . . . . . . 83

4.2.3 Stateless PUF Theorem . . . . . . . . . . . . . . . . . . . . . 87

5 Introduction to Public Model Physical Unclonable Functions 88

5.1 Previous W ork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 Proposed PPUF Architecture: SIMPL . . . . . . . . . . . . . . . . . 90

5.2.1 Cellular Non-Linear Networks . . . . . . . . . . . . . . . . . . 91

5.2.2 Modified SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Proposed PPUF Architecture: FPGA Time-bounded Unclonable Au-

thentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.4 Summary of Analysis of Existing PUF Solutions and PPUF Architectures 92

5.5 Informal PPUF Criteria . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Informal Criterion 1: "Problem" Solved by PPUF Hardware . . . . . 95

5.7 Informal Criterion 2: Physical Origin of Speedup . . . . . . . . . . . 95

5.7.1 Quantum Systems . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7.2 Classical Origins of Computational Speedup . . . . . . . . . . 101

5.8 Informal Criterion 3: Mathematical Origin of Speedup . . . . . . . . 104

6 Mathematical Preliminaries: Symbolic Computation 108

6.1 Differential Galois Theory . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1.1 Picard-Vessiot Extensions . . . . . . . . . . . . . . . . . . . . 109

6.1.2 Differential Automorphisms . . . . . . . . . . . . . . . . . . . 111

6.1.3 The Differential Galois Correspondence . . . . . . . . . . . . . 116

6.1.4 Liouvillian Extensions . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Kovacic's Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.1 The Kovacic Algorithm for Case 1 . . . . . . . . . . . . . . . . 122

6.3 Kovacic Algorithm Details . . . . . . . . . . . . . . . . . . . . . . . . 126

6

--- - - ---------



7 Circuit Complexity of Analog Computing 131

7.1 Introduction to Analog Computation . . . . . . . . . . . . . . . . . . 131

7.1.1 Description of Main Result . . . . . . . . . . . . . . . . . . . . 133

7.1.2 Related Work: Analog Computation and Complexity Theory . 133

7.1.3 Circuit Complexity and Analog Computation . . . . . . . . . 136

7.1.4 Preliminaries on Ordinary Differential Equations . . . . . . . . 137

7.1.5 Circuit Complexity of ODE Approximation: Contributions . . 140

8 PPUF/Analog Computing Formalism and Theory 142

8.1 Prelim inaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.1.1 Differential Entropy . . . . . . . . . . . . . . . . . . . . . . . . 146

8.1.2 Differential Equations . . . . . . . . . . . . . . . . . . . . . . 147

8.1.3 Equivalence of IVPs . . . . . . . . . . . . . . . . . . . . . . . 159

8.2 Sampling Initial Value Problems . . . . . . . . . . . . . . . . . . . . . 161

8.3 Formalization of Numerical Integration . . . . . . . . . . . . . . . . . 164

8.4 Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.4.1 Conjecture Discussion . . . . . . . . . . . . . . . . . . . . . . 167

8.4.2 Statistical Justification . . . . . . . . . . . . . . . . . . . . . . 169

8.4.3 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.5 PPUF Formalism and Construction . . . . . . . . . . . . . . . . . . . 177

8.5.1 Discretization of Continuous Variables . . . . . . . . . . . . . 177

8.5.2 Physically Accelerated Function Construction . . . . . . . . . 178

8.5.3 Security Reduction . . . . . . . . . . . . . . . . . . . . . . . . 183

8.5.4 Proof Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.5.5 PPUF Construction . . . . . . . . . . . . . . . . . . . . . . . 195

8.5.6 "Security Parameter" for PPUF Systems . . . . . . . . . . . . 197

9 Discussion of the Primary Conjecture 198

9.1 Uniform Approximations . . . . . . . . . . . . . . . . . . . . . . . . . 200

9.2 Asymptotic Approximations . . . . . . . . . . . . . . . . . . . . . . . 201

9.3 Estimation of Sub-Dominant Expansion Terms . . . . . . . . . . . . . 203

7



9.4 Kovacic Expansion Methodology . . . . . . . . . . . . . . . . . . . . . 204

9.4.1 Algorithmic Description . . . . . . . . . . . . . . . . . . . . . 206

9.4.2 Details of the Algorithm . . . . . . . . . . . . . . . . . . . . . 208

9.5 Optimality of the Kovacic Expansion Approach . . . . . . . . . . . . 212

9.5.1 Asymptotic Expansion Techniques - A Philosophical Perspective 213

9.5.2 Kovacic Expansion Subsumes Existing Expansions . . . . . . . 214

9.5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

10 Implementation Considerations and Future Work

10.1 Criterion 1 Failure: Optical Vector-Matrix Multiply

10.1.1 Scaling Matrix Size . . . . . . . . . . . . . . .

10.1.2 Conclusion . . . . . . . . . . . . . . . . . . . .

10.2 Criterion 2 Failure: Geometry Modulation . . . . . .

10.2.1 Conclusion . . . . . . . . . . . . . . . . . . . .

10.3 Ring Resonators - Building ODEs with Optics . . . .

10.3.1 Microring Resonator Physics . . . . . . . . . .

10.3.2 Constructing LTV ODEs using Ring Resonator

10.4 Directions for Future Work . . . . . . . . . . . . . . .

10.4.1 Implementation Challenges . . . . . . . . . . .

10.4.2 Creating a PPUF Model . . . . . . . . . . . .

10.4.3 Comparison to CMOS Dynamics . . . . . . .

219

. . . . . . . . . 220

. . . . . . . . . 221

. . . . . . . . . 224

. . . . . . . . . 225

. . . . . . . . . 226

. . . . . . . . . 227

. . . . . . . . . 228

Recurrence . . 235

. . . . . . . . . 235

. . . . . . . . . 236

. . . . . . . . . 237

. . . . . . . . . 238

24111 Conclusion

8



List of Figures

1-1 Authenticating a Public Model PUF system. . . . . . . . . . . . . . . 23

2-1 An arbiter PUF circuit. The circuit creates two delay paths with the

same layout length for each input X, and produces an output Y based

on which path is faster. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2-2 Four individual arbiter PUF circuits with nonlinearities introduced via

XOR'ing their outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2-3 Code distance distribution for 256-bit PUF responses. . . . . . . . . . 37

2-4 False positives and negatives for strong PUF operation with a given

error tolerance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2-5 A k-sum ring-oscillator PUF. Ring oscillators that are closer in fre-

quency do not affect the output bit due to the summation process. . . 45

3-1 A basic Ring Oscillator POK with m differential pairs. Note that

in addition to the output bits ej, confidence values ci may be made

available to the surrounding logic. These confidence values are in the

form of the actual differential count between the two ring oscillators,

while the POK output bits ej correspond to whether the differential

count is greater/less than 0. . . . . . . . . . . . . . . . . . . . . . . . 53

3-2 Overview of LPN key extraction algorithm. The e'i values are regener-

ated and the c'i values with high absolute value identify the e'i with low

probability of error (since c'i values don't change dramatically between

measurements, and e'i = Sign(c'j)). Gaussian elimination is then used

on these selected equations to extract the secret key. . . . . . . . . . 56

9

1 - " I I . I I



3-3 Distribution of confidence information for different POK bits when

measured repeatedly over time/environmental parameters. The ma-

genta curve corresponds to the distribution of confidence information

across different devices. The blue curve corresponds to the distribution

of measured confidence information from the same device in different

conditions. The probability of error given a confidence measurement c

as the integral of the shaded region. . . . . . . . . . . . . . . . . . . . 60

3-4 (Top) Measurement of UINTER through the estimation of the distribu-

tion of differential counts across 320 RO pairs across room temper-

ature and the fast and slow voltage/temperature corners. (Bottom)

Measurement of UINTRA by subtracting differential counts at 25 CA1V

from 105'CA1.05V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4-1 Stateless PUF construction. Note that GenPOK and VerPOK can be

called any number of times in any order. The PUF does not retain any

state across invocations. . . . . . . . . . . . . . . . . . . . . . . . . . 78

7-1 A depiction of the relationship of analog, digital, and analog/digital hy-

brid computational models. This work focuses on the complexity theo-

retic relationship between continuous-variable continuous-time analog

systems, and discrete-variable continuous-time combinational circuits. 132

7-2 The different building blocks of any GPAC computer. Connection of

these building blocks allows for the construction of analog computers

capable of approximating ODE initial value problems (IVPs). . . . . 135

10



8-1 Figure of an IVP that follows Lemmas 8.1.12, 8.1.13. The poles and

zeroes of r(t) are marked, and the curve of integration is labeled. R

is chosen such that all poles and zeroes are within radius R from the

origin (which is in C(x)). Note that there are equal numbers of poles

and zeroes, and C(x) is asymptotic to infinity in opposite directions as

IxI -+ oc. The asymptotic behavior of C(x) must be chosen according

to Lem m a 8.1.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8-2 Example of three connected IVPs. The dotted circles denote radius R

around the origin of the IVP. These origins are translated to points t1 ,

t2 , t3 that are distance T >> R apart. This locally confines the effect

of each IVP. Corollary allows one to rotate/translate these ODEs such

that the curves of integration can be stitched together in the region

greater than R away from any of t1, t2 , t3 . . . . . . .  . . . . .  .  . 162

8-3 Form of a numerical integrator in Conjecture 8.4.1. Note that each

individual stage may call Exp many times in parallel with varying ex-

pansion orders for various values of t. . . . . . . . . . . . . . . . . . 167

8-4 Example randomly selected pole/zero configuration for R = 10, m =

10, 6 = 10-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8-5 Example dependence of the pole/zero configuration on a small change

in C2m. Although the pole/zero locations can be very sensitive to

changes in C2m (i.e., see [171]), there is still a smooth dependence.

Note, however, that as C2, changes, it is possible for one or more

poles/zeroes to leave the disc of radius R. This would be result in

the configuration not being a valid sample from UR,m,6. This must be

addressed. ........ ................................. 171

8-6 A depiction of the dependence of the pole/zero configuration on C2m.

As C2m changes by dci, the pole/zero configuration changes by dpzi

(computed with Equation 8.21). Note that certain configurations may

be invalid because one or more poles/zeroes fall outside the disc of

radius R. This is shown with (for example) r3 (t) and r4(t). . . . . . . 172

11



8-7 Depiction of the dependence of Pr(y(tf)) given Pr(C2m). In particu-

lar, the demonstration of the computation of Pr(y(tf) E [yo, Yi). The

transformation is given in Equation 8.23. . . . . . . . . . . . . . . . . 173

8-8 A histogram generated by measuring the min-entropy of y(tf) given

the knowledge of the first 2m - 1 derivatives of r(t,) for 1000 random

samples from UR,m,6. These data are collected by assuming a mea-

surement precision of 10 bits (and therefore a maximum entropy of 10

bits). Out of 1000 samples, each system had significant min-entropy.

Therefore, there is evidence that Empirical Observation 8.4.2 is true. 174

8-9 Depiction of the computation of quantization error in the process of

computing Pr(y(tf)) E [yo, yi)). The quantization error is upper bounded

by taking 50% of the probability of the two ending intervals (in this

case [c-5 , c_ 4 ), and [c-1, co)), and adding it to the overall error of the

system. This is in addition to the 1% error of numerical integration

com puting Pr(C2m). . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8-10 Informal depiction of the derivation function for poles/zeroes in each

cluster (cf. Definition 8.5.3). The previous system state (y(t%), y'(ti))

is discretized and, alongside a piece of the challenge vi, is sent to a

random oracle. The random oracle output is then used to generate the

next pole-zero cluster r+i (t). . . . . . . . . . . . . . . . . . . . . . . 179

8-11 A graphical representation of the iterative numerical integration pro-

cess described in Definition 8.5.4. In this case, an initial cluster of

poles/zeroes around to is given with radius R. The solver must nu-

merically integrate along the real axis from some initial time t, along

the real axis to to. The state value at this point, y(to), y'(to) is then

used with a random oracle to derive the locations second cluster of

pole/zeroes. These are displaced by T along the path of integration.

The process then repeats for n iterations. . . . . . . . . . . . . . . . . 180

12



8-12 A depiction of F""' from Observation 8.5.9. Instead of defining each

cluster of poles and zeroes based on the system state at a previous time

(as in Figure 8-11, Definition 8.5.4), one may consider each pole/zero

cluster as statically chosen. The problem is then to compute the system

state (y(t), y'(t)) at all points t = {to, t1 , t2 , ...}, instead of just t = tf. 186

8-13 Base case of the PAF adversary. Because the adversary cannot know

the configuration of the second cluster of pole-zero pairs, it can only

integrate through the first cluster. Note that although Empirical Ob-

servation 8.4.2 states that a single expansion cannot have a conver-

gence region as large as depicted above, multiple expansions computed

in parallel may be combined to obtain a convergence region this large. 191

8-14 Inductive case of the PAF adversary. If N < n, then there is some

i < N that integrates through 2 clusters. . . . . . . . . . . . . . . . . 191

8-15 A diagram of the formal PPUF construction using a PAF. Note that

the model M that is passed to the software function, and that pa-

rameterizes the physical component is distributed according to some

distribution X. Because M is used as part of an argument to a random

oracle in this model (cf. Definition 8.5.3), it is only required that M

have sufficient min-entropy. . . . . . . . . . . . . . . . . . . . . . . . 196

9-1 A depiction of the general flow of the order k Kovacic expansion. The

ODE is processed by the Kovacic algorithm to yield a set of non-linear

ODEs. Then, the Frobenius method [3] is used to obtain a degree-

k Taylor series. One then computes all (p, q) Pad6 expansions of this

series for p+ q = k and chooses the one with the largest step size within

the e-accurate region. One then returns the y(t) that corresponds to

this rational expression. . . . . . . . . . . . . . . . . . . . . . . . . . 207

10-1 The canonical single ring resonator. Note that the ring is coupled to a

waveguide on top of the ring [125]. . . . . . . . . . . . . . . . . . . . 228

10-2 A series-connected dual ring resonator [125]. . . . . . . . . . . . . . . 230

13



10-3 The E-field amplitude of the above dual ring-resonator displaying oscil-

latory behavior in its impulse response. The parameter being observed

is E ia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

10-4 Ei, [n] versus the derived differential equation Eia(t) on equivalent time

scales. Ea[n] is blue, Eia(t) is red, dashed. . . . . . . . . . . . . . . . 234

10-5 Plot of 2-input NAND gate delay versus process node [112, 118, 23]. . 238

14



List of Tables

3.1 Comparison of performance of LPN algorithms against an LPN fuzzy

extractor with TL = 1 - 1.31 x 10- 48 , n = 128. Set 0 = 1/3 to2

achieve 50% success probability [22]. The security parameter is taken

for optimal choices of a, b (not shown). The security parameter of LF2

is N/A, because there is no setting of parameters that results in the

algorithm converging. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.2 (Left) Measured bias of 320 RO pairs at varying temperatures. (Right)

Measured UINTRA for varying temperatures. . . . . . . . . . . . . . . . 71

3.3 Summary of 'INTR and resources required for an LPN fuzzy extrac-

tor over the specified temperature range. The percentage of erroneous

bits over environmental conditions and associated ratio is displayed.

Extraction succeeds with error probability < 10-6 and a security pa-

ram eter of 128. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.1 Possible cases for limiting values of yi(C(x), y2(C(x)). Exclusions are

given as index numbers, referred to in this proof. The only possible

case is that the limits lim yi(C(x)) and lim y2 (C(x)) do not exist
x-+oo x-+oo

(D N E ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

10.1 Relative Timescales of Optoelectronic System Compared to CMOS . 239

15



1 - Introduction

Mobile and embedded devices are ubiquitous, interconnected platforms for everyday

tasks. Many such tasks require the mobile device to securely authenticate and be

authenticated by another party and/or securely handle private information. Indeed,

smartphones have become a unified platform capable of conducting financial trans-

actions, storing a user's secure information, acting as an authentication token for the

user, and performing many other secure applications. Further, the United States has

begun the deployment of smart card technologies with integrated processors and se-

cure storage to replace magnetic stripes for authenticating a customer's credit/debit

account information. The development of powerful mobile computing hardware has

provided the software flexibility to enable convenient mobile data processing. How-

ever, comparable mobile hardware security has been slower to develop. Due to the

inherent mobility of such devices, the threat model must include use cases where

the device operates in an untrusted environment and the adversary has a degree of

physical access to the system. Indeed, the adversary may in fact be the owner of the

device.

The current best practice for providing such a secure memory or authentication

source in such a mobile system is to place a secret key in a non-volatile EEPROM

or battery-backed SRAM memory and use hardware cryptographic operations such

as digital signatures or encryption. These technologies are vulnerable to invasive

attack mechanisms. Protection against such attacks in current technologies requires

the use of active tamper detection/prevention circuitry which has the drawback that

it must be continually powered. Finally, EEPROM and other non-volatile storage

technologies typically require additional fabrication steps (e.g., additional mask layers
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for EEPROM).

Physical Unclonable Functions (PUFs) are a promising innovative primitive that

are used for authentication and secret key storage without the requirement of

secure EEPROMs and other expensive hardware described above [64, 137]. This is

possible, because instead of storing secrets in digital memory, PUFs derive a secret

from the physical characteristics of the integrated circuit (IC). For example, this

thesis will discuss a PUF that uses the innate manufacturing variability of gate delay

as a physical characteristic from which one can derive a secret. This approach is

advantageous over standard secure digital storage for several reasons:

" PUF hardware uses simple digital circuits that are easy to fabricate and consume

less power and area than EEPROM/RAM solutions with anti-tamper circuitry.

In addition, many practical PUF applications do not require expensive cryp-

tographic hardware such as Secure Hash Algorithm (SHA) or a public/private

key encryption algorithm.

" Since the "secret" is derived from physical characteristics of the IC, -the chip

must be powered on for the secret to reside in digital memory. Any physical

attack attempting to extract digital information from the chip therefore must

do so while the chip is powered on.

" Invasive attacks are more difficult to execute without modifying the physical

characteristics from which the secret is derived. Therefore, continually-powered

active anti-tamper mechanisms are not required to secure the PUF [52].

" Non-volatile memory is more expensive to manufacture than PUF hardware.

EEPROMs require additional mask layers, and battery-backed RAMs require

an external always-on power source.

A PUF is based on the idea that even though the mask and manufacturing process

is the same among different ICs, each IC is actually slightly different due to normal

manufacturing variability. PUFs leverage this variability to derive "secret" informa-

tion that is unique to the chip. In addition, due to the manufacturing variability
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that defines the secret, one cannot manufacture two identical chips, even with full

knowledge of the chip's design. PUF architectures exploit manufacturing variability

in multiple ways. In addition to gate delay, architectures also use the power-on state

of SRAM, threshold voltages, and many other physical characteristics to derive the

secret.

1.1 Motivation

The two primary applications of Physical Unclonable Functions are for (1) low-cost

authentication, and (2) secure key generation. These two applications have resulted

from the fact that PUFs designed during the past decade have mostly fallen into two

broad categories. These categories are described as "Strong PUFs" and "Physically

Obfuscated Keys" (POKs).1 Strong PUFs are typically used for authentication, while

POKs are used for key storage.

Each PUF can be modeled as a black-box challenge-response system. In other

words, a PUF is passed an input challenge c, and returns a response r = f(c),

where f(-) describes the input/output relations of the PUF. The black-box model

is appropriate here, because the internal parameters of f(.) are hidden from the

user since they represent the internal manufacturing variability that the PUF uses

to generate a unique challenge-response set. Such parameters would include the

variability of an circuit's internal gate delay as described in the introduction. PUF

security relies on the difficulty of measurement or estimation of these parameters as

well as the difficulty of manufacturing two chips with the same set of parameters.

The fundamental difference between POKs and strong PUFs is the domain of

f (), or informally, the number of unique challenges c that the PUF can process. A

POK can only support a small number of challenges (in some cases only a single

challenge). A strong PUF can support a large enough number of challenges such that

complete determination/measurement of all challenge-response pairs within a limited

timeframe is not feasible.

'POKs are also known as "Weak PUFs", but this thesis will refer to them as POKs.
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1.1.1 POK Model

The first class of PUFs leveraging manufacturing variability are POKs. These PUFs

can be thought of as PUFs that directly digitize some "fingerprint" of the circuit. This

direct measurement results in a digital signature that can be used for cryptographic

purposes. Because the fingerprint signature remains largely invariant, this means

that the PUF can only be interrogated by one or a small number of challenges. In

the above black box description, this corresponds to f(-) having a domain of one

or only a small number of inputs. Correspondingly, f(-) will also have a very small

range, as a given challenge should always result in the same response (ignoring noise,

which is considered later). One can clearly use several instances of the above black

box to support more challenge-response pairs or response bits. However, this is still

considered a POK, because the number of responses is linearly related to the number

of components subject to manufacturing variation. Explicitly stated, POKs have the

following properties:

" Small number of challenge-response pairs (linearly related to the number of

components whose behavior depends on manufacturing variation).

" Response is stable and robust to environmental conditions and multiple readings

so that a challenge always yields the same response.

" Responses are unpredictable and depend strongly on the innate manufacturing

variability of the device.

" It is impractical to manufacture two devices with the same physical fingerprint.

An example POK is the power-on state of an SRAM. Although an SRAM cell is

symmetric, manufacturing variability will give each cell a tendency towards a logical

'1' or '0' at power-on. This variability is random across the entire SRAM, giving it a

unique fingerprint on power-on that can be identified. In this case, if the "response"

consists of the entire SRAM state at power-on, the notion of a "challenge" is not

particularly useful, as there is only one possible "challenge": powering on the SRAM.

The output signature is always the same (ignoring noise). One can allow for more
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output bits by increasing the size of the SRAM, but the response space is still linearly

related to the number of components subject to manufacturing variation (each SRAM

cell). The SRAM is an extreme example of a POK in the sense that it only has one

"challenge-response pair".

Note that since POKs in general have only a small number of challenge-response

pairs (CRPs), these pairs must be kept secret. If a POK only has one CRP, and it

is revealed, then any device can emulate the PUF. For this reason, POKs are well

suited for use in key derivation processes. The PUF provides the randomness and

secure storage, and the secret key (derived from the PUF's response bits) is never

revealed during operation.

This limitation is in tension with the fact that POKs are noisy and must be error

corrected before a stable key can be produced. This is typically performed using

publicly known "helper data" that is generated when the POK is provisioned. It is

crucial, however, that the "helper data" used for error correction not give away too

much information about the secret key.

Once the key is recovered by the PUF (this typically requires error correction),

any cryptographic process may follow. For example, the POK output may be used

as the key in a keyed-hash message authentication code (HMAC) challenge-response

sequence. In addition, the output may be used as a secret key to encrypt/decrypt

data on the device.

1.1.2 Strong PUF Model

Strong PUFs differ from POKs in that a strong PUF can support a large number of

challenge-response pairs. As a result, a strong PUF can theoretically be authenticated

directly without using any cryptographic hardware. The requirements for a strong

PUF are:

* Large enough challenge-response space such that an adversary cannot enumerate

all challenge-response pairs within a certain fixed time. (Ideally, exponential in

the number of challenge bits).
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* Responses stable to environment, multiple readings.

" An adversary given a polynomial-sized sample of adaptively chosen challenge-

response pairs cannot predict the response to a new, randomly chosen challenge.

" Not feasible to manufacture two PUFs with the same responses.

" The readout only reveals the response r = f(c) and no other data about the

internal functionality of the PUF.

It should be noted that a POK can provide authentication capabilities if the POK

is paired with cryptographic hardware supporting HMAC or similar authentication

processes (note that HMAC and others support exponentially sized challenge-response

spaces but their use requires 100% response stability and therefore error correction

logic). It should also be noted that the security models for POKs and strong PUFs

differ. The output of a POK must be kept private, while a strong PUF's responses

do not have the same restriction.

The strong PUF has the additional requirement of readout access restriction (only

r = f(c) is revealed) due to this difference in security models. In addition, to prevent

total enumeration of the strong PUF, one must also consider the readout time of the

PUF in conjunction with the number of challenge-response pairs. A faster PUF re-

sponse allows for faster enumeration of all PUF challenge-response pairs. Since a POK

provides a secret key, the surrounding digital cryptographic hardware is responsible

for limiting access to the POK output. However, the strong PUF does not require

the use of additional cryptographic hardware to provide authentication services, and

therefore must itself prevent unauthorized access into its own internal structure.

1.1.3 Limitations of POKs and Strong PUFs

In spite of the advantages that PUF systems can potentially provide to embedded

systems authentication applications, there has been significant difficulty in simultane-

ously providing a strong security guarantee and a practical physical implementation
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(cf. Section 2.4). The reason for this difficulty in each case stems from the ten-

sion between the rigid, mathematical nature of modern cryptography, and the noisy,

imperfect nature of physical systems.

For POKs, this challenge manifests itself in the difficulty of reconstructing stable

keys from the noisy PUF. This is referred to as Secure Sketch/Fuzzy Extraction [54].

Section 2.4 argues that in order for existing fuzzy extractors to be secure (i.e., an

adversary can't compute the key even if he/she knows the helper information), they

either (a) cannot correct enough errors to produce a stable key, (b) have unclear

cryptographic assumptions, and/or (c) require strong, unreasonable properties in the

PUF, e.g., independent, identically distributed - (i.i.d.) noise.

For strong PUFs, the physical system and the protocol are both stateless (i.e., store

no data between subsequent queries and do not require non-volatile digital storage).

The stateless property implies that there is no separate, irreversible "provisioning"

stage: the interface exposed by the PUF is static, and any valid query can be made at

any time. The simplicity and power of the above protocol motivated the construction

of many candidate silicon PUFs. Unfortunately, none of the candidate constructions

have a proof of computational security, and most, if not all of them have been shown

to be susceptible to machine learning attacks (cf. Section 2.4). In the context of

stateless PUFs, Gassend et al. [64] write: "An important direction of research is to

find a circuit that is provably hard to break ... ".

1.1.4 Public Model PUFs (PPUFs)

There have been investigations into next-generation PUF technology [166, 103, 135].

These works recognize several of the intrinsic limitations of PUF technology:

* For both POKs and strong PUFs, there is still a "secret" inside the PUF, al-

though it is no longer permanently stored in digital form. For arbiter/ring

oscillator PUFs, the secret is the gate delay of the inverters in the ring oscil-

lator/arbiter chain. Therefore, it is theoretically possible that a sophisticated

attacker may be able to extract these values (the gate delays) or the values
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corresponding to the response of the POK to break security. Since the PUF's

secret cannot be published without compromising security, the PUF protocols

are limited to "symmetric key" applications.

9 A strong PUF implementation requires the verifier to memorize a list of chal-

lenge/response pairs that can only be used once. This is more inefficient and

cumbersome than a protocol where the verifier could generate his/her own chal-

lenges for the PUF.

As a result, the "Public Model Physical Unclonable Function" has been proposed

(cf. Chapter 5 for more details). Loosely speaking, this architecture could enable a

"public-key" variant of a physical unclonable function that also allows a verifier to

compute his/her own challenges. This is in direct tension with the requirement for

standard PUFs that the manufacturing variation of the PUF remain secret, so that

the behavior of the PUF cannot be duplicated. Therefore, there is more to the PPUF

protocol, discussed below.

In the PPUF construction, there- are no secrets anywhere in the device. Authen-

tication is based on (1) the unclonability of the PPUF hardware device, and (2) a

computational speedup of the PPUF hardware device over any digital model.

The digital model associated with the PPUF hardware is publicly known. How-

ever, the timing difference between the model and the PPUF hardware is used as a

source of secure authentication. The protocol is shown in Figure 1-1 [107, 130].

Authentication Procedure
Prover Verifier

1. Generate Challenge
2. Compute Response with

Public Model

Use PUF to compute - 3. Send Challenge to prover
response. Send to verifier 4. Measure Client Response

time 'T'
5. Accept if T<TO and

responses match
Figure 1-1: Authenticating a Public Model PUF system.
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As a result, only the person in possession of the device is able to authenticate.

Since there are no secrets to steal, the security guarantee can be much higher than

modern secure hardware. This "security without secrets" has application to numer-

ous industries. For example, using a PPUF system on a credit card would bind

unequivocally account access to the possession of the card.

Today, credit card information theft is a major problem, with millions of identities

stolen per year. Billions of dollars are spent each year on the prevention of breaches

and the aftermath of breaches where credit card information is stolen. The use of

PPUF technology would eliminate the threat of loss of credit card information, as

only theft of the card itself would allow someone to access an account. Furthermore,

if such a card were ever recovered after being lost, the security would remain intact

for future account access, as an adversary would not have been able to duplicate the

card. Only the person in possession of the card would be able to authenticate an

online purchase, for example.

1.1.5 Limitations of Public Model Physical Unclonable Func-

tions

The concept of "security without secrets" has existed for some time, with many PPUF

architectures that have been proposed [108, 104, 16, 130]. However, to date, proposed

PPUF architectures do not have security guarantees that can be strongly argued,

much less a formal security guarantee and reduction to a reasonable mathematical

conjecture. As a result of this lack of formalism, although "security without secrets"

is a groundbreaking concept, its potential has not been explored by the cryptographic

community.

For example, Majzoobi, Nably, and Koushanfar presented a time-bounded authen-

tication in 2010 that uses FPGA cells as the delay elements. The security argument

is simply that it takes significantly more time to simulate the FPGA in software than

it does to actually run the FPGA [103]. This security trivially breaks if the adversary

has an FPGA.
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Another example, Cellular Non-linear Networks (CNNs) used as a part of the

proposed SIMPL systems [130] consist of an array of analog cells, that each behave

according to some linear ODE that is connected to its neighboring cells. Once again,

the speedups are only argued for software adversaries. The CNN can be digitally

simulated very fast in parallel on an FPGA by leveraging the intrinsic parallelism

of the problem. No argument is given for speedup over an adversary with sufficient

FPGA resources, much less a custom mixed-signal ASIC. This is not consistent with

the fact that the CNN proposal requires custom mixed signal hardware.

Therefore, in each case there is a assumption that the honest party is more pow-

erful than the adversary - in both cases, the adversary is software only. This is in

general not a useful threat model.

1.2 Contributions

1.2.1 Physically Obfuscated Keys

In this work, Learning Parity with Noise (LPN) (cf. Section 3.1) is used to provide

a computationally secure, practical fuzzy extractor construction that improves sub-

stantially over the state of the art. The construction is integrated into existing PUF

formalism [10, 58], and provides a security reduction from the definition of a fuzzy

extractor to the hardness of LPN. Further, the theory of LPN is extended to under-

stand what types of PUF distributions are allowed. The requirements on the PUF

bit distribution for the construction is stronger than a min-entropy requirement, but

significantly weaker than an i.i.d. noise requirement.

Further, the construction uses LPN in a unique, novel way. I explore the intuition

for why LPN provides the correct mathematical structure for efficient fuzzy extraction.

Further, the parameter choices for an LPN fuzzy extractor significantly increases the

difficulty of the LPN problem compared with more traditional LPN constructions.

I use the best known attacks to construct a security parameter for choices of LPN

fuzzy extractor parameters.
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Using the parameters for a security parameter of 128, I use experimental data

collected from ring-oscillator PUFs implemented on a Xilinx FPGA to verify the

efficiency of the construction. A substantial improvement is demonstrated for the

LPN construction in several figures of merit over the state-of-the-art.

1.2.2 Strong PUFs

Next, using the LPN fuzzy extractor, I provide a construction for a computationally

secure stateless, strong PUF. The construction is provided in the context of existing

PUF formalism [10]. It is proven that the construction is strongly unpredictable,

and thus not vulnerable to any machine learning attacks (as most, if not all previous

stateless PUF constructions are). I show a security reduction to standard LPN with

an i.i.d. noise assumption on the PUF. I also show a security reduction to an LPN-

variant with a weaker noise assumption on the PUF.

The computationally secure construction of a stateless Physical Unclonable Func-

tion in this thesis is based on precise hardness assumptions. This has been an open

problem for over thirteen years since silicon PUFs were introduced in 2002 [64].

1.2.3 Theory for Public Model Physical Unclonable Func-

tions

This work first identified that a formal approach to security was needed to enable

future study of PPUFs. This work proposes for the first time a formalism describing

Public Model Physical Unclonable Functions in terms of the relative speedup of one

computational modality over another. Using this formalism, this work provides a

definition of security and a formal PPUF construction (cf. Section 8.5).

These definitions represent a theoretical foundation on which the emerging tech-

nology of Public Model Physical Unclonable Functions may be studied. This foun-

dation can be viewed as an extension of existing PUF formalism [10] (cf. Section

8.1).

Next, I present a mathematical conjecture (cf. Section 8.2) regarding the form of
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numerical integration algorithms alongside an empirical justification of this conjecture

in the context of previous work in the field of numerical integration. I present a

reduction from the security guarantee for the PPUF construction to the conjecture

(cf. Section 8.5). Finally, I provide recommendations for the physical implementation

of a PPUF system.

The development of the theory and conjecture required the study of multiple fields

spanning classical mechanics, complex analysis, differential geometry, symbolic com-

putation, and complexity theory. The final theory and conjecture presented in this

thesis draw from Information Theory, Differential Galois Theory, Pad6 Approxima-

tion, and more general asymptotic approximation theory.

The theoretical foundation presented in this thesis is necessary to enable further

development in the field of Public Model Physical Unclonable Functions, and this

work establishes that potential exists in the field of PPUF systems to enable "security

without secrets."

1.2.4 Theory for Complexity of Analog Computing vs. Dig-

ital Computing

In Section 7, I recognize that the key challenge for PPUF implementation is an

instance of a broader complexity theoretic question regarding the relationship between

analog and digital computing. Over the course of providing the security reduction

for the PPUF construction, I also recognize several implications for the more general

field of analog computing.

In particular, there has been continuing interest in finding applications where ana-

log computing has a speed advantage over digital computing [111, 24, 152, 122, 45].

In this work, I show a particular mathematical problem wherein analog computing

does have a circuit complexity advantage over any digital simulator (assuming the

conjecture mentioned above). This result provides the first constant-factor separa-

tion between analog and digital computing modalities under a precise and plausible

conjecture.
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2 - Physical Unclonable Functions

Background and Related Work

Although many of the architectures that integrate PUFs into existing IC technology

are recent, it should be noted that the concepts of unclonability and uniqueness have

been used extensively in the past for other applications [86]. For example, "Unique

Objects" are well defined as objects with a unique set of properties (a 'fingerprint')

based on the unique disorder of the object [137]. One example of early usage of unique

objects for security was proposed for the identification of nuclear weapons during the

cold war [67]. One would spray a thin coating of randomly distributed light-reflecting

particles onto the surface of the nuclear weapon. Since these particles are randomly

distributed, the resulting interference pattern after being illuminated from various

angles is unique and difficult to reproduce. Unique objects were termed Physical One-

Way Functions and popularized in 2001 [121]. However, to the author's knowledge,

none of these proposals has an associated computational security argument that shows

hardness of model-building or machine learning attacks.

There are two categories of Physical Unclonable Functions (PUFs) that are used

in modern embedded cryptosystems: POKs and strong PUFs as described in Section

1.1. POKs have one or a small number of challenge/response pairs, while strong PUFs

have a large (generally exponential in the size of the system) challenge response space.

This chapter discusses how both POKs and strong PUFs are implemented, and

where the current implementation and theoretical challenges lie.
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2.1 Example Strong PUF Architectures

2.1.1 Optical PUF

One of the first implementations of a strong PUF was constructed by Pappu et al.

in 2001 [120]. The paper terms the device a "Physical One-way Function," but the

functionality is identical to that of a strong PUF. Pappu describes a device with

three primary components: (1) A laser directed along the Z axis that can be moved

in the XY plane and whose polarization can be modified, (2) A stationary scattering

medium that sits along the path of the laser beam, and (3) An imaging device that

records the output 'speckle' pattern of laser light exiting the scattering medium.

In this device, the input challenge is a laser XY location and polarization, and the

response is the associated speckle pattern. The speckle pattern is strongly dependent

on the input location/polarization because multiple scattering events occur inside of

the scattering medium. In the implementation by Pappu et al., the scattering medium

consisted of a large number of randomly positioned 100 pm silica spheres suspended

in a hardened epoxy. Each sphere acts as a small lens, refracting individual rays of

light as they move through the scattering block. The overall size of the scattering

block was on the order of 1mm thick. Therefore, even a relatively simple optical path

must encounter ~10 spheres as it travels through the scattering block.

All of these paths then are focused into an image on the detector. It is intuitively

true that each of these paths will be very sensitive to input coordinates. Studies on

speckle patterns produced by reflection/transmission by rough surfaces have found

this to be true both experimentally and mathematically [43]. In addition, the speckle

pattern is also sensitive to the internal structure of the scattering block. Therefore,

it is difficult to fabricate two blocks with identical speckle patterns. Finally, due to

the complex nature of the physical interactions, it is difficult to model the internal

dynamics of the scattering medium. It is also difficult to use the output speckle

to determine properties of the scattering block (such as the locations of the silica

spheres).

These assumptions, while not strictly based on known computationally difficult
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problems, are thought to be difficult due to the fact that ray-tracing electromag-

netic simulation is a well-studied field with established theoretical models and best

practices. One can make the statement that if an adversary were able to break the

above optical PUF by efficiently reproducing the physical device, modelling the en-

tire scattering block, or discovering the sphere locations via observation of the speckle

pattern, this would probably represent a major advancement in the field of ray-based

models of electromagnetic simulation. It is for this reason that Pappu et al. described

this Optical PUF as a "Physical One-way Function". However, there is no formal

hardness assumption or reduction.

2.1.2 Arbiter PUF

Although the capabilities of the above optical PUF are significant, and they rep-

resented a significant step forward in the understanding and construction of PUFs,

the practical applications are limited due to the macroscopic optical nature. This

limitation stemmed from two properties.

First, the actual unclonable object (the scattering block) was separate from the

measurement apparatus (the imaging device). As a result, the trust gained from

authenticating an optical PUF is more limited. In a practical use case, the objective

of authenticating the PUF is typically to authenticate the associated processor to

which it is connected. However, since the optical PUF is separated from the digital

measurement circuitry, an optical PUF as described by Pappu et al. designed to

authenticate Processor A can easily be detached from Processor A and connected to

Processor B. Processor B could then authenticate itself as Processor A. It is more

desirable for the digital measurement apparatus to be integrated in with the PUF

such that the PUF is not separable from the device it is used to authenticate.

Second, since both key generation and authentication applications use integrated

electronics, a more practical PUF would have the same properties as the optical PUF

and simultaneously be integrated directly with a conventional CMOS process. This

integration would be such that the integrated circuit could not be separated from the

PUF.
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Silicon implementations of candidate strong PUFs were described in papers by

by Gassend et al. beginning in 2002 using manufacturing variability in gate delay as

the source of unclonable randomness [64]. In one implementation, a race condition is

established in a symmetric circuit. This is shown in Figure 2-1. An input edge is split

to two multiplexors (muxes). Depending on the input challenge bits (X[0] - X[127]),

this path will vary. Although the layout is identical (propagation time should be

the same for each edge no matter what challenge bits are chosen), manufacturing

variability in the gate delay of each inux will result in one edge arriving at the latch

first, and the latch acts as the 'arbiter'. The output will therefore depend on the

challenge bits.

D Q

Latch

0 0 0 0

X[O] X[1] X[126] X[127]

Figure 2-1: An arbiter PUF circuit. The circuit creates two delay paths with the
same layout length for each input X, and produces an output Y based on which path

is faster.

In Figure 2-1, there are 128 challenge bits and 1 response bit. Of course, one can

operate multiple identical circuits in parallel to achieve 128 response bits. In this way,

the arbiter PUF can be scaled to an almost arbitrary number of challenge-response

pairs.

The security of the arbiter PUF, like the optical PUF before it, is based on as-

sumptions regarding manufacturing capabilities and ultimately metrology of the indi-

vidual gate delays. Because the design is symmetric, the design does not contain any

'secret' information. An adversarial manufacturer that has the PUF design cannot

manufacture a duplicate PUF, because the behavior of the PUF is defined by the

inherent variability in the manufacturing process. Even the original manufacturer of
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the PUF could not produce two identical PUFs, since this would require a significant

improvement in manufacturing control.

The second security assumption is that the individual gate delays are difficult

to measure directly. It assumes that an invasive attacker would have difficulty in

extracting the individual delays even with physical access. This assumption is based

on the hypothesis that an invasive attacker would destroy the gate delay properties

using his/her measurement techniques.

The last security assumption is that given a set of challenge-response pairs from

an arbiter PUF, an adversary could not calculate the internal delays of the gates.

For the architecture described above, this is actually not the case. Each delay is

independent from all other delays, and the delays add linearly. As a result, one can

use standard linear systems analysis to intelligently gather data about the gate delays

from the response bits. In fact, it can be shown that this system breaks after only a

small number of challenges [96]. This problem can be partially mitigated by several

approaches proposed by Gassend et al. and described in Section 2.2.4.

Finally, environmental factors play a significant role in both optical and arbiter

PUF architectures. For the optical PUF, calibration of the input location is a concern.

In the case of the arbiter PUF, environmental variations such as temperature, supply

voltage, aging, and even random noise will affect the delay of each edge through

the arbiter PUF. In addition, if the delays are close enough, the latch's setup time

will be violated, potentially resulting in an unpredictable output. As a result, the

response bits may not be stable. The impact of noise is is mitigated in the case

of the arbiter PUF by the differential nature of the construction (cf. Figure 2-1),

though not completely eliminated. In this case, error correcting techniques are used

to increase the stability of the PUF while maintaining its security. Techniques for

accomplishing this will be covered in Section 2.2.5. Although key generation has zero

error tolerance, PUF authentication usually incorporates an allowable error threshold,

thereby decreasing the stability requirement, and often obviating the need for error

correction.
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2.2 Low-Cost Cryptographic Authentication: Strong

PUFs

The strong PUF architectures described above are typically associated with the ap-

plication of low-cost authentication. In this case, a strong PUF will replace the secure

memory and cryptographic hardware on an embedded device and is used to securely

identify the device to a server. Because the PUF does not require secure non-volatile

memory, anti-tamper circuitry, or additional supporting cryptographic acceleration

hardware, a PUF-based solution requires less area, power, and mask layers than a

traditional approach to secure authentication.

2.2.1 Authentication Protocol

As described previously, the strong PUF receives a challenge and generates a response.

However, the requirements of a strong PUF state that an adversary provided with

polynomial challenge-response pairs should not be able to predict the response to a

new challenge.

Although this is a desirable property, it also presents a usage problem. Since

the PUF acts as a "black box," even the authentication server only has access to

previously observed challenge-response pairs and therefore also cannot predict the

response to a new challenge.

Therefore, the protocol for using PUFs is significantly different than most pub-

lic/private key cryptographic systems. Consider a server authenticating a client in

Algorithm 1.

Because the server cannot predict the PUF behavior, it must internally store

challenge-response pairs to be used later. Each challenge-response pair must be used

only once. Therefore, the server must either store enough challenge-response pairs so

that it will not run out, or it must periodically "recharge" the table by establishing

secure communication with an authenticated client and requesting responses to new

challenges. To address the CRP table scalability problem, newer protocols based on
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Algorithm 1 Protocol for authenticating a Public Model PUF.
1: PUF is manufactured.
2: Server obtains access to PUF and generates a table of challenge-response pairs.

These pairs are stored in internal secret storage.
3: PUF is given to client.
4: Client submits a request to the server to authenticate.
5: Server picks a known challenge-response pair and submits the challenge to the

client.
6: Client runs the challenge on the PUF, returns the response to the server.
7: Server checks to see that the response is correct and marks the challenge-response

pair as used.

storage of a compact model for PUF have emerged [107, 51, 104, 89].

Note that each client PUF will have unique challenge-response pairs, and there-

fore can be individually authenticated. In addition, the server must store tables of

challenge-response pairs for each of the clients to be authenticated.

2.2.2 Arbiter PUF Topologies

The initial implementation of silicon PUFs had known security issues due to the

fact that the delays were linearly added to produce the resultant response bit [61].

As a result, they could be learned with relative ease. This issue naturally led to

the introduction of other "nonlinear" effects to make such modelling attacks more

difficult. These efforts included XOR arbiter PUFs, Lightweight Secure PUFs, and

Feedforward arbiter PUFs [158, 93, 96, 61, 105].

In an XOR Arbiter, multiple arbiter PUF outputs are XOR'ed to form a single

response bit. This is shown in Figure 2-2. These structures have shown greater

resilience against machine learning attacks [131, 107]. However, recent studies have

demonstrated the vulnerability of the XOR Arbiters to a combination of machine

learning and side-channel attacks [138, 102, 139]. Developing methods to suppress

the side-channels could help in alleviating this vulnerability.
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Figure 2-2: Four individual arbiter PUF circuits with nonlinearities introduced via

XOR'ing their outputs.

2.2.3 Arbiter PUF Implementation

The arbiter PUF was first implemented and studied by Lim et al. [96]. Devadas

et al. also implemented arbiter PUFs as a part of a RFID IC fabricated in 0.18 pm

technology [52]. In this implementation, a single arbiter PUF is implemented on-

chip. This primitive has an input challenge of 64 bits and a single output bit. To

construct a k-bit response, a linear feedback shift register (LFSR) is used to generate

a pseudorandom sequence based on the input challenge. The PUF is then evaluated

k times using k different bit vectors from this larger pseudorandom sequence. Finally,

to prevent learning attacks on the PUF output bits, an additional scrambling routine

is performed.

In this implementation, area and power consumption represented a major design

constraint. Therefore, the above PUF implementation with only a single arbiter is

used. As a result, the majority of the silicon area is consumed by standard RFID

components (RFID front-end, one-time programmable memory, digital logic). The

PUF and associated LFSR have been implemented in less than 0.02mm 2 using 0.18 pm

fabrication technology. In addition, the PUF only consumes dynamic power during

evaluation, and the power consumption was shown to be small with respect to the

power stored on the RFID chip.

In order to understand the PUF's utility as an identification and authentication

source, Intra-PUF and Inter-PUF variation are defined as follows [64]:

* Intra-PUF Variation: Defined as the number of bits in a PUF response that
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vary when an identical challenge is repeatedly queried on a given PUF device in

a changing environment. This variation is due to this environmental change as

well as statistical noise. As a result, it is commonly represented in the form of a

statistical distribution. Intra-PUF Variation is a measure of the reproducibility

of responses from an individual PUF circuit.

* Inter-PUF Variation: Defined as the number of bits in a PUF response that

vary between different devices for a set of shared challenges. This is due to

differences between the physical ICs and is also commonly represented in the

form of a statistical distribution. The Inter-PUF Variation is a measure of the

uniqueness of an individual PUF circuit.

