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Abstract

Many security attacks arise from unanticipated behaviors that are inadvertently intro-
duced by the system designer at various stages of the development. This thesis proposes a
multi-representational approach to security modeling and analysis, where models capturing
distinct (but possibly overlapping) views of a system are automatically composed in order
to enable an end-to-end analysis. This approach allows the designer to incrementally ex-
plore the impact of design decisions on security, and discover attacks that span multiple
layers of the system. The thesis also introduces Poirot, a prototype implementation of the
approach, and reports on the application of Poirot to detect previously unknown security
flaws in publicly deployed systems.
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Chapter 1

Introduction

When a system suffers a catastrophic security failure, the blame is often placed on the
developers of the system: They must have failed to invest enough effort into security, or
perhaps they are simply incompetent.

Recent evidences suggest that the story may not be so simple. According to an industry
survey [85], the amount of development cost spent on security is higher than ever, and yet
the number of vulnerabilities in software products continues to grow significantly each
year. Some of the systems that were proven secure using the most rigorous techniques
available (e.g., formal verification) have been shown to be vulnerable to relatively simple
attacks [47, 74, 58]. Contrary to what one may expect, many of the recent failures are not
due to a novel attack, but caused by a recurrence or slight variation of previously known
vulnerabilities.

This thesis aims to provide a different approach to understanding security failures. It
begins with an observation that may be surprising but not novel: What makes security par-
ticularly challenging is also a fundamental enabler of the construction of complex systems:
abstraction.

1.1 Risk of Abstraction

Abstraction is a technique for managing the complexity of a system by suppressing cer-
tain details from its description. The technique is applied in every stage of development,
starting from the early conceptual design and implementation to testing and documenta-
tion. Abstraction itself can be achieved using various methods, including separation of
concerns [27], information hiding [68], layering [78], and encapsulation [51].

One of the key benefits of abstraction is that, by removing irrelevant details, it can be
used to simplify reasoning about properties of a system. Imagine the task of designing
an online store system. When reasoning about the interaction between a customer and a
shopping cart, the designer would ignore details about other aspects of the system, such as
payment processing and product delivery. Low-level design decisions, such as the choice
of the underlying computing platform and data structures, would be deferred until the
business logic has been fully laid out and scrutinized.

However, in domains where security is a paramount concern, abstraction can be a
double-edged sword. A key observation, noted since early days of security [49], is that
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many security attacks arise due to discrepancies between the designer's view of the sys-
tem and that of an attacker. While the designer tends to operate on a single abstraction at
a time, the attacker is not bound by such restrictions, and may exploit weaknesses across
multiple layers or aspects of a system. The details that are deliberately ignored by the
designer may be exactly what allow the attacker to undermine the security of the system.

Let us explore some concrete examples that demonstrate this type of risk.

1.1.1 Insecure Protocol Deployment

OAuth is one of the most widely used authorization protocols on the web [40]. The pro-
tocol is used to perform third-party authorization; that is, it allows an application to access
resources from another service provider, pending the approval of the end user that owns
those resources. For example, a third-party merchant application may use OAuth to access
a user's billing information on Amazon, after the user indicates an approval by partaking
in the protocol.

Due to its popularity and importance, OAuth has been subjected to careful scrutiny [40]
and rigorous analysis, including formal verification [20, 67, 89]. Despite the amount of
attention that it has received, however, a majority of web applications relying on OAuth
have been shown to be insecure, allowing an attacker to bypass the protocol and access
sensitive resources without the user's approval [79]. In many of these applications, the
vulnerability was caused by a logical flaw, not simple programming errors such as buffer
overflow or missing input validation.

Most of the security analysis on OAuth was performed on the protocol specification.
However, depending on the underlying platform on which the protocol is deployed, it may
become susceptible to a wide range of attacks that cannot even be represented at the pro-
tocol level. For example, one of the attacks relies on a cross-site request forgery (CSRF),
which exploits the way standard web browsers handle cookies. But the protocol is de-
signed to be platform-independent, and does not talk about browsers; it is not surprising
that an analysis at this level would not be able to capture this attack!

A number of protocols besides OAuth have suffered from a similar type of problem [63,
60]. In general, a secure protocol does not necessarily lead to a secure system. The core
of the issue, we hypothesize, is the mismatch between the protocol designer's view of the
system and that of an attacker. The designer rightfully focuses on high-level interactions
between protocol participants, and omits discussions about how these participants are to
be realized in a concrete system. But it may be one of these details that allows the attacker
to render the protocol insecure.

1.1.2 Side Channel Attacks

Consider an online store as an example. When a user wishes to perform a stateful op-
eration (such as adding an item to a shopping cart), the server authenticates the user by
requiring a secret credential to be presented along with the request. The server checks the
provided credential against the existing record on its database, and only if they match, it
considers the request to have originated from the valid user.

1The RFC for OAuth [40] does discuss the potential risk of CSRF against OAuth implementations, but as
the study [79] suggests, this warning seems to have gone unheeded by most developers.
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One of the design decisions faced by the store developer is the choice of data structure
for encoding credentials inside the server application. A typical option would be to encode
a credential as an array of bytes; then, the authentication process would include a step
where two arrays are compared for their content. A straightforward implementation of
the comparison method compares one byte at a time, and as soon as it finds a pair of bytes
that differ, returns f alse as the result. For example, consider the following snippet from
the Arrays . equals method in the Java standard library [31]:

public static boolean equals(byte[] a, byte[] a2) {

for (int i=O; i < a.length; i++)

if (a[i] != a2[i])

return false;

return true;

}

Unfortunately, this seemingly innocuous implementation could reveal information on
the user's credential to the attacker. Note that the amount of time it takes for this method
to terminate depends on the number of matching starting bytes in the input arrays; greater
the length of the matching prefix, longer it takes for the method to return f alse. By ex-
ploiting this property and systematically enumerating candidate credentials, the attacker
could correctly deduce a user's credential. One may expect that the time difference should
negligible enough to render this attack infeasible; however, this attack has been success-
fully carried out against real applications on the web [33].

This attack is an example of side-channel attack. Our hypothesis is that many side chan-
nel attacks can be phrased as a violation of abstraction. Most developers would pay little
attention to the precise timing characteristics of a program; it typically has little impact
on the overall functionality! This example demonstrates that simplicity of design is some-
times at odds with security; achieving the latter often results in additional complexity to
the design of the system.

1.1.3 Feature Interaction

Let us look at a different type of security failure, where one or more independent features
of a system interact in an unexpected manner that leads to a security violation.

A typical telecommunication company offers a wide range of services to its users, in
addition to the basic ability to make and receive a call [45]. For example, a user may
wish to keep her number private, and subscribe to a service called calling line identity re-
striction (CLIP), which blocks the caller's number from appearing on the callee's phone.
The company may also offer a service called automatic recall (AR), which allows a user to
automatically return the most recent incoming call, without having access to the number
of the caller. These two features are complementary; CLIP ensures the confidentiality of
one's number, and AR allows communication between two users without comprising the
guarantee provided by CLIP.

Let us consider a third type of feature called itemized billing (ITM). This service provides
a detailed bill with a list of all numbers that have been dialed by a user over the billing
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period. Extra caution must be taken when a user subscribes to both AR and ITM; unless
explicitly sanitized, the bill may include the numbers from users who subscribe to CLIP,
which is a clear violation of confidentiality!

The issue at heart is that these features are developed independently from one another;
by focusing on one feature at a time, the designer ignores parts of the system that are ir-
relevant to the feature. It is unlikely that, for example, when devising the AR feature, the
designer would be concerned with the information displayed on a user's bill. But eventu-
ally, these features need to be analyzed together for subtle interaction that may lead to an
undesirable outcome. While this example with CLIP may seem simple, consider that the
number of available features may exceed a hundred; predicting all unwanted interaction
is a non-trivial task.

1.2 The Designer's Dilemma

The examples that we have discussed so far demonstrate the inherent tension between
abstraction and security. On one hand, the only way we can manage the sheer complexity
of a modern computer system is simplifying its description down to the bare essence. On
the other, we have seen that seemingly irrelevant details can be exploited to compromise
the security of the entire system. How does the designer determine which details are
relevant for security, and which can be safely ignored?

As an attempt to answer this question, let us consider a different kind of domain: safety
engineering in aviation. A commercial airliner is an enormously complex system, operat-
ing in an environment with numerous hazards, and yet has shown to be remarkably safe.
But this was not always the case; in early years of the aviation industry, accidents were
much more frequent 2. For example, one of the common causes of the early accidents was
a bird strike-a collision with a bird or wildlife resulting in aircraft damage. Bird strikes
have been reported since the early 20th century, but it was a fatal crash of a civil airliner

in 1960 that initiated a FAA mandate for a robust design of jet engines that are capable of
withstanding bird strikes [6].

A comparison between aviation safety and computer security should be approached
with caution, as they deal with very different kinds of system. However, we believe that
some of the lessons learned from designing safe aircraft are also applicable to software
systems-in particular, the practice of codifying and reusing domain knowledge gained
from previous failures.

This approach has been adopted in certain domains, albeit in a rather ad hoc, sporadic
manner. For example, in web security, a wealth of knowledge has been accumulated over
the past decade about common vulnerabilities and mitigations. However, the information
is scattered across numerous places in various forms-informal articles, research papers,
checklists, and books, just to name a few. It requires a considerable amount of effort for an
average web developer to consolidate and apply this knowledge to a specific system. The
OWASP database, one of the most reputable sources on web security, lists more than 70
different types of attack on web applications [871; how does one decide which out of these
are actually applicable to a system being designed?

2 1n the United States, there were roughly 78 accidents per 100,000 flight hours in 1946, compared to 7 in
2009 [66].
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Figure 1-1: Overview of the proposed framework.

1.3 Proposed Approach

This thesis proposes a framework for designing secure systems through systematic reuse

of domain knowledge. Here, the term domain knowledge has a rather broad meaning, in

that it represents any partial description of a system (or a class of systems); it could, for

example, describe a generic protocol (e.g., OAuth), a mechanism (how a browser stores

and transmits cookies), a security attack (CSRF), or a data representation (an array of bytes

for encoding a credential).

The overview of our framework is shown in Figure 1-1. It accepts three types of input

from the user: a model of the system, a desired security property, and an optional repre-

sentation mapping, which relates parts of the model to existing concepts in the domain model

library. The composition operator constructs a new, elaborated model of the system by com-

posing the given model with relevant domain models from the library, as specified in the

mapping. Then, the analysis engine performs an automated analysis to generate potential

scenarios that demonstrate how the property could be violated by an attacker. The library

contains generic, reusable descriptions of systems (such as web applications and network

systems), and can be easily extended with additional models.

The framework was designed to achieve the following specific goals:

" Incremental analysis: The framework is intended to support an incremental analy-

sis of a system. Instead of having to come up with a complete model of the system at

once, the designer may begin with a simple, abstract model, and incrementally elab-

orate parts of it. This allows the analysis task to be carried out over multiple phases.

For example, the designer may first analyze an abstract OAuth model for protocol-

specific flaws; elaborate the model by describing how the protocol is deployed on

a HTTP server; and then perform an additional analysis to discover HTTP-specific

attacks on OAuth. This approach is especially useful during early stages of develop-

ment, where some of the design decisions may be unknown and still being explored.

" Reasoning across multiple abstractions: The underlying specification mechanism

allows a system to be described in multiple representations, each corresponding to a

particular abstraction of the system. This, in turn, enables an analysis for discovering

attacks that exploit the behavior of the system across multiple abstraction layers.
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Figure 1-2: Different views of an online store systeni. An edge represents a projection from the systein to one
of its views.

For example, an analysis may discover an attack that relies on a subtle interplay

between the OAuth and HTTP protocols, besides those that are purely OAuth- or

HTTP-specific.

* Modular reuse of domain knowledge: By allowing models to be developed inde-

pendently and later composed for analysis, the framework facilitates reuse of domain

knowledge. A model that describes the behavior of a standard browser, for example,
needs to be constructed only once by a security expert, and can be reused for anal-

ysis of multiple applications. Furthermore, the designer can leverage the domain

knowledge without being exposed to all of its underlying details. For example, a

web developer should be able to perform an analysis to discover potential attacks on

the system, without understanding the complex inner workings of a browser.

1.3.1 Problem: Composing Mismatched Models

As a key requirement, this framework was designed so that a piece of domain knowledge

could be encapsulated as a standalone model, and readily composed with other mod-

els, much like modules in programming languages. In traditional model-based frame-

works [19, 25, 35], composition involves joining two models at a common, shared interface

with certain synchronization primitives. In our framework, however, we face a rather dif-

ferent kind of model composition problem.

Two models may be developed independently, each with its own distinct vocabulary,
but parts of them may overlap, in that they conceptually describe the same entity in the

real world. When reasoning about the business logic, it is useful to treat an online store as

an abstract entity, free of details about its underlying platform. But eventually, the store

will be realized as a specialized type of web server that provides store-related services via

HTTP requests. So, depending on the development task at hand, the same store entity in

the world may be described using distinct concepts in different models-as the abstract

store in one model, and as a HTTP server in another.

A different way to think about the composition problem is to treat each model as a

projection of the system onto one particular aspect or abstraction layer. Figure 1-2 shows
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an online store system and some of its possible projections; one of them describes the
shopping cart logic, while another depicts how the customers are authenticated. While
these projections capture different aspects of the system, they are likely to overlap in some
parts. For example, both the shopping cart and payment projections must include concepts
that correspond to customers and items, although they may be represented differently.

We start with an assumption that no model of a system is perfect, and thus, it may
never be possible to obtain a complete description from which projections can be con-
structed (e.g., the one in the center of Figure 1-2). Instead, we posit that the designer
creates and switches between different projections at various points throughout the de-
velopment. Since certain security attacks exploit details across multiple projections, these
eventually need to be brought together for an end-to-end analysis.

In this thesis, we introduce a simple, general concept called the representation mapping,
which expresses relationships between different elements of a system. In Chapter 2, we
will discuss how the representation mapping is used as the basic operator for composing
models, and the role that it plays in the context of security analysis.

1.3.2 Scope of the Framework

Computer security is a large, active area of research, and a number of techniques and tools
have been developed over the past to address different types of vulnerabilities and attacks.

Our framework is intended to be used for design analysis, helping developers (1) dis-
cover potential attacks due to a logical flaw or an unanticipated interaction between dif-
ferent parts of the system, and (2) explore implications of design alternatives on the secu-
rity of the system. Types of question that one may explore using our framework include:

" What are different ways in which an attacker might be able to access users' sensitive
data on the store?

" Which method of transmitting user sessions is more secure: cookies or URL query
parameters?

" How do I securely integrate the store with a third-party payment API?

On the other hand, the framework is not designed for finding specific vulnerabilities or
bugs in the implementation of a system. It is, for example, not suited for detecting occur-
rences of buffer overflow or SQL injection on a piece of code. These implementation-level
issues are just as crucial in security; fortunately, a number of tools have been built and
optimized for analyzing such issues [75, 34].

1.4 Prototype Implementation and Evaluation

To demonstrate the feasibility of our approach, we have built a prototype tool called Poirot.
The tool implements all of the major components from Figure 1-1, with a domain-specific
language for constructing system models, and an analysis backend that uses the Alloy
Analyzer [42] to generate potential security violations.

For evaluation, we focused on analyzing systems from one particular domain: web
applications. For this purpose, we populated the library inside Poirot with a number of
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models that describe different aspects of the web, including communication protocols, en-
cryption, browser features, and authentication mechanisms. We then applied Poirot to
model and analyze a number of systems, two of which are described in this thesis:

* HandMe.In: A web-based system for tracking personal physical properties, and

" IFTTT: An application that allows end users to compose and automate a pair of web
services.

Through our analysis, we identified a number of security flaws in the design of these sys-
tems, some of which could be used to carry out previously unknown attacks. More details
about Poirot and its applications are discussed in Chapters 5 and 6.

1.5 Summary of Thesis Contributions

This thesis makes the following contributions:

" A modeling and analysis framework that leverages domain knowledge to detect po-
tential security attacks across multiple system abstractions.

" A general mechanism for composing independent, possibly overlapping models by
relating different representations of system entities.

" A prototype tool, called Poirot, and case studies describing its application to the
analysis of realistic systems.

1.6 Thesis Outline

ITLe rest of LLe itLesis Is structureu as folOWS. Chapter 2 describes our underlying formal-
ism for specifying a system, and a new composition method based on the notion of the
representation mapping. Chapter 3 introduces a model for describing dataflow throughout
a system, and shows how a representation mapping can be used to relate different data
types. Chapter 4 illustrates our approach to security analysis, where the problem of find-
ing a security violation is formulated as a constraint satisfaction problem. Chapter 5 in-
troduces our prototype implementation, Poirot, and Chapter 6 describes case studies that
involved applying Poirot to analysis of publicly deployed systems. The thesis concludes
with discussions of related work in Chapter 7 and future directions in Chapter 8.
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Chapter 2

Behavioral Modeling

We will begin by introducing a modeling approach based on a well-known process algebra
called communicating sequential processes (CSP) [39]. We will then show how standard
CSP can be extended to accomodate the notion of representations, and build on this notion
to construct a mechanism that can be used to combine distinct but possibly overlapping
models of a system.

Chapter Highlights

" A system is modeled as a set of processes that interact with each other by engaging in
various types of events (Section 2.1).

" Each event is assigned one or more labels, each corresponding to a possible represen-
tation of the event (2.2).

" The overall behavior of a process is defined by a set of guard conditions, which de-
scribes when a process is allowed to engage in a particular event (2.3).

" A pair of processes can be composed to form a larger process that captures the inter-
action between the two. During the composition step, a representation mapping can be
used to introduce a relationship between events that would otherwise be considered
completely independent (2.4).

* Establishing such a relationship may introduce new, unanticipated behavior into the
system, possibly leading to a security violation (2.5).

2.1 Modeling Systems with Events

Communicating sequential processes (CSP) is a simple but powerful language for describ-
ing a system as a set of interacting, concurrent processes [39]. Compared to other popular
modeling notations such as state machines, its emphasis on process interaction makes CSP
(and process algebras in general) particularly suitable for analyzing end-to-end system be-
havior; that is, how a system behaves as a sum of its parts. As we will see in the next
chapter, CSP can be augmented with a simple extension to allow reasoning about flow of
information throughout different parts of the system-crucial for any security analysis.
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In this approach, a system is modeled as a set of processes that interact with each other
by engaging in various types of events. As a running example throughout this chapter,
consider the task of designing a simple online store that provides two basic services to
its customers: logging onto the store and adding an item to a shopping cart1 . Customers
interact with the store by sending a series of requests to it, which may decide to serve some
of those requests while rejecting others based on their content. For example, when the store
notices that a particular item is out of stock, it may decide to reject all future requests for
adding the item until it becomes available again.

Events and traces A process is an entity that is capable of engaging in certain types of
events, each of which corresponds to an atomic action in the world. For example, the store
may be modeled as a process that participates in two types of events:

" login(u,p): A login of user u using password credential p;

" addItem(u, i): An insertion of item i into the shopping cart owned by user u.

where u, p, and i are parameters of events.
One way to capture the behavior of a process is by treating the process as a black box,

and observing events that it performs over a certain period of time. We will assume that
no two events can be performed simultaneously by a process. In other words, the set of
events observed from the process can be organized into a totally ordered sequence, which
we call a trace of the process.

For example, one possible trace of the Store process consists of the following three
events, ordered from left to right:

(login(aliceID, 1234), addItem(aliceID, choc), addItem(aliceID, oat))

where alicelD is an identifier for a particular user (named Alice), 1234 is a password
value, and choc and oat are identifiers for two store items, chocolate bars and oatmeal
boxes. This trace describes a behavior of the store that begins with logging Alice onto the
store, and then adding a chocolate bar followed by an oatmeal box to her shopping cart.

The set of all traces permitted by Store captures the overall behavior of the store, and
is denoted traces:

traces(Store) E P(T)

where T is the set of all finite sequences of events. Since Store may continue to accept re-
quests from customers without ever terminating, traces (Store) may be potentially infinite.

Composition Typically, the designer would be interested in understanding not just how
the store behaves on its own, but also how it interacts with with one or more customers.
To explore such composite behaviors, let us first introduce a new process, called Alice,
which represents the customer with username aliceD. Like Store, Alice is capable of
engaging in login and add events, except Alice does not like oatmeal, and so she would

1 0f course, a realistic store typically provides many more services, but for simplicity, we will keep our
discussion to these two.

20



never initiate a request for adding a oatmeal box to her shopping cart. In other words, the
following trace, consisting of two events, is permitted by Alice:

(login(aliceID, 1234), addItem(aliceID, choc)) E traces(Alice)

but the following trace is not a valid behavior of Alice:

(login(aliceID, 1234), addItem(aliceID, oat)) traces(Alice)

because it includes an addItem event that Alice would never engage in.

The composition of Store and Alice itself is a process, and denoted by

Store |Alice

This process describes a system that consists of the store and Alice executing in paral-
lel with each other. The two interact by synchronizing on events that they both are ca-
pable of performing. For example, if Alice decides to log onto the store by performing
login(aliceID, 1234), then Store must be willing to accept and perform the same event at
that time-otherwise, this event cannot take place in the overall system.

Consider the following trace, which depicts Alice logging onto the store and adding
choc twice to her shopping cart:

(login(aliceID, 1234), addItem(aliceID, choc), addItem(aliceID, choc))

E traces(Store I Alice)

This is a valid trace of (Store 11 Alice), since both Alice and Store are able to synchronize

on each event appearing in the trace. However, the following trace, while permitted by
Store alone, is not allowed in their composition:

(login(aliceID, 1234), addItem(aliceID, choc), addItem(aliceID, oat))
traces(Store 11 Alice)

because Alice would never agree to participate in addItem(aliceID, oat).

