Authentication Protocol using Trapdoored Matrices
by
Aikaterini Sotiraki

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2016
(© Massachusetts Institute of Technology 2016. All rights reserved.

Signature redacted

Author... '~
DeparMectrical Engineering and Computer Science
November 16, 2015

Signature redacted

Ronald L. Rivest
Professor
Thesis Supervisor

Certified by...........coiiiiii

Signature redacted

Leslie(X. Holodziejski
Graduate Officer, Department Committee on Graduate Theses

Accepted byl

oL |3

, >
~APR 152016] §
" LIBRARIES

Authentication Protocol using Trapdoored Matrices
by
Aikaterini Sotiraki

Submitted to the Department of Electrical Engineering and Computer Science
on November 16, 2015, in partial fulfillment of the
requirements for the degree of
Master of Science

Abstract

In this thesis, we propose a new type of public-key authentication protocol, which
is based on timing gaps. The honest user’s secret key allows him to perform a task
faster than any adversary. In our construction, the public key is a n X n matrix and
the secret key is a trapdoor of this matrix. The task which an honest user has to
perform in order to authenticate himself is a matrix-vector multiplication, where the
vector is supplied by the verifier. We provide specific constructions of the trapdoor
and analyze them both theoretically and practically.

Thesis Supervisor: Ronald L. Rivest
Title: Professor

Acknowledgments

This work was supported by Paris Kanellakis Fellowship and Akamai Fellowship.

I would like to express my gratitude to my supervisor, Ron Rivest, for the useful
discussions and engagement through the learning process of this master thesis. Also, I
would like to thank Yuval Peres for the very helpful feedback on the theory of Markov

chains.

Contents

1 Authentication protocols

1.1 Introduction oL oL
1.1.1 Authentication Protocols
1.2 Time-based authentication protocols
1.2.1 General form of the protocol
1.2.2 Protocol based on computing a®* (modn)

1.2.3 Protocol based on Trapdoored Matrices

2 Theoretical background

2.1 Linear Algebra
2.2 MarkovChains
2.2.1 Basic Definitions and Theorems
2.2.2 Strong Stationary Time

2.3 Matrix-vector multiplication

3 Protocol Analysis

3.1 Adversarialmodel L oL,
3.2 Candidate trapdoor construction
3.3 Protocol Security L.
3.3.1 Markov Chain and Stationary distribution
3.3.2 Onecolumncase

333 Onerowecase e e e e e e

3.3.4 Expected number of elements equal to z € GF(q)

7

13
14
14
16

19
19
21
22
25
26

3.4 Other Trapdoor Constructions 42

4 Implementation in practice 45
4.1 Characteristics of smart cards 45
4.2 Suggestions on the protocol parameters 46

5 Conclusion 49

Chapter 1

Authentication protocols

1.1 Introduction

Authentication is a problem that arises in various settings and there are many different
proposals for solving it. In this thesis, we consider authentication in the public-key
setting. We start by explaining what authentication is and describing some previous
protocols for achieving it. Afterwards, we provide our suggestion. In the following
chapters, we present the necessary background for analyzing our protocol. We give a
more concrete description of the protocol and we conclude with some considerations
on its implementability.

In this chapter, we define what authentication is. We outline our proposal and

describe some previous work on authentication.

1.1.1 Authentication Protocols

An interactive public-key authentication protocol is a protocol in which there are
two parties, a prover and a verifier. The prover wants to authenticate herself to
the verifier by proving the possession of the secret key connected to her public key.
During the setup phase of the protocol, the verifier acquires some information that
he trusts regarding the prover. For instance, a trusted authority might tie together

the public key and the name of the prover in a certificate, which the verifier can then

9

access, or the prover might add his public key to a public directory. If the execution
of the protocol is successful, then the verifier knows that the information the prover
provides is consistent with the trusted information.

Usually an authentication protocol consists of two stages. In the first one, the
verifier poses a challenge to the prover. In the second one, the prover proves that
she knows the secret key by answering the challenge correctly. The development of
zero-knowledge proofs in this setting is very useful. The prover wants to authenticate
herself, but at the same time she needs to make sure that the verifier, or any eaves-
dropper, learns nothing about her secret key, apart from the fact that she knows it.
This is exactly what a zero-knowledge proof of knowledge offers [9].

The notion of authentication we use is the following [8]:

Definition 1. A scheme is an authentication scheme if A can prove to B that she is

A, but someone else cannot prove to B that she is A.

The definition of a secure authentication system scheme is, then, similar to that

of a secure identification system scheme of Feige et al. [7]:

Definition 2. An authentication system scheme is secure if for any polynomial en-
semble of users the probability of an impersonation event in a randomly chosen au-
thentication system is negligible. In this case, an impersonation event is the event
that at least once during the lifetime of the system one user succeeds in authenticating
himself as some other good user, namely a user that throughout the lifetime of the

system does not deviate from the protocol dictated by the scheme.

Some examples of authentication protocols are a protocol by Fiat and Shamir [8]
and a protocol by Schnorr [20]. Both of these protocols base their security on some
number theoretic problems which are believed to be intractable. The prover’s secret
key is a quantity that no dishonest party can compute because of the intractability
assumption. As usual, the authentication protocol is based on answering the challenge
posed by the verifier correctly in zero-knowledge. The protocol is secure if no dishonest

party can answer correctly the challenge in polynomial time.

10

Fiat-Shamir protocol

At CRYPTOQ’86 conference, Fiat and Shamir presented an authentication protocol
based on the difficulty of factoring [8]. In their protocol, they assume the existence

of a trusted center. This center publishes the universal parameters:
1. a large composite number n, which is the product of two primes, p and g,
2. a pseudo-random function, f, which maps arbitrary strings to the range [0,n),
3. two small integers k and t.
The center, also, issues the private keys of the users with the following procedure:
e Create a string I with all the information about the user and the card.
e Compute the values v; = f(I,j) for small values of j.
e Pick k distinct values of j such that v; is a quadratic residue modulo n.

e For each j that was picked, compute the smallest square root s; of vj‘l, i.e. the

smallest s; such that s7-v; =1 (mod n).
e Issue a smart card which contains / and the k values s; with their indices.

Then, the authentication protocol is the following, where we assume that the k

values of j used are {1,...,k}:
1. The prover sends [to the verifier.
2. The verifier computes v; = f(I,7) for j € {1,...,k}.
3. Repeat the following steps for i =1, ..., ¢:

(a) The prover picks a random r; € [0,n) and sends z; = 77 (mod n) to the
verifier.

(b) The verifier sends a vector (e;1, ..., e;x) € {0, 1}* to the prover.

(c) The prover sends y; = r; [] s; (mod n) to the verifier.

€;j=1

11

4.

(d) The verifier checks if z; =y [[v; (mod n).

€i;=1

If the t checks are successful, the verifier accepts. Otherwise, he rejects.

Schnorr protocol

At CRYPTO’89 conference, Schnorr presented another authentication protocol based

on the difficulty of computing the discrete logarithm [20]. In this protocol, the uni-

versal parameters published by the trusted center are the following:

1.

2.

3.

two large primes, p and g such that ¢|(p — 1),
an a € Z, with order g,

a small integer ¢.

