
Redefining How Pharmaceutical Innovation Gets Done

by

Vahid Montazerhodjat

S.M., Electrical Engineering and Computer Science, MIT, 2013

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

February 2016

@ 2016 Massachusetts Institute of Technology

All Rights Reserved.

Signature of Aut

Certified by:

Accepted by: _

Signature redacted
J Vahid Montazerhodjat

Department of Electrical Engineering and Computer Science
December 29, 2015

Signature redacted
Andrew W. Lo

Charles E. and Susan T. Harris Professor

Director, Laboratory for Financial Engineering
Thesis Supervisor

Signature red acted LeliA

ILeslie A. Kolodziejski
Professor of Electrical Engineering and Computer Science

Chair, Committee for Graduate Students

ARCHIVES

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

APR 15 2016

LIBRARIES

hor:



2



Redefining How Pharmaceutical Innovation Gets Done
by Vahid Montazerhodjat

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Electrical Engineering and Computer Science

Abstract
The productivity of research and development in the bio-pharmaceutical industry has
been constantly declining since the early 2000's. One possible reason is that biomedical
projects are risky, take a long time, and require significant investment. Hence, sub-
stantial capital has been shifted away from the bio-pharmaceutical industry to other
industries that are perceived less risky, creating a funding gap for early-stage pharma-
ceutical R&D. Here, we investigate and improve upon a novel financing technique that
has been proposed to facilitate the R&D funding in the bio-pharmaceutical industry.
This new financing method is a clear example of rapidly evolving innovation in the fi-
nancial industry, from which the bio-pharmaceutical industry can benefit tremendously.

Apart from funding challenges, pharmaceutical companies have to clear regulatory
hurdles before they can commercialize their treatments. These drug-regulatory stan-
dards require a specific balance of benefits vs. risks for a therapy to be approved, and do
not currently take into account the severity of the disease that the therapy is targeting.
In the second part of this thesis, we propose an objective and quantitative Bayesian
decision analysis framework to incorporate patients' feedback into the drug-approval
process, and propose adjustment to the approval standards based on disease severity.

When launching their drug, pharmaceutical companies set the drug's price such
that expected revenues offset the costs of all the projects, failed or successful, that
were pursued in order to lead to this successful treatment resulting in costly treatment.
Recently, some highly curative therapies with high price tags have emerged for diseases
with large prevalence, such as hepatitis C. These high prices, coupled with the large size
of the patient population, have created an unsupportable financial burden for insurance
companies in order to cover the broadest patient population who could benefit from
these drugs. Despite delivering breakthrough discoveries, the pharmaceutical companies
producing these drugs have experienced a public backlash due to drug prices. In the
last part of this dissertation, we introduce a new financing paradigm to address the
issue of high aggregate costs for these highly curative therapies.

Thesis Supervisor: Andrew W. Lo
Title: Charles E. and Susan T. Harris Professor
Director, Laboratory for Financial Engineering
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Chapter 1

Introduction

D ESPITE many breakthroughs in the pharmaceutical and biotechnology industries,
including human genome sequencing, use of biomarkers to measure the response

to drugs, invention of better diagnostic techniques, and discovery of new biologics,

the productivity of the pharmaceutical industry-as measured by the number of new

drugs approved per R&D spending-has constantly been declining since the early 2000's

[1-4]. The scientific breakthroughs achieved over the past decade have opened many

avenues to pursue before a safe and effective drug for a disease is typically discovered.

The amount of information that academic researchers and pharmaceutical practitioners

have obtained through the use of genetic sequencing has ballooned over the past decade

because the cost of these technologies has constantly been declining [5]. However, there

has not yet been a proper infrastructure to use the obtained information efficiently.

The sheer number of possible paths to take, in addition to the ever-growing regulatory

safety requirements, has consequently made the drug development process costlier, more

challenging, riskier, and even longer [6].

Furthermore, the very scientific progress that has answered so many crucial ques-

tions about the biology of different diseases has also pushed therapeutic solutions toward

more personalized medicine and has consequently created a smaller target population

size for a typical marketed drug [7]. For example, the term breast cancer no longer refers

to a single disease; it instead serves as an umbrella for a set of diseases with quite het-

erogeneous genetics and biological profiles, which in turn require different treatments

and have different afflicted populations [8-10].1 Therefore, even after going through

a long, risky, and costly process, the revenue generated from the sale of a marketed

drug may not be as large as it was a decade ago-in the case of the so-called block-

busters-unless pharmaceutical companies charge dramatically higher prices for these

personalized therapeutics.