For the application of secure authentication, Intra-PUF variation should be low

(ideally 0%) so that the PUF can be verified. On the other hand, Inter-PUF variation

should be high (ideally 50% on average) so that two separate PUFs have a maximally

decorrelated responses. This behavior has been observed for arbiter PUFs as shown

in Figure 2-3. Note that in this figure, the two Inter-chip variations are roughly 50%

(128 bits out of 256), and the Intra-chip variations are much smaller (-10%). Clearly,

the implemented PUF has the desired properties.

For key generation applications, error correction must be used to compensate for

the -10% Intra-chip variation. However, for authentication applications, this error

may be forgiven by observing whether the Hamming distance between the recorded

PUF response and the new PUF response (cf. Algorithm 1) is closer to 50% or 10%.

2.2.4 Attacks on Arbiter PUFs

The security of a strong PUF depends on several factors. If any one of these factors

is compromised, the security of the PUF itself is also compromised.

" Difficulty of measurement of PUF internal parameters (only challenge-response

pairs can be measured).

" Difficulty of manufacturing "clones".

36



PUF Response: Average Code Distances
256 bit responses, RFID MUX PUF

.07 @ -25, +25, +85 0 C, respective

.06 -Intra-chip @ -25 0 C

-Inter-chip @ -250 C

.05 -Intra-chip @ +25 0 C

.04 Inter-chip @ +25 0 C

.03 _Intra-chip 
@ +850C

Inter-chip @ +850 C
.02

.01

.00
0 16 32 48 64 80 96 1121281441601761922082242402

Code distance [Bits]

Figure 2-3: Code distance distribution for 256-bit PUF responses.

9 Difficulty of predicting PUF behavior based on past challenge-response pairs.

For arbiter PUFs, an area of continued active research is in ensuring the difficulty

of predicting PUF behavior based on past challenge-response pairs. In the RFID IC

example, this issue is addressed by "scrambling" the output bits of the PUF. In other

words, the output bits of the PUF pass through some digital circuit that obfuscates

the linear behavior of the PUF before being returned as a response. The simple

arbiter PUF implementation without output post-processing is linear and therefore

significantly easier to predict. (Note that this scrambling will increase the noise in

the output bits and therefore has to be done carefully.)

Studies have been performed by Rihrmair et al. [131, 139] and Majzoobi et al.

[106] using machine learning to predict the behavior of PUFs after a certain number of

challenge-response pairs have been observed. In these studies, learning attacks were

perpetrated on simple arbiter PUFs, feedforward arbiter PUFs, arbiter PUFs with

output XOR'ing, "lightweight secure" arbiter PUFs (these use a more complicated

output postprocessing circuit, but are based on principles similar to output XOR'ing).

The linear behavior of simple arbiter PUFs was clearly demonstrated, as a learning

algorithm predicted the behavior of a 64-bit arbiter PUF with 95% accuracy after

observing 640 challenge-response pairs (the model training time on a standard PC
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was 0.01 sec). To predict with 99.9% accuracy, 18,050 challenge-response pairs needed

to be observed (model training time of 0.6 sec). This demonstrates that the behavior

of a simple arbiter PUF can be learned efficiently [131].

In addition, PUFs with 64-bit challenges and 128-bit challenges were tested. It

was found that the number of challenge-response pairs and model learning complexity

scaled as expected with the input challenge size. This proved to be true not just for

simple arbiter PUFs, but also for the nonlinear implementations discussed below.

There are multiple proposals to bolster the arbiter PUF [65] architecture to pre-

vent modeling, such as feedforward Arbiter [95] and XOR arbiter PUF [158]. Machine

learning attacks such as those of [131, 139] and [14] have successfully attacked these

constructions to create software clones.

A newer set of attacks leveraging both machine learning and side-channel informa-

tion has recently emerged [138, 102, 139, 59]. It has been shown that by coordinated

application of timing or power side-channel analysis and adapted machine learning

techniques, very efficient attacks can be performed, i.e., attacks that use linearly

many CRPs and low degree polynomial computation times. The practical viability

of the combined attacks has been demonstrated by machine learning experiments

on numerically simulated CRPs. This work has shown that XOR arbiter PUF and

Lightweight PUFs have to be implemented in such a manner that power side channels

are protected, else PUFs can be easily cloned.

Finally, the work by [14] shows that XOR PUFs can be broken regardless of the

XOR fan-in (the value k in Figure 2-2). The key insight was their use of reliability

instead of PUF output as the parameter for the machine learning fitness function.

The XOR gates add non-linearity to the PUF output bits, which increases difficulty

for machine learning algorithms. However, consider that each PUF Circuit in Figure

2-2 has a "reliability" for a given challenge - a probability of error. This probability

of error adds to the probability of error for the other PUF Circuits to produce the

overall probability of error. This is a linear relationship, so one can solve for the

reliability of PUF Circuit 1 for a given challenge by repeatedly providing the same

challenge for PUF Circuit 1, but varying the challenge for PUF Circuits 2. . .k. In this
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way, [14] shows that one can learn the parameters of each PUF circuit independently,

and increasing k does not increase the security of the PUF.

The attack in [14] does require the PUF to process multiple identical challenges

in order to measure reliability. Therefore, this attack may be thwarted if the PUF

records received challenges and only responds to a challenge once. However, such a

secure, non-volatile storage is by definition incompatible to the stateless nature of the

definition of a PUF.

In addition to the feedforward and XOR arbiter PUF constructions, there are

other constructions using nonlinear circuit elements (e.g., [96], [92], [116]) that have

not yet been broken to the author's knowledge. However, these constructions do not

as yet have clear computational security reductions.

One key consideration in studying the complexity of PUFs is stability (described

as "Intra-PUF variation" in the RFID IC example). This will be discussed further

in Section 2.2.5. However, it should be noted that although output XOR'ing has

an exponential effect on modelling complexity, it also has an exponential effect on

decreasing stability. In doing so, it decreases the effectiveness of a PUF in an actual

authentication environment and simultaneously decreases the accuracy requirement

of an attack model, as the greater intrinsic PUF error must be tolerated by the

authentication protocol.

The task of identifying an approach to exponentially increase model complexity

while only having a polynomial effect decreasing PUF stability is an area of active

research.

2.2.5 Error Correction versus Tolerance

In the RFID IC example, random noise contributes to the PUF stability being roughly

90%, i.e., the Intra-PUF variation is ~10% . In addition, this stability worsens when

the temperature changes.

In perhaps the earliest reference to error correction in silicon PUFs, Gassend

mentioned the use of 2D Hamming codes [62]. Suh et al. suggested the use of Bose-

Chaudhury-Hochquenghen (BCH) codes - more specifically the BCH (255,63,t = 30)
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code [157]. In this case, the PUF generates 255 bits, but the code exposes 192

syndrome bits publicly, so the actual security of the system is at most 63 bits. This

code corrects at most 30 errors out of 255 bits. This corresponds to a PUF with

~88% stability.

In low-cost authentication applications, the host instead gives a certain error tol-

erance or multiple authentication opportunities to a PUF before rejecting the PUF

as invalid. Error tolerance is typically the preferred methodology. Using the arbiter

PUF described with code distances shown in Figure 2-3, false positive/negative iden-

tification probabilities were measured for specific allowed error tolerances. These data

are summarized in Figure 2-4.

PUF Challenge-Response Error Probabilities [ppm]
256 bit responses, RFID MUX PUF

@ -25, +25, +85 0C, respective
- 1.E+06

0 l.E+05

1.E+04

1.E+03 -

4 1.E+02 -False Negative @ -25'C

1.E+01 -False Positive @ -25 0C

1.E+00 -False Negative @ +25*C
o 1 False Positive @ +25 0C
M LE-Ol -1.Ep1False Negative @ +85 0C
j 1.E-02 False Positive @ +850C
U-

1.E-03
0 32 64 96 128 160 192

Detection tolerance [bits]

Figure 2-4: False positives and negatives for strong PUF operation with

tolerance.

a given error

2.3 Cryptographic Key Generation: Physically Ob-

fuscated Keys (POKs)

Due to their limited challenge-response space, POKs are typically used for crypto-

graphic key generation. In this case, a POK will replace a secure non-volatile memory

that would have stored the cryptographic key. Once the key is derived from the POK,
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it is stored in secure volatile memory during the device's operation. This key can then

be used for authentication, encryption, and other cryptographic protocols. Due to

the fact that one or very few keys can be generated by the PUF, the security of this

key during operation is of paramount importance. If the secure key is revealed, any

device can emulate the POK.

2.3.1 Key Generation Protocol

Because POKs like the ones discussed above have effectively fixed "challenge bits",

the key generation protocol is fairly simple. In the case of the SRAM PUF, one simply

powers on the SRAM and observes the memory state. Similarly for the ring oscillator

PUF, one simply pair-wise compares each of the oscillators in order to measure the

correct ordering of oscillation frequency.

In both of these cases, the complexity lies in the limitations of physical imple-

mentations that result in both statistical and systematic noise that must be cor-

rected/mitigated. The actual approach used to address these issues differs for SRAM

and ring oscillator PUFs because the underlying physical implementation is different.

Ultimately, a stable set of unique bits is extracted from the POK. These bits

can then be used in any of a number of cryptographic protocols. Note that POKs

can be used for authentication (similar to strong PUFs) even though they do not

have a large number of challenge-response pairs. By supplementing the POK with

a hardware HMAC/AES implementation, one can achieve authentication capability

at the cost of the additional power and area required by the cryptographic hardware

primitives that embody the HMAC/AES protocol.

2.3.2 SRAM PUF Implementation

As previously mentioned, the SRAM PUF leverages the threshold voltage mismatch

of transistors in a SRAM cell due to manufacturing mismatch. This mismatch results

in a repeatable tendency to settle into a '1' or '0' state when the SRAM cell is

powered on with no writes occurring. Several studies have constructed SRAM PUFs
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and analyzed their properties.

One of the first implementations of such a chip identification system was tested

by Su et al. with RFID applications [156]. In this study, a custom SRAM cell was

constructed to minimize potential systematic mismatch between the two transistors.

Such a skew would result in a given SRAM cell being more likely to favor a '1' than

a '0' or vice versa, even with random process variation. To prevent such systematic

skew, they used analog layout techniques to construct a 'symmetric' and 'common

centroid' layout of the SRAM cell.

The study demonstrated that the SRAM PUF behaved as desired. After fabrica-

tion, an equal number of SRAM cells tended towards '1' and '0' to within experimental

error for both layouts. The study identified that cell positioning within the SRAM,

SRAM positioning on the wafer, and subsequent wafers were all decorrelated with

the SRAM cell's tendency towards '1' or '0'.

A challenge arose with the recognition that roughly 4% of the SRAM cells did

not have enough mismatch to strongly favor '1' or '0'. These cells probabilistically

settled into '1' or '0' at random due to the contributions of thermal and shot noise.

The number of these unstable bits increased at temperature/voltage corners and as

the chip aged.

The study by Holcomb et al. tested the functionality of SRAM PUFs on off-

the-shelf RAM and processor products such as the MSP430 and Intel's WISP RFID

device [74]. In this application, the SRAM cell was a part of another on-chip SRAM

that was actively used for program/data and not custom fabricated in any way to

enhance stability or skew performance.

In this way, an end user can use an existing off-the-shelf component with no

silicon modification and, using software alone, implement a POK for cryptographic

or identification purposes.

Although off-the-shelf SRAM cells are not optimized for usage as a PUF, Holcomb

et al. did observe a bit stability of 5% across temperatures from 00 C-50'C. This

stability is roughly the same as the stability measured by Su et al., indicating that

the custom fabrication did not help significantly in this regard.
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However, the off-the-shelf SRAM cells were observed to have a significant bias

towards the '1' state. This changes the entropy and unique identification analysis. In

this study, 512 bytes of SRAM were used as a fingerprint. Due to the systematic skew

of the SRAM cells, the min-entropy of this block was roughly 200 bits (plus/minus

10 bits depending on temperature). This 512-byte block was then passed through a

universal hash to extract 128 bits of output data.

Finally, because the SRAM is being used as a memory element for the processor,

it is always powered, even if the PUF section of the SRAM is never written during

normal operation. This continual powering of the SRAM in a '1' or '0' state results

in Negative Bias Temperature Instability (NBTI). This is a type of 'burn-in' for deep

submicron MOSFET technology, where the threshold voltage of a transistor increases

over time due to the applied stress conditions of high temperature and a constant

vertical electric field across the gate terminal while the transistor is 'on'.

Therefore, if an SRAM cell is powered on and set to the '0' state for a long time

(~ 10 days), then on subsequent power-on sequences, the cell is more likely to skew

towards the '1' state. This predictable behavior stands in contrast to the behavior

of temperature variations, which can either skew the cell towards '0' or '1' as the

temperature fluctuates.

Attacks on SRAM PUFs

Because the SRAM PUF provides a secure key (as opposed to providing challenge-

response functionality like the strong PUF), it relies on other conventional security

primitives to keep that key protected while the chip is powered. As a result, any

side-channel or other vulnerabilities associated with the cryptographic hardware pose

a threat to the secret key outputted by the SRAM PUF. In addition, since this key

is kept secret, the modelling attacks used against strong PUFs cannot be used, since

no input-output relations of the PUF should ever be revealed.

However, there are other ways identified in the literature to attack a SRAM PUF

more directly. Many of these depend on the level of access that one has to the

SRAM. If one can insert a 'write' command, then one could leverage the NBTI to
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deliberately force individual bits towards '1'. If one could modify the temperature,

one could potentially cause the PUF to fail by running the PUF outside of its design

area. Finally, the ability for a SRAM cell to maintain its state depends on the

supply voltage. If, during the turn-on process, the supply voltage is held for some

time at a low (~ 100mV) voltage, the thermal noise will induce a transition into the

cell's favored state, resulting in higher stability. However, if the voltage turn-on is

fast, then cells become less stable. An attacker with access to the power channel

could potentially control the stability of some of the SRAM PUF bits through this

mechanism [75].

Recently, it has also been identified by Helfmeier et al. that the SRAM power-on

state can be observed via near-infrared imaging of the SRAM during the turn-on

transient. Once the SRAM "fingerprint" has been measured (the PUF response bits

have been stolen), one can use focused ion beam (FIB) techniques to modify a second

IC to have a matching fingerprint as the first by cutting traces and/or demolishing

transistors in the SRAM cell [69].

Finally, one notes that SRAM data is not erased immediately on power down. The

data remains 'stored' in the SRAM cell for a certain short time after the cell is powered

down due to an effect called 'data remanence'. Oren et al. have demonstrated that

this effect can be used to inject faults into the SRAM PUF. In doing so, one may be

able to non-invasively learn the SRAM PUF output bits indirectly [115].

2.3.3 Ring Oscillator PUF Implementation

Yu and Devadas designed a delay-based POK based on the ring oscillator architec-

ture, and proposed the first PUF key generation architecture that does not require

traditional error correction [174, 173, 176]. The proposed Index-Based Syndrome

Coding method is a departure from prior error correction schemes based on Code-

offset Syndrome [54], where the syndrome format enables soft decision functionality

without the complexities associated with an explicit traditional soft decision error

correction decoder, which in general has a higher complexity than an equivalent hard

decision error correction decoder.
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In this architecture, several oscillator PUF banks are instantiated. with each os-

cillator bank comprising of 2k ring oscillators. A k-bit challenge is applied to each

bank, to (leteriniie which oscillators correspond to the top delays. and which oscil-

lators correspond to the bottom delays. The top and bottom rows are sumned to

produce r and y respectively. These values are used to produce a single bit PUF

output and associated "soft-decision" information corresponding to a PUF challenge.

Specifically. the output bit is the sign of x - y. The 'confidence (discussed more in

Chapters 3 and 4) is derived from the magnitude of x - y.

Figure 3-1 shows a simplified diagram for illustrative purposes. More complex

"recombination" finctions using XOIts or amplitude modulation based on additional

challenge bits were used in actual implement at ion.
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Figure 2-5: A k-sum ring-oscillator PUF. Ring oscillators that are closer in frequency

do not affect the output bit due to the summation process.

Each of the oscillators is configured with -challenge bits'. For the purpose of

cryptographic key generation, these bits are fixed (see the 'Fixed Challenge' in Figure

3-1) in order to reproduce the saiie key each tinme.

Yu et al. designed multiple circuit topologies to implement this technique using a

0.13 pn CIOS process [173]. They found that. as expected, these devices produced

output bits that passed all NIST standard randomness tests. demonstrated close to

ideal decorrelation between different PUF devices, had a worst-case bit bias less than

0.5, and a raw intra-device variation of -10'.
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Attacks on Ring Oscillator PUFs

Like the SRAM PUF, the ring oscillator PUF relies on downstream cryptographic

hardware/software to protect the security of the key that is generated. However,

there are ways of potentially modifying the ring oscillator PUF's behavior. Such an

attack does not reveal the output key, but may be able to influence the device to

either fail to regenerate a key (denial of service), or even manipulate secret key bits

if such an attack were to occur during provisioning.

For example, it was shown in 2009 that driving a sinusoidal signal on the ground

plane of a ring oscillator can cause it to 'lock' to that signal [109]. This study demon-

strated such an attack compromising a true random number generator (TRNG). Al-

though an attack on a PUF would have to take into account its differential nature,

the same principle can be used. By locking the frequency, an attacker can drive the

frequency of a given PUF to a desired value without invasive measures.

In addition, it was shown in 2011, that the electromagnetic radiation from the

ring oscillator PUF could also be used to steal the output bits [110]. This attack can

be defeated by running several oscillators in parallel, which has been done in many

studies on the ring oscillator PUF, some of which predate the identification of the

attack [174, 176, 173].

2.4 Shortcomings of Error Correction Techniques

Because POKs are noisy, there must be an error correction phase to enable the pro-

duction of a stable, secret key. Silicon POK key generation was first introduced using

Hamming codes in [62] and more details were presented in [157]. The security argu-

ment is information-theoretic. Specifically, if one requires a k-bit secret from n bits

generated by the POK, then at most n - k bits could be exposed. The number of

correctable errors is quite limited in this approach.
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2.4.1 Fuzzy Extractors for Silicon POKs

Fuzzy extractors [54] convert noisy data (e.g., from a silicon POK) into reproducible

uniform random strings, which can serve as secret keys in cryptographic primitives

to encrypt and authenticate user data.

Fuzzy extractors typically have two phases: a secure sketch (error correction)

phase and a privacy amplification (hashing) phase. The secure sketch phase focuses

on the recovery of noisy data w. It first outputs a sketch h (also called "helper data")

for w. Then, given h and a future measurement w' close to w, it recovers w. The

sketch is secure if it does not reveal much about w: w retains much of its entropy even

if h is known. This means that h can be stored in public without compromising the

privacy of w. However, in typical POK applications, w does not have full entropy, so

the privacy amplification phase must compress w prior to obtaining a cryptographic

key. In the fuzzy extractor framework, it is possible to extract near-full-entropy keys

from a POK source while maintaining information-theoretic security.

The information-theoretic security, however, comes at a high cost in terms of

the raw entropy required and the maximum tolerable error rate. The secure sketch

phase is well known to lose significant entropy from the helper data h, especially

as measurement noise increases. Even in cases where entropy remains after error

correction (e.g., [100]), there is not enough entropy remaining to accumulate the 128-

bits of entropy in an information-theoretic manner during the privacy amplification

phase. According to [87], the entropy loss associated with the use of the information-

theoretic entropy accumulator alone is > 128 bits due to the leftover hash lemma.

Works on fuzzy extractors for silicon POKs can be classified based on the addi-

tional assumptions they require:

Perfectly i.i.d. Entropy Source. There are several works that created helper data

that is information-theoretically secure. [174] uses POK error correction helper data

called Index-Based Syndrome (IBS), as an alternative to Dodis' code-offset helper

data. IBS is information-theoretically secure, under the assumption that POK output

bits are independent and identically distributed (i.i.d.). Given this i.i.d. assumption,
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IBS can expose more helper data bits than a standard code-offset fuzzy extractor

construction. Efficiency improvements to IBS that maintained information-theoretic

security are described in [70] and [71].

Similarly, Paral and Devadas have proposed the use of a "Pattern Matching"

technique to correct for errors in candidate strong PUFs for use as a key generation

mechanism that also requires an i.i.d. entropy source [123].

A soft-decision POK error correction decoder based on code-offset was described

in [98, 99] where the confidence information part of the helper data was proven to

be information-theoretically secure under an i.i.d. assumption (the security of the

remaining redundancy part associated with the code-offset was not as rigorously ad-

dressed in either paper).

Note that while these works created practical implementations based on a provably

secure information-theoretic foundation, these works did not explicitly address the full

key generation process (secure sketch + privacy amplification); they addressed only

the error correction (secure sketch) phase. Further, they need the strong assumption

on POK output bits being i.i.d., which allows them to publicly reveal the confidence

information. Indeed, POKs are not necessarily i.i.d., and attacks have therefore been

performed, e.g., [15]. This approach achieves the same advantage of using confidence

information, but it does not reveal this information. Therefore, this proposal remains

secure for non-i.i.d. entropy sources (cf. Definition 3.4.1).

Computational Security Based on Machine Learning Heuristics. There were

several works [123] [176] [175] that created helper data that is heuristically secure

based on results of state-of-the-art machine learning attacks on PUFs [132]. These

designs used a candidate strong PUF based on XORs [158] but leak only a limited

number of PUF response bits as helper data to generate a key. While several years of

attacks by several groups around the world have established the heuristic security of

leaking a limited number of bits from a candidate strong PUF [48, 78, 131, 132, 162,

14], there is not yet a proof to reduce this difficulty into a computational hardness

assumption accepted by the cryptography community. These works are also limited

in scope in that they do not explicitly address the full key generation processing, but
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address only the error correction phase.

Secure Sketch + Privacy Amplification. To the best of the author's knowledge,

there is one paper that attempted to implement and address the security associated

with both stages of a fuzzy extractor [100]. The paper accounted for the information-

theoretic loss of the error correction helper data, using code-offset syndrome [54], but

did not have sufficient entropy left over from the secure sketch phase to implement

an information-theoretically secure privacy amplification stage and instead opted for

a more efficient implementation using a lightweight hash called SPONGENT [21] as an

entropy accumulator.

Under the assumption that confidence values are independent of the measure-

ment values, information-theoretically secure extractors can also produce a stateless

construction as is presented in Section 4.1. However, in this construction, this as-

sumption can be relaxed through a computational hardness assumption of a variant

LPN problem.

2.4.2 Computational Fuzzy Extractors

Given the discussion above on information-theoretically secure fuzzy extractors, a

more efficient key extraction framework that can be used repeatedly and which is

based on an established computational hardness assumption is compelling.

Fuller et al. [58] give a computational fuzzy extractor based on LWE. In Fuller et

al.'s scheme, the output entropy improves; the error correction capacity, however, does

not. Indeed, Fuller et al. show in their model that secure sketches are subject to the

same error correction bounds as information-theoretic extractors. Their construction

therefore requires exponential time to correct 8(m) errors, where m is the number of

bits output by the POK.

The construction presented in Chapter 3 uses Fuller et al.'s LWE construction

translated to LPN in the proposed fuzzy extractor. However, this work changes the

fuzzy extractor model and leverages the confidence information (common in many

POKs) to correct e(m) errors in polynomial time. Fuller et al. expect that it is
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unlikely to overcome an exponential complexity in correcting a linear number of errors,

since there is no place to securely put a trapdoor in a fuzzy extractor. This work

shows that certain kinds of POK sources have dynamically regenerated confidence

information that does not require persistent storage memory and can in fact serve as

a trapdoor (cf. Sections 3.2 and 3.3). It is also shown that security can be maintained

even if the bits generated by the POK are correlated (cf. Definition 3.4.1).

The stateless PUF construction in Section 4.1 requires a restricted version of LPN

(cf. Section 3.1.2) with a hardcoded A matrix. This restriction is important so the

construction can repeatedly generate secret keys (s's) and expose the LPN public

keys (b's) for the same noise (e), while maintaining security based on hardness of

LPN and a slight variant of LPN. (This variant LPN assumption is only required for

the stateless construction and not the fuzzy extractor scheme.)

2.4.3 Helper Data Manipulation

The issue of helper data manipulation has been addressed with robust fuzzy extrac-

tors [26, 53]. Their use of a helper data hash do not address recent helper data

manipulation attacks in [82, 49], including ones that take advantage of the linear,

bitwise-XOR nature of code-offset helper data as applied to linear error correction

codewords.

In the stateless PUF construction in Section 4.1, the helper data comprises (part

of) the challenge. Since in LPN-based fuzzy extractor the key is uncorrelated com-

putationally to the helper information, the scheme can authenticate the helper infor-

mation in a computationally secure manner via a keyed-hash message authentication

code such as HMAC [91]. This results in schemes that are secure in a computational

sense against active adversaries that modify the helper data in the fuzzy extractor or

stateless PUF construction.
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3 - LPN Fuzzy Extractor

In this chapter, I introduce a fuzzy extractor construction that leverages LPN and the

notion of "confidence" information to efficiently correct errors in bits obtained from

silicon POKs. Before describing the construction, I describe the notion of "confidence

information", and also introduce the "Learning Parity with Noise" (LPN) problem.

3.1 Background

3.1.1 Confidence Information for Ring Oscillator POK

Following the formalization provided in [10], first define a Physically Obfuscated Key

(POK) as a physical function wherein there is only one challenge. A POK returns a

single m-bit response, denoted as e = {ei, e2 , - - , em} in this work.

If the POK response is completely stable across measurements, then constructing

a stable secret key or strong PUF would be trivial: just use the POK output as the

secret key. Unfortunately, the POK response in practice will be slightly different each

time due to internal noise, i.e.,

e = econst enoise

where econst is the same for each call to the POK, and enoise is sampled at random

from some distribution over {0, 1}m. Error-correcting the POK response to tolerate

the noise is a major challenge because of tension between several requirements:

1. The POK bits must remain secret (any helper information to error correction

must not reveal information about the POK bits).
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2. The error-corrected output must be secret and random/pseudorandom and have

no noise.

3. One desires to correct as many erroneous POK bits as possible with high prob-

ability of success.

The case study will be based on the Ring Oscillator (RO) POK, which generates

bits by comparing the frequencies of two ring oscillators that are identical by design,

yet whose frequencies vary due to manufacturing variation. Each POK output bit is

simply determined by which oscillator is faster. It was first observed in [158] that if

the difference in counts between the two ring oscillators is large, then one can have

higher confidence that environmental changes are unlikely to cause the output bit to

flip erroneously when measured at a later time. This difference will be the confidence

information (cf. Figure 3-1). While there have been improvements in ring oscillator

structures (e.g., [60]), the case study uses the basic structure of Figure 3-1.

3.1.2 Learning Parity with Noise

The Learning Parity with Noise (LPN) problem is a famous open problem that is

widely conjectured to be hard, as the best known algorithm is slightly subexponential

(2 Q(n/logn)) [19, 11]. As a result, this problem has since been used as the foundation

of several cryptographic primitives [77, 9, 8, 18].

The problem is posed as follows. Let s E {0, 1}" be chosen uniformly at random.

Let A E {0, 1}xn be uniformly random, m > n. Let e E {0, 1}m be chosen from a

distribution x. Finally, define b E {0, 1}m (where - is a dot product) as:

b1 =A1 -s+ei mod2

b2 =A 2 s + e 2 mod 2

bm=Am - s+em mod2

The problem is to learn s given only the values of b and A. When each ei is distributed

52



fl, l Counter C,

Subtract 0? el

... Counter

.. -Counter C2

_ 7: Subtract > 0? e 2

-- S.EN Counter

'm Ring Oscillator Pairs

Figure 3-1: A basic Ring Oscillator POK with tn, differential pairs. Note that in

addition to the output bits ej, confidence values ci may be made available to the

surrounding logic. These confidence values are in the form of the actual differential

count between the two ring oscillators, while the POK output bits ej correspond to

whether the differential count is greater/less than 0.

53



according to probability distribution x.

Conjecture 3.1.1 (LPN Hardness [77]). There is no algorithm that solves an LPN

problem instance (A, b, x), where s and A are uniformly random, in time poly(n, 1/(}-

T)) with non-negligible probability in n, where x is an Bernoulli distribution with bias

T.

There is significant evidence to justify the LPN hardness conjecture [126]. The

best known algorithms run in 2 0("/lon) [19, 17, 94, 68].

The LPN problem can be thought of as a special case of the Learning With

Errors (LWE) problems discussed by Regev [126], by allowing the equations to instead

be modulo a prime number q (as opposed to 2). However, Regev's reduction to

the shortest independent vector problem (SIVP) does not apply to the LPN case.

Therefore, the difficulty of solving LPN is a separate conjecture from the difficulty of

solving LWE. This thesis will present a fuzzy extractor and a stateless PUF based on

LPN, but the constructions can be extended to the LWE case.

3.2 Fuzzy Extractor Using LPN

This section considers how to reliably reconstruct a key s from a noisy POK. Start

with the fuzzy extractor scheme described in [58], which leverages LWE to extract a

pseudorandom string from fuzzy data. First, I translate that work from LWE to LPN

discussed in Section 3.1.2.

Construction 3.2.1. Let k be a security parameter, and let n = poly(k), and m > n.

Define (A, b) <- Gen(lk), and s <- Rep(A, b) as follows:

This construction is exactly analogous to Construction 4.1 of Fuller et al. [58],

translated to LPN from LWE (all equations are mod 2 instead of mod q). There-

fore, I state the following theorem without proof, as it is analogous to Theorem 4.7

of [58] except under the LPN hardness conjecture.

Theorem 3.2.2. Let k be a security parameter. If Conjecture 3.1.1 is true, then there

is a setting of n = poly(k) for which there exists e = neg(k) such that the following
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1: procedure (A, b) +- Gen(1)
2: Input e E {0, 1} m from the POK (modeled by some distribution X over

{o, 1}M).
3: Sample A E {0, 1}nxn uniformly at random.

4: Sample s E {0, 1}" uniformly at random.
5: Compute b = A-s+e.
6: return (A, b).
7: end procedure

1: procedure s <- Rep(A, b)
2: Input e' E {0, 1} m from the POK.
3: Let s = Decodet(A, b, e').
4: return s.
5: end procedure

is true: For any randomized circuit size s = poly(k) and t = O(log n) bit errors,

Construction 3.2.1 is a ({0, 1}m, x, {O, { I}-o(n), t) fuzzy extractor that is (f, s)-hard,

with failure rate 6 = e-O(k) (cf. Definition 2.5 of [58]).

In the above construction, Decode keeps picking random sets of n equations bi =

Ais + ej and solves for s. If t = O(log n), Decode succeeds with overwhelming

probability after a polynomial number of trials. This thesis will now describe a new

extractor algorithm based on LPN that can correct t = e(m) errors in polynomial

time. Before presenting the extractor formally, I present an intuitive description.

3.2.1 Intuitive Description

Recall the description of the LPN problem in Section 3.1.2, which is also depicted in

Figure 3-2. The above construction uses POK output as the ej values. Therefore,

an adversary learns the equations with probability of error being Pr(e = 1) = -,

where r relates to the entropy of the POK. Having access to the POK allows one to

regenerate e'j, where Pr(e'i = 1) = r and Pr(e'i = ej) = r' < r. The regeneration is

imperfect due to intrinsic noise of the POK as well as environmental changes. The

LPN problem remains hard even for small r' implying that key recovery will run in

exponential time for E(m) number of errors.

A critical enabling property of LPN/LWE is that if one can identify any set of
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Figure 3-2: Overview of LP'N key extraction algorithm. The e'i values are regenerated

and the c', values with high absolute value identify the e'; with low probability of

error (since c'1 values don't change dramatically between measurements, and e', =

Sign(c',)). Gaussian elimination is then used on these selected equations to extract

the secret key.

a bits that are correct (e', = e,), then one can use Gaussian elimination to solve for

s. Therefore. the key intuition is that access to confidence information during the

rcgenrcihofn of the POK bits helps the extractor decidel which bits are imore likely to

be stable (the set of stable hits may be different from measurement to measurement).

Then. Gaussian elimination is performed on the set of equations corresponding to

these stable bits.

Of course. one must architect the system such that there are enough stable POK

bits during each measurement. To this end. the LPN/LWE problem allows arbitrary

'rCdu'n'don cy in the nunmber of equations supplied. Therefore, enough equatiolis Call

be supplied such that with high probability (see Section 3.3) the recovery succeeds.

Initially, this may souMd sinmilar to using the 'mask" data, in some POK imuplemnen-

tations. However. this approach is fundamentally different and has superior security

properties. as the POK itself acts as a hidden trapdoor to a hard problem. The con-

fidence information is discardced after use andl never exposed. The security proof for

this new construction will therefore be identical to that of Construction 3.2.1. since

the adversary receives identical infornation.
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3.2.2 Detailed Construction

In the following description, I will refer to the POK bits as e = {ei, e2 , . . e}, (ei E

{0, 1}) and their noisy counterparts (measured during response verification) as e' =

{e'1 , e' 2, .. - e'm}, (once again, e'i E {0, 1}). Moreover, the confidence information

associated with these noisy measurements will be denoted as c' = {c'1, c'2 .. .C'm

where c'i E Z (as shown in Figure 3-2).

The algorithms associated with the key extraction are presented in Algorithm 2.

Typically, a fuzzy extractor, information-theoretic or computational, has the functions

Gen and Rep, where Gen produces the public helper information, and Rep takes the

noisy POK bits and public helper information and returns the error-corrected key.

This work expands this construction to include four functions in the extraction process

as shown in Algorithm 2:

Before looking into the effects of errors on Algorithm 2, there are several notes to

be made.

First, the Fab algorithm can be viewed as system design steps that choose param-

eters for the desired security and reliability. Project and Recovery together correspond

to Rep in a fuzzy extractor.

Second, if the LPN problem is hard, then an adversary in possession of (A, b)

cannot compute s as shown in Theorem 3.2.2; the adversary obtains no new informa-

tion. Furthermore, due to the simultaneous hardcore bits of s in the LPN problem, s

is pseudorandom [7].

Third, the matrix A can be made a public global system parameter as opposed

to per-device output to reduce helper data size; this leaves b as the only per-device

helper data. This will be the same global A in the stateless PUF construction of

Section 4.1, though there exists a much more fundamental security reason to make

A global there.

Lastly, the confidence information c'i acts as a trapdoor for identifying "stable"

bits in key recovery. Therefore, the key recovery algorithm is faced with a much easier

problem and can finish in polynomial time. This will be the focus of the next section.
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Algorithm 2 Description of the LPN fuzzy extractor algorithm.

1: procedure Fab(lk,6,,q) // Represents the fabrication

step. It takes the security parameter k, the desired probability
of recovery failure J, a q term that characterizes correlation

in the POK bits (defined in Definition 3.4.1), and performs the

following:
2: Select the size of the secret vector n for the desired security level k based on

r1 (details in Section 4.2).
3: Compute m such that with probability greater than 1 - cl, at least m' = 0(n)

of the m POK bits are "stable" over relevant noise/environmental parameters.

Define "stable" to be Pr(e'i $ e%) < f2. The choice of m' = 8(n), values of El, 62

along with other details will be presented in Section 3.3.
4: Manufacture POKs that each produce m bits internally.

5: end procedure
6:

7: procedure (A,b) <- Gen(n) // Gen takes the size of the secret vector

n (calculated in Fab) and returns helper data b:
8: Measure the m POK bits as e = {ei , e .... em}.
9: Generate a uniformly random secret vector s E {0, 1 .

10: Compute b = A-s+e.

11: Discard s and e.

12: Return b.

13: end procedure
14:

15: procedure S <- Project(c') // Represents the algorithm that determines

the ''stable'' POK bits'' to be used in Recovery.

16: Use measured confidence information c'i to find m' = 6(n) stable POK bits.

17: Let S be the set of these stable bits. Return S.
18: end procedure
19:

20: procedure s +- Recovery(e', S) // Represents the augmented

key recovery algorithm. In addition to the noisy POK measurement

e', this function also takes S, the set of stable bits in e'.

21: Randomly select n out of the m' stable bits.
22: Use Gaussian elimination to solve for s on the n selected bits.

23: Check if bi = Ai -s + e'i on the remaining m - n equations. An error rate of

50% implies that the derived s is incorrect. A significant lower error rate (e.g.,
25%) indicates s is correct.

24: If s is incorrect, go back to step 1); else output s.

25: end procedure
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3.3 Noise-Avoiding Trapdoors

In Section 3.2, Project leverages confidence information that a bit is regenerated

correctly. This section will explore the asymptotic noise tolerance and efficiency of the

system, and the required properties of the POKs to provide confidence information.

ci are random variables representing the confidence information of the i'th POK

bit at the time of initial challenge-response generation. Next, c'i are random variables

representing the confidence information of the i'th POK bit at some point in time

later. The confidence data are extracted upon measurement of a POK bit, and are

never persistently stored.

Define the corresponding POK bit to be a random variable ei = Sign(ci), and

e'i = Sign(c'i). Crucially, if the confidence is high for a particular bit, Pr(e'i = ei) ~~ 1.

To provide concrete analysis, consider the probability distribution of the ci and c'i

random variables, and assume they follow the same zero-mean Gaussian with variance

INTER, shown in Figure 3-3. Note that this directly implies that Pr(ei = 1) = r = 1/2

for the LPN problem. In actual physical systems, there will be a bias towards 1 or

0, but it can be seen that assuming a 0.5 bias represents a "worst-case" from the

standpoint of error correction. (Note that I will use a different worst-case bias for

other purposes, e.g., to determine n given the security parameter in Section 4.2.)

Now, given that ci and c'i represent the random variables for measuring the same

bit, the conditional distribution Pr(cilc'i = c) is much narrower (where c is the actual

measured value of c'i at regeneration). This distribution is modeled to be a Gaussian

distribution with mean c and variance JINTRA, also shown in Figure 3-3.

Also note that ci and c'i represent the same POK bit measured at different

times, so they have the same distribution (with no prior knowledge). Therefore,

Vc, Pr(cilc'i = c) = Pr(c'ilci = c). In other words, one can use the confidence infor-

mation collected during the fabrication step to reason about the probability of error

at regeneration, or vice-versa.

Now define the probability of error given confidence information. Since ei =

Sign(ci), the error probability given a measurement of the confidence information is
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Figure 3-3: Distribution of confidence information for different POK bits when mea-

sured repeatedly over time/environmental parameters. The magenta curve corre-

sponds to the distribution of confidence information across different devices. The

blue curve corresponds to the distribution of measured confidence information from

the same device in different conditions. The probability of error given a confidence

measurement c as the integral of the shaded region.
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the integral of the shaded region in Figure 3-3, in particular, the CDF up to 0:

Pr(e'i 5 eilc'i = c) = 1 1 + Erf ( r c ))(3.1)
2 ( v2-INT RA//

3.3.1 Fabrication/Provisioning

Fab must compute m such that with probability greater than 1 - 61, at least m' of the

m bits will be stable. Recall a random bit ei is defined to be stable if Pr(e'i $ ei) < 62

over relevant environmental parameters.

To do this, recognize that requiring Pr(e'i f eilc'i = c) < C2 sets a threshold CT

on Icl in Equation 3.1. If for a particular bit Icl > CT, then the bit is stable. Plug

these requirements into Equation 3.1 and solve for CT (define Erf- 1 as the inverse of

Erf):

CT =V'2INTRAErf-1(1 - 262) (3.2)

Therefore, the probability that a given bit is stable (has Icl > CT) can be computed

by integrating the PDF of Pr(c'i), or equivalently Pr(ci):

PsT = Pr(ic i l > CT)> 1 - Erf (cT(V'INTER)

The inequality is because the probability of a bit being stable is smallest when the

bit bias is 0.5 (the Gaussian is centered at 0). One can see that as the center of the

Gaussian shifts, more probability density falls in the region of Ic i > CT. Therefore,

the probability of a stable bit can only be higher than the calculation here expects.

Plugging in CT from Equation 3.2 gives:

PsT > 1 - Erf (J INTRA Erf 1 (1 - 262) (3.3)
( OINTER

The final step is to compute m such that at least m' POK bits will be stable with

probability 1 - 61. This is a binomial distribution and is subject to a Chernoff bound.
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Define X as the random variable for the number of stable bits observed.

Pr(X < m') exp ( ( - MPS T 6

2 MPsT

Rearranging,

M > m' - log(el) + V/log(c 1) (log(6i) - 2m')) (3.4)

Since PST is a function of 62, given n', E, and 62, one can compute m such that at

least m' of the POK bits are stable with probability 1 - 61, as is required.

3.3.2 Projection/Extraction and Showing the "Trapdoor"

The extension of the above analysis to the Project algorithm is comparatively simple.

Project simply selects m' = 8(n) bits that have measured confidence c'i = c where

IcI > CT. Because of the Fab algorithm, one can be confident that m' bits are stable

with overwhelming probability.

The stable bits above only guarantee Pr(e'i 4 eilc'i = c) < 62, but "truly stable"

bits (bits without error) are required perform Gaussian elimination. Define t' as the

number of bits that are not truly stable. If 62 = E(1/n), then E(t') = E(1), and a

Chernoff bound shows that:

Pr (t' > o log n) < e-eo2,

So t' = o(log n) with overwhelming probability.

Recovery randomly selects n out of the m' bits to perform Gaussian elimination.

If the n selected are all "truly stable," Gaussian elimination on them will yield the
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correct s and Recovery succeeds. The above probability is given by

(n )> 1 l -n exp - t
(M' M' - n m' - n

1

poly(n)

Therefore, after poly(n) number of iterations, Recovery finds the correct s with over-

whelming probability. The overall failure probability-accounting for all types of fail-

ures (have less than m' stable bits, t' = w(log n), or fail to select n truly stable bits in

all iterations)-is at most , + (1 - ci)negl(n). Set el = E(2--) to get overall negligible

failure probability.

Without the confidence trapdoor, the LPN hardness states exactly that it is infea-

sible to compute s in polynomial time with non-negligible success probability. There-

fore, while an adversary requires exponential time to calculate s, the owner of the

fuzzy extractor requires only polynomial time. This is the definition of a trapdoor.

3.3.3 Setting m

Set c, = E(2-"), C2 = E(1/n) and m' = O(n). To compute m from Equation 3.3 and

3.4, the ratio UINTRA/UINTER must be characterized as it determines PST-

Define , = INTRA/OINTER. Consider a worst-case: a, = 1. In this case, Equation

3.3 reduces to PST = 2E2. Plug them into Equation 3.4, and one obtains:

m = 1 (m'+ n + Vfn(n -+2m')) = E (n2 )

In reality, the ratio , < 1, so the hidden constant in 0(n2 ) is small, as will be seen

in Section 3.5.
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3.3.4 Improving on the Trapdoor

The above asymptotic result will be improved if one assumes a, = o(1). For example,

pick o, such that PsT is asymptotically constant. 1

To accomplish this, recognize that Erf 1 (1 - 262) - log(E2) as 62 -+ 0 [39].

Therefore, if a, c/ /- log(c2) for some constant c, then PsT ;> 1 - Erf(c) for all n,

and therefore m = 8(n).

Note that the bound of a, c//- log(62) is very close to constant. For example,

set c = 1 and C2 = 1/n. For n = 128, 256, I find o, < 0.45, 0.42 respectively.

Finally, consider the effect of a, < c/ - log(E2) on the number of correctable

errors of the fuzzy extractor. Integration of the conditional probability distribution

in Equation 3.1 (cf. Figure 3-3) results in the associated marginal distribution (the

error probability):
1 1

Pr(e' # ej) = tan- 1 (1/Ur)
2 7r

A constant a, clearly implies 6(m) errors.

For Ur = o(1), Pr(e' = ej) = E(ur) as Ur -+ 0. This implies that with m = 8(n)

one can no longer correct e(m) errors asymptotically; instead, the maximum number

of correctable errors is O(mor). For practical key sizes the impact on error correction

is minimal.

3.4 LPN Fuzzy Extractor Security Analysis and

Assumptions

The proof of security for an LPN fuzzy extractor using confidence information is

identical to Theorem 3.2.2. This is because the additional confidence information

(which may or may not be correlated with the actual value of the POK bit) described

in Section 3.3 that is used to help extract the key is never revealed.

'Note that one can make C2 = E(log(n)/n) and still brute-force correct in polynomial time. This

does not impact the asymptotic analysis later in this section, so I ignore it.
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3.4.1 Assumptions on POK Outputs

The POK outputs are used as the noise term in the LPN problem, and the con-

struction is secure if the POK outputs are i.i.d. I now provide a significantly relaxed

definition of POK source entropy under which the fuzzy extractor construction re-

mains secure. In particular, the following definition describes the class of sources that

are secure with this construction.

Definition 3.4.1. Define a set of L different m-bit entropy sources whose probability

distribution may be constructed in the following way:

1. Begin with a set X of m x L bits that are i.i.d. with Pr(Xi = 1) = 71, 1 > n > 0.

2. Select a set of affine linear transformations F = {F0, F1,.. . , Fk4 (where F(X) =

M -X +N for some mL x mL matrix M, and mL-dimensional vector N). Select

a k-bit string f according to an arbitrary2 distribution over {0, I}*.

3. Return F k(Fk1(... Ff1(Ff(X)) - )), where F = F and F2 is the identity

transformation.

This distribution is clearly much more general than an i.i.d. distribution, as it

allows for certain bits from the same/different entropy sources to be correlated. For

example, consider the i'th bit of LPN problem A, and the j'th bit of LPN problem

B, this distribution can support a non-zero correlation coefficient between these bits,

namely, Corr(eA,i, eB,j). However, it is tighter than min-entropy, as min-entropy al-

lows for individual bits to be "stuck" at one or zero. In this distribution, bits cannot

be perfectly correlated (e.g., Corr(eA,4, eBj) = 1). q in effect sets the "maximum

correlation", and rj (as well as 1 - q) must not be 0 or negligible in the security

parameter.

Note also that knowledge of which bits are correlated is public (it is assumed that

the adversary knows the transformations that are applied). Furthermore, note that

the set of bits X is the set of bits across different sources. For this discussion, each

source has m bits. If there are L different sources, then X is the set of all L x m

bits. As a result, correlations between bits on different sources is allowable in the

2that can be sampled in polynomial time

65



definition. Under this assumption, Lemma 3.4.2 proves the security of the system.

Lemma 3.4.2. If the entropy sources for a collection of LPN fuzzy extractors have

a joint distribution that can be described by Definition 3.4.1 for some 'q, then an

algorithm that can extract s from any of the fuzzy extractors in polynomial time with

non-negligible advantage can be used to solve the traditional LPN problem with bias

ii in polynomial time with non-negligible advantage.