The center has its own public/private key pair for signing the users’ public keys.

It registers a user by creating a string / with all the information about the user and

the card and signing (7, v), where v is the user’s public key.

Each user generates his private key s and his public key v by himself:

e The private key s is a random number in {1,2, ..., ¢}.

e The public key v is the number v = a™* (mod p).

Then, the authentication protocol is the following:

1.

=1

The prover sends /, v and the trusted center’s signature of (1, v) to the verifier.

The verifier verifies the center’s signature transmitted by the prover.

. The prover picks a random r € {1,...,q — 1} and sends z = ¢" (mod p) to the

verifier.

. The verifier sends a random number e € {0, ..., 2" — 1} to the prover.
. The prover sends y = r + s - ¢ (mod p) to the verifier.

. The verifier checks if 2 = a¥ - v* (mod p).

If the check is successful, the verifier accepts. Otherwise, he rejects.

12

1.2 Time-based authentication protocols

In this work, we present an alternative idea for creating authentication protocols.
The major component in our protocol is not the response to a challenge, but the
time needed to provide this response. The verifier keeps track of the time that the
prover needs in order to respond correctly. Only if this time is small enough and the
answer is correct does the prover authenticates herself successfully. More precisely,
the secret key is a trapdoor that giires the honest party a polynomial time advantage

in answering the challenge.

Time plays an important role in many cryptographic protocols, especially as far as
their security is concerned. Many protocols, such as Diffie-Hellman, RSA and DSS,
can be broken using timing attacks [11]. In these cases, measuring the difference
between the time needed to perform different computations gives the adversary a
non-negligible advantage and breaks the security of the protocol. Other identification
protocols (e.g. [5]) use the timing delay between the challenge and the response as a
“distance bounding” technique. This technique is then integrated in an identification
protocol, so that the verifier can verify not only the identity of the prover, but also‘
that she is close by. A case in which this is helpful is the identification at the entrance

to a building, where the prover has to show that she is present there.

In contrast to other authentication protocols, in our protocol, the dishonest party
is able to find the correct answer to the challenge, but to do so he needs an unac-
ceptable amount of time. A polynomial gap between the time of the honest party
and the best time of the adversary is enough to make our protocol work. This notion
of polynomial gap is not new in cryptography. For example, Merkle’s puzzles [13],
an early proposal related to public-key cryptography, were based in the quadratic

difference in the complexity for the honest and the dishonest party.

Informally, an authentication protocol based on timing gaps is secure if, given
the public key of a user, no polynomial adversary can find a way to accelerate its
computation enough to fool the verifier. To facilitate the description and construction

of such protocol, we need to make some assumptions. As mentioned before, a very

13

important assumption is that the verifier has obtained the prover’s correct public key.
Then, he checks that the prover can authenticate herself in a way consistent with the
trusted information. Furthermore, we assume that the person authenticating herself
with a time-based protocol has an implementation whose running time is independent
of the starting time of the protocol execution. This means that we can consider that
the time the prover needs to answer the challenge is constant over time. Similarly, we
assume that the time needed to complete the protocol is independent of the trapdoor
and the challenge. So, no timing attacks can be applied to our protocol.

Our proposal suggests that even a polynomial gap between the time needed to
successfully complete a challenge with and without the secret key is enough to con-
struct an authentication prbtécol. Such a protocol could be used in authentication
via smart cards. For instance, the verifier could be an ATM and the prover could be

the smart card that a customer uses.

1.2.1 General form of the protocol

The general form of a scheme based of a polynomial timing gap is shown in Figure
1-1. In our case, we are not interested in problems that are solvable to someone that
possesses certain information, but are intractable without this information. We are
interested in problems that can be solved by anyone, but faster with certain trapdoor

information than without it.

1.2.2 Protocol based on computing a2’ (mod n)

We demonstrate how a time-based authentication protocol works with a protocol
that is based on the ideas about time-lock puzzles [19]. A time-lock puzzle is a puzzle
which no one, except maybe its creator, can solve without running an algorithm for
at least a certain amount of time. In our case, the creator of the puzzle is the prover;
this gives her the ability to find the solutions faster than anyone else.

The protocol is the following:

e The prover generates a composite modulo n = pq and published it as her public

14

PROVER VERIFIER

Starts timer
Sends a challenge

Computes answer
using her secret key

Sends the answer

Stops timer

Checks if the time
needed is small
“enough” and the
answer is correct.

If yes, he accepts.
Otherwise, he rejects

Figure 1-1: Time-based authentication protocol.

key. The prime numbers p and ¢ are the secret key.

e Whenever the prover wants to authenticate herself to the verifier, she asks for

a number ¢t € N.

e The verifier generates a random, but of appropriate size, ¢t € N and a random

a € Z;, and sends them to the prover.

e The prover computes quickly, using the factorization of n, the quantity ¢ = 2!

(mod ¢(n)) then she sends back to the verifier y = a¢ (mod n).

e The verifier verifies that y = a?* (mod n) by performing the usual exponentia-

tion, using the publicly available modulo n.

15

e If y is correct and the time the prover needed is “sufficiently small”, then the

verifier accepts. Otherwise he rejects.

Without knowing the factorization of n, the fastest way to compute a2* (mod n)
seems to be to start with a and perform ¢ squarings sequentially. So, the fact that
the prover knows the factors p and ¢ gives her an advantage in the time needed to
find the desired result.

In the above protocol, we mention that the number ¢ that the verifier chooses
should be of appropriate size. If ¢ is too small, then the time needed by the prover
does not differ a lot by the time an adversary needs, which might make it difficult
for the verifier to distinguish honest from dishonest parties. On the other hand, if ¢
is too large, then the time needed by the verifier in order to compute a2 (mod n)
might be too much, which again is a problem since the verifier cannot accept or reject

before computing this quantity by himself.

1.2.3 Protocol based on Trapdoored Matrices

Another suggestion for implementing time-based authentication is through trapdoored
matrices. This is the type of protocol we are concerned in the next chapters.

In this protocol, a user’s public key consists of an n x n matrix A over GF (q),
where ¢ is fixed, and her secret key is a trapdoor of A. The challenge is to perform
the computation Ax for a random n-vector z as fast as possible. The protocol is of

the following form:

e The prover creates a trapdoored n x n matrix A over GF'(g) and publishes it

as her public key.

e Whenever the prover wants to authenticate herself to the verifier, she asks for

a n-vector x with elements over GF(q).
o The verifier generates a random vector z € GF(¢)" and sends it to the prover.

e The prover computes very quickly, using the trapdoor, the quantity y = Az and

sends it back to the verifier.

16

e The verifier verifies whether y = Az in ©(n?) time with the naive matrix-vector

multiplication using the public matrix A.

e If y is correct and the time the prover needed is “sufficiently small”, then the

verifier accepts. Otherwise, he rejects.

We denote the trapdoor of matrix A by T'(A). This trapdoor must give a signifi-
cant advantage to the prover in terms of the time she needs in order to perform the
operation Ax. For instance, the trapdoor could be a compact straight-line program
for computing Az. Simultaneously, it should be difficult for an adversary to find a
trapdoor, which would allow him to perform this operation quickly enough to trick
the verifier.