'See http://www.nationalbreastcancer. org/types-of-breast-cancer.
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CHAPTER 1. INTRODUCTION

Target ID Screening/ Lead
& Lead ID Preclinical Phase 1 N Phase 11) Phase INSubmission Lanuch

Validation Hit-to-Lea Opt.

Figure 1.1. A schematic for drug research and development chain.

Note. ID: identification, Opt: optimization. The submission stage is sometimes referred to as the
registration stage as well.

These factors, among many others, have led to unsatisfactory returns on the invest-

ment in early-stage drug research and discovery (R&D) made by conventional sources

of financing, namely, private and public equity. Recent economic conditions, e.g., the

financial crisis of 2008, and heated political debates on the fair valuation of break-

through curative therapies might further have discouraged investors from investing in

the bio-pharmaceutical industry. As a result of this growing uncertainty in the bio-

pharmaceutical industry over the past decade, venture capital firms, one of the main

funding sources for biotechnology start-up companies, have reduced their investment

in early-stage drug R&D and increased investment in other sectors that are perceived

as less risky, i.e., software and information technology (IT) [11]. For instance, the life-

sciences share of venture capital investment dollars in 2013 experienced its lowest level

since 2001 at 23.6% of the total dollars as documented in the National Venture Capi-

tal Association Yearbook 2014 [11]. This lowest level of investment in the life-sciences

sector is accompanied by venture capital investment in the software sector receiving

the highest percentage of total dollars in 2013 [11]. This outflow of capital from the

life-sciences sector, in turn, has caused a severe gap in funding between early-stage drug

research, usually funded through research grants provided by government agencies, and

late-stage clinical development, funded by large biotechnology and pharmaceutical com-

panies. This funding gap is usually referred to as the valley of death, and consists of

the discovery stage up to the preclinical stage in Figure 1.1.

Fortunately, the existence of risk and uncertainty in projects is not unique to the

bio-pharmaceutical industry and the notion of risk mitigation and management is at

the heart of financial economics. In fact, not only is there extensive literature on

risk mitigation in finance dating back decades, but there is also a well-established

apparatus in the financial markets for efficient implementation of these risk-sharing

methodologies. Due to the uniquely high competition in the financial industry, some of

the tools developed for risk management in financial markets are extremely efficient.

16
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Applying efficient tools borrowed from the financial industry to risk management in

the pharmaceutical industry is not a new concept. In fact, some of the big pharmaceu-

tical companies have been applying different financial risk management tools for several

decades [12]. However, the extent to which financial innovation has so far helped the

bio-pharmaceutical industry, especially the biotechnology companies, seems far from

satisfactory compared to the capacity of these innovations. Hence, the topics and tools

covered in this dissertation are unique in that they have not yet been employed in large

scale in the bio-pharmaceutical industry, and that they have the potential to change

the way that innovations get done in the pharmaceutical industry.

Outline. In Chapter 2, we improve upon a recently proposed method for financing

drug research and discovery, specifically, the early-stage drug R&D, covering different

parts of the drug discovery and development up to Phase II and Phase III in Figure 1.1

[13]. The proposed method in Chapter 2 allows bio-pharmaceutical companies to tap

into the global capital markets so as to lock in funding for their innovative, yet risky

projects, and to manage their exposure to different clinical compounds in their pipelines

as desired. In Chapter 3, we introduce a Bayesian decision analysis framework to

improve the efficiency of the drug-approval process that takes place at the Phase III and

submission stages of Figure 1.1. In that chapter, we aim to design a quantitative drug-

regulatory framework, in which the required safety/efficacy criteria in the drug-approval

process get adjusted based on the severity of the disease that the drug under test intends

to treat. Then, in Chapter 4, we propose a new method for the reimbursement of

highly curative therapies to address the issue of large aggregate costs for payers and

insurance companies, caused by the high price tag of these new treatments. In Figure

1.1, this problem corresponds to the launch stage, where pharmaceutical companies get

reimbursed for their marketed therapeutics. Finally, we conclude the dissertation in

Chapter 5.