Everything discussed so far-the notions of processes, events, and synchronization-
is part of standard CSP [39]. In the next section, we will show how these notions can
be extended to facilitate modeling of different views of a system, and to enable a kind of
composition that would not be readily expressible in CSP.

2.2 Representations

Suppose that the designer is satisfied with the high-level design of the store, and wishes
to move onto the next step of the development: determining how the store services will be
implemented. In particular, the designer decides to deploy the store as a standard HTTP
server, with customers interacting with the store through a web browser.

In the final deployed system, the store will take on two different representations, de-
pending on the perspective of the client that interacts with it. As far as customers are
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concerned, it will appear to be a typical online shopping cart that provides the basic store-
related services. However, to a browser, the store behaves like a web server that accepts
HTTP requests at certain designated URLs. The customers are oblivious to the underlying
details of the HTTP protocol; on the other hand, particulars of a store item are treated by
the browser as nothing more than HTTP packets to be transmitted over the web.

Our goal is to allow a particular aspect of a system to be described in independent
models (possibly by different stakeholders), and those models to be brought together in
a way that preserves both characterizations of the system. In this section, we will show
how standard CSP can be extended to achieve this goal by (1) allowing each event to be
associated with multiple representations within a single model, and (2) relating distinct
representations from two different models through a representation mapping.

2.2.1 Describing Events with Representations

A representation of an event, r E R, is simply one possible description of the event, specify-
ing its name and a list of parameters.

The key idea behind our approach is to allow every event to be associated with multiple
representations; more precisely, every event is specified as a set of representations; i.e.,

E = P (R)

As a consequence, a trace is now a sequence of sets of representations.
The simplest case is when every event contains exactly one label. Recall the following

trace from Section 2.1, allowed by the Store process:

(login(aliceID, 1234), addItem(aliceID, choc), addItem(aliceID, oat))

With our new definition of events, this trace is now written as

({login(aliceID, 1234)}, {addItem(alicelD, choc)}, {addItem(aliceID, oat)})

e traces(Store)

More complex cases arise when two or more representations, originating from inde-
pendent models of a system, are associated with the same event in the world. Let Server
be a process that depicts the behavior of a standard HTTP server, engaging in exactly one
kind of events-HTTP requests. To describe these events, we will introduce a set of labels
in the form of

req(u, h, b)

where u, h, and b are parameters for the URL, headers, and body of an HTTP request,
respectively.

The Server process describes a generic HTTP server, meaning, by itself, it is ready to
engage in any arbitrary HTTP request. But as the designer of the store, we would be in-
terested in constructing a more specialized server that accepts two specific kinds of HTTP
requests: login and addItem. To achieve this, we may allocate a certain set of URLs for
these specialized HTTP requests. For example, the following URL may be designated for
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the operation of adding choc to Alice's shopping cart:

urlaliceChoc http: //www.mystore. com//addItem?user=alice&item=choc

Then, HTTP requests for this operation can be represented as

regalicecoc =req(urlaliceChoc, -, -)

where the headers and body are irrelevant to the request (and thus, denoted by the "don't

care" variable, _.

Recall the original Store process, which is willing to engage in events that are repre-

sented as follows:

addaliceChoc = addItem(aliceID, choc)

Suppose that the designer wishes to construct a new process (called StoreServer) that

corresponds to the deployment of Store as an HTTP server. Ideally, we want to allow

the designer to be able to (1) leverage the domain knowledge already captured by the

Server process, instead of directly modifying Store and (2) perform the construction of

StoreServer in a modular fashion, so that the interaction of Store with its environment

(i.e., Alice) needs not be modified.

Every event performed by StoreServer can be associated two different representa-

tions: one being the abstract representation from the Store process, and the other one

being its concrete realization as an HTTP request. For example, for any event e that results

in choc being added to Alice's cart, the following holds true:

e = {addaliceChoc, regaliceChoc

As we will see later in this chapter, this multi-faceted characteristic of events allows dif-

ferent types of processes to interact with StoreServer without being aware of each other.

Customers can continue to make use of the store services without knowing that they are

implemented as HTTP requests; similarly, a browser may communicate to StoreServer

without being aware of the application-level semantics that the server implements.

In the rest of this chapter, we will discuss (1) how the relationship between a pair of

processes (e.g., Store and Server) may be specified, (2) and given this relationship, how

our composition mechanism constructs their composition (StoreServer) that maintains

the characteristics of the original pair as multiple representations.

2.3 Behavior and Representations

Before introducing our composition mechanism, let us first discuss how the behavior of a

process may be influenced by the assignment of potentially multiple representations to its

events.

Recall that the overall behavior of process p is defined as a (potentially infinite) set of
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traces that are permitted by p:

traces(p) C T

Traces can be constructed inductively, by taking an existing trace and appending an event
that p may choose to perform at that point. For example, consider the following trace from
Alice:

({login(aliceID, 1234)},{addItem(aliceID, choc)}) E traces(Alice)

Having performed these events, Alice may choose to purchase another chocolate, thus
resulting in a new trace:

({login(aliceID, 1234)},{addItem(aliceID, choc)},{addItem(aliceID, choc)})

E traces(Alice)

Whether or not a particular event can be appended to an existing trace depends on
(1) the characteristics of that event as described by its representations, and (2) the events
that already exist in the trace. For example, let us say that our store implements a rather
draconian measure, where it restricts each customer from buying more than two copies of
an item; when it receives a request from a customer for adding item i, it looks at the list of
addItem events that it has already performed, and only accepts the new request if i has not
been added to the customer's cart twice.

One way to specify this aspect of the process behavior is to express it as a guard condi-
tion over an existing trace (t) and the event to be added (e). For example, the Store process
may use the following condition to test whether or not an incoming request should be
considered a valid addItem event:

guardaddltem(e, t) =

3 u E UserID, i E ItemID 9 addItem(u, i) E e A numAdded(u, i, t) < 2

where numAdded (u, i, t) is an auxiliary function that computes the number of occurrences
of addItem(u, i) in trace t. In other words, event e is considered a valid addItem and may
be appended to trace t if and only if the item being requested has not bee added to the
customer u's shopping cart more than once during the execution of t.

Similarly, Store may use the following guard condition to define what it considers to
be valid login requests:

guardiogin(e, t)

3u E UserID,p C Password * login(u,p) E e A (u,p) C passwords(t)

where password is an auxiliary function that computes the set of username-password pairs
that are maintained by the store after trace t. Informally, this guard says that e is a valid
Login request if and only if the provided p is the correct password for user u.

Given these two guards, we can now specify exactly when an event may be added to a

24



trace of Store:

V t E T,e E E o t' ' (e) E traces(Store) <

t E traces(Store) A

Vr E e or E AddItem -, guardaddltem(e, t) A

r E Login -> guardiogin(e, t)

where t1 '~' t2 is the concatenation of traces t, and t 2, and AddItem and Login are the sets

of all addItem and login representations, respectively. In other words, event e may be

appended to an existing trace t if and only if e satisfies the guard that is associated with its

representation type.

Given the above specification, we may conclude that the following is not a valid trace

of Store:

(taddItem(aliceID, choc)},{addItem(aliceID, choc)},{addItem(aliceID, choc)})

( traces(Store)

since the last event does not satisfy guardaddltem.

When an event is associated with multiple representations, it must satisfy all of the

guards that are imposed on the types of those representations. The intuition behind this

requirement is that, when an event takes on multiple roles, it possesses the characteristics

of all of those representations-meaning, it will be subjected to all of the treatments that

the process imposes on those representations.

For example, the guard imposed by Server on HTTP requests may say that the host

section of the given URL must match the IP address of the server receiving the request:

guardreq(e, t) =

E u E URL,h E IP (Header), b C Body 9 req(u,h, b) E e A match(host(u), IPaddr(t))

Here, host(u) returns the host section of given url u; IPaddr(t) returns the IP address

associated with Store after trace t, and; match (x, y) returns true if and only if hostname x

resolves to the IP address y.

Recall, from the previous section, the event performed by StoreServer that leads to the

insertion of choc into Alice's cart; this event is labeled with two different representations:

e = {addaliceChoc, regaliceChoc

For this event to appear in a trace of StoreServer, it must not only be a valid addItem

event, but its encoding as an HTTP request must include the hostname that resolves to

the IP address of StoreServer. In other words, e must satisfy the conjunction of the two

guards

guardaddltem(e, t) A guardreq(e, t)

in order to appear in a trace of StoreServer after it has executed the events in t.

More generally, the overall behavior of process p, denoted by traces(p), can be defined
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inductively as follows:

traces(p) ={t E Trace |t = K) V

-Et' E traces(p),e c Ee

t = t' ' (e) A

V r E e*guardtyp (r)(e, t)}

where () is an empty trace, typ(r) returns the type of representations that r belongs to, and

guardt is the guard imposed by p on the representation type t. In other words, a new trace
t can be constructed by taking an existing trace t' c traces(p) and appending a new event e

that satisfies all of the guards that are imposed on its representations.

2.4 Composition

2.4.1 Parallel Composition

At a high level, our composition approach follows the same basic rule as the parallel com-
position in standard CSP: A pair of processes, when put together, must simultaneously
perform the classes of events that are common to both of them.

Consider two processes, p and q, where p is capable of performing three kinds of events,
each labeled with representation a, b, or c. The following is a possible trace of p:

({a},{c},{b}) E traces (p)

Similarly, q is capable of performing two kinds of events, labeled with c or d; it may gener-
ate a trace like this one:

({d},{c}) c traces(q)

Since events labeled with c are common to p and q, each {c} requires simultaneous partic-
ipation from both processes. For example, given the above two traces, we may conclude
that the following is a valid trace of p I q:

({a}, {d}, {c}, {b}) E traces(p q)

Conceptually, this trace describes a system execution where the events take place in the
following order:

1. p performs {a},

2. q performs {d},

3. p and q simultaneously perform {c}, and

4. p performs {b}.

The other kinds of events beside {c} are unique to each process, and have no influence on
each other; they may be interleaved freely by (p | q). For instance, a different trace, where
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{d} is performed before {a} instead, is also a valid behavior of p 1 q:

({d},{a},{c},{b}) E traces(p I| q)

Our approach takes a departure from standard CSP, in that each event may be labeled
with multiple representations. Consider a variant of p, called p', where some events are
labeled with two representations, c and x;

(ta},{c, x},{b}) E traces(p')

Similarly, let q' be a process that assigns two representations, c and y, to some of its events:

({d},{c,y}) E traces(q')

When two events from distinct processes share at least one label, those events can be treated
as the same kind of event, and require simultaneous participation from both processes.
Intuitively, {c, x} may be treated like c or x, depending on the perspective of an external
process that wishes to interact with p'. Since q' is capable of engaging in {c, y}, which
itself can be treated like c, p' and q' possess an ability to influence each other through
simultaneous participation in {c, x} and {c , y}.

When processes synchronize on a pair of events with distinct but overlapping sets of
labels, the pair are combined into a new event by computing the union of the two label
sets. For instance, when p' and q' interact by performing {c, x} and {c, y}, the shared event
takes on the following form in p' q':

{c , x, y}

So, the following is a valid trace of p' q':

K{a},{d},{c, x, y},{b}) c traces(p' H q')

while the following trace is not a valid behavior of p' | q':

({a},{d},{c, x},{c , y},{b}) traces(p' | q')

because {c, x} cannot occur alone in p' q' without being synchronized with {c, y}.

2.4.2 Representation Mapping

Our discussion so far has focused on one particular kind of composition, where two pro-
cesses synchronize on the groups of events that share some common characteristics. Some-
times, a pair of process models may describe the same aspect of a system in reality, but are
specified using two completely distinct sets of vocabulary terms. This type of mismatch
has been frequently observed in software development, where different (but overlapping)
aspects of a system are documented by independent stakeholders, often in isolation from
each other. Eventually, to enable an end-to-end analysis, these artifacts need to be inte-
grated into a single coherent model of the system.

The problem is that these models are not readily amenable to the above composition
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technique; since their events do not share common representations, we would end up with
a system in which the processes behave completely independent of each other. A different
composition mechanism is needed, where a relationship between a pair of processes, indi-
cating the commonalities that they share in reality, can be specified by the designer before
composition takes place.

Let us propose a new composition operator

which introduces a relationship between distinct groups of events as specified by the rep-
resentation mapping m, and allows p and q to interact through those events. A representation
mapping is a relation of type R x R, where (a, b) c m means that "every a event should also
be considered a b". More precisely, the mapping indicates that every event labeled with a
must be assigned b as an additional representation in the composite process, p I q.

Recall the sample traces permitted by the processes p and q from the previous section:

({a},{c}, {b}) c traces (p)

({d},{c}) E traces(q)

As we noted, in standard parallel composition, the two processes synchronize on {c} while
independently performing events that are unique to themselves, allowing a trace like the
following in the resulting composition:

({a},{d},{c},{b}) E traces(p q)

Suppose that we wish to express a relationship between a pair of distinct representations,
a and d, where d is a valid alternative representation for a. This can be specified as an entry
in the representation mapping m to be used during the composition of p and a:

(a,d) E m

The mapping signifies that every a should be treated like d as well. Consequently, when-
ever p performs {a}, q is required to synchronize with p by simultaneously performing {d}.
So, the following is a valid trace of p I q:

({a, d},{c},{b}) E traces(p q)

whereas the following is not:

({a, d},{c},{b},{a}) traces(p I q)

since {a} cannot occur alone without being synchronized with {d}.
More generally, the set of traces allowed by the composition of processes p and q using

mapping m can be defined as shown in Figure 2-1. The intuition behind this definition is
as follows. Since every event in t must have been performed by either p or q (or both),
erasing events from t that do not share any representations with q must yield a trace of p
(a similar argument holds for q as well). In addition, any event with a representation that
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Let t [ A be a projection of trace t onto a set of representations, A; this operator is defined
as follows:

() [A=()

(t '~ (e)) [ A = (t [ A) ' ((e n A)) if (e n A) 4 0

(t ' (e)) [A= (t [A) otherwise

Then, the set of traces allowed by p H q can be defined as:

traces(p q) =t E T |V e E events(t) e e.m C e A

(t [ oc(p)) E traces(p) A

(t [ cx(q)) E traces(q)}

where events(t) is the set of events appearing in trace t, and x(p) is the set of all repre-
sentations belonging to the events of p.

Figure 2-1: Traces allowed by the composition of p and q with representation mapping m.

is mapped to another representation in the mapping m must, by construction, contain the
latter as one of its labels.

It is important to point out that the representation mapping is not symmetric; (a, b) E m
does not imply that every event labeled b is necessarily treated as a. In our example, while
q is required to provide {d} for every {a} performed by p, q is still free to perform {d} on its
own, independent of p. Suppose that the following is another trace allowed by q:

({d},{c},{d}) E traces(q)

Then, the following trace is a valid behavior of the composed system:

(ta, d},(c},tb},{d}) E traces (p I q)

Note that when m is empty, our composition operator produces the same process as the
standard parallel composition:

p | q p q
{}

Notation As a shorthand, we will write

a - b

to mean that a is mapped to b in the representation mapping m; i.e.,

(a, b) E m
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When it is clear from the context which mapping we are referring to, we will simply write

a - b

If the relationship between the two representations is symmetric, we will denote it as

a <-÷ b <-> a '-* b A b H-* a

Laws The composition operator is commutative; that is,

p q=qI p

Informally, this property can be inferred from the fact that the trace set definition in Fig-
ure 2-1 does not depend on which process the events in the mapping originate from.

However, the composition operator, in general, is not associative. Let us consider an
example with three processes, p, q, and r, which are capable of performing events {a}, {b},
and {c}, respectively. Suppose that we wish to compose these processes in order using two
distinct mappings, )i, and m2, such that

Then, it does not necessarily follow that

(p | q) | r= p | (q |r)Mi1  M2  M1  M2

because once q and r has been composed, {b} and {c} are interleaved into separate events in
the resulting process; consequently, it will not be possible for a to be synchronized simul-
4-aneouslyT wIt1h event tha c4- n h k--b and c, as rersnttcs

In the remainder of this section, we will show how this new operator can be used as
a basis for modeling different types of system interaction: (1) communication, where the
binding of multiple clients to a service is expressed as a mapping between representations,
and (2) implementation, where the relationship between an abstract entity and its concrete
counterpart is established by linking representations of events across multiple levels of
abstraction.

2.4.3 Modeling Communication

For our modeling tasks, we are interested in capturing a class of system interaction where
a component provides a set of services to one or more other client components. In this
section, we will show how our composition operator 1 can be used to express this type of

horizontal composition between different parts of a system.
The simplest case involves a system in which each service provider interacts with ex-

actly one client. We have already seen examples of this, where Store provides login and
addItem services to Alice. Describing their composition is straightforward; both Store
and Alice may engage in events labeled with login or addItem, and when brought to-
gether, they are required to synchronize on every one of these events.
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But typically, there are multiple clients that interact with a single service provider. Let
us introduce another customer, named Eve, who also interacts with Store by invoking the
login and addItem services. It turns out that she is a rather mischievous character, and
will attempt to cause trouble to other customers by getting the store to insert unwanted
items into their shopping carts. For example, Eve may attempt to clutter Alice's cart with
an additional choc, by getting the store to perform addItem(aliceID, choc) without Alice's
initiation.

Let us assume that Alice and Eve do not directly communicate, and so they have no
influence on each other's interaction with the store; this means, for example, that Eve could
not force Alice to send a request to the store against the latter's will. As far as the store
is concerned, all it sees is a sequence of incoming requests, with this sequence being an
arbitrary interleaving of requests from Alice and Eve.

One might be tempted to model Eve the same we did with Alice, describing it as a
process that engages in two kinds of events, each labeled login or addItem. For example,
the following trace could describe a behavior of Eve where she first logs onto the store,
adds an item to her own shopping cart, and then attempts to insert the same item into
Alice's cart:

({login(eveID, 5678)},{addItem(eveID, choc)},{addItem(aliceID, choc)}) E traces(Eve)

Eve can be composed with Store in the same manner as Alice is; every login or addItem
event appearing in a trace of Store 11 Eve is the result of the simultaneous engagement of
the event by both processes.

This formulation becomes problematic when we attempt to construct a system that
consists of Store, Eve, and Alice. Since Eve and Alice contain events with common rep-
resentations (i.e., addItem(aliceID, choc)), their composition, Eve 1| Alice, would require
that the two proceses synchronize on every such event. But this deviates from how we
intend to model client-provider interactions-instead, we want the client processes to be
able to send requests to the provider independently of each other!

One solution is to distinguish events based on the identities of the processes that en-
gage in those events. To achieve this, we will introduce a naming convention where each
representation of an event is required to include, as a prefix, the name of the process that
engages in the event. More formally, for every event e performed by process p, every rep-
resentation r assigned to e is given a prefix p; i.e.,

r = p.descr

where descr is a description stating the name and parameters of the event.

For example, to distinguish addItem events generated by Alice from those belonging
to Eve, we will specify their representations as:

Alice.addItem(aliceID, choc)

Eve.addItem(aliceID, choc)

Now, the two processes contain disjoint sets of event labels, and so when they are brought
together, they are free to generate addItem requests independently from each other.
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The same naming convention applies to the events performed by Store; for example,
the following representation is assigned to an event corresponding to the insertion of choc
into Alice's cart:

Store.addItem(aliceID, choc)

But now we are faced with a different problem, where neither Alice nor Eve is able to
communicate to Store, because they do not share any labels for events that they may
participate in!

In order to allow clients to interact with a provider, we can leverage the representation
mapping and introduce a relationship between the event labels of those processes. More
precisely, given a pair of client c and service provider s, ready to engage in events labeled
c.descr and s.descr, respectively, the following entry is specified in the representation map-
ping:

c.descr - s.descr
m

Then, the resulting composition, c s, behaves like a system where every descr event gen-

erated by c is simultaneously engaged by s.

Back to our example, to allow Alice's requests to be delivered to and served by Store,
we will introduce the following relationship between Alice's and the store events:

Alice.addItem(aliceID, choc) - Store.addItem(alice ID, choc)
MAlice

When the two processes are brought together, the resulting system, Store Alice, be-
MAlice

haves as desired; every Alice.addItem event appearing in one of its traces is also assigned
Cl in i. _ L.,L _ _ --- A 1~- -3 I_ Store.ad"it em as a representat1in, indICLatiLng hat every rLejUesL 11U111 AL Is sIVed Uy
the store.

Recall that the notion of the representation mapping is not symmetric; that is, every
Alice .addItem is bound to Store .addItem, but the converse is not necessarily true. Thus,
Store || Alice may allow a trace like

"'Alice

{Store. addItem}, {Store. addItem,Alice. addItem}, {Store. addItem})

E traces(Store 1 Alice)
"'Alice

where the first and third events are not bound to any events from clients. Intuitively, these
events can be regarded as "open" endpoints, signifying that Store is willing to accept
requests from other clients beside Alice.