In the next chapters, we describe a candidate construction of the trapdoored

matrix A.

17

18

Chapter 2

Theoretical background

In the chapter, we give some necessary background for analyzing the construction
of trapdoored matrices. For this construction we need some basic notions of linear
algebra and of Markov chains. We start this chapter with some definitions and facts
of linear algebra. We continue with an overview of Markov chains, focusing especially
on methods we will use afterwards.

In the next chapter, we present some analysis of the asymptotic complexity of
matrix-vector multiplication over GF(q) using the trapdoor. We want this complexity
to be smaller than the best known algorithm for matrix-vector multiplication. So, we
conclude this chapter with a brief presentation of the previous works on measuring

the complexity of matrix-vector multiplication.

2.1 Linear Algebra

In the proposed protocol, we pick our trapdoored matrix to be full rank. Even though
we do not really need invertibility, the complexity of the matrix-vector multiplication
for full rank matrices is at least as large as that for those with ‘lo‘wer rank. Since we
aim at distinguishing honest from dishonest parties based on small time differences
in computing a matrix-vector multiplication, we want to minimize the time needed
by the honest user. This is done by using the best possible trapdoor. Simultaneously,

we want to maximize the time needed by any adversary. Therefore, it makes sense to

19

restrict our attention to full rank matrices.
We denote the i-th row of an n x n matrix A by A;. Then, from elementary linear

algebra:
Definition 3. An elementary row operation on a matriz A is one of the following:
1. Row switching: Switch row i and row j of the matriz (A; <> A;)

2. Row multiplication: Replace row i by its multiplication with a non-zero k (A; +

k- A;)

3. Row addition: Substitute row i by its sum with a multiple of row j (A; +

A+ k- Aj)

Definition 4. An elementary matrix is a matriz that is produced by performing a

single elementary row operation on the identity matriz.

Theorem 5. An n xn matriz is invertible if and only if it can be written as a product

of elementary matrices.

The representation of an invertible matrix as a product of elementary matrices
is closely related to Gaussian elimination. Each step of Gaussian elimination is a
single elementary row operation, so it can be represented as é multiplication with
an elementary matrix. This means that every invertible matrix can be written as a
product of at most O(n?) elementary matrices. |

For our purpose we use a slightly different notion of elementary row operation:

Definition 6. A general row operation on a matrix A is the substitution of row A,

bya-A;+b-A; where j is another row and a € GF(q) \ {0}, b € GF(q).

Similarly to the above, we define the notion of a general elementary matriz.
Each general row operation can be expressed as a sequence of at most 2 elementary

row operations, a row multiplication (if « # 1) and a row addition (if b # 0). Also:

Lemma 7. Every elementary row operation on a matriz A can be expressed as se-

quence of at most 8 general row operations on A.

20

Proof. e Row switching:

2. A](‘—lAJ'i‘].Az

3. Ai+— —-1-A;+1-4;
e Row multiplication: A; - k-4, 4+ 0 A,

e Row addition: A; < 1-A; +k-A;

So, from Theorem 5 and Lemma 7 we have that

Proposition 8. A matriz can be written as a product of O(n?) general elementary

matrices if and only if it is invertible.

Theorem 8 is the basic tool we use for creating the trapdoor. Each trapdoored
matrix is the product of L(n) general elementary matrices. The prover knows these
matrices and their order in the multiplication, while the verifier only knows the re-
sulting product.

In next chapters, we also use the following proposition:

Prop@sition 9. A general elementary matrix is invertible and its inverse is also a

general elementary matriz.

Proof. If A is a general elementary matrix corresponding to the row operation A; +
a-A; +b-A; with a # 0, then the general elementary matrix corresponding to the

row operation A; +— a™'- A; —a”!-b- A; is its inverse. O

2.2 Markov Chains

As we mentioned in the previous section, each public key is the product of general
elementary matrices. We denote the number of elementary matrices on the product,

which also determines the size of the trapdoor, by L(n). We know that each invertible

21 .

matrix can be written as a product of general elementary matrices (Proposition 8).
So, in order to analyze the security of the protocol, we need to find the size of
L(n) for which it is hard to distinguish a trapdoored matrix produced as a product
of L(n) random general elementary matrices from a completely random invertible
matrix. This question is strongly related to the theory of Markov chains. This

section mentions the basic definitions and methods we need ([14], [2], [12]).

2.2.1 Basic Definitions and Theorems
We start by defining what a Markov chain is:

Definition 10. A sequence of random variables Xy, X;, Xa, ... is a Markov chain

with state space Q) if for all ag,ay,...,a; € §) it satisfies the Markov property:
Pr(X; = at|Xt~1 = a1, Xt—2 = @4_2,, Xo = ag) = PT(Xt = atht—l = ap-1)

If Q is finite, then the Markov chain is called finite Markov chain.
For the rest of the section, we consider only finite Markov chains.

Definition 11. The transition probability

P, = Pr(X; = j|X4—1 = 1)
ts the probability that the process moves from state i to j in one step.
The Markov property implies that the Markov chain is uniquely defined by the one-

step transition matriz:

(P, Py ... Py ... Pn

Py, Pos ... Py ... Py,
P =

Py PFo ... Py ... P,

\Pn,l Pn,2 . Pn,j RI,,TL/

22

This matriz is called the transition matrix of the Markov chain.

Definition 12. A Markov chain is irreducible if all states belong to one communi-

cating class. Namely, for any two states i,j € Q there exists an integer t such that

Pt(i,5) > 0.

Definition 13. A state i in a discrete time Markov chain is periodic if there exrists
an integer K > 1 such that P(X;ys = i|X: = i) = 0 unless s is divisible by K.
A discrete time Markov chain is periodic if any state in the chain is periodic.

A state or a chain that is not periodic is aperiodic.

A very useful notion in Markov chains is that of the stationary distribution, which
shows the limiting distribution over the state space of the chain. We are interested
in finding the stationary distribution of specific chains and arguing that there is only

one stationary distribution. So, the following propositions are helpful.

Definition 14. A stationary distribution (also called an equilibrium distribution)

of a Markov chain is a probability distribution m such that:

Definition 15. A matriz is called doubly stochastic if its row sums and its column

sums are 1.

Theorem 16. The stationary distribution of a Markov chain with doubly stochastic

transition matriz is the uniform distribution over €.

Definition 17. A state ¢ is called absorbing if the chain never leaves i once it first
visits i. Namely, P,; =1 and, of course, P, ; =0, for all j # i.
If every state can reach an absorbing state in a finite number of steps, then the

chain is called absorbing Markov chain.

Proposition 18. ([12] Proposition 1.26) If an absorbing Markov chain has a unique
absorbing state i, then it has as unique stationary distribution the degenerate distri-

bution at i.

23

Another very useful notion is that of mixing time, which shows how quickly a
Markov chain approaches its stationary distribution. We formally define this notion

and in the next section, we describe famous methods for bounding it.

Definition 19. The variation distance between two distributions Dy, and D, on a

countable state space () is given by

1 .)
1D1 = Dell = 5 > 1D1(6) — Da(i)]
i€Q
Definition 20. Let 7w be the stationary distribution of a Markov chain with state
space Q. Let P! represent the distribution of the state of the chain starting at state i
after t steps. We define

Au(t) = ||P = |

and

At) = max A(t).