18 CHAPTER 1. INTRODUCTION



Chapter 2

Financing Drug Research and

Development

Recently, Fernandez, Stein, and Lo [13] proposed a new financing vehicle, termed mega-

fund, for early-stage drug research and discovery. Fagnan et al. [14] applied the same

methodology to a portfolio of drug candidates for orphan/rare diseases. We extend the

megafund concept for funding drug discovery to allow for dynamic leverage in which the

portfolio of candidate therapeutic assets is financed initially by mostly equity, and debt

is introduced gradually as assets mature and begin generating cash flows. Leverage is

adjusted so as to maintain an approximately constant level of default risk throughout

the life of the fund. Numerical simulations show that applying dynamic leverage to a

small portfolio of orphan drug candidates can boost the return on equity almost twofold

compared to securitization with a static capital structure. Dynamic leverage can also

add significant value to comparable all-equity-financed portfolios, enhancing the return

on equity without jeopardizing debt performance or increasing risk to equity investors.

* 2.1 Introduction

New advances in biology and breakthroughs in genetic research have presented the

biotechnology and pharmaceutical industry with a host of promising new targets and

compounds to treat a range of diseases. However, the drug development process remains

underfunded, with investors shifting capital to other sectors due to mediocre returns

on perceived high investment risk. A comparison of five-year periods before and after

the recent financial crisis (20042008 vs. 20092013) shows that total funding of drug

R&D dropped 21%, from $21.5bn to $16.7bn [15]. Between 2004 and 2012, funding for

the National Institutes of Health (NIH) declined by 1.8% per year in real terms [16].

Although funding seems to be improving over the past year in response to a number

19



of prominent biotech initial public offerings, the capital inflows are highly concentrated

among a few large deals, and the number of new start-ups is not increasing [17]. In fact,

the lack of funding is particularly severe in early-stage development, prior to Phase II

clinical trials. For example, between 2004 and 2011, funding for pre-human/preclinical

R&D in the pharmaceutical industry declined by 2.3% per year [16]; 2013 saw only 63

first-time Series A financing rounds in biotechnology, almost 30% lower than the peak

of 89 in 2006 and the lowest level in a decade [15]; and the number of active U.S. biotech

venture capital firms declined from 201 in 2008 to 138 in 2014 [18].

Fernandez, Stein, and Lo [13] have proposed a "megafund" financing approach,

applying portfolio theory and securitization techniques to reduce the risk and enhance

the expected returns of a group of investments in drug development projects. Unlike a

traditional venture capital fund, the megafund issues both equity and debt ("research-

backed obligations" or RBOs), and the portfolio of projects-candidate drugs, licensing

agreements, and other intellectual property-serve as collateral for the RBOs. This

approach diversifies the typically binary drug investment results across a portfolio of

therapeutics, smoothing the portfolio's payout and reducing the volatility of its returns.

Securitization also changes the way that cash flows are distributed from a pool of

biomedical projects, allowing a broader array of investors to participate in the risk and

expected return of drug development according to their risk appetite.

However, issuing securitized debt generally requires collateral that generates a reli-

able and well-understood stream of cash flows such as an approved drug. Investments

in early-stage biomedical projects usually yield no cash flow until they reach Phase IIb,

and even then, they provide cash only sporadically, e.g., when they are out-licensed or

sold. The unpredictability of both the amount and timing of these cash flows suggests

that the megafund is impractical for portfolios exclusively focused on early-stage drug

discovery and development.

In this chapter, we extend the concept of the megafund to allow for time-varying

amounts of debt or "dynamic leverage," which can accommodate the startup phase of

a fund focused purely on preclinical research and development and early-stage trans-

lational medicine. Dynamic leverage adjusts the amount of debt that a securitization

vehicle can sustain, based on parameters related to its default probability (the likeli-

hood of the entity being unable to meet its payment obligations on a timely basis).

It is directly tied to a second concept, "dynamic risk measurement," in which the de-

fault risk of a bond is periodically measured via certain credit metrics and performance

indicators. Together, dynamic risk measurement and dynamic leverage allow us to con-

20 CHAPTER 2. FINANCING DRUG RESEARCH AND DEVELOPMENT



struct a time-varying securitization structure that reflects the evolving nature of the

portfolio's assets and optimizes the fund's capital structure accordingly.

* 2.2 Dynamic Leverage

Dynamic leverage is motivated by a simple observation: as a portfolio of biomedical

projects progresses, its risk should decrease. Therefore, the amount of debt of a given

default probability that can be supported by this portfolio, as a percentage of the total

invested capital required, should increase, effectively decreasing the amount of equity

required. Because cost of debt (assumed to be 5%-8% here) is lower than cost of

equity (usually in the 15% to 30% range), the substitution of equity by debt yields

an increase in return on equity. This default probability corresponds to a rating by

a Nationally Recognized Statistical Organization (NRSO) such as Moodys Investors

Service or Standard & Poor's. The default probability is also referred to as a solvency

standard, while the debt as a percent of capital is referred to as an attachment point.