Lemma 3.4.2 can be proved by recognizing that a set of LPN problems with i.i.d.

bits for their ei values can be converted into a collection of LPN problems with bits

described by Definition 3.4.1 by probabilistically applying the identified sequence of

linear transformations F to their public keys (A, b). The proof is given:

Proof. Consider a collection of L different m-bit entropy sources. Let X be the set

of all m x L bits, and let the joint distribution of X be described by Definition

3.4.1. Specifically, Definition 3.4.1 takes several parameters. Let the initial bias

be 7. Let F = {Fo, F1 ,..., Fk, ... } be the set of affine transformations. Let P =

{Po, P1 ,..., Pk,...} be the set of random bits that determines which subset of F

are applied. Let P have some joint distribution. The definition states that one can

sample from this distribution in polynomial time.

Now, consider the set of L corresponding LPN problems (each using a distinct

set of m bits from X as its ei values). Let adversary A take as argument the public

parameters of this set of LPN problems: (Ai, bi), for i from 1 to m (there are m

equations in a single LPN problem), and j from 1 to L (the set of L LPN problems).

Assume that there exist parameters q, F, and a distribution over P such that A

calculates at least one of the secret keys of the set of LPN problems with non-negligible

probability.

Using A, construct algorithm B that takes as argument the public parameters of

L different LPN problems whose ei bits are i.i.d. with bias q. B will return the secret

vector of at least one of the LPN problems with non-negligible probability. Note that

B is equivalent to breaking the LPN problem, as each LPN problem is independent.
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(b 1 =A-s1 +e1

Problem1: .

bl =A'-sl+e'

b =A2  s 2 +e2u1  1 1
b 2 =Al 2 S2 +e 2 (3.5)

Problem 2: 2 2  2

L Problems

First, consider a single LPN problem where A = {A 1, A2 ,... , Am}, b = {bi, b 2 , ... , bm},

e = {ei, e2 , ... , em}, and bi = Ai -s+e . The bits ej have some distribution. The key

recognition is that the act of applying an affine transformation to the set of bits e is

equivalent to applying the same transformation to A and b. If one wants to transform

the distribution by applying F(e) = M - e + N (M is an m x m dimensional matrix

and N is an m-dimensional vector), then one can derive a different LPN problem:

F(b)i =F(A -s + e)i

(M -b + N) =(M - A), - s + F(e)i

By setting b' = M - b + N and A' = M - A, a new LPN problem is constructed:

b' = A' - s + e'j, where e'i = F(e)j. By modifying only the public parameters, an

affine transformation is performed on the distribution of ej.

This may be generalized to multiple LPN problems by recognizing that the above

technique can be applied to the set of equations that comprise multiple LPN problems

by simply concatenating the vectors, resulting in Equation 3.5.

Now, recognize (where I is concatenation) that to transform a set of problems with

elle2 ... eL into a set of problems with F(elle 21 ... eL), one can simply concatenate

the aforementioned observation (note that M is now an mL x mL sized matrix, and
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N is a vector of dimension mL):

b' lb'12l ... b'tL =M - (bilb 21 - - -bL) + N

A'11A'2 1 ... A/L =M - (A1A2 1 ... AL)

I now return to the discussion of algorithm B. The algorithm B is the probabilistic

application of the above fact multiple times. The-steps of B are as follows:

1. Sample pi from the distribution of each Pi.

2. Set bToT = b1lb2 1 ... bL.

3. Set ATOT= A 11A 21 ... AL.

4. For jfrom 0 to k, define F(x) = MI -x+N,. If pj = 1, set bToT = Mj-bTOT+N,

and set ATOT = M - ATOT. Otherwise, do nothing.

5. Call A using the newly created public parameters for the set of LPN problems.

Return the secret vector that A computes.

The final value of the public parameters corresponds to a set of LPN problems where

the statistics of ej are equal to those that can be solved by A. Moreover, the set of

secret vectors has not changed, and this problem was obtained by modifying bits of

the public parameters only. Therefore, if A exists, it will recover at least one s with

non-negligible advantage. Then, B can be used to break an i.i.d. LPN problem with

bias r/. This is a contradiction if LPN is hard, so A cannot exist. EZ

Note that the key step in the above algorithm is that B applies the affine transfor-

mation to the public parameters of the set of LPN problems. This operation produces

a new set of LPN problems that are statistically identical to the case where the POK

bits themselves have a transformed distribution. This allows B to transform a set

of i.i.d. LPN problems into a set of LPN problems with correlated POK data by

modifying only public parameters, and without affecting the secret vectors.

Also note that a corollary of Lemma 3.4.2 is that s remains pseudorandom even

in the presence of correlated bits. This is due to the fact that LPN's secret has

n - o(n) simultaneous hardcore bits [7], and is proven for uncorrelated LWE in [58].

The proof is similar for the correlated LPN construction, as it is independent of the
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transformations performed in Lemma 3.4.2.

3.4.2 Security Parameter Derivation

The security goal is that an adversary given helper data must perform Q( 2 k) oper-

ations (k is the security parameter) to discover the secret key. I show below that

a key size of n = 128 results in a security parameter of k = 128 against the best

known attacks. The equality of key size and security parameter is unusual for secu-

rity constructions with formal hardness reduction, and is especially unusual for LPN

cryptosystems.

There are two key factors enabling this property. First, recognize that typical

LPN-based cryptosystems must have a low error rate (e.g., T = Pr(ei = 1) = 0.0024

[44]) to ensure correct decryption/verification. This construction, on the other hand,

does not use any LPN encryption/decryption algorithm, and therefore does not have

the same restriction on r. In fact, r can theoretically be set to 0.5, representing full

entropy in the POK data. However, real POK data is not ideal and may not have full

entropy. To be conservative, pessimistically assume r = y = 0.4 and that the POK

bits are correlated in a way that LPN is still hard (formalized in Definition 3.4.1 and

Lemma 3.4.2).

The second factor is that number of equations in the construction is limited to m E

0(n2 ). Current best LPN algorithms are based on the BKW algorithm [19], which

requires m - 2 0(n/1ogn). In order to successfully attack the LPN fuzzy extractor,

one would have to use the technique from Lyubashevsky [97], which works with

m = O(nl+) equations but immediately increases the runtime to 2 0(n/1oglogn).

The idea of Lyubashevsky's algorithm is to generate more equations from the

given m = O(nl+E) equations, increasing the noise rate to

TL --- (1 (3.6)
2 2 4 )2

and then using other LPN algorithms, such as BKW [19], LF1, LF2 [94] as a black

box with the increased error rate. For m = 0(n2) (e = 1), n = 128 and T = 0.4,
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Time Security

Complexity Parameter

BKW na ( 2 +1(1 - 2TL) 2
a In () + (a - 1)) 2247

LF1 b2' + na (81n (9) (1 - 2TL)- 2 a + (a - 1) 2 b) 2135

LF2 3.2bna + b2b N/A

Table 3.1: Comparison of performance of LPN algorithms against an LPN fuzzy

extractor with TL = -1.31 x 1048, n = 128. Set 0 = 1/3 to achieve 50% suc-

cess probability [22]. The security parameter is taken for optimal choices of a, b

(not shown). The security parameter of LF2 is N/A, because there is no setting of

parameters that results in the algorithm converging.

TL = - - 1.31 x 10-48.2

The recent analysis from [22] shows that the LF1, LF2 algorithms empirically have

the best performance in the limit of high noise (TL -+ 0.5). Table 3.1 compares BKW,

LF1, LF2. Note that each of the above algorithms performs worse than brute-force or

does not succeed at all. Therefore, n = 128 for a security parameter of k = 128.

3.5 Case Study using a Ring Oscillator POK

I will use Ring Oscillator POKs as a case study because of the easy availability of

confidence information (cf. Figure 3-1). In the case of the RO POK, the differential

counts between the ring oscillators is the confidence information c'j, and the output

bit e'i = Sign(c'j) described in Section 3.1.1.

I have provided a theory explaining the resilience of the LPN construction to noise

and environmental parameters using this confidence information in Section 3.3. Now,

this theory and collected data from a set of 320 pairs of ring oscillators measured

across temperature and voltage ranges is used to demonstrate the efficiency of the

LPN fuzzy extractor construction in a concrete fashion. Experiments were conducted

on a Xilinx Virtex 7 Series Field Programmable Gate Array (FPGA).

Differential counts were measured for a set of 320 ring oscillator pairs in a wide

(beyond industrial) range of temperature and voltage. Three interesting points are

-40 0 C0.95V, 25 0C 1.OOV, and 105 0 C1.05V. Other ranges that are used are the

differential count values at commercial (00 C to 70'C) and extended industrial (-40'C
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Temp. UINTRA

Temp. Bias -40 0 C 24.3 1.3
-40 C 54% 00C 8.9 i 0.40
250C 52% 700C 17.4 0.64
1050C 53% 850C 24.0 1.0

1050C 33.7 + 1.4

Table 3.2: (Left) Measured bias of 320 RO pairs at varying temperatures. (Right)

Measured UINTRA for varying temperatures.

to 850C). The UINTRA/UINTER ratios improve as the temperature range is reduced.

Note that 24% of the ring oscillator pairs produce different responses in the envi-

ronmental range; this is the typical 0(m) error case for such circuits under environ-

mental stresses in the ranges shown.

The measured bias of the RO counts across temperature is shown in Table 3.2.

Therefore, the pessimistic estimate of bias ignoring correlation effects as 45% (or 55%

equivalently) is correct.

These differential count values are distributed according to the distribution dis-

cussed in Section 3.3 with variance INTER. For each of these temperatures the distri-

bution of differential counts was Gaussian, as was assumed in Section 3.3. Each of the

fits from which the parameters are derived have a reduced x2  1, indicating that the

Gaussian model is a good fit to the data within experimental error. Moreover, nei-

ther the mean nor variance of the distribution changed significantly over temperature

or voltage. Therefore, one can describe the distribution in terms of a single mean,

variance (PINTER, JINTER) shown in Figure 3-4. To measure PINTRA and UINTRA, one

must measure the distribution of how these differential counts change regardless of

the differential count measured at provisioning. This distribution is Pr(c'i - ci). This

distribution was calculated by using data from different ring oscillators. The standard

deviation of this distribution is UINTRA-

Room temperature is used as a baseline (this would be the condition in which

the challenge-response pairs would be initially generated). Next, I measured how the

differential counts change as temperature/voltage vary for each of the 320 ring oscil-

lator pairs. These data provide a statistical distribution of how much the differential
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Figure 3-4: (Top) Measurement of (INTER through the estimation of the dlistributio1

of differential coints across 320 RO pairs across room temperature and the fast and

slow volt age/temperat ure corners. (Bottom) Measurement of JINTRA )Vy subtracting

differential counts at 25' C iu 1V from 1050C Cu 1.05V.
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count value will change with a change in environmental parameters (the distribution

described by UINTRA, IINTRA in Section 3.3).

The distribution at 105 C is shown in Figure 3-4. The measurements at various

temperatures are shown in Table 3.2. It is important to note that although in Section

3.3 no theoretical justification was presented for the reason why the distribution of

counts of a single ring oscillator pair over relevant environmental conditions would be

Gaussian, this does turn out to be the case within experimental error as demonstrated

in Figure 3-4. Using these measurements, I calculate the ratio for commercial

(00C to 70'C) as 0.20, extended industrial (-40'C to 85'C) as 0.29, and the maximum

temperature range the experiment could support (-40'C to 105'C) as 0.40. This is

summarized in Table 3.3.

I now present an analysis of the resource requirements (number of RO pairs) of

the LPN fuzzy extractor scheme with a security parameter of 128, and probability of

error 10-6 over the above temperature ranges.

First, the theoretical construction in Section 3.2 is far too conservative for practical

purposes. In practice, simply choose the most stable m' = n bits, and most likely

there are at most t' < 1 error bits in them. For example, if 62 = 3 x 10-6, a simple

binomial distribution analysis shows that Pr(t' > 1) < 10-6. Therefore, an exhaustive

search over the error bit with a Gaussian elimination operations for each will suffice.

Plugging 6i = 10-6, E2 = 3 x 10-6, m' = n = 128 (giving a security parameter of

128) and 'INTRA values into Equations 3.3, 3.4, I compute m (the total number of RO
OINTER

pairs) for various temperature ranges, also shown in Table 3.3.

Note that the extracted bitstring is not pseudorandom with security parameter

128. In order to obtain a pseudorandom bitstring for use as a key, one must either

use SHA-1 or similar (a random oracle). To avoid the use of such a function, one may

also double the LPN secret size to n = 256 and then select an arbitrary subset of 128

bits. These 128 bits would be pseudorandom by the result from [7].

Note that the analysis is still pessimistic (e.g., assuming that all stable bits have

error probability 62 even though most bits have much lower error probability) and the

construction is unoptimized. Even with an unoptimized implementation, these results
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Temp. Erroneous 'INTR # Ring Osc.
Bits Pairs (= m)

00C - 70 0C 9% 0.20 450

-40 0 C - 850C 21% 0.29 770

-40 0 C - 1050C 24% 0.40 1870

Table 3.3: Summary of OINTRA and resources required for an LPN fuzzy extractor

over the specified temperature range. The percentage of erroneous bits over environ-

mental conditions and associated ratio is displayed. Extraction succeeds with error

probability < 10-6 and a security parameter of 128.

compare very well with the works described in Section 2.4. For example, PUFKY

[100] requires 2052 helper data bits for a 100 C - 80'C temperature range, compared

to 450 helper data bits for a comparable 00 C - 70'C temperature range, and 770

helper data bits for a much wider temperature range -40 C - 85 C. Moreover, unlike

most prior work on information theoretic extractors, the LPN fuzzy extractor can be

scaled to higher noise settings simply by increasing m without affecting the security

argument.
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4 - LPN Stateless PUF

Now, I extend the LPN fuzzy extractor from Chapter 3 to be a fully "stateless"

strong PUF. The fuzzy extractor from the previous chapter extracts a single key,

while the construction in this section allows for multiple challenge response pairs to

be generated from a single set of noisy bits (i.e., a ring oscillator POK).

This construction is developed according to the formalism provided in [10], and

the security reduction shows that the LPN stateless PUF is "strongly unpredictable"

(cf. Definition 4.1.2, which is analogous to the same concept from [10]) if LPN is

hard.1 These reductions are in the random oracle model.

4.1 Stateless PUF Construction

4.1.1 Stateless PUF Definition

A Stateless PUF is a pair of functions PUF = {GenPOK,VerpOK} with access to a

POK, where GenPOK is responsible for generating and outputting challenge-response

pairs, while VerpOK takes a challenge as input, and outputs a response. The intent is

for GenPOK to be called multiple times by a verifier over a secure channel to obtain

a collection of challenge/response pairs. At a later time, the verifier will send one

of these challenges to the PUF over an insecure channel, to which the PUF must

generate the correct response. A challenge-response pair therefore can only be used

once by VerpOK-

'If the PUF noise is i.i.d., then the reduction is directly to LPN, otherwise the reduction is to a

variant of LPN (cf. Conjecture 4.2.3).
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Definition 4.1.1. A (m, 1, x) stateless PUF is a pair of randomized probabilistic

polynomial time procedures {c, r} - GenPOK(1k), and r +- VerpOK(C) where

" The challenge-response generation algorithm GenPOK(W) takes as argument the

security parameter k. It returns a challenge-response pair {c, r}, with c, r c

{0, 1}* and c|, Ir| c poly(k). The subscript POK corresponds to the POK con-

tained within the PUF. That is, each PUF manufactured will have a unique

POK according to distribution x over {0, 1}" due to manufacturing variation.

" The verification algorithm r +- VerpOK(C) takes as input a challenge c, and

returns the corresponding response r. Again, POK refers to the unique POK

contained within the PUF.

Now define the security of the Stateless PUF (s - uprd refers to "strong unpre-

dictability" as defined in [10]).

Definition 4.1.2 (Stateless PUF Strong Security). A stateless PUF is c-secure with

error 6 if Pr [{c, r} +- GenPOK (ik) : r = VerpOK(c)] > 1 - 6 and for all PPT A,

Advs-" rd( A) < e, which is defined in terms of the following experiment.

1: procedure Exp-uprYd(A)
2: Make polynomial queries to GenPOK(-), VerPOK(.)
3: if A returns {r, c} such that:

" GenPOK did not return {r, c}.
" VerpOK(C) = r.

4: then return 1
5: else return 0.
6: end procedure

The s - uprd advantage of A is defined as

Advspd(A) = Pr Exp jP-urd(A) = 1 (4.1)

While other formalizations of PUF system security have been proposed [10], ours

is slightly different in that in the above case, there is no distinction between helper

data and challenge data. Moreover, the PUF is responsible for generating both the

challenge and the response for the verifier to use later.
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One key recognition in the above definition is that there is no provisioning stage.

The algorithms GenPOK and VerpOK may be called in arbitrary order as many times

as required. Put differently, there is no stage at which a secret is programmed into

the device or an irreversible operation is performed on the device. This is critical,

as the overall system can therefore be stateless, and not have to have any additional

protections against adversaries attempting to break the provisioning logic of the de-

vice.

The formalism of manufacturing unclonability remains the same as that put forth

in [10].

4.1.2 The Construction

I provide concrete constructions for GenPOK and VerpOK below, which are also illus-

trated in Figure 4-1.

Construction 4.1.3 (LPN Stateless PUF). Let k be a security parameter, with

m, n E poly(k), and m > n. Define A E {0, 1}mxn be a uniformly random but con-

stant and publicly known matrix row-indexed by i from 1 to m. Let both algorithms

have access to the random oracle H(.).

1: procedure {{b, Db},D} <- GenPOK (1k)
2: Generate s E {0, 1} uniformly at random.
3: Regenerate e E {0, 1}m from POK.
4: Compute b = A-s+e.

5: return {{b, H(s, b)}, H(s)}.
6: end procedure
1: procedure D, <- VerpOK({b, Db})
2: Regenerate e E {0, 1} from POK.
3: Extract s from b (details in Section 3.2).
4: Verify that Db = H(s, b), else return -.
5: return H(s)
6: end procedure

Note that the above construction requires both internal randomness as well as a

random oracle.
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3 H 3 H(s)

H -* H(s, b)

TRNG - A - s + er b
sb

response

challenge

e er
POK -- + 4-- rnoise

(a) GenPOK: Generation of challenge-response pairs. TRNG

stands for True Random Number Generator. r,,i,, is random

noise injected into low-confidence bits in the variant construction

(GenNoisypoK) and is 0 for the basic construction (GenPOK).

H(s, b)

H

Find s
b such that H H(s)

A - s + e' = b

Ie')

response

POK

(b) VerpoK: Regeneration of response when the PUF is pre-
sented with a valid challenge. The underlines on A, e' and b

indicate that a subset of n of the m rows are selected to solve

for s.

Figure 4-1: Stateless PUF construction. Note that GenPOK and VerpOK can be called

any number of times in any order. The PUF does not retain any state across invoca-

tions.

4.1.3 Remarks

Blocking Malicious Challenges

The binding H(s, b) is included in the challenge-response generation, and VerPOK

checks if Db = H(s, b) before returning a response. This is important, as Definition

4.1.2 allows for active adversaries. Without this check, an attacker can trivially win

the security experiment by returning an output b by GenPoK with one bit modified;

the modified bit is likely not used in the recovery of s at all, and VerPOK will accept,

trivially violating strong unpredictability. With this check, if s is recovered correctly,
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any modification to b will be detected with overwhelming probability.

Hash Function Requirements

H(.) is a random oracle that is well-approximated by the SHA-256 or SHA-3 hash

functions, which is denoted H'(.). The construction requires H' to be one-way, since

H'(s) is exposed. To ensure that an adversary cannot impersonate a PUF, one must

require non-malleability of H'. That is, the adversary should not be able to generate

H'(si + As) given H'(si) and As. These properties are required because of the use

of H(s, b) in the construction.

Controlled PUF

I have described a "vanilla" scheme for authentication where responses are returned

in the clear when challenges are applied. However, all the controlled PUF (CPUF)

protocols of [63] with small modifications are enabled by the construction. Briefly,

the verifier obtains a single challenge-response pair securely, i.e., no eavesdroppers,

as before. When the PUF receives a challenge, it does not return the response,

but merely generates it internally and bit-exactly. Now, the verifier who knows the

response, can use it as a shared secret for repeated nonce-based authentication or

secure communication. Other verifiers can use completely different shared secrets.

4.2 Stateless PUF Security Analysis and Assump-

tions

In the Stateless PUF construction, GenPOK is run multiple times with roughly the

same noise term e = econst + enoise. This deviates from the LPN problem, where the

noise term for each equation is required to be independent. Therefore, I will need

additional assumptions. For the construction to reduce to LPN, one must assume

that the confidence information (i.e., bias of enoise) is independent of the actual mea-

surement of the constant component econst. Alternatively, the construction can be
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reduced to a new conjecture I call Partial-Error-Reuse LPN (PERLPN), which says

LPN is hard even when part of the error bits are reused.

4.2.1 Reduction to LPN Assuming Independence Between

Confidence and econst

Start by noting that in order for the construction to reduce to LPN, GenPOK must

use the same matrix A on every query to it. Otherwise, an adversary receives two

sets of equations with the same e (I do not want to rely on the small noise enoise in

POK output for security),

b=A-s+e mod2

b'=A'-s'+e mod2

The adversary can add up the equations mod 2, thereby canceling out the e terms,

and trivially recovers both s and s'. However, Lemma 4.2.2 will show that if the A

matrix is the same for the different secrets, discovering any individual secret requires

breaking standard LPN. Intuitively, this means access to GenPOK does not help the

adversary.

Next, Lemma 4.2.1 shows that access to VerPOK does not help an adversary.

Lemma 4.2.1. Given an adversary A that has non-negligible AdvP-"prd(A), there

exists an algorithm B that makes no queries to VerPOK and still has non-negligible

AdvP-"prd(B).

Proof. Let algorithm B run A, simulating calls to GenPOK, VerPOK with the following

GenB,POK and VerB,POK: Responses of GenPOK are faithfully relayed to A after being

recorded. Queries to VerpOK are simulated by always returning I (unless the query

is made with an output of GenB,POK, in which case the recorded value is returned).2

By definition, A generates with non-negligible probability a query for which VerPOK

would not return 1. Therefore, A can distinguish VerB,POK from VerpOK. However,

2 Note that VerB,POK is indistinguishable from VerpOK if A has negligible advantage in guessing

S.

80



1: procedure {{b, Db}, D} - GenB,POK(ik)
2: Run {{b, Db}, D} +- GenPOK (1k)
3: Store {{b, Db}, D} to table T.
4: return {{b, Db}, Ds}
5: end procedure
6: procedure D. <- VerB,POK({b, Db})
7: if {b, D} E T then return D,
8: else return I
9: end if

10: end procedure

regardless of this fact, A must always emit at least one query to VerB,POK for which

VerpOK would not return I.3

Given that A makes at most a polynomial number of queries to VerB,POK, B may

choose any of the queries made by A to VerPOK at random and have a non-negligible

advantage of returning the "correct" query that would be accepted by VerPOK. There-

fore, B has non-negligible Adv-u~jrd(B). E

Now, Lemma 4.2.2 presents the security reduction to LPN.

Lemma 4.2.2. Let k be a security parameter, n = poly(k), and m > n. If Conjecture

3.1.1 is true, there is no PPT A that has advantage Advs-rd (A) non-negligible in k.

Proof. Assume that a PPT algorithm A has non-negligible advantage in the experi-

ment in Definition 4.1.2. According to Lemma 4.2.1, there exists a PPT algorithm

B that has non-negligible advantage in the experiment without making queries to

VerpOK. Using B, construct an algorithm C that violates the hardness Conjecture

3.1.1.

Algorithm C takes as input a random LPN problem (b, A), where A E {0, 1}mxn,

b E {O, 1}m, and b = A - s + e, where s E {0, l}" is uniformly random, and e

is chosen according to distribution x. While in standard LPN, x represents an i.i.d.

distribution of m bits, the reduction here also applies to the correlated LPN in Lemma

3.4.2.
3After this query, A may have "distinguished" that it is querying VerB,POK instead of VerpOK, sO

the behavior of A is undefined.
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When B makes calls H(-), C faithfully returns the output of H(.), but records all

queries to and responses from H(.). When B makes calls to GenPOK, C responds using

the following simulated version Genc,POK:

1: procedure {{b', D'I}, D'} <- Genc,POK(1k)
2: Generate uniformly random As.
3: b' = b + A - As + enise = A(s + As) + e + enoise
4: Uniformly generate U1, U2 E {0, 1}'.

5: Insert {{b', U1}, U2 } into a local table T.
6: return {{b', U1}, U2 }.
7: end procedure

The output b' by GenC,POK corresponds to the LPN problem with the random

secret (s + As), and is indistinguishable from the output of GenPOK. Note that the

added enoise models the noisy POK output. 4 Assume the distribution of enoise does

not depend on the constant component of the noise term (e here), so C can sample the

confidence information from N(O, UINTER), and then sample enoise from N(c, cINTRA)

on its own according to the distributions in Figure 3-3. Note that this implies that

the POK noise is i.i.d.

Furthermore, since H(-) is a random oracle, the output U1, U2 by Genc,POK are

computationally indistinguishable from Db, D, by GenPOK. Therefore, C precisely

mimics the behavior of GenPOK for B, and with non-negligible probability, B outputs

{{b', D' }, D'} that is not in table T and makes VerpOK accept.

b' = A -s' + e'

D'f = H(s', b')

D' = H(s')

Since H(.) is a random oracle, B must have queried H(.) with s' before; otherwise,

the probability of D' = H(s') must be negligible. C has recorded all the queries to

and responses from H(.), and thus can retrieve s' and compute e'.

4A POK with i.i.d. noise (assumed in this reduction) is modeled by a constant set of bits (e in

the algorithm) plus some i.i.d. "noise" (enoise in the algorithm) with some Bernoulli parameter -r.

Therefore, the summation of e + enoise accurately models if the Bernoulli parameter of enoise is r.
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In order for VerpOK to accept B's output, e' must be distributed according to the

confidence information C sampled. C can then recover e in the same way Recovery

does, and then solve for s. If VerpOK accepts B's output with non-negligible prob-

ability, then C recovers e and s with non-negligible probability. This contradicts

Conjecture 3.1.1. E

4.2.2 Reduction to PERLPN

The above security proof requires that x is i.i.d., a strong assumption. This is because

the reduction requires that the enoise be independent of e. However, one may consider

the impact of using a more relaxed distribution.

Consider a joint distribution Xs for m bits, where a subset S C [m] of size cn are

always 0 (c is a constant) and the remaining m - cn bits are i.i.d. These cn bits are

"confident" bits, and are always 0 (there is perfect correlation between the confidence

of a bit and its value). The subset U of the other m - cn bits are non- "confident."

In this case, the above reduction cannot hold, since enoise is not independent of e.

However, use the intuition from Section 3.3 and let GenPOK, VerPOK be able to

detect a bit's confidence information. Specifically, let GenPOK and VerpoK on each

query to POK receive e and also receive an arbitrary, potentially random subset

T C S of size n. Let it also receive the list U of the m - cn non-"confident" bits.

The above information models confidence information in a pessimistic way. In the

model described in Section 3.3, confident bits are approximately noiseless. The other

bits have different levels of noise. In the above simplified model, all "stable bits" are

noiseless, and everything else is chosen i.i.d.

With this knowledge, GenPoK may deliberately introduce i.i.d. noise into the

non-confident bits to make the LPN problem hard without affecting the runtime

of VerpOK. This is illustrated in Figure 4-la using rnoise. Consider GenNoisyPoK,

and VerNoisyPoK below. As discussed above, I modify POK to also return T, U,

where T C S is an arbitrary, potentially random subset of the stable bits S. U is

the set of m - cn unstable bits. For technical reasons pertaining to the reduction

below, I require that GenNoisy and VerNoisy generate/verify a polynomial number

83



of {{b, H(s, b)}, H(s)}. The reason for this will become apparent in the reduction.

1: procedure {{b, Db}, Ds} +- GenNoisypoK(1k)
2: repeat
3: Generate s E {0, 1} uniformly at random.
4: Query {T, U, e} <- POK
5: Set ei to uniform random {0, 1} for all i E U.

6: Compute b = A-s+e.

7: Store {{b, H(s, b)}, H(s)} into Tab,.
8: until Polynomial L Iterations

9: return Tab,
10: end procedure

1: procedure Ds +- VerNoisyPOK(Tab 2 )
2: Set L = Length(Tab 2).
3: Initialize ErrSum = 0'.
4: for each {b, D} in Tab 2 do
5: Query {T, U, e} *- POK
6: Run Gaussian elimination on T C [m] equations to compute s (details in

Section 3.2).
7: Verify that Db = H(s, b), else return I.
8: Add H(s) to Tab3
9: emeas = A. s - b mod 2

10: ErrSum = ErrSum + emeas
11: end for
12: Verify for all i E U that ErrSumi ~ L/2, else return I.

13: return Tab3
14: end procedure

The overall bias of the LPN equation returned by GenNoisy is therefore (m -

cn)/(2m), and m - cn of the equations have i.i.d. noise. If cn < m, then this bias

is very close to 1 and most of the bits are i.i.d. Moreover, no adversary can identify

which of the m bits are stable. Therefore, the security of a cryptosystem with the

above statistics reduces to the following slightly modified LPN conjecture, which I

term "Partial Error Reuse LPN", or PERLPN. It is parameterized by c, m.

Conjecture 4.2.3 (PER-LPNc,m). Consider a distribution x where LPN is hard (e.g.,

x may be Bernoulli and Conjecture 3.1.1 holds) for m samples and a key of size n.

LPN is also hard for e distributed as xs, where S C [m] with cn elements is secret.

xs is constructed as follows:

1. Sample a set of m bits e with distribution x.
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2. Set ej = 0 for all i G S.

I am now ready to show that PUFNoisy = {GenNoisy, VerNoisy} comprises

a Stateless PUF according to Definition 4.1.1. First, recognize that Lemma 4.2.1

may still be applied. Therefore, one only must provide A with polynomial samples of

{{b, Db}, Dr} from GenNoisy.

Lemma 4.2.4. Let k be a security parameter, n = poly(k), and m > n. If Conjecture

4.2.3 is true, there is no PPT A that has advantage Adv- , non-negligible

in k.

Proof. Given A, construct B that takes a set of PERLPN problems as an argument

(PerLPNTab) and returns the secret parameters of all members of this set.

1: procedure Stab +- B(PerLPNTab)
2: Initialize ErrSum = O'.

3: Generate x' such that Pr(Xs + X') is equivalent to the noise distribution of

GenNoisy.
4: for each b E PerLPNTab do

5: Sample ene, from x'.
6: Set b = b + enew.
7: end for
8: // Use A to recover new queries.

9: Record queries by A to H(-) into HTab.

10: Call NewPerLPNTab <- A(PerLPNTab)
11: // Compute Distribution of Errors returned by A.

12: for each b' E NewPerLPNTab do
13: Find s' in HTab s.t. Ham(b'+ A -s') 6 m/2.

14: Compute e' = b' - A -s' mod 2
15: Set ErrSum = ErrSum + e'.
16: end for
17: // Identify ''Confident'' Bits

18: Select S C [m] where ErrSumi 6 L/2 for all i E S.
19: // Solve original PERLPN problems.

20: Pick a random subset T C S of size n.
21: Perform Gaussian elimination on this subset of equations for all PER-LPN

instances to recover each s. Add each to Stab
22: return Stab.
23: end procedure

Algorithm B uses the PER-LPN error distribution and a separate distribution X'

to emulate the distribution of the POK (Lines 3-7 of B).
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B then queries A with these samples, while recording calls to H(-). Using the

returned values from A and the recorded queries from H(.), B can construct a

polynomial-sized set of pairs (b', s'). By the Definition of A, these (b', s') pairs corre-

spond to a challenge that will make VerNoisy accept with non-negligible probability.

Next, B uses the returned values from A to recover the secret subset S C [m].

That is, it recovers which bits are "confident" and do not change. B can do this by

looking at the distribution of errors returned by A. Steps 11-18 of B perform this

analysis.

In essence, these steps use the set of L pairs (b', s') to compute Pr(e'i) = 1 for

i E [m]. If Pr(e'i) ? 1/2, then it is likely that i E S.

Note that this explains why the game was modified earlier (in GenNoisy and

VerNoisy) to incorporate a polynomial number of challenge/response pairs. A larger

number of random samples are needed to accurately characterize the noise distribu-

tion.

Moreover, it is required that A correctly samples from this distribution in VerNoisy

by ensuring that elements of U are uniform random (but only for positions in U).

Therefore, since A makes VerNoisy accept with non-negligible probability, it must

set Pr(ei = 1/2) for all bits i E U.

Therefore, B can use these samples constructed by A to distinguish between U and

S. Note that Algorithm B requires that x' be bitwise distinguishable from uniform

random.

Now that B has recovered the "confident" bits, it may select a random subset

of these bits and use Gaussian elimination to solve for s in each of the PERLPN

instances. This contradicts Conjecture 4.2.3. E

Lemma Remarks: Lemma 4.2.4 requires that the POK distribution be con-

structed from Pr(Xs + x'), where x' does not depend on the output of Xs. This is

achievable only if the distribution of a confident bit does not depend on which other

bits are confident. E.g., the following distribution is not allowed: Pr(ei = 1) = 0 if

ei, e2 are both confident, but Pr(ei = 1) = l if el is confident, but e2 is not confident.

Second, Lemma 4.2.4 requires that the distribution over the confident bits x' be
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bitwise distinguishable from the uniform distribution (Beri/ 2 ). Algorithm B computes

Pr(e'i = 1) where either e'i ~ x' or e'i ~ Ber1 /2. Algorithm B must be able to distin-

guish each bit sampled from x' from Beri/ 2. In practice, this corresponds to x' having

the property that the marginal probability of each bit equaling '1' be measurably

different from 1/2.

Next, there is a slight abuse of notation in lines 15 of Ver-Noisy, 13 and 18 of B

through the use of ~ and 6. In each of these steps, the algorithm is given a set of

bits and asked to determine if they have Hamming weight close to some value. The

purpose is to determine whether the bits have bias 1/2.

Finally, it is no longer required that the matrix A be constant for each chal-

lenge/response pair. Informally, this is because GenNoisyPOK deliberately introduces

noise into e, making subsequent challenge/response pairs difficult to combine. Fur-

thermore, Conjecture 4.2.3 is strengthened to allow only some of the bits in e to be

random. Formally, recognize that the proof for Lemma 4.2.4 does not require A to be

constant. Note that maintaining constant A does not decrease security, so practical

implementations may continue to use constant A.

4.2.3 Stateless PUF Theorem

The security theorem for the stateless PUF construction can now be stated. If the

POK bits are i.i.d. (which are used as the noise term e), the theorem holds under

Conjecture 3.1.1. For more complex distributions of POK bits, use Conjecture 4.2.3.

Theorem 4.2.5. Let k be a security parameter, and n = poly(k). There exists a

choice of n, m > n, 1 > k, x such that Construction 4.1.3 is a (m, 1, x) stateless PUF

that is c-secure with error 6, with e = neg(k), 6 = neg(k) under either Conjecture

3.1.1 or Conjecture 4.2.3 depending on X.

Proof. First, recognize that Construction 4.1.3 is efficient. Clearly, GenPOK runs in

polynomial time. Section 3.3.2 shows VerpOK runs in polynomial time. Second, under

either Conjecture 3.1.1 or Conjecture 4.2.3, there does not exist any PPT A that gains

has advantage Adv'-u"rd(A) > c, where e = neg(k).
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5 - Introduction to Public Model

Physical Unclonable Functions

In a PUF, instead of using secret data stored in a traditional non-volatile digital

memory, the device being authenticated uses a unique data based on physical charac-

teristics of the IC that cannot be duplicated. In the case of silicon PUFs, this unique

fingerprint results from manufacturing variability in the integrated circuit [64]. This

approach has a number of advantages: (1) Simple hardware design, (2) threat surface

for extraction attempts limited to "power-on" state, and (3) does not use expensive

non-volatile memory.

However, there are also several significant drawbacks to this authentication ap-

proach. First, a client authenticating a PUF on a server cannot compute challenge-

response pairs. Therefore, it must first establish a secure channel, collect a table

of random challenge-response pairs, and then re-use these pairs to authenticate the

server over a public channel at a later time. The client must securely store the

challenge-response table and each challenge-response pair can only be used once.

Therefore, the PUF can only be challenged a certain number of times before the

client must collect more challenge-response pairs from the server (requiring the se-

cure channel to be re-established).

PPUFs leverage many of the concepts of traditional PUFs, but take these ideas

several steps further. A PPUF system consists of physical "PPUF hardware", and a

"PPUF model" that may be hardware, software, or a hybrid of both. Intuitively, a

PPUF operates in the uses the same challenge-response approach as a standard PUF

with two major differences. First, instead of using a secure bootstrap to create a
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secret list of challenge-response pairs, the PPUF hardware has an associated PPUF

model. This model is a program or device that can compute the response for any

challenge. Second, this model is public.

Just as in the PUF model, there can only be one PPUF hardware due to un-

clonability. In the PPUF system however, the associated model can be freely copied

and distributed. This leads to the second requirement: there must be a measurable

difference in the time it takes the PPUF hardware to generate a response versus the

time it takes to compute the response via the model. This timing difference can be

used as a source of secure authentication. The protocol is shown in Figure 1-1 and

discussed in Section 1.1.4 [107, 130].

Such a PPUF system has widespread application. The PPUF hardware contains

no secrets. The PPUF hardware is a secure authentication source, but the associated

model describes everything there is to know about the PPUF hardware (including all

manufacturing variation). Counterintuitively, the PPUF hardware is still capable

of securely authenticating itself to any server. The server also contains no secret

information. Simply put, there is no secret information anywhere in the protocol. The

authentication capability derives solely from the computational difference between the

PPUF hardware and the software model, and the unclonability of the hardware (two

devices with the same behavior cannot be manufactured).

In the case of a PPUF, there are no bits to steal. The security is instead based on

the difficulty of reproducing an exact copy of the PPUF hardware. This represents a

fundamental shift in security paradigms. Using this mechanism, a secure embedded

system can be deployed in a highly untrusted environment with a strong threat model

(an adversary already has access to both the PPUF design and PPUF model) and

still act as a trusted authentication source.

As a result, these systems can be used in military and commercial mobile systems

that must authenticate themselves to a central server or network. With the currently

used approach, such devices can be spoofed if their secret information is extracted.

Since the devices themselves are inherently mobile, this has always been a threat.

However, were these devices to use PPUF technology, even if the devices themselves
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were captured, there would be no secret information to extract. The authentication

capability would remain bound to the device.

The requirements for a PPUF system can be enumerated as follows:

1. Unclonability: Impractical to manufacture two copies of the same PPUF hard-

ware that have the same challenge/response relationship.

2. Large number of challenge response pairs: Enough challenge response pairs such

that complete enumeration via model computation is impossible. (the number

is ideally exponential)

3. Digital stimulation and readout.

4. Model with properties:

(a) Correctly approximates the challenge/response relationship of the PPUF.

(b) Requires measurably more time to compute than the PPUF hardware in-

cluding stimulation/readout time.

The primary focus of this work will be on properties 2-4 of the PPUF system.

Property 1 has already been studied extensively in the context of several physical

systems [74, 121, 64]. Further, the notion of unclonability has been formalized in a

sufficiently general manner in [10] for use in PPUF systems, although [10] does not

mention PPUFs.

Therefore, this work will be focused on the primary challenge of ensuring that a

PPUF is measurably faster than any software simulation (4b), while maintaining the

properties that allow a PPUF to be usable in a physical system (2, 3, 4a).

5.1 Previous Work

5.2 Proposed PPUF Architecture: SIMPL

Riihrmair, Devadas, and Koushanfar survey existing implementations and applica-

tions of PUFs [166]. Emerging PUF concepts such as PPUFs are discussed and

surveyed. The first of these proposed architectures are SIMPL systems proposed by

Riihrmair et. al. in 2009 [135, 42, 37, 130, 134, 36, 136, 133]. They have discussed us-
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ing a modified SRAM architecture as well as "Cellular Non-Linear Networks" (CNN).

5.2.1 Cellular Non-Linear Networks

Cellular Nonlinear networks are effectively an n (in the case of SIMPL, n = 2) di-

mensional array of analog cells. Each cell behaves according to some linear ODE as a

function of its neighboring cells as well as some per-cell input parameter. Intuitively,

consider a finite-difference time-domain solver where each node in the mesh may have

a different first-order ODE.

While it may be the case that such systems have complex behavior that is difficult

to simulate directly, the substrate chosen for SIMPL systems is CMOS. Therefore,

several fundamental problems immediately present themselves.

First, the minimum internal timescale of the system's internal differential equa-

tions is limited by the speed of the analog components. In order to have a clean ODE

simulation for each cell, Riihrmair et. al. propose cells based on an op-amp configura-

tion [135]. In doing so, one abstracts away from the fundamental physical equations

governing analog electronics. This has two repercussions. It decreases the overall

speed of the PPUF device computation and more importantly, since op-amp circuits

can be tuned to behave according to any differential equation, it means that once the

model is released, an analog simulator can be easily built. This fact is recognized by

the authors.

According to this paper, CNN's can theoretically achieve a speedup of roughly

1000 x over traditional CMOS computers for specialized applications. However, with

the above observation, an analog neural network could be copied with slightly slower

internal dynamics, so the speedup of such a system would be significantly less than

1000 x against an attacker with significant resources to devote to breaking the PPUF

system.
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5.2.2 Modified SRAM

This implementation consists of an SRAM that introduces some errors in read/write

operations. A series of pseudorandom data is written and subsequently read [135].

The concept is that a model for this SRAM can exist, but the read/write sequences

would require less time than running a software model.

This assumption can only work if one is simulating the modified SRAM in software.

It does not appear to be the case that there would be any speedup of the above system

over an attack implemented in an FPGA or ASIC.

5.3 Proposed PPUF Architecture: FPGA Time-

bounded Unclonable Authentication

Majzoobi, Nably, and Koushanfar independently presented a time-bounded authen-

tication scheme similar to SIMPL in 2010 [103]. This system uses FPGA cells as

the delay elements, and a challenge is the configuration of delay elements to produce

an overall circuit. This circuit is then sampled for setup/hold time violations by a

sample/capture circuit described in the paper. The security argument is simply that

it takes significantly more time to simulate the FPGA in software than it does to

actually run the FPGA.

The problem with this is that the delay element values are public. It is possible to

scale the FPGA delays by approximately 10 -100 x using delay lines such that you no

longer have manufacturing variability, and then scale the clock frequency accordingly.

Such a system can be implemented in an FPGA or ASIC platform.

5.4 Summary of Analysis of Existing PUF Solu-

tions and PPUF Architectures

The above proposals each write out the PPUF protocol and propose hardware that is

claimed to exhibit the required 'speedup' over a model such that the PPUF hardware
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would be distinguishable from the model in the PPUF authentication protocol. How-

ever, as shown above, the above claims of 'speedup' for each of the proposed hardware

devices is too narrow. They each claim to be faster than software implemented on a

general-purpose CPU. While this may be true, this does not translate to a sufficiently

strong threat model, as an adversary would not restrict their efforts only to software

models. Once an adversarial hardware component is introduced, each of the above

three architectures no longer demonstrate sufficient speedup to be secure.

This recognition demonstrates the fact that the demonstration of the PPUF hard-

ware 'speedup' over the PPUF model is a critical unsolved step in the development of

PPUF systems. The above proposals also provide some initial direction to potential

avenues of approach. First, it is apparent that the PPUF hardware should not be

created entirely from CMOS technology. One of the primary problems above is that

the PPUF hardware is CMOS, and an adversarial model is CMOS. It is impossible

for CMOS to exhibit a computational speedup over itself.

In addition, by analyzing the potential adversarial methods to break the security

of the above proposals, it becomes clear that an adversary with CMOS hardware-

represents a strong security model. This is due to the fact that CMOS technology

represents the culmination of trillions of dollars of investment and therefore presents

by far the fastest general-purpose computational platform. If any non-CMOS PPUF

hardware can demonstrate a speedup over CMOS hardware for a particular problem,

then this will be due to the fact that the particular problem in question maps very well

to the internal physics of the system. Any 'model' of this PPUF hardware must solve

the same problem. Therefore, if a non-CMOS adversarial hardware model existed

that was also better than the CMOS hardware model, then it must also have internal

physics that maps well onto the particular problem. It is very unlikely for this to

be the case unless the non-CMOS adversarial model obeyed the same physics as the

PPUF hardware. In that case, the 'model' wouldn't be considered a 'model'. Rather

it would be a "clone" - which is considered in a separate PPUF requirement.

In conclusion, existing PPUF proposals help define a good starting direction for

the study of potential PPUF systems. They demonstrate that the PPUF hardware
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should not be CMOS electronics, and that the adversary to be considered in the PPUF

security model should be an adversary that can fabricate any CMOS analog/digital

hardware or software in order to create an 'optimal' model of the PPUF hardware.

5.5 Informal PPUF Criteria

Analysis of the existing PPUF proposals using CNNs, SRAMs, and arbiter PUFs

revealed that the proposals do not have a strong argument for why the PPUF instan-

tiations have a measurably faster computation time than any software model (i.e., the

"speedup requirement"). Those PPUF proposals that did articulate such an argument

discussed did not result in sufficiently strong security models. Indeed, the speedup

claimed in each of the previous PPUF proposals can be observed as the assumption

that an adversary could not fabricate hardware circuitry even though the proposed

PPUF required custom hardware. This discrepancy between the PPUF technology

and the adversary results in an inconsistent security model. It was seen that in each

case, relatively little financial and engineering investment would be required to build

an optimized model capable of breaking the security of the PPUF protocol.

For this reason, this thesis proposes a stronger requirement - that PPUF hard-

ware will compute the response measurably faster than a best-effort CMOS model

(analyzed in the context of circuit complexity). Such a model would include custom-

designed analog or digital hardware implemented using the latest CMOS technologies.

The notion of "best-effort" is formalized in Section 7 in terms of circuit complexity,

but for now, I present an informal discussion for the purpose of building intuition.

This requirement is analyzed to produce three informal criteria that are formalized

in Section 7. The criteria address (1) the "problem" to be solved by the PPUF

hardware, (2) the physical origin of the speedup, and (3) mathematical requirements

on the structure of the computational problem being solved by the PPUF hardware.
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5.6 Informal Criterion 1:

"Problem" Solved by PPUF Hardware

The PPUF hardware computes some function faster than the PPUF model, which

will be implemented in CMOS as discussed above. The PPUF protocol is completely

agnostic to which computational problem is chosen. Note that if one is to demon-

strate a measurable speedup over a CMOS model, the PPUF hardware should not be

implemented in CMOS. Speedup is comparative between computational modalities.