Let us now bring Eve into the picture. We will allow it to interact with the store by
binding addItem requests from Eve to their corresponding events in Store:

Eve.addItem(aliceID,choc) - Store.addItem(aliceID,choc))
MEve

Then, Eve can be brought as an additional participant into the existing interaction between
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Alice and Store:

StoreSystem= (Store || Alice) 11 Eve
mAlice "nEve

The resulting process, denoted StoreSystem, captures the interaction between the store

and its two clients as we originally intended; Alice and Eve independently generate addItem

requests to the store, which will then decide whether to serve those requests based on their

content. For example, the following is a valid trace of StoreSystem:

({Store . addItem,Eve . addItem},{Store. addItem,Alice. addItem},tStore . addItem})

C- traces(StoreSystem)

where the first and second events represent addItem requests sent by Eve and Alice, re-

spectively, with both being served by Store. Note that StoreSystem may still permit events

that are not bound to any clients (like the last event), allowing us to introduce additional

clients into the system if needed.

2.4.4 Modeling Implementation Relationships

In this section, we are interested in a different kind of composition-one that involves

a pair of processes that describe a common aspect of a system, but at different levels of

abstraction. Again, we will use the representation mapping as a way to express the re-

lationship between the two processes; in this case, the mapping embodies the designer's

decisions about how an abstract concept is to be implemented as a more concrete entity.

A key insight is that the implementation step can be expressed as a synchronization

requirement between a pair of abstract and concrete processes, Pa and pc. In particular,

some subset of the events performed by Pa may be assigned their concrete counterparts in

Pb, so that when the two processes are brought together, they are required to synchronize
on every one of those events.

Suppose that the designer is satisfied with the high-level design of the store, and wishes

to move onto the next step of development: deploying the system on an HTTP client-server

architecture. The goal is to construct a specialized version of an HTTP server (let us call it

StoreServer) that provides login and addItem services as HTTP requests.

Server is a process that depicts a generic HTTP server, engaging in events represented

as req(u, h, b), where u, h, and b are parameters for the URL, headers, and body of an HTTP

request, respectively. Some of these HTTP requests will be used to implement the abstract

store operations. For example, recall that an abstract Store event leading to the insertion

of choc into Alice's cart is characterized by the following representation 2

addalicechoc = addItem(aliceID, choc)

This abstract event may be encoded as an HTTP request in a number of different ways. In

one possible encoding, we may designate the a particular URL to be the target address for

2For simplicity, in this section, we will omit the process-name prefixes normally included in event repre-
sentations; they are orthogonal to our discussion here.
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the addItem operation, and transmit the username and the item ID as query parameters:

urlaliceChoc = http://www.mystore. com//addItem?user=alice&item=choc

The headers and body are irrelevant to this particular encoding, and so we will simply
leave them unspecified. Then, following this encoding, an HTTP request that adds choc
into Alice's cart is characterized as:

realiceChoc =req(urlaliceChoc,,-

Having determined how an abstract event is encoded as a more concrete one, the next
step is to ensure that the resulting process, StoreServer, actually performs the appropriate
HTTP event when it receives an abstract request from Alice or Eve. In other words, every
addaliceChoc event performed by StoreServer must be treated like regaliceChoc as well. To
do this, we will express the relationship between the two representations as an entry in the
mapping used during the composition of Store and Sever:

addaliceChoc -4 reqaliceChoc
MDeploy

This mapping will ensure that every addaliceChoc event is also assigned reqaliceChoc as an
additional representation in the composite process.

But this does not accurately capture our intended relationship between the abstract and
concrete addItem operations. Once reaih is used to implement addaiiceChoc, the two
representations should be bound to each other; that is, whenever StoreServer engages in
regaliceChoc, it may be observed as performing addaliceChoc, from the perspective of Alice
or Eve. In other words, the relationship between the two representations is bi-directional,
and should be expressed as such in mDeploy:

addaliceChoc realicefhoc

With this mapping, we may now construct a process that behaves like the deployment
of the store as a HTTP server:

StoreServer = Store Server
n

1
Deploy

In the resulting process, the set of events labeled addaliceChoc is exactly the same as the
set of events labeled reqaliceChoc. Every event in this set possesses the characteristics of
both representations, and is able to take on different roles depending on the process that
communicates to StoreServer. Alice and Eve will continue to generate an addItem request
without being aware of its underlying HTTP-related details, whereas a browser will treat
it as a HTTP request being served at a designated URL (without necessarily knowing that
it implements a particular piece of store functionality).

The login operation is also to be implemented as HTTP requests, and so the relation-
ship between the abstract and concrete operations are specified as:

loginalice ( reqaliceLoginA logineve reqeveLogin
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where loginalice and logine,, represent the abstract login events for Alice and Eve, re-

spectively, and reqaliceLogin and reqeveLogin represent their encodings as HTTP requests.

In this section, we described only a few particular instances of addItem and login
events (involving Alice and Eve) and their encodings. In general, the number of possi-

ble event parameter combinations is infinite, and so specifying m by explicitly listing all its

entries is not a viable task. Later in this thesis (Chapter 4, Section 4.2), we will show that

(1) the representation mapping can be specified more concisely by using declarative con-

straints and (2) some parts of the mapping may be left unspecified, with an analysis used

to synthesize a complete mapping that exposes potential vulnerabilities in the system.

2.5 Implications of Multiple Event Representations

We have proposed the representation mapping as a mechanism for enabling interaction be-

tween processes that would have otherwise remained completely independent from each

other. But sometimes, this type of composition can introduce behaviors that might not
have been intended by the designer. Some of these interaction may even be undesirable,
allowing a malicious actor to exploit an unanticipated behavior and undermine the secu-
rity of the system.

Back to our store example, let us introduce a new process, called Browser, which de-

picts the behavior of a standard HTTP browser. This process attempts to communicate
to Server by participating in a series of events that are assigned labels in the form of

Browser.req:

({Browser. reqj,{Brows er. reqb}, {Browser. reqj, ... ) E traces(Browser)

To allow Browser to communicate to Server, we will specify the relationship between
the two processes in the mapping mHTTF, ensuring that each browser request is properly

served:

Browser . reqa -* Server. reqg A Browser. reqb -+ Server. reqb A --

Their composition is a process that captures the generic interaction between an HTTP

server and a browser:

Server Browser
MHTTP

Recall, from Section 2.4.3, the communication between Alice and Store, depicted by the

following process:

Alice 11 Store
mAtice

The above two composite processes describe system interaction at different levels of ab-
straction, and are completely isolated from each other; they do not share any event repre-

sentations, and so are not able to exert any influence over each other's behavior.

But this separation breaks down once the store is deployed as an HTTP server. Let us

bring these two systems together, by introducing an implementation relationship between
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Alice.addltemx Store.additemx

mAlice

mDeploy

Browser reqx Server. reqx

mHTTP

Figure 2-2: A representation graph showing the relationships between event representations in the store
example. Each bubble corresponds to an event representation. An edge from r1 to r2 means that every r1
event is also assigned r2 as an alternative representation; the label on the edge is the representation mapping
used to relate the two representations.

Store and Server through mDeploy:

(Alice 11 Store) (Server Browser)
mAlice mDeploy M[HTTP

which is equivalent to 3

Alice (Store H Server) H Browser
mAlice "'Deploy - HTTP

which, in turn, may be rewritten as follows:

DeployedStore = Alice || StoreServer Browser
mAlice mHTTP

The resulting process describes a system where StoreServer interacts with Alice and
Browser through two seemingly separate interfaces. Alice communicates to StoreServer
through addItem or login events, whereas Browser communicates by generating HTTP

requests. Alice is able to interact with StoreServer without any knowledge of HTTP, and
similarly, Browser may not be aware that a particular HTTP request corresponds to some
store operation.

However, as a consequence of the composition, Browser is now able to engage in new
types of events that were not previously available to it. Figure 2-2 shows a representation

graph, which depicts the relationships between different representations of events in the
system. Suppose that Browser engages in event e with some representation Browser.reqx;
from the above graph, we may derive the set of representations assigned to e as:

e = {Browser.reqx, Store.reqx, Store.addItemx}

This means that, whenever Browser sends a request labeled req, StoreServer will treat it
not only like an HTTP request, but addItemx as well. In other words, Browser is able to in-

3As noted in Section 2.4.2, the composition operator is not associative in general; however, in this case,
no single representation is mapped to multiple different representations, and thus, it is safe to perform the
composition of Store and Server first.
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duce StoreServer to perform an addItem operation-an interaction that was not possible
prior to the composition.

Imagine that addItemx corresponds to the insertion of an oatmeal into Alice's shopping
cart:

addItemx = addItem(aliceID, oat)

Earlier in this chapter when we first introduced Alice, we mentioned that she does not like
oatmeal, and so would never initiate a request for adding this item to her cart. Thus, not a
single trace of (Alice | St ore) contains event e' such that

mAlice

e' = {Alice.addItemx, Store.addItemx}

since Alice would refuse to engage in events with label Alice.addItemx. In other words,
we may safely assume that the store would never insert an oatmeal box into Alice's cart,
as desired by her.

But this assumption no longer holds in DeployedStore, because Browser may initiate
a request that causes the store to add a oatmeal box into Alice's cart! For example, the
following trace may be permitted by DeployedServer:

({Store.login(aliceID, 1234)1, {Store.addItem(aliceID, choc)}, {Store.addItem(aliceID, oat)})

E traces(DeployedServer)

where the first two requests are initiated by Alice, whereas the last one is sent from
Browser. But as far as the store is concerned, it cannot distinguish where the requests
originated from-they will be served equally4 .

While this may seems like a relatively trivial example, it reflects one of the common
security mistakes that web developers commit: Making an assumption about clients' be-
havior on the web. An application may be designed with a dangerous assumption that
users will follow its workflow in an intended order, or sends requests only through a nar-
row front-end interface (e.g., by clicking on hyperlinks or buttons on a page). In fact,
however, anyone on the web with an ability to send HTTP requests will be able to directly
interact with the application server. For example, in one well-publicized incident, a secu-
rity researcher was able to access e-mails of any Verizon customer simply by modifying the
username field in a URL for its mobile API 5-suggesting that the developers might have
assumed that the users would interact with the app only through its UI.

4Note that the process-name prefixes in event representations are used as a modeling idiom to enable
composition, not information that is accessible to processes themselves.

5http://www.forbes.com/sites/thomasbrewster/2015/01/19/verizon-customer-emails-exposed/
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Chapter 3

Dataflow Modeling

Many security properties can be described as a restriction on the flow of certain types of
data between different parts of a system. For example, the confidentiality of a customer's
shopping cart may be expressed as a constraint that "information on the content of the cart
should never be accessible to another customer". To allow the designer to specify such
properties easily, we will augment our trace-based model of behavior with a simple notion
of dataflow, where data values are passed from one process to another as parameters of an
event.

Just as an event can be associated with multiple representations, so can a piece of data
that is passed around. In this chapter, we will extend the notion of representations to
data values as well, and show how distinct data representations can be related through a
representation mapping. We will also discuss security implications of multiple representa-
tions, demonstrating how subtle interactions between the design decisions encoded in the
mapping may introduce unanticipated vulnerabilities into the system.

Chapter Highlights

" Data values are carried from one process to another as parameters of an event (Sec-
tion 3.1).

" A data value can be assigned multiple representations, each of which provides a
possible description of the structure of the data. A representation mapping can be
used to relate a pair of distinct data representations during a composition process
(Section 3.2).

" A piece of data with multiple representations may be interpreted differently under
distinct contexts; certain types of security attacks exploit this discrepancy between
different interpretations of data (Section 3.3).

3.1 Events and Data Values

A data value, v E V, is an atomic entity that may be transmitted among different partic-
ipants of a system. Intuitively, a value can be regarded as flowing from one process to
another by being carried as a parameter of an event. To make this notion more precise, let
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us first divide the set of events performed by process p into input and output events.

in(p),out(p) C E

Within a single process, no event can be both an input and output event:

in(p) nout(p)= 0

If a pair of processes p and q engage in event e such that

e E in(p) e E out(q)

p is called the sender of the event, and q is called its receiver.

Our notion of dataflow is bi-directional; that is, as a result of an event taking place,
a value may follow from the sender to the receiver or vice-versa. More precisely, value
v may flow into process p when (1) p receives an input event that carries v as one of its
arguments, or (2) p sends an output event that results in v being returned to p. To support
this bi-directional notion, we will associate each event e with a set of argument and return
values:

args(e),rets(e) C V

As an example, let us introduce another kind of store event, called DisplayCart, which
takes a username and returns the the content of the cart owned by that user. Let e be a
DisplayCart event, and vusername, Vcart be values that correspond to some username and the
content of a particular cart:

args(e) = {vusername} rets(e) =vcart}

When Alice and Store engage in this event, dataflow takes place in two opposite direc-
tions: Vuser is transmitted from Alice to Store, which then returns Vcart back to Alice.

Suppose that Alice has not sent any DisplayCart request prior to engaging in the
event e. Assuming that Store releases the information about carts through DisplayCart,
this implies that Alice cannot access vcart until she receives it as a return value of e. In other
words, the set of information accessible to Alice may grow over time as she participates
in more events; conversely, she cannot access a piece of information until she performs an
event that carries that information.

More generally, building on the above notion of dataflow, we can define what it means
for a process to be able to access a piece of data at a certain point in execution. To do this,
we will first allow a certain set of values to be accessible to each process at the beginning
of the system execution; we say the process owns those values:

owns(p) C V

For example, Alice may be designated as owning a password that she uses for logging
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onto the store:

ValicePwd c owns(Alice)

whereas this value may not initially be available to Eve:

ValicePwd owns(Eve)

Then, the function mayAccess(p, t) defines the largest set of values that are accessible to

p after trace t:

mayAccess(p,t) ={v c V \ v c owns(p) V

3e E Event * e E (t [in(p)) A v E args(e) V

e E (t [out(p)) Av E rets(e))

where (t [ X) returns trace t restricted to the set of events in X. In other words, p may gain

access to value v if (1) p owns v or (2) p has already received an event that carries v as an

argument, or (3) p has sent an event whose return values include v.

Intuitively, before process p can perform an event that carries value v as one of its

parameters, p must already have access to v. To be more precise, (1) for every output event

that p performs, all of its arguments must be accessible to p, and (2) for each input event,

any associated return parameter must be accessible to p before the event can take place.

These conditions can be formalized as an axiom and imposed on every process:

Vp c P,e EE,t E traces(p).

t- (e) E beh(p) >

(e E t n out(p) : args(e) g mayAccess(p,t)) A

(e E t n in(p) # rets(e) C mayAccess(p,t))

This axiom rules out spurious flow of data; without it, we would run into rather strange

scenarios where a process is able to make up any arbitrary values and transmit them to

another process!

The function mayAccess can be used as a convenient notion for expressing a wide range

of security properties. Consider the following property as an example:

Eve should never be able to access the content of Alice's shopping cart.

Let cart (u, t) be an auxiliary function that returns the current content of a shopping cart

(i.e., the set of items) owned by user u after trace t. Then, the above property can be

specified as follows:

V t,t' E T,c E V e c = cart(aliceD,t) A t < t' => c mayAccess(Eve,t')

where t < t' means t is a prefix of t'. In other words, if c describes the content of Alice's

shopping cart after t, Eve should never be able to access that information at any point in

future. A security analysis, explained in Chapter 4, then involves finding a counterexample

trace that shows how Eve may be able to access the content of Alice's shopping cart.
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3.2 Data Representations

In Chapter 2, we introduced the idea of assigning multiple representations to an event,
and proposed a mechanism for composing distinct but overlapping views of a system by
relating those representations. A similar notion can be applied to data, by separating a
data value from its representations, and allowing multiple representations to be assigned
to a value.

Intuitively, a single value may be described in multiple different representations, de-
pending on the task at hand or the perspective of the person observing the entity. Consider
the notion of credential, which is used as an attestation of claims about a user's identity or
capabilities within a system. Over the course of a system lifecycle, a credential may be
represented as an abstract token without any internal structure (like passwords from our
store example); a browser cookie used for client authentication; an IP packet transmitted
over a network; a String object inside a Java application; a database record; or a sequence
of bytes stored on a hard disk.

Typically, representations of an entity are not completely independent of each other,
and some relationships exist among them. A browser cookie, when transmitted over a
network, does not map to any arbitrary IP packet; instead, a mechanism in the network
stack determines how a given piece of data is to be encoded as a particular sequence of
packets. Like we have done with events, we will use a representation mapping to specify
such relationships between different representations of a value.

Given one particular representation r of value v, its alternative representations can be
obtained by navigating through the representation mapping from r. Having access to a
browser cookie, we will be able to obtain its corresponding IP packet(s) by examining
the encoding mechanism, which is captured by the representation mapping. Conversely,
given a sequence of IP packets that encode a particular cookie, we can obtain the latter by
navigating backward through the mapping.

What are the implications of multiple representations on security? A representation
may contain details about an entity that are absent from its other representation. These
additional details, in turn, may be exploited by an attacker to manipulate the system into
producing an undesirable behavior. Later in this chapter, we will explore one example of
such attack in detail.

3.2.1 Describing Data with Multiple Representations

A more secure store design Before discussing data representations, let us first improve
our original design of the store by introducing the notion of authentication tokens. In this
new design, when a customer logs onto the store, she is given a special token that she will
be asked to provide in subsequent interactions with the store. When the store receives
an addItem or displayItem request, it uses the provided token to identify the user asso-
ciated with the request. More specifically, the new Store process may now engage in the
following types of events:

" login(u, p, t): Logins in user u with password p, returning authentication token t to
be used for subsequent requests;

" addItem(t, i): Inserts item i into the shopping cart of the user identified by token t;
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9 displayItem(t, c): Returns the content c of the shopping cart belonging to the user

identified by token t.

The major difference from the previous design is that the authentication token must be first

obtained from a login event before being able to perform other events. Presumably, this

should prevent Eve from adding an item to Alice's shopping cart, since Eve would not be

able to obtain Alice's token without knowing her password.

Data representations A representation of a data value, r E Rv, is simply one possible

description of its structure, embodying information about its type and a set of fields, which

defines its internal structure in terms of other data representations.

A data type is a set of similar representations grouped together. For example, we may

introduce a data type called Token C Rv, which contains a set of tokens used by the store to

authenticate its customers. Let us assume that each token is assigned a field with a unique

numeric ID to distinguish itself from other tokensi:

Token = ttoken(1),token(2),...}

Similarly, for our HTTP model, we may introduce a data type called Cookie, which refers

to a set of cookies that are used to pass information from a browser to a web server. Each

cookie is structured like as follows:

cookie(name, val)

where name and val are String fields that correspond to the name and value of this cookie.

Like we did with events, we will allow each data value to be associated with multiple

representations:

V = P (RV)

In addition, we will use the concept of a representation mapping, my g RV x RV, to in-

troduce a relationship between a pair of distinct data representations 2. More specifically,

(a, b) E my indicates that every data value labeled a can also be treated like b.

Composition with data representations The composition of a pair of processes may now

involve relating not only distinct representations of an event, but those of a data value as

well. To take this into account, we will modify our composition operator so that it now

accepts a pair of representation mappings, mE and my:

p |1 q
M

where M = (mE, mv). Formally, the set of data values belonging to to the composition of

p and q with the mapping my can be defined in a similar manner as the trace set of the

1For convenience, we will assume the existence of Integer and String as built-in primitive data types.
2To distinguish these concepts from their counterparts for events, we will refer to them as RE and mE;

however, the subscript will be omitted when it is clear from the context which function we are referring to.
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composition (from Figure 2-1):

owns(pq) ={V C V | v.mv C v A (v n cv(p)) E owns(p) A (v n xv(q)) E owns(q)}
M

where av(p) is the set of all data representations appearing in the values owned by p. In
other words, every data value v in the composition can be decomposed into two values,
each belonging to p and q; in addition, if v contains a representation that is mapped to
another by mv, then v, by construction, must contain the latter as one of its labels.

Example Let vat be a value that corresponds to the authentication token allocated for
Alice. In the high-level design of the store, this value may be described as an abstract
entity that is associated with a unique, randomly chosen alphanumeric ID:

Vat = {token(abc42)}

During the deployment of the store onto an HTTP server, one of the key decisions that the
designer must make is to determine how the abstract Token data will be represented at
the HTTP layer. Suppose that her decision is to store and transmit the token as a browser
cookie inside HTTP requests. There are multiple ways to encode Token as Cookie; in one
straightforward encoding, each cookie is assigned a fixed name (e.g., "authToken"), and

its value is set to the literal translation of the token ID into a string. So, for example, the
encoding of Alice's token as a cookie may look like

cookie ("authToken", "abc42")

This decision can be specified as an entry in mv, stating that every piece of data represented

as token (abc42) should also be treated like its cookie counterpart:

token(abc42) i cookie("authToken","abc42")
My

But it would be quite tedious to specify my by explicitly listing all of its entries; instead,
the general relationship between a token and its cookie encoding may be specified as a

constraint, such as

mv n (Token x Cookie)

{token(id), cookie(name, val) I name = "authToken" A val = toString(id)}

This mapping can then be used as part of the composition step where Store is deployed

onto Server:

StoreServer = Store Server
M

In the resulting process, every value corresponding to Alice's token is assigned two alter-

native representations; i.e.,

Vat = ttoken(abc42), cookie ("authToken","abc42")}
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Cookie Query

cookiealice queryalice

tokenalice

Token

Figure 3-1: Two alternative ways of encoding an authentication token-a browser cookie or a URL query

parameter. A circle denotes a set of representations, and an edge denotes an entry in the representation

mapping. In the deployed store, every token is also treated like a cookie or a query parameter, depending on

the choice of the encoding.