At any point during the life of the fund, there is solvency risk, the risk that the

vehicle has insufficient cash to make scheduled interest and/or principal payments.

For each rating category, there is an associated solvency standard that specifies the

maximum acceptable risk of insolvency (default probability) for that rating class until

the notes are repaid (see Table 2.1, provided by Moody's Investors Service [19]). The

risk is calculated by examining all of the potential outcomes, and determining what

percentage of these outcomes result in an insolvency event. Therefore, the risk is related

to a measure of the volatility of future cash flows. The solvency standards are tabulated

in Table 2.1 for investment-grade rating categories and several maturities, as published

by Moody's Investors Service.

For any given rating tranche, the volatility of the corresponding cash flows may

change over time, and therefore the insolvency risk may change. Two factors determine

the potential for change in insolvency risk. The primary factor is whether the drug

development process is proceeding in accordance to an expected plan (or to the mean

of all possible outcomes) at each time instant. If the performance is ahead of the

plan, then the probability of insolvency should be lower than the assumed value. In

fact, if the performance is on the plan, then the probability should be lower as well

because the dispersion of future paths has narrowed, lowering the effective volatility.

The second factor is the possibility that inherent volatility has increased due to changes

in external factors, the environment, or improved data and forecasts. However, this class
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Table 2.1. Moody's "idealized" default probabilities (listed in percentage points) for investment-grade
ratings and several maturities.

Year

Rating 1 2 3 4 5 6

Aaa 0.0001 0.0002 0.0007 0.0018 0.0029 0.0040

Aal 0.0006 0.0030 0.0100 0.0210 0.0310 0.0420

Aa2 0.0014 0.0080 0.0260 0.0470 0.0680 0.0890

Aa3 0.0030 0.0190 0.0590 0.1010 0.1420 0.1830

Al 0.0058 0.0370 0.1170 0.1890 0.2610 0.3300

A2 0.0109 0.0700 0.2220 0.3450 0.4670 0.5830

A3 0.0389 0.1500 0.3600 0.5400 0.7300 0.9100

Baal 0.0900 0.2800 0.5600 0.8300 1.1000 1.3700

Baa2 0.1700 0.4700 0.8300 1.2000 1.5800 1.9700

Baa3 0.4200 1.0500 1.7100 2.3800 3.0500 3.7000

of exogenous events is outside the scope of this dissertation.

Dynamic measurement can be made more precise by employing adaptive trials,

during which the posterior probability of success is continuously updated; hence, the

amount of debt can be adjusted accordingly. However, for simplicity, we do not use

adaptive clinical trials in our model. Dynamic risk measurement is not only useful in

determining dynamic leverage, but in any application in which changes in risk have a

material impact. For example, in a financing structure that employs guarantees, the

guarantee fee can be adjusted dynamically based on the risk profile of the portfolio over

time.

In the following section, we present an illustrative example to shed more light on

the dynamic leverage concept.

* 2.2.1 An Illustrative Example for Dynamic Leverage

If we denote the cash inflow of the fund during each period i by Ci, and the scheduled

bond principal and interest payments for the end of the same period by Pi, considering

that any missed payments constitutes a default event, a default occurs if and only if
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Ci < Pi for some i between 1 and n, where n denotes the number of periods in the life

of the fund. For example, if each period is six months long and the fund is active for 6

years, we have n = 12.

The solvency standard for the rating category of the bond specifies a maximum

probability of default for the bond, represented by Pd, which is defined by the following

equation:

Pro (Ci Pi, 1 < i < n) -Pd, (2.1)

where Pro(.) denotes the probability of an event and the subscript 0 indicates that the

probability is evaluated using the information at the inception of the fund, i.e., year 0.

Using available information at fund inception, (2.1) states that the probability of having

sufficient cash to fulfill all future debt obligations, namely, to stay solvent, should be at

least 1 - Pd (ideally, we want to get it equal to this level).

For simplicity, let us suppose that only one of the two following scenarios can occur

in period 1. In the first scenario, denoted by si = 1, there is not enough cash to make

the debt payments scheduled for period 1, namely, C1 < Pi, and a default event occurs.