One cannot claim a speedup of one computational modality over itself.

Therefore, a PPUF hardware must be comprised of some non-CMOS system.

Since the PPUF protocol is agnostic to which computational problem is chosen, it

is logical to choose the computational problem for which the PPUF hardware is

optimally suited. To this end, recognize that the fastest "computational problem"

that can be solved by a physical system is that of simulating its own time evolution

according to its physical laws. In other words, the optimal choice for the PPUF

computational problem is the direct simulation of the PPUF hardware.

This is to be contrasted with the approach taken in previous PPUF architectures,

which use CMOS as a computational modality [135] and sometimes even use an

abstract mathematical problem, not tied to the physics of the PPUF hardware [103].

Therefore, I claim: the PPUF hardware can be an arbitrary system with some

measurable state and some kind of input. The PPUF hardware will only evolve

forward in time according to its physical laws. The PPUF model will then be a direct

physical simulation of the PPUF hardware itself.

5.7 Informal Criterion 2:

Physical Origin of Speedup

A Public Model Physical Unclonable Function must be able to compute a function

faster than a CMOS model. More specifically, this requirement is a requirement to
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find PPUF hardware that has a computational speedup over a PPUF model that

simulates the physics of the PPUF hardware. The search for new computational

modalities that may be faster than classical computers (CMOS) is not new. Indeed,

in 1982 Richard Feynman made the argument that a quantum system would be

exponentially faster than a classical computer simulating it [57], simulating research

in the field of quantum computing.

5.7.1 Quantum Systems

A "Universal Quantum Computer" capable of efficiently solving all problems in the

BQP complexity class is believed to be difficult to build with modern technology, and

as such would meet the speedup requirement for use as a PPUF [113]. However, a

universal quantum computer has been found to be difficult to construct, and there

is still no consensus that an experimentally implemented quantum computer has yet

demonstrated a quantum speedup [113, 50].

However, a PPUF does not need universal computation, and one approach that

has been taken to address the difficulty of implementing quantum computers is to limit

the quantum computing model. Such an intermediate system includes the architec-

ture of Quantum Linear Optics [5]. Quantum Linear Optics has received significant

theoretical investigation [5] as well as initial experimental implementations [29, 161],

and therefore represents a compelling possible approach to constructing a PPUF.

Quantum Linear Optics

Quantum Linear Optics was originally investigated by Aaronson and Arkhipov in

2010, who proposed the quantum non-interacting boson model of computation [5, 56].

They recognized that with n identical photons and m possible modes where (n <

m < poly(n)), a computational basis state can be described as IS) = Isi,.... Sm)

where si is the number of photons in a given mode. During a computation, photons

are never created or destroyed.

This system is most conveniently described using creation/annihilation operators
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(or formal variables and polynomials). Consider X = (x 1, x 2 ... Xm) being a set of

creation operators for specific modes. One can describe a state as Xs = (x ... xs)

where S = (Si, s2 ... Sm) with s E N and E si = n for n photons.

Let U be a m x m unitary operator (mapping modes to modes). If the starting

state is xT (T defined similarly to S above), and a unitary operator U is performed

on the initial state xT, then the probability of observing state xs is defined in terms

of a submatrix of U. This matrix, defined as UST, is constructed as follows. First,

a m x n matrix is constructed from U by taking tj copies of the j'th column of U.

Then, construct UST by taking si copies of the i'th row. Note that this submatrix

corresponds to selecting the only input/output modes that matter (i.e., the ones

where there are photons). The probability of observing xS is then:

I {Xs|UXTD 12 = |Per(UsT)12

In other words, consider an experiment where one starts with an input state

x T, defining the locations of the n photons in the m modes. Then, apply the unitary

transform U and measure the output xS. The probability of measuring a given output

xS depends on the Permanent of a submatrix of U.

A well-known result by Valiant is that the problem of exactly computing the

permanent of a matrix is #P-hard [167]. Using this result, Aaronson and Arkhipov

prove that approximating IPer(A)1 2 for A E R(nxn) is not possible in polynomial time,

since an oracle capable of this would result in being able to exactly compute Per(A'),

contradicting the proof that this problem is #P-hard.

Using this result, one can argue that the BosonSampling problem is hard generally

as follows. Assume that there is a fast BosonSampling algorithm. Then, embed an

arbitrary (real) n x n problem matrix in a larger m x m orthonormal matrix, and

run the BosonSampling oracle. This provides samples from a distribution whose

expectation value is the magnitude-square of the matrix permanent. The result of

[154], the estimation of this expectation value to within a multiplicative factor can

be computed in BPPNP. However, Valiant's result in [167] is extended by Aaronson
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and Arkhipov to show that such an approximation is in #P. Therfore P#P C BPPNP.

Then, the theorem of Toda implies that the polynomial time hierachy collapses to

the third level [163]. This is believed not to be the case.

Application of Linear Quantum Optics to PPUFs

This problem has well defined inputs and outputs, and therefore can readily be ap-

plied to a PPUF system. A PPUF interface has an input challenge and and output

response. Define the following protocol:

1. Construct a BosonSampling computer with internal unitary matrix U. Measure

U and publicly post it as the 'model'. Provision BosonSampling computer to a

prover.

2. A verifier picks a random xT, and uses the "model" U to compute a distribution

for xS. This computation is time-consuming, but feasible.

3. The verifier sends T to the prover and requests the distribution of S.

4. The prover uses its BosonSampling computer to compute a distribution of x.

Returns S.

5. The verifier determines if S is valid (by using the method of [154] to estimate

the actual permanent from this distribution) and that the prover responded

quickly enough to show that a model could not have been used.

Note that the calculation of the output distribution of S for a random T should

be asymptotically slower for a model than for the BosonSampling computer. A linear

quantum-optical system could sample from this distribution in polynomial time, while

a classical computer could not. The distribution of samples can then be verified by

the challenger.

However, the verification procedure does not run in expected polynomial time

(from [154], it is in the complexity class BPPNP). Further, the number of samples

required by the verifier to accurately estimate the matrix permanent (and therefore

verify that the BosonSampling computer is operating correctly) may also be exponen-

tial [154]. Therefore, even though each sample of the BosonSampling computer may

have some asymptotic speedup, the overall protocol must run in exponential time.
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As a result, there is no asymptotic speedup of the BosonSampling computer over a

classical adversary in this protocol. Any speedup must be a constant factor.

Further, there is a significant theoretical challenge with this approach outside

of the unproven conjectures put forth by Aaronson and Arkhipov. This is due to

the fact that the input state is random, and that in the PPUF usage model, the

challenge/response pairs are transmitted over an open channel. Therefore, multiple

challenge/response pairs could be observed by the adversary prior to an attack. An

adversary, given the distribution of S for a given T, might be able to compute S' for

T' if T and T' are "close enough."

To understand this potential vulnerability, recognize that a randomized input

corresponds to a randomized allocation of photons in the input modes. This in turn,

corresponds to a different UST described above. The output distribution depends on

Per(UsT). Now, consider two input challenges T, and T', where T' differs from T by

only one photon placement. UST is therefore highly related to USTI. In fact only one

row and one column would differ. Therefore, it is not clear that if an adversary is

given Per(UsT), that computing Per(UsT') is still difficult.

The difficulty of this "Differential Permanent" computation has not been investi-

gated, and is currently an open problem.

In addition to the above theoretical challenge, it turns out that the experimental

challenges associated with constructing such a PPUF using the BosonSampling prob-

lem render the approach intractable. To understand why this is the case, one needs

to understand the scale needed from a BosonSampling computer in order to be useful

as a PPUF.

First, Ryser's algorithm [30] solves the matrix permanent problem in O(2n+1n 2 )

for a matrix with dimension n. This sets a lower-bound on the number of photons

required for an implementation of BosonSampling that would be faster than a CMOS

implementation of Ryser's algorithm. Assigning n = 20 (20 photons) corresponds to

800 million floating point operations. This would correspond to a CMOS computation

time on the order of seconds. This order of computation time would be required to

distinguish a linear quantum optical device from a model in the presence of network
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latency on the order of 100ms. Therefore, one would likely need at least 20 photons

for the systems to be distinguishable through timing.

Next, one can only measure single photons, so it is desirable to have high prob-

ability of only outputting one photon per mode. This translates to a requirement of

Q(n 2 ) modes (n = 20 -+ m = 400). If one could accept multiple photons per mode,

smaller m values might be acceptable. However, it remains unproven whether the

BosonSampling problem remains hard with m = O(n). Finally, note that since the

input is random, all m input and output modes are equally likely.

In summary, at least 20 photons across 400 modes would be needed with a unitary

matrix U having sufficient complexity to make all possible input challenges difficult

to compute.

Unfortunately, generating identical photons is still a major technical hurdle. Cur-

rently, cutting edge methods are able to generate 3 identical photons [29, 161]. How-

ever, the approach in [161] is also probabilistic, and the probability of generating

three identical photons is low. It is also true that the probability of generating n > 3

photons decreases with n. It is not clear whether the probability of generating n

photons will be exponentially suppressed. As shown above, a PPUF implementation

would require at least 20 photons before any speedup over classical computers would

be observable when accounting for network latency. It does not appear that such a

goal is feasible in the foreseeable future.

In addition, it is not clear that the matrix U can be randomly generated in the

means required by a PPUF (similar to manufacturing variability). There is currently

no known way to manufacture a device with a corresponding U matrix with the

size and complexity required for PPUFs. Current experiments have created simple

systems, and there is no clear path to constructing complex systems in this manner

that would meet PPUF requirements.

Conclusion

Basic calculations show that for a physical implementation of quantum linear optics

to work as a PPUF and have measurable speedup over a classical system, at least 20
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identical photons would have to be generated. This is not feasible in the foreseeable

future, so one concludes that quantum linear optics cannot serve as a PPUF platform

in the foreseeable future.

Remembering that universal quantum computation is not currently experimen-

tally feasible for a sufficient number of qubits, Quantum Linear Optics represented

arguably the best, most plausible approach to PPUF implementation using quantum

systems. Although BosonSampling is a relatively new area of study, the technical

challenges associated with it are in many ways less demanding than those for general-

ized quantum computational applications. Therefore, one concludes that a practical

PPUF application will not be able to leverage quantum speedups in the foreseeable

future.

5.7.2 Classical Origins of Computational Speedup

Potential PPUF systems leveraging quantum technologies are likely to remain infea-

sible experimentally for the foreseeable future. With this in mind, one can consider

classical systems that may provide the required PPUF functionality.

However, with the transition to classical implementations, one must acknowl-

edge a fundamental paradigm shift in the expectations for potential speedups. The

Classical Complexity-Theoretic Church-Turing Thesis claims that a classical system

can in general be simulated efficiently by a classical computer (e.g., CMOS). There-

fore, one should not expect the kind of exponential speedups observed in quantum

systems. Moreover, one should recognize a causal relationship between "computa-

tional speedup" and "simulation difficulty." Therefore, to identify potential classical

speedups, it is logical to study systems that are known to be difficult to simulate.

Note that the converse is not true - there are systems that are difficult to simulate

for reasons other than the existence of some computational speedup. For example,

chaotic systems do not represent a computational speedup, but they are difficult to

simulate because noise and simulation errors are amplified.

Of the systems observed in this thesis, computational speedup can in general be

derived from two different, independent aspects of the physical system: internal par-
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allelism and the speed of internal system dynamics. These two concepts are discussed

in general below, but will be explored in the context of real physical systems later

when a physical PPUF system is proposed.

First, consider physical systems that "compute quickly" because they leverage

the massive internal parallelism of physical processes. For example, recognize that

classical systems can be described by partial differential equations depending on local

values (Maxwell's Equations, Lagrangian/Hamiltonian Mechanics). In general, mod-

eling approaches to this type of system make use of this local behavior by imposing a

finite grid/mesh (e.g., Finite-difference time-domain - FDTD, finite element method

- FEM). The difficulty of modeling the system is then derived from the fact that a

single or small number of CPUs must simulate each of these mesh nodes.

In this sense, such physical systems merely trade the polynomial factor in time

complexity to the same polynomial factor in space complexity. One should recognize

that the time-evolution of state at each of the mesh points can be computed in parallel

with each other requiring communication only between adjacent mesh nodes. Clearly,

in such a fully parallel model, no asymptotic speedup can be achieved because each

'simulation step' requires constant time by the physical system, and by definition only

constant time by the model.

Note of course that massive 3D parallelism of 1,000,000+ CMOS computational

cores is not currently feasible, so such an "ideal" modeling approach described above

is not feasible and may represent a "speedup" of sorts. However, this "speedup" is

more difficult to quantify and bound. This is for two primary reasons.

First, many of the limitations in parallelism of computational structures result

from communication latencies, energy dissipation, and other architectural problems

that are not fundamental to the technology of the underlying computing substrate

(e.g., CMOS). Better computational architecture could dramatically change these

capabilities.

Second, massively parallel systems are generally reduced to high-order differential

equations via FDTD and FEM methods via the definition of a discrete mesh. A

current, active area of research is in the field of model order reduction, which approx-

102



imates the above high-order system by lower-order systems [143, 127, 27, 38, 144].

Excellent progress has been made over the past few decades. However, there does

not appear to be any existing theoretical methods for bounding in general how well a

given system may be approximated by lower order models or in identifying "optimal"

lower order models for approximation.

Therefore, using massive internal parallelism as a physical origin of speedup will

be problematic, as there does not appear to be a strong mathematical foundation

justifying the architectural limitations of parallel digital processing.

In contrast to those systems that compute quickly due to parallelism, there are

many systems that "compute quickly" because they have fast internal dynamics.

Note that these two options are not mutually exclusive. However, consider a system

that is entirely sequential in nature (e.g., a system described by a single ODE).

Simulating such a system becomes less about optimizing a parallel architecture, and

more about comparing the simulation step computation time to the time evolution

of the physical system.1 As above, an asymptotic speedup isn't possible. However,

if the time evolution of the system is fast enough with respect to the fundamental

components of CMOS, then this constant factor speedup can be bounded.

This approach is more tractable, because the point of comparison is the individual

simulation step. For the model, this simulation step would be computed by a com-

binatorial circuit or analog circuit corresponding to the fundamental mathematical

operations associated with the simulation step. These mathematical operations are

fundamental units of computing architecture (i.e., an adder or multiplier). These

units have been heavily studied and optimized in analog and digital domains. As

such, their performance is bounded entirely by CMOS fabrication capabilities and

are therefore much less likely to dramatically change.

In conclusion, I claim: The PPUF hardware internal dynamics must be faster than

the dynamics of the CMOS model.

There are a few caveats to this particular criterion, which are discussed and formal-

'Still, one must show that you can't parallelize the problem in time (i.e., parallelize the com-
putation of intervals [to, t 1 ), [ti, t2 ), .. .) across multiple processors and combine with some post-

processing.
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ized in the following chapter. First, some sequential operations may be parallelized in

time. E.g., consider an initial value problem for a linear differential equation evolving

from time t, to tf. Although the system evolves only in time, the linear nature affords

the system an impulse response at each point in time. One can then parallelize this

problem by computing n impulse responses of length (tf - t,)/n across n processors

and combine the impulse responses in a log n-depth tree.

Ultimately, it will be seen that the enforcement of sequential computation must be

based on a conjecture. This is due to the fact that the above problem is deeply related

to the comparison between the class of log-depth circuits NC, and polynomial time

algorithms P. The question of whether NC = P is currently a major open problem

for the complexity community.

Finally, note that the comparative notion for hardware internal dynamics is also

not formalized above. This is also addressed mathematically in the following chapter.

5.8 Informal Criterion 3:

Mathematical Origin of Speedup

The final criterion pertains more abstractly to the mathematical problem of simu-

lating the physics of the PPUF hardware. In particular, this criterion states that a

general-purpose discrete processor cannot use some structure inherent to the PPUF

problem to achieve an asymptotic speedup over the PPUF hardware.

The PPUF hardware will evolve in time according to some set of differential equa-

tions. The abstract mathematical problem can therefore be reduced to the simulation

of these differential equations. 2

In essence, Criterion 3 places an asymptotic lower bound on the complexity of

modeling the differential equation.

To understand how to show this bound on complexity, first consider an example

that fails. Consider the differential equation y'(t) = -y(t) with closed-form homoge-

neous solution y(t) = c exp(-t). In this example, the output of the PPUF hardware

2The ODE must be non-chaotic and stable.
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would be y(t). Therefore, to compute the output at time t, the PPUF hardware

would require time t. However, a model can compute this value in asymptotically less

time. This is due to the fact that exp(t) can be numerically approximated at time t

in O(log(t)) by using repeated squaring for the integer component of t and using a

precomputed interpolation of exp(t) for 0 < t < 1 for the fractional component of t.

This example differential equation would fail Criterion 3 because the function exp(t)

can be evaluated numerically sublinearly in t.

An example of a differential equation that does not fall into the trap of the example

above is the Bessel equation (for some argument and precision requirement). The

best-known algorithms for computing the Bessel function Jo(t) are super-linear in

t.3 The fundamental difference between these two examples is that the former can be

represented "in closed form." Mathematically speaking, it is a "Liouvillian Solution."

Differential Galois Theory is the field of identifying differential equations whose

solutions can be represented in closed-form. In this thesis, this theory provides a

succinct set of criteria for defining when a differential equation has a closed-form

solution and when it does not. This theory will be used to provide strict criteria for

the differential equation to ensure that it does not have closed-form solutions.

Before proceeding further, one can now impose an additional restriction on the

class of differential equations that could be used to describe the PPUF hardware.

First, recognize that ODEs can be linear time-invariant, linear time-varying, or non-

linear. It is well known that linear time-invariant differential equations all have closed-

form solutions in terms of the matrix exponential. Therefore, one can rule this class

out. Second, while non-linear equations provide the most complex behavior, there is

also very little structure to their classification. Therefore, Differential Galois Theory

does not extend into the theory of general non-linear differential equations. One can

conclude therefore, that although nonlinear equations have rich, complex behavior,

current mathematical tools are not sufficiently well developed to provide adequate

confidence in the difficulty of simulating non-linear differential equations.

For the above reasons, one is restricted to considering linear time-varying differ-

3Ignoring pre-computation, and only for small arguments and high precision.
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ential equations. For a large subclass of these differential equations, the criteria put

forth by Differential Galois Theory can be described by an algorithm - the Kovacic

Algorithm [90, 142]. Using this algorithm, one can provide a further restriction on

the class of differential equations that can be used for PPUF systems. This analysis

is presented in Chapter 8. It is seen that the Kovacic algorithm by itself does not

provide sufficient criteria for a differential equation whose model requires G(tf - t,)

steps. There are other workarounds that need to be addressed.

Once it is shown that no closed form solution can be used to exactly or ap-

proximately represent the output of the differential equation, this thesis presents a

fundamental conjecture on which PPUF security will be based (Conjecture 8.4.1).

Informally, this conjecture states that a differential equation with no exact or approx-

imate closed form solution is best approximated using algorithms with local knowledge

of the ODE (e.g., the RK4 integration method). This thesis provides empirical evi-

dence for this conjecture by observing the history of study of differential equations and

the fact that even after this multi-century long study, optimal numerical algorithms

still use analytic continuation.

Finally, one needs to bound the step size of the analytic continuation algorithm

to show that it requires e(tf - t,) steps to reach the system state at time tf. Because

I assume that the expansion algorithm has only local knowledge of the ODE in the

conjecture, and it is required that this expansion algorithm be computable in finite

time, recognize that there is some maximal expansion order kmax that is always greater

than the expansions used by the numerical integration algorithm. Using this bound,

recognize that the expansion algorithm does not know of the behavior of the ODE

at all times, and therefore by an information theoretic argument cannot compute the

solution of the ODE for all time. By analyzing this property formally using differential

entropy, a maximal step size can be shown.

With this in mind, Criterion 3 can be stated: The computational problem that

the PPUF hardware solves must have the property that any digital circuit has an

asymptotic lower bound on time complexity of e(tf - t,).

In conclusion, these three informal criteria represent sufficient conditions to show
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that the PPUF hardware will be faster than its model by a constant factor. In

Criterion 1, it is recognized that the "computational problem" being solved by the

PPUF should be the time evolution of the PPUF hardware according to its physical

laws. In Criterion 2, it is shown that the PPUF hardware should be classical in

nature, it should have internal dynamics that are faster than CMOS, and that the

PPUF problem should not be parallelizable. Finally, Criterion 3 requires that there

is no asymptotic speedup for a general-purpose digital processor.

A PPUF system that meets these three criteria will meet the fundamental the-

oretical PPUF requirement that any CMOS model will always be slower than the

PPUF hardware.
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6 - Mathematical Preliminaries:

Symbolic Computation

Differential Galois Theory addresses the question of which ODEs have closed form

solutions, and how to compute these solutions symbolically. Differential Galois theory

identifies closed-form solutions to ODEs in the same way as traditional Galois theory

[12] identifies radical solutions to polynomials. Indeed, Differential Galois theory is at

its core an application of traditional Galois theory to a differential field, which can be

thought of as a class of ODE operators. Therefore, I first introduce several differential

algebra concepts. All material covered in this section is based on the treatment in

the cited sources [88, 149, 101, 79, 41, 35, 140, 46].

Note that Differential Galois Theory is only maturely developed for the class

of linear time-varying differential equations (LTV ODEs). In addition the Kovacic

algorithm only works for LTV ODEs with coefficients that are fractional polynomials

in the indeterminate. Therefore, I restrict the class of differential equations considered

for use in a PPUF to this subclass, as differential equations outside of this class

in general do not appear to have a sufficient theoretical framework to provide the

required guarantees that no closed-form solution exists.

6.1 Differential Galois Theory

Definition 6.1.1. A differential field k is a field equipped with a derivation operator

o : k -+ k that obeys the following property:
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1. 4(a + b) = a(a) + (b) Va, b E k

2. O(ab) = (a)b + aD(b) Va, b E k

The definition of a differential ring and ideal is similar. Note that the field/ring/ideal

must be closed under the derivation operator.

For the sake of this work, only fields of characteristic 0 will be considered (fields

of higher characteristic do not correspond to physical systems of interest, and the

Differential Galois theory is not as mature). Therefore, we consider that the base field

will always be the complex numbers C with the derivation operator 0(a) = OVa E C.

Note that it will be important that the base field is algebraically closed.

6.1.1 Picard-Vessiot Extensions

Differential Galois Theory uses sets of "extensions" to this base field as a way of

characterizing solutions to differential equations. To understand this, consider how

to represent differential equations in the above language of differential algebra. A dif-

ferential equation over the field k is represented abstractly as a "differential module."

Definition 6.1.2. A differential module consists of an element Mn is an n di-

mensional k-vector space equipped with 9 : M -+ M which obeys the property:

a(fm) = f'm + fo(m) Vf E k,Vm E M.

More concretely, if Mn has dimension n, then it has a basis of ej, with i E [n].

One can then represent any Mn by how a acts on its basis:

aej = - Ej ajje

Note that the minus sign is of historical significance and is of no importance.

The matrix A = (aij) with each aij E k Vi, j completely defines the behavior of

Mn. Next, one defines y = (yi, ... , yn)T E k" where 1 extends to matrices/vectors

component-wise. Finally, the differential equation can be represented as:

y = Ay

Of course, one could always pick a different basis for the vector space defined by

Mn. Therefore, any B = AC, C E GL (k) is also in Mn(k). Going forward, only a
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single basis needs to be considered, so a differential module M" can be thought of as

equivalent to a matrix A that defines the differential equation as shown above.

Next, one can consider the solutions to the differential equation as a vector space

as well:

Definition 6.1.3. Let R be a differential ring containing the differential field k. Let

A e Mn(k). An invertible matrix F E GLn(R) is a fundamental matrix for equation

y' =Ay if F' = AF.

Once again, more concretely, F can be thought of as a set of possible solutions to

the differential equation. Note that the elements of F are in R, and not necessarily in

the underlying field k. This is because the solution to the differential equation may

not exist in the underlying field k. For example, if k = C, and the differential equation

is y' = -y. The solution e-t V C. (Note that t is the 'independent variable' here. In

the formulation of differential algebra, one can abstractly discuss differentials without

ever describing the independent variable. Rather one can think of e-t as some a E R

such that Da = -a without ever worrying about t).

Regardless, the solution is not in k = C, so one must extend the field k to include

the solution. More generally, one can say that for many differential equations, the

associated fundamental matrix F GLn(k).

Definition 6.1.4. A Picard-Vessiot ring over k for the equation y' = Ay is a differ-

ential ring R over k satisfying:

1. R is a simple differential ring (the only proper differential Ideal is {0}).

2. There exists a fundamental matrix F for y' = Ay with coefficients in R.

3. R is generated as a ring by k, the entries of a fundamental matrix F, and the

inverse determinant of F.

Concretely, this means that the Picard-Vessiot ring contains all of the solutions

of the differential equation and is minimal (i.e., it doesn't contain any redundant

solutions. If redundant solutions were contained, then dividing them would generate
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an extra constant value, which would then form a differential ideal when combined

with other constants).

Example 6.1.1 Let the base field be F = C(x) equipped with differential D such

that D(c) = 0 Vc E C and D(x) = 1. Compute the Picard-Vessiot extension for

y" = y.

Solution. The above differential equation is a simpler example because the solution

can be represented in closed form as exp. A complete set of solutions of the above

differential equation is [exp(x), exp(-x)].

Now, consider the field extension E D F, where E = F [exp(x), exp(-x)]. Because

exp(-x) is the inverse of exp(x), the above extension is already a field (i.e., it is

already the field of fractions of exp(x)). Clearly it contains all of the solutions of

y = y. Finally, recognize that it does not add any new constants. A proof can

be found in both [149, 101]. However, the intuition is that the extensions exp(x),

exp(-x) cannot be used to derive any new constants because the only way that

exp(x) can be combined with any other elements to obtain a constant is through its

inverse, exp(-x).

Therefore, the Picard-Vessiot extension of y" = y is E = F(exp(x)). 4

Definition 6.1.5. A Picard-Vessiot field for a differential equation is the field of

fractions of the Picard- Vessiot Ring for the same equation.

Now that the Picard-Vessiot field has been defined, this field can be understood as

a field extension of the base field. For example, with the base differential field F = C

(with a(c) = 0 Vc E C), and a Picard-Vessiot ring C [x] where 9(x) = a with a E C.

Let E be the field of fractions of F, and therefore be the associated Picard-Vessiot

field. One can now think of E D F as a field extension and apply the notions of

Galois theory.

6.1.2 Differential Automorphisms

Remember that the above field is defined such that it is the minimal field extension

such that all of the solutions of a given differential equation y' = Ay exist within the
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new field. Therefore, one can logically think about the degree of the field extension

as the dimension of the vector space containing the solutions. In the case of a n'th

order differential equation, this corresponds to an n degree vector space. One can

intuitively see this based on the fact that any general n'th order differential equation

requires n initial conditions to provide a unique solution. Therefore, there are n

parameters that can be modified.

Definition 6.1.6. Let E D F be a differential field extension. The set Gal(E/F)

of automorphisms a : E - E such that a(&(a)) = D(o(a)) Va E E and a(a) = a

Va E F is called the Differential Galois Group of E over F. The group operator is

the composition of the automorphisms. As above, the group is denoted Gal(E/F).

A key feature of the Differential Galois Groups is that any given element a E

Gal(E/F) can be represented as an element of GLn(C), where n is the dimension of

the extension (equivalent to the order of the differential equation) and C is the set of

constants in F. Note that by the definition of a Picard Vessiot field, C must also be

the same set of constants in E as well. For the purposes of this discussion, C = C.

Before this discussion, recognize that a complete set of solutions to a differential

equation is represented by a fundamental matrix F such that F' = AF. Clearly, right

multiplication by any M E GLaC does not affect the validity of the solution: (FM)' =

AFM. It can be shown that this represents the complete set of fundamental matrices

(i.e., the solution space is linearly independent over the constants). Therefore, if one

considers -(F), it can be seen that cr(F)' = o(F') = a(AF) = Ao-(F). Therefore,

c(F) is still a fundamental matrix. Therefore, the o- operator can be represented as a

right-multiply by a certain constant matrix. It is clear, therefore, that G = Gal(E/F)

can be represented as a subset of GLn(C).

Note that although the above matrix representation holds, the restrictions on

the possible automorphisms does not come from finding the subset of M such that

(FM)' = AM. This is true for all M E GLn(C). Rather, the restriction is that for

each e C E, c-(e)' = c-(e'). In addition, the automorphism must leave the base field

fixed elementwise and preserve the 'solution' space V where E = F (V). The purpose
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of recognizing that G C GL,(C) is to restrict the possible set of groups for G to take

and to direct and understand how G is composed. In doing so, it will be shown that

this group structure will determine whether or not the solutions will be representable

in closed form.

The first step is to recognize that G must in general be isomorphic to an algebraic

subgroup of GL.,(C). This is proved in [149] and a proof sketch is given below. An

algebraic subgroup of an algebraic group (like the differential Galois group) is called

a Zariski closed subgroup.

Definition 6.1.7. A subgroup K of GLn(C) is an algebraic group if there exist a

finite number of polynomials P1 , P2 ,... Pm where each Pi E C [X1 .... Xn2] such that

a matrix (xij) is an element of K iff P(x1, x1 ,2, -n,n) = 0 for 1 < i < m.

This can be seen intuitively as follows. Recall that the Picard-Vessiot field E D k

for a differential equation described by y' = Ay is given by the fraction field of

R = k [x,j] [ ] /q, where F = (x%,j) and det = det(F). Also, q is a maximal

differential. ideal of k [xj] [].
Recall from above that differential ideals of the above ring represent 'redundancy'

in the solution. Magid proves that, if the base field k is algebraically closed (which

it is in this case, C = C), then the existence of a differential ideal implies the ad-

dition of new constants [101]. By taking the quotient group, these 'new' constants

are effectively assigned to existing constants. In doing so, this means that any k-

automorphism must fix all elements of the ideal, since the quotient group 'assigns'

them to values in k, and k is fixed elementwise. Specifically stated, V- E G, c-(q) C q.

To see what requirements this defines, let q,.... q, denote the generators of the

differential ideal q, and let {ei} be a C-basis of R. This means that the initial

requirement u(qj) mod q = 0 can be expressed as a finite sum E C(M, i, j)ej = 0.

M E GLn(C) is the matrix corresponding to the automorphism a. C(M, i, j) E C

are constant coefficients depending on M, indexed by i, j. Thus, the finite set of

equations is given by {C(M, i, j) = 0}j. Therefore, a- is an algebraic subgroup of

GLn(C).
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This general fact is about all that can be said about the n'th order general case.

More specific work can be performed if certain assumptions are made or if a certain

differential equation is given.

Example 6.1.2 Above, the Picard-Vessiot extension for y" = y is calculated as

E = F(exp(x)) where F = C(x) with the normal derivation operator D. Now,

calculate the group Gal(E/F).

Solution. Remember that the condition for the differential Galois group above is

that it must commute with the derivation operator. That is, for a E Gal(E/F),

c(x)' = a(x') Vx E E. The set [exp(x), exp(-x)] represents a solution basis (each

element is linearly independent). Therefore, one can consider the operation of a E

Gal(E/F) on exp(x) and exp(-x) and recognize that since a is a field automorphism,

that the remaining add/multiply operations follow.

Specifically, remember that for a second order differential equation, Gal(E/F) C

GL 2((C)). Therefore, the following can be considered to be true without loss of

generality:

o(exp(x)) = a exp(x) + b exp(-x)

a(exp(-x)) = c exp(x) + d exp(-x)

where a, b, c, d E (C). Now, consider the differential commutation property for

the first equation above:

a(exp(x)') = o-(exp(x)) = a exp(x) + b exp(-x)

This must equal:

a(exp(x))' = a exp(x) - bexp(-x)

Therefore:

a exp(x) + b exp(-x) = a exp(x) - b exp(-x)

This implies that b = 0 and a is unconstrained. Doing the same for the second

equation results in c = 0 similarly. However, recognize that a must maintain the

algebraic properties of the field. Therefore, one can establish a relationship between

a and d by recognizing that exp(-x) = exp(x)- 1 . Therefore, a = d- 1. Therefore, the

Galois group can be represented by:

114



a 0
E ( a-) s.t.a EC

Example 6.1.3 Calculate the Picard-Vessiot extension and associated differential

Galois group for the differential equation y" = -2y.

Solution. The above differential equation has a solution space [x 1/ 3 22/3]. There-

fore, one can immediately recognize the Picard-Vessiot field extension as E = F(x1/3 )

using the same intuition as in the previous example. Once again, this is not a formal

proof.

To compute the automorphism group the same approach is used. Assign o(xi/ 3 )

ax1 / 3 + bX 21 3 and a(x 2/ 3) = cx1/ 3 + dx2 / 3 . Recognize that u(x)' = u(x'). Applying

this to the two above linearly independent solutions and simplifying results in the

following two equations:

(d + IX- 1/ 3 ) (a + bx 1/ 3) 1

(2b + ax- 1/ 3) - (c + dx1/ 3 ) 1

Now, since the right hand side does not depend on x, this translates to four

non-redundant equations:

da+ ' = 1

db = 0

ca = 0

2bc+ad = 1

This corresponds to b = c = 0 and a = Therefore, one can conclude that the

differential Galois group for the differential equation y" = -gy is:

a 0( ) s.t.a E C

(0 a-- )

This is the same group as the previous example.
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6.1.3 The Differential Galois Correspondence

Now that the general structure of differential Galois groups is better understood, the

differential Galois correspondence can be stated. This correspondence is analogous

to the traditional Galois correspondence in the case of polynomials.

This process begins by recognizing that g E Gal(E/k) leaves any ideal q invariant.

Therefore, define Z = max(R) where R is defined as above (Note: max(X) is the set

of all maximal ideals of X). It is also shown in [149] that Z is a reduced, irreducible

subspace of GLa(k) := max(k [Xij, i]. Therefore, g C GL,(C) such that Zg = Z.

Note that multiplication on GL,(k) induces the morphism m : Z x c G -+ Z given by

(z, g) -+ zg. This morphism is also a group action when considering multiple gi E G.

Using this fact, it is also proved that the morphism Z x c G - Z x k Z given by

(z, g) -+ (zg, z) is an isomorphism of affine varieties over k. This is the definition of

a torsor, so one has that Z is a G-torsor over k.

One recognizes that if Z is a G-torsor over k, extensions to k affect the properties

of Z. Specifically, if Z contains a k-rational point p (denoted Z(k) = 0), then the

relationship between Gk and Z collapses to Z = pGk, and Z is called a trivial torsor.

Through some work, one can prove that a finite extension of k will result in the torsor

becoming trivial, and the transcendence degree of this extension is the dimension of

G. In addition, one finds that if H is a subgroup of G with algebraic closure H, then

EH = k if and only if H = G. Note that EH is {e E E: -(e) = e V- E H}.

Thus, one begins to build a correspondence between the differential Galois groups

and the associated differential field extensions in the same way as traditional Galois

theory. The following Galois correspondence can be established (proof in [149]):

Theorem 6.1.8. Let y' = Ay be a differential equation over k with Picard- Vessiot

field E and let G := Gal(E/k). Define two sets:

S := the closed subgroups of G

L :the differential subfields M of E containing k.

Define a : S -+ L by ao(H) = EH, the subfield of E consisting of H-invariant

elements.

116

--- - I I - - I I



Define 3 : L - S by /(M) = Gal(E/M), the subgroup of G consisting the M-

linear differential automorphisms.

The following properties hold:

1. maps a and , are inverses of each other.

2. The subgroup H E S is a normal subgroup of G if and only if M = EH is

invariant under G as a set. If H E S is normal, then the canonical map

G -+ Gal(M/k) is surjective and has kernel H. Moreover, M is a Picard-

Vessiot field for some linear differential equation over k.

3. let Go denote the identity component of G. Then EG D k is a finite Galois

extension with Galois group G/GO and is the algebraic closure of k in E.

6.1.4 Liouvillian Extensions

The above differential Galois correspondence allows the study of the forms of solutions

of differential equations in terms of the group structure 6f the associated differential

automorphisms of the field extension. In particular, it can formalize the notion of

'solving a linear differential equation in finite terms'. This type of solution would be

a algebraic combination of exponentials, integrals, and radicals.

In particular, these 'closed form' solutions are represented as elements of 'Liouvil-

lian Extensions' to the original differential field. Consider the following definition:

Definition 6.1.9. The differential field k with an algebraically closed field of constants

C is extended to K C k. K is called a Liouvillian Extension of k if there exists a

tower of fields k = Ko C K1 c ... c Kn = K such that Ki = Ki_ 1(ti) for i = 1, .. , n

where one of the following is true:

1. t' E Ki_ 1. This means that tj is an integral of an element of Ki_ 1 .

2. t'/ti E Ki_ 1. (Note t # 0). In this case, tj is the exponent of an integral of an

element of Ki_ 1 .
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3. t is algebraic over Ki_ 1 . In this case, tj is a radical of one of the elements of

Ki- 1 .

Using this definition, one can state the primary result of Differential Galois theory

as it pertains to closed-form solutions to differential equations:

Theorem 6.1.10. Let E be a Picard-Vessiot extension of k with differential Galois

group G. The following are equivalent:

1. Go is a solvable group.

2. E is a Liouvillian extension of k.

3. E is contained in a Liouvillian extension of k.

A full proof of the above is given in [149, 101]. At a high level, one can show

(1) ==> (2) by invoking the Lie-Kolchin theorem, which states that the solution

space V C E has a basis yi,... , y, over C such that Go C GL(V) consists of upper

triangular matrices with respect to the defined basis. One uses induction, showing

how to incorporate yi as a field extension and then recognizing that one can do this

iteratively through all yi.

There are two cases: yi E ko and yi ko. If yi V ko, and yi ko, then because Go

is upper triangular, there exists some constant c(-) for a E Go. Therefore, one can

write -y1 = c(o-)yi, so therefore !' E ko. Now, consider the extension E over ko(y1).

The associated differential Galois group is a proper subgroup of Go.

Note that if yi V ko, but y1 E ko, then a standard algebraic extension as per

traditional Galois theory suffices, and one can iterate on the remaining yi.

If yi E ko, then a different approach is required. Consider the representation

where the original differential equation L(y) = 0 has the form y(n) + - - - + aoy(0 ) = 0.

Consider L(yyi). Since L(yi) = 0 and L is linear, L distributes over y and yi to

have the form bay(n) + - - - + b1y( 1) + boy(0) = 0. Because L(y1) = 0, one knows that

bo = 0. Now, consider the differential equation M(f) = bnf("- 1) + - b1f = 0. The

associated solution space in K is Er C W ' where i = 2,..., n. This space becomes
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the solution space for the next step. It has all of the properties of the original solution

space, except now the basis terms are tj = ( . This induces an integration.

Next, one can show that (3) == (1) by considering a Liouvillian extension M =

k(t1,..., tin) containing E to show that G' is solvable. One breaks the extended

field E C M into individual extensions. Specifically, consider K(ti) as the field

generated by solutions of L(y) = 0 over k(ti) and their derivatives. The associated

Galois group H = Gal(K(t1)/k(ti)) is a closed subgroup of G. The invariant field

KH = K(t1 )H n K = k(ti) n K. Note that K is also the Picard-Vessiot field of

solutions for L(y) = 0 over k(tj) n K. Therefore, the associated Galois group with

this subfield extension is H = Gal(K/k(ti) n K). One can iterate this method over

yi. As long as the extension associated with each y, is solvable, the maximal group

H' is also solvable.

Now, consider the possibilities for each extension tj:

1. If k(t1 ) n K = k, then H = G.

2. If k(t 1 ) n K 5 k, then there are several possibilities:

(a) If t1 is algebraic over k, then clearly k(tj) n K is also algebraic over k and

lies in the fixed field KG. Therefore, H0 = G".

(b) If t1 is a transcendental extension where:

i. t' = a E k*, then t1 is an adjunction of an integral, which can be shown

to be associated with the differential Galois group Ga,C, the additive

group over C. This group only has trivial algebraic subgroups and is

abelian and is therefore solvable.

ii. tI/t1 = a E k*, then t1 is an adjunction of an exponentiated integral,

which can be shown to be associated with the Galois group Gm,c, the

multiplicative group over C. The only non-trivial closed subgroups of

Gm,c are the finite groups of roots of unity. Hence, k(t1 ) n K will be

of the form k(td) for integer d > 1. This implies that the associated

G0 is solvable.

Therefore, as shown above, Liouvillian extensions represent the solution spaces of

differential equations that have closed-form solutions. Therefore, by determining the
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structure of the differential Galois group associated with the differential equation, one

can also determine whether or not the differential equation has closed-form solutions.

6.2 Kovacic's Algorithm

Although the above theorem suggests a clear path to demonstrating unequivocally

the existence/non-existence of a closed form solution for any differential equation,

there are several major difficulties. The first is that the above theorem requires linear

differential equations. There is not currently a general method of extending the above

theorem to nonlinear differential equations.

In addition, even for linear differential equations, the case is not clear cut. It

is not known how to find the Galois group associated with a differential equation

and determining its solvability property in general. This stems from the fact that in

general, the lattice of algebraic subgroups is difficult to describe.

However, by restricting the scope of possible differential equations, an algorithmic

approach arises that can solve large, relevant classes of differential equations. Specif-

ically, consider second order linear differential equations where the coefficients are in

C(t) (where t is the independent variable). E.g., f(t)y"(t) + g(t)y'(t) + h(t)y(t) = 0,

where f(t), g(t), h(t) E C(t).

First, one recognizes that the Wronskian of the solutions to a general second-

order linear differential equation is constant and therefore must be left constant by

all elements of the differential Galois group. Remember that the differential Galois

group is a subgroup G C GL2 (C). The requirement of leaving the Wronskian constant

translates to the requirement that G C SL 2 (C), the group of 2 x 2 matrices with

determinant one.

It has been shown that for the above type of differential equation, the possible

Galois groups can be restricted to one of four categories [88]. Kovacic then used these

four categories to show that there can only be four classes of solutions to second order

differential equations of the above form [90].
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Theorem 6.2.1. The differential Galois group1 G of the equation: y"(t) = r(t)y(t)

for r(t) E C(t) is an algebraic subgroup of SL2 (C) of one of the following four forms.

1. G is triangularizible (can be made into upper/lower triangular matrix by basis

transformation) such that the differential equation is reducible and has a solution

of the form efw where w E C(t).

2. G is imprimitive (for SL2 (C), will have 2 eigenvalues of the same magnitude)

and the above equation has a solution of the form efw where w is algebraic over

C(t) of degree 2 and case 1 does not hold.

3. G is primitive and finite, and the above equation has an algebraic solution of

the form efw where w is algebraic of degree 4, 6, or 12 over C(t). Case 1 and

2 do not hold.

4. G = SL2 (C), and there are no Liouvillian solutions to the equation. Case 1, 2,

and 3 do not hold.

Using this theorem, an explicit algorithm can be given that identifies closed-form

solutions to second order differential equations of this form where possible, and also

identifies when this is not possible [90, 142, 72, 151].

The first step is to recognize that the above differential equation:

ay"(t) + by'(t) + cy(t) = 0

can be reduced by making the transformation:

y(t) = z(t)e-f ad

'The "differential Galois group" is analogous to the traditional Galois group, and has the same
relationship to the root of the associated differential operator (i.e., solution of the ODE) as a tradi-
tional Galois group has to the root of the associated polynomial. This theory is described at length in
Chapter 1 of [149]. As in traditional Galois theory, if the differential Galois group is "solvable," then
the corresponding solution can be represented in closed form. Theorem 6.2.1 completely enumerates
all possible solvable differential Galois groups for second-order linear ODEs and their associated
closed-form solutions.
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such that the equation becomes:

1(t) - (b 2 - 2ab' - 2ba' - 4ac y(t) =0y 4a2

or, more concisely, y"(t) = ry(t) for r E C(t). Therefore, one can consider only

equations of this form without loss of generality. With this in mind, the above theorem

states that there must be an equation of the form 77 = efw. The algorithm uses the

following fact several times: The equation y"(t) = ry(t) has a solution of the form

q = ef iff w satisfies the Riccati equation W' + W2 = r [151].

6.2.1 The Kovacic Algorithm for Case 1

I do not include proofs of the necessary conditions. I show a proof of the algorithm

only for Case 1. Cases 2 and 3 are similar, and are discussed in [90].

For each of the three possible cases resulting in Liouvillian solutions, the associated

algorithm for determining a solution 1 is very similar. Below, the first case will be

discussed without proof for the purpose of gaining intuition- for the functionality of

the algorithm. Full details and proofs are available in the original work by Kovacic

and Saunders [90, 142].

In the first case, the most general solution can be described as Pefw = efw

for P E C(t). Let 0 = w + P. The method will be to determine the partial fraction

expansion of 9 by using the Laurent series expansion of 9 and r related by the Riccati

equation above. For example, if 0 has a pole of order v at c, the expansion around c

is:

v inf

0 =E ai a + E bit'
i=2 (t - c) t - c i=o

The "Component at c" is:

a Z ai a
[01c +' =I.-+-

i=- (t - C)i t -C

122



Let 0 be the remaining terms that are not in the component (of degree 0 and

higher in t).

Remember that the pole order at c must be 1,2, or an even integer greater than 2.

The algorithm calculates the "component" parameters at c in order to assemble the

partial fraction expansion of 0. Depending on the order of the pole, the algorithm

must use one of several methods.

If the pole of r at c is order 1, then [0], = 0 and the Riccati equation becomes:

a a2  Const

(t -c) 2  (t-c)2  t -c

Note that all of the terms in"- - - are of order tn for n > -1. In order for the

equation to hold, the t- 2 terms must cancel, meaning that -a + a2 = 0, or a = 1.

Therefore, all poles in r of order 1 have a corresponding term in the partial fraction

expansion of 0 with coefficient 1. Note that a 5 0 because if this were the case, then

the left-hand-side of the Riccati equation would not have a pole, and the right hand

side would, which is incorrect.

If the pole of r at c is order 2, then [O]c = 0 again, and the Riccati equation

becomes:

a a2 b 2

(t - c) 2  (t - c) 2  t - c

For the t- 2 terms to equal, it must be the case that -a+a 2 = b, or a = } 1+ 4b.

If the pole of r at c is even and order 2v > 4, then [0]c $ 0.