Another example In an alternative design, as shown in Figure 3-1, an authentication

token may be embedded as a query parameter inside a URL instead of a cookie. Let us look

at the structure of an URL:

url (origin, path, queries)

Each URL contains an origin (itself consisting of a protocol, a hostname, and a port), a path,

and a set of query parameters. Every query parameter is a pair of name-value strings:

query(name, val)

To encode a token as a query parameter, the designer may adapt a simple scheme where

the token ID is directly translated into a string and assigned to the value field of a query

parameter; so, for example, token (abc42) may be embedded into a URL as follows:

url(originstore, pathdaisplaycart, {query("authToken", "abc42")})

where originstre is a particular origin that identifies the store server (e.g., http: //www.

mystore. com), and pathdisplaycart is a path that points to the HTTP action for displaying a

cart (e.g., /displayCart). In the real system, this url instance would represent

http://www.mystore. com/displayCart?authToken=abc42

The two alternative encodings (cookie vs. query parameter) appear to be functionally

identical, in that they both fulfill the task of transmitting a token inside an HTTP request.

However, as we will discuss in Section 3.3, the choice of encoding can have significant

impact on the security of the system.

3.2.2 Relating Events, Data, and Representations

Let us revisit the concept of event representations, each of which contains the name of an

event and a set of parameters. For example, an event that involves inserting a chocolate
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re argsR,retsR rV

representation representation

e V
args,rets

Figure 3-2: Commuting diagram relating events and values to their representations.

into Alice's shopping cart can be represented as:

e = addItem(aliceToken, choc)

Here, the parameter aliceToken represents the authentication token for Alice, and choc
the item that she wishes to add to her shopping cart.

But how are these parameters related to the actual values that are carried with the
event? A simple relationship exists between them: The parameters of an event representa-
tion are themselves representations of the values that are associated with the event. Recall
that each event e is associated with a set of argument and return values (args and rets). We
will lift these two concepts so that each event representation, re, is itself associated with a
set of argument and return data representations:

argSR(re),retSR(re) C Rv

Then, the relationship among events, values, and their representations can be illus-
trated with a commuting diagram, as shown in Figure 3-2. Starting with some event e,
there are two ways of iavigating 10 a particular representation, rV, that describes a piece
of data transmitted along with e: (1) by finding a representation of the event, re, that con-
tains r, as one of its parameters, or (2) by retrieving a parameter value, v, that is labeled
with r, as one of its representations.

3.3 Implications of Multiple Data Representations

Consider a data value, v, labeled with two distinct representations, a and b:

v = {a, b}

The value v possess the characteristics of both a and b, and so it may be interpreted like a
or b, depending on the process that gains access to the data. Often, the process will only
consider the representation that it deems relevant to its own operations, and may not even
be aware that the same data could be interpreted in different ways by other processes.
For instance, Browser treats all cookies equally, regardless of whether they are used as an
authentication token or a simple mechanism for transmitting data between a server and a
client. On the other hand, from the perspective of Store, that an authentication token is
encoded as a cookie is an implementation detail that may be considered inconsequential
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to the store operation.

Many common security attacks, we argue, exploit this discrepancy between different
interpretations of a data value or an event under distinct contexts. Let us look at one
example of such attacks in detail.

3.3.1 Cross-Site Request Forgery (CSRF)

Security property One desirable property of the online store is the integrity of shopping
carts:

A shopping cart should only contain items that its owner intends to purchase.

In other words, a malicious actor should not be able to sabotage another customer's cart by
inserting arbitrary items into it. To specify this property formally, we will first introduce
an auxiliary function, called shoplist, which associates a customer process with the IDs
of the items that she wishes to purchase:

shoplist(Alice) C ItemID

Earlier, we stated that Alice likes chocolates but not oatmeals, and so

choc E shoplist(Alice) oat shoplist(Alice)

The content of the shopping cart, represented by a data type called Cart, consists of a set
of item IDs3:

cart(items) E Cart

Then, the integrity property for Alice's cart can be expressed as

V t E T,i E ItemID,c E Carte

c = getCart(aliceID,t) A i E c.items -> i E shoplist(Alice)

where getCart (u, t) returns the content of the shopping cart belonging to user u after trace
t. Informally, the above formula says that every item in Alice's cart must always be one of
the items that she intends to purchase. The attacker's goal is to undermine this property,
by getting the store to insert an item into Alice's cart that she does not intend to purchase
(e.g., an oatmeal box).

Browser behavior Let us elaborate the structure of an HTTP request to be a little more
accurate than we earlier described, introducing two additional parameters-the method
type (method) and the response to the request (resp):

req(method, url, headers, body, resp)

3This does not allow duplicate item entries, but for our discussion at hand, we will ignore that aspect.
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The response itself consists of three fields-an HTTP status code, a set of response headers
and a web resource (e.g., an HTML document, a JSON object, etc.,):

res pMsg(status, headers, resource)

Previously, we introduced Browser as a process that engages in HTTP request events
with Server. The actual behavior of a standard browser is more intricate; in particular, the
browser places various restrictions on the kinds of HTTP requests that can be generated
under different circumstances. For example, not only does it generate a request when a
user types a URL into the address bar, it may trigger an additional request when an HTML
page is loaded (e.g., to fetch an external image), or when a previous request is redirected
to another URL. In our approach to modeling the browser, we will classify these requests
into different types of events4 :

" userReq: A request explicitly initiated by the user, either by typing a URL into the
address bar, clicking on a hyperlink, or submitting a form.

" redirectReq: Generated when a previous request is redirected to another URL.

" renderingReq: Triggered when rendering an HTML page with tags that reference
external resources, such as img or script tags.

These requests all share the same set of parameters as req does, but each of them is as-
sociated with a distinct guard condition that determines when the event may take place.
For example, a redirect request is triggered when a previous request returns the HTTP sta-
tus code 301, with a location header that indicates the URL at which the request should be
redirected; this condition can be expressed as follows:

guardredirectReq(e, t)

:eprev E E, m E Method, u E Uri,hs E- P (Header), b e body.

eprev = last(t) A

req(m, _, hs, b, respMsg(301,{header("locat ion", u)}, _)) E eprev A

redirectReq(m,u,hs,b,-) c e

where last(t) returns the last event in trace t. Note that the headers (hs) and body (b) of the
original request (e) are carried over to the new, redirected request.

Customer interaction In our discussions so far, we have treated Alice as an abstract
process that interacts solely with the store. But in reality, when the store is deployed as a
web server, its customers will interact with the server through some type of HTTP client
software, such as a web browser or a mobile application. To model this interaction, we will
construct a process that describes the behavior of Alice using a browser to communicate
to the store:

AliceBrowser = (Alice 11 Browser)
MAB

4This classification is, by no means, complete; for example, here we are omitting details about browser
scripts and AJAX requests that they may generate.

48



Let us assume that Alice behaves like a typical browser user, and is capable of initiating a
request by interacting with the address bar or an HTML element (such as a hyperlink or
form button). In particular, to add an item to her shopping cart, she would actively click
on a button on a store item page, triggering a request with the item ID transmitted as a
query parameter.

Recall that MAB is two-part, consisting of the representation mappings for events (mE)
and values (my). Suppose that the designer's decision is to transmit each authentication
token as a browser cookie:

token(id) cookie("authToken",toString(id))

The ID of the item to be added to a shopping cart is encoded as a query parameter:

itemID(id) 1 query ("item", t oString (id))MV

We can then specify how the abstract addItem operation is to be implemented as an HTTP
request as follows:

Alice. addItem(t,i) 4- Browser.userReq(GET,

url (originster, pathaddItem,{sel(mv[i] n Query)}),

{sel(mv[t] n Cookie)},_,_)

where sel(X) selects one element from set X. With this mapping, the resulting process,

AliceBrowser, captures the expected behavior of a typical browser user. Figure 3-3 il-

lustrates the relationship between different types of HTTP requests generated by Alice's

browser. Every time Alice decides to add an item to her shopping cart, it will trigger the

corresponding userReq in the browser. At the same time, AliceBrowser may also generate

other requests beside those that correspond to Store actions; for example, Alice may visit

a page on another server, or the browser may be forwarded to a particular site as a result

of HTTP redirection.

Attacker Model Suppose that our malicious actor, Eve, is willing to go to great lengths

to sabotage Alice's shopping cart. She deploys up her own HTTP server, and attempts to

lure Alice into browsing a site that she has set up solely for the purpose of undermining

the store security. Eve's machine, depicted by process EveServer, appears to behave like a

typical web server, in that it is ready to engage in a series of req events. Therefore, Alice's

browser may now interact not only with StoreServer, but with EveServer as well.

In order to reason about the security of the system in presence of Eve's server, we will

construct a process that describes interaction between the three processes:

StoreSystem = (AliceBrowser 11 StoreServer) 1 EveServer
Mstore MEve

Given multiple potential destination servers in the world, AliceBrowser determines where

each request should be sent based on the hostname inside the target URL5 . For example,

5 In reality, the browser communicates to a DNS server to determine where a request should be sent; for
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Alice.
additern

-addltemchoc

userReq renderingReq

Browser events

Figure 3-3: Types of HTTP requests generated by Alice's browser (process A I iceBrowser). The edge denotes
an entry in the representation mapping. Note that the edge is bi-directional: Every addIt em request initiated
by Alice triggers the corresponding userReq event; conversely, every user request directed at the addItem
action on the store server must have been initiated by Alice.

every request containing mystore. com in its URL is sent to StoreServer; this communica-

tion relationship can be specified as part of Mstore:

Browser . userReqmystore. com - Server. req

Browser .redirectReqmystore.com - Server . req

Browser . tagReqystore.com - Server. req

where the subscript under each Browser request indicates the hostname of the request

URL. Similarly, a requests containing eve. com in its URL is sent to EveServer; this rela-

tionship is specified in MEve as

Browser . userReqeve.com - EveServer .req

Browser. redirectReqeve.com - EveServer.req

Browser . tagReqeve.com - EveServer.req

Having established connections between various participants of the system, including the

attacker, we are now ready to perform an analysis to determine whether the system sat-

isfies the security property stated earlier. In our approach, the analysis involves finding

an attack trace that shows how a particular sequence of events, induced by the attacker,

can lead to a violation of the property. We will further discuss the details of the analysis

mechanism and its automation in Chapter 4.

Attack A possible attack on the store, leading to the violation of the cart integrity, in-

volves the following three events taking place in order (their representations are shown in

Figure 3-4):

1. el: Alice successfully logs onto the store and receives an authentication token, which

simplicity, we will omit that detail here.
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el ={
Alice. login(aliceID, 1234, tokenaiice),

Browser. userReq(GET,

url (originstore, pathlogijn {query( user", "aliceID"), query ("password", "1234")}),

-/ -,

respMsg(, {setCookie("authToken", "abc42", hostnamestore )}, -)),
Server.req(...),

Store. login(aliceID, 1234, tokenaice)}

e2={

Browser. userReq(GET,

url(origineveserver, pathmaicious, -.' -, -,
respMsg(-, _, html ({imgTag(urlbadAdd) ),

EveServer.req(...),

where urladAdd = url (originstore, pathaddltem, {query(" item", "oat")})}

e3 ={

Browser . render ingReq(GET,

url (originstore, pathaddltem, {query("item", "oat")}),

{cookie("authToken","abc42")},,),

Server.req(...),

Store. addItem(tokenaice, oat)}

Figure 3-4: Events in the CSRF attack on the store system. The notation ... in r(...] means r has the
same set of parameters as the preceding representation does. The first and last events (e1 and e3) capture an
interaction between Alice's browser and the store server; e2 is a request where Alice visits Eve's malicious
page.

is then stored as a cookie inside her browser. Based on the behavior of a standard
browser, every request with a URL whose hostname matches that of the store server
(hostnamestore) will transmit this cookie as one of its headers.

2. e2 : Alice visits a malicious page on Eve's server, which returns an HTML document

that includes an img tag as one of its elements. In particular, the source attribute of
the tag is a URL (urlbadAdd) that has been specifically crafted by Eve to point to the

store server action for adding an item of her choosing (in this case, an oatmeal box).

3. e3: As the HTML page from e2 is rendered, the img tag triggers the browser to send
a request at the URL specified in its src attribute. Since the host of the URL points
to the store server, the request automatically includes the associated cookie from el
in its headers. The store, in turn, treats the request as a valid one coming from Alice,
since it contains her authentication token. It then proceeds to insert an oatmeal box
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Store.additem / Server.reqaddItem
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EveServer.req dtm .

addltemoat
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-renderingReq

user eq
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Browser events

Figure 3-5: Types of HTTP requests generated by Alice's browser in presence of the store and Eve's servers
(process StoreSystem).

into her shopping cart, violating the integrity property.

This attack-an instance of cross-site request forgery (CSRF)-exploits an interaction be-

tween two features of the browser: the triggering of HTTP requests without the user's

initiation, and the automatic inclusion of cookies along with each request. In particular,
the store becomes vulnerable to this attack as a result of two deployment decisions that
specifically make use of these two features: (1) providing customer interaction through a
browser, and (2) encoding an authentication token as a cookie.

Another way to explain a security failure is to articulate how certain underlying as-

sumptions about the system may be violated when parts of the system model are elabo-

rated with additional representations. For instance, the high-level design of the store relies
on the following crucial assumption:

The store may safely treat an addItem request to have originated from Alice if

it includes her authentication token.

Unfortunately, this assumption is violated in the final, deployed store system, as illustrated

in Figure 3-5. Although Alice would never herself initiate a request to add oatmeal to her

shopping cart, her browser can be induced to send such a request to the store when she

visits Eve's malicious page. This additional source of addItem requests, in combination

with the fact that the browser blindly includes Alice's token in all requests, means that it is

no longer safe for the store to assume the origin of the request based on the authentication

token alone. Not surprisingly, a common prevention against CSRF attacks involves re-

establishing this assumption by including an additional token (often called a CSRF token)

that is transmitted to the server only under certain restricted circumstances [65].
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Chapter 4

Analysis

Given a model of a system and a desired security property, the goal of an analysis is to
determine whether the system satisfies the property, and if not, provide information that
demonstrates how the system fails to do so. A number of different approaches may be
taken to perform such an analysis. In this chapter, we describe an approach in which the
analysis task is formulated as a constraint satisfaction problem, and discuss its potential
benefits and drawbacks over other techniques.

Chapter Highlights

" An analysis task is formulated as the problem of finding a counterexample trace to a
given safety property (Section 4.1)

* Given a partial specification of representation mappings, the same analysis technique
can be used to generate complete mappings that may introduce vulnerabilities into
the resulting system (4.2).

* An attacker is modeled as a process that may engage in any of the system events
without being required to adhere to their guards (4.3.1).

" Certain types of data may be considered more sensitive than others; our analysis
requires them to be explicitly specified by the designer (4.3.2).

" The overall analysis problem can be tackled automatically using a finite-domain con-
straint solver (4.4).

4.1 Analysis as Counterexample Detection

Although the examples that we have discussed so far are security-related, our framework,
in general, allows an analysis of safety properties over traces [48]. Informally, a safety prop-

erty states that a certain "bad thing" should never occur during the system execution. In
our approach, a property is expressed in the form of

Prop(t)

where Prop is a predicate, parameterized over trace t, that characterizes what it means for t

to be safe. The goal of an analysis is then to check whether this predicate holds over every
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possible behavior of the system:

V t E traces(Sys) . Prop(t)

where Sys is the process that represents the entire system. Instead of checking that ev-
ery trace satisfies Prop, we will instead reformulate the analysis problem into the task of
finding a counterexample trace that demonstrates how the property may be violated. This is
done by taking the negation of Prop and attempting to find a witness trace t to the resulting
formula:

3 t E traces(Sys) * -Prop(t)

If no such counterexample trace exists, then we may conclude that the system indeed sat-
isfies the given property

Example Recall, from Section 3.3.1, the property that describes the integrity of shopping
carts on the online store:

A shopping cart should only contain items that its owner intends to purchase.

which can be formalized as the following predicate over trace t:

CartIntegrity(t) =

Vi E ItemID,c E Cart,p E Customer .

c = getCart(username(p),t) A i c c.items -> i E shoplist(p)

where Customer is the set of customer processes in the system, and username (p) is an
auxiliary function that returns the username issociated with ri itqnmer.

Our analysis then involves finding a witness trace t to the negation of cartIntegrity:

3 t E traces(StoreSystem)e

3 i E ItemID,c E Cart,p E Customer .

c = getCart(username(p), t) A i E c.items A i V shoplist (p)

A counterexample, if it exists, would describe a possible system execution (t) in which the
shopping cart (c) of a customer (p) contains an item (i) that she does not intend to purchase.

4.2 Representation Mapping Specification and Generation

In the previous two chapters, we introduced the notion of a representation mapping, mE C
RE x RE, where

(a, b) E mE

means that every event labeled a is to be assigned b as an additional representation during
the composition of a pair of processes (similarly, my C Ry x Ry for data representations).
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In practice, it would be quite tedious to specify a representation mapping by explicitly
listing all of its entries. An alternative and more viable approach is to instead specify the
mapping declaratively in the following style:

S ={a,b E RE | C(a,b)}

where C is a predicate that describes a relationship between the parameters of a and b; we
will call this set comprehension a mapping specification (S). A candidate mapping mE satisfies
a specification S if C evaluates to true over every tuple in mE; in other words,

mE C S

We have already seen an example of this style of mapping in Section 3.3.1, where we de-
scribed how the abstract addItem operation may be implemented as an HTTP request:

{addItem(token, item), userReq(method, url, headers, body, resp) E RE

method = GET A

url = url(originstore, pathaddltem,{query ("item", toString(item.id))}) A

headers = {cookie("authToken", toString(token.id))} A

] b C Body * body = b A I rm E RespMsg e resp = rm}

According to this mapping, the item ID is to be encoded as a URL query parameter, and
the authentication token is to be transmitted as a cookie. Here, we are not concerned with
the body or the response of the request, and so they are simply assigned arbitrary values
(b and rm) that have no relation to the parameters of addItem.

Partial mapping specification An important consequence of the declarative approach is
that a mapping may be specified only partially. For instance, in an alternative specification
of the addItem mapping, we may leave unspecified how the authentication token is to be
transmitted as part of the HTTP request:

{addltem(token, item), userReq(method, url, headers, body, resp) E RE

method = GET A

Eqs e P (Query) * (url = url(originterepathaddrtem,qs) A

query("item", toString(item.id)) c qs) A

3 hs C P (Header) .headers = hs A

] b E Body e body =b A 3 rm E RespMsg e resp = rm}

We can further simplify this expression by removing statements about the request param-
eters (headers, body, and resp) that are not explicitly related to addItem:
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token abc42

item choc

method GET

uri http://www.mystore.com/addItem?
u itemID=choc

headers ??

body authToken=abc42

resp ??

method GET

Uri http: / /www.mystore . com/addItem?
itemID=choc&token=abc42

headers ??

-body ??

resp ??

method GET

Uri http: / /www.mystore. com/addItem?
itemID=choc

headers { Cookie: authToken=abc42 }

body ??

resp ??

Figure 4-1:
fication.

Three possible encodings of addItem as an HTTP request, satisfying the partial mapping speci-

{addItem(token, item), userReq(method, url, headers, body, resp) G RE

method = GET A

3 qs e P (Query) * url = url(origintore, pathaddItem, qs) A

query("item",toString(item.id)) E qs}

This specification states that the item ID is to be encoded as a query parameter, but does

not say anything about the authentication token. Semantically, the specification allows all

possible ways of mapping the token into an HTTP request; it may be carried as a cookie, a

query parameter, or as part of the request body, as shown in Figure 4-1.

Property-guided mapping generation In the space of possible mappings that satisfy a

given specification, ones that are of particular importance from the analysis perspective are

those that may admit "unsafe" traces in the resulting system. Intuitively, these mappings

describe insecure design decisions, in that they may introduce behavior that can potentially

be exploited for an attack.

Given a partial specification of a mapping, a single analysis can be used to not only find

a counterexample trace that violates a given property, but also generate a complete map-

ping that permits such a trace to be a valid behavior of the resulting system. To be more

precise, let P1, P2, ... , pn be the set of n processes in the system, and SI, S 2, ... , Sn--1 be the set

of user-specified mapping specifications, where Sk specifies the relationship between pro-

cesses Pk and Pk+1. Then, the mapping generation problem can be stated as finding witnesses
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to the following existential formula:

n-1 n-1

Mi e Me (A sat(MI, Sj)) A

~i j=1

3 Sys E P e Sys =compose({pi,p2 ,...,pn},{M1,M 2 ,...Mn-1}) A
Et E traces(Sys) *-Prop(t)

where sat(Mj, Sj) evaluates to true if and only if Mj satisfies the specification Si, and compose(X, M)
returns a process that results from the pairwise composition of the processes in X using the

set of mappings M:

compose({p1,P2,...Pn}1, MM2,...Mn_}) (((P1 P2) 11 P3) H .- ) Pn
M1  M 2  M 3  Mn_ 1

Informally, the new analysis problem involves generating a set of representation mappings

that (1) satisfy the user-specified specifications, and (2) when used in the composition of

processes, allow the resulting system to produce a trace that leads to the violation of a

given property.

Example Consider the composition of Alice and Browser using mapping MAB:

Alice 1| Browser
MAB

Since MAB is two-part (mE and my for events and data), we will also need to specify a

pair of specifications, SE and Sv. We earlier specified the mapping between addItem and

userReq, requiring that the item parameter of the abstract request to be encoded as a query

parameter, but not stating anything explicit about token:

SE = taddltem(token, item),userReq(method, url,headers, body, resp) G RE

method = GET A

E qs E P (Query) e = url(or ig instre, pathaddrtemqs) A

query("item", toString(item.id)) E qs}

We will leave the mapping between data representations completely unconstrained:

Sv = {a,b E RV | True}

Essentially, this specification allows the analysis to explore all possible ways of mapping

the store-level data types (ItemID and AuthToken) into HTTP-level ones (Query, Cookie,
etc.,), with one caveat: Since SE requires that item be encoded as a query parameter, the

analysis will only explore candidate mappings where ItemID is mapped to Query.