In the second scenario, represented by si = 2, the generated cash in period 1 is enough

to cover the debt payments, i.e., C1 P1. If we denote the probabilities of the first

and second scenarios in period 1 by Pro(si = 1) and Pro(si = 2), respectively, the

probability in (2.1) can then be decomposed into two parts:

Pro(Ci Pi, 1 < i < n) = Pro(si = 1) x 0 + Pro(si = 2)Pr1(Ci Pi, 2 < i < n)
(2.2)

= Pro(si = 2)Pri(Ci Pi, 2 < i < n) 1 - pd (2.3)

where, by rearranging the terms, we have:

Pri(Ci Pi, 2 < i < n) ) > 1 -Pd (2.4)
Pro(si = 2)

Because 0 < Pro(si = 2) < 1, (2.4) implies that in period 1, if the second scenario,

s, = 2, holds true, the probability of staying solvent over the remainder of the life of

the fund, represented by Pri (Ci P, 2 < i < n), is larger than the originally intended

probability, 1 - Pd. For example, if Pro(si = 2) = 99.5%, and Pd = 1%, in the second

scenario in period 1, the probability of the fund to stay solvent over its life is 99.5%.

Therefore, if no extra debt is borrowed in this scenario in period 1, the probability of

default on bonds will be guaranteed to be less than 0.5%, which is half of the initially



Table 2.2. Simulation parameters for orphan drug discovery and development.

Phase Cost (US$ mm) Success Rate (%) Duration (years) Valuation (US$ mm)

Preclinical 5 69 1.00 7.1

Phase I 5 84 1.66 27.6

Phase II 8 53 2.09 75.6

Phase III 43 74 2.15 321.5

NDA - 96 0.80 701.9

APP -- 817.6

Abbreviations. mm: million, NDA: New Drug Approval, APP: Approved.

targeted probability of default allowed by the rating of the bonds, i.e., 1%.

This is not surprising because, in the beginning, due to the existence of many

different paths with different statistical characteristics, the probability of default must

be higher than in the case where some of the "unfavorable" paths have been eliminated.

Therefore, to take advantage of this progress in the cash flow of the fund, we can

increase the leverage in the second scenario of period 1 (hence, increase the future debt

payments, Pis) to increase the expected probability of default back to its allowed level.

By dynamically adjusting the level of debt, we can minimize the cost of financing for

the fund in each period.

* 2.3 Dynamic Leverage for an Orphan Drug Fund

For concreteness, we use the statistical model described in [14] to illustrate dynamic

risk measurement and dynamic leverage. The focus of Fagnan et al. [14] on orphan

drugs targeting rare diseases is particularly well-suited for dynamic leverage because

these therapies are relatively new and not likely to be able to generate much cash flow

at fund inception. To highlight the role of dynamic leverage, we employ the identical

orphan drug parameters as in [14].

Following [13] and [14], a discrete-time finite-state Markov chain is employed to

model the evolution of each compound through the development cycle. The assumptions

regarding the average cost, success rate, duration, and valuation of each phase are listed

in Table 2.2.

Under these assumptions, consider an RBO structure to finance a portfolio of in-

vestigational therapeutics through their development cycle. In exchange for a pledge
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of the future royalty cash flows, equity and debt investors purchase notes and receive a

portion of these cash flow streams.

N 2.3.1 Cash Flow Waterfall

The key governing components of a securitization indenture, or controlling document,

are the rules laid out to regulate the flow of cash into the structure, known as a cash

flow waterfall. The waterfall sets the guidelines for how and when cash is allocated, and

what events trigger default, asset sales, or cash diversion. The flowchart in Figure 2.1

demonstrates the cash flow waterfall for the drug development megafund. Raising debt

and making distributions to the equity investors are performed such that the indenture

still passes the overcollateralization test after these actions.

* 2.4 Performance Results

Our simulated RBO portfolio comprises 9 compounds in the preclinical stage and 10

compounds in the clinical Phase I stage. The employed capital structure is composed of

one equity tranche, and two debt tranches, namely, mezzanine and senior tranches. The

initial amounts of capital for the equity, mezzanine, and senior tranches are $373.75mm,

$30mm, and $25mm, respectively, and the annual coupon rates for the mezzanine and

senior debt tranches are 8% and 5%, respectively. The maturity dates for the senior

and the mezzanine tranche are 4 and 6 years, respectively, and the outstanding bal-

ance of each tranche is paid in four equally sized installments over the two years (four

semesters) preceding the maturity dates. After 13 semesters (6.5 years), the portfolio of

the remaining compounds is liquidated. Assuming that the drug sale takes a year to set-

tle, the cash proceeds from the sale go to the equity investors in the fifteenth semester.

Furthermore, any compound, upon reaching a pre-specified target phase (Phase III in

the simulations), gets sold regardless of how far into the life of the fund is.