First, recognize that the Laurent series of xfi at c will involve terms 1/ti for i < v

and tP for j > 0.
a ConstDefine K/c. - _en,Define [ c + -. - + ") Next, define f = V - [/]c. Then, r =

[V/j] 2 + 2T[ /)] + -2. Plugging this into the Riccati equation yields:
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a 2a
( [0] - [N5]c) - Q0[1 + [VT]c) = 01 - [ (t + C2 -9 t' - C[0] - 20[0]

a2 -2a _2 + 2-r[Vr]+ T2
(t-c) 2  t-c

Both [9] and [fr]c depend only on 1/Pt for i from 2 to v. Note that the right hand

side of the above equation does not have any terms that depend on 1/Pt for i from

v + 2 to 2v. Therefore, the left hand side must equal 0. Therefore [9] = t[/]c.

Next, the right-hand-side coefficient of 1/tv+1 is va -F 2aa + b where a is the

coefficient of 1/t" in [/]c and b is the coefficient of 1/tv+ in r - [x]/2 . The left-

hand-side coefficient of 1/tv+ is 0, so one can conclude that a = 1/2(tb/a + v).

Therefore, if c is a pole of r with order 2v > 4, then the component of the partial

fraction expansion of 9 at c is:

t[V/'r-]c + 0where Z = + v
t-c 2 a

If r doesn't have a pole at c, then there still could be a pole in 9, but it must have

the following properties. First, [9] = 0 and -a+ a2 = 0 as in the first order pole case.

However, now the solution a = 0 is valid. Therefore, the partial fraction expansion

of 9 at c would be either 0 or 1/(t - c).

Next, collect the terms calculated thus far:

d

9= (s(c)[ ]c+ ac) +Z E + R
CEF t -C = t - di

Note that s(c) = +1 depending on which a is chosen (+ or -). The d singularities

at di are the singularities of 9 that are regular points of r. These are not determined

yet. These will be computed last, as they represent the P'/P term mentioned above.

The next step will be to compute R E C[t]. To do so, the expansion of r and 9 at
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t = inf will be considered in the same way as above. Consider:

0= R + "+ O()
t + j2)

There are three cases to consider:

If r has order v > 2 at inf, then r = O(). Therefore, the Riccati equation

becomes (for 1/t2 terms): -ain + a? = 0. Therefore ainf = 0 or 1.

If r has order 2 at inf, then r = + O(1), so the Riccati equation becomes:

-ainf + 2y = b. This implies that Coe = 1 1 4b.-Oi in+Cef 2 3

If r has order v < 2 at inf, then first recognize that by the necessary conditions

v is even. The argument is similar to the above argument for finite poles of higher

order. The same methodology finds

I b _R = [/r]inf, ainf = - -
2 a

where -2v is the order of r at inf, a is the leading coefficient (v'th) of [Vy]inf, and

b is the 1/tv+1 coefficient of r - [Vf]?i.

Therefore, it is now known that 0 has the form

d

0 = s(inf)[V'1linf + S s(c)[v' ]c + iiC) + St i
cEL='

Next, one recognizes that the coefficient of 1/t in the Laurent series expansion of

0 at inf is ainf. This must match the order of the terms in the equation, meaning

inf = d + Ecer a,. Therefore, one can find d

d = ainf - E ac E N
cEF

Note that if there is no d E N that satisfies this equation, then the set of a,

calculated will not work. If there is no set of oc such that such a d exists, then there

is no closed-form solution for case 1.
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To find the degree d polynomial P and complete the algorithm, remember that

0=w + P'P. Define w

9 = s(inf)[/]irtf + S s(c)[V'_]C+ C
CEF

and

d

P = f(t - di)
i=1

Plugging 9 into the Riccati equation again, one obtains:

P"+2wP'+(w' +w2 - r)P = 0

Since P is defined as a d degree polynomial, one can use the method of undeter-

mined coefficients to solve for P. If a P is identified, then 17 = Pef' = ef w+P'/P is

a solution of the differential equation since 9 = w + P'/P is a solution of the Riccati

equation. This completes case 1 of the Kovacic algorithm.

Similar approaches are used for the other two cases of the Kovacic algorithm.

The primary differences are that instead of the Riccati equation, other differential

equations are used based on the invariant of the Galois group according to that

particular case. This is used to construct a value similar to 9 observed above. Finally,

there is a more complex relationship between q and the new '0' value than above.

That having been said, the approach and intuition is identical to the above case.

6.3 Kovacic Algorithm Details

This work will use the Kovacic algorithm as a foundation to create an expansion

algorithm with the property that its "space of functions" (the set of functions that can

be returned by the expansion algorithm) is very large - the set of all possible functions

that are exact solutions to second order differential equations with coefficients in C(t).

At a high level, the expansion algorithm uses the Kovacic algorithm to translate
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the original ODE in terms of y(t) into a second, different ODE in terms of a different

dependent variable: an_1(t) (the reason for the choice of this variable name is given

later in this section). This second ODE in terms of an_1(t) has the property that if

the first ODE (in terms of y(t)) has a closed-form solution, the second ODE has a

solution where an_1(t) is a rational polynomial in t.

Consider the case this work is focused on - where the first ODE in terms of

y(t) has no closed-form solution. The corresponding a_1 (t) is therefore not in C(t).

However, one can use order (p, q) Pad6 expansion on a,_,(t) to compute some &,_1(t).

By definition, t,_ 1(t) is a fractional polynomial that matches a,_,(t) to order p + q.

Because of the direct relationship between y(t) and a_1 (t), the &n1 (t) can then be

used to construct an approximate (t), where (t) is a closed-form solution to some

second order ODE that approximates the original ODE. This is the essence of the

expansion described in Section 9.4 in a nutshell.

This section explores the relationship of the first ODE and its dependent variable

y(t) to the second, transformed ODE and its dependent variable an 1 (t). In particular,

the Kovacic algorithm is used to derive the second ODE from the first ODE.

The Kovacic algorithm [90] identifies closed form solutions of second order linear

differential equations with coefficients in C(t):

a(t)y"(t) + b(t)y'(t) + c(t)y(t) = 0

a(t), b(t), c(t) E C(t)

Note that equations of the above form can, without loss of generality, be written as

y"(t) = r(t)y(t) with r(t) E C(t) by transforming the independent variable y(t) =

Yi (t) exp( f Idx) as discussed in the previous section.

This algorithm represents a culmination of study of differential Galois theory in

that it enumerates all possible forms of a function that is a solution to a second order

differential equation with coefficients in C(t), and uses this enumeration to "match"

the correct solution. This algorithm rests on Theorem 6.2.1 [55].

Before continuing, recognize that Theorem 6.2.1 enumerates the space of possible
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functions that can be exact solutions to second order linear ODE's with coefficients in

C(t). These solutions will be of the form exp (f w), where w E C(t) or w is algebraic

of degree 2, 4, 6, or 12 over C(t). Note that 12 is the highest algebraic degree that W

can have. Define this class of functions to be "Kovacic closed-form":

Definition 6.3.1. A function f(t) is "Kovacic closed-form" (f(t) E K) if and only

if it is contained within the class of functions described in cases 1-3 of Theorem 6.2.1:

1. y(t) = efw, where w E C(t).

2. y(t) = ef, where w is algebraic of degree 2 over C(t).

3. y(t) = ef, where w is algebraic of degree 4, 6, or 12 over C(t).

The final step is to use the ODE and w to construct a second differential equation,

whose solution must be a rational polynomial if y(t) is a Kovacic closed-form function.

This final step is achieved by plugging the solution form in Definition 6.3.1 into the

second order linear ODE. This results in a differential equation (a Riccati equation)

involving w as the independent variable. The requirement that w be algebraic of

degree n over C(t) results in Proposition 6.3.2 (See Proposition 3 in [55]):

Proposition 6.3.2. For a differential equation y"(t) = r(t)y(t) whose solution is of

the form y(t) = ef , where w is algebraic of degree n over C(t), it is true that y(t) is

a solution to the differential equation if and only if w is one of the roots of

n-1

A (w, a, a n if e(t) o (6.1)
i=0 n- )

with the coefficients -d =ma_,.,1a)i some differential extension of C(t) de-
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fined by:

ai-= -1

= ~~-ja - (i + 1)(n-iair(t

a = 0

The critical part of Proposition 6.3.2 (not shown) is that one can combine the

equations for each ai into a single order-n ODE whose independent variable is an1 (t).

By the construction of Proposition 6.3.2, if the first ODE (in terms of y(t)) has a

solution of the form in Definition 6.3.1, then an_1(t) EE C(t). Note that the an_1(t)

term in Proposition 6.3.2 is the an_1(t) term mentioned at the beginning of this

section.

After deriving this second differential equation in terms of an_ 1 (t), the exact Ko-

vacic algorithm uses Laurent expansions at the singular points of r(t) to solve for

a._ 1 . This results in a solution that is in C(t) if it exists. However, if there does not

exist an exact closed-form solution to the differential equation, the algorithm simply

fails - there is no a,_,(t) E C(t) that solves the ODE.

However, as discussed at the beginning of this section, if the original ODE (in

terms of y(t)) does not have a closed-form solution, then one can use Pad6 expansion

on a._ (t) to calculate an approximate an_ 1 (t). Because Pade expansion by definition

results in a fractional polynomial, &n-1 (t) corresponds to some (t) that approximates

y(t), where Q(t) is a Kovacic closed-form function as in Definition 6.3.1.

In conclusion, the Kovacic algorithm provides a one-to-one relationship between

the Kovacic closed-form functions and the set of fractional polynomials. As a result,

using Pad6 expansion as a foundation, one can construct a new expansion in terms

of the Kovacic closed-form functions, a superset of the fractional polynomials.

One may now define the "Kovacic expansion" discussed further in Section 9.4.

129



Definition 6.3.3. Define a "Kovacic expansion" of y(t) at to of order k to be a

function that, for a given n (as defined in Proposition 6.3.2), is a (p, q) Pads expansion

for an_1(to), where p + q = k + n - 2, and an_1(t) is related to y(t) as in Proposition

6.3.2.

It is not yet clear why p, q, k, and n have the relationship stated in Definition

6.3.3. Informally, one must add n - 2 to k to compensate for additional derivatives

in the equation for an-, at higher values of n. This is shown in Lemma 9.5.1. Using

Definition 6.3.3, define the set of functions Kk:

Definition 6.3.4. The set of of functions that are Kovacic expansions (Definition

6.3.3) of order k are denoted Kk.

One final item of note is that the Kovacic algorithm has five possible cases: n =

1, 2,4, 6, 12. In the case where one is searching for exact solutions, one can eliminate

one or more of these cases with sufficient conditions. However, when there is no exact

solution and one is performing an expansion, there is no immediate reason why one

value of n should be preferable to the other. Therefore, one must consider all five

cases and compare the convergence properties of the Pad6 expansion of each an_1(t).
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7 - Circuit Complexity of Analog

Computing

Chapter 5 introduces three informal criteria for PPUF systems. However, the use of

complexity theory to formalize these criteria is non-trivial, as the PPUF hardware

in general is an analog physical system, obeying some set of ordinary differential

equations.

In order to proceed, recognize the PPUF hardware as an analog computer, and

the problem may be restated as comparing the complexity of analog computing versus

digital computing. This much more broad problem has implications well beyond use

in Public Model Physical Unclonable Functions. Therefore, this chapter and Chapter

8 proceed with dual purposes. I provide a theory supporting the security of a formal

PPUF construction. However, I also provide criteria for the speedup of more general

analog computing systems, and provide more intuitive description and justification

for the potential advantages of analog computing over digital computing for some

specific computational problems.

7.1 Introduction to Analog Computation

Although analog computation has been in use far longer than digital computation,

digital computation has become ubiquitous in the modern world, while analog compu-

tation is effectively nonexistent. The reasons for the superiority of digital computation

are well understood [141, 152]. Noise tolerance, scalability, and abstraction are at the

center of this advantage.
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Time
Discrete Continuous

Previous Work:
1. Combinational Circuits can

Sequential Circuits: Combinational Circuits: simulate physically realizable

Processors Communications nalog with poly. overhead.
Digital DSP's Action Potentials 2. Analogsystems can simulate

Memory circuits with poly. overhead.

Contribution:
1. There exists an analog system of

size S that computes for time T

Clocked Analog: Analog: such that any digital circuit

CCD OpAmp circuits simulation has circuit size

Analog Switched-Capacitor ODE's complexity C(S T)

2. Constant factors defined by
physical implementation.

Figure 7-1: A depiction of the relationship of analog. digital. and analog/digital hybrid

comnpiltational models. This work focuses on the complexity theoretic relationship

between contiions-variable continuous-time analog systenis, and disCrete-variable

('ont inuous-t iue conhbinati onal Circuits.

However, recent years have seen a resurgence of interest in analog computation -

inl particular as an alterniative to the existing digital comiputation model for certaiii

applications - e.g., machine learning [111, 24. 152. 122. 45]. Clearly. there is belief in

the comiinmnity that there is an advantage to be gained by using analog conpil)litatioli

for certain problems. This belief stems from the empirical observation that large

analog systenms with fast dynamics are typically impossible to sinunlate in real time.

even if the systeii in question is both purely Classical anid nion-chaotic [119]. However.

quantification and theoretical julstification of such a belief has eluded the scienitific

coiuniunity for alihnost a century.

This work provides a formal Conjecture (Conjecture 8.4.1), and(l an associated con-

structionl wherein an analog comliter hars a constant-factor advantage over a digital

computer that computes the same function. It provides a theoretical argument for

why analog comiputation is more powerful than digital in certaini cases. anid for which

types of problems analog computation can exhibit this advantage. In partic(ular, this

work analyzes the Circuit omiiplexity of specific analog compuitation models. resulting

in a potential constant-factor circuit size compl)exitv advantage of Shannon's General

Purpose Analog Computer (GPAC) [147] over the cir(uit size complexity of an'y digi-
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tal simulator. It is shown that there exists a GPAC device with size S that computes

for time tf - t, where any digital simulator has circuit size complexity Q(S(tf - t,)).

This result uses a singular hardness assumption (Conjecture 8.4.1) regarding nu-

merical integration of differential equations that is discussed and justified in Chapter

9. This result is depicted in the context of analog/digital computational models in

Figure 7-1.

7.1.1 Description of Main Result

Using a single conjecture, this work provides a theoretical argument that certain ana-

log systems can have a circuit size advantage over any digital simulation, and therefore

that there exists an advantage to using analog over digital for certain computational

problems.

Note that the difference in computational power between analog and digital models

of computation is not an asymptotic separation - the analog system has an advantage

of at most a constant factor improvement over digital simulation.

The constant factors relating the efficiency of these analog and digital systems

depend on implementation.

7.1.2 Related Work: Analog Computation and Complexity

Theory

While there is a clear, generally accepted model of digital computation and computa-

tional equivalency - the Turing machine and Turing machine equivalency, there exists

no such analog computational model with equivalent acceptance by the community

[24]. Indeed, there are a multitude of analog and analog/digital hybrid computational

models that have been proposed over decades [147, 148, 20, 141]. These fall into the

four broad categories of computational models shown in Figure 7-1.

This work focuses on continuous analog computation, as opposed to "clocked"

analog systems with continuous state variables under discrete time (the lower-left

corner of Figure 7-1). There are two reasons for this.
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" Clocked analog systems typically require the analog component to achieve steady

state before the next clock cycle. In essence, the dynamics of the analog sys-

tem are ignored except for the speed at which the system relaxes. This work

uses the computation time tf - t, as a parameter of the problem, which allows

asymptotic analysis of the circuit size complexity as tf - t, increases.

" Second, clocked analog systems are (in most cases) already easily compared

with digital systems since the analog operation performed during a single clock

cycle is much simpler, and typically comparable to an equivalent digital circuit.

For example, in [152], the analog component performs multiply, accumulate,

and compare functionality. There is a clear comparison between this numeric

computation and a digital counterpart, since these functions are arithmetic,

map well onto digital logic, and are well studied. Continuous analog systems are

much less straightforward, as they are typically highly complex non-arithmetic

functions of both state and time.

Continuous analog computational models are believed (and in some cases proved) to

be equivalent to (or subsumed by) the Turing model of digital computation [25, 129].

Indeed, this belief has led to an extended version of the Church-Turing thesis - in-

formally that all reasonable classical models of computation can simulate each other

with polynomial time overhead and constant-factor space overhead [168]. This ex-

tended version of the Church-Turing thesis applies to analog computational models

with respect to digital simulators. Therefore, much of the research effort into ana-

log computational models over the past decades has focused on confirming that the

proposed models of analog computation do conform to the extended Church-Turing

thesis [24].

Although a statement that certain analog computational models are equivalent

(can be simulated in at most polynomial overhead) to Turing machines is useful for

many reasons, it loses the precision required to study the difference in computational

power between the analog computational model and a digital model. Intuitively,

there are many analog systems that can be simulated with at most polynomial time
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C fxdy

x x

Figure 7-2: The different building blocks of any GPAC computer. Connection of

these building blocks allows for the construction of analog computers capable of ap-

proximating ODE initial value problems (IVPs).

overhead that cannot be simulated in real-time as discussed above.

In the class of continuous analog computation, this work focuses on Shannon's

general purpose analog computer (GPAC) model [147]. In essence, this model of

analog computing follows the model of Bush's differential analyzer [32], and is a model

that is tailored to solving initial value problems for ordinary differential equations.

GPAC is generally described as any computer that is the composition of building

blocks shown in Figure 7-2.

The theory of computational complexity of ordinary differential equations (ana-

log ODE solvers represent one model for analog computation) has shown that the

class of analytic ordinary differential equations (the class that is generally thought

to be physically realizable, and thus solvable by an analog computer) can be simu-

lated efficiently by polynomial time algorithms on a Turing machine [83, 84, 85, 129].

This is the extent of the granularity of analysis, so it does not capture the potential

computational advantages of analog system over their digital counterparts.

One interpretation of the above setback is that Turing machine equivalency is not

the correct objective for analog computation. It is reasonable to expect that modern

digital processors will not (and should not) be replaced by analog processors, so it

is not necessarily fruitful to pursue fully universal computation out of the alternate

model. Instead, consider that analog computation should be seen as a hardware ac-
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celerator (e.g., [152, 31]) solving a specific class of problems faster than a general

purpose computer. This is not wholly consistent with the current thread of research,

which focuses on establishing Turing equivalence or attempting to identify opportu-

nities for "hypercomputation" - showing a class of problems that is asymptotically

more efficient with analog computation [24].

This work proposes that continuous analog computers should be compared to

combinational digital circuitry designed to perform an equivalent function. Therefore,

this work proposes that circuit complexity is the correct model to provide comparisons

between continuous analog (denoted simply as "analog" in the rest of this work) and

digital computation.

7.1.3 Circuit Complexity and Analog Computation

This work will only consider a subset of analog computation - solving ordinary

differential equation initial value problems (ODE IVPs). Furthermore, this work will

only consider a subclass: the second-order differential equations described in Section

7.1.4.

The choice of second order ODE IVPs is made to simplify the analysis and enable

the use of certain specific theoretical tools described in Section 7.1.4. The general

structure of higher order ODEs and highly parallel coupled systems are less under-

stood mathematically, so these theoretical tools do not exist at higher order.

Consider the impact of restricting to this subset of analog computation. First,

an analog computer that simulates a second order ODE IVP from t, to tf has very

little internal parallelism as the state consists entirely of the dependent variable and

its first derivative. Therefore, size S = 0(1), and time t1 - t,.

If there exists an upper bound on the maximum frequency component of the

dependent variable (which is always the case for physically realizable systems), then

a standard Runge-Kutta ODE integrator can integrate from t, to tf in (tf - t,)

steps, as the minimum timestep is determined by this maximal frequency component.

Runge-Kutta has 0(1) memory complexity, so the digital simulation is (tf - t,)

circuit size complexity - asymptotically equivalent to the analog computer.
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The challenge is to show that this worst case is also the best that any digital

simulator can accomplish, and provide a lower bound on the constant factor for the

digital simulator. Showing a constant-factor relationship between the analog and

digital systems would entail finding a lower bound on the circuit depth. One can also

show a constant factor circuit size relationship using fewer assumptions.

The relative constant factor is determined by the relative physical parameters

between the analog and digital systems. Unfortunately, this fact strays somewhat

from the mathematical abstraction up to this point. This work provides direction

regarding how to establish this factor by comparing dynamic speed to basic CMOS

building blocks (e.g., a multiplier) in Chapter 10.4.

7.1.4 Preliminaries on Ordinary Differential Equations

Since the objective of this work is to identify cases where analog computation of an

ordinary differential equation may have a constant factor circuit size advantage over a

digital simulator, consider first the strengths of both analog and digital computation

individually.

Analog systems may have fast dynamics and cheap (in terms of energy, time, and

space) calculation of certain continuous functions (a digital computer can only com-

pute arithmetic functions [141, 164, 152, 45]). However, an analog ODE simulator (in

the GPAC model) must necessarily evolve in time directly and cannot take advantage

of mathematical structure of the ODE to take shortcuts. Since digital computers are

fast for general purpose algorithms, a digital simulation can leverage this structure

to be more efficient than its analog counterpart (e.g., see example from Section 5.8).

In general, there are two possible situations where digital computers might be

able to obtain such an asymptotic speedup. First, if the ODE has a closed-form

solution. Second, if one can quickly compute an approximation that describes the

ODE's solution to sufficient precision over a large region.

The first requirement is addressed by the theory of closed-form solutions to ordi-

nary differential equations, known as Differential Galois Theory [88, 149] (cf. Chapter

6).
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This theory is a differential analogue to the traditional Galois theory using a

differential algebra (introductions to which may be found in the texts [79, 81, 80, 128,

88]). In essence, differential Galois theory studies field extensions to a differential field

generated by elements in the ring of differential operators (ODEs), while traditional

Galois theory studies field extensions generated by elements in the ring of polynomials.

This theory is presented in Chapter 6.

A key achievement of this theory has been the creation of the Kovacic Algorithm

[90, 142, 55]. This algorithm, when given a differential equation of a certain type,

either (a) returns the closed-form solution of the differential equation, or (b) returns

that there is no closed-form solution. This algorithm therefore encapsulates the en-

tirety of the structure of solutions to ODEs in the class to which it applies. This

algorithm is now widely used, coming as a standard subroutine in symbolic ODE

solvers in both Matlab and Mathematica [1, 2].

The Kovacic algorithm only works for a certain class of differential equations:

second-order linear ODEs whose coefficients are in C(t), where t is the independent

variable. This work accordingly considers this same class of ODEs as candidates to

be solved by analog computers.

In this way, there is a clear distinction between those ODEs that have closed form

solutions (and therefore whose digital simulators will perform asymptotically better

than their analog counterparts), and those ODEs that do not have such closed-form

solution.

The second requirement - that no approximate closed form solutions can be

computed - is present because GPAC analog computers by definition compute ap-

proximations of the differential equation. Although analog computers such as the

GPAC compute on continuous variables, they cannot be allowed to have infinite pre-

cision. Such systems have been shown to be able to solve NP complete problems, but

are generally thought to be physically unrealizable [145, 4].

This problem of approximate closed-form solutions turns out to be a significant

challenge and will be the focus of this work. By computing an upper bound on the

size of the domain where these approximate closed-form solutions accurately model
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the solution to the underlying ODE, this work computes a lower bound on the circuit

size complexity required to model this ODE using any digital simulation.

ODE Approximation and Numerical Integration

In the case where an ODE does not have a closed-form solution (most ODEs do

not have closed-form solutions), approximation methods must be used. In the case

of initial value problems, numerical integration techniques are used to integrate the

ODE from the initial conditions to some time later [47].

All such numerical integration techniques must contend with the inherent locality

of ODE IVPs - all information regarding the state of the system is given at a single

point in time, and the differential equation describes infinitesimal changes away from

this point.

Therefore, local expansions of varying types are used in such numerical integra-

tion. Without loss of generality, a numerical integration technique follows a simple

procedure to integrate a dependent variable y (which may be scalar or vector-valued)

from t = t, to t = tf with initial conditions y(ts) = Ys.

1. Set t = to, and set state: y = ys.

2. Compute expansion of y(-) around t.

3. Compute approximate value of y(t + dt). Update state. Set t = t + dt.

4. If t = tf, Stop. Otherwise go to (2).

The expansion in step (2) may be a highly complex algorithm and require approxi-

mation of y at additional points (e.g., as in multi-step methods) [33]. An "expansion

algorithm" is defined as in Section 8.2.

In the above algorithm, the performance of the expansion algorithm determines

the performance of the integration routine. If an expansion algorithm can quickly

find a closed-form solution that accurately describes y(t) over a large domain, the

integration routine performs very well.

Conversely, if one can show that any expansion algorithm of finite order will only

be an accurate (to within c, for example) model of the actual function inside of a

relatively small finite domain, then one can bound the performance of the integration
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routine.

The domain bounds how large dt can be in the above algorithm, which in turn

results in a lower bound on the number of steps that need to be taken between t = t,

and t = tf. In Section 8.5, this concept is formally defined in terms of the expansion

algorithm.

The critical step in the above analysis is how to bound the region where any ex-

pansion algorithm at a given order correctly approximates y(t) to sufficient accuracy.

7.1.5 Circuit Complexity of ODE Approximation: Contribu-

tions

To bound the region of accuracy of this local expansion, first recognize that there

are two factors that determine this region of accuracy: (1) expansion order, and (2)

estimation of sub-dominant terms. 1

This work then proposes a conjecture that all numerical integration algorithms

use a local expansion of finite order (Conjecture 8.4.1).

If this is the case, then even with an arbitrary function, the best possible expansion

of the function still has a bounded region of accuracy. This conjecture is shown to

be supported by the last century of work in approximating solutions of differential

equations.

Finally, this method is used to lower bound the number of expansions required to

approximate a class of ODEs. It is recognized that this lower bound is also a lower

bound on the circuit size complexity of any digital circuit that simulates the ODEs.

To build intuition for the implication of the above conjecture, I construct in Chap-

ter 9 a new type of expansion using the Kovacic algorithm. It is shown that mod-

ern asymptotic approximations of second order linear ODEs are subsumed by the

proposed expansion algorithm. This is due to the fact that the Kovacic expansion

methodology has a much larger function space than all modern asymptotic expansion

'An expansion algorithm computes the first k terms. However, it can estimate higher order terms

based on its knowledge of the form of the function that is being expanded. I.e., if the function being

expanded is from a certain class of functions like the rational polynomials, then higher order terms

of the expansion can be estimated based on this fact. See Section 9.3.
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algorithms applicable to this class of ODEs.

To see how the space of functions used by the expansion affects the region of

accuracy of the expansion, consider Taylor series of order k as compared to a Pad6

expansion of order (p, q) (p and q are the polynomial degrees in the numerator and

denominator respectively). In the case where p + q = k, one empirically finds that

for most functions and most choices of p, q, the Pad6 expansion will more accurately

model the function over a wider domain. This widely recognized behavior drives

many of the numerical convergence acceleration algorithms that are used [165].

The Pad6 expansion converges faster than Taylor series in general because it has

a larger space of functions to draw from - a Taylor series uses polynomials, while

Pad6 expansion uses fractions of polynomials.

The contribution can therefore be understood as increasing the space of functions

as far as possible, and using it to identify the best possible expansion at a given order

of a solution to a certain ODE. Instead of explicitly calculating the expansion, I show

that even with perfect analysis of the subdominant terms, there is still uncertainty

in the ODE solution, because the expansion is only to finite order. This method is

used to bound the possible region where expansions of a given order can be accurate.

This region is then used to lower bound the size of any digital circuit tasked with

simulating the ODE.
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8 - PPUF/Analog Computing

Formalism and Theory

As discussed in the previous section, an asymptotic lower bound on PPUF simulation

time is equivalent to an asymptotic lower bound on the circuit depth of any simulating

hardware. Furthermore, I recognized that a PPUF was an instance of the more general

problem of comparing digital and analog computing modalities. In this case, one is

more interested in a simpler comparison between the circuit size of any simulating

hardware versus a digital simulator.

In this chapter, I show an lower bound on PPUF simulation time if Conjecture

8.4.1 is true. Further, I show an lower bound on the circuit size complexity using

the same assumption. The lower bound on circuit depth complexity is in the random

oracle model, but the lower bound on circuit size complexity does not have this

requirement.

Now, consider the circuit size of any simulator for an analog initial value problem

(IVP) that evolves from time t, to time tf. Consider an IVP whose ODE is of the

form y"(t) = r(t)y(t) - the coefficient r(t) must depend somehow on a set of problem

parameters. Consider that these parameters affect the value of r(t) at different points

in time t. For the sake of example, consider that the effect of a single parameter on

the value of r(t) is temporally localized to some constant-sized region in time. In this

model, it is reasonable to consider that this IVP has 8(n) parameters overall. This

is because of a previous, informal observation that IVPs are easy to simulate (have

an asymptotic speedup when simulated with a general purpose processor) when they

have reached steady state. If the parameterized regions of r(t) are far enough apart,
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the system reaches steady state in between.

With this in mind, there is already a trivial asymptotic lower bound of Q(n) on

the circuit size of any digital simulator that simulates the parameterized IVP, as there

are 8(n) inputs to the circuit!

However, this lower bound turns out not to be useful. Recall that the purpose of

establishing a lower bound on circuit size complexity for analog computing, and cir-

cuit depth complexity for PPUF applications is to compare constant factors between

analog computing and digital computing modalities. The above asymptotic analysis

does not provide any insight as to this constant factor.

In particular, consider a case where one parameter of the IVP for some reason

has little to no impact on the final outcome of the system. In this case, an optimal

simulating circuit may not even use the parameters as a part of the larger computation

or only use them for a very small part of the overall computation. Therefore, it is

completely possible that the contributed circuit size for that particular IVP parameter

may be very low (down to a few gates).

There is no formal way to reason about this contribution, and there is no lower

bound on the constant factor in front of the 6(n) term. Therefore, a different ap-

proach must be used.

Instead, I will use Conjecture 8.4.1 to show a lower bound (non-asymptotic) on

the number of local expansions computed in order to perform numerical integration

from t, to tf.

In order to accomplish this, a new formalism is introduced for analyzing differential

equations in this way. Some preliminary results are provided that both justify the

formalism and provide direction as to the types of IVPs that should be considered.

Therefore, this chapter follows the outline:

1. Define an "initial value problem" (IVP) in the context of second order, linear

time varying differential equations.

2. Recognize that for a differential equation to be useful for computation, it must

be "entropy-maintaining." Given initial conditions to the ODE IVP with some

entropy, this entropy must be maintained throughout the evolution of the ODE
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IVP. Simply put, the ODE IVP cannot "forget" the initial conditions. This

puts restrictions on the type of ODE IVP to be considered.

3. Recognize that any physically implementable ODE IVP must be bounded. This

has ramifications for the type of ODE operator that restrict the possible types

of ODE IVPs to be considered.

4. Recognize an equivalence class of ODE IVPs as those that are translations/

rotations/magnifications of each other.

5. Recognize that ODE IVPs that are localized in time (all computation occurs

within a certain interval of time) may be stitched together using the above

equivalency to generate sequential computations.

6. Identify how to sample from ODE IVPs randomly. Argue generality based on

the parameterization of the distribution.

7. Formalize definitions of IVP and expansion/numerical integration algorithm.

8. Make an supported conjecture regarding the form of any numerical integration

problem that solves IVPs of the form defined earlier.

9. Statistically show an empirical observation regarding the entropy of IVP solu-

tions in the presence of the computation of a single expansion.

10. Given a large ODE IVP that may be broken into n independent sub-problems,

show that since each sub-problem is independent, the complexity of solving the

overall system is > n x min(Cost(ExpAk) circuit size complexity, where ExpAk is

a family of expansion algorithms for an adversary A.

11. Use a similar argument in conjunction with a random oracle to use the solution

of one IVP to derive the parameters for a second IVP. With this feed-forward

functionality, show a circuit-depth lower bound for use in PPUF applications.

12. Link the above circuit complexity analysis with existing formalism for PUF

applications to derive a complete, formal construction for a PPUF.

The notation for this section is summarized below:

" h(Y): the differential entropy of a continuous random variable Y.

" IVP: Set of parameters defining an initial value problem. See Definition 8.1.4.

* Rslt: pair of (tf, y(tf)) that indicates the solution of the IVP at the final time
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tf.

" C(x) (sometimes C): Curve of integration parameterized by some real value x.

See Definition 8.1.5 for a "proper" curve.

* L: Differential operator. For this work, it will always be of the form at - r(t).

* [L]: Equivalence class of the differential operator L (See Definition 8.1.15).

* r(t): ODE Coefficient. All ODEs in this section are of the form y"(t) = r(t)y(t).

See L, the differential operator above.

* t,: starting point of numerical integration of an IVP.

" tf: ending point of numerical integration of an IVP.

* R: radius of disc on C inside of which all poles/zeroes for an IVP are located.

See Definition 8.2.2 and Figure 8-1.

" T: used to denote the distance between clusters of poles/zeroes (see Figure 8-2).

* IC: initial conditions of the initial value problem. Because the initial value

problem is always linear, second order, IC is the pair (y(t,), y'(t,)).

* c: Allowed error of the IVP. See Definition 8.2.1.

* 6: Error in encoding of analog variables for digital computation.

" k: Expansion order of an numerical integration algorithm.

" (y, y'): IVP state.

" M: PPUF Model represented by bitstring of length 1.

* x: Distribution of PPUF model over {0, 1}'.

" V: Challenge to PPUF/PAF. Represented as {vi} for i from 1 to n, where

vi E {0, 1}'.

" L: a language (See Definition 8.2.1).

" UR,m,6: A family of initial value problems from Definition 8.2.2.

" HR,m,6: A random oracle that returns elements from UR,m,6.
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8.1 Preliminaries

8.1.1 Differential Entropy

This work considers randomness of continuous variables, and as such requires the use

of the differential entropy (Definition 8.1.1). See Chapter 9 of [40] for proofs and

more extensive discussions of the following.

Definition 8.1.1. Given some random variable X with continuous probability distri-

bution function f(x) with support set S (i.e., f(x) > 0 V x E S), define the differential

entropy h(X):

h(X) = - f(x) log f()d (8.1)

S

Proposition 8.1.2. Given a scalar-valued random variable with continuous probabil-

ity distribution Y, and scalar a:

h(aY) = h(Y)+ log a|

Proposition 8.1.3. Given a vector-valued random variable with continuous proba-

bility distribution Y, and a matrix A:

h(A Y) = h(Y) + log JAI

Where |AI is the absolute value of the determinant of A.

One should be aware of the significant differences between discrete entropy and

differential entropy. Namely, discrete entropy is always greater than 0, while differen-

tial entropy does not have this requirement. Differential entropy also has units (i.e.,

changing the units of Y affects the differential entropy h(Y)).

Informally, knowledge to infinite precision of a variable corresponds to differential

entropy approaching -oc (rather than 0, which is the case in discrete entropy).
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8.1.2 Differential Equations

Definition 8.1.4 encapsulates the set of problems that this work studies: second order

linear initial value problems.

Definition 8.1.4. A linear second-order initial value problem IVP is the set { L, C(x), t., IC, E}:

* The second order ODE operator: L(y(t), t) = y"(t)+r(t)y(t). The corresponding

ODE therefore can be written L(y(t), t) = 0. Let r(t) E C(t) have poles at pi,

zeroes at zj, and r, = lim r(t).
t-+00

" The curve of integration C(x) C C as parameterized by variable x G R.

* The point of expansion t. E C(x).

" The initial conditions IC = {yo, yb} E

" The maximum series truncation error e > 0.

A "proper" integration curve is defined below. There are several intuitive proper-

ties that are encapsulated by Definition 8.1.5. For example, the curve must approach

infinity as its parameter IxI approaches infinity. This is because systems must always

make forward progress, rather than re-treading the same state space or stopping in

the middle of a computation.

Furthermore, setting IC'(x) I > 0 is justified because forward progress must never

stop. Next, bounding C"(x) prevents discontinuities in y(C(x)), which allows one

to reason about the instantaneous behavior of the ODE. In addition, for physical

realizability, require that C(x) not traverse any poles of r(t).

Finally, require analytic C(x) in the limit of large IxI because one must be able

to reason about the asymptotic behavior of 0(x), r(C(x)), and y(C(x)) in this limit.

Definition 8.1.5. A curve of integration C(x) C C is "proper" for a given r(t) if

it is continuous, can be parameterized by some value x E R as C(x), and has the

following properties:

" C(x) is analytic in the limit x -+ koo

" lim |C(x)| = oc, and lim IC(x)I = oc
X 4-00 X-400
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" lim C(x) # lim C(x)
X-4-00 X-+OO

" CMAX> I0'(X)I> 0 VX

" C"(x) and C'(x) are bounded for all x (0'(x), C(x) continuous)

" C(x) does not go through any of the poles of r(t)

Definition 8.1.6. Define IVP with randomized initial conditions IC to be "Entropy

maintaining" if:

" The integration curve C(x) is proper.

* h(IC) = 1 with 1 bounded.

* h(y(C(x))) = e(lf(x)), with f(x) = E(1).

Proposition 8.1.7. All IVPs as defined in Definition 8.1.4 are entropy maintaining.

Proof. By Definition 8.1.4, the ODE operator is L = y"(t) + r(t)y(t). Consider a

broader class of ODEs1 defined along the curve t = C(x). Also, extend Definition

8.1.5 to include that C(x) does not contain any poles of b(t) or a(t).

dt2 y(t) + a(t) y(t) + b(t)y(t) = 0

Assigning t = C(x), (x) = y(C(x)), and Q' = d/dx and using the chain rule,

change the ODE to the form:

"(x) + (a(C(x))C'(x) - )'(x) + b(C(x))C'(x) 2 (x) (8.2)

First, note IC'(x)I > 0 and lim IC(x)I = oc in Definition 8.1.5, so the coefficients
X-4 oo

above do not have any finite or infinite poles when x E R. Therefore, the coefficients

of Equation 8.2 are bounded for bounded x.

Consider the Forward Euler approximation of the matrix form of this ODE that

converges to f(x) in the limit Ax -+ 0.

'Note that ODEs of this class may be transformed by a change of coordinates into ODEs of the

form y"(t) = r(t)y(t).
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((n + 1)Ax)

Q'((n + 1) Ax)

1

b(C(nAx))C'(nAx)2 Ax

By Proposition 8.1.3, one may

on the entropy of 9, 9'.

h ( y(nAx)

'(nAx) ) y(O)

Y'(0)

logl1o
i=O b(C(iAx))C'(iAx)2 Ax

Expand the determinant:

AX

1 + (a(C(nAx))C'(nAx) - _,_ AX )
consider the effect of n iterations of Equation 8.3

) +
(8.4)

AX

1 + (a(C(iAx))C'(iAx) - C" (iAx)
C'(iAX) ) Ax

1

b(C(iAx))C'(iAx)2 Ax

1 + (a(C(iAx))C'(iAx)

Ax

1 + (a(C(iAx))C'(iAx) - 9,Ax

C"(iAx) N
C'(iAx) Ax - b(C(iAx))C'(iAx) 2 AX 2

Next, take a series expansion of logarithm in Equation 8.4 around Ax -+ 0:

) (0)

Y (O) ) C(iAx))C'(iAx) - CI(iAx) Ax+O(Ax 2 )

(8.5)

Finally, recognize that for any finite interval of interest n = E(1/At) and taking

the limit of At -+ 0 and large n implies that the sum becomes an integral over the
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(nAx)

'(nAx)

(8.3)

D(i)

Q(nAx)

y'(nAx)

=

+J a(
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curve of integration of the ODE. Consider that X = nAx.

x
V(X) W() C"(X2)

hh + I(a(C(x))C'(x) - dx + lim O(nAx2 )
'(X ) '(0) 0 C'(x) sX-4 i=

(8.6)

For terms that are O(nAx 2 ), recognize that this sum becomes lim O(XAx).
AX-+O

Since all of the coefficients of the ODE (Equation 8.2) are bounded, the determinant

D(i) is also bounded. Therefore, the coefficients at higher orders of Ax must also be

bounded in Equations 8.5, 8.6. Therefore, since the interval [0, X] is finite, the limit

lim O(XAx) = 0, and the sum of O(nAx 2 ) terms in Equation 8.6 goes to 0.

The first integral must be asymptotically constant in X for the overall ODE to be

entropy-maintaining. First note that for all IVPs matching Definition 8.1.4, a(t) = 0,

so the integral reduces to:

x

xdx = ln C'(X) - In C'(0)
C(x)

0

Therefore, by this result and Definition 8.1.5, IVP is entropy maintaining since

IC'(X)I is bounded from above for all X by CMAX-

The entropy-maintaining property states informally that an IVP with variable

initial conditions must have a system state that has significant dependence on these

initial conditions over the curve of integration of interest. This is important, but not

sufficient. The IVP must not have unbounded behavior on the curve of integration

of interest. Therefore, the notion of boundedness is introduced.

This concept is required for several reasons:

e Most reasonable physical realizations of analog systems do not allow for un-

bounded internal state (e.g., a spring cannot stretch to infinity). In such cases,

the system usually exhibits nonlinear higher-order behavior as the internal state

variables become large (due to the fact that the linear system is an approxima-
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tion of the overall dynamics of the system around some single point of opera-

tion).

e Measurement of such a physical system becomes very difficult if the state vari-

able has too large of a range.

Definition 8.1.8. An entropy-maintaining IVP is "bounded" if bounded IC implies

bounded y(t), y'(t) for all t E 0(x).

Proposition 8.1.9. There exist IVPs that are entropy maintaining and bounded:

Proof. Consider IVP with:

" L(y(t), t) = y"(t) + y(t), that is r(t) = 1.

* 0(x) = x.

* ts = 0.

e IC is random under a continuous probability distribution with differential en-

tropy 1. .

. e such that log(e) < 1.

First, C(x) is trivially proper.

Second, by Proposition 8.1.7, it is entropy-maintaining.

Finally, given IC = {A, B}, where A, B are bounded, the general solution to

L(y(t), t) = 0 is:

y(C(x)) = A cos(x) + B sin(x)

Therefore, A, B bounded implies y(t) bounded for all t E C(x).

0

Now that the notion of entropy-maintaining and boundedness have been estab-

lished, the requirements for any IVP that has both of these properties may be derived.

This is important to the study, because any physical system hoping to have a com-

putational advantage over CMOS must have both of these properties, as discussed

above.
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Im[t]
Curve of Integration/,

C(x)

X 0

x

'0 Re[t]

Radius R

Figure 8-1: Figure of an IVP that follows Lenmas 8.1.12. 8.1.13. The poles and

zeroes of r(t) are marked, and the curve of integration is labeled. R is chosen such

that all poles and zeroes are within radius R from the origin (which is in C(x)). Note

that there are equal numbers of poles and zeroes, and C(x) is asymptotic to infinity

in opposite directions as r1 - -c. The asymptotic behavior of (.(X) must be chosen

according to Lemma 8.1.12.

The following conditions are necessary and sufficient for an IVP to be entropy-

maintaining and bounded.

* lim y(((x)) does not exist (DNE). y(( 1(x)) is bounded and approaches a limit

cycle.

* r( 1) has a finite, equal number of poles and zeroes.

* If lill r(/) = .I -+ -
ex)(1i). for r, C R. then lim x -+tC) lil Rexp((/(Q/2-

B-tx

7r/2)). This is depicted in Figure 8-1.

Note that for this work. distinguish between a limit that is infinite. and a limit

that is finite, but does not exist (DNE).

Lemma 8.1.10. If IVP

then the following is true:

{L. ((), L.IC, (} Is etropy-mrarintaini'ng (1nd bounded,
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lim y1(C(x))

0 Finite# 0 Infinite DNE (bounded)

0 (2) (3) (1) (4)

liM y 2 (C(x)) Finitef 0 (3) (3) (1) (3)
x-oo Infinite (1) (1) (1) (1)

DNE (bounded) (4) (3) (1)

Table 8.1: Possible cases for limiting values of yi(C(x), y2(C(x)). Exclusions are

given as index numbers, referred to in this proof. The only possible case is that the

limits lim yi(C(x)) and lim y2(C(x)) do not exist (DNE).
X_+00 X-+00

Let yi(t), y2 (t) be linearly independent solutions of the ODE L. Then, neither

lim yi(C(x)) nor liM y2(C(x)) exist (i.e., yi(C(x)), y2(C(x)) both oscillate as

IxI -+ oo).

Proof. Let y1(t) be a solution of L(y(t), t) = 0, where L E IVP. Therefore, one

knows for an ODE of the form ay" + by'+ cy = 0 (for IVP, a = 1, b = 0, c = r(t)), a

second, linearly independent solution can be found in terms of the first (all variables

are functions of t) [151]:

y2 = Y1 2b/a dt) dt = y] Idt (8.7)
Sy1 Iy1

Any set of initial conditions IC corresponds to a solution that is a linear combi-

nation of y1(t), y2(t). Therefore, consider Table 8.1 as the possible limits for y1 (t),

y2(t) on the curve of integration.

All but one of the outcomes in Table 8.1 is impossible. There are four observations

that are required, indexed in the table to match the list below:

1. Since IVP is by definition bounded, neither the limits of y1(C(x)) nor y2 (C(x))

can go to infinity.

2. Since IVP is entropy-maintaining, it cannot be the case that both limits go to

zero.

3. Assume that lim y1(C(x)) exists and is some finite value Co. One may therefore
X-sft

construct a series expansion of yi (0(x)) at x -+ oc (note that this is possible

153

. " bZ _ , , , , - .. 4 6""j"j'.6u .. Ju6j.Afibi" , - 1 , ., .- _,__,.i



because C(x) is proper and therefore is analytic in this limit, and yi(-), Y2(-)

are both meromorphic).
00

yi(C(x)) = Cix-i (8.8)
i=o

Plug Equation 8.8 into Equation 8.7, and recognize that for the ODE L E IVP,

a = 1, b = 0, and c = r(C(x)).

This gives the following expansion for y2 (C(x)) at large x.

y2(C(x))= Co + CO+ O -11 Cx +0 dx (8.9)

In Equation 8.9, Co $ 0. Therefore, the integral diverges as x -+ oc. Therefore,

y2 (C(x)) diverges at x -+ oc. Therefore, if lim yi(C(x)) = C0, where Co is

finite, then lim y2 (C(x)) is unbounded.
X-+*00

The result is similar if one exchanges yi(-), Y2(-).

4. Finally, consider that lim y1(C(x)) = 0. In this case, consider that to leading
X-400

order, yi(C(x)) = E(tk), for k < 0 E R. Then, by Equation 8.7, to leading

order y2(C(x)) = e(t-k+l). This is unbounded, therefore, it cannot be the case

that y1(C(x)) goes to 0, while y2(C(x)) is bounded.

Therefore, it must be the case that neither lim y1(C(x)) nor lim y2(C(x)) exist.
X-400 x--+00o

Lemma 8.1.11. If IVP = {L, C(x), t., IC, c} is entropy-maintaining with some ran-

domized IC with finite, non-zero h(IC), then the following is true:

r(t) E C(t) in the ODE operator L has no poles or zeroes at t -4 oc.