Given the specifications (SE, SV), the analysis attempts to generate a pair of mappings

(mE, mV) such that

mE 9 SE A mv C Sv A ]t E traces(StoreSystem) * ,CartIntegrity(t)
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Intuitively, the generated mappings describe insecure deployment decisions that may in-
troduce vulnerabilities into the store, allowing an attacker to undermine the integrity of
the shopping carts. For instance, given a choice of possible mappings, the analysis may
select one where Alice's token is encoded as a cookie and transmitted as part of a HTTP
request header:

(addItem(tokenaice, choc),

userReq(GET, url (origintore, pathaddltem, {query("item', choc'')}),

{cookie("authToken","abc42"),},rm)) E mE

where rm is some arbitrary response message. In Section 3.3.1, we have already seen how
the decision to use cookies to transmit authentication tokens can leave the system vulner-
able to CSRF attacks. In fact, the witness trace t that the analysis generates here, along
with this mapping, may be the same sequence of events in Figure 3-4. Given this feedback
from the analysis, the designer may attempt to repair the resulting model to prevent this
attack (e.g., add a CSRF protection token) or explore alternative encoding of the token by
modifying the mapping specification.

This ability to explore system behaviors with only partially specified mappings is espe-
cially beneficial during early design stages. At this point, some design choices may be yet
to be made, and so specifying a complete mapping would simply be an impossible task.
By leveraging our analysis, the designer can explore a space of design decisions and iden-
tify those that may introduce vulnerabilities into the system-thus, being able to address
them before committing to an implementation.

4.3 Security Considerations

4.3.1 Threat Model

An important part of any security analysis is a threat model-a description of malicious
agents in the environment and their capabilities.

A common approach to defining a threat model involves explicitly enumerating a list
of actions that the attacker may take in order to undermine the security of a system [77,
861. For example, a threat model used for an analysis of a web application may include
statements such as "the attacker may attempt to spoof another user's HTTP request" or
"the attacker may trick a user into navigating to a malicious page". There are two potential
downsides to this approach. First, manually attempting to devise an exhaustive list of
potential threats can be a tedious and error-prone task. Second, statements such as the ones
above may be too generic, and an extra step may be needed to instantiate them against a
particular system model.

In our approach, a threat model is treated as an implicit part of the system model. An
attacker is like any other process, except that it behaves in an unconstrained manner, in
that it does not adhere to the guard conditions that are normally associated with a process
of the same type. For example, the guards assigned to the Browser process describe the
expected behavior of a standard browser (e.g., it should send only those cookies that are
associated with the origin of an HTTP request). An attacker acting as a Browser process,
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however, may choose not to follow these rules; imagine, for example, a hacker who mod-
ifies the source code of the browser to generate any HTTP requests as desired. In other
words, any assumptions made about the behavior of a process are discarded when the
process is considered to be malicious.

More formally, during analysis, a set of processes are designated to be untrusted:

Untrusted C P

The overall behavior of each untrusted process u E Untrusted is defined as follows:

traces(p) ={t E Trace |t = () V

It' E traces(p), e E E t =t'' (e) A e E dom(rep)}

Note that this definition does not even mention the guards; the process is free to perform
any event e as long as it is assigned at least one representation.

However, even untrusted processes must still adhere to the dataflow axiom that was
discussed in Section 3.1; it cannot access a piece of data unless it receives that value as
part of an event, or already owns the value at the beginning of the execution. Without this
axiom, the analysis may generate bogus counterexamples where an attacker is able to, for
example, magically guess the password of a user and trivially cause a security violation.

4.3.2 Data Classification

In security, not all values are considered equal. A piece of string representing a user's
credential, for example, may be considered more private than a string that represents a
username. A typical security analysis relies on an assumption that these private values
are not accessible to malicious processes at the beginning of the system execution; without
this assumption, the analysis would generate counterexamples where a security property
of the system is trivially compromised.

In our analysis approach, some subset of data representations are designated to be
private:

Private C RV

The following axiom ensures that the set of values initially available to an untrusted pro-
cess is limited to non-private ones:

V u E Untrusted e ,(3 v E V,r E v 9 v E owns(u) A r E Private)

The content of Private is specified by the designer for a particular system model. In the
store system, Alice's password and authentication token are considered critical for secu-
rity; if the attacker is able to access either one of the two, she would be able to sabotage
Alice's account by simply pretending to be her. The following can be specified by the
designer to ensure that these two are initially inaccessible to the attacker:

Private ={tokenaiice, passwordalice}
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Of course, this does not necessarily imply that this information will always be kept pri-
vate; for example, the attacker may attempt to gain access to Alice's credential through a
phishing or man-in-the-middle attack.

Sometimes, it may not be immediately obvious to the designer which information
should be considered private. In that case, Private may simply be specified to be empty:

Private = 0

For most systems, an ensuing analysis would likely generate a counterexample that demon-
strates how the attacker leverages its initial knowledge to compromise the system. The
designer can examine such counterexamples and incrementally refine the specification of
Private over multiple analysis phases, eventually arriving at a reasonable assumption
about the attacker's knowledge.

4.3.3 Cryptography

A security analysis typically involves reasoning about cryptographic operations. To se-
curely transmit a piece of data to its peers, a process may encrypt the data into a ciphertext,
which can only be decrypted back into its original plaintext using a designated key. Most
protocol languages such as the spi calculus [2] have built-in primitives for expressing these
operations. In our approach, no built-in mechanism is necessary.

One way to model these operations in our approach is to construct a process that acts
like a cryptography library, providing services for both encrypting and decrypting a piece
of data. For example, consider a process named SymmCrypto, which represents a library for
symmetric-key cryptography. It engages in two types of events:

" encrypt(plain, key, cipher): Takes a piece of plaintext (plain E Plaintext) and a key
(kei r Wy), and rptulrnq he cinhlertPxt (ciphpr g Cinhn-rtvxt) that reslts from e-n-

crypting the plaintext with that key.

" decrypt (cipher, key, plain): Decrypts the ciphertext with the key and returns the re-
sulting plaintext.

How do we ensure that the decryption operation returns the correct corresponding ci-
phertext for a given plaintext? A relationship between a pair of cipher and plaintext can
be expressed as a guard condition on decrypt events, as follows:

guarddecrypt(e, t)

]eenc E E,p E Plaintext,k E Key,c E Ciphertext e in(eenc,t) A

encrypt(p,k,c) E eenc A decrypt(c,k,p) E e

where in(e, t) means that e is an event belonging to trace t. This guard stipulates that the
result of decryption must be the plaintext that was previously encrypted with the same
key to produce the given ciphertext.

We must also ensure that (1) the encryption operation is a function, in that it returns
exactly one ciphertext for each pair of a plaintext and a key, and (2) it is not possible to
decrypt a ciphertext back to the same plaintext using two different keys. These conditions
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can be expressed as a guard on encrypt events:

guardencrypt (e, t) =

! p E Plaintext,k E Key,c E Ciphertexte

encrypt(p,k,c) E e A

- Ee' E E,k' E Key,c' E Ciphertext.

in(e', t) A encrypt(p,k', c') c e' A

((k = k' A c f c') V (k / k' A c = c))

Informally, this guard states that (1) encrypting a piece of plaintext p with key k should

always yield the same ciphertext (left side of the disjunction in the last line), and (2) no

two different keys can be used to encrypt p into c (right side of the disjunction).

There are two advantages of explicitly modeling cryptographic operations as we have

done, instead of providing them as built-in primitives. First, adding another type of cryp-

tographic operations (e.g., public-key cryptography) requires no change to our underlying

modeling formalism or analysis technique. Second, this approach can be used to reason

about different implementations of cryptographic operations. We may, for example, take the

above abstract model of symmetric-key encryption and then relate it to a concrete imple-

mentation model using a representation mapping; this would allow us to check whether

security guarantees provided by the abstract model is retained at a lower-level of abstrac-

tion (as it turns out, there are a number of cryptographic algorithms that have been the-

oretically proven to be secure but are still vulnerable to attacks when deployed in real

settings [10, Chapter 3]).

4.4 Constraint Formulation

4.4.1 Analysis Problem

In summary, the overall analysis problem can be formulated as finding a set of witnesses

that satisfy the following formula:

n-1 n-1

Mi EM.e (A sat(Mj, Sj)) A

i=1 j=1

3 attackers C P(P),init C P x V.

Untrusted = attackers A owns = init A

] Sys E P e Sys =compose({p1, P2,...,p},{M1 , M2 , ...Mn 1}) A

3 t E traces(Sys) e -Prop(t)

The nesting of quantifiers illustrates different types of system parameters that are explored

during the analysis. Informally, the analysis task can be summarized as (1) finding an as-

signment of representations to events and data values where (2) some subset of processes

are designated as untrusted, and the processes are initially granted access to certain pieces

of information such that (3) the resulting system permits an execution that leads to a vio-
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lation of the given property.

4.4.2 Finalization

In general, proving or refuting a first-order logic formula, like the one shown above, is an
undecidable problem. To support an automated analysis with a termination guarantee,
we transform the analysis task into a constraint solving problem over finite domains. This
step involves finitizing the size of the universe in a given model, placing a bound on (1)
the total number of process, events and data values, and (2) the maximum length of traces
generated by the processes.

Once the domains have been finitized, the resulting constraint can be handed off to
a finite model finder, which will attempt to find a satisfying instance to a given formula.
In the next chapter, we will discuss a prototype implementation that uses a first-order
relational modeling tool called the Alloy Analyzer [42], which itself relies on a model finder
called Kodkod [82].

4.5 Limitations

There are certain types of security properties, such as non-interference in information flow,
that cannot be captured as a safety property [54]. These belong to a general class of proper-
ties called hyperproperties [23], which are statements about the behavior of a system across
multiple traces, instead of over a single trace. Specifying a hyperproperty lies outside the
realm of a first-order logic, as it involves quantification over sets (in particular, sets of
traces), and an ensuing analysis also requires higher-order reasoning.

The security guarantee provided by our analysis is only up to the user-provided bounds;
even if the analysis fails to find a counterexample, there may exist a violating trace that in-
volves a larger number of events or entities. We believe that this is an acceptable compro-
mise to achieve automation. In practice, many security flaws can be demonstrated with a
small number of objects [11]. If greater confidence is desired, the model can be re-analyzed
with larger bounds as necessary; among the systems that we have analyzed, we have not
yet seen any counterexample that involved more than 12 events or entities.

Most cryptographic algorithms provide probabilistic, rather than absolute, guarantees
about the secrecy of encrypted data. The underlying logic in our framework is not suitable
for expressing and reasoning about such probabilistic properties, and so our approach to
modeling cryptography may be considered somewhat imprecise. In our experience, how-
ever, we have found that many security properties can be specified without probabilistic
expressions, and our approach is adequate in most situations.
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Chapter 5

Implementation

This chapter presents Poirot', a prototype implementation of our conceptual modeling and
analysis framework. We describe three major aspects of the tool, and challenges involved
in implementing them: (1) a language for specifying system models, (2) the translation to
the Alloy modeling language, and (3) the analysis of an input model against a security
property.

5.1 Overview

The high-level architecture of Poirot is shown in Figure 5-1. Our user-a system designer
or a security analyst-interacts with the tool by specifying a model of a system, along with
its desired security properties, in the input language of Poirot. The user may additionally
provide representation mappings that describe the relationship between the system model
and one or more domain models in Poirot's library.

Given the input system model, representation mappings, and relevant domain models,
Poirot compiles them into a single, global model in an intermediate specification language
called Alloy [42]. Its analysis tool, the Alloy Analyzer, is then used to automatically check
the model against a desired security property; a counterexample trace, if found, demon-
strates a violation of the property as a sequence of events.

Poirot is intended to be used in an incremental manner. Starting with an initial model
that describes a high-level design of the system, the user may elaborate various parts of
the model with a choice of representation, gradually transforming the model into a more
detailed one. The tool also facilitates an exploration of design alternatives; by leaving one
or more mappings partially specified, the user can ask the tool to identify candidate map-
pings and explain why they may be problematic for security through concrete examples.
This approach is especially useful during early development stages, where some design
decisions may be unknown, and where system flaws can still be addressed at a relatively
low cost.

1Agatha Christie's Murder on the Oriental Express is a story of detective Hercules Poirot's investigation of
a mysterious murder on a passenger train. In the novel, he meticulously interviews all potential suspects
on the train, each interview revealing new (and possibly overlapping) details about the circumstances of the
crime. Through this process, Poirot incrementally constructs a comprehensive picture of the crime, and works
towards identifying the guilty.
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System
Model

Security Poirot Alloy Alloy Counter
Property Compiler Model Analyzer example

Domain Model
Model Library

Figure 5-1: Architecture of Poirot.

5.2 Modeling Language

Poirot provides its own input language for specifying a model of the system, its desirable
properties, and mappings between models. The language has been implemented as an
embedded DSL in Ruby, which provides a flexible metaprogramming facility for building
DSLs. In particular, our DSL uses aRby [55], a library for embedding declarative, relational
constraints inside a Ruby program, with capability to translate the program into an Alloy
model.

System modeling Figure 5-2 shows a model of a simple online store system in Poirot. A
typical Poirot model consists of a set of of data types, components, and operations.

Eaih dn fn hyo rerrecnc n cst f Adan %7lniinc anA ", nxnta tn- r mrv-cg fiel.c lF,-Nr

example, Username is a primitive data type that represents a set of usernames, whereas
ItemInf o is a composite type that consists of two named fields, name and price. As dis-
cussed in Section 3.2, one or more data types may be declared to be private, meaning they
are inaccessible to malicious processes at the beginning of the system execution. In this
model, Token and Password are important pieces of data used to control access to shop-
ping carts and thus, declared to be private.

A component defines the structure and behavior of a group of processes, and contains
a set of its ownfields and operations. By default, component fields are static, in that their
values are fixed throughout the system execution. In this particular store model, we will
assume that the information about the items (catalog) and the user passwords will remain
fixed (passwords)2 . Some of the fields may be declared to be dynamic by using the key-
word updatable. The set of authentication tokens assigned to customers, as well as the
content of their shopping carts, may evolve over time as the store performs its services,
and so are modeled as dynamic fields (lines 14-15).

Following the field declarations is a list of component operations, which describe differ-
ent types of events that are performed by this component. Each operation consists of a set

2The expression a**b represents a binary relation from data type a to b; for example, passwords can be
regarded as a record of usernames and their passwords.
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# Datatype declarations

data Username , ItemID, ItemName, Price
data ItemInfo[name: ItemName , price: Price]
data Cart[items: (set ItemID)]
privat data Password a uer password

privat data Token # authentication token
7

# component I e CIra tons

component Store [
# cor one nt states are static by default

catalog: ItemID ** ItemInfo ,
passwords: Username ** Password,
# updatable states
tokens: (updatable Username ** Token),
carts: (updatable (set Username) ** (set ItemID)),

# (peration declarations

# by convetton, return data is named 'ret'

op Login[u: Username , p: Password, ret: Token]
# guard
ensures { passwords[u] == p }
# state u 1, Tp ar ( o-; aas )T s a 7 , <7 a k n '

updates { make(t: Token) { tokens.insert(u **

}

op

{

t o

t) an

adds a new ttem to t P hoppinq a rt of the user 
AddItem[t: Token, i: ItemID] {

updates { carts.insert(tokens.(u) ** i) }

d ret == t }}

ent, f i s d by 't'

}
# re turns the c ,rIen(t of the s troppi g cart zctder ?t 1i d byr

op DisplayCart [t: Token, ret : Cart] {
ensures { make (c: Cart) { c.items == carts[tokens.(u)1 and ret == c

}
# returns the information <lout the stem

op GetItem[i: ItemID, ret: ItemInfo] {
ensures { ret == catalog[i] }

}

}
component Customer [

id: Username,
# a set of .tems that customer wishes
wishlist: (set ItemID)

# 'i nvoks ' ' e c

invokes { Store
# output ent

invokes { Store
invokes { Store
invokes { Store

/ar< a type of output
::Login }
wihb a guard

::AddItem.onlyIf {Iol o
::DisplayCart }
::GetItem }

to purchase

eoents that CustooMer engqages its

.(i).in?(wishlist)} }

property cartIntegrity {
all(s: Store, u: Username, i: Item) {

customer = id.(u)
#4 item rust b n , "t rr, 's wishtIst

i.in? customer.wishlist if contains(s

}
}

Figure 5-2: A model of an online store system in Poirot.
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of argument and return parameters, guard conditions (ensures) and update statements
(updates). For instance, given username u and password p, the login operation checks
whether p matches that of the user u in its passwords record (line 21); if so, it allocates a
new token t for u and updates its tokens field before returning the token back to the user
(line 23)3. If the input parameters of an operation do not satisfy a guard condition, the
operation is considered a failure and prevented from taking place. For example, if an in-
correct password is provided for a login request (i.e., the condition on line 21 is violated),
then the store will simply refuse to participate in the operation.

Each customer, as defined by the component Customer, has an username (id) that
she uses to identify herself to the store, and a list of items that she wishes to purchase
(wishlist). The customer interacts with the store by invoking one or more operations that
are provided by the latter. Similar to an ensures statement inside an operation, we may
also define a condition under which a component is allowed to invoke a particular oper-
ation. For instance, we may want to assume that a customer will never send a request to
add an item that is not on her wishlist; this is expressed by attaching a condition to the
invocation of AddItem (line 46), requiring that the item parameter (i) in each request (o)
must always be a member of wishlist4 .

Property A property of a model is specified as a logical formula inside the construct
property, and may talk about data values that are accessible to a process or the content of
a particular component field during the system execution, by using the following built-in
constructs:

" mayAccess(p, v): Evaluates to true if process p is able to access data value v at any
point in the execution.

* contains(f, t): Evaluates to true if component field f contains tuple t at any point in
the execution.

For example, the property cartIntegrity says that if item i has been added to the shop-
ping cart owned by user u at some point in the execution, then that item must belong to
the user's wishlist (lines 52-55).

Mapping As discussed in Section 4.2, a representation mapping is specified as a declar-
ative constraint that relates the structures of a pair of operations or data types. Suppose
that the store operations are to be implemented as HTTP requests. Figure 5-3 shows a part
of a model that describes a generic HTTP server and its related datatypes, and Figure 5-4
shows examples of the mappings between the store and HTTP models.

The mapping addItemToReq describes how each AddItem event (a), performed by store
s, is encoded as an HTTP request (h) served by r. In particular, the mapping states that au-
thentication token and the item ID are to be transmitted as a header and a query parameter
of the request, respectively. We also want to ensure that all HTTP requests implementing
AddItem have a common URL prefix (e.g., http: //www.mystore. com/addItem). To achieve

3The keyword f . insert (t) modifies the content of the field f by adding a new tuple t.
4The expression a. in? (S) means a belongs to set S.
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1 # Data types related to HTTP

2 data Host, Path, Resource
3 data URL[host: Host, path: Path, query: (set Query)]

4 data Query[name: String, val: String]

5 data Header[name: String, val: String]

6 data Cookie < Header # ?co ,se s a subtype cf heade
7

8 data Body[data: (set String)]

9 data RespMsg[headers: (set Header), res: Resource]

10
11 # HTTP sr-

12 component Server [
13 resources: (updatable URL ** Resource),
14 hostname : Host
15 If

16 op HttpReq[url: URL, headers: (set Header), body: Body, ret: RespMsg]{

17 9 the h os s f the URL mu t match th si ce rler 's hr)stname
18 ensures { url.host == hostname }
19 # return the resource assoczated wsth the URL
20 ensures { ret.res == resources[url] }
21 }
22 }

Figure 5-3: Part of an HTTP model in Poirot.

this, we will specify that every request URL is constructed from the hostname of the server

r, and assigned a unique, fixed Path value (called PathAddItem, introduced on line 1).

The encoding of an authentication token as a cookie is specified in a similar style using

the mapping tokenToCookie. Every cookie that encodes an authentication token is given a

fixed name, which is represented by a string value called StrAuthToken (line 2). The value

of the cookie is assigned a string representation of the token; to do this, we use a built-in

function called toStr, which converts a given data value to a unique, string constant.

5.3 Translation to Alloy

A model of a system specified in Poirot is translated into Alloy [42], a modeling language

based on a first-order relational logic with transitive closure. We found three features of

Alloy particularly useful as the target language for Poirot: (1) its flexible type system,

which allows an element to be associated with multiple types (crucial for our composition

mechanism), (2) its partial, declarative nature, which allows representation mappings to be

specified only partially, and (3) its automated analysis engine, with its ability to generate

counterexamples.

5.3.1 Encoding of the Basic Modeling Concepts

Figure 5-5 shows an Alloy model that provides an encoding of the fundamental concepts

from our modeling approach, such as events, traces, and dataflow between processes. Ev-

ery Alloy model translated from Poirot relies on the concepts in this model.