As the portfolio of compounds progresses and its risk decreases over time, the size of

the debt tranches-and therefore, the leverage-can be adjusted to maintain a desired

probability of default for each tranche. For simplicity, the tranche size adjustment in

the simulations is performed only for the mezzanine tranche, and up until the junior

bonds start principal repayment, i.e., until the fourth year. Figure 2.2 illustrates the

expected size of each tranche as well as the total capital deployed in the portfolio, from

both the equity and bond investors, over time.

Several trends in Figure 2.2 are worth noting. As seen in Table 2.2, the compounds

Sec. 2.4. Performance Results 25



Start

DefCHAPTERLiquidate . Pay D Residual goes to
the portfolio obligations equity

~N

Pay mgmt. fees,
bonds' interest

&1 principal

0 C test F Perform Sell drugs to cure
IC test OC/IC tests

P mgmt.: management
OC: overcollateralization

F Canbe NIC: interest coverage
I C test cured by raisinICinestcvrg

debt? Y: yes
N: no

P YP: pass
Raise ebt for F: fail

compound
development &/or

curing IC test

Fund theFund the Pay distribution
Fund the development of to equity End

reserve account compounds investors

Figure 2.1. Flowchart representation of the cash flow waterfall used in the fund for each six-month

period.

need progressively larger amounts of funding as they proceed in their development cycle.

If the total required capital is raised in its entirety at the beginning of the fund's life,

in anticipation that the compounds will follow their expected path of development,

it will impose a drag on the fund's returns. Should this capital be raised by calling

more equity, the return on the equity tranche would be diluted. Alternatively, if the

financing structure keeps the level of the invested equity constant, issuing more debt at

the beginning to meet the expected needs of future drug development, the probability
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Figure 2.2. Capital structure and total deployed capital in the fund for each six-month period.

of default for the debt tranches would inevitably increase. In this approach, used in

[14 , the probability of default increases because the deterioration in portfolio value

leads to more debt, while the equity is the same as before. Therefore, the probability of

default and the magnitude of loss will increase if more debt is issued at fund inception.

Dynamic leverage can mitigate this issue. More specifically, the mezzanine tranche

should increase in size over time to provide the capital required to fund the development

of the compounds moving forward in their development cycle. This is done only if raising

more debt does not hurt the probability of default for the junior notes; i.e., if it does

not increase the solvency risk. Hence, the increase in the mezzanine tranche is slow in

earlier periods, when the risk of the portfolio is relatively high, and the debt utilization

accelerates as the portfolio moves forward in time and risk is reduced.

A second trend seen in Figure 2.2 relates to the size of the equity tranche, which

decreases over time. This is due to distributions made to the equity investors when

(I)

Z)

0

-.L2UU
1 3 5
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the portfolio is on or above the expected path. These distributions come from the sale

of those compounds that have reached their target phase of development, and from a

portion of the debt raised.

As the risk of the portfolio decreases, we can replace an ever-increasing amount

of equity with debt to yield a higher rate of return to the equity investors. This can

be achieved without jeopardizing the solvency of the portfolio, as can be observed in

Table 2.3, where the simulated expected annualized internal rate of return (IRR) is

more than 25%, and the probabilities of default for the senior and mezzanine tranches

are less than 0.1 bps and 36.2 bps, respectively. These probabilities of default and the

expected losses, reported in Table 2.3, over the life horizon of the senior and junior

notes are comparable to that of AAA/Aaa and A+/A1 rated notes, respectively (see

Table 2.1).

* 2.5 Comparison to All-Equity Financing

The third column of Table 2.3, titled "All-EQ 1," compares the RBO structure to an

equity structure in which a portfolio of 7 compounds in the preclinical stage and 6 com-

pounds in Phase I is funded using the same level of equity as used in the RBO structure,

i.e., $373.75mm. As is observed in Table 2.3, fewer compounds can be financed during

the life of the fund under the equity structure compared to the RBO portfolio, since

there is no additional injection of capital into the equity portfolio after the initial equity

draw. The scientific impact of the equity structure is consequently smaller than that

of the RBO portfolio, as measured by the number of the compounds that are sold in

Phases II and III. Not only is the scientific impact smaller in the equity structure, but

the return characteristics of the equity tranche are not as promising as those of the

RBO structure. Due to the debt issuance over time, in the RBO case, more equity is

returned to the investors earlier. On the other hand, in the equity structure, the return

of capital to the equity investors is constrained by the speed with which the compounds

reach the target phase and get sold.