That is, A;(t) is the variation distance between the stationary distribution and P},

and A(t) is the mazimum of these values over all starting states i.

We also define
7i(€) = min{t : Ay(t) < €}

and

T(€) = max 7;(€).

That is, 7;(€) is the first step t at which the variation distance between P! and the

stationary distribution is less than €, and 7(¢) is the mazimum of these values over

all states 1.

Definition 21. When 7(¢) is considered as a function of €, it is called the mixing

time of the Markov chain.

We call (worst case) mizing time the quantity T, = 7(1/4).

24

Theorem 22. (Convergence Theorem [12]) Suppose that P is irreducible and ape-
riodic. Then, it has a unique stationary distribution w. Also, there ezxist constants

a € (0,1) and C > 0 such that

b < Ca'.
max ||F; — 7|lrv < Ca

2.2.2 Strong Stationary Time

One of the basic tools to analyze the mixing time of a Markov chain is the notion of
strong stationary time. This section provides the basic definitions and theorems we

need about the strong stationary time.

Definition 23. Given a sequence (X;)2, of Q-valued random variables, a {0,1,2, ...,00}-
valued random variable T is a stopping time for (X3) if, for each t € {0,1, ...}, there
is a set By C Q! such that

{r =t} = {(Xo, Xa1,..., Xt) € B:}.

In other words, a random time T is a stopping time if and only if the indicator

function 1,—; is a function of the vector (Xo, X1, ..., X}).

Proposition 24. Every transition matriz P on a finite state space has a random
mapping representation: we can find a function f : QX A — Q, along with a A-valued

random variable Z, satisfying
P(f(i, Z2) = j) = B

Therefore, if (Z;)2, is a sequence of independent random variables, each having the
same distribution as Z, and Xy has distribution p, theh the sequence (X;)2, defined
by

X = f(X4-1, 24, fort>1

25

18 @ Markov chain with transition matriz P with starting distribution p.

Definition 25. A random time 7 s called a randomized stopping time for the Markov

chain (X3) if it is a stopping time for the sequence (Z,).

Definition 26. A strong stationary time for a Markov chain (X;) with stationary
distribution ™ is a randomized stopping time T, possibly depending on the starting
position i, such that

P(r =t,X, = j) = B(r = t)n(j).

Theorem 27. [12] If 7 is a strong stationary time, then

< :).
A(t) < max Fi(r > 1)

2.3 Matrix-vector multiplication

The naive algorithm for matrix-vector multiplication over finite fileds has complexity
©(n?). However, there are many algorithms that achieve better complexity. The most
well-known algorithm for matrix-vector multiplication over GF(2) with complexity

less than O(n?) is known as the Four Russians’ Algorithm ([4], [1]). Its running time

it O L%ZT))’ but it requires auxiliary storage of O(logzn)) bits.

The best known algorithm to perform matrix-vector multiplication over GF'(q) [21]
has running time O(W) for any € € (0,1). Animportant aspect of this algorithm
is that it requires some amount of preprocessing. In our protocol, preprocessing is v
permitted, since the n x n matrix is the public key. The adversary can spehd any
polynomial amount of time in preprocessing this matrix, so that when he receives the

challenge vector he can perform the operation as fast as he can. More formally, the

theorem (expressed for finite fields) of Williams [21] states:

Theorem 28. Let GF(q) be a finite field of q elements. For alle € (0,1), everynxn

matriz A over GF(q) can be preprocessed in O(n?+<1°82(9)) time such that every subse-

26

quent matriz-vector multiplication can be performed in O((el_og(zﬁ)_)f) steps on a pointer

machine or a (log(n))-word RAM, assuming operations in GF(q) take constant time.

Apart from the known algorithms for matrix-vector multiplication, there are some
known lower bounds for the problem and conjectures about what the lower bounds
should be. A lower bound of Q(n?) arithmetic operations is known ‘[22]. However,
one of the assumptions of that result is that the underlying field should be infinite.

More recently Henzinger et al. [10] addresses the problem of Online Boolean
Matrix-Vector multiplication. In this problem, we want to compute a n X n matrix
multiplication A- B, but we are given one column-vector of B, v;, at each round. After
seeing each vector v;, we have to output the product A - v; before receiving the next
vector. The paper shows that a conjecture that there is no truly subcubic (O(n*¢))
algorithm for the Online Boolean Matrix-Vector multiplication problem can be used
to prove the underlying polynomial hardness appearing in many dynaﬁic problems. It
is easy to see that this problem is a generalization of the Matrix-Vector multiplication

in which we are interested.

27

28

Chapter 3

Protocol Analysis

We begin this chapter with a description of the adversarial model we use. Then,
we outline our candidate construction for the trapdoor matrices. In the following
sections, we analyze the security of the protocol using theoretical arguments and

experimental results.

3.1 Adversarial model

To argue the security of a protocol, it is necessary to first describe the adversarial
model considered. In our case, we assume that the adversary has “comparable” power
with the honest user. That means that the adversary is restricted to polynomial time
algorithms.

As we have already mentioned, we focus on the scenario of the authentication
of an honest party to an ATM using smart cards. So, we consider adversaries who
know the authentication protocol and its public parameters, the honest party’s public
key and the type of smart card used. Then, they use all the known information to
create a fake smart card and try to fool the ATM. Since our protocol is based on a
very parallelizable problem (matrix-vector multiplication) and smart cards have very
limited computational capabilities, we assume that the adversary can use the best
available smart card, even if this is better than that of the honest user. However,

he cannot connect it to external devices that can perform faster, maybe parallel,

29

computation.

In a later section, we fry to find practical parameters for our protocol. Of course,
the adversarial power affects these parameters. A concrete example is the size of
the public key, which is a n x n matrix. On one hand, we need n to be as small as
possible, so that the trapdoor and challenge fit in the storage of the smart card. On
the other hand, the time to perform the regular matrix-vector multiplication depends
on n. So, n has to be large enough, so that the adversary needs noticeably more time,

say tenfold, than the honest user in order to find the result of the computation.

3.2 Candidate trapdoor construction

This section bresents our construction for the trapdoored matrix 4 as a product of
L(n) random general elementary matrices. We argue that, given such a matrix A,
it is difficult to factorize it as a product of O(L(n)) general elementary matrices.
Then, the best strategy for any adversary would be to perform the fastest possible
matrix-vector multiplication and return the result. If the complexity of matrix-vector
multiplication is f(n) and we pick L(n) = o(f(n)), then for large enough n the honest
party has a noticeable timing advantage in computing the product Azx.

The procedure that a user follows to create a trapdoored matrix A is the following:

For k € {1,...,L(n)}:

e Pick i) uniformly at random from {1,...,n}

e Pick jj uniformly at random from {1,...,n} \ {i}
¢ Pick a; uniformly at random from GF(q) \ {0}

e Pick b uniformly at random from GF(q)

Then,
A=AD . AT AL

where A®) is the general elementary matrix corresponding to the operation A

(275 Aik + bk . Ajk‘

30

Thus, the trapdoor 7'(A) consists of the sequence of L(n) tuples:
(ik7jky Ay, bk)y for k = 1, 2, eeey L

We force i) # j, because we want the matrix A to be invertible.