5 The keyword one introduces a data type that has exactly one element in it.
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i one data PathAddItem < Path

2 one data StrAuthToken < Str

3

4 mapping addItemToReq[s: Store, a: AddItem, r: Server, h: HttpReq] {
5 a.t.in? h.headers and # token is mapped to a header

6 a.i.in? h.url.query and # item is transmitted as a query parameter

7 h.url.host == r.hostname and # URL host is set to the server hostname

8 h.url.path == PathAddItem # path s xed to a con s tant

9}

10

ii mapping tokenToCookie[t: Token, c: Cookie] {
12 c.name == StrAuthToken and # cooke name zs fzxed to a con.stant

13 c.val == toStr(t) # t o St r'i conerts t to a un qu e st rinp cons ta nt
14 }

Figure 5-4: Examples of mappings between the store and HTTP models.

In our approach, a system consists of three basic types of entities: data values, events,
and processes, represented by signatures Data, Event, and Proc, respectively 6 . Each data

value may contain one or more other values (represented by f ids on line 4); given a partic-

ular value v, the function reachable computes the set of all values that are reachable from

v through f lds7 . It would be rather strange for a value to contain itself, and so a constraint

is added to ensure that no value is reachable from itself (line 6)8.

Every event is associated with a pair of sender and receiver processes, and may ad-

ditionally carry a set of argument and return values (lines 14-17). A signature constraint

is added to ensure that a process cannot send a message to itself (line 19). The last two

constraints encode dataflow axioms (lines 20-22); we will return to these shortly.

In Chapter 2, we described how the overall behavior of a system can be modeled as

a set of event traces that it allows. In our encoding, a trace is represented implicitly as a

set of totally ordered Event atoms (line 1)9. Conceptually, each Event atom corresponds

to a particular point in the system execution, and can be used as an index to retrieve the

snapshot of the system state at that point; we will see an example of this modeling idiom

in the next section.

A process starts out with a set of data values that it owns (line 26), and gains access

to other data as it further sends or receives events (line 27). The relation mayAccess keeps

track of the set of data values that may be accessible to processes at different points over

the system execution. More precisely, if (p, v, e) is a tuple in mayA c cess, it means that value

v may be accessible to process p when event e is about to take place.

The signature constraint for Proc is an axiom that describes different ways in which

process p may come to access a particular data value, v:

6 The Alloy keyword sig introduces a signature, which corresponds to a set of atoms in the universe. Each

signature may contain one or morefields, each introducing a relation that maps the elements of the signature

to the field express; for example, sender in Event is a binary relation that maps each Event atom to the Proc

atom that represents its sender.
7The operator A computes a transitive closure of a relation.
8 The block of field declarations inside a signature may be followed by a set of signature constraints, which

are imposed on every member of that signature.
9 The built-in ordering library imposes a total order on the elements of a given signature.
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open util/ordering[Event]

sig Data {
flds : set Data

this not in reachable[this]

}

fun reachable[v : Data]

v.^flds
}

: set Data {

sig Event {
sender : Proc,

receiver : Proc,
args set Data,
rets set Data

sender of event

recezver

arguments

return values

receiver != sender

(args + reachable[args]) in sender.mayAccess.this

(rets + reachable[rets]) in

receiver.mayAccess.this + (args + reachable [args.flds])

}

sig Proc {
owns : set Data,

mayAccess : Data -> Event

all v : Data, e : Event I
th7s proc may access qJLU7e 0' ooght before

v in mayAccess.e implies {
- (I) It ow~ns '0' Or

v in owns or

- (2) it has received 'v' as a parameter of

(some e2 e.prevs I
(this = e2.sender and v in e2.rets) or

(this = e2.receiver and v in e2.args)) or

.3) ' a f' 0 J e d of anoth e daa a,

v in reachable[mayAccess.e]

}

to "aI s plrce orn Ly f

a previous event 'e2'

t h, z 77 /7a7 a 6es S

sig Private in Data {}
sig Untrusted in Proc {}{

no owns & Private

}

Figure 5-5: Alloy encoding of our modeling framework.
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e p already owns v (line 33),

" p has sent an event that yields v as a return parameter (line 36), or p has received an
event that carries v as one of its arguments10 (line 37), or

" v is reachable from one of the values that p can already access (line 39).

Let us now go back to the last two signature constraints for Event (lines 20-22). The first of
these says that in order for a process to send an event, it must already have access to the
event arguments (and all values that are reachable from it). The other constraint says that
in order for a process to return a piece of data, it must already have access to that value
(and all that are reachable from it). These constraints prevent the analysis from exploring
spurious behaviors where a process is able to generate an event with a parameter that it
does not have access to, which would lead to a trivial violation of a security property

The last part of the model (lines 43-46) represents an encoding of the security concepts
that we discussed in Section 4.3. The signature Untrusted is designated as a subset of
Proc that behave maliciously 1 , and a signature constraint is added to ensure that Private
values are not initially accessible to Untrusted processes.

5.3.2 Translation

The translation from Poirot to Alloy is straightforward. The three basic constructs in a
Poirot model-components, data types, and operations-are directly mapped to their coun-
terpart Alloy signatures-Proc, Data, and Event. In addition, data and component fields
are translated into fields inside their respective signatures, and operation guards are en-
coded as signature constraints.

Figure 5-6 shows a part of the Alloy model that has been translated from the Poirot
moipi of t1he store sys-tem in Figire C-2. Thie c-ompmont n -re-,n ndtA a4-r-c -4chA frldA Are

translated into an Alloy signature with the same name (lines 2-8). Note that each updatable
field from Poirot is assigned an additional column of type Event in its Alloy counterpart.
Since the language itself has no built-in notion of states, we employ a standard Alloy idiom
in which the states of the system at different points in time are indexed by atoms of a
designated type (in this case, Event). Consider the field tokens, which keeps track of
the authentication tokens that have been assigned to users by a store (line 6). Given a
particular store s and Event atom e, we can write the Alloy expression

s.tokens.e

to retrieve the part of the store state, as captured by cart, right before e is about to occur.
For example, let us suppose that cart contains the following tuples, with event el taking
place immediately following eo:

{(s, uaiice, taliceeo), (S, Ualice, taliceef), (s, Ueve, teve,ef)} = tokens

10e. prevs returns the set of all events that precede e, including e itself.
1 1The expression sig A in B introduces a subset relationship between A and B.
12 This mirroring structure is not coincidental: The design of the Poirot DSL directly grew out of our experi-

ence in using Alloy as the primary modeling language during the early phase of this research project.

70



-- Store component, representing a set of processes

sig Store in Proc {
catalog : ItemID lone -> lone ItemInfo
passwords : Username lone -> lone Password,

np aIzt ble -t te- are 7 ndo ed o p era tIon,

tokens (Username lone -> lone Token) -> Event
carts (Username -> ItemID) -> Event

all o : receiver.this I

._quard .. e ents tho this store receies
Store-login[this, o] or StoreaddItem[this, o] or

Store-displayItem[this, o] Store-getItem[this, o]

no sender.this hos no output esents

fra0e conodOfzons on updatabLe states

all o Event - last I let o' = o.next I
okers may 'rhanae onLy when thts store receives a Login event

tokens.o' != tokens.o implies (o in Login and o.receiver = this)

all o : Event - last I let o' = o.next I
"carts" may change only when this store receives a Logi2n event

carts.o' carts.o implies (o in AddItem and o.receiver = this)

}
p nIn. Usrae, p; Password, ret. Token!

sig Login in Event {
login-u Username,
login-p Password,

login-ret : Token

args = login.u + login-p and rets = login-ret

sender in Customer and receiver in Store

}

pred Store-login[m Store, o : Login] {
let curr-tokens = m.tokens.o, next-tokens = m.tokens.(o.next)

ensurew passwordslu) == p

(m.passwords)[o.login-u] = o.login-p
updates { make(t: Token) f tokens.insert(u ** t) and ret

some t : Token I next-tokens = currtokens + o.login-u -> t

}

}

- Customer component

sig Customer in Proc {
id : Username,
wishlist : set ItemID,

all o : sender.this I
(Customer-login[this, ol) or (Customer-addItem[this, o]) or

(Customer-displayItem[this,o]) or (Customer-getItem[this, o])

no receiver.this has no 2npU t events

}

pred Customer _addItem[m : Customer, o AddItem] {
ca?, f ' Sic : Add't'm I ''y7 ti c 2 }

(o.addItem-i) in (m.wishlist)

}

Figure 5-6: Part of the Alloy encoding of the store model.
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Retrieving the state of the store with eo and e1 as indices gives us:

s.tokens.eo {(Ualice, talice)}

s.tokens.e= {(Ualice, talice, ), (Ueve, teve)}

Based on this, we can conclude that while performing eo, the store has assigned a new

token, teve, to the user identified by Ueve.

Each operation is also translated into a signature, with its argument and return param-

eters encoded as signature fields. Any guard condition or update statement associated

with an operation is encapsulated inside an Alloy predicate. For example, the predicate

Store-login evaluates to true if and only if (1) the given password matches that of the

user to be logged in (line 35), and (2) a new token is assigned to the same user in the store's

record and returned back to the sender of this request (line 37). Note that the constraint

(1) is a precondition of the operation, whereas (2) is a statement about the world at the

completion of the event (i.e., a postcondition). In our Alloy encoding, we do not make

a distinction between pre- and postconditions, and require that each event satisfies their

conjunction in order to be considered a valid event of the process.

A signature constraint is used to ensure that every event performed by a process is a

valid one, by requiring the event to satisfy one of the operation predicates. For instance,

the constraint for Store says that every input event that it performs must be one of the four

types of store operation (lines 9-12). A similar constraint is used to define the set of events

that a customer process is allowed to perform (lines 46-48); in this case, the customer may

invoke any of the store services, but as discussed earlier, she would never request to add an

item that does not belong to her wishlist (as specified in the predicate Customer-addItem

Another important part of a translated Alloy model is a set offrame conditions, which are

used to ensure that the state of the system changes only when a process performs an event

that directly operates on the state. Without frame conditions, an ensuing analysis may

generate spurious scenarios where the state of the system arbitrary changes regardless

of the events performed during the execution. During translation, a frame condition is

generated for each updatable field, by determining all operations that may modify that

field, and requiring that the content of that field change only as a result of performing one

of those operations. For instance, the frame condition for tokens states that the assignment

of tokens to users may only change when the latest event performed is a Login event (lines

15-17).

5.3.3 Encoding Representation Mappings

Alloy has a flexible type system that allows one to declare different sets of elements, and

introduce an arbitrary relationship among those sets. For instance, consider the following

fragment of Alloy:

sig E {}
sig A, B in E {}

This introduce a set of elements of type E, which itself contains two subsets A and B, but

without specifying the relationship between A and B; it is left unspecified whether A inter-

sects with B, or A and B together cover the entire set E. Consequently, every E element may
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belong to A, B, both, or neither of them. We may introduce an additional set in a separate

part of the model:

sig C in E {}

If desired, we can use an Alloy fact to explicitly introduce a relationship between the sub-

sets of E; for example,

fact { some A & C }

ensures that there is at least one element of E that belong to both A and C.
This feature of the type system, which allows an element to belong to multiple sets, and

an existing type hierarchy to be extended freely, plays a crucial role in the implementation

of our composition mechanism. Recall that, in our translation from Poirot to Alloy, every

operation or data type is declared to be a subset of top-level Alloy signature Event or Data,
respectively. Each of these subsets effectively assigns a representation to an event or a data

value. For example, consider the following Alloy fragment:

sig Event {}
sig AddItem in Event {

token Token,

item ItemID

}

Suppose that some event atom e E Event also belongs to the set AddItem, and is associ-

ated with particular token t E Token and item i E ItemID. Conceptually, this particular

combination of AddItem fields forms a possible description of e; i.e.,

e = {addItem(t, i)}

In a separate model, we may declare another type of event, to allow certain event atoms to

be associated with multiple representations:

sig HttpReq in Event {
url : URL,

headers : set Header,

body Body,

ret RespMsg

}

When two models are brought together, we can use an Alloy fact to ensure that event e

may belong to both AddItem and HttpReq if and only if the two groups of fields associated

with these signatures satisfy some given constraint C. In other words,

e = {addItem(t, i), httpReq(u, hs, b, rm)}

if and only if the following holds:

C(t, i,u,hs,b,rm)

This is the key idea behind the realization of our composition mechanism in Alloy.

Figure 5-7 shows how the mappings from the Poirot model of the store (Figure 5-4) are

encoded in Alloy. The mapping constructs from the Poirot model are directly translated

into Alloy predicates. The Alloy fact Mappings ensures that for each mapping, a pair of
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fact Mappings {
all e Event , s : Store , a : s .receives [AddItem]

r Server, h : r.receives[HttpReq] I
(a, h) orzg'lnate f7om the same process and
satisfy the rapp2nq constraint

(s = r and mappingaddItemToReq[s,a,r,h]) iff

C-ve,1y eoent that s 'a' 'a also 'h' (and vice ve- sa)
(e = a iff e = h)

all d Data, t Token, c : Cookie I
t, c) ,t f' 1q the malppzng constraint

mapping-tokenToCookie[t, c] iff

evern data a that i 't s also 'c ', and vce -ver sa
(d = t iff d = c)

1
2

3

4

15
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26

27

28

29

qapozng between Addltem and HttpReq

pred mapping-addItemToReq[s: Store , a: AddItem, r: Server , h: HttpReq] {
a.addItem-t in h.httpReq-headers and

a.addItem-i in (h.httpRequrl).URLquery and

(h.httpRequrl).URLhost = r.Server-hostname and

(h.httpRequrl).URLpath = PathAddItem

}

mapp-nQ b e we rakee a-ad C oke
pred mapping-tokenToHeader[t: Token, c: Cookie] {
c.Headername = StrAuthToken and

c.Header-val = toStr[t]

}

Figure 5-7: Part of the Alloy encoding of the mappings between the store and HTTP models.

events or data value are considered to be the same element if and only if they together

satisfy the predicate associated with the mapping. Note that an additional requirement is

added to ensure that each pair of related events must be performed by the same process

(s = r on line 6); without this, Alloy would allow a strange behavior where two events

originating from physically distinct processes are considered to be the same.

5.4 Analysis

The Alloy Analyzer is a general-purpose constraint solver; meaning, each Alloy specifica-

tion is essentially a set of constraints, and its analysis involves finding a satisfying instance

to their conjunction. Checking a system model against a property, for example, can be for-

mulated as finding an instance to a formula S A -P, where S is a conjunction of constraints

that describe the system behavior, and P is a statement of the property; if no instance

is found, then one may conclude that the system satisfies the property (up to the analysis

scope). The Alloy Analyzer, in turn, relies on a constraint solver called Kodkod [82], which

translates a given first-order logic specification into an equisatisfiable CNF, and leverages

an off-the-shelf SAT solver for instance generation.

The analysis in Alloy is exhaustive but bounded up to a user-specified scope on the size

of the domains; in the context of Poirot, these bounds correspond to the number of pro-
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cesses, data values, and events as well as the length of event traces that will be analyzed.
Although this implies that the analysis will not be able to discover a counterexample that
lies outside these bounds, the user may re-run the analysis multiple times with larger
scopes for increased confidence in the result.
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Chapter 6

Case Studies

This chapter describes our experience applying Poirot to analyze the security of two pub-
licly deployed systems: Handme.In and IFTTT. The goal of our studies was to answer the
following questions:

" Can Poirot be used to find attacks that exploit the details of the system across multi-
ple abstraction layers?

" Does our composition mechanism enable a modular reuse of domain models across
multiple systems?

" Does Poirot's analysis scale to finding realistic attacks?

We will also discuss some of the technical challenges that we encountered, and the lessons
learned from our experience in applying a model-based approach to the security analysis
of realistic systems.

6.1 Methodology

During each case study, we carried out the following steps: (1) constructing a model of the
system in Poirot, (2) performing an analysis in Alloy to generate potential attack scenarios
and (3) confirming that those scenarios are indeed feasible on the actual system.

Model construction and analysis For each study, we took an incremental approach to
building and analyzing the system model. We began by first constructing a high-level,
abstract model of the system, describing its business workflow without details about its
underlying platform. We then performed an initial analysis on this model to discover any
potential violations of a given property; a counterexample at this level would correspond
to a flaw in the design of the business or protocol logic.

Once the initial analysis was completed, we further elaborated parts of the original
model by mapping them into relevant domain models from Poirot's library. Since both
HandMe.In and IFTTT are web-based systems, some of the domain models used were
common to both systems (e.g., models of an HTTP server and a browser), while others

77



were unique to each of them (e.g., OAuth was relevant only for IFTTT). After each elabo-
ration step, we re-analyzed the model against the same property, discovering attacks that
were made possible by the newly introduced behavior of the system.

The process of constructing the model for each system will be discussed in more detail
in Sections 6.3 and 6.4 1.

Attack feasibility The output of an Alloy analysis is a counterexample trace demonstrat-
ing an attack on the model of the system. The events in this trace are still approximations of
the real-world operations, and it is entirely possible that the depicted behavior is infeasible
in the actual system, due to potential inaccuracies in the model.

In order to confirm that the attack described by a counterexample is actually feasible
in reality, we manually converted the events into their concrete counterparts (i.e., HTTP
requests), and replayed them on the actual system. To do this, we first created our own
user accounts on the application site and populated them with sample data. To play the
role of an attacker and interact with the site in a way that is not normally exposed to
the user, we used web proxy tools such as Burp [71] and TamperData [44], constructing
and sending our own hand-crafted HTTP requests. By observing the response from the
application server, we were able to confirm whether the attack was indeed successful.

Our studies did not involve tampering with data in user accounts other than our own
experimental ones.

6.2 Domain Models

Poirot contains a library of domain models that can be used to elaborate the user's input
system model. The goal of the library is to achieve reuse of knowledge; building a domain
model takes a considerable amount of effort and expertise, but once built by an expert, it
should be reusable for analysis of multiple systems. For example, a web developer should
not need to reconstruct a detailed model of a web browser and its vulnerabilities every
time she wishes to analyze an application; this knowledge should already be available for
systematic reuse.

Note that our use of the phrase domain model has a rather broad meaning; any model
may qualify as long as it encodes a piece of knowledge that is generic and reusable across
multiple systems. Types of descriptions in a domain model may include (but not limited
to) protocols, architectural styles, features, algorithms, data structures, security vulnera-
bilities, and mitigations.

For our case studies, we were mainly interested in analyzing web applications, and
so we constructed a number of domain models that describe different aspects of the web.
We based models on reputable security sources such as OWASP [64] and CAPEC [59],
and previous research efforts on formalizing the major components of the web [7, 29, 32].
Figure 6-1 shows the relationship between different domain models, which can be roughly
grouped into the following categories:

1The complete models for the case studies, as well as the tool, are available at http: //people. csail.
mit .edu/eskang/poirot.
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Same Origin Cross-Origin
redein oSharingPolicy(CORS)

OAuthd ALictifi
Mde

Of curse ourlibrry i farfro beig exaustve, nd my b mises oainknwl

HTTPS HTTP

Pubi c Key Certficates Network Refern

Figure 6-1: Web-related models in the Poirot library.

p Architecture models: Describe the major components of a communication layer and

their interaction, including HTTP servers, clients, and network endpoints.

i Browser-related models: Describe the features of a standard browser, including in-
browser scripts, policies to control their behavior (e.g., the same-origin policy), and
rendering of web pages.

" Cryptographic models: Describe protocols used by components to securely commu-

nicate to each other, nin)ing SSL, certificates, and public-key encryption.

Of course, our library is far from being exhaustive, and may be missing domain knowl-

edge that is crucial for discovering certain types of attacks. However, this is not an inherent

limitations of our approach; in fact, we expect that Poirot's library to grow in size and ap-

plicability over time as more domain models are added. It is also worth noting that Poirot

is not tied to a particular domain, and can be used to model other types of systems, as long
as their behavior can be captured in our formalism.

6.3 HandMe.In

Handme.In (http:/ /handme.in) is a web-based application designed to enable easy recov-

ery of personal items. In a typical use case, an HandMe.In user purchases a sticker with

a unique code writtene it, and places the sticker on a physical item to be tracked. In an

unfortunate situation where the item is misplaced, the person who finds item can notify
its owner by entering the code and any relevant information, such as the location found

and an arrangement to return the item in person, on the HandMe.In site. It currently has
over 20,000 registered stickers.

A user can obtain a sticker either by being gifted it, or by purchasing it herself through
the HandMe.In site. The process for the payment of stickers is delegated to Paypal, which

offers a service called Instant Payment Notification (IPN). When a customer initiates a

purchase, HandMe.In redirects her to the Paypal IPN site. After she makes a successful

payment on Paypal, the IPN system will send the customer and billing information to the

merchant site, which may then finalize the order.
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(c) Composition

Figure 6-2: Graphical depictions of (a) HandMe.In, (b) the Paypal IPN protocol, and (c) their composition.
Each box represents a component, a circle represents an operation, and a directed edge represents the invoca-
tion of an operation. Labels in the form of A (B) means that every instance of A can also be treated like a B.
For simplicity, in (c), we will group three of the HandMe.In operations into one.

For tihis Case study, we wIkeU dI1LLy WILIH Ute ladU deve[oper o1 Hdeil .lfn kU con-

struct a model of the system. In addition, we consulted the online Paypal API documenta-
tion [69] to build a generic model of the IPN protocol. We were interested in analyzing two
properties of the system: (1) Information about a lost item entered by the finder should be
accessible only to the owner of the item, and (2) information given to the owner of a lost
item must have come from the actual finder of the item.

6.3.1 Models

HandMe.In Figure 6-2(a) depicts a high-level design of the HandMe.In system, which in-
volves interaction among three kinds of processes: the main HandMe.In application (HMI),
a user who uses a sticker to track her item (User), and a person who discovers a lost item
(Finder). The user and the finder interact with HMI by invoking various operations that
are exported by the latter.