The fourth column in Table 2.3, titled "All-EQ 2," compares the performance of the

RBO fund to the performance of the same portfolio of compounds financed by equity

alone. The amount of equity used to finance this portfolio is matched to the peak

value of the total capital deployed in the RBO structure, i.e., $510.70mm as observed

in Figure 2.2. This level is almost 37% more than the RBO's initial equity level of

$373.75mm. As is seen in Table 2.3, the scientific impact of this new equity structure
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Table 2.3. Comparison of performance results for the RBO portfolio, two equity-financed portfolios,
and the static RBO portfolio.

RBOa All-EQ la,b All-EQ 2 a,b Static RBOC

Number of compounds acquired

Preclinical 10 7 10 8
Phase I 9 6 9 8

Research impact

Compounds sold in Phase II 2.6 1.8 2.6 2.2
Compounds sold in Phase III 5.5 3.8 5.5 4.7

Liabilities (US$ millions)
Capital 428.75 373.75 510.70 575.00
Senior tranche 25.00 - - 86.25
Initial mezzanine tranche 30.00 - - 115.00
Equity tranche 373.75 373.75 510.70 373.75

Equity tranche performance

Expected annualized IRR (%) 25.1 20.7 22.0 13.4
Pr(IRR = -100%) (bps) 38.4 < 0.1 < 0.1 60.0
Pr(IRR < 0%) (%) 10.6 14.5 10.3 13.1
Pr(IRR > 10%) (%) 77.3 69.8 74.6 66.7
Pr(IRR > 25%) (%) 49.8 39.9 42.0 18.4

Debt tranches performance

Senior tranche

Probability of default (bps) < 0.1 - - 0.8
Expected loss (bps) < 0.1 - - < 0.1

Mezzanine tranche

Probability of default (bps) 36.2 - - 56.0
Expected loss (bps) 9.1 - - 15.0

Abbreviations. RBO: research-backed obligations, IRR: internal rate of return, bps: basis
points (1 bp = 0.01%).
a All listed numbers are obtained using 20 million Monte Carlo simulation paths for each
portfolio.
b All-EQ 1 is an equity-financed portfolio where the initial investment is set equal to the
initial amount of equity in the RBO portfolio, i.e., $373.75mm, whereas All-EQ 2 is an
equity-financed portfolio with the initial investment set to the maximum amount of capital
in the RBO portfolio, i.e., $510.70mm (see Figure 2.2).

C For static RBO, see Fagnan et al. [141.
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is the same as that of the RBO structure. However, the financial performance of the

equity structure is still less promising than the performance of the RBO since more

equity is deployed in the equity structure than in the RBO structure. The only area in

which the equity portfolio outperforms the RBO portfolio is the probability of negative

returns on the equity. In the equity structure, there is a 10.3% chance of delivering

a negative return to the equity investors, whereas this chance is 10.6% for the RBO

portfolio, since the equity tranche in the RBO structure is the first to absorb any

capital losses. Due to the same reason, the probability that the equity is completely

wiped out, i.e., Pr(IRR = -100%), is larger for the dynamic RBO fund (38.4 bps)

compared to the all-equity-financed portfolios (< 0.1 bps). However, the upside of the

RBO portfolio is much higher than that of the equity portfolios, as measured by the

right tail probabilities of their returns reported in Table 2.3, i.e., Pr(IRR > 10%) and

Pr(IRR > 25%).

It is clear that adding dynamically leveraged debt to the picture, when feasible and

as needed to fund drug development, can enhance both the scientific and the financial

impact of the portfolio with little downside risk. Furthermore, if the effect of dynamic

leverage were replicated using an equity-financed portfolio, the amount of required

equity upfront would be significantly larger (almost 37% more initial equity than the

RBO's initial equity as observed in Table 2.3).

* 2.6 Comparison with Static Capital Structure

For comparison, the performance statistics of the RBO structure with a static capital

structure, which was used in [14], are reported in the last column of Table 2.3, labeled

"Static RBO". The dynamic RBO clearly outperforms the RBO with a static capital

structure from both scientific and financial perspectives. This performance superiority

is achieved without jeopardizing the debt performance.

Not only does dynamic leverage increase the return on equity, but it also helps

reduce the probability of default for the bondholders in comparison to a static capital

structure. This is achieved because less debt is borrowed initially, and more debt

issuance happens over time only if the risk of the portfolio permits taking such action.