The program that the honest party uses in order to take advantage of the knowl-
edge of the trapdoor begins by copying y = z, that is y; = x; for 1 < i < n. Then,
the k-th step, for 1 < k < L, has the form:

yik = ag * y‘ik + bk ° yjk'

The final value of y = (y1,y2, .-.,Yn) is the output.
The corﬁplexity for the honest user in ©(L(n)).

3.3 Protocol Security

The previous section describes how to create a trapdoored matrix using L(n) random
general elementary row operations. In this section, we estimate how big L(n) should
be so that the resulting matrix is indistinguishable from a random invertible matrix

to any polynomial time adversary.

3.3.1 Markov Chain and Stationary distribution

The process of producing a trapdoored matrix yields a sequence of random variables
with state space = GL(n,q), the set of all invertible n x n matrices over GF(q),
which satisfies the Markov property. So, this process defines a finite Markov chain,
M.

Claim 29. The unique stationary distribution of M is the uniform on GL(n,q).

This claim is indispensable in showing the security of the protocol. If we allow
L(n), the number of tuples in the trapdoor T'(A), to be large enough, then we end up

with an approximately uniformly random matrix in GL(n,q). So, for large enough

31

L(n), no adversary can tell whether a matrix was produced by the previous process
or not.

We cannot hope to set L(n) equal to 7,,;, because we know a lower bound on 7,
of Q(n?/log,(n)). To see that, we create a graph with vertex set 2 and edges between
states A and B for which Py 5 + Pap > 0. We know that the diameter, diam, of
this graph, for fixed ¢, is ©(n?/log,(n)) [3]. Then, from the general lower bound on

mixing time 7,,,;, > %diam [12], we get that 7, = Q(n?/ log,(n)))-
Proposition 30. The transition matriz of M, P, is symmetric.
Proof. We show that P4 p = Pp a, for all A, B € GL(n,q).

o If Pyp = 0, then Pg 4 = 0. By contradiction: If Pg 4 # 0, then there is a
general elementary matrix C such that B = C' - A. But then, A = C~!- B and
from Proposition 9, C~! is a general elementary matrix. So, Py g # 0, which is

a contradiction.

o If Pyp # 0, then there is a unique general elementary matrix C' such that
B = (- A. Again from Proposition 9, C~! is a general elementary matrix. The

uniqueness comes from the fact that A is invertible, so C = B - A~!.

Since at each step of the Markov chain we pick a random general elementary
matrix to multiple the current state and there is only one such matrix that

moves state A to state B and conversely, P4 p = Pp 4.

O

Proof. (Claim) Since P is a transition matrix, the sum of each row is 1 and because
of the symmetry also the sum of each column is 1. So, P is doubly stochastic and
from Theorem 16 its stationary distribution is the uniform over GL(n,q). Also,
from Proposition 8 there exists a ¢ such that P} z > 0, for all A, B € GL(n,q) and
P4 4 # 0. Therefore, M is irreducible and aperiodic and from Theorem 22 the uniform

distribution over G'L(n, q) is its unique stationary distribution. O

32

Ideally, we would like to show that after c¢ - nln(n), or even c - nln(n)?, steps,
for a not too large constant c, the resulting matrix is indistinguishable from random
for any polynomial time algorithm. Then, even for relatively small n’s, c- nln(n) or
- c¢-nln(n)? is substantially smaller than the number of operations needed to perform
matrix-vector multiplication even using the fastest known algorithm. So, the protocol
could be practical.

However, this task seems to be really difficult. So, we start by giving evidence
that some specific adversaries cannot succeed. Of course, it is not obvious that even
if the adversary knows that a matrix is trapdoored, he can use that information to
create an attack on the protocol. But, for the rest of the chapter we try to argue that
an adversary cannot even distinguish a trapdoored matrix from a random invertible

matrix.

'3.3.2 One-column case

We analyze the mixing time of the Markov chain, M’, that is defined as (X;-v;):, where
X, is the t-th state of M and v; is the i-th basis vector. Similarly, to the Definition
6, we define an elementary operation in the one-column case as the resulting column
when we substitute coordinate z; by a - z; + b - x;, a # 0. This Markov chain is a
projection of the original one to a single column. So, its analysis gives us some idea
about the analysis of the original chain M.

The state space of M’ is all the non-zero n-vectors with elements in GF(q). As be-
fore the transition matrix is symmetric and the Markov chain is finite and irreducible,
so its unique stationary distribution is the uniform over its state space.

It is not difficult to see that 7,,, of M’ is Q(nln(n)). In each step, we pick an ¢,
which shows the element that gets updated. If an index in {1,...,n} is not chosen
in any of the L(n) steps as i, then the corresponding element would be 0. This is a
coupon collector’s problem [6], in which we have n “coupons” and each one can be

collected equally likely with replacement. Therefore, the number of steps needed is

Q(n - In(n)).

33

Assuming no cancellations

In the Markov chain M’, it is possible that the new value of a coordinate is 0 when
the previous value was non-zero. We start by analyzing what happens if there are no
such cancellations. This is practically the case when the underlying finite field has
large order q.

Basically, we define the auxiliary Markov Chain M” with state space " = {0, 1}"\
{0"}. In this chain, 0 corresponds to a zero coordinate of the original chain and 1
corresponds to an updated coordinate. This chain is an absorbing Markov chain and
the vector 1" is the only absorbing state (Def. 17).

From Proposition 18 we know that the stationary distribution is

(z) = 1 ifz=1"
0 otherwise
Let us define the random variables T; for all i : 1 < i < n—1 as the number of steps

needed to visit for the first time a state with ¢ + 1 1’s, given that the starting state

has i 1’s. These random variables follow a geometric distribution with p; = 2=% . -

n n—1"
Then, from Theorem 27

n—1
A(t) < P() T > 1)
i=1
n—1
because T'= Y T; is a strong stationary time.
i=1

In the book of Motwani and Raghavan [15], it appears as an exercise to find
the tail inequality of the sum of independent geometric distributions with different

parameters:

Theorem 31. Let X, X5, ... , X, be independent geometrically distributed random
variables with parameters p;, for 1 < ¢ < n. Then, for X = ZXi, w = E[X] =
i=1

Z l/p’u p= m.inpi7 and ¢ > 07
i=1 i

P(X > (1+8)p) < (ef(1 -—])/2)(”5)),“.

34

The proof given here is almost identical to the proof of Theorem 4.1 [15].