A part of the HandMe.In model in Poirot is shown in Figure 6-3; we will highlight some
of its noteworthy features. The HandMe.In application keeps track of various types of
information about its users in its database, such as the set of codes that have been activated
for each user (field activated on line 16), and information about items that have been
misplaced and subsequently found (returned, line 18). To model the physical process
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I # sticker codes, user passwords, and authentication tokens

2 privat data Code, Password , Token

3 # arrangeme t i fo for eturn ing a lost item
4 privat data ReturnInfo
5 privat data AccountInfo[codes: (set Code), returns: (set ReturnInfo)]

6 data UserID

7 # The HandMe In app ication

8 component HMI [
9 # crederi aLs of TMI se rs

10 creds: UserID ** Password,
11 sesO n II) f#r s eo'

12 tokens : (updatable UserID ** Token)

13 # codes that have been 05scc ,ted w3th uvers, but not actfovated

14 linked: (updatable UserID ** Code),

15 # codes that have been actcoated for users

16 activated: (updatable UserID ** Code),

17 # rc des that have been returned

18 returned: (updatable set Code ** ReturnInfo),

19

20 op Login[uid: UserID, pwd: Password, ret: Token] { }
21 op Claim[code: Code, token: Token]{ ... }
22 op Account[token: Token, ret: AccountInfo] { ... }
23

24 op Order[token: Token, ret: Code] {
25 ensures { no linked[tokens.token] } s no codi eLreody 'nked Lb se 7ser

26 updates { alLocate a _, o d6 a n nt d th the ois e denrdn te y token
27 uid = tokens.token

28 make(c : Code) { linked. insert (uid ** c) and ret == c }
29 }
30 }
31 op Activate[code: Code] {
32 updates { aclate the code that has been t znked t 01e user
33 uid = linked.code

34 activated.insert(uid ** code) and linked.remove (uid ** code) }
35 }
36 op Return[code: Code, info: ReturnInfo]{

37 # code can onlq be returned wuhen it's alread' been activated for some user

38 ensures { some activated.code }

39 updates { returned.insert(code ** info) } # mark code as returned

40 }
41 }
42 # 

1
ser of HUi

43 component User [
44 uid: UserID, owns: (set Code), pwd: Password

45 ]

46 invokes { HMI::Login }
47 invokes { HMI : : Claim }
48 invokes { HMI::Account }
49 invokes { HMI : : Order}

50 }
51 # The person who returns a Lost stem
52 component Finder [

53 code : Code , info: ReturnInfo

54 ] {
ss invokes { HMI::Return }
56 }

Figure 6-3: Part of a model of the HandMe.In system in Poirot
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of discovering an item with a HandMe.In sticker on it, we will assign a code and return
information to each Finder process, which may invoke the Return operation to notify HMI
of the found item (lines 53 and 55).

When a user make an initial request to purchase a sticker, a new code is allocated for
that user and recorded in the linked field (line 28). The code becomes activated and avail-
able for tracking only after the user completes the purchase of the sticker. The payment
process is not handled by HandMe.In itself, and thus left unspecified in this model. Note
that the Activate operation currently has no invoker, depicting a part of the system that
has not been fully designed yet.

Paypal IPN The Paypal IPN, as illustrated in Figure 6-2(b), is a popular service that pro-
vides payment handling and notifications to third-party merchants. Figure 6-4 shows a
part of the IPN model in Poirot. A typical workflow begins when a customer initiates a
purchase with a merchant, which allocates an ID that will be used by both the merchant
and Paypal to identify the item being purchased (line 12). The customer then takes this ID
to Paypal for checkout, which initiates a new payment transaction (lines 28-31). Once the
customer enters valid payment information (e.g., credit card number and billing address),
Paypal will mark the transaction as having been completed (line 44).

After a successful transaction, Paypal notifies the merchant of the payment, along with
other relevant data about the transaction (e.g., the item purchased, customer information,
and the amount paid); in our model, this interaction between Paypal and a merchant is de-
scribed by a guard condition that is attached to the invocation of Not if yPayment by Paypal
(line 48). It is then up to the merchant to perform any further actions based on the trans-
action information; since Merchant is a generic description of merchants, this behavior is
deliberately left unspecified (beside performing a check to ensure that the notification is
received by the correct merchant, as on line 15).

Composition HandMe.In employs the Paypal IPN to handle the payment of its stickers.
In order to reason about the impact of the IPN integration on security, we constructed a
model that describes the combined behavior of the two systems, as shown in Figure 6-2(b).

A relationship between the two models mirrors how the IPN service is typically adapted
by a merchant system. Intuitively, the HMI component can be regarded as playing the role
of Merchant, with User acting like Customer from the Paypal model. In particular, the IPN
service can be adapted so that when HMI is notified of a payment from Paypal, it immedi-
ately activates the code that corresponds to the item purchased during the transaction.

In our composition approach, this relationship is specified by mapping the Order oper-
ation to initiate, and Activate to Not-if yPayment in the Paypal model. Figure 6-5 shows
the representation mappings used in the composition of the two models. The mapping
constraint in orderToInitiate ensures that the code allocated for a newly ordered sticker
correctly corresponds to the item that the user will be paying for during the Paypal check-
out. Similarly, the constraint in act ivat eToInit iate ensures that the code being activated
is the one that has been paid for during the latest transaction.

Since both HandMe.In and Paypal are deployed as web systems, we wanted to reason
about how the security of the system might be impacted by web-specific vulnerabilities.
To do this, we took each abstract operation from the combined HMI-IPN model, and used
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data ItemID, Amount, MerchantID, TxnID , transaction ID

data CustomerInfo # inforc .,n or ,ut customer (name, ema, eTc

# paymen torasaction info
privat data TxnInfo[mid: MerchantID , cinfo: CustomerInfo , item: ItemID, amtPaid: Amount]

privat data PaymentSecret a a rdU a r

component Merchant [
id: MerchantID

]{
op Initiate[ret: ItemID] {

ensures { make(item: ItemID) { ret == item } }

}
op NotifyPayment[tinfo: TxnInfo] {

ensures { tinfo.mid == id }
}

}

component Paypal [
ongoing: (updatable TxnID ** TxnInfo), on7zg tYusaac izon T
completed: (updatable TxnID ** TxnInfo), # eMc Ee 4 TTT T 2on

validPayments: (set PaymentSecret)

op Checkout[item: ItemID, mid: MerchantID, ret: TxnID] {
updates {

# creaIe : new transacT n w r itC e 7em

make(tid: TxnID, txn: TxnInfo) {
txn.item == item and txn.mid == mid and

ongoing.insert(tid ** txn) and

no ongoing[tid] and 4 7''uLie tn
ret == tid et th n

}
}

}
op EnterPayment[tid: TxnID, cinfo: CustomerInfo, amt: Amount

E 7a , t r -- se , Te T be va i '. da 2 a"eS. ,a? A

# tran s Iact rsT - aread eg'za

ensures { secret.in? validPayments and some ongoing[tid] }
updates {

txn = ongoing[tid]
# ed it "'me Jan TL ayman nT ira- q an 2W' '

txn.cinfo == cinfo and txn.amtPaid = amt and

# a rh" tkan sati0 as p e

completed.insert(tid ** txn)

}

Z ntify the raant af 2 tr-a" a an afTL

invokes { Merchant::NotifyPayment.onlyIf {IoI

, secret:
rrb e ). a nd

PaymentSecret]

tfa been completed

some completed.(o.tinfo) }}

omponent Customer [
ci: CustomerInfo

{
invokes { Merchant::Initiate I
invokes { Paypal::Checkout }
invokes { Paypal::EnterPayment I

Figure 6-4: Part of the Paypal IPN model in Poirot
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i mapping orderToInitiate[h: HMI, o: Order, p: Paypal, i: Initiate] {
2 # the code allocated for a new stscker is used as the ID of the item

3 o.ret == i.ret

4}

5

6 mapping activateToNotify[h: HMI, a: Activate, p: Paypal, n: NotifyPayment] {
7 # the c d act t qat moatches the ?temr n the transactoi. infortmation

8 a.code == n.tinfo.item

9 }

Figure 6-5: Selected mappings between the HandMe.In and Paypal IPN models.

I property noReturnInfoLeak {
2 # Informatcon abooc a 'retrned tefr howld on/y be accesscble

3 # to the actiioi owner of the ?telr.

4 all(i: ReturnInfo, c: Code, h: HMI, m: Component){

5 c.in?(m.owns) if mayAccess(m, i) and i.in?(h.returned[c])

6 }
7}

8

9 property noBadReturnInfo {
10 # Only the actual finder of an item can enter the inform at ion

11 # about the returned item.
12 all(i: ReturnInfo, c: Code, h: HMI, m: Component){

13 some(f: Finder) {

14 i == f .info

is } if mayAccess(m, i) and i.in?(h.returned[c])

16 }
17 }

Figure 6-6: Desired security properties of the HandMe.In system in Poirot

a representation mapping to describe its encoding as an HTTP request.

6.3.2 Security Issues

Figure 6-6 shows two properties that we analyzed against the HandMe.In system. The first

of them, noReturnInf oLeak, is a confidentiality property, stating that return information

about items should only be accessible to the user who owns the codes on those items. The

second property, noBadReturnInf o, talks about the integrity of return information; that is,
the system should not allow an arbitrary person to enter information about items that are

owned by other users.

Our analysis generated a number of counterexamples, two of which we confirmed to

be feasible attacks on the system; they were both previously unknown to the developer of

the system:

Guessable sticker codes Although the codes on stickers are unique, they are arranged in

a simple, incremental ordering (147, 148, ... ), and so are easily guessable. This allows the

attacker to violate the property noBadReturnInf o by entering a randomly guessed code

and bogus information about the item recovery While this might seem like an innocuous
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attack, it can be easily carried out on a large number of codes, potentially causing incon-
venience to many users on the site. This attack involves details only at the business logic
layer, and was generated by Poirot on our initial design model.

Missing check during payment The IPN service provides no guarantee that the person
paying for a product is the same person who will receive the product. Paypal sends back
information about the payer (e-mail, billing address, etc.,), and the merchant may perform
further checks to ensure that the product will be delivered to the same person. HandMe.In
does not perform such checks, because it assumes that a user will be directed to the IPN site
only by following the standard workflow on HandMe.In. This assumption is reasonable at
the business logic layer, but is violated when the user is interacting with the site through
a browser. In particular, the site has a cross-site scripting (XSS) vulnerability on one of
its pages, allowing an attacker to insert a link that appears legitimate, but which, in fact,
redirects the victim user to the IPN for a sticker that has already been assigned to the
attacker. As a result, the victim may willingly pay for the sticker that will be owned by the
attacker, leading to a violation of the property noReturnInfoLeak. This attack combines
details at both the business logic and HTTP protocol layers, and was generated by Poirot
after the initial model was elaborated with the HTTP domain model.

We notified the result of our analysis to the developer; all of the above security issues
have since been addressed.

6.4 IFTTT

IFTTT (short for "If-This-Then-That") is a web-based system that allows a user to connect
and automate tasks from independent web services using simple conditional statements.
The basic building block of IFTTT is a channel, a service that exports a number of functions
through its API. IFTTT allows a user to construct a recipe, which consists of two channel
functions: a trigger and an action. Once the recipe is registered, each time a trigger is
performed, IFTTT automatically executes the corresponding action. For example, a recipe
can be made so that whenever the user is tagged in a photo on Facebook, IFTTT creates a
post containing the photo and its caption on the user's Google Blogger account.

Since IFTTT performs tasks automatically on the user's behalf, potentially accessing
private data in the process, the user must explicitly authorize IFTTT to do so through the
selected channels. For example, before registering the above sample recipe, the user must
give IFTTT (1) a permission to access photos on Facebook, and (2) a permission to create
new blog posts on Google Blogger.

The goal of this case study was to analyze whether IFTTT channels could be composed
in an insecure way, allowing a malicious person to access information that would not have
been possible without IFTTT. In particular, we analyzed the following security property: A
user's private data from one channel should only be accessible to the same user's accounts
on other channels.
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Figure 6-7: Graphical depictions of (a) IFTTT, (b) the QAuth protocol, and (c) their composition.

6.4.1 Models

Figure 6-7(a) shows a high-level design of the IFTTT system, which involves interaction
among three different types of processes: the IFTTT application, channels, and users who
wish to automate tasks between those channels. Since our goal was to analyze the security
of IFTTT's service composition mechanism-instead of looking for flaws in a particular
web service-we did not explicitly model the details of web services themselves. Instead,
we built archetypal descriptions of channels, triggers, and actions that over-approximate
all possible dataflow throughout the system.

IFTTT application A part of the IFTTT model in Poirot is shown in Figure 6-8. One of
the key concepts in this system is the notion of a recipe, here represented as a data type that
consists of the IDs of a trigger and its corresponding action (line 10). The IFTTT application
keeps track of a list of currently registered recipes for each user (line 17). If a user wishes
to register a new recipe under her account, she may invoke the operation CreateRecipe
and provide the recipe along with her credentials.

Before IFTTT can perform a recipe, it must be able to access the services that are offered
by both the trigger and action channels. In the IFTTT terminology, the user must activate
a particular channel and grant IFTTT an authorization token that can be used to access that
channel. The process of obtaining a token varies between channels, and thus, is left un-
specified in this model (line 29); later, we will describe how this part of the design can
be elaborated with a model of OAuth, a popular third-party authorization protocol and
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data UserID , ChannelID
# identif ers for triggers and actzons
data TriggerID, ActionID

privat data Password # user crendentiaZ

# token used y lt 717 to perform actions on

privat data Token

# data pasad i as part of payload
privat data Payload
# IFTTT reci pe, ansi - o a T? f gge ad
data Recipe [tid: TriggerID, aid: ActionID]

# IFTTT serzer

component IFTTT [
# user credentiai:

pwds: UserID ** Password,
# c. 1e , y ct o a r e' p

recipes: (updatable UserID ** Recipe)
# tokens associated , 7th <haaaeis
tokens: (updatable ChannelID ** Token)

op CreateRecipe[uid: UserID, r: Recipe, c:

# can only create a reczpe ?i the r7ght

ensures { c == pwds[uid] }
# create a new aeczpe

updates { recipes.insert(uid ** r) }
}
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a a f , )

Password] {
:redent iaI proa dea

# obtain a(r access t'ken for a new channel

op Activate [uid: UserID, cid: ChannelID] { ... } # unspecified

# polL a cha no I Jc a trigger, a7d pea fa' m an actso olk

invokes { Channel::Poll.then Channel::Action do 1p, al

# iaf there a tm reci pe such that
some(r: Recipe) {

r == recipes[a.uid] and

# the pl Led Irzqger as lInked to the action and
r.tid == p.tid and r.aid == a.aid and

Sthe p-ayload f rom the trIger as provided as input to the action

a.uid == p.uid and a.p == p.ret
}

end

}

Figure 6-8: Part of the IFTTT model describing the main application and recipes.
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the most common method of obtaining a token among IFTTT channels. Once it success-
fully obtains the token, IFTTT will store it in its record (tokens on line 19), to be retrieved
whenever a recipe with the corresponding channel is triggered.

Later, we will return to this part of the model and describe how IFTTT performs a
recipe (lines 32-39).

Channel Figure 6-9 shows the part of the IFTTT model that describes channels and users.
Each channel is associated with a channel ID, and itself keeps track of a list of user pass-
words as well as tokens that can be used to access its services (lines 3-7). To model the
behavior of a generic channel, we introduced two abstract operations called Action and
Trigger. Each action is associated with an ID, and can be performed only when provided
with a token that correctly identifies the user (line 28). Also, the action is associated with a
payload, which represents generic data that are passed between the channel and its users.

Every time an action is performed, its associated payload is recorded in the channel
history (line 15). A user may then look up the actions that have been performed on her
account, and access any of the related payloads (operation Lookup on line 18). This is done
as a way of allowing dataflow from one user to another through a pair of trigger-action
events; we will come back to this point shortly.

The structure of the Trigger operation is similar to that of Action; it is associated with
an ID, and can only be performed when its invoker provides a correct token (line 28). Like
with actions, each trigger is associated with a payload, and its occurrence is recorded by
the channel in field triggerBuf f er (line 11).

Performing a recipe In order to perform a registered recipe, the IFTTT application peri-
odically polls the trigger channel and inquires whether the trigger has been recently exe-
cuted. If so, the Poll operation returns the associated payload back to IFTTT (line 38), and
removes the record of that trigger from the buffer (line 39).

Let us recall the model of the IFTTT application in Figure 6-8. In Poirot, the expression

invokes {X.then Y do Ix, yI C(x,y) end}

restricts the behavior of a process so that it is allowed to perform event x E X only if (1) its
previous event was y E Y and (2) x and y satisfy some constraint C.

This specification idiom is used to describe how the IFTTT application performs a
recipe in response to the occurrence of a trigger (lines 32-39). In particular, IFTTT may
invoke some particular action (a) only after it successfully polls the corresponding trigger
channel; in addition, it directly passes the payload returned from the poll to the action (a p

p. ret on line 39).

Composition with OAuth OAuth 2.0, illustrated in Figure 6-7(b), is a protocol used to
carry out for third-party authorization [401; that is, it allows an application (called Client)
to access resources from another service provider (AuthServer), pending the approval of
the user who owns those resources (AuthUser). A typical workflow begins when the user
attempts to perform an operation on the client application that requires authorization from
AuthServer (InitAuth operation). The user is first required to prove her identity with
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component Channel [
-# Ch anne ? ID
id: ChannelID,
t 1 edetia fr hannaeI userrs

pwds: UserID ** Password,
# t ke used t acess th s c h ann e
tokens: UserID ** Token,

# t. zqge'rs
trigs: (set TriggerID),

# u ed to keep t rack of triagers that hiaze been performed

triggerBuffer: (updatable (TriggerID ** UserID) ** Payload),
# a c t z

actions: (set ActionID),

# cs ed to keep Track of a ctons performed so far
actionHistory: (updatable (ActionID ** UserID) ** Payload),

op Login[uid: UserID, pwd: Password, ret: Token] { }
op Lookup[aid: ActionID, uid: UserID, t: Token, ret: Payload] { }

op Action[aid: ActionID, uid: UserID, t: Token, p: Payload] {
can pecfc a aclion onyi, 1 the c-ighbi -c-rede'Tr- aL or token presented

ensures { aid.in?(actions) and t == tokens[uid] }
# mark -h, ic- c ti ao br-,, perf-r ed
updates { actionHistory.insert((aid ** uid) ** p) }

}

op Trigger[tid: TriggerID, uid: UserID, t: Token, p: Payload] {
tcarn perf rtr g - ger ony it T". t'e ??OT 0scr ire enilm l preserited

ensures { tid.in?(trigs) and t == tokens[uid] }
# mark tbris t 7gqe-r as bei rg per fcrmr d
updates { triggerBuffer.insert((tid ** uid) ** p) }

}

op Poll[tid: TriggerID , uid: UserID, t: Token, ret: Payload]{
# check to see whether trigger has been performed
# 6f so, return the payload associated with that tr-rqger
ensures { t == tokens[uid] and

some (p: Payload) { p == triggerBuffer[tid][uid] and ret == p } }
updates { triggerBuffer.remove ((tid ** uid) ** p) }

}

component User [
id: UserID, pwd: Password, owns: (set Payload)
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Figure 6-9: Part of the IFTTT model describing channels and users.
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invokes { IFTTT::CreateRecipe }
invokes { iFTTT::Activate }
invokes { Channel::Login }
invokes { Channel::Trigger }

}

property noPrivateInfoLeak {
# Payoad 'on only be accessed by users who own it

all(p: Payload, u: User) {
p.in?(u.owns) if mayAccess(u, p)

}
}

}

=9.
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AuthServer, typically by logging onto the site (Authenticate). Once it identifies the user,
AuthServer will return an authorization grant back to the user, who then forwards it to

Client (SendGrant). In the final step, the client exchanges the grant for an authorization

token, which can subsequently be used to access resources on AuthServer (GetToken).

OAuth is one of the most common methods for granting IFTTT access to channel ser-

vices. To reason about the behavior of IFTTT in conjunction with OAuth, we performed

a composition of the two models, resulting in an elaborated model as shown in Figure 6-
7(c). The relationship between the two reflects how OAuth is adapted by IFTTT in practice:

IFTTT plays the role of Client, with channels serving as AuthServer and IFTTT users as

AuthUser. In the context of IFTTT, the OAuth workflow begins when the user attempts to

activate a particular channel; to express this relationship, we introduced a representation

mapping between Activate and InitAuth from the two models. In addition, the task of

AuthUser proving her identity to AuthServer can be accomplished by the user logging onto

the corresponding channel (Login in the IFTTT model); in our composition, an additional

mapping was used to link the two operations.

6.4.2 Security Issues

Through the use of recipes, IFTTT provides a simple, easy way for users to connect and

automate tasks of multiple channels. But this convenience is not without its potential

downfalls; since IFTTT enables flow of data between channels that normally do not com-

municate with each other, there is an added risk of unintended data exposure.

For our study, we were interested in checking whether a malicious actor could exploit

the IFTTT system to access information belonging to another user on a channel. In our

model, this is specified as a simple confidentiality property that any payload originating

from a user should be accessible only to that same user throughout the system execution

(lines 54-55 in Figure 6-9). During our analysis, we discovered two feasible attacks on the

IFTTT system; both attacks exploit details across the IFTTT and HTTP protocol layers, and

were detected by Poirot after the initial model was elaborated with the HTTP model:

Privilege escalation A pairing of a trigger and an action that require different levels of

privilege can be exploited by an attacker to gain unintended access to the action channel.