Proof. First consider if L = y"+r(t)y has one or more zero at infinity (lim r(t) = 0).

Therefore, since y(t) must be bounded along some proper curve of integration C(x),

lim y"(C(x)) = 0 since lim r(C(x) = 0. Therefore, lim y'(C(x)) = constant.
X-+00 X-++ 00 x-++00o

Once again, for y(t) to be bounded, this constant must be 0. This corresponds to

lim y(C(x)) = constant. By Lemma 8.1.10, this cannot happen. Therefore, there
x-+ 0o

are not one or more zeroes at infinity.
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Next, consider if L has k > 0 poles at infinity lim r(t) = 00 Therefore, let r(t)(t-+Co
to have a series expansion at t -+ o:

r(t) = Cktk + (tk-1) (8.10)

In this case, one may use WKB (see Chapters 11-13 of [170]) to construct an asymp-

totic expansion of y(t) in the limit of large t. The WKB approach holds in the limit

where I r-3/2 < 1 [170]. This criterion holds for any choice of k, Ci above.

The WKB expansion (to first order) for r(t) is:

y(t) ~ Y ,WKB = r(t 1 / 4 exp (+j r(t)1/2dt)

Note that this gives two linearly independent approximate solutions for the ODE

L E IVP. Consider how these solutions behave with respect to any proper curve of

integration C(x). For C(x) to be proper, it must be the case that lim IC(x)I = 00.

Therefore, consider the limit of each y(t) as t goes to infinity with some phase in

the complex plane (i.e., let y(x) = R(x) exp(iO(x)) as x -+ oc). First, recognize by

plugging Equation 8.10 into Equation 8.11:

Y ,WKB ' (Cktk + O(tk-1)-
1/ 4 exp ( i I(Cktk + (tk-1))1/2dt) (8.12)

Therefore, there are two possible outcomes for lim y(R(x) exp(iO(x))) depending on
X-400)

the choice of 6.

First, if arg(iC/ 2 tk/2+1) = lim ir/2 + arg(Ck)/2 + (k/2 + 1)0(x) = 0, tr, .. .,
x-*oo

then the exponent in Equation 8.11 is purely imaginary (resulting in the exp(.) term

having magnitude 1). In this case, lim y ,wKB(R(x) exp(iO(x))) = 0, because of the
X-400

coefficient in Equation 8.12: r(t)-1 /4. This is the case for both solutions, so one

concludes that regardless of initial condition, y(t) approaches 0, so the ODE cannot

be entropy maintaining.

Second, if arg(iC/ 2tk/2+1) # 0, r,..., then the exponent in Equation 8.11 has a

real component that goes to oc as tj -+ 00. Therefore, one of the solutions diverges,

155



while one approaches 0. Therefore, the IVP cannot be bounded.

Therefore, regardless of 9(x) chosen (the asymptotic behavior of the curve of

integration) the IVP also cannot be bounded and entropy maintaining if r(t) has one

or more poles at t -+ o.

Lemma 8.1.12. Given IVP = {L, C(x), t, IC, e}, with L(y(t), t) = y"(t)+r(t)y(t) =

0 is entropy-maintaining. If lim r(t) = r,, exp(i#), where r,, E R, E [0, 27r), then
t-+00

lim C(x) = lim Rexp(i(+7r/2 - #/2)).
X *k0o R-+oo

Proof. First, by Lemma 8.1.11, r(t) has no poles or zeroes at t -+ o. Therefore, as

stated in the Lemma, lim r(t) = rc, exp(io).
t-+ c

Furthermore, one may construct a series of r(t) as t -4 o:

00

r(t) = ro0 exp(i) + Cit-i (8.13)

The WKB approximation holds as t -+ o, because Lr-3/2 « 1.

Therefore, the WKB approximations to two linearly independent solutions of the

ODE Yi,WKB can be calculated the same way as in Equation 8.11.

As shown in the proof for Lemma 8.1.11, there are two cases for lim y ,wKB(R exp(i0))
R-+oo

when considering Equation 8.12. Note that Equation 8.12 holds when k = 0, as is

the case for this proof.

If 7r/2 + #/2 + 9 $ 0, 7r,..., then the exponent in Equation 8.11 contains a real

component that goes to infinity as Itl -+ 00. Therefore, the one solution diverges,

and the other converges to 0. This is not entropy-maintaining.

Therefore, 9 = -0/2 - 7r/2 + n7r = -0/2 ir/2 mod 27r. For C(x) to be proper,

one knows that lim C(x) 5 lim C(x). Therefore, lim C(x) = lim R exp(i( i7r/2-
x-+-0o x_+00 xt-++o R-+oo

q/2)).

Lemma 8.1.13. Let IVP = {L, C(x), t, IC, e} with L(y(t), t) = y"(t)+r(t)y(t) = 0.

Let r(t) have m finite poles and m finite zeroes, and lim r(t) = r0c exp(ip), where
t-400
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rx, E R, E E [0, 27r).

If C(x) is proper with lim C(x) = lim Rexp(i( 7r/2 - q/2)), then IVP is
X- io R-+o

bounded.

Proof. Consider xo sufficiently large, negative such that IC(xo)I > pil, zil for all i.

Consider x1 sufficiently large, positive such that IC(x1 ) > pi , zi I for all i. Equation

8.13 approximates r(t) for both r(C(xo)) and r(C(xi)).

Let IC be random initial conditions at t, = (xo), and h(IC) = 1. First, consider

the entropy at ti = C(x1).

Given that L is linear, consider the eigenvalues for the linear system any time t.

The largest eigenvalue defines the instantaneous rate of divergence of the ODE (i.e.,

the Lyapunov exponent). Therefore, if one can identify the maximal instantaneous

eigenvalue of L on the interval C([xo, x1 ]), then this bounds the overall rate of diver-

gence of the system. One can find a maximal eigenvalue on the interval C([xo, x1 ])

and use this to bound jy(t1)j, Iy'(ti)I given bounds on jy(to)j, ly'(to)l as follows.

Consider transforming the ODE L = y"(t) + r(t)y(t) to be in terms of the param-

eter x (note that in Equation 8.14, y'(C(x)) = 'y(Cx)).):

y"(C(x))(C'(x))2 + y'(C(x))C"(x) = r(C(x))y(C(x)) (8.14)

The eigenvalues of this ODE (in terms of x) are:

C"(x) 1 (C"(x) 2  
4 r(C(x))

2(C'(x))2  2 (C'(x))4 (C'(x))2

Because C(x) is proper, C'(x) is never zero, nor does it asymptotically approach zero

(since it is analytic, and lim IC(x)I = oc). Therefore, there exists some 6 > 0
X 4+OO

Vx, IC'(x)I > 6. Moreover, since C(x) is analytic for all x E R, IC(x)'I, IC"(x)I are

bounded, finite on the finite interval [x0 , x 1].

Finally, because 0(x) is proper, it does not contain any of the poles of r(t).

Therefore, Ir(C(x))I is also bounded on the interval [xo, x1].

One may conclude, therefore, that I A+ from Equation 8.15 are also both bounded
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by some finite AMAX-

The maximum value of ly(t1)l, ly'(t)I is therefore bounded by ly(to) exp(lxo -

x1IAMAX), and ly'(to)l exp(lxo - x1IAMAX) respectively.

Therefore, ly(to)l, Iy'(to)l, Iy(ti)l, Iy'(ti)I are all bounded, finite.

Now, consider ly(C(x))l, Iy'(C(x)) as lxi -+ 00. Recognize that for sufficiently

large t, the WKB conditions hold (as observed in Lemma 8.1.12, Tr-3 / 2 « 1)

Therefore, the WKB approximations to two linearly independent solutions of the

ODE Yi,WKB can be calculated the same way as in Equation 8.11.

For sufficiently negative xO and positive xi, the behavior of C(x) at xO and x 1

is represented by C(x) = R(x) exp(iO(x)), with 0(x) = 1 Oix-'. Plugging this into
i=O

Equation 8.12 with k = 0:

y+,wKB(C(x)) r (r0 exp(i) + O(R(x)1) 1 / 4 x

exp (+i(V /r>,exp(io/2) x R(x) exp(iO(x))) + O(R(x)1/ 2 )))

First, recognize that the multiplicative prefactor has bounded behavior as x -+

o, as it only depends on O(R(x)- 1 ), and lim O(R(x)- 1 ) = 0 because C(x) is

proper.

Second, recognize lim 6(x) = 7r/2 - #/2 by the statement of the Lemma.
X+ 00

Therefore, write 0(x) = r/2-#/2+0(x-1 ). Now, plug this into the term v; -exp(i#/2) x

R(x) exp(i0(x))) to obtain:

Vr_;exp(i#/2) x R(x) exp(i( ir/2 - #/2 + O(x-1))) = +iR(x)/1 exp(iO(x-1))

Plug this into Equation 8.16 to obtain the following approximation for y(C(x)) in

the limit of large positive or negative x:

y ,wKB(C(x)) ~ (r0 exp(i#) + O(R(x)-1))</ x exp ( iR(x)/--exp(iO(x)))

(8.17)

Note that the exponent term approaches a limit cycle, as its argument is approach-

ing purely imaginary. Since y ,WKB(C(Xo)) and y ,wKB(C(Xl)) are both bounded,
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y ,wKB(C(x)) remains bounded, entropy maintaining for x -+ 0o.

The necessary and sufficient conditions are now formalized into the following the-

orem.

Theorem 8.1.14. The following conditions are necessary and sufficient for an IVP

to be entropy-maintaining and bounded.

" lim y(C(x)) does not exist (DNE). y(C(x)) is bounded and approaches a limit
x- + 00

cycle.

" r(t) has a finite, equal number of poles and zeroes.

* If lim r(t) = r,0 exp(io), for ro E R, then lim C(x) = lim R exp(i(/2 -
t 00 x-++oo R-*oo

7r/2)). This is depicted in Figure 8-1.

Proof. Lemmas 8.1.10, 8.1.11, and 8.1.12 show that the above conditions are necessary

for an IVP to be entropy-maintaining given Definition 8.1.4.

Lemma 8.1.13, shows that the above conditions are sufficient for an IVP to be

entropy maintaining given Definition 8.1.4.

EZ

A "good" IVP and associated curve of integration are shown pictorially in Figure

8-1.

8.1.3 Equivalence of IVPs

Now that a notion of entropy-maintaining, bounded IVPs is established, there is an

equivalency class among these IVPs. This is provided in Definition 8.1.15. Note that

this incorporates the notions of translation, rotation, and scaling of the solution y(t).

Definition 8.1.15. Let [L] be the equivalence class of L. Any L' E [L] has the

property that if y1(t), y2(t) are two linearly independent solutions of L, then y1(at +

b), y2 (at + b) are two linearly independent solutions of L' for some a, b E C.
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Lemma 8.1.16. Given IVP with ODE L = y"(t) + r(t)y(t), there is an equivalent

IVPT with ODE L = y"(t) = rT(t)yT(t) under Definition 8.1.15 such that rT(t) =

a- 2r(at + b), for any a, b E C.

Proof. Consider IVP, with L = y"(t) + r(t)y(t). By Definition 8.1.15, there exists

an equivalent IVPT such that y(t) is transformed to y(at + b).

Rewriting the ODE:

a2y(at + b)" = r(at + b)y(at + b)

Assigning yT(t) = y(at + b) yields y"(t) = rT(t)yT(t), where rT(t) = a-2 r(at + b)

Corollary 8.1.17. Any bounded, entropy-maintaining IVP with L = y"(t) +r(t)y(t)

is equivalent to some IVPN with LN = y(t + rN(t)yN(t), where lim rN -
t-+oo

Proof. If lim r(t) = r, then by Lemma 8.1.16, one may transform IVP. Setting
t-400

a = 1/r., results in IVPN with lim rNtt-+00

The above equivalence class allows the rotation and translation of entropy-maintaining,

bounded ODEs. This will be important, because it allows one to "stitch together"

two separate IVPs into a single IVP in a coherent way that maintains the bounded,

entropy maintaining properties of both ODEs. This is formalized in Lemma 8.1.18,

and shown pictorially in Figure 8-2.

Lemma 8.1.18. Given n IVPs IVPj (with j from 1 to n) with m poles, m zeroes

that are each entropy-maintaining, let R E R : V zij, zi<j : R, V pj,5, IpuIj K R,

where zi,j, pij are the sets of zeroes and poles in IVP, respectively. Let [zi,j , [piJ] be

the sets of zeroes and poles in IVPs that are equivalent to IVPj by Definition 8.1.15.

There exists a third entropy-maintaining IVP IVPTOT with n x m zeroes at zi,tot

and n x m poles at pi,tot that has the following property: Define zi,t to be the m closest

zeroes to C(t). Define pi,t similarly.

There exists tj E R: zi,tj = [zij), Pi,tj = [zij.
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Proof. Choose some finite T > R.

Use Corollary 8-2 IVPj to IVPj,N. Therefore, the associated ODE of each IVPj,N

has the property that liM rj,N(C(X)) = 1. Second, use Lemma 8.1.16 to translate

each IVPj,N by bj = j x T. Denote this set of IVPs as IVPj,NT-

These IVPs are still independent, but they can be merged into a single IVP by

collecting all of the poles/zeroes into a single IVP and connecting the curves of inte-

gration into a single curve.

If the final IVP is denoted as IVPTOT then since each IVP is normalized:

n

rTOT(t) = 17Jrj,NT (t)
j=1

Connecting the curves is also simple. The curve of each ODE is proper. Therefore,

one may truncate the curves in between IVPs at radius R from its translated origin

and connect the curves in a smooth way such that Definition 8.1.5 holds. Note that

because y(t) is analytic everywhere except at the poles of rToT and oc, one may

deform this curve with significant freedom. Simply ensure that the connecting curve

does not encircle any poles of rToT.

Therefore, this constructs a single IVP that is by definition bounded and entropy-

maintaining. Also, by construction, there exist points (at the translated origin of

each IVP) where tj E R : zitj = [zij], pi,t, = [zij]

8.2 Sampling Initial Value Problems

Now that the relevant properties of IVPs have been established, the problem of solving

IVPs must be formally stated in the language of complexity theory.

Definition 8.2.1 (Initial Value Problems as a Decision Problem). Given constants

c, C(x), ts that each have a finite representation, consider a family2 of IVPE,c(x),t.,

2 The choice of this family is the subject of this section.
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Figure 8-2: Example of three coinnected IVPs.

Re[t]

The dotte( circles denote radius R
around the origin of the IVP. These origins are translated to points / . /3j that

are distance T > R apart. This locally confines the effect of each IVP. Corollary

allows one to rotate/translate these ODEs such that the curves of integration can be

stitched together in the region greater than R away from any of /. t2 , t.

with these paramneters fted. Next. consider a pair Rslt = (tj, y(j)), twith I5 E C(x).

and y(/j) G C.

Let the cXact solution. of IVP at t t1 be Y(tif). Consideir a lanigutage f such

that (IVP, Rst) E f if and only if JY(tf) y (If) < (. Let the eqiuivalent decilsion

algorithm f(IVP. Rslt) accept if and only if (IVP. Rslt) E .

There are several clarifications that should be made at this point. First. the lan-

guage C has words (IVP. Rslt). These words are not discrete. even though (. C(r). t,

are fixed parameters of the language. As a result, since no real (or complex) number

(all be represented as a string. there is no Turing machine that could hope to coin-

pute on this input. Furthermore, the ODE operator C must be assigned a general

representation.

First. let the ODE operator L be of the form y"(t) r(t)y(l). xwith r(t) defined

as follows (note that rum is usually set to 1 via Corollary 8-2):

'Il!

HirI(V) = rulm x
H 1 -

(8.18)

The representation in Equation 8.18 is important, as it allows L to be represented as

a vector of complex values: p. z. Iuim, where p, z are sets of the poles and zeroes of
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Equation 8.18, respectively.

Next, one must identify a representation of complex numbers that is compatible

with finite computation. Two different approaches will be taken to address this issue

depending on whether the computer in question is analog or digital.

I will start by taking an approach similar to Kawamura [83]. A complex value is

represented to the Turing machine as an oracle that, when queried with a positive

integer n, returns a string representation of the associated analog value that is accu-

rate to within 3 6 = 2-n. For a digital computer, this implies that a complex number

may simply be described as a finite bitstring that describes the number to the correct

precision. For an analog computer, treat the above oracle as a continuous random

variable with differential entropy -n.

The following analysis is purely from the perspective of a digital computer, there-

fore, treat complex numbers as finite bitstrings with some encoding. However, later

in this work (cf. Definitions 8.5.1 and 8.5.2) both analog and digital aspects of this

representation will be studied.

Now, restrict the domain of the possible complex values to be considered for use

as parameters in r(t) and as elements of IC. First, recognize that both IC and

parameters in r(t) must be finite. Moreover, since r(t) E C(t), there are a finite

number of poles/zeroes in r(t).

Therefore, any set of finite complex values are allowed to define r(t) and IC. In

order to pick these parameters randomly, consider that they are distributed uniformly

on a disc of radius R. For sufficiently large R, I posit that this distribution contains

all possible parameter sets of interest for a given number of poles/zeroes. Moreover,

the uniform distribution is chosen on this disc because it maximizes the entropy of

the distribution.

Definition 8.2.2 (Family of Initial Value Decision Problems). Let UR,m,6 = {IVPE,c(x),tS,

RsIttf} be a family of initial value problems as in Definition 8.2.1, where r(t) contains

3 This approach is deeply related to the notion of differential entropy (Definition 8.1.1). The

notion of accuracy to within 2-n is equivalent to having a probability distribution over C in a disc

of radius 2-" around a point. The information required to encode the complex value is therefore

this small probability distribution minus the differential entropy of the distribution of all possible

complex values.
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m poles, m zeroes, distributed on a disc of radius R in the complex plane centered

around t = 0. All complex values have accuracy 6. The IVP requires accuracy e, and

integrates over curve C(x) between te, and tf.

This family of IVPs can be randomly sampled by a finite computer in polynomial

in m, log(6), log(R).

8.3 Formalization of Numerical Integration

Now that there is a clear notion of initial value problems, I posit a formalization

of numerical integration algorithms. In essence a numerical integration algorithm is

decomposed into the composition of two algorithms: the expansion algorithm Exp,

and the integration algorithm NI. The integration algorithm calls Exp as a subroutine.

The Exp algorithm has only local knowledge of the ODE, while the overall nu-

merical integration algorithm may optimize globally. This reflects a broad class of

numerical integration algorithms that contain single and multi-step methods, differ-

ent expansion routines (e.g., Taylor expansion, Pad6 expansion, etc.), fixed/variable

step size methods, etc.

Since the Exp only has local knowledge of the system's behavior, restrict its knowl-

edge of the ODE (described by r(t) E C(t) as in Definition 8.1.4). This is done by

providing Exp with only access to the first k - 2 derivatives of r(t) at t,.4 This

restriction reflects the current approach taken by all numerical expansions used for

numerical integration [34].

Exp is not provided with a full description of the global behavior of r(t). Re-

stricting the knowledge of Exp provides a clean separation between Exp and NI. In

particular, if Exp has global knowledge of r(t), then it could conceivably implement

its own numerical integration algorithm as a subroutine and achieve an unbounded

region of convergence R for any expansion order k.

4The ODE is second order, so only k - 2 derivatives of r(t) are needed to compute the first k

derivatives of y(t) at t,.
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Definition 8.3.1. A single-step expansion algorithm family

Exp,,(r'(t),t... , r(k-2) (ts)}, ts, IC) _+ (f (t), R)

is indexed by the expansion order k and the maximum tolerable error e. It takes the

first k - 2 derivatives of r(t,), the initial conditions t,, IC. It returns a function f(t)

with the guarantee:
y(t) - f(t) <cVt E R

y(t)

Finally, let Expk,, run in O(poly(k, - log(E)).

(8.19)

The above definition may be bolstered to include multi-step methods:

Definition 8.3.2. A multi-step expansion algorithm family

Expk,, ( r'(tS), . . . , r(k- 2)(ts)}, ts, ICo, {r'(ti), . . . , r(k- 2 )(t1)}, ti, IC, .. .) -+ {f (t), R}

is identical to a single-step expansion algorithm (Definition 8.3.1 save that it has

knowledge of r(t), y(t) at some number of additional points tj E C).

These expansion algorithms are used in sequence to construct a numerical inte-

grator, defined below:

Definition 8.3.3. A numerical integrator NIExp,k(IVP, tf) is a family

that integrates IVP from ts to t1 along C(x).

The integrator uses expansion algorithm family Exp, and has a list

N I then follows the procedure in Algorithm 3.

The integrator uses function x +- Step(C(x), R) to determine the

expansion. Typically, this algorithm chooses maximal x such that C(x)

of algorithms

of integers k.

next point of

E R.

The complexity of computing a numerical integration may be considered as the

sum of costs of each expansion, if the costs of the integrator is small. Therefore, define

the "optimal" numerical integrator with respect to the optimization of this cost.
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Algorithm 3 Form of a Numerical Integration Algorithm

1: procedure NIExp,k(IVP, tf)
2: Set i =0
3: Set tc =t

4: Set Y =IC
5: while ti # tf do
6: Call (f (t), R) = Expki,, ({r' (ti), ... r(k- 2) (t,)ty)

7: i = i + 1
8: if tf E R then
9: ti= f

10: else
11: Compute Xnew = Step(C(x), R)
12: ti = C(xmax)
13: end if

14: Y = (f (ti), f'(ti))
15: end while
16: return Y
17: end procedure

Definition 8.3.4. Define the "optimal numerical integration algorithm" NI"T for

IVP as a numerical integration algorithm according to Definition 8.3.3 with the fol-

lowing properties.

Let the computational cost of the expansion be Cost(Expk,,). Define a family of

numerical integrators indexed by the multiset of integers k. Let the cost of the overall

numerical integration algorithm be Cost(NIExp,k) =E Cost(Expk,,).
kEk

First, require that the pair Rslt = (tf, NIExp,k(IVP, tf)) have the property that

(IVP, Rslt) E L, where L defined in Definition 8.2.1.

The optimal numerical integration algorithm is an algorithm with the property:

Cost(N IOPT ) = Infk Cost(N IExp,k (IVP, tf))

8.4 Conjecture

I now formalize a conjecture regarding the difficulty of simulating differential equa-

tions.

Conjecture 8.4.1 (Primary Difficulty Conjecture). Given UR,m,6 = {IVPE,C(x),t8 , RSlttf}
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Figure 8-3: Form of a numerical integrator in Conjecture 8.4.1. Note that each

individual stage may call Exp many times in parallel with varying expansion orders
for various values of t.

as in Definition 8.2.2 with tf = 0 (note that tf c C(x)), any algorithm that correctly

solves a subset of UR,m,6 whose volume is non-negligible in R2" (the total probability

volume of the family UR,m,) will be a numerical integrator conforming to Definition

8.3.3.

Note that Conjecture 8.4.1 restricts the possible form of any numerical integration

algorithm that can be used to solve the IVP to be of the form in Figure 8-3. The

critical restriction is on the expansion algorithm used by the numerical integrator in

Definition 8.3.3 - that it only has knowledge of the first k derivatives of r(t) at the

point of expansion. I now discuss the implications of this restriction.

8.4.1 Conjecture Discussion

From a practical perspective, all known ODE integrators that the author is aware

of can be described as an element or subclass of Definition 8.3.3. This provides

empirical evidence that the conjecture is reasonable. However, it is still instructive

to fully understand the implications of this restriction.

Consider the restriction on the form of expansion algorithm via Definition 8.3.1

- that Exp knows only the first k - 2 derivatives of r(t). This restriction is chosen to

enforce that an order-k expansion can only compute an approximation that matches
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the exact solution to order k.

Given the ODE y"(t) = r(t)y(t), the expansion algorithm Exp cannot compute

y(k+1)(t) without knowledge of r(k-)(t). One therefore may consider higher-order co-

efficients of r(t) as random variables, and Exp may attempt to estimate these random

variables based on its knowledge of the structure of the space of ODEs. Informally

speaking, the better an expansion algorithm is at estimating these higher orders, the

better expansion it returns.

At first, the restriction on knowledge of r(t) may seem onerous. However, recall

that a Pad6 expansion of a function converges in measure to any meromorphic function

for sufficiently large k. Therefore, sufficient local information can be used to derive

global behavior of the function.

However, I will analyze the implications of the conjecture at some finite expansion

order k.'

For finite k, Conjecture 8.4.1 implies that there will always be uncertainty in the

approximation provided by the expansion algorithm. This uncertainty is bounded

using the same notion of differential entropy discussed earlier.

Empirical Observation 8.4.2. Given UR,,,3 = {VPE,c(x),t., Rslttf }, as in Defini-

tion 8.2.2, let t, = 0, and tf > R, with ts,tf E C(x).

There exists a choice of R, m,tf such that h(y(tf))/(- log(e)) is greater than 1 bit

with probability non-negligible in m given knowledge of the first 2m - 1 derivatives of

r(t) at t = t,.

Empirical Observation 8.4.2 formalizes the intuitive statement that a randomized

initial value problem retains a non-negligible amount of entropy in its solution even

when most (in this case all but one) of the derivatives of its coefficient (r(t)) are

given. The expression h(y(tf))/(- log(c)) is the entropy for a discrete random variable

generated by measuring a continuous random variable y(tf) to precision C.

Therefore, if an analog system instantiating a random IVP from UR,m,6 may be

reliably measured to precision e, a digital simulation that knows only the first 2m -

'Later, I will use k as "security parameter" wherein any adversary that hopes to simulate the

system faster must be able to quickly compute expansions of order greater than k.
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1 derivatives of r(t) cannot compute the least significant bit of the measurement,

because the least significant bit of this analog measurement is random (has non-

negligible entropy) to the digital simulation.

First, note that if 2m derivatives of r(t) are given to arbitrary precision, then

these can be used (via Pade expansion or similar) to identify the location of all of the

poles/zeroes of r(t). Once an expansion algorithm has global knowledge of r(t), then

y(tf) has no entropy remaining (this is why Conjecture 8.4.1 is made).

This observation is empirical, because Pr(y(tf)) given knowledge of some of the

derivatives of r(t,) is exceedingly complex. This is discussed in the next subsection.

8.4.2 Statistical Justification

The problem addressed in this section is how to compute Pr(y(tf)) given the first k

derivatives of r(t) at t = to, where y"(t) =r(t)y(t) with the guarantee that r(t) E C(t)

with m poles and m zeroes.

Before beginning the analysis, recognize that the IVP is defined in terms of the

locations of the poles/zeroes of r(t) (e.g., UR,m,6 from Definition 8.2.2), while the

performance of an expansion is determined by the expansion order, or equivalently

the number of derivatives of r(t) known by the expansion algorithm.

The accuracy of any algorithm's estimate of y(tf) is determined by how accurately

such an algorithm can estimate the locations of the poles/zeroes of r(t). Therefore,

one may equivalently compute Pr(r(t)) given the same information as above. However,

recognize that r(t) drawn from UR,m,3 has the restriction that all poles/zeroes must

be inside a disc of radius R around t = 0. This restriction must be taken into account,

so in essence, one must compute the probability distribution of the locations of the

poles/zeroes of r(t) given knowledge of the first k derivatives of r(t).

This problem has been extensively studied in the context of numerical approxima-

tion theory and generally the result is that pole/zero locations can be very sensitive

to small changes in the higher order derivatives, and their behavior is very complex

[171, 76]. However, because I am performing a statistical analysis, to show Empirical

Observation 8.4.2, I do not need to study the problem analytically. I instead randomly
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Figure 8-4: Example randomly selected pole/zero configuration for R = 10, m = 10,
6 = 10-5.

sample members of UR,m,6, and numerically compute the probability distribution and

its entropy. However, one must be careful in the analysis to account for numerical

errors.

I use a Monte Carlo method, beginning by sampling a random IVP from UR,m,6.

For this study, I choose R = 10, m = 10, 6 = 10-. The chosen r(t) has poles at Porig

and zeroes at Zorig. For example, configure the pole/zero configuration in Figure 8-4.

I then compute the order k = 2m - 1 series expansion of r(t) at t = t., denoted

as rser(t) = E i = 02m-lCiti. Recall that k = 2m - 1 because this is the maximal k

for which there is still entropy in r(t). This is because an algorithm given k = 2m

derivatives of r(t) to arbitrary, finite precision can compute (using Pade expansion)

the locations of the poles/zeroes of r(t). Note that setting k = 2m - 1 is a worst case

choice of k. In most cases, a numerical integration algorithm will use an expansion

order k < 2m -1. However, the below analysis becomes exponentially difficult in 1 for

studying a maximum expansion order of k = 2m - 1. Moreover, from a cryptographic

perspective, the worst case is most interesting.

The next step, intuitively speaking, is to construct the set of possible pole/zero
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Figure 8-5: Example dependence of the pole/zero configuration on a small change in

C2m. Although the pole/zero locations can be very sensitive to changes in C2m (i.e.,

see [171]), there is still a smooth dependence. Note, however, that as C2, changes,

it is possible for one or more poles/zeroes to leave the disc of radius R. This would

be result in the configuration not being a valid sample from UR,m,6. This must be

addressed.

configurations that satisfy the requirement that the first k derivatives match the

given derivatives (the requirement that these pole-zero configurations correspond to

r(t) that are elements of UR,m,6 is imposed later). In order to do this, recognize that

the first 2m -1 derivatives of r(t) are given, and therefore, the set of possible functions

r(t) may be given by:

{Padem,m (rser(t) + C2mt 2m)} : C2m E C (8.20)

Further, recognize that the pole-zero configuration smoothly depends on C2m,

and that any region of C2m corresponds to a set of pole-zero configurations. This

dependence is shown in Figure 8-5.

Observe that the dependence of the pole/zero configuration on C2m may be viewed

as a one-dimensional curve over a 2m dimensional vector-space. In particular, observe

that each pole/zero location is an element of a 2m-dimensional vector, which is an
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Remove invalid pole/zero configurations
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r(t) dz

r-5 M) r_4(t) r-3(t) r-2(t) r_1(t) ro (t) r1 (t) r2 (t) rX r r5 (t)

C-5  C-4  C-3  C-2  C_ 1  co C1  C2  C3  C4  C5

C2m
dco

Figure 8-6: A depiction of the dependence of the pole/zero configuration on C2m.

As C2m changes by dci, the pole/zero configuration changes by dpzi (computed with
Equation 8.21). Note that certain configurations may be invalid because one or more

poles/zeroes fall outside the disc of radius R. This is shown with (for example) r3 (t)
and r4 (t).

overall function of a single variable C2m, and this represents a one-dimensional path

in a 2m dimensional vector space.

As a result, an interval C2m E [co, ci) with dco = cl - co has a corresponding

interval of pole-zero configurations, each representing a possible choice for r(t). This

is depicted in Figure 8-6. If the interval of pole-zero configurations is such that for all

C2m E [co, ci), all poles/zeroes are inside the disc of radius R, then all configurations

are allowed and equally likely. The probability therefore is related to the "distance"

of the interval of pole-zero configurations (denoted dpzO in Figure 8-6).

Since the pole-zero configuration is a one-dimensional path in a 2m-dimensional

vector space, the distance metric is the Euclidean distance in a 2m-dimensional space,

computed as follows where pzl, pz2 are sets of poles/zeroes.

Dist(pzl, pz2) = Jpz1 - pz2i1 2  (8.21)

Note that not all intervals have the property that all of the poles/zeroes are located

on the disc of radius R around t = 0 during the interval. In this case, the interval is

illegal, as the corresponding r(t) is not in UR,m,6, which is required by the statement

of the problem. Therefore, drop the interval from further computations.

Also note that ci as shown in Figure 8-6 is defined for all i E Z. This cannot be

computed statistically. Fortunately, it is not necessary, as when jil becomes large,
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Figure 8-7: Depiction of the dependence of Pr(t(t.)) given Pr(C2,). In particular,

the demonstration of the computation of Pr(y(tj) E [yo. y). The transformation is

given in Equation 8.23.

1() converges into a stable pole/zero configuration. This intuitively iiakes sense,

because if C'9n is much greater than all other series coefficients (which is true for

large l11). this corresponds to a single pole/zero configuration. As a result. dpz. goes

to 0 as i goes to oc. As such. simply truncate the computation at some large il,

as pole/zero configurations corresponding to intervals with larger il are very unlikely

(more on this below).

One can now compute Pr(( E F ;. E ,c1]) given the first 2m 1 derivatives of

r(t). Recognize that the probability of observing C2w in a given interval [Co. Ci) is

given by Equation 8.22. The sum is taken over all valid intervals.

(8.22)Pr (C. F [Co. cm)) z l
(1(0 (dIc

This discrete probability distribution now approximates the PDF for continuous

random variable Pr(CK) . The next step is to compute the corresponding value of

y(t) at the point of evaluiation if for each value of ( ,. I use this to compute an

approximation Pr(y(/f)) given the first 2m - 1 derivatives of r(t).

The method of this compitation is depicted in Figure 8-7. and given in Equation

8.23.

Pr(y(tj) E [yoyu)) Pr (C,,, E c : yo <y y(f) < y I ICy2

This finally gives the probability distribution for y(tf) given the first 2m - 1

derivatives of r(t). Finally, compute the entropy of this distribution. The differential
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Observed Min-Entropy Remaining for Random Samples from UR.m.6
Occurences
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Figure 8-8: A histogram generated by measuring the min-entropy of y(tj) given the

knowledge of the first 2m - 1 derivatives of r(t,) for 1000 random samples from

UJRm,6. These data are collected by assuming a measurement precision of 10 bits

(and therefore a maximum entropy of 10 bits). Out of 1000 samples, each system

had significant min-entropy. Therefore, there is evidence that Empirical Observation

8.4.2 is true.

entropy is too optimistic given the wide range of magnitude possibilites for y(tf); it

assumes a constant measurement precision regardless of the amplitude of y(tI). In

general high-speed analog systems can only measure a few bits of precision. For the

purposes of this experiment, define E relative to ly(tf)I. I choose 10 bits of precision,

implying that for a, given sample c = ly(tf)1/1024.

As such, consider the entropy of y(tf) relative to a measurement precision of

y(t)/2 10 . This is done by putting the distribution of Pr(y(tj)) into 210 buckets and

calculating the entropy of that set.

The above algorithm was run on 1000 randomly sampled elements of UR,,,6 with

R = 10, m = 10, 3 = 10'. Based on the above analysis, I computed the distribution

in Figure 8-8 of remaining entropy after receiving the first 2m - 1 derivatives.

It was found that greater than 1 bit of entropy remained with non-negligible

probability. In fact, out of maximum possible entropy of 10 bits, a substantial fraction
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of entropy typically remained, even though 2m - 1 derivatives of r(t,) were given.

Therefore, one concludes that y(tf) has several bits of entropy after the first 2m - 1

derivatives of r(t,) are revealed (Empirical Observation 8.4.2 is true).

8.4.3 Error Analysis

There are several possible sources of error in the calculation of the entropy of y(tj)

given the first 2m - 1 derivatives of r(t). They fall into the following buckets:

" Roundoff error, numeric error, and arithmetic precision.

" Numeric integration error in Equation 8.22.

" Numeric integration error in Equation 8.23.

Roundoff Error: In the above algorithm, I determine (a) valid pole-zero config-

urations and (b) interval distance in the 2m dimensional space of pole/zero configu-

ration by:

1. Taking a 2m - 1 order Taylor series expansion and adding the term C2mt2m.

2. Computing the Pad6 Approximant.

3. Computing the poles/zeroes of the Pad6 approximant.

4. Measuring the pole/zero locations relative to the allowed region (the disc of

radius R around t = 0).

5. Measuring the pole/zero locations relative to the previous iteration to compute

dpzi.

Steps 2 and 3 are highly sensitive to roundoff error in their arguments (the coefficients

of the Taylor series for Step 2, and the computed coefficients of the Padd approximant

for Step 3) [171, 76]. Because of the sensitive, complex nature of the dependence of

Pad6 approximant and numerical root finding on their arguments, I have elected to

use an arbitrary-precision calculation, and to increase the precision of the calculation

until the result no longer changes, and use this precision as the arithmetic precision

of the entire algorithm.

In this way, I ensure that the roundoff error is less than 6 = 10-5.

Integration Error - Equation 8.22: The above algorithm uses a finite dci as an

discrete interval to approximate the continuous probability distribution Pr(C2m = c).
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Figure 8-9: Depiction of the computation of quantization error in the process of

computing Pr(y(tf)) E [yo, yi)). The quantization error is upper bounded by taking

50% of the probability of the two ending intervals (in this case [c-5 , c- 4 ), and [c_ 1 , co)),
and adding it to the overall error of the system. This is in addition to the 1% error

of numerical integration computing Pr(C2m).

Moreover, the above algorithm truncates large values of c. Therefore, one must

consider the error in the estimation of each interval, given by Equation 8.22. To

address this concern, the algorithm in practice uses a more complex approach than

shown in Figure 8-6. In Figure 8-6, dci is constant for all i. However, the algorithm

in practice dynamically scales dci to keep dpzi small in order to keep the local error

tolerance of each interval below 1%. This is done using standard numerical integration

techniques, recognizing that the error is bounded by the error for the rectangle rule

[155]:
dc dpzigi _ dpzi

Err% = - x
2 dc j+1  dci

Finally, the algorithm truncates c when dci reaches a maximum threshold value

and dpzi drops below the lower threshold of 10-'. This corresponds to a local prob-

ability less than 10 5 of the maximum probability. In this way, each interval of

the discrete probability distribution is within 1% of the actual probability over that

interval.

Integration Error - Equation 8.23: The final integration step to compute

Pr(y(tf)) given the first 2m - 1 derivatives of r(t) is shown in Figure 8-7. To estimate

the error of each interval, e.g., Pr(y(tf)) E [yo, yi), compute the quantization error,

shown in Figure 8-9. This is then added to the 1% error of each interval of Pr(C2m).

In this way, one may compute Pr(y(tf)), and bounds on the numerical noise af-

fecting its computation.
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Entropy Lower Bound: First, recognize that using the above error analysis, the

min-entropy of the system may be accurately computed. Because the min-entropy

only considers the most probable interval of Pr(y(tf)), this interval always has the

largest number of intervals of Pr(C2m). Therefore, the quantization error is minimized.

In general, this quantization error is of the order of a few percent. This methodology

is used to compute the distribution of min-entropy in Figure 8-8.

8.5 PPUF Formalism and Construction

A Public Model Physical Unclonable Function may now be formally defined. This

section will provide a construction whose security reduces to Conjecture 8.4.1.

The purpose of this section is ultimately to compare the performance of an analog

and digital instantiation of a computational problem. Therefore, the first step is to

formalize how to transition between these domains (from continuous to discrete and

vice-versa). This is done in Definitions 8.5.1 and 8.5.2.

8.5.1 Discretization of Continuous Variables

In the above analysis and in the following reduction, there are several cases where

one must interpret continuous variables as discrete values. This will be done in the

standard way, formalized in Definitions 8.5.1, 8.5.2.

Definition 8.5.1. A discretization of a continuous variable y with accuracy 6, de-

noted Yd <- D6 (y) is the representation of y as a discrete number to precision 6. In

particular, Yd is given such that:

IYd6 - YI = miniJ - y (8.24)
iEZ

This definition is extended to transforming continuous random variables into dis-

crete random variables by integrating over the PDF.

Definition 8.5.2. One can convert a discrete variable yd to a continuous variable

with accuracy 6, denoted y =+- C6(yd) is the representation of Yd as a continuous

177



number with error < 6/2 by taking:

Y = Yd 6 + E (8.25)

where E is taken from the uniform distribution over [-6/2,62].

The definition is extended to transforming discrete random variables into contin-

uous random variables by letting E be a random variable and summing over the PDF

of Yd.

8.5.2 Physically Accelerated Function Construction

The intent of this section is to formally construct a Physically Accelerated Function

(PAF). This will be used to construct a Public Model Physically Unclonable Function

(PPUF). A PAF is a combination of the physical device and a software model. Both

of these instances compute a single function (cf. Definition 8.5.4). However, the

physical device has the property that it obtains the result of the function faster than

any digital implementation of the software model.

After formalizing the notion of a PAF (cf. Definition 8.5.5), the notion of "se-

curity" for a PAF device is formalized (cf. Definition 8.5.6). In order to do this,

a "parameterized" security definition is provided (cf. Definition 8.5.7), and Lemma

8.5.14 shows a reduction of this Definition to Empirical Observation 8.4.2 for certain

parameters. Conjecture 8.4.1 is used to to reduce unparameterized security (Defini-

tion 8.5.6) to parameterized security (Definition 8.5.6) in Theorem 8.5.16.

A proof sketch of the above goes as follows. Construct a "chain" of randomly

chosen IVPs together (cf. Lemma 8.1.18). Show that an asymptotic improvement

in solving the chain of IVPs results in an asymptotic improvement in solving an

individual IVP. However, this contradicts Empirical Observation 8.4.2 in combination

with Conjecture 8.4.1.

Along the way, I recognize another implication of the theory. In particular, Con-

jecture 8.4.1 implies a lower bound on the circuit size complexity of discrete IVP

solvers, where IVPs are of the form in Definition 8.1.4.
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Feedforward Function: F (Vi, (y(ti), y'(t)))
Precision: E Precision: E

(y(t1),y'(t)) ADC Random
Oracle DA +,t

Challenge:

(VO, V1, ... , Vn)

Figure 8-10: Informal depiction of the derivation function for poles/zeroes in each

cluster (cf. Definition 8.5.3). The previous system state (y(tj), y'(tj)) is discretized
and, alongside a piece of the challenge vi, is sent to a random oracle. The random
oracle output is then used to generate the next pole-zero cluster ri+1 (t).

I begin with Definition 8.5.3 (informally shown in Figure 8-10), that formalizes

how to derive the locations of poles/zeroes in the IVP from problem parameters.

Definition 8.5.3. Define the function z +- FZR,m,6(V, M, y) to take a portion of the

challenge v E {0, 1}', the "model" M E {0, 1}*, and the IVP state (y, y') E C 2 . It

returns a set- of m values z E Cm. (These will be used as the locations of zeroes in

the IVP).

Let HR,m,6(-) be a random oracle parameterized by R, m,6, that returns z E

{{0, 1}', {0, 1}}m, wherein for all {Zre, zim} E z, the following is true:

(Zre 6) 2 + (Zim6) 2 < R2  (8.26)

Define Fz as the following algorithm:

1: procedure z - FZR,m,6(V, M, (y, y'))
2: Put (y, y')d = D 6((y,y')) // See Definition 8.5.1 for D 6 (.)
3: Put Zd = HR,m,3(v, M, (y, Y')d)
4: Put z = CQ(zd) // See Definition 8.5.2 for C(-)
5: Return z

6: end procedure

The definition is similar for p <- FPR,m,6 (V, M, (y, y')).

As discussed above, the function in Definition 8.5.3 will be used to "chain" IVPs
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Figure 8-11: A graphical representation of the iterative numerical integration process

described in Definition 8.5.4. In this case, an initial cluster of poles/zeroes around

to is given with radius R. The solver must numerically integrate along the real axis

from some initial time t, along the real axis to to. The state value at this point,
y(to), y'(to) is then used with a random oracle to derive the locations second cluster

of pole/zeroes. These are displaced by T along the path of integration. The process

then repeats for n iterations.

together, by choosing the next IVP randomly. Using this function, construct the

function that the PAF actually performs as an iterated numerical integration. This

higher-level function is described pictorially in Figure 8-11.

Definition 8.5.4 (PAF Initial Value Problem). A PAF Function (y, y') +- FR,m,E,6,n(V, M)

represents the mathematical function computed by the PAF device. (y, y') E C2 rep-

resents an approximation of the output state of the ODE, a two-dimensional complex

vector. V = {vi} for i from 0 to n - 1 with vi E {0, 1}l, represents an input challenge.

Finally, M E {0, 1}* represents an approximation of the model of the PAF hardware.

(y, y') +- FR,m,E,6,n(V, M) is implemented in Algorithm 4.

The function FR,m,E,6,n(V, M) from Definition 8.5.4 represents the mathematical

function computed by the PAF and its model. It does not denote whether the function

is computed in analog or digital hardware. The purpose of the PAF is to provide two

computational modalities that solve the above problem. First, there is the hardware-

accelerated unit, which will in general be analog in nature. Second, since the function

FR,m,e,,n(V, M) is known, it can be computed by a general purpose computer for any

arguments V, M by some algorithm.
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Algorithm 4 Definition of the iterated initial value problem depicted in Figure 8-11.

1: procedure (y, y') +- FR,m,c,6,n(V, M)
2: Set curve C(t) to transit along the real axis from -oc -4 oc with constant

derivative dC/dt.
3: Choose T > R. // Separate each problem by 2T > R

4: Set t = -T. // Start Integrating IVP from -T.

5: Set y(-T) = 1, y'(T) = 0. // Initialize IVP

6: Set Ymeas = {y(-T), y'(-T)}-

7: for i from 1 to n do
8: Construct z = FZR,m, (vi,M,ymeas). // Calculate Poles and Zeroes,

construct ODE
9: Construct p = FPR,m,6(Vi, M, Ymeas).

10: ForallzEz,setz=z+T
11: For allpE p, setp=p+T

12: Construct L = at + r(t) with r(t) poles/zeroes at p, z respectively.

13: Set IC = {y(t), y'(t)}.
14: Construct IVP = {L, C(x), t, IC}
15: Integrate IVP from t to t + T. // Integrate into the center of

the pole/zero cluster
16: Set Ymeas = {y(t + T), y'(t + T)}. Store state ymeas for use to

compute next stage

17: Integrate IVP from t + T to t + 2T.// Integrate out of the cluster

of poles/zeroes
18: Set t = t + 2T.
19: end for
20: return {y(t),y'(t)}.
21: end procedure
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These two devices (the hardware accelerator, and the software algorithm), com-

prise the PAF, which is formalized in Definition 8.5.5.

Definition 8.5.5 (Physically Accelerated Function). A (FR,m,,,n, 1, X)-Physically Ac-

celerated Function is a pair of objects representing a function (y, y') <- FR,m,,,6,n(V, M),

where V = {vi} for i from 0 to n -1. vi, M E {0, 1}1. (y, y') are continuous/discrete

values related through Definitions 8.5.1 and 8.5.2. The value V is the "challenge" of

the system, chosen at random for each call to the PAF. The value M is the "model,"

which is constant.

" The "PAF Device," termed (y, y') <- PAFM(V), that is a specialized piece of

hardware that computes the function (y, y') <- FR,m,E,6,n(V M ).