Proof. For any positive ¢
P(X > (14 0)p) = P(etY > 0+

Applying the Markov inequality to the right-hand side, we have

E [6tX]

P(X> (1+5),U,)< m

We observe that .
£X L X T
Ele'*] = Ele =]:E[I Ie]

i=1

Since the X; are independent, the random variables e**: are also independent. So,

E[ﬁ i) = ﬁ E[e')
=1 =1

Then, we compute E[e*X] for ¢ < In (T—l_p,)

E[e"¥] = ZP(Xi — k)et* = Z(l — p) pret®
k=1 k=1

i ot
= pie’ Z((l - Pi)et)k = Bic
k=0

1—(1—p)et
pi

35

From the above observations we have that for ¢t < In (1‘:; /2)

|)™ i xp(—In(1 — ="
P(X > (1+4+6u) < il;Il (1 ") _ H (O p(=In(l pi)>

et(1+8)p et(1+8)u
T K13
oxp(— S In(1 - =50 exp(2(1 - e) Y L)
. i=1 i i=1""
PR, < R
62(1—6“");1,
< et(14+0)u

In the above we have used the fact that for z € (0,1/2), In(1 — z) > —2z. So,

1—et. 1— et
Cn(1— =S)<2(¢)
y23 pi

Now, we substitute ¢ by In (1—_1—) which yields
v p/2

P(X > (14 8)u) < (eP(1 —p/2)0+9)"

In our case,
n—1 n—1
n-(n—1)
b = 1/p; = -
SRR
n—1 n-1
n—1 n-1 1
'Z(N n—i) =2n-1) 3
=1 =1
= O(nln(n))
because 1)
P
Applying Theorem 31 for § = 1 in our case gives:
) O(nin(n))
P(T >2-nlu(n)) < (i—)

36

because

(1 -p/2)* =e/"(1-1/2n)® < e(1 -1/2)? < ¢/4

Therefore, from theorem 27, 7,,;, = O(nln(n)).

Actual chain

The previous method gives us an understanding of what the mixing time should
be when ¢ — oo, since as q gets large the probability of cancellation goes to zero.
However, when ¢ is small, the random variables 7;’s do not follow a geometric dis-
tribution. It is possible that the starting state has i non-zero elements, but now the
Markov Chain can visit states with less than i non-zeros, before reaching a state with
i + 1 non-zero elements. This is because in this case the probability of cancellation is
greater than zero.

So, we run some simulations with different n’s and ¢’s in order to estimate the
expected number of steps needed until all elements of the column are updated.

The pseudocode for the test and the results of the simulations for different ¢’s

follow.

Algorithm 1 One-column case

: B+ {1,2,...,n}

: count < 1

: x < random basis vector

top:

if B = () then return count

: pick a random general row operation (%, 7, a, b)
T; 4—a‘a:,-+b-3:j

. count + +

: if z; # 0 then B «+ B\ {i}

: goto top.

© 00N D G W e

—
=)

We conjecture the following:

Conjecture 1. Aftert = O(nln(n)) steps, ||P"—x|| < 2, where P’ is the transition
table and 7’ is the stationary distribution of M’.

37

<105 One-column case

2 = T T
2.5 nin(n)
18 4.5 n In(n) F:
O qg=2 oo
16F| + q=13 .
W q=251
14 |

oy
3]
T

number of steps
o
=] -t

o
o
T

I
i

02}

0 1000 2000 3000 4000 5000

Figure 3-1: Results of the simulation for the one-column case. The x-axis corresponds
to different values of n, while the y-axis shows the value of the variable count, namely
the number of steps needed before the Algorithm 1 terminates.

This conjecture implies that the mixing time of the Markov chain M’ is O(n In(n)).
As show in the figure, the constant ¢ seems to depend on ¢: smaller ¢’s (e.g. ¢ =
2) delay the mixing of the chain, because of the bigger probability of cancellation.
Nevertheless, even for medium ¢’s (g = 13), the constant ¢ seems to be small enough

for our purposes.

3.3.3 One-row case

Similarly to the one-column case, we define M” as the projection of M to one row. We
run simulations for the one-row case and count the expected number of steps needed
for a single row of the matrix to become uniformly random over GF(¢)" \ {0"}.
The pseudocode for this test is shown in 2.
Thé results of the above simulation for different ¢’s are show in Figure 3-2:

Again, we conjecture that:

Conjecture 2. After t = O(nlun(n)) steps, ||P"* — «|| < 27", where P” is the tran-

sition table and 7" is the stationary distribution of M”.

38

Algorithm 2 One-row case
B+ {1,2,...,n}
count < 1
A1,
row +— a random element in {1,2,...,n}
top:
if B = () then return count
pick a random general row operation (i, j, a, b)
A,»(—a-Ai—{-b-Aj
count + +
if ¢ = row then
B « B\ {k},Vk such that A(j,k) #0

: goto fop.

—
= O

—
[3>4

apltt Qnerowcase
2.5 nin(n)
6 nin(n)
25} O g=2
+ g=13 D
q =251

15}

number of steps

05

I L I L 1 1 A

o L "
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
n

Figure 3-2: Results of the simulation for the one-row case. The x-axis corresponds to
different values of n, while the y-axis shows the value of the variable count, namely
the number of steps needed before the Algorithm 2 terminates.

Therefore, the mixing time of M” is of the form ¢ - nln(n). However, as show in
the figure, in this case ¢ seems to be larger than in the one-column projection when

q is small. This is again connected to the higher probability of cancellation.

39

3.3.4 Expected number of elements equal to z € GF(q)

Another test an adversary can try is to count the number of elements equal to x €
GF(q) in the public matrix A and compare it with the expected number of such
2’s in a random invertible matrix. If the two quantities differ significantly, then the
adversary knows that the matrix is trapdoored.

Let us define by Nr(w)w, and Nt(m)p the random variable that shows the number of

elements equal to « in a random invertible matrix and trapdoored matrix respectively.

Computing E[N®]

If A is a random invertible matrix over GF(q), then by linearity of expectation:

EINOI=E[> la,-al= > E[la,,-]

1<i,j<n 1<i,j<n
Each element of A has the same probability of being x. We denote this probability
by p.. Then, E[la; ,—z] = ps-
Since A is an invertible matrix, p,, is the same for every = # 0. So, if we first

compute py, then we can find p, from the equation:

L= Yz € GF(q)\ {0
pqlte {0}

It is well known that the number of invertible matrices with elements in GF'(q) is
equal to (¢" — 1) - (¢" — q) - ... - (¢* — g"™1). Similarly, we can count the number of

matrices in GL(n, q) with the element in position (7, j) equal to 0.

Proposition 32. There are (¢" ' —1)-(¢" —q) - ...- (¢" — ¢"~}) matrices in GL(n,q)

with element in position (i,j) equal to 0.

Proof. Without lost of generality, we can assume that i = 1. Let A € GL(n,q) with
A; j = 0, then there are (¢"~! — 1) choices for the n — 1 elements of the first row, since
we exclude the all-zero row. Then, there are ¢" — ¢ choices for the second row, because
the only limitation is that the second row should not belong to the subspace produces

by the first row. Similarly, we can count the choices for all subsequent rows. 0

40

Therefore,

_@ -0 —q- .. (" =g g -1

p - =
- -9) -1
and
I HII gt
= = -1 ,Vz € GF 0
Pe= "1 | 1€ (g) \ {0}

Computing E[N®)

t r'up]

Obviously, this expected value depends on the number of steps we have used to create
the trapdoor. If this number is large enough, then by the analysis of the previous
sections, E[foa)p] E|[N, »E(fr); 4

From the other presented test, we know that we need at least Q(nln(n)) steps.
Therefore, we try to compute the value of E[Nt(m)p] when we have used ©(nlin(n))

steps to create the trapdoor.