For example, Blogger is designed with an assumption that only those with the right cre-

dential can create a new post on a user's account, and so it treats all input post data as

having come from a trusted source. On Facebook, however, a user may unknowingly be

tagged on a photo that is owned by another (potentially malicious) user; this means that

the trigger can be performed at the attacker's will, leading to a new post on the victim

user's blog with the attacker's photo and caption. This gives the attacker an ability to in-

directly manipulate the victim's blog through IFTTT-for example, by encoding malicious

data (e.g., XSS code) into the caption. This form of privilege escalation in IFTTT is a known

issue that has been reported by security researchers [26].

Information leakage with login CSRF Login CSRF is a type of a browser attack that ma-

nipulates a victim into logging onto a site under the attacker's credential. Normally, login

CSRF is considered a relatively minor form of attack, because at most it allows the attacker
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Figure 6-10: Average analysis tines over trace lengths.

to access a log of the victim's actions (e.g., search history on Google). In combination with

IFTTT, however, it can be used to carry out an attack with far more serious consequences.

Consider a situation in which a victim user is unknowingly logged onto a site that

corresponds to one of the channels available on IFTTT. The user proceeds to create a new

recipe with an action on that same channel; since the user is already logged onto the site

(albeit as the attacker), she will not be prompted to enter her credential again. Conse-

quently, the action channel on the registered recipe will be associated with the attacker's

account. This means that, for example, any data from the recipe's trigger will flow directly

into the attacker's account on the action channel.

As far as we are aware, this is a previously unknown issue with IFTTT. To demonstrate

the feasibility of the attack, we selected 15 channels with an action that can be used to

store information from a trigger, and inspected their login page to see whether they have

a built-in protection against CSRF. We found that 4 out of those sites lack the protection,

and notified them of the potential security issue; 3 of them have since addressed the issue.

6.5 Analysis Performance

We evaluate the scalability of Poirot's analysis over the two case studies. As discussed in

Section 5.4, the analysis relies on constraint solving over finite domains, and so it must

be given an explicit scope to bound the number of processes, data values, events, and the

maximum length of traces. Figure 6-10 shows the average analysis times for the two cases

studies as the maximum length of traces is varied; we used a fixed scope of 8 for processes

and 12 for data values. All analyses were performed on a Mac OS X 1.8 GHz Core machine

with 4G RAM; Lingeling [17] was the SAT solver used.

Figure 6-10 shows an exponential growth trend for the analysis times as the trace length

increases; this is not surprising, since the number of possible event combinations that must

be explored also grows exponentially. The shortest trace corresponding to a counterexam-

ple had 4 events, and the longest trace had 11 events; we performed additional analysis

up to the trace length of 16 without discovering any more counterexamples. In all cases,

the analysis took under 15 seconds. The results do not necessarily imply that the checked
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properties are valid, as there might exist a counterexample beyond the maximum scope
that we used. However, based on our experience applying Poirot to numerous examples,
we believe that the bounds we used were large enough to capture many common web
security attacks.

6.6 Challenges and Lessons Learned

We have used Poirot to model and analyze a number of small and large systems, the most
complex ones being the two systems above. We were successfully able to reuse the do-
main models across most of these systems, in part because we invested considerable effort
(6 months) into ensuring the generality of the models; based on our experience, we believe
that reusability justifies this upfront cost. We also expect Poirot's library to grow in size
and applicability over time. For example, we initially created a model of the OAuth pro-
tocol [40] in order to analyze it, and we were able to reuse the same model as part of the
analysis of IFTTT.

One of the most challenging parts of the case studies was building faithful models of
the systems. As with many commercial systems, the source code was not available, and
so we had to leverage other available means to gain an understanding of the systems. For
Handme.In, we directly consulted the main developer of the site for the information about
its web API and its integration with Paypal. Most of the triggers and actions offered by
IFTTT channels have an online API documentation available; for those without reliable
documentation, we manually generated and inspected the HTTP requests using a web
proxy tool (in particular, Burp [71]) and approximate the behavior of the system.

We found the ability to partially specify representation mappings especially helpful
in two ways. First, the ability to automatically explore attacker capabilities (as described
in Section 4.3.1) was crucial in discovering subtle, complex attacks; it would have been
crhAllpngino fn tin sn 11sino; 4n pprnath -h- reqiirs each aa-k monNl t 1- m1nuilly

instantiated against the system model (e.g., [30]). Second, being able explore a space of
possible design configurations was particularly useful for the IFTTT study, which involved
analyzing the system against any potential set of web services, instead of a particular one.
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Chapter 7

Related Work

7.1 Composition

Our work was strongly influenced by previous research on views in software engineer-
ing [28, 41, 62, 73]. In a typical development process, various stakeholders may have dif-
fering views on the system, hampering the construction of a single, coherent global model
of the system. In the context of security, the attacker can be regarded as one type of stake-
holders (with a malicious intent to sabotage the system), exploiting details in a view that
differs from that of the designer. Most of these efforts were mainly concerned with achiev-
ing consistency in the global model; that is, dealing with views that may contain conflicting,
contradictory statements about the system.

Model merging is an active line of research on techniques and tools for composing dis-
tinct but possibly overlapping models. Merging techniques have been developed for var-
ious types of models, including architectural views [53], behavioral models [15, 61, 83],
database schemas [72], and requirement specifications [76]. Among these, the works on
behavioral models are most closely related to our work [15, 61, 83]. A common property
achieved by the existing merging frameworks is the preservation of behavior: that is, when
two models M1 and M2 are merged, the resulting model M' refines the behavior of both
M1 and M2. In comparison, our composition operator does not aim to provide such behav-
ioral guarantee; in general, M' may not be a refinement of M, nor M2. Instead, our goal
is to capture different ways in which a property in original model M1 may be violated by
added behavior from M2.

Another work closely related to our approach is Georg and her colleagues' work on an
aspect-oriented approach to security modeling and analysis [30]. In this approach, a set
of generic attack models (called security aspects) are instantiated against a primary system
model, and the Alloy Analyzer is used to check the composed model against a security
property. Our approach differs from theirs in two ways. First, during the instantiation step,
the user must provide a full correspondence between two models, unlike our approach
where a partial mapping is sufficient for performing an analysis. In addition, our notion
of representation is more general than their notion of correspondence, which is limited to
a mapping between the names of modeling elements. Their approach cannot, for example,
express a more complex mapping that relates the structures of two elements (e.g., encoding
addItem as req).
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7.2 Abstractions and Security

In his seminal paper [49], Lampson describes the problem of restricting data to a single
program, and discusses how an attacker may achieve leakage through various methods
that are unanticipated by the programmer; these methods are referred as convert channels.
This paper was a major source of inspiration for our work-in particular, the idea that a
piece of information may be conveyed in different representations, only some of which
may be known to the programmer.

Full abstraction is a notion that was originally introduced to reason about equivalence
between the operational and denotational semantics of a programming language [57, 701.
This notion has since been applied in the context of security, to reason about potential se-
curity issues when a description of a system in one language is translated to another [1].
Informally, a translation from language L1 to L2 is considered fully abstract if, for any given
system description S in L1 and its counterpart S' in L2, a malicious agent is not able to
extract more information by observing S' than it can from S. For instance, the transla-
tion mechanism from C# to the .NET Intermediate Language (IL) in an earlier version of
the compiler framework was not fully abstract, allowing an attacker to manipulate an IL
program in a way that was not possible at the C# layer [46].

Our work can be regarded as a systematic approach to checking whether an encoding
scheme from one model of a system to another-corresponding to a set of representation
mappings in our framework-satisfies a weaker form of full abstraction; that is, whether
it preserves a particular property that has been established in the original model of the
system. We are interested in further exploring the relationship between our work and full
abstraction, in particular extending our analysis technique to help designers construct a
translation scheme between abstractions that ensure a certain type of full abstraction.

The term representation has a long history in computer science. One of the most power-
ful concepts in programming language design is the notion of an abstract data type (ADT),
which is used to decouple the abstract interface of a data structure from its underlying
representations [50, 511. For example, a Set data type in a program may be implemented
by encoding the set as a list of elements, but this detail is kept private from any client of
the Set interface. As a result, the programmer will be able to substitute a different imple-
mentation of Set, while maintaining the properties of the interface the client relies on (also
called representation invariants).

Our use of the term representation is similar, with one major difference. Most program-
ming languages that support ADTs have a static or runtime mechanism to guarantee the
separation between an ADT and its representation. For example, in Java, the programmer
may use the keyword private to protect certain members of a class; any external attempt
to access these members will be detected and denied during the compilation step. In com-
parison, we make a modeling assumption that in general, no such protection mechanism
exists for most systems, and the attacker may have access to all possible representations of
a system entity. By manipulating the details of a representation, the attacker may be able
to undermine a security invariant that was established on a previous model of the system.
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7.3 Protocol Modeling and Analysis

A large body of work exists on formally verifying models of systems and protocols for
security. Most protocol languages describe a system in terms of abstract agents and mes-
sages between them, and are not designed for elaborating their underlying representa-
tions [2, 52, 81]. Several protocols that were proven to be secure have suffered attacks
when deployed on real systems [10], because the models used in the proofs omitted de-
tails that were exploitable by an attacker. Recent works in program verification use semi-
automated theorem provers such as Coq [16] and Boogie [13] to verify properties across
multiple layers of a system [21, 36, 47]. While these approaches can provide strong end-
to-end guarantees, constructing a proof requires a significant amount of human effort, and
may not be cost-effective in early design stages, where alternative decisions are still being
explored.

Codifying domain knowledge for reuse is not a new idea, and has also been applied in
the context of security analysis. Bansal et al. constructed a library of web-related models
(called WebSpi) in the ProVerif language [18], and used it to analyze the security of several
websites [12]; however, they do not provide a general composition mechanism, and the
library exists as a monolithic model that is not easily extensible. Almorsy et al. created
common security attack patterns in the Object Constraint Language (OCL), and used them
to identify architectural risks [9]. Our approach is complementary to theirs, in that the two
produce different types of feedback to the designer; their approach is capable of produc-
ing various security metrics (such as the size of attack surface), whereas our focus is on
performing an exhaustive behavior analysis of a model against a security property.

7.4 Refinement

A traditional approach to rigorous software development is based on the notion of refine-
ment [38, 88]. Here, the designer starts with an abstract design of the system and incre-
mentally refines it into a more concrete one, at each step ensuring the conformance of the
concrete system against its abstract predecessor.

In practice, this approach may not always be feasible. Given the complexity of modern
systems, the designer rarely has the luxury of building a system from scratch; instead,
starting from a high-level design, he reuses existing components to implement various
parts of the design, inadvertently introducing behavior that may invalidate a property of
the design. Furthermore, the designer may not have the freedom to modify the existing
components, forcing him to return to the abstract design to address the issue that originates
from a lower layer; current browsers will remain vulnerable to attacks such as CSRF, and so
the designer must deal with them by strengthening the authentication logic in the higher-
level design.

Event-B [5] is a specification and analysis framework designed to aid the construction
of a correct system through a series of refinement steps. Event-B provides various ways for
refining an abstract machine by, for example, replacing an abstract event with a concrete
one, splitting an event into multiple concrete events, introducing a new event, or merging
existing ones. The refinement patterns in Event-B are, in some sense, more elaborate than
our mapping, which currently does not allow an event from one process to be refined
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hierarchically by a group of events from another process.
On the other hand, our mechanism offers greater flexibility in that it allows (1) a system

to be partially refined, and (2) an entity to be associated with multiple representations
simultaneously. In comparison, Event-B requires every event in an abstract machine to be
refined during every step of refinement; so, this approach could not be used, for example,
to elaborate our model of the online store with OAuth, where only a part of the store
is mapped to the protocol model. Similarly, in Event-B, once an event is refined into a
concrete one, the alphabet term representing the abstract event is no longer available in
the resulting mode. Consequently, this approach would not allow the store model to be
elaborated with the HTTP and OAuth models in an arbitrary order; after the first step, the
abstract events from the store model would no longer be available for further composition.
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Chapter 8

Discussion

In this chapter, we will discuss limitations of our approach, and propose possible direc-
tions for improving its applicability and effectiveness. We will then conclude this thesis
with a reflection on our experience during this research project.

8.1 Limitations

Hierarchical mapping In our modeling approach, all events are treated as being atomic,
instantaneous actions. But sometimes it may be desirable to specify a certain event as itself
consisting of a set of more detailed events performed in a particular order. For instance,
an HTTP request, represented as a single event at a high-level of abstraction, may actually
involve a series of handshakes between the server and the client. To accurately model such
hierarchical relationships, our mapping could be extended to allow an event to be mapped
to a sequence of events.

For instance, suppose that a representation mapping for events is now a set of tuples
belonging to RE x Seq(RE); then, we could specify a mapping that describes how a typical
HTTP request is implemented as a sequence of low-level network requests [80]:

(req, (lookupDNS, tcpConnect, tcpSend, tcpWait, tcpLoad, tcpClose))

But this extension is likely to involve non-trivial modifications to our composition mech-
anism, as it would no longer be sufficient for a pair of processes to synchronize on single
events. Instead, we would need to introduce a more complex type of synchronization that
aligns two event sequences of different lengths. Prior works on relating event structures,
such as action refinement [84], may provide a good starting point for exploring such an
extension.

Modeling probabilistic behavior Our modeling approach is based entirely on a dis-
crete logic, and sometimes insufficient for capturing certain types of behavior in the real
world-especially those involving human agents. Since our processes behave in a non-
deterministic manner (to the extent allowed by their guards), the analysis will deliberately
choose the actions that lead to a violation of a given property. This means, for example,
that a human process will behave like a clueless user, always falling for phishing attacks
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or blindly browsing to a malicious web page. But this is a rather extreme view of user
behavior; provided with a clear, well-designed set of security warnings, users are capable
of making an informed decision while browsing the web [8].

A similar issue exists in our model of dataflow. Currently, a process is allowed access to
a piece of data only if it already owns the data or receives it through an event. This means,
by definition, that the process is not able to obtain new information through guessing or
statistical inference-again, a rather limited view of how an attacker interacts with systems
in the real world.

In order to capture a more realistic model of the above two, we would need to explore
other types of behavioral models beside ones that are purely logic-based (like ours). A
couple of approaches seem promising in this direction, including efforts to reconcile formal
and complexity-based models of cryptography [4], and works on probabilistic models of
information flow [37].

Other security properties Poirot currently allows the user to specify and check trace prop-
erties-a kind of property that can be evaluated by inspecting a single execution trace (e.g.,
"nothing bad ever happens"). However, certain classes of security properties inherently
talk about multiple traces of a system; these are also called hyperproperties [23]. For in-
stance, a non-interference property says that an attacker should not be able to learn new
information by observing how the system behavior changes when other users participate
in its services. In order to analyze such properties, our analysis technique would need to
be extended to perform a higher-order reasoning, where sets of traces are explored at a
time (instead of individual traces) to detect a potential violation of a property.

8.2 Future Directions

8.2.1 Secure Mapping Synthesis

In Section 4.2, we introduced the problem of mapping generation, which involves, given
a partial specification of a representation mapping, generating a full set of entries in the
mapping that leads to a violation of a given property. Recall that the problem can be
formulated as finding a set of witnesses to the following formula:

n -1 n-1

A A A A * (A\ sat(A/4,S1) A

i=1 j=1

E Sys E P . Sys = compose({p 1,p 2,...,pn},M,M 2,...Mn_1}) A
3 t c traces(Sys) * -Prop(t)

for n processes (p1,p2, ...,pn) and n - 1 mapping specifications (S 1, S2 ,...,Sn-

Instead of generating an insecure mapping, we may be able to synthesize a secure map-

ping, which, when used for composition, ensures that the resulting system satisfies a given

property. This problem can be stated by slightly modifying the last part of the above for-
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mula, as follows:

n-1 n-1

Mi EMe (A sat(Mj, Sj)) A
i=1 j=1

3 Sys E Pe Sys= compose({p1,p2,...,pn},{M1,M 2 ,...Mn_1}) A

V t E traces(Sys) * Prop(t)

That is, the problem now involves finding a set of witness mappings such that in every

trace of the resulting system, Sys, the property Prop holds.

Successfully implementing this synthesis framework will involve at least two chal-

lenges. First, the problem requires a different kind of analysis than the one that is currently

performed by Poirot, as it involves a higher-order reasoning over all possible traces of a

system; a recent extension to the Alloy Analyzer that allows reasoning over higher-order

quantifiers may provide an initial solution [561.

Another challenge is synthesizing a secure mapping that the user will find suitable for

an actual implementation. In principle, a secure mapping always exists: An empty map-

ping, which maintains a complete separation between two given processes, will preserve

all properties that have been previously established in those processes. But this mapping

is also not a very useful one! In practice, the user is likely to provide some initial partial

specification of a mapping, which would then be completed by the synthesis engine. How-

ever, it is possible that no completion would ensure a given property (for example, when

a high-level program is embedded into a platform that allows an attacker to trivially take

control of the program). The challenge in this case will be to provide useful feedback to the

user, explaining why no secure mapping exists, and suggesting possible ways to modify

the original processes to allow such mappings.

8.2.2 Alternative Analysis Approaches

The analysis performed by Poirot (which, in turn, relies on the Alloy Analyzer) is bounded;

that is, even if the analyzer fails to find a violation of a given property, there may still

exist a counterexample that involves a larger number of processes, events in a trace, or

data values beyond the scope given by the user. As an alternative backend to Alloy, we

could instead translate Poirot models into the input language of an SMT solver [14], which

provides stronger theoretical guarantees for certain decidable theories (such as strings and

integer arithmetics). This alternative translation, however, would involve restricting the

input language of Poirot-especially with respect to quantifiers, which often cannot be

discharged by an SMT solver without manual guidance from the user.

Another interesting question is whether there exists a conservative, general upper

bound (on the number of processes or trace lengths) for the type of models and proper-

ties that can be analyzed in Poirot. Such a bound, if it exists, would allow us to perform

an analysis on a finite-domain system, and still conclude that the property holds for sys-

tems of all sizes beyond that bound. While coming up with such a bound is a non-trivial

task, there have been some successful efforts in the past for restricted classes of security

protocols [22, 24]. Based on these works as starting points, we plan to investigate whether

we can identify a subset of Poirot that yields a general upper bound, but is still expressive

99



enough for modeling a wide variety of systems.

8.2.3 Other Applications

In this thesis, we have focused mostly on studying the security of web-based systems.
However, we believe that our approach is applicable to systems from other domains, in-
cluding, but not limited to:

" Safety-critical systems: Systems such as medical devices, automotive systems, and
public infrastructures are increasingly being controlled by software, allowing access
from external actors even without physical presence. It has been suggested that a
majority of failures in these systems are due to the poor anticipation by the designer
of the possible interaction between the system and its environment [43].

Traditional safety-engineering techniques such as FMEA and fault-tree analysis re-
quire that the designer already has full knowledge of potential failure modes of the
system. However, with the increasingly tighter integration of such systems, explicitly
enumerating all failure modes may be a daunting task. We believe that our approach
can be complementary to the existing safety methods; by mapping a design into an
environment model and subjecting it to our style of analysis, the designer may dis-
cover subtle, unknown interactions between the system and the environment that
can lead to a violation of a safety requirement.

" Side channel attacks: We have briefly discussed an example of side channel attacks
in Section 1.1.2, where the attacker is able to extract information from a program
that would be deemed secure under a typical model of input-output behavior. One
way to understand these attacks is to treat a program as having multiple representa-
tions: one as a traditional machine that produces an output value given a particular
input, and another as a physical process that consumes a different amount of time
or power depending on the given computation task. When represented in the latter
form, the program may be amenable to a different kind of analysis that would reveal
its potential security risks.

8.3 Conclusion

The complexity of a modern computer system is far beyond the reach of a single designer's
capacity to grasp, and abstraction will continue to be one of the most fundamental tech-
niques in system design. Abstraction, however, is not without its own risks, especially in
systems where security is a paramount concern. In an ideal world, one should be able to
reason about a security property at a high-level of abstraction, and then expect the same
property to be preserved in the final, deployed system. But in practice, the designer is
likely to make a series of decisions that inadvertently introduce undesirable behavior into
the system, invalidating a property that was established earlier in the development.

This thesis described an approach for addressing this challenge in system design, by
suggesting that common security knowledge be encoded into reusable models, and propos-
ing a new composition mechanism for constructing a single, cohesive model of the system
across multiple abstraction layers. But having completed this research project, we feel that
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our proposal is still somewhat unsatisfactory, in that it does not answer the really hard
questions: What are the details that can be safely ignored during abstraction, and what are
the ones that should be kept? Given a number of alternative ways to construct an abstrac-
tion of a system, is one more preferable than the other? If so, is there a systematic method
for exploring and evaluating these alternatives?

In general, no abstraction is perfect, and as such, no system can be made invulnerable
to all possible attacks. However, there have been previous efforts in trying to answer these
types of questions in more restricted settings. Most notably, in their seminal paper, Abadi
and Needham suggest a set of design guidelines for constructing a cryptographic protocol
that is likely to be resilient against possible attacks (both known and unknown) [3]. The
authors of the paper stress that these informal guidelines are meant to be complementary
to formal methods-perhaps hinting that there will always be questions that cannot be an-
swered using a formal analysis. Our hope is that by rigorously studying the fundamental
issues underlying common security failures, as we have attempted to do in this thesis, our
community will be better equipped to develop similar collections of guidelines for secure
construction of systems of the future.
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