" A model M E {0, 1}* of PAFM, and a digital algorithm (y, y') +- SWF(V, M)

that computes the function (y, y') <- FR,m,E,6,n (V, M).

The two objects PPAFM and SWF have the property that VV |ISWF(V, M)-PAFM(V)I <

E.

For the purpose of this analysis, the PAF model M is constant, publicly known.

It won't be used in the security reduction that follows. The model will become

important when defining a PPUF later.

Define the security of the above Physically Accelerated Function in terms of the

experiment in Definition 8.5.6.

Definition 8.5.6 (PAF Security). A (FR,m,E,6,n, 1, X)-PAF is q-secure with error Perr

and noise e if the following is true:

First, the correctness condition must be satisfied:

Pry (IIPAFM(V) - SWF(V, M)11 > e) < Perr

Second, the soundness condition must be satisfied: for all PPT A, Adv t-uprd (A) <

4, which is defined in terms of the following timed-unpredictability (t - uprd) exper-

iment.
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1: procedure {0, 1} +- Expm%"P d(A)

2: Choose random V.

3: Run (YPAF, YPAF) +- PAFM(V), measure time tPAF.

4: Run (yA, y') +- A(V, M), measure time tA-

5: if JYPAF - YAI < E and tPAF > tA then return 1

6: else return 0

7: end if

8: end procedure

The t - uprd advantage of A is defined as

AdVt-uprd(A) = Pr (Exp-uprd(A) = i)

8.5.3 Security Reduction

There are two primary results in this section. First, Theorem 8.5.13 show that there

exists a class of IVPs that are "n-complex" (Definition 8.5.12), which informally

requires at least n calls to an expansion algorithm when the numerical integrator is

of the form of Definition 8.3.3. This implies an asymptotic lower bound on the circuit

size complexity of any numeric integration method for this class of IVPs.

The second result is the security reduction of a PAF construction. Definition 8.5.6

provides the formal definition for PAF security. However, there are several steps to

reduce the above definition to the cryptographic assumptions, a security parameter,

and the physical properties of the PAFM relative to the software model SWF. This

is done by using the chaining function from Definition 8.5.3 to show that a digital

algorithm violating a parameterized security definition (cf. Definition 8.5.7) by being

asymptotically faster than a PAF that computes a function of the form in Definition

8.5.4 can be used to accelerate the computation of random IVPs from UR,m,6. This

contradicts Empirical Observation 8.4.2. Further, Conjecture 8.4.1 is used to tie this

result to the primary security Definition 8.5.6, culminating in Theorem 8.5.16.

Therefore, the first step is to provide a "parameterized" version of the PAF security
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game in Definition 8.5.6. This is formalized in Definition 8.5.7 using the "maximum-

order expansion unpredictability" (moe - uprd) experiment described below. Note

that Definition 8.5.7 requires an adversary of the form described in Conjecture 8.4.1.

Definition 8.5.7 (Parameterized PAF Security). A (FR,m,e,6,n, 1, X)-PAF is #-secure

with error Perr, noise e to order k for n iterations if the following is true:

First, the correctness condition must be satisfied:

Prv (IIPAFM(V) - SWF(V, M)II > e) < Perr

Second, the soundness condition must be satisfied: for all PPT numerical inte-

gration algorithms (cf. Definition 8.3.3) A, AdVmoe-uprd( A) < 4, which is defined in

terms of Equation 8.27.

Let A be comprised of an expansion algorithm family indexed by expansion order

k, and denoted as Ex pAk as well as a global numerical integration NIA (cf. Definition

8.3.3). This expansion algorithm family may be single or multi-step as in Definitions

8.3.1 and 8.3.2. *Both ExpAk, and NIA may have access to the random oracle H(.).

1: procedure {0, 1} +- Expoe-"Prd(A)

2: Choose random V.

.3: Run r <- PAFm(V).

4: Run r' <- A(V, M), measure N number of stages of NI (cf. Figure 8-3),

requiring maximum expansion order kma during each stage.

5: if Ir'- rl < e and N < n and kmx < k then return 1

6: else return 0

7: end if

8: end procedure

The moe - uprd advantage of A is defined as

Advmoe-Purd(A) = Pr (Exp oe-uprd(A) = i) (8.27)
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To start, the PAF from Definition 8.5.5 is already a PAF for 1 iteration of

FR,m,E,6,n=1 (i.e., n = 1). That is, any software model of the PAF that satisfies

correctness will require > 1 expansions with some non-negligible probability in m to

compute the output r. Intuitively, this is because there is still entropy remaining

in y(tf) after only a single expansion has been computed. Therefore, the algorithm

cannot guess the output (y, y') with high probability. This is formalized in Lemma

8.5.8.

Lemma 8.5.8. Put n = 1. Given FR,m,,,n=1, there exists a choice of R,m, C,T such

that the following is true:

Definition 8.5.5 of a (FR,m,E,6,n, l, X)-PAF is (# = 1/poly(m))-secure with error

Perr, noise E to order k = 2m - 1 for n = 1 iterations.

Proof. With n = 1 iterations, the response is computed by numerically integrating

from t, < -R to tf = 0. Given a uniformly random challenge V, the IVP is uniformly

chosen from UR,m,6 = IVP,C(X),t., Rslttf} as in Definition 8.2.2.

By Empirical Observation 8.4.2, there exists a choice of R, m, C, T such that an

algorithm A that is of the form from Definition 8.3.3 with maximum expansion order

kmajc 2m - 1 that uses < 1 calls to ExpAk to integrate y(t) from ts to tf with error

e cannot succeed with greater than 1/2 probability for a fraction of challenges non-

negligible in m. This is because Empirical Observation 8.4.2 states that for a fraction

of challenges non-negligible in m, there is greater than 1 bit of entropy remaining in

y(tf) after a single expansion of maximum order 2m - 1 at t,.

This follows from the fact that with non-negligible probability in m, there is at

least one bit of entropy left in y(ti), when y(ti) is measured to precision e, when only

the first 2m - 1 derivatives of r(t) are revealed to ExpAk. Therefore, ExpAk does not

have enough information to compute y(ti) to precision < c, regardless of its runtime.

Note that since Empirical Observation is constructive in terms of its choice of

R, m, e, T, these parameters may be used in the above secure PAF construction.

R

Furthermore, in Lemma 8.5.9 that the above property holds for n = 1, even in
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Figure 8-12: A depiction of F"* from Observation 8.5.9. Instead of defining each

cluster of poles and zeroes based on the system state at a previous time (as in Figure

8-11, Definition 8.5.4), one may consider each pole/zero cluster as statically cho-

sen. The problem is then to compute the system state (y(t), y'(t)) at all points

t = {to, ti, t2, ...}, instead of just t = tf.

the presence of other pole-zero clusters far away from the path of integration from t,

to tf. In essence, adding another cluster of pole-zero pairs far away from the initial

cluster does not affect the difficulty of the problem.

Lemma 8.5.9. Consider a (FR,m,e,6,n, lX)-PAF that is (# = 1/2)-secure with error

Perr, noise e to order k = 2m - 1 for n = 1 iterations.

By definition FR,m,,,6,n is defined in terms of the ODE y" = r(t)y(t), where r(t)

contains m poles, m zeroes on the disc of radius R around t = 0.

The following (F"nR,m,E,6,n, 1, X)-PAF has the same security as the original PAF,

where F"nR,m,6,,An is defined in terms of the ODE (ynew) = r(t)rnew(t)ynew(t), with

rnew(t) has m poles, m zeroes on the disc of radius R around t = T, for some finite

T >> R.

Proof. This follows from the fact that r(t)r"ew(t) is analytic along the curve of inte-

gration C(x), and therefore ynew(t) is also analytic along C(x).

Recognize that rew(t) will be of the form:

[I - t-T

rnew(t) = rum X
_t-T

i pi-T
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One may compute a series of this expression in the limit (T >> R > t), which

results in:

rnew(t) = 1 + o(t/T)

Therefore, in the limit of large T, the expression r(t)rnew(t) -4 r(t). Therefore,

ynew(t) -+ y(t) in the limit of large T as well. For sufficiently large T, I1y"we(t)-y(t)I <

E. An algorithm that has advantage in computing y"ew(tf) in such a problem could

therefore be used to gain advantage in the original problem of computing y(tf), since

they are less than r apart.

In conclusion, if a (FR,m,e,6,n , X)-PAF is secure by Definition 8.5.7, then there

exists some T for which (FnewR,mE, 5 ,n, 1, X)-PAF is also secure.

0

The above proof was in the case of a single additional cluster of pole-zero pairs at

a distance T away from the first cluster. This can be trivially extended to multiple

clusters by the same argument.

Corollary 8.5.10. Consider a (FR,m,E,6,n, 1, X)-PAF that is (q = 1/2)-secure with

error Perr, noise c to order k = 2m - 1 for n = 1 iterations.

By definition FR,m,E,6,n is defined in terms of the ODE y" = r(t)y(t), where r(t)

contains m poles, m zeroes on the disc of radius R around t = 0.

The following (F"eR,m,E,6,n, 1, X)-PAF has the same security as the original PAF,

where F"*wR,m,Efn is defined in terms of the ODE (ynew)" = r(t)rle (t)rnew(t) ... ynew(t),

with rn,"w(t) has m poles, m zeroes on the disc of radius R around t = .T, for some

finite T > R.

Proof. Using the same argument as above, recognize that in the limit of large T:

lim rnew(t) = 1
ITI-+oo

Therefore, for any finite n, where i from 1 to n, there exists a large enough T

such that |lynew(t) - y(t)JI < C. In conclusion, if a (FR,m,e,6,n, 1, X)-PAF is secure by
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Definition 8.5.7, then there exists some T for which (FnewR,m,E,6,n, l1, X)-PAF is also

secure.

Since the addition of n pole-zero clusters far away from the IVP in question does

not affect its difficulty, Theorem 8.5.13 shows that solving all of these problems

simultaneously requires greater than n expansions, which provides a lower-bound on

the circuit complexity of solving the IVP. I begin by providirig a definition of these n

pole-zero cluster IVPs in Definition 8.5.11.

Definition 8.5.11. The family of n-cluster IVPs, Sn,T,U is a family of IVPs, wherein

n samples uj (j from 1 to n) are taken from UR,m,6 are taken. Each is then displaced

(Definition 8.1.15) by jT (along the real axis), and a curve of integration is taken

from t, < -R through t3 = jT.

The solution consists of {(y(tj), y'(tj)}, the state at each t3 .

Using the definition of this n-cluster, Definition 8.5.12 states that any algorithm

requires at least n expansions in order to compute y(tj) for all j from 1 to n. Infor-

mally, this is the "security game," that the first primary result is derived from. That

is, this definition is used to show that if Conjecture 8.4.1 is true, then there exists an

IVP that is n-complex.

Definition 8.5.12. Define a family of n-cluster IVPs is "n-complex with noise e,

error probability Perr to order k.ax" if for all PPT numerical integration algorithms

A of the form in Definition 8.3.3, the following is true:

Let {y, y'} +- A(s) with j from 1 to n.

If the algorithm is correct: PrsEsslTU ((ys(ti), y'(ti)) - (yA, yA)j > E) < Perr for

all j, then it is true that A requires > n calls to ExpAk and has maximum expansion

order kmax.

Theorem 8.5.13 now reduces the above definition to Conjecture 8.4.1 and Empiri-

cal Observation 8.4.2. A Corollary of this Theorem is that there exists an asymptotic

lower bound on circuit size for any digital circuit that solves problems from Sn,T,U.
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Theorem 8.5.13. Let UR,m,6 be chosen such that Empirical Observation 8.4.2 holds.

An n-cluster IVP family Sn,T,U is n-complex with noise e, error probability Perr to

order km,, for some choice of T.

Proof. Consider n IVPs uj sampled randomly from UR,m,6. By Empirical Observation

8.4.2, each uj individually has the property that after 1 expansion at t, of order at

most 2m - 1, there is a non-negligible amount of entropy remaining in Pr(y(tf)).

By Lemma 8.5.9, for sufficiently large displacement T, one may combine these

individual uj into a single IVP (cf. Definition 8.5.11) that is a member of Sn,T,U. Fur-

thermore, the combination of these IVPs does not affect their individual property that

there remains a non-negligible amount of entropy in Pr(y(tj)) after the computation

of a single expansion up to order 2m - 1 at some t,.

Therefore, consider an adversary A that requires < n calls to ExpAk to achieve the

correctness condition stated in the Theorem with perr < 1 - neg(n). Construct an

algorithm B that takes n random instances of IVPs from the family UR,m,6 as follows.

Let uj be n unique samples from UR,m,6. From Lemma 8.1.18, connect these IVPs

into a single IVP that is identical to an element of Sn,T,U. Using A, solve this problem

using < n expansions to compute the system state (y(tj), y'(tj)) at each t3 at the

center of each cluster, with Perr < 1 - neg(n).

Therefore, B requires (amortized) ; 1 expansions per random IVP instance from

the family UR,m,6. Moreover, recognize that since each random IVP instance uj has

the property that after one expansion, there is a non-negligible amount of entropy

remaining in Pr(y(tj)) that is independent of n (i.e., h(y(tj)) = 1/poly(m) = 8(no)),

the joint entropy of each of these systems is E h(y(tj)) = 8(n). Therefore, because
j=1

Perr < 1- neg(n), there must be at least one uj, where A has computed Pr(y(tj)) with

entropy o(n0 ).

This contradicts Empirical Observation 8.4.2.

Note that Theorem 8.5.13 shows how an IVP can require at least n expansions

in order to compute n unique points in the IVP. This provides a non-trivial circuit
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lower bound. By the definition of the problem, any IVP with 6(n) parameters (e.g.,

pole-zero locations for the system in question) necessarily has a solver with circuit

size of 8(n) because there are 6(n) inputs. However, Theorem 8.5.13 shows that any

discrete solver must have circuit size Q(n x Size(ExpA), where Size(ExpA) is the circuit

size of an expansion algorithm.

I now move on to the second primary result of this section. In particular, Theorem

8.5.16 proves that Conjecture 8.4.1 in combination with Empirical Observation 8.4.2

implies the existence of a PAF that is secure according to Definition 8.5.6.

I begin by providing a reduction of the PAF security according to Definition 8.5.7

to Empirical Observation 8.4.2 in Lemma 8.5.14. Theorem 8.5.16 uses Conjecture

8.4.1 and a required property of the system (Definition 8.5.15) to show PAF security

according to Definition 8.5.6.

Lemma 8.5.14. Let UR,,,6 be chosen such that Empirical Observation 8.4.2 holds,

and let FR,m,,,6,n sample uniformly from UR,,,.

There exists a choice of c such that a (FR,m,e,6,n 1, X)-PAF is $-secure with error

Perr, noise e to order k < 2m - 1 for n iterations, where $ = neg(n), and perr <

1 - neg(n).

Proof. First recognize that the configuration of the i + 1'th pole-zero cluster depends

via a random oracle on the system state at the center of the i'th pole-zero cluster (cf.

Definition 8.5.3).

As a result, the adversary cannot guess the configuration of the second pole-zero

cluster. Therefore, stage 1 of the adversary (cf. Figure 8-3) can only integrate through

the first cluster. This is shown in Figure 8-13.

Now, recognize that if the number of stages of the adversary N is less than the

number of clusters n, then there exists some stage i that integrates through at least

2 clusters. This is shown in Figure 8-14.

However, for the i'th stage to have performed this integration, it must have known

the configuration of the i + 1'th pole-zero cluster. For it to have known the configu-

ration of the cluster, it must have already (at the beginning of the stage), known the
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Figure 8-13: Base case of the PAF adversary. Because the adversary cannot know the
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the first cluster. Note that although Empirical Observation 8.4.2 states that a single

expansion cannot have a convergence region as large as depicted above, multiple

expansions computed in parallel may be combined to obtain a convergence region

this large.
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system state at the center of the i'th cluster (since the configuration of the i + 1'th

pole-zero cluster is related through a random oracle).

This implies that the i'th stage did not integrate over two clusters, rather the

i - 'th stage had already integrated over two clusters. Repeat the inductive argument

until i = 1. This contradicts the base case. E

The above Lemma 8.5.14 shows that the parameters from Empirical Observation

8.4.2 may be used to construct a PAF that is secure under the parameterized Defini-

tion 8.5.7 using the construction in Definition 8.5.5, using the function from Definition

8.5.4.

The next and final step is to relate this security back to the original definition of

PAF security, Definition 8.5.6. In order to do this, there are two pieces needed. First,

use Conjecture 8.4.1 to show that any algorithm that could violate the security of

Definition 8.5.6 would also be a valid algorithm that violates Definition 8.5.7.

The second piece is to relate the runtime of the software model to the number of

calls to ExpAk. To start, I claim that ExpAk has runtime that is E(1). This directly

implies from Lemma 8.5.14 that any algorithm will have runtime Q(n), since at least

n calls to ExpAk are needed.

By definition, the analog computer runs in 8(n) time. Therefore, at worst, the

two computational modalities (SWF(V, M) and PAFM(V)) are related by a constant

factor.

This constant factor is the purpose of Definition 8.5.15. It defines a condition

in which the physical hardware in PAFM is a constant-factor faster than a minimal

element of ExpA k

Note that this definition is not constructive - it does not claim that such a

device exists. However, there is reason to believe with best-known implementations

of technology that it does. This is discussed further in Chapter 10.

Assuming the existence of such a device, I use it to construct a PAF that is secure

according to Definition 8.5.6 in Theorem 8.5.16.
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Definition 8.5.15. An (FR,m,,6,n, 1, x)-PAF is 9-hardware accelerated over an imple-

mentation of ExpAk if 9 x Runtime(PAFM(V)) Runtime(ExpAk) for all k.

Informally, Definition 8.5.15 defines a 9 parameter which defines the "constant-

factor" between PAFM and SWF. A 9 parameter greater than 1 implies that there

is some constant-factor advantage that PAFM has over the computational modality

implementing SWF.

Theorem 8.5.16. Let UR,m,6 be chosen such that Empirical Observation 8.4.2 holds,

and let FR,m,E,6,n choose from UR,m,6-

Let a (FR,mE,6,n, 1, X)-PAF be q-secure with error perr, noise c to order k for n

iterations, where # = neg(n) according to Definition 8.5.7.

If (FR,M,,f,,n, 1, x)-PAF is 9-hardware accelerated against any adversary A with 9 >

1, then the (FR,m,,,6,n, 1, X)-PAF is h-secure with error Perr and noise E according to

Definition 8.5.6.

Proof. First, recognize that if a (FR,m,E,3,n, 1, x)-PAF is 9-hardware accelerated for

9 > 1, then the adversary A can perform at most n/0 calls to ExpAk. Therefore, A

must make < n calls to ExpAk-

Therefore, by Conjecture 8.4.1, any algorithm that correctly solves for a subset

of UR,m,6 must be of the form in Definition 8.3.3. This implies that an algorithm A

that has non-negligible Advt-uPrd(A) in Definition 8.5.6 must also have non-negligible

Advmoe-uprd (A) in Definition 8.5.7.

This in turn contradicts Lemma 8.5.14.

8.5.4 Proof Remarks

The Kovacic algorithm is not directly invoked in this reduction. It is assumed that

the algorithm is run in advance to ensure that the ODE does not have a closed form

solution, so that Conjecture 8.4.1 may be applied. Empirically, it is virtually always

the case that the ODE does not have a closed-form solution.
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The form of the adversary in Definition 8.3.3 (also Figure 8-3), allows for paral-

lelism in each stage, and does not include the computational cost of combining the

individually computed expansions in each stage.

Need for a Random Oracle: A random oracle is required to derive the config-

uration of each cluster in order to enforce that regardless of the input distribution,

the output distribution looks uniform (assuming sufficient min-entropy of the input).

This is important, as Conjecture 8.4.1 applies only to the family of ODEs in Definition

8.2.2, which has a uniform distribution of poles and zeroes. If the adversary has some

incomplete knowledge of the distribution of y(ti), and this impacts the distribution

of the next pole-zero cluster, then this could conceivably result in a computational

advantage for the adversary.

Hybrid Analog-Digital System: By using the random oracle above, the PAF

becomes a hybrid analog-digital computer. The implications of this requirement are

discussed more in the context of possible PAF architectures in Chapter 10. In general,

the conversion between analog/digital domains introduces additional overhead in the

analog computer. The speedup of the analog computer over the digital computer must

remain even in the presence of this additional overhead. Namely, Definition 8.5.15

includes the total runtime of PAFM, including the delay introduced in the ADC/DAC

used in the procedure from Definition 8.5.3.

Further note that the random oracle does not have any speedup in the PAF versus

SWF. Therefore, it is required that the random oracle implementation in the PAF

be efficiently implemented such that the SWF cannot achieve a speedup over PAF

through more efficient computation of the random oracle.

Min-entropy of System State: Even with the use of a random oracle, there

needs to be sufficient min-entropy input from the system state y(ti) in order to (1)

have the probability distribution look uniform, and (2) prevent possible parallelization

of the solution. However, because the ODE ultimately must be realized in a physical

system, there are physical limitations on the entropy that may be obtained in the

system state. In particular, if y(t) is an analog value, measurement precision of the

analog system is generally not more than 10-20 bits. (This is discussed in greater
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detail in Chapter 10.) This results in a best-case number of configurations in each

stage on the order of 210 to 220, which is small enough to be solved in parallel.

This may be dealt with by running multiple analog computers in parallel. This is

not depicted in the reduction, but is a simple extension to the protocol. The system

state then is the concatenation of the states of each analog computer (i.e., if the

system state of each analog computer is 10 bits, then 13 analog computers running in

parallel would have an overall system state of 130). The overall system state (130 bits

in the above example) is then fed into each of the random oracles deriving the next

cluster for each analog computer. Each analog computer receives a unique challenge

(which is concatenated with the system state prior to running the random oracle), so

the configurations for each analog computer are relatively random.

Noise of the Analog Computer: In the above reduction, it is assumed that

the analog computer has noise < E. That is, the ideal system state (y(t), y'(t))

and the analog computer's state (9(t), p'(t)) are at most c apart in state space (i.e.,

(y (t) - Q(t))2 + (y'(t) _ y'(t))2 < 2).

If c is too small, then this property does not hold, and there is some probability

of error in the analog computation in each cluster. This probability of success decays

exponentially per stage to zero. Informally, this may be seen as chaotic behavior

of the system. Although each ODE is linear (and therefore not chaotic), the feed-

forward random oracle introduces nonlinearity. The feed-forward mechanism is a

discretization followed by a random oracle (cf. Definition 8.5.3). The discretization

step corrects errors, and the random oracle amplifies them. If E is too small, then the

discretization step does not correct all errors, and the remaining error is amplified to

full scale by the random oracle, resulting in chaotic behavior that cannot be simulated.

On the other hand, if c is too large, then Empirical Observation 8.4.2 no longer

holds, and the reduction breaks down.

8.5.5 PPUF Construction

The PAF formalism used above already contains the required parameters to enable

a PPUF system. The PAF has a "model" parameter M, which is described as a bit
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PAFM(V)
Physical Component

Production
Variability

Create()
Creation Process

Model M

SWF(M,V)
Software Model

Challenge V Response (y, y')

Figure 8-15: A diagram of the formal PPUF construction using a PAF. Note that the

model M that is passed to the software function, and that parameterizes the physical

component is distributed according to some distribution x. Because M is used as

part of an argument to a random oracle in this model (cf. Definition 8.5.3), it is only

required that M have sufficient min-entropy.

string {0, 1}'. It is unused in the PAF speedup reduction, and is therefore set to a

constant.

If instead this parameter is a random variable distributed according to some dis-

tribution x, then the unclonability property can be achieved if certain properties on

X are met. Note that this follows the approach taken by the standard PUF formalism

[10]. Figure 8-15 depicts the PPUF creation and challenge/response process when

the model M is a random variable. Note that this figure analogizes to the "physical

component" piece of the standard PUF formalism described in [10].

In the PAF formalism, the model M is used as an argument to the random oracle

HR,m,6. Therefore, as long as M has sufficient min-entropy, the likelihood of finding

two PPUF clones is minimized. This is the only requirement on M.

196



8.5.6 "Security Parameter" for PPUF Systems

An interesting observation of the PPUF formalism above is the new type of "security

parameter." In a traditional cryptosystem, a security parameter of k corresponds to

a minimum number of bit-operations of 2k to be performed by an adversary in order

to break the algorithm.

In the above formalism, the "security parameter" corresponds to the maximum

expansion order k that can be feasibly computed by an adversary. That is, the

above algorithm is secure until an adversary is capable of computing an expansion of

order > k in time less than Runtime(PPUFM(V)), the overall runtime of the PPUF

hardware.

This is unique for two reasons.

* The circuit complexity is not reduced to bit-operations, rather it is reduced

to the notion of an "expansion", which is at its core an arithmetic operation

(multiply and/or add operations) and therefore more complex than a single bit

. operation.

* It provides a time-limit on the computation based on the PPUF hardware,

PPUFM(V). The difference in time between the.PPUF hardware and the run-

time for ExpAk serves as a bound for the constant-factor speedup of the PPUF

over the model.
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9 - Discussion of the Primary

Conjecture

The purpose of this chapter is to provide justification, analysis, and discussion for

Conjecture 8.4.1. I first discuss the various methods of ODE approximation in the

context of their application, concluding that asymptotic approximation is the only

feasible approach for studying initial value problems (the problems used in the PAF

in Chapter 8). Asymptotic expansions are by their definition of the form described

in Definition 8.3.3.

Second, I focus on a justification for a finite expansion order and intuition for

Empirical Observation 8.4.2 by providing a construction of an asymptotic expansion

algorithm for the ODEs described in Chapter 8. This expansion explicitly demon-

strates how to leverage the structure of the ODE to achieve improved performance

over existing expansions (discussed non-constructively in Chapter 8. Finally, it is

recognized that the cost of any expansion grows with expansion order due to several

factors (numerical precision, number of arithmetic operations, etc.). It is observed

that due to these limitations, most practical numerical integration algorithms are of

relatively low order (less than order 10). This completes the justification for Conjec-

ture 8.4.1. Further, by providing an explicit construction, I demonstrate concretely

the principles discussed in Chapter 8 in the analysis of Empirical Observation 8.4.2.

First, I restate the conjecture here:

Conjecture 8.4.1: Given UR,m,5 {VP,,C(,(x),ts, IRslttf} as in Definition 8.2.2

with tf = 0 (note that t1 E C(x)), any algorithm that correctly solves a subset of

UR,m,6 whose volume is non-negligible in R2 , (the total probability volume of the
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family UR,,,6) will be a numerical integrator conforming to Definition 8.3.3.

Recall that Definition 8.3.3 simply states that the numerical integration routine

takes the form (ExpAk, NIA), a family of expansion algorithms, and then a stepping

algorithm, respectively. This is a broad class of algorithms which affords single and

multi-step integrators, and all known expansion algorithm families.

The conjecture limits a numeric integration algorithm to use only a finite amount

of local information about the ODE during a given step. This chapter focuses on why

it is acceptable to limit the expansion algorithms' knowledge of the global behavior

of the IVP (in the case of IVPs as in Definition 8.2.2, derivatives of r(t)). I begin

with revisiting the Kovacic algorithm.

Chapter 6 discusses the application of Differential Galois theory to the construc-

tion of the "Kovacic algorithm", a deterministic, symbolic algorithm that takes an

ODE of the form y"(t) = r(t)y(t) and returns either (a) the closed-form solution, or

(b) that no closed form solution exists.

The first note is that the Kovacic algorithm returns the space of closed-form

solutions, rather than a specific closed-form solution. (i.e., the algorithm returns

C1 cos(t) + C2 sin(t) with undefined constants C1, C2 when run on the ODE y"(t) =

-y(t), rather than a specific choice of C1, C2). Therefore, the application of the Ko-

vacic algorithm to an IVP is overkill. Further, an IVP only requires a single solution

for a given set of initial conditions, while the Kovacic algorithm returns the entire

solution space.

This exemplifies the difference in approach between the Kovacic algorithm and

more "standard" numerical integration techniques, such as Euler and Runge-Kutta

methods. The Kovacic algorithm by definition requires global knowledge of the ODE.

In the case where the IVP is of the form in Definition 8.2.2, the Kovacic algorithm

must have an complete encoding for r(t). On the other hand, the Kovacic algorithm

is agnostic to the initial conditions.

Therefore, clearly the Kovacic algorithm is an example of an algorithm that would

not be considered under Conjecture 8.4.1.

However, the Kovacic algorithm only returns useful information if there exists a
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Liouvillian solution to the ODE. Otherwise, it returns nothing. It was not explicitly

shown in Chapter 8 that most IVPs of the form in Definition 8.2.2 do not have closed

form solutions, but it is indeed the case that virtually all of these IVPs do not have

a closed form solution.

However, because the Kovacic algorithm exists for this class of ODEs, a guarantee

can be provided that no such exact, closed-form solution exists. Recall that this is why

ODEs of the form in Definition 8.1.4 were chosen. Conjecture 8.4.1 is only relevant

if there does not exist a closed form solution (Otherwise, the Kovacic algorithm has

already solved the ODE in all space).

Now, since there is no closed-form solution, Conjecture 8.4.1 is relevant, because

all known solution techniques fall under the category of "expansions." In general,

functions without closed form are not directly computable by discrete computers.

Indeed, discrete computers are in general only capable of arithmetic operations (add,

subtract, multiply, divide). Therefore, even simple functions such a square root,

exponent, and sine are represented as interpolating polynomials (which are themselves

expansions) [165].

There are two categories of expansions: Uniform and asymptotic.

9.1 Uniform Approximations

Consider an IVP of the form in Definition 8.1.4. The corresponding ordinary differ-

ential equation is by the definition of the form y"(t) = r(t)y(t).

In this case, there are two functions that can be uniformly approximated: r(t)

and y(t).

Although this statement cannot be proven, I conjecture that it is hard to provide a

uniform approximation of r(t) that results in a closed form solution. This is due to the

conceptual reason that the uniform approximation results in piecewise or high-degree

polynomial or exponential solutions. The solutions are analytically more complicated

and do not in general make the system more likely to have a closed form solution.

Moreover, to the author's knowledge, there do not exist any ODE solving algorithms
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or methodologies that consider this approach.

Second, consider the uniform approximation of y(t). Such methods include the

Galerkin method and Finite Element Methods for boundary value problems [28]. An-

other class of uniform approximation methods includes regression, function expansion,

and interpolation [165].

The primary common thread among each of these approximation methods is that

global knowledge of the function is required as a pre-requisite to each method (e.g.,

data distributed throughout the area of interest for interpolation and regression, or

data in certain limiting regions for boundary value methods). For the purposes of the

security of the system, this is an important conceptual recognition.

First, initial value problems by definition are local in behavior, as the complete

system state is given at a single, localized point in time, and the differential equation

describes small-scale changes. This is largely incompatible with the above methods.

However, the attacker in the PPUF security game (Definition 8.5.6) can precom-

pute on the class of differential equations. If the adversary can obtain some informa-

tion regarding the global behavior of the system regardless of the challenge provided

to the PAF, this would constitute a break in security. This is the reason for the selec-

tion of random elements from UR,m,6 (cf. Definition 8.2.2). When selecting randomly

from this family, an adversary cannot pre-compute the solutions (or a large enough

subset thereof to interpolate), simply because the problem space is too large.

Therefore, I conjecture that uniform approximation methods are not advantageous

for use in the context of a PPUF adversary.

9.2 Asymptotic Approximations

The second class of approximation algorithms are "asymptotic". Instead of looking

for a closed-form solution that is correct over the entire real axis or complex plane,

one looks for a closed-form solution that is valid over some subset defined where a

certain parameter is large/small with respect to another parameter. This leads to the

notion of an "expansion order."
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Conjecture 8.4.1 states informally that any numerical integration scheme must be

composed of a family of asymptotic expansions (by definition localized around some

point or limit) indexed by their order (denoted ExpAk, and a stepping algorithm NIA.

The classic example of such an asymptotic approximation method is the Taylor

series expansion. In the case of an initial value problem, the function and its deriva-

tive are both known at the starting point at time ts. Using the Frobenius method,

additional derivatives can be computed. By taking t ~ to, the Taylor series expansion

can be valid.

However, more complex asymptotic expansions (e.g., WKB, discussed later in

this chapter and the Kovacic expansion, constructed later in this chapter) have sig-

nificantly larger regions of accurate approximation when compared to a Taylor series

expansion at equivalent expansion order. Therefore, when constructing a PPUF sys-

tem or comparing the circuit complexity of analog and digital computing, it is impor-

tant to bound the best possible performance of any asymptotic expansion algorithm

in the context of an initial value problem.

To accomplish this, first consider why certain expansions are qualitatively "better"

than others (e.g., Pad6 expansion consistently outperforms Taylor series expansion),

even at the same expansion order.

Consider an order k Taylor series expansion,

k

YTaylor(t) E

i=O

and an order (p, q) Pad6 expansion, where p + q = k:

P
L Cin"mti

YPade M = i=Oq

SCdenti
j=0

Both expansions have the property that if the exact function is y(t), then y(t) -

(t) = O(tk+1). However, the Taylor series expansion has the property that all higher

derivatives of yTaylor(t) are 0. This is not the case for the Pad6 expansion - the higher
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order derivatives of QPade(t) are in general non-zero.

The behavior of these higher-order terms is the focus of Empirical Observation

8.4.2, and provides the foundation for the reduction of PPUF security and analog

speedup to Conjecture 8.4.1.

9.3 Estimation of Sub-Dominant Expansion Terms

Conjecture 8.4.1 restricts the knowledge of ExpAk of r(t) to derivatives up to some

maximal expansion order kmax at some time t,. Therefore, because the IVP as in

Definition 8.1.4 is of the form y"(t) = r(t)y(t), ExpA(t) can only use the Frobenius

method to compute derivatives of y(t) at t, up to order kmax + 2 (the plus 2 term

comes from the fact that the IVP consists of a second order ODE).'

However, ExpAk is not completely ignorant of the higher orders of y(t). This results

from the fact that ExpAk has implicit knowledge of the function space from which r(t)

is being drawn, and therefore also has knowledge of the function space from which

y(t) is being drawn.

Consider a toy example where r(t) has the property that all of its derivatives

have magnitude bounded to be less than some constant Dmax. ExpAk therefore knows

that ly(kmax+3 )(ts)I < Dmax~y(kmax+1)I. This represents a substantial restriction on the

possible values of y(kmax+ 3)

This provides some qualitative intuition why Pad6 expansion outperforms Taylor

series expansion. In essence, Taylor series expansion "gives up" after expansion order

kmax, setting higher order derivatives of the expansion to 0. Pad6 expansion estimates

these higher-order terms based on the assumption that the function being expanded

is a rational polynomial.

These higher order terms are typically referred to as "sub-dominant." A higher-

performing expansion algorithm will be able to estimate the sub-dominant terms well.

'Restriction of the knowledge of r(t) appears to the author to be the most elegant way of restrict-

ing the capabilities of Exp. If Exp has global knowledge of r(t), there is no theoretical reason why

Exp itself can't be a numerical integrator that solves for y(t) everywhere. It might be interesting to

consider alternative formalizations of numerical integration that restrict Exp in a different way.
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To study this, Chapter 8 considers higher-order coefficients of r(t) as random vari-

ables, and Exp may attempt to estimate these random variables based on its knowledge

of the structure of the space of ODEs. Informally speaking, the function space implies

a probabliity distribution for the subdominant terms. The Exp algorithm in Chapter

8 computes this distribution and optimally chooses these subdominant terms.

In Chapter 8, Empirical Observation 8.4.2 formalizes the following:

Let r(t) be drawn randomly from UR,m,6 (cf. Definition 8.2.2). Even if an expan-

sion algorithm knows (a) the first kmax derivatives of r(t,) and (b) complete knowledge

of the function space (in this case r(t) E UR,m,6), there is still some randomness left

over in the sub-dominant terms.

Furthermore, Empirical Observation 8.4.2 formalizes that not only is there entropy

in the sub-dominant terms, there is also randomness in the output function y(tf)

evaluated sufficiently far away from t,. This randomness is characterized in terms of

differential entropy.

This randomness limits the best possible performance of any asymptotic expan-

sion algorithm, regardless of methodology used. However, while this analysis is useful

from a theoretical perspective to prove the reduction in Chapter 8, the expansion

algorithm presented in this chapter demonstrates concretely the efficacy of estimat-

ing sub-dominant terms based on knowledge of the function space by leveraging the

Kovacic algorithm. It is referred to as the "Kovacic Expansion" in this thesis.

This algorithm, while not practical for everyday numerical integration usage, is

useful as an instructive tool in understanding (a) approaches and limitations in esti-

mating sub-dominant terms and (b) providing a real-world adversary for the results

in Chapter 8.

9.4 Kovacic Expansion Methodology

Section 6.3 shows how the Kovacic algorithm provides a one-to-one mapping between

fractional polynomials and Kovacic closed-form functions (Definition 6.3.1).

As a result, one may use Pad6 expansion in conjunction with this mapping to
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construct an expansion (the "Kovacic Expansion" in Definition 6.3.3) of any order

with a much larger function space: the set of Kovacic closed-form functions. This

expansion is the subject of this section, and the high-level flow of this expansion

algorithm is shown in Figure 9-1.

Recall that the purpose of constructing this expansion is to bound the step size

of any numerical integration algorithm that is simulating an analog system. Recog-

nize that this step size bound is imposed based on the error tolerance of the overall

computation - the more error that can be tolerated, the larger the step size can be. 2

This question may be stated precisely:

Given an ODE y"(t) = r(t)y(t), initial conditions y(t,), and y'(t,), and an overall

accuracy objective E. What is the minimal number of expansions of order k that must

be computed to approximate y(tf) to within e as a function of tf?3

Chapter 8 provides a lower bound on the number of steps required based on purely

information theoretic grounds. The Kovacic expansion is constructed in an effort to

find a real-world numerical integration algorithm that gets as close to the information

theoretic bound as possible.

Before considering the Kovacic expansion, first consider how error accumulates in

any numerical integration algorithm. At each step, the expansion algorithm computes

an approximation function that matches the actual function to some finite order.

The difference between this local approximation and the actual function is the local

truncation error. The local truncation error is then compounded in each step into

the global truncation error that describes the total error at the end of the numerical

integration procedure (See Chapter 4 of [47]). One needs to set the step size to be

small enough such that the global truncation error less than or equal to the required

error tolerance (e in the above example).

Traditional expansion algorithms (such as Runge-Kutta algorithms) use Taylor's

theorem as well as known bounds on the derivatives of the independent variable y(t)

2 Note that this translates into the noise requirement on the analog system - the more noisy an

analog system is, the easier it is to simulate.
3A lower bound on the number of expansions to traverse from t, to tf is equivalent to an upper

bound on the step size.
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to calculate an upper bound on local truncation error [33]. This is impossible to

perform for the Kovacic expansion, since the Kovacic expansion is not restricted to

polynomial functions.

However, since the objective of the Kovacic expansion method is to provide a

bound on the step size, rather than providing a practical alternative to traditional

expansion algorithms, one does not need to provide an alternate algorithm for com-

putation of this error. Instead, simply define the error in terms of the relation to

the exact solution (which for a traditional expansion algorithm would be unknown).

Therefore, considering the formalism for a single-step expansion algorithm in Defini-

tion 8.3.1, the Kovacic expansion returns a function (t) with the maximal R such

that ly(t) - P(t)I < c (the c-accurate region).

Moreover, pessimistically define the local truncation error to be as high as the

global truncation error. In a real system, this is never the case (global truncation

error is always significantly larger than local truncation error). However, the global

truncation error serves as an upper bound for the allowable local truncation error,

which in turn allows for the calculation of an upper bound for step size.

Therefore, one can state that the maximal step size is bounded to be within R -

since c is the global truncation error, and the local truncation error must be less than

or equal to the global truncation error.

9.4.1 Algorithmic Description

The Kovacic expansion is a novel expansion methodology that is given as arguments

a linear second order differential equation with coefficients in C(t) (i.e., the Kovacic

algorithm is applicable), a maximum expansion order k, a point of expansion t, (that

can be infinite), initial conditions y(t,), y'(t,), 4 and maximum local truncation error

c. The algorithm then returns the optimal Kovacic closed-form solution matching the

Frobenius series of y(t,) to the maximum number of terms and having the largest

step size within the c-accurate region.

4The initial conditions don't have to be the same as the expansion point, but I choose this for

convenience and because it reflects usage for numerical integration.
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2 nd Order Linear ODE, coeffs in C(t)

I I I Kovacic Algorithm

Nonlinear ODE, Solution in C(t)

I Frobenius Method

Taylor Series of order k

I Pade Approximation

(p,q) Padd Approximant (p+q=k)

Approximation in set Kk

Figure 9-1: A depiction of the general flow of the order k Kovacic expansion. The ODE

is processed by the Kovacic algorithm to yield a set of non-linear ODEs. Then, the

Frobenius method [3] is used to obtain a degree-k Taylor series. One then computes all

(p, q) Pad6 expansions of this series for p + q = k and chooses the one with the largest

step size within the e-accurate region. One then returns the y(t) that corresponds to

this rational expression.

The high level algorithm can be summarized as follows, and the high-level flow is

depicted in Figure 9-1. Simply put, this algorithm performs Pad6 approximation of

the a,_ 1 (t) term for each n and picks the one with the largest step size in R.

{Q(t), R} = KovacicExpandk,,(ODE(y(t), t), {y(t,), y'(t,)}, t,):

1. For n E {1, 2,4,6,12}

(a) Using ODE(y(t), t), compute the Kovacic ODE from Proposition 6.3.2. Let

an_ 1 (t) denote the solution of this ODE.

(b) Compute the expansion of an_ 1 (t) at t E F, where F is the set of all poles

of the coefficients in ODE and oc.

(c) Use a traditional ODE integrator to approximate the value of an-1(t) at

the requested t,.

(d) Compute the order k + n - 2 Frobenius series expansion at t, [3].

(e) Use (d) to compute all (p, q) Pad6 expansions of an-1(t) at t = t, where

p + q = k + n - 2 as {an-1,(p,q)}.

(f) For each Pad6 expansion dan-1 {an-1,(p,q)}
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i. Compute a corresponding basis5 {91 (t), Q2 (t)} using Definition 6.3.1.

ii. Using {y(t.), y'(t,)}, use the basis from (1.f.i) to compute Q(t) and add

to Globallist.

2. Use a traditional ODE integrator to approximate y(t) in the neighborhood of

ts.

3. Using (2), find the Q(t) in GlobalList with the largest step size in the c-accurate

region R.

9.4.2 Details of the Algorithm

Clearly, the algorithm description in Section 9.4.1 is much more complicated than a

normal expansion algorithm, involving calls to other traditional numerical integrators

in steps (1.c) and (2), as well as calculating multiple expansions and picking the one

with the largest step size within the c-accurate region.

This complication results from the relationship between y(t), and an_1(t) in three

ways discussed below:

1. Derivation of 9(t) from &,1(t): (steps 1.f.i-1.f.ii).

2. The approximation of an_1(t,): (steps 1.b, 1.c).

3. Comparing of the step sizes within the c-accurate region: (steps 2, 3).

Deriving Q(t) from h,_ 1 (t)

The first complication derives from the basic ODE theory - a homogeneous second

order ODE (like the one being studied - ODE(y(t), t)) has a solution space that is two-

dimensional (i.e., two free parameters). The initial conditions {y(t), y'(t)} determine

which element of this space is the path along which the independent variable y(t)

evolves. However, recalling Theorem 6.2.1 and Definition 6.3.1, the function an_1(t)

is independent of the initial conditions: it can only be used to compute the two-

dimensional solution space as a whole.

'Given &n-1, one can compute a single element of this basis y1(t). Using Qi(t), standard tech-

niques can be used to find a second linearly independent basis function Q2(t) [151]. These two basis

functions span the set of functions that are homogeneous solutions to ODE(y(t), t).
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Therefore, in step 1.f.i, &n_1 must be used to compute a basis of the solution space.

After this basis is computed, one must incorporate the initial conditions to solve for

the actual path (step 1.f.ii).

Approximating a_1 (t,)

The second complication arises for similar reasons. The Kovacic ODE (computed in

step 1.a) is inhomogeneous of order n. Therefore, it has in general a solution space

consisting of the inhomogeneous solution added to the homogeneous solution. The

homogeneous solution has some number of free parameters defined by "initial condi-

tions" (unrelated to the two free parameters of the original ODE). The homogeneous

solution space is a vector space of order n, where n is the number of free parameters.

The interpretation of the meaning of these parameters is much more subtle. Recall

Proposition 6.3.2: if a closed-form solution exists to the original ODE, then there

exists a solution an 1(t) E C(t) to the secondary ODE. It does not state that the

entire solution space for an_1(t) is contained in C(t).

Put differently, the inhomogeneous solution to the Kovacic ODE is in C(t). How-

ever, the vector space of homogeneous solutions only is not necessarily entirely in

C(t). Therefore, the inhomogeneous solution is the solution of interest, and the ho-

mogeneous solutions are not useful.

Now, reconsider the original problem - using Pad6 expansion to approximate

an_ 1(t) in the neighborhood of t,. Like any expansion method, Pad6 expansion ap-

proximates a single solution (not the entire solution space). Therefore, one must

supply "initial conditions" - the first n derivatives of a_1 (t) at t, - in order to

compute the Pad6 expansion.

However, as discussed above, one must pick initial conditions matching the value of

the inhomogeneous solution only, since the homogeneous solutions are not desirable.

This is, unfortunately, a non-trivial task.

However, there do exist methods to compute rational solutions to ODEs (see

Chapter 4 of [149]). By calculating the indicial polynomial of the Kovacic ODE

at any of the singularities of r(t) (including t = oc), one can construct a Laurent
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expansion of the inhomogeneous solution around the singularity.

This method can be used to approximate only the inhomogeneous solution - sep-

arate from the homogeneous solution space. Therefore, one may approximate a point

close to the singularity using the Laurent expansion, and then use a normal numeri-

cal integration technique to approximate an_1(t,). This value of an_1(t,) provides the

appropriate initial conditions corresponding to only the inhomogeneous solution.

One now sees that the algorithm in Section 9.4 performs precisely these steps in

steps 1.b and 1.c.

Picking (t) with the Largest c-accurate region

Recall that the objective of this expansion is to compute the expansion with the

largest c-accurate area. In order to formalize this objective, Definition 6.3.4 provides

a set of functions for comparison, and the step size on the path of integration provides

the optimality metric by which the "best" expansion is chosen (the C-accurate region

that affords the best step size is best).

This approach is reflected by the algorithm description in Section 9.4. Note that

the algorithm in essence calculates the set of Kovacic expansions for y(t) in step 1,

while steps 2 and 3 pick the best expansion according the length of the step size.