Again, by linearity of expectation

INOV=E[Y La,al= > Elu,d= > ¢

1<i,j<n 1<i,j<n 1<i,j<n

where A is a trapdoor matrix with trapdoor size L = ©(nln(n)) and qfi) is the

probability that A4, ; = .
Also,

()

—pl=1 Y (PM(u,v) =7 (w)]
vEGF(q)"\{0"}
s.t.v(i)=x

. IPHw,0) - 7'(v)l
veGF(g)"\{0"}
s.t.u(i)=x

> 1PHv,v) = ()l
VEGF@M\(07)

= 2/|P"(v;,-) — '

lg:;

IA

IN

41

where v; is the j-th basis vector and 7’ is the stationary distribution of M’ (the
uniform over GF(q)" \ {0"}) and P’ its transition matrix.

Therefore, from Conjecture 1:
0% — pof < 22"

and

| = BINSL < 5

)
BN, vapll < 5

rand

3.4 Other Trapdoor Constructions

The above candidate construction is not the only one that can be used in the protocol.
It is possible that picking the rows 7 and j in each step randomly delays the mixing of
the Markov chain. There are examples of Markov chain where we see this behavior:
For instance, in the case of random walks on upper triangular matrices, the mixing
time is O(n?log(n)) when the generator set is { A : A elementary matrix corresponding
to row operation A; < A; +b- A;, wherei < jandb € GF(q)} [17], but it is
O(n?log(q)) when the generator set is {A : A elementary matrix corresponding to
row operation 4; «— A; +b- A;_;, where b € GF(¢)} [18].
So, another possible construction could be the following:

For k€ {1,...,L(n)}:

e Pick jj uniformly at random from {1,...,n} \ {(¥ — 1) mod n, k mod n}
e Pick a; uniformly at random from GF(q) \ {0}

e Pick by, uniformly at random from GF(q)

e Pick ¢, uniformly at random from GF(q)

Then,
A=A AC-D 40

42

where A® is the corresponding to the operation Ay modn ¢ @k - Ak modn) + bk -
A(k=1 modn) +cx - Aj. Each A® can be written as a product of two general elementary

matrices.

Thus, the trapdoor T(A) consists of the sequence of L(n) tuples:
(jk, ag, bk, Ck), for k = 1, '2, ey L

The program, that the honest party uses, takes advantage of the knowledge of the
trapdoor and is similar to the one presented previously.

We notice that in the case of very large ¢, 2n steps are enough for the mixing of
the one-column case. However, similar experiments to the random case show that this
‘might not be true for small ¢’s. Therefore, since we have no additional theoretical

analysis for this construction, we focus our attention to the previous one.

43

44

Chapter 4

Implementation in practice

In this chapter, we consider the practicality of the protocol. We give the basic char-
acteristics of a smart card and based on them we specify the values that the protocol

parameters can get.

4.1 Characteristics of smart cards

In order to judge the implementability of our protocol, we provide some of the tech-
nical characteristic of a specific smart card [16].

The P60D080 and P60D144 devices are members of the new SmartMX2 Family
produced by NXP. Their basic features:

EEPROM: choice of 80 KB or 144 KB

ROM: 384KB

RAM: 8.125 KB (8320 B)

— 5632 B CXRAM (including 256 B IRAM) usable for CPU

— 2688 B FXRAM usable for Fame2 or CPU

SmartMX2 CPU: orthogonal instruction set offering 32-/24-/16-/8-bit instruc-

tions optimized for secured and low power smart card applications

45

e ISO/IEC 7816 contact interface (UART) and ISO/IEC 14443A Contactless In-
terface Unit (CIU)

— ISO/IEC 7816 contact interface (UART) offering hardware support for
ISO/IEC 7816 T = 0 and T = 1 protocol stack implementation

— ISO/IEC 14443A Contactless Interface Unit (CIU) supporting data rates
of 106 kbit/s, 212 kbit/s, 424 kbit/s, 848 kbit/s and offering hardware
support for ISO/IEC 14443 T = C'L protocol stack implementation

4.2 Suggestions on the protocol parameters

We suggest that we need at least one order of magnitude difference on the time the
prover, with her trapdoor, needs to spend to perform the computation and the time
any other adversary, without the trapdoor, would need. Simultaneously, we need to
be sure that n is not too large to be practical. The use of this protocol in smart
cards sets also constrains on the parameters. For example, smart cards have limited
space, so the trapdoor must be designed so that it offers a significant advantage to the
prover, even in the case that she can use limited space to perform the computation.

We have implemented the naive algorithm for matrix-vector multiplication and
the algorithm that uses the trapdoor information in Matlab in order to estimate the
size of the parameters of the protocol. We have tested both the constructions of
the previous chapter, but since the results are very similar, we present only those
of the first construction. In this construction, the trapdoor is a sequence of random
elementary matrices.

The parameters of our protocol are:

e g, the size of the finite field, GF'(q), over which all operations are done. In the
implementation, we try three different values of ¢, a small one (2), a medium
(13) and a sufficiently large (251). Smarts cards have limited space, so we limit

q so that each element is at most one byte.

e 71, which gives the size of the public key and the challenge. The public key is

46

a n X n matrix over GF(¢q) and the challenge is an n-vector over GF(q). Also,

the size of the trapdoor depends on n.

e L(n), the size of the trapdoor. We consider two cases either L = O(nln(n)) or
L = O(nln(n)?). From the previous tests, we know that we need L(n) at least
Q(nlIn(n)). But, these are just specific tests that provide some guidance for the
size of the trapdoor. So, our choices shown at the next figures are L = 2.5n In(n)

for q € {13,251}, L = 6nln(n) for ¢ = 2 and L = nln(n)? for q € {2,13,251}.

The Table 4.1 shows the ratio of average time of matrix-vector multiplication over
different GF(q) (¢ € {2,13,251}) using the naive algorithm over the average time of
finding the correct output using the trapdoor over the same finite fields for different
n’s. We repeat the process for the different L(n)’s mentioned above.

From the figures, we can see that for all the different ¢’s and L(n)’s, n = 1000 is
enough to get a 10-time advantage by using the trapdoor compared to using the basic
algorithm.

It is very probable that the algorithm that we used for the normal matrix-vector
multiplication can be further optimized or that the adversary can try to impersonate
an honest user with a fake smart card that is more powerful than the authentic card
that is issued by the trusted party (e.g. by the bank). However, we believe that
an advantage of 18-times, which corresponds for example to ¢ = 13, n = 1600 and
L(n) = nln(n)? =~ 87090, should be enough so that an adversary cannot succeed. We
note that this suggestion is based on the assumption that no polynomial.adversary
can distinguish a random invertible matrix from a trapdoored one with trapdoor size
L(n) = nln(n)?. If this assumption does not hold for this L(n), then we should adjust
the parameters accordingly.