Note, however, that in order to compare expansions, the algorithm simply uses

a traditional ODE integrator to approximate y(t) in the vicinity of t, and then uses

these data to compute and compare step sizes within the c-accurate region for each

expansion Q(t).

Clearly this is very inefficient. However, it is a necessary step, as the comparison

of step sizes within the c-accurate region does not lend itself to a more analytic

approach.

To illuminate this design choice, a short digression on the accuracy of traditional

ODE integration techniques is useful. For most numerical methods (those that use

Taylor series), one can bound the error of extrapolation by bounding the derivatives

of the independent variable [33]. This bound decreases as the expansion increases

order, corresponding to increased accuracy for a wider area.
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However, this bound is an upper bound. For certain functions and error targets,

it may be the case that the lower-order expansion has a larger step size6 . There are

no known general methods for lower-bounding the error of an expansion at a given

order, which is required for the comparison of Kovacic expansions above [47].

Moreover, the above upper bound is only in place due to the properties of poly-

nomials. This structure breaks down when considering the much more complicated

space of Kovacic closed-form functions (Definition 6.3.1).

To end the digression, the existing mathematical machinery for comparison of

function expansions is insufficient for the purposes of choosing the Kovacic expansion

with the largest step size inside the c-accurate region. Therefore, one must take a

"brute-force" approach, manually searching through eligible functions using a pre-

computed approximation of the actual function.

Once again, this is highly inefficient, but the purpose of this algorithm is purely

to theoretically justify an upper bound on the largest step size within the E-accurate

region, so such inefficiency is acceptable for these purposes.

Algorithm Overview

Now that the details of the Kovacic expansion algorithm have been described, the

overall flow can be easily enumerated:

Step 1 computes all eligible Kovacic expansions of order k for the function y(t).

The computation of each expansion is broken into multiple steps, pictorally repre-

sented in Figure 9-1.

Steps 2 and 3 compare the set of Kovacic expansions of order k against an ap-

proximation of the actual solution, and pick the expansion with the largest step size

within the c-accurate region.

One sees that this construction of the Kovacic expansion is consistent with Section

9.4.1.
6 e.g., consider the case where c is large. Although higher order expansions are more accurate

locally, they diverge faster. For large enough E, a first-order expansion will have a larger step size

within the E-accurate region than many higher-order expansions.
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9.5 Optimality of the Kovacic Expansion Approach

First, I begin with a Lemma regarding the construction of the Kovacic expansion as

stated in Section 9.4. Note that this Lemma explains the additional n - 2 term in

Definition 6.3.3.

Lemma 9.5.1. The order-k Kovacic expansion of y(t) at to returns Q(t) such that

|y(t) - (t)| = 0 ((t - to)k+1) and the size of the step along the curve of integration

(inside the 6-accurate region) is maximized.

Proof. Recall that, for each given n, the Kovacic expansion algorithm computes a

Frobenius series of an_ 1 to order k + n - 2. It then computes all possible (p, q) Pad6

expansions where p + q = k + n - 2 using this Frobenius series. Therefore, ignoring

defect in the Pad6 expansion (one can increase the order of the Frobenius series and

Pad6 expansion to compensate), the expansion dn_1 has the property lan_1 - an-1I =

o ((t - to)k+n-1).

Recognize from Proposition 6.3.2 that y = efw, where w is defined in terms of an

order-n polynomial including w and up to its n - 1'th derivative. Therefore, for a

given n and expansion of an_1 up to and including order k + n - 2, this results in a

match of w up to and including order k - 1.

Finally, computation of efw results in IQ(t) - y(t)I = 0 ((t - to)k+1). El

Lemma 9.5.1 formally states the property achieved by the construction of the

Kovacic expansion in Section 9.4.

Although this is a strong property, it is not the property needed to bound circuit

complexity. Instead one needs a superlative condition like the one obtained through

Conjecture 8.4.1 and Empirical Observation 8.4.2.

To provide evidence that the Kovacic expansion subsumes modern expansion algo-

rithms, consider other expansion methodologies for second order linear ODEs: Taylor

series expansion, Pad6 expansion, and WKB expansion.
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9.5.1 Asymptotic Expansion Techniques - A Philosophical

Perspective

In general, asymptotic expansions are defined in terms of a successive sum of continu-

ous functions #n defined in terms of a limit point L. In particular, n+i (t) = o(#n(t))

as t -+ L. Depending on application, t may have different interpretations (e.g., a

perturbation, some system parameter, an actual system variable such as time, or a

system variable in some transform space, e.g., frequency). Depending on such appli-

cations different choices of #n are more appropriate [117].

This work is interested in local expansions, where t above is a system variable

(time). Because the expansion is local, one can by definition restrict the arguments

of the expansion to be only local information about the system - the system state at

that particular time (in previous sections, this corresponds to the dependent variable

y(t) and its derivatives).

With this in mind, the simplest asymptotic expansion is the power series of order

k. Such an expansion matches the first k derivatives of y(t), and all sub-dominant

terms (higher-order derivatives) are 0. However, this choice is not unique. One can

easily consider asymptotic expansions that match the first k derivatives and have

non-zero sub-dominant terms.

Therefore, the key question is how to choose the sub-dominant terms intelligently.

The naive answer of increasing expansion order by one is not useful, as the same

question arises for the next subdominant term (and so forth). Instead, one should

consider the other knowledge that one has about the function. In particular, if one

knows the class that the original function belongs to (e.g., rational polynomials), then

one can use an expansion in that function space to estimate the global properties of

the function that result in the observed local behavior [165].

Informally, this concept of matching global structure based on local behavior is

akin to function fitting, where measured data combined with a knowledge of the

fit function result in the calculation of global parameters such as mean, standard

deviation, etc. Much of the intuition behind function fitting is present in this informal
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view of expansion:

" The size of the function space in the expansion is analogous to the number of

parameters in the fit model.

" The order of expansion is analogous to the number of data points being fitted.

" The arithmetic precision of expansion is analogous to the precision of data being

fitted.

Using this analogy, consider a fit model with a large number of parameters. This

generally can increase the accuracy of the fit. However, if the number/precision of

data points is insufficient, then overfitting can occur that reduces the accuracy of the

model.

The intuition is identical for why an increased space of functions for an expansion

algorithm generally results in a better expansion unless insufficient order or insufficient

precision is used. Note that this observation is empirically confirmed with Pad6

expansions [165].

Although the above argument is purely informal, it provides evidence that an ex-

pansion algorithm with a larger function space (when supplied with correct numerical

precision and expansion order), will perform better (have a larger step size inside the

c-accurate region) than an expansion algorithm that uses a smaller set of expansion

functions (at equivalent order).

Note that this improvement is observed empirically with respect to Pad6 and

Taylor expansions, and has a long history of usage in numerical analysis [165].

With this in mind, the next section will prove that the set of functions that are

Kovacic expansions (Definition 6.3.4) subsumes the set of functions that are Taylor,

Pad6, and WKB expansions.

9.5.2 Kovacic Expansion Subsumes Existing Expansions

It is empirically observed that an expansion algorithm that searches a larger space of

functions converges faster (has a larger c-accurate area) than one with a smaller set
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of functions. Therefore, it is shown in this section that the function space covered by

the Kovacic expansion subsumes the function space of Taylor series expansion, Pad6

expansion, and WKB expansion.

Lemma 9.5.2. The order-k Kovacic expansion subsumes the set of Taylor series

expansions up to order (k + 1)/2.

Proof. Recognizing that for n = 1, y = efw for w E C(t), it is known that one can

represent y(t) = p(t) E C(t) by setting w(t) = p'(t)/p(t) E C(t). For a degree-d

polynomial, this would correspond to an order (d - 1, d) degree fractional polynomial

for w.

Setting the Kovacic expansion order to k, this would correspond to d = (k +

1)/2. D

Lemma 9.5.3. The order-k Kovacic expansion subsumes the set of (p, q) Pads ex-

pansions (p, q = k) up to order (k + 1)/2.

Proof. Recognizing that for n = 1, y = efw for w E C(t), it is known that one

can write y(t) = f(t) E C(t) by setting w(t) = f'(t)/f(t) E C(t). Putting f(t) =

n(t)/d(t), where n(t), d(t) are degree p, q polynomials respectively, f'/f = dd-n X

d - n'd-d'n
n nd

Let p + q = r. This corresponds to a (r - 1, r) degree fractional polynomial, so

this would correspond to a 2r - 1-degree Kovacic expansion.

Therefore, an order-k Kovacic expansion can return a Pad6 expansion of order

(k + 1)/2. El

Lemma 9.5.4. An order-kk,0 Kovacic expansion subsumes the set of WKB expan-

sions of order 1-2k kk , where k = p + q, and r(t) is a degree (p, q) fractional poly-

nomial.

Proof. For an n = 2 Kovacic expansion, recall the differential equation for a,_,. Put

an_1(t) as a(t).

a(t)' - 4a(t)r(t) + 3a(t)a'(t) - 2r'(t) + a"(t) = 0
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The WKB expansion assumes that r(t) = AR(t), where A >> 1. One can put:

k

a(t) = ai(t)A-'
i=o

Using this substitution, solve for each ai in succession. Doing this yields the

following form for i > 0 (where ci is a constant):

ai()_Cr'(0)2i+1a(t) = cr(3i+1

Note that since r(t) E C(t), this implies that each ai(t) E C(t), which implies that

a(t) E C(t). Therefore, at this point, it is proven that the above WKB expansion is

in the set of Kovacic closed-form functions.

Next, calculate the degree of the numerator and denominator of a(t) to find the

equivalent Kovacic expansion order. Let r(t) = n(t)/d(t), where n(t) and d(t) are

degree p, q polynomials, respectively. Making this substitution, ai(t) becomes:

(n't c (t) d(t) - n (t) d'(t) )1+2i
a(t) = ci (n(t)1+3id(t)1+i

This is degree ((p + q - 1) x (1 + 2i), (1 + 3i)p + (1 + i)q).

When one combines all of the ai terms, the combination of a0 and ai results in the

highest-order numerator. Moreover, the degree is highest when p = k, q = 0 (letting

p + q = k be the total order of r(t)).

Plugging in these values, the numerator degree is (3i+1)k -1, and the denominator

degree is (1 + 3i)k.

Therefore, the overall degree required of the Kovacic expansion (kk 0,) is given by:

kkov = 2k(1 + 3i) - 1.

Where k = p + q, and r(t) is a degree (p, q) fractional polynomial, and i is the

order of the WKB expansion.

Therefore, given kk0 v, the maximal WKB order that can be calculated is:

1 - 2k + kkov

6k
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El

The above lemmas prove that the function space of the Kovacic expansion sub-

sumes a large class of modern expansions.

9.5.3 Conclusion

Based on these Lemmas and the empirically observed relationship between the size

of function space and -accurate region at a given expansion order, I show that the

Kovacic expansion outperforms other expansions, as it subsumes their function spaces.

There is the empirically observed relationship that an expansion algorithm fam-

ily Expk with a larger function space will have a larger -accurate region than any

expansion algorithm family Exp'k whose function space is subsumed by the function

space of Expk at equivalent expansion order (assuming adequate numerical arithmetic

precision). This assertion is supported by empirical evidence with respect to the

performance and application of the Pad6 and WKB expansions [165, 117, 6, 13].

The second observation is that the function space of the Kovacic expansion algo-

rithm subsumes all modern asymptotic expansion methodologies for linear ordinary

differential equations [170, 169, 33].

Before concluding, there are several subtleties regarding this expansion that should

be noted. First, recognize that the objective is to maximize -accurate region when

compared "at equivalent expansion order." This equivalence for different expansions

is defined by Lemmas 9.5.2, 9.5.3, and 9.5.4. However, as observed in Section 9.5.1,

the relationship between expansion order and the step size inside the -accurate region

may not be purely monotonic depending on the ODE and desired e (even though the

size does asymptotically increase with order).

If one requires the maximum step size inside the -accurate region for all expansion

orders < k, one can simply extend the Kovacic expansion algorithm to execute and

then brute force search over all expansions of order less than k. In this case, it is

trivially true that the step size within the -accurate region monotonically increases

with maximum expansion order k.
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The second subtlety that should be mentioned is how the Kovacic expansion

handles ODEs with closed form solutions. Recall that if this is the case, then

an_1(t) E C(t). As a result, the Pad6 expansion will terminate at some point, yielding

an_1(t) exactly (assuming sufficient numerical arithmetic precision). This is because

Pad6 expansions have been proven to converge to functions of this form over C except

for potential spurious pole-zero pairs that result in negligibly small areas of inaccuracy

(the Pad6 expansion converges "in measure") [13, 153].

Finally, there have been several points in this section that have referred to the

requirement for "sufficient numerical arithmetic precision." This requirement for nu-

merical precision is also discussed in Section 9.5.1 (it is analogized with function

fitting). In essence, the working precision is chosen such that, given an output pre-

cision J for each expansion coefficient, the difference between the result computed

with "sufficient" working precision and the result computed with infinite precision is

less than 6. This prevents numerical breakdown in the Pad6 expansion as discussed

in Section 9.5.1.
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10 - Implementation

Considerations and Future

Work

To this point in the thesis, the work on Public Model Physical Unclonable Functions

has been purely theoretical. This is in large part due to the complex theoretical

requirement of a computational speedup of the PPUF hardware over a CMOS model.

To that end, a formalism and theory is constructed in Chapter 8. Now that the theory

and formalism have been proposed, it is both instructive and important to any future

work to consider how such a PPUF device could be implemented in practice.

This is a significant physical challenge, requiring speed and control of an alternate

computational modality. While CMOS is well-developed, there are few physical sys-

tems with sufficient speed and sufficient stimulation/readout technology to provide

the constant factors required for PPUF operation.

This chapter has two parts. First, I discuss several physical systems that were

considered, but rejected due to limitations of the physical system itself. These sys-

tems (classical optics and photonic crystals) are instructive in how they fail, as they

conceptually map to failures in the three informal criteria discussed in Chapter 5.

However, I identify a system (optical ring resonators) that shows promise in their use

for PPUF systems.

Second, I dive a little deeper into the technology ecosystem surrounding optical

ring resonators to provide architectural guidance for how a PPUF system might be

constructed, where possible issues may arise, and what critical technological factors
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will either enable or prevent the creation of a PPUF system using optical ring res-

onators as a platform.

10.1 Criterion 1 Failure: Optical Vector-Matrix

Multiply

In the discussion of quantum linear optics, it was recognized that one needed to input

a significant number of identical photons into a linear optical system. Remember that

this requirement for identical photon generation presented the primary challenge in

implementation, which rendered that approach infeasible for the foreseeable future.

If one relaxes this requirement - not requiring the photons to be identical (i.e., using

coherent states), then the linear optical system behaves purely according to classical

mechanics. Such a classical linear system is similar to its quantum counterpart, but

does not provide the same speedup.

Mathematically speaking, the system has n input ports, each of which has input

light with a magnitude and phase. The system has m output ports, each of which will

have a magnitude and phase. The input signal can be represented as a complex vector

of dimension n: X. The output vector is similarly represented Y. The relationship

can be stated simply: Y = MX, where M is a matrix describing the operation of

optical system between input and output.

Although the matrix-multiply operation is much less complex than the compu-

tation of the permanent, one may still hope that such a system could still create

a speedup. In particular, since photons are bosons, multiple beams of light can be

"summed" for free by simply shining them at a single detector. In addition, since

photons pass through each other, one can route photons from source to sink very

easily (no wires are needed since two beams do not interact).

As a result, one can imagine a very efficient vector-matrix multiplication system

that leverages these effects and could potentially provide significant speedup over

CMOS adders/multipliers.
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Tamir et. al. investigated the performance of an optical vector-matrix multiplier

(VMM) and theoretically set the performance of their 256 x 256 matrix-multiplication

module to 16 teraflops (optimistically) [159, 172]. The architecture of their system

directly encodes the n input sources as n light sources and the m outputs as m

detectors. In between these detectors is a macroscopic lens structure and a liquid

crystal screen that is modulated to create arbitrary M.

This performance figure (16 teraflops) is on par or less than par with current

GPU technology. In addition, the above VMM implementation was performing 8-bit

integer arithmetic. A modern GPU computes using 64-bit arithmetic. A 64-bit double

operation is at least 8-times more costly than an 8-bit operation. This results in an

upper bound of 1-2 teraflops of GPU computation needed to exactly mimic the above

system. This is comparable to 2 high-end consumer GPUs. Modern supercomputers

can compute well into the petaflop range. Clearly, this system does not meet the

requirements for providing a measurable speedup.

However, demonstrating a speedup over CMOS was not the primary goal of the

above research. Therefore, it is worth considering this problem at a more abstract

level to understand more generally the physical origin of the potential "speedup" and

technological roadblocks for such an implementation.

When considering potential parameters with which to determine a speedup (con-

stant factor or asymptotic), there are two parameters that one can use to scale the

size of the matrix-multiplication problem. First, one can scale the size of the matrix

and vectors themselves. Second, one can consider multiplying several constant-size

matrices, and scaling the number of matrices to be multiplied.

10.1.1 Scaling Matrix Size

The first recognition when considering scaling the matrix size is that one no longer

needs to encode arbitrary matrices. A static matrix can be considered. When taken

as such, the classical linear optical system becomes very similar to the optical PUF

presented by Pappu et. al. in 2002 [121, 146]. The architecture described by Pappu

et. al. in 2002 has an input of multiple photons incident on a coherent scattering
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medium. A quantum input/output version of this is presented by Goorden et. al. in

2013 [66]. From the latter version, it is clear that the input photons can be represented

by a spatial mode, the scattering medium projects this mode onto another mode, and

the final mode is measured.

The primary difference between the proposed matrix-multiply system and Pappu's

proposal is that Pappu's proposal has a single moving light source and an array of

detectors. A matrix-multiply system would have an array of static light sources and

an array of detectors. With this in mind, consider the following PPUF hardware

proposal:

Consider N input lasers directed into the colloidal object. N photodetectors are

on the other side. If the amplitudes of the input lasers are given as Aa, and the

amplitudes present at the photodetectors are given as D, then the overall operation

can be described as D, = E InM, where Ma,, is the connection matrix between

different lasers and each photodetector. The optical system described above operates

in the coherent scattering regime because the optical elements in the colloid are much

larger than the wavelength. Therefore, the above A., Ma,, and D, are complex

to represent phase. An actual detector measures intensity, not amplitude, which is

IDa 2 . However, this does not introduce any computational issues.

For this PPUF hardware, the challenge bits would be mapped to the input vector

representing intensity/phase. The response bits would be derived from the inten-

sity/phase (or just intensity) vector as measured by the detectors. The computation

would be the calculation of the output vector. Consider the case where there is one

input and one output (i.e., one large matrix multiply operation is performed).

Using this model, one can analyze the physical requirements as follows:

The first clear assumption is that the above scattering system has a model that

accurately computes the behavior of the physical system. Fortunately, while it is

difficult to generate a model by direct estimation of the sphere locations (via mi-

croscopy or other methods), this is not necessary. A key point here is that the only

property of the scattering device that is being probed is its scattering pattern. In

other words, the information contained by the locations of each of the spheres has
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additional information not contained by just the speckle images (it is possible for two

arrangements of spheres to have the same speckle pattern output). Therefore, it is in

general more efficient to simply measure the output patterns created by an orthogonal

basis of input modes. The output speckle patterns add linearly, so deriving a new

speckle pattern is simply a projection operation (matrix multiplication).

With this problem interpretation, a "speedup" can potentially be derived between

the PPUF hardware and the CMOS implementation. This speedup would originate

from the fact that the "computation time" of the scattering medium is defined by

the maximum optical path length divided by the speed of light. This path length

depends in some complex way on the "size" of the computation. However, it turns

out not to be necessary to consider these issues.

Although the matrix-multiply operation is computed quickly in an optical system,

the mathematical abstraction results in extremely efficient implementations in CMOS,

and unacceptable overhead for the optical system. To observe this, consider the scale

of the system to be constructed to achieve a measurable speedup.

The term "measurable" implies that the timing difference should be discernible

even when one includes a random network latency on the order of 100ms.

Therefore, a best-effort digital implementation of this single matrix multiplication

must require a computation time on the order of 0.1-1 sec. With modern GPU

architectures (ignoring supercomputers), the matrix size must be at least on the

order of 106. This is in part due to the fact that the laser intensities are analog

signals and can (optimistically) be measured to roughly 16 bits. Even a 24-bit ADC

implies that the calculation can be simulated using integer arithmetic. Most GPUs

and supercomputing architectures implement 64-bit arithmetic.

An input size of 106 implies that the optical implementation is infeasible for inte-

grated applications. Integration into any silicon process means that an IR wavelength

must be used (1500nm) because Si is not transparent at shorter wavelengths. As a

result, this also limits the size of the laser sources, waveguides, and detectors. A

waveguide must be at least as wide as the wavelength. If all input light sources are

piped independently into the colloid (as they must be in order to represent a large
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number of challenges), then the waveguides must be aligned next to each other. This

implies that the surface area of the colloidal substance must be on the order 1m2

This is not feasible in an integrated architecture.

Therefore, it can be concluded that even if matrix multiplication were faster than

CMOS, a one-shot matrix multiply operation is not a suitable platform from which

to derive a significant separation between optoelectronics and CMOS processes due

to the physical overhead of the input/output systems.

10.1.2 Conclusion

In conclusion, the above approach of classical linear optics is unlikely to work due to

the reasons presented above for the PPUF application. In each case described above,

a more abstract mathematical problem was encoded into the physical system, and in

each case, this encoding was the origin of the failure of the proposed PPUF hardware

device.

For the first option (scaling the matrix size), the hardware required to encode the

problem into a physical system became unwieldy. For the second option (scaling the

number of matrix operations), the encoding process did not also encode all of the

structure of the mathematical problem into the hardware device, so a CMOS model

can exploit this extra structure to out-compute the hardware device.

The lesson learned from this approach results in Criterion 1: one should not encode

a more abstract mathematical problem into a physical system (cf. Section 5.6). The

problem of simulating the physical system itself should be the "problem" to be solved

by the PPUF model.

Another way of stating this criterion is that any mathematical structure to the

"problem" being solved by the PPUF that should be inherently baked into the phys-

ical system itself.
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10.2 Criterion 2 Failure: Geometry Modulation

The above system failed in part because once the matrix elements of the optical

system had been characterized, the actual matrix-vector multiplication problem did

not allow for sufficient speedup over an CMOS computer.

Therefore, consider changing the matrix elements themselves by modulating the

geometry of the optical system. Consider the following proposed PPUF hardware

system: n optical inputs to an element that is coupled to n optical outputs.

The challenge bits are used to encode a certain geometry of the optical element.

The response bits are derived from the magnitude/phase of the output elements.

The fundamental difference is that the coupling matrix defining the input/output

relationship of the PPUF hardware is no longer defined by a static optical system.

The modulation of the geometry will have complex, nonlinear effects on the matrix

elements of the system. Therefore, the speedup is no longer derived from the com-

putational time to execute the linear operation of the coupling matrix, but from the

computational time to derive the matrix elements.

A model wishing to calculate the correct response bits would need to calculate the

magnitude and phase at the optical output. Such systems are solved in the real world

by commercial PDE solvers such as Comsol, meep, and others [73]. These systems

discretize the PDE by creating a mesh, and use the mesh to break the PDE into a

large number of coupled ODEs.

Assuming that the PPUF model would use a method similar to the above, the

question of speedup becomes more complicated and difficult to formalize. In general,

there are two aspects to the model that can be computationally intensive: (1) the

generation of the mesh and defining the coupled ODEs, and (2) solving the system

of ODEs.

Depending on the modeling algorithm being used, task (1) may or may not be

difficult. For example, many FDTD systems dedicate effectively zero computational

time to the mesh and create a square mesh without any optimization, while FEM

solvers spend significant time optimizing the mesh. Ultimately, the optimization of
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the mesh goes only to obtaining a more accurate solution using fewer coupled ODEs.

Task (2), namely solving the system of coupled ODEs, may also be the most com-

putationally intensive. Unfortunately, there are a number of methods that a model

can use to circumvent the full simulation of the system or speed up the simulation

dramatically using parallelism. These are outlined below.

First, there has been significant and recent study into the theory of model order

reduction [143, 127, 27, 38, 144]. This field is dedicated to the study of taking a

very high-order ODE (i.e., created by discretizing a PDE in this example) and ap-

proximating with a lower-order ODE system. Systems have been identified that are

easily modeled using these methods. However, there has been much less progress in

identifying lower bounds on the simulation complexity of a given system - especially

in the case of nonlinear systems. Therefore, given a set of coupled ODEs, it is not

clear in general how many ODEs actually need to be simulated to obtain a reasonably

approximate solution for the original set.

Second, the simulation of coupled ODEs is an inherently parallelizable problem.

Numerical simulation of such systems will convert the high-order ODE into a high-

order recurrence relation and numerically step through the recurrence. In this re-

currence relation, each node of the mesh is stepped individually. In addition, each

node only requires information from the past step of itself and its adjacent nodes

to compute the next iteration. This is highly parallelizable, as the computation and

communication is localized. Although current processing systems have a significantly

smaller number of cores than the number of nodes in a mesh, current processing

systems have significantly more complex CPU and communication architectures not

needed in this type of simulation. There does not appear to be a clear technical

boundary preventing massively parallel simulation of such a system.

10.2.1 Conclusion

The proposed PPUF hardware fares significantly better than optical matrix multipli-

cation. However, the speedup of such a system would be largely conjectural based on

the following statements that don't seem to have a clear reduction to a well-studied
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mathematical problem:

" The relationship between the geometry of the optical element and its stimulation

response models a random oracle.

* The simulation of the optical element cannot be sufficiently parallelized to re-

duce simulation time.

* As the size of the optical element grows, the time complexity of simulating the

optical element grows.

Unfortunately, the inherent parallelism of this problem and recent advances in

model order reduction imply that such a scale factor does not have a clear lower

bound. Therefore, it is not recommended that the speedup of the PPUF hardware

be based on such an approach. This is identified as Criterion 2 in Section 5.7.

10.3 Ring Resonators - Building ODEs with Op-

tics

In Chapter 5, I claim that the PPUF hardware define some ordinary differential

equation that the PPUF model is required to simulate. It was observed earlier in this

chapter how the PPUF system fails when this is not the case.

Consider technology that operates in the optical frequency range, as these tech-

nologies are physically small in scale, and have been studied extensively for appli-

cations in computation and communication. In this section, I propose the use of

integrated microring resonators as a potential PPUF platform.

This section shows how to implement a second-order ordinary differential equation

with very fast internal timescales using integrated microring resonators. I find that

this technology could potentially be applicable for usage as a platform for PPUF

technology. However, further investigation is needed to determine the constant factor

relationship between the CMOS simulator and an microring resonator implementation

of PPUF hardware.
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10.3.1 Microring Resonator Physics

A ring resonator consists of two or more waveguides coupled through physical proxim-

ity. The canonical single ring resonator is shown in Figure 10-1. The light is confined

to the waveguide except in the coupling regions, where energy transfers between the

the two waveguides.

t

Figure. 10-1: The canonical single ring resonator. Note that the ring is coupled to a

waveguide on top of the ring [125].

Consider the coupling between the ring resonator in Figure 10-1 and the top

waveguide (the "Input Port" and "Throughput Port"). The coupling is given by:

Et2  -2 * Ei2

Note that the coupling coefficients obey the equation K21 + t2 l = 1. Finally, the

ring itself results in the relationship:

E%2 = aEt2

The a term is complex-valued with jai < 1. Its magnitude corresponds to the

optical loss around the ring, and its phase corresponds to the phase delay around the

ring.
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Assume that the optical source turns on instantaneously, and the transient be-

havior at the throughput port is observed.

In this case, the concept of a "phase difference" around the ring is less interesting

than the actual time delay around the ring. This time delay is the only time factor

baked into the problem. Therefore, consider a discrete recurrence relation with step

time At equal to this time delay around the ring. The ring resonator then has the

following recurrence relation:

Ei2[n] = at*Ei2 [n - 1] - arEji[n - 1]

Et, [n] = ,Ei 2[n] + tEj1 [n]

This corresponds to Ei2[n] having an impulse response (at*)n. The resonance

condition can be understood by studying the unit response. This response is (for

n > 0):

Estep[n] = (at*)n-kar

k=1

Note that if at* is not real (corresponding to an out-of-phase excitation), the

individual summands have varying phase. For real at*, the sum maximizes since all

of the summands have the same phase (0 phase), corresponding to an on-resonance

response.

Next, note that this recurrence relation is linear time-invariant. Therefore, one

can analyze it using the Z-transform. This will not be a desirable property, as it

would allow a model to be able to shortcut the computation of the time-evolution

of the system. If the parameters of the ring resonator (e.g., a) are time-varying (a

function of n), then the step response becomes:

n n

Estep[n] = fJ (a[n]t*)m aK

k=1 m=n-k

In general, the above system does not have sufficiently complex dynamics to meet
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the requirements needed. This can be seen intuitively since the recurrence relation is

first order. As such, it is similar to a first-order differential equation.

Therefore, consider a dual ring-resonator system as shown in Figure 10-2. Not

surprisingly, the double-ring structure will result in a second-order recurrence rela-

tionship. The objective will be to show that this recurrence relationship exhibits

tunable oscillatory dynamics.

Input Por
EA

Ei2
Add Port

tj Throughput Port
E F

K1 -K
t * Ea

(XRIC'o1

Elb 2*

aR2eJ2

t3 * 1b

K, -K 3

13 Drop
o EQ
Port

Figure 10-2: A series-connected dual ring resonator [125].

The mathematical relations between ports is given:

Eia - *Ei1 + t*alejO1/ 2 E16

Eb = t*aCiejO1/ 2 Ela - *Z2Cj02/2E2b

E2a = K2alej02/2Ela + t2 0Z2 ej0 2/ 2 E2b

E2b - K*Ei2 + t*a 2ejO2/ 2 E 2 a
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Note that in this case, the loss and phase accumulation around the ring resonator are

broken out into a and 0, respectively. The recurrence relation is derived in the same

manner as above:

Eia[n] = t*t*aiejO1E1a[n - 1] - t* aleO1/*sa~eJ0 2/ 2 E2b[n] - K*En []

E2b[n] - t afe jO2/ 2 K 2 aieij1/2 Ela[n - 11 + t*t 2a2 C A E2 [n, - 1]

Applying some example parameters results in following transient response shown

in Figure 10-3.

El , [n] Displaying Oscillatory Behavior
E [n]

1.0

05 A

n
-4 6 0 800 1000

-0.5 1

Figure 10-3: The E-field amplitude of the above dual ring-resonator displaying oscil-

latory behavior in its impulse response. The parameter being observed is Ea.

Intuitively, what causes the oscillatory behavior is that the rings and input/output

waveguides are weakly coupled. As a result, the initial impulse on Ea results in a

large amount of energy in ring 1, and zero energy in ring 2. The energy oscillates

between the two rings, slowly leaking out through the output ports and each ring's

internal losses. The oscillation frequency of this process is tunable depending on the

coupling between the two rings and the input/output waveguides. The next step is

to understand how to tune this process to achieve the correct oscillation frequency.

A significant simplifying assumption can be made for the dual-ring resonator. If

the system is driven on resonance, then the phase accumulation around each loop

(Arg(t*tjeij1) for ring 1, and Arg(t 2 te30 2) for ring 2) must be 27r. Without loss of

generality, one can let t1 , t 2 , t3 E R and 0 t1 , t2, t 3 1. This can be seen as
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follows. In effect, in setting ti E R, any phase shift in the t parameter is baked into

the 0 parameter. While this is reasonable, one must show that the same can be done

with the , parameter. To that end, recognize that in this model, there is a single

input and two output ports, all coupled via ri and K3. Any phase introduced via

these parameters can be recognized as an overall phase shift in the input and output.

This is reflected in the fact that the recurrence equation for internal state does not

depend on any of these variables.

The final value to consider is K 2 and t2 . The key recognition here is that incorpo-

rating t2 's phase shift into the 9i variables results in a constant overall phase shift in

E2b with respect to Eia. Ultimately, if only the magnitude of the output signals are

measured and relative phase is discarded, this relative phase shift is acceptable.

An interesting side note about the above assumption is that it only works in

linear chains of ring resonators. If there is a "feedback path" that allows the phase

accumulation between rings to feed back into the first ring, the assumption breaks

down. This occurs in all m x n square lattices of ring resonators for m > 1 and n > 1.

With this in mind, the homogeneous solution of the above recurrence relation is:

Eia[n] =01 n l (r - m)(p - r) + (r + m)(p + r)
2 r

+02 (1n ((p - r)n - (p + r)")tiK 2v/aia 2

2 r

with the following parameter definitions:

p = (t1 + t3 )t2a2

m = (tl - t3)t2Z2

r = m2- 4tialt 3OZ2 2

Now, the objective is to observe the oscillation frequency of the recurrence relation

given that each step represents an interval At corresponding to the propagation delay
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of light around the ring resonator. This frequency can be observed by recognizing

that, if t1 , t2 , t3, E R and 0 < t 1 , t 2 , t 3 < 1, then the only term above that can be

complex in the expression for Ea[n] is r. If this term is complex, then Ela is seen to

oscillate at (Z(p + r)) /(21r) x At.

Therefore, the criteria for oscillation is to have r complex. Using the above ex-

pression for r and substituting K2 = 1 - t2 results in the criterion:

t2(tCeil + tsa2)- 4tcitsc 2 < 0

Observe that if oscillation is desired, then setting t1a 1 = t3a 2 = A reduces this

criterion to t2 - 1 < 0. This is always true for 0 < t2 < 1, which covers the entire

range of t2 (excluding t2 = 1, which corresponds to completely uncoupled rings). The

physical meaning of setting t1aZ 2 = t3 a 2 is that the two rings are symmetric with

respect to the optical loss around the ring.

Given that this oscillation is desired, one can re-analyze the original problem,

making the two rings symmetric (ti = t3 , i = a2). The recurrence relation can then

be written:

Ela[n + 1] tja 1  t2 -2 E ) +y - 1 ) Ei[] (10.1)

E26[n +1] ( 2 t2 E2b 0

If one defines cos(6) = t2 , then the matrix in Equation 10.1 is easily seen as a

rotation matrix by 0. Therefore, the impulse response is in general: (tial)n cos(On).

Using this solution, one can translate the matrix recurrence relation in Equation

10.1 into a single second order recurrence. Note that Equation 10.2 is not true if the

parameters oi, ti, or ti are functions of n.

Ea[n + 2] - 2t 2tia1E1a[n + 1] + (ti0Oi) 2 Ea[n] = 0 (10.2)

This recurrence relation can be used with the theory presented in Chapter 8

by using time-scale calculus - recognizing that the interval At is small, and the
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recurrence relation in Equation 10.2 can be seen as an approximate ODE.

Given a recurrence relation, one may use time-scale calculus to compute the dif-

ferential equation approximated by the recurrence relation (assuming a certain Euler,

Runge-Kutta, etc. method). This process is implemented by taking the derivative

definition and interpreting it as a recurrence relation:

F[n+ 1] - F[n] F , x
dx

where F[n] = F(ndx). Mapping this relation and a similar one for the second

order differential onto the recurrence relation given in Equation 10.2 results in the

following differential equation:

E'a(t) - 2(t 2tiaI - 1)E'a(t) + (1 + (tia1)2 - 2(t2 tioai)) Ela(t) = 0 (10.3)

Note that Eia is now interpreted as a continuous variable in t. An analysis of

the recurrence relation to the solution of this differential equation shows that they

approximate each other. This is shown for an example set of parameters in Figure

10-4.

Recurrence Relation vs. Differential Equation
El a (t), El a [n]

1.0

0.5

2 --- -- ,- n dx
2 4 6 8 10

-0.5

Figure 10-4: Ea[P] versus the derived differential equation Eia(t) on equivalent time

scales. Eia[n] is blue, Eia(t) is red, dashed.
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Note that there is a small error between the recurrence relation and the associ-

ated differential equation. This is the case because the act of directly substituting

the derivative definition into the recurrence equation is exactly equivalent to a for-

ward Euler approximation. In effect, the above figure shows a differential equation

(the derived equation), and its forward Euler approximation (the original recurrence

relation).

The usefulness of interpreting the recurrence equation as a differential equation

will become apparent in the next section, as it helps ensure that an adversary cannot

write down a closed-form expression for the value of Eia for all time (as is possible

above) and use this expression for simulation of the system, rather than a direct

computation using the recurrence relation.

10.3.2 Constructing LTV ODEs using Ring Resonator Re-

currence

All of the above analysis has been done for an LTI ring resonator system. However,

in Chapter 8, I argued that the system will need to have more complex dynamics

(LTV) in order to support viable PPUF operation. This can be achieved simply by

modulating the system parameters (ri, ti) in time according to the behavior defined

in Chapter 8.

In conclusion, the ring resonator-based architecture represents a potentially viable

architecture for PPUF hardware, as it is shown how to construct ODEs using ring

resonators with very fast dynamics.

10.4 Directions for Future Work

Electro-optic systems using ring resonator technology are a possible approach to im-

plement a PPUF system. By using time-scale calculus, one can implement an arbi-

trary LTV ODE by modulating ring resonator coupling. This can be used in con-

junction with the PPUF theory in Chapter 8. However, there are many challenges to
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the physical implementation of such a system. This section is dedicated to discussing

some of these challenges.

10.4.1 Implementation Challenges

Based on a review of the state of the art in integrated photonic systems technology,

I briefly point out several challenges that have been identified for the utilization of

optoelectronic systems for a PPUF. These show that there is still a significant gap

between the proposed theory, and a practical implementation of a PPUF. I recom-

mend study in these directions, not only for the purposes of constructing a PPUF,

but also because development of electro-optic components along these lines will aid in

the construction of a more general analog computing platform, as shown in Chapter

8.

e Loss/Noise: Waveguides in integrated optoelectronic systems are lossy. This

has two impacts on a PPUF system. First, it limits the maximum computation

time before all energy is lost from the ring resonator. Second, before all of

the energy is lost, it significantly decreases signal to noise ratio. This can be

compensated for by including an in-situ optical amplifier. However, amplifiers

also introduce noise, and will have to be carefully calibrated to prevent the

introduction of unwanted signals via the response of the amplifier itself.

e Modulator contrast: In the theoretical model, ODE parameters were allowed to

vary significantly. However, coupling parameters and modulation contrast are

significantly limited by the geometry of the system, which materials are used,

and fundamental technological limits. It is not clear to the author at this point

how such limitations may impact the implementation of a PPUF system.

e Readout Speed: In the PPUF system described in Chapter 8, an iterated ap-

proach was taken where the system state affected the ODE at future times.

This requires conversion of the optical signal to a digital signal (to use the ran-

dom oracle, e.g., SHA1). The speed of this measurement and analog-to-digital

conversion also impacts the speed of the overall system. As discussed in Section

8.5, this overhead must be taken into account when comparing the speed of the
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PPUF with the digital simulator.

* Modulation Speed and Control: Finally, the result in Chapter 8 is predicated

on whether the modulator speed is indeed fast enough to outpace any CMOS

simulator. Further, Chapter 8 requires that the PPUF follow an ODE wherein

the coefficient r(t) is a fractional polynomial. This is not a typical signal that

electro-optic modulators are used for. Therefore, future work must be performed

in understanding the performance of electro-optic modulators in creating the

required signals for the PPUF hardware.

10.4.2 Creating a PPUF Model

In addition to the implementation challenges discussed above, one must be able to

accurately characterize the PPUF "model." In the case of ring resonators (cf. Section

10.3), this corresponds to the delay/attenuation parameter for each ring cZ, as well as

the coupling parameters T, K between each ring.

Statically characterizing these parameters can be done through spectroscopy of

the ring resonator [114]. However, these parameters must be modulated by some

external signal (e.g., through an electro-optic modulator). Therefore during a PPUF

challenge, each of these parameters are functions of time. To accurately model the

PPUF, one must characterize the response of the modulator to the input stimulus

[160].

The characterization of both the intrinsic parameters of the ring resonator as well

as the transient behavior of the model comprise the PPUF "model." Knowledge of

these parameters allow for the deterministic simulation of the PPUF in response to

a given optical and analog signal.

Recall that unclonability arises from the inability to construct two PPUFs with a

sufficiently similar set of parameters to produce the same challenge/response behavior.

This unclonable behavior has been observed in optical ring resonator systems, as

resonance frequencies of two identically designed rings being measurably different.

As a result, many ring resonator applications are "tuned" thermally [114]. Although

thermal tuning allows for more fine control of some parameters (primarily a), some
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parameters (especially those relating to the modulator response) cannot be tuned.

10.4.3 Comparison to CMOS Dynamics

In order to argue that there exists a constant factor speedup, one now must compare

the fundamental dynamics of the optoelectronic architecture to the computation time

required by a CMOS model for a given step.

The second criterion identified for PPUF hardware is that the hardware must

have internal dynamics that are significantly faster than the dynamics of the CMOS

model. From a practical perspective, this corresponds to the following statement: A

CMOS simulator computes the time evolution of the PPUF hardware in steps of At.

The time required by the CMOS simulator to compute this step is greater than At.

For digital CMOS, the point of comparison would be propagation delay of gates

shown in Figure 10-5. Note that although the process has improved dramatically over

the past several years, the fundamental gate delay of simple CMOS elements is not

changing nearly as dramatically, and likely will continue to stabilize.

2-Input NAND Gate Delay (No Load)
12

10

2

0
0 10 20 30 40 50 60 70 80 90 100

Process Node (nm)

Figure 10-5: Plot of 2-input NAND gate delay versus process node [112, 118, 23].

With respect to the PPUF system, the absolute maximum step size of an analytic

continuation algorithm will be based on the modulation speed. Therefore, the max-
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imum step size of a simulation should be on the order of the minimum modulation

time, identified above as 10ps.

Now, based on the recurrence relation describing the system, there will be at least

one multiply operation to be performed during each step. If one requires only eight

bits of precision, one can estimate the rough performance of a best-effort CMOS mul-

tiplier. Multiple different architectures have been studied in Intel 90nm technology

[124]. The measured process performance shown in Figure 10-5 and predictive tech-

nology models in [150] result in an estimated improvement in gate delay of roughly

10x when scaling to 14nm.

The 90nm study identifies a best implementation of a 8 x 4-bit multiplier as

requiring at least 204ps of delay, corresponding to an optimistic estimate of 20ps of

delay in 14nm.

Also, recognize that this comparison is optimistic in the favor of CMOS. First, an

accurate optoelectronic simulation would likely require a larger 8 x 8-bit or 16 x 16-bit

multiplication. Second, the recurrence relation will require more computation than a

single multiplication operation to complete. Finally, this compares the absolute max-

imum step size of the system, allowing the computation of an arbitrary order Taylor

series expansion. Real, optimized algorithms will be closer to an implementation of

RK4, which will require a step size that is significantly smaller (10-100x).

A rough layout of the various timescales of the system is given in Table 10.1. Note

that tMODULATOR and tREADOUT represent the current state-of-the-art modulator and

readout speeds. The ring resonator coupling time tosc is tunable over a wide range

of possible timescales.

Table 10.1: Relative Timescales of Optoelectronic System Compared to CMOS

Decay time of ring resonator tTRANSIENT -1 ns

CMOS Multiplier time tcMos ~20 ps

Optoelectronic modulator timescale tMODULATOR ~ 5-10 ps

Optoelectronic readout timescale tREADOUT - 5-10 ps

Characteristic time of ring resonator coupling tosc - 5-10 ps

Optical delay around ring resonator tRING ~0.1 ps

Optical frequency tOPTICAL <<0.1 ps
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With these factors in mind, it is still too close to determine if optoelectronic

systems will provide a usable platform for PPUF hardware and be faster than any

CMOS model. However, no systemic problems have yet been identified, so further

investigation is warranted.
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11 - Conclusion

In this thesis, I have first resolved several outstanding issues with existing PUF sys-

tems. Learning Parity with Noise (LPN) is used to provide a computationally secure,

practical fuzzy extractor construction that improves substantially over the state of

the art. This construction is integrated into existing PUF formalism [10, 58], and a

security reduction is provided from the definition of a fuzzy extractor to the hardness

of LPN. Further, the theory of LPN is extended to understand what types of PUF

distributions are allowed. The requirement on PUF bit distributions for the con-

struction is stronger than a min-entropy requirement, but significantly weaker than

an i.i.d. noise requirement, showing that if correlation can be estimated, the only

change to the fuzzy extractor construction is in the selection of parameters.

I show how error profiles obtained from a Field Programmable Gate Array im-

plementation of PUFs subject to wide environmental variation can be efficiently cor-

rected using helper data sizes that are substantially smaller than the state of the art.

As a result, the proposed LPN fuzzy extractor is more practical for use in real-world

applications.

Second, I have presented a computationally secure construction of a stateless Phys-

ical Unclonable Function in this thesis based on precise hardness assumptions. This

has been an open problem for over thirteen years since silicon PUFs were introduced

in 2002 [64].

The construction is secure in the random oracle model under the difficulty of stan-

dard Learning Parity with Noise (LPN) and a variant LPN problem. The construction

is noise-free; the responses during challenge-response generation and successful verifi-

cation match exactly. This means that an entity with a single challenge-response pair
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can authenticate the PUF any number of times by treating the response as a shared

secret. All the protocols described in [63] are enabled by the construction.

This work also proposes for the first time a formalism describing Public Model

Physical Unclonable Functions in terms of the relative speedup of one computational

modality over another. Using this formalism, this work provides a definition of secu-

rity and a formal PPUF construction (cf. Section 8.5).

These definitions represent a theoretical foundation on which the emerging tech-

nology of Public Model Physical Unclonable Functions may be studied. This foun-

dation can be viewed as an extension of existing PUF formalism [10] (cf. Section

8.1).

Next, this work presents a mathematical conjecture (cf. Section 8.2) regarding

the form of numerical integration algorithms. This work also presents significant jus-

tification of this conjecture in the context of previous work in the field of numerical

integration. I present a reduction from the security guarantee for the PPUF construc-

tion to the conjecture (cf. Section 8.5). Finally, I provide recommendations towards

the physical implementation of a PPUF system.

The theoretical foundation I present is necessary to enable further development

in the field of Public Model Physical Unclonable Functions, and this work establishes

that potential exists in the field of PPUF systems to enable "security without secrets."

Finally, this work recognizes that the key challenge for PPUF implementation

is an instance of a broader complexity theoretic question regarding the relationship

between analog and digital computing. In this work, I show a particular mathematical

problem wherein analog computing does have a circuit complexity advantage over any

digital simulator (assuming the conjecture mentioned above). This result provides the

first constant-factor separation between analog and digital computing modalities.
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