For these parameters, the storage that is needed for the trapdoor is approximately
170K B and of the challenge is 800B. These numbers seem to fit in a smart card,
according to the specifications we provided above. In addition, by using pseudoran-
domness to generate the trapdoor information, the required storage might become

even smaller. In this case, the trapdoor is constructed using the output of a pseudo-

47

u L(n) = 6 n In(n) L(n) = 2.5 n In{n) L(n) = n In(n))*

q=2 q=13 q=251 q=2 q=13 q=251
100 1.3300 3.1673 3.7086 1.7109 1.6922 2.1278
200 2.6625 6.1402 8.0743 2.9884 2.8715 3.8218
300 3.4758 9.2257 9.8954 3.7545 4.0250 45732
400 4.3861 13.0689 11.9358 4.3800 5.4569 5.6866
500 6.5349 12.9418 16.2930 6.4234 6.0505 7.3003
600 7.4609 - 19.0222 21.7165 7.1326 7.9309 8.7560
700 7.5339 21.7697 24.1286 7.1862 8.8563 9.8807
800 8.7573 27.2890 29.3588 8.1600 10.6391 11.4942
900 9.5655 28.0601 26.4763 8.6299 10.9658 11.2429
1000 11.8088 325718 27.9198 10.4294 12.2709 11.6950
1100 13.5450 35.0642 37.0816 11.8015 12.9359 13.6667
1200 13.9060 38.3508 38.6044 12.0000 13.7471 14.0317
1300 15.6534 41.7347 40.2852 13.3420 14.8411 15.1297
1400 14.9496 43.9892 44.8841 12.7402 15.6790 15.8871
1500 17.5381 47.4801 49,7784 14.7710 16.5414 17.4910
1600 18.7442 55.7037 52.2541 15.5242 18.9429 18.1416
1700 18.6975 51.5867 56.3132 15.6737 18.0399 19.6400
1800 20.1533 52.8366 65.2348 16.6585 18.0420 21.7798
1900 214612 56.2787 64.8387 17.5495 19.1803 22.3495
2000 24.3148 61.9339 664707 19.3869 20.8125 22,6190

Table 4.1: Ratio of the timing results using the naive algorithm and the trapdoor.
The difference shown for ¢ = 2 and ¢ € {13,251} for L = cnln(n) is because of the
different constants ¢ used.

random generator. The honest user stores only a small random seed and every time
she needs the trapdoor, she runs the pseudorandom generator with this stored seed

and reconstructs the trapdoor.

48

Chapter 5

Conclusion

Authentication is an important Well—studied problem. In this thesis, we investigate the
idea of public-key authentication via smart cards. Smart cards are often used today
and they offer a useful tool in authentication. However, their limited capabilities
in storage and computing power make some of the usual authentication protocols
impractical.

In the past, public-key authentication was based on computing an answer to a
challenge that no one without the secret key should be able to efficiently compute.
In our case, the scenario is different. Everyone knowing the public key can compute
the correct answer, but the secret key provides a faster way to complete this task.

We give specific constructions where the public key is an n X n matrix over GF(q)
and the challenge is to quickly compute a matrix-vector multiplication with a random
n-vector. After describing the construction and giving evidence that theoretically this
construction could be secure, we give an elementary implementation and we try to
give specific suggestions for the parameters of the protocol. These first experimental
results seem optimistic, since we can find many tuples of parameters that both fit in
the memory of a smart card and provide the necessary level of security.

Further directions of this research include the theoretical proof that the proposed
construction is secure, at least asymptotically. The proof of the conjectures we have
pointed in the text would be a first step in this direction. If these conjectures are

proved true, the theoretical support for this method becomes strong. Also, more

49

experiments on tests that an adversary could perform would be useful in order to
acquire more confidence in the security of the protocol or perhaps to better adjust
the protocol’s parameters (e.g. the size of the trapdoor). The proposed scheme
seems invulnerable to any attacks we can think of, and may be suitable for practical
use, although further study is warranted before any large-scale deployment should be

attempted.

50

Bibliography

[

[2]

(3l

[4]

[5]

[6]

[71

18]

[l

[10]

Alfred V. Aho and John E. Hopcroft. The Design and Analysis of Computer
Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1st edition, 1974.

David Aldous and James Allen Fill. Reversible Markov Chains and Random
Walks on Graphs. 2002. http://www.stat.berkeley.edu/ aldous/RWG /book.html.

Daniel AndrAln, Lars HellstrAtim, and Klas MarkstrAGm. On the complexity of
matrix reduction over finite fields. Advances in Applied Mathematics, 39(4):428
— 452, 2007.

V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. FaradZev. On economical
construction of the transitive closure of a directed graph. Soviet Mathematics—
Doklady, 11(5):1209-1210, 1970.

Stefan Brands and David Chaum. Distance-bounding protocols. In Workshop on
the Theory and Application of Cryptographic Techniques on Advances in Cryp-
tology, EUROCRYPT 93, pages 344-359. Springer-Verlag New York, Inc., 1994.

Paul Erdds and Alfréd Rényi. On a classical problem of probability theory. MTA
Mat. Kut. Int. Kézl, 6A, 1961.

Uriel Feige, Amos Fiat, and Adi Shamir. Zero-knowledge proofs of identity.
Journal of Cryptology, 1(2):77-94, 1988.

Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Advances in Cryptology, volume 263 of
CRYPTO ’86, pages 186-194. Springer, 1986.

S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of interactive
proof-systems. In Proceedings of the Seventeenth Annual ACM Symposium on
Theory of Computing, STOC 85, pages 291-304, New York, NY, USA, 1985.
ACM.

Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. Unifying and strengthening hardness for dynamic problems via the
online matrix-vector multiplication conjecture. In Proceedings of the Forty-
Seventh Annual ACM on Symposium on Theory of Computing, STOC ’15, pages
21-30, New York, NY, USA, 2015. ACM.

51

[11] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In Proceedings on Advances in Cryptology, volume 1109
of CRYPTO °96, pages 104-113. Springer Berlin Heidelberg, 1996.

[12] David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and
mizing times. American Mathematical Society, 2006.

[13] Ralph C. Merkle. Secure communications over insecure channels. Commaun.
ACM, 21(4):294-299, 1978.

[14] Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized

Algorithms and Probabilistic Analysis. Cambridge University Press, New York,
NY, USA, 2005.

[15] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge
University Press, New York, NY, USA, 1995.

16| NXP. smartmx2 p60, 2010. http:/ Www.nxp;com products/
/ /

identification _and _security /smart_ card_ics/smartmx2 p60/
P60D080PX30.html.

[17] Igor Pak. Two random walks on upper triangular matrices. Journal of Theoretical
Probability, 13(4):1083-1100, 2000.

[18] Yuval Peres and Allan Sly. Mixing of the upper triangular matrix walk. Proba-
bility Theory and Related Fields, 156(3-4):581-591, 2013.

[19] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-release
crypto. Technical Report Technical Report MIT/LCS/TR-684, Massachusetts
Institute of Technology, Cambridge, MA, USA, 1996.

[20] Claus P. Schnorr. Efficient identification and signatures for smart cards. In
Proceedings on Advances in Cryptology, CRYPTO ’89, pages 239-252. Springer-
Verlag New York, Inc., 1989.

[21] Ryan Williams. Matrix-vector multiplication in sub-quadratic time (some pre-
processing required). In SODA, pages 1-11. ACM Press, 2007.

[22] Shmuel Winograd. On the number of multiplications necessary to compute cer-
tain functions. 58(5):1840-1842, 1967.

92