Furthermore, because the probability of default is smaller for this dynamic capital

structure than the static RBO used in [14], the volatility of the return on equity is

consequently smaller too.
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E 2.7 Robustness Analysis

We check the robustness of our results by varying two key parameters: the value of the
approved drug (the bottom right entry in Table 2.2) and the correlation (p) of the asset

values. Simulations are performed for relative changes in the value of the approved drug

from 25% to 10% (denoted by Vpp) while the correlations of the asset values are varied

from 10% to 40%. Different performance measures are then computed-using up to

one billion Monte Carlo simulation paths-over the two-dimensional plane constituted

by the pairs of Vpp and p drawn from these intervals. The performance measures given

in Table 2.3 in the main text thus correspond to a single point on this two-dimensional

plane, representing Vap = 0 and p = 20%.

To highlight what may go wrong if the assumptions in the model are too optimistic,
the intervals above are not symmetric around the presumed values for the correlation

and the approval value. Finally, in our model we use risk-adjusted net present value

(rNPV) calculations along with the expected value of an approved orphan drug to

derive the expected value of the compound in earlier phases (e.g., Phase I or Phase

II). For example, if Vpp = -10%, not only does this imply a difference between the

presumed expected approval value and a typical realized approval value but it also

indicates that the values of the compounds in the preclinical stage, Phase I, Phase II,
and Phase III are lower than the assumed values in the model. Therefore, the robustness

analysis, presented here, simulates the performance of the fund for scenarios where the

management team uses these "incorrect" estimates-compared to the market values of

the assets-when determining the amount of leverage in each period. This models the

situation in which there is a sudden and unexpected event that impacts the market

values of the assets in the portfolio.

In the following analysis, four diverse aspects of the fund performance are considered:

the statistical characteristics of the return on equity or internal rate of return (IRR),
the probability of default (PD) and expected loss (EL) for both debt tranches, and last

but not least, the scientific impact of the fund.

When the assets in the fund are mispriced, there will be an inevitable discrep-

ancy between the realized IRR and the presumed IRR (listed in Table 2.3) due to the

over/undervaluation of the assets by the fund. However, this mispricing is independent

of the amount of the debt involved in the financing of the portfolio's projects. Hence,
by changing the approval value, a change in the IRR is expected regardless of how the

development of the compounds is financed. On the other hand, it is clear that, if the
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Figure 2.3. Expected annualized IRR for the RBO and equity structures.

Note. The textured shading in (a) and the solid lines in (b) correspond to the RBO structure.

fund's assets are assigned values higher than their market values, more debt will be

consequently borrowed than what can be afforded in the capital structure calculations,

which in turn increases the PD, and changes the statistical characteristics of the IRR.

To distinguish the role of under-/over-borrowing from the role that the mispricing

plays, the RBO performance is, whenever applicable, compared to that of the all-equity-

financed portfolio with the initial equity draw of $510.70mm (All-EQ 2 in Table 2.3). In

all of the three-dimensional figures in this section, the textured surfaces correspond to

the RBO portfolio, whereas the smooth shading is associated with the all-equity portfo-

lio. In the two-dimensional figures that follow, the solid and dashed lines correspond to

the RBO and equity structures, respectively, and each correlation value is represented

using a unique color.

Figure 2.3a illustrates the IRR for the RBO and equity portfolios, and Figure 2.3b

shows the cross-sections of the surfaces in Figure 2.3a along the Vapp axis, each associ-

ated with a different correlation value. Not surprisingly, both structures deliver higher

equity returns for higher asset values. However, there are a few differences worth not-

ing. First, the sensitivity of the IRR in the RBO structure with respect to the approval

value (as measured by the line slopes in Figure 2.3b) and the correlation of asset values

(as measured by the gap observed between two adjacent lines) is higher than that of

the IRR in the equity structure. This higher sensitivity is due to the debt element of

the RBO structure. In particular, as the correlation increases and/or the asset values



become smaller, the RBO portfolio becomes less solvent and the sensitivity of its IRR
to both p and the approval value in turn increases. Therefore, the gap between every
two consecutive solid lines is wider on the left side of Figure 2.3b, decreasing as it moves
to the right. Furthermore, the slopes of the solid lines in Figure 2.3b are larger on the
left side of the figure than the slopes of the same lines on the right side. On the other
hand, the slope of the dashed lines and the gaps between them do not quite change,
implying a relatively constant sensitivity to the correlation and approval value for the
IRR of the equity structure.

Second, as seen in Figure 2.3a, the expected IRR performance of the RBO structure
is better than that of the equity structure over most of the p - Vpp plane, except the
region for which the correlation and the asset valuations work against the solvency of
the portfolio. Specifically, for large correlations, the designed portfolio is not diversified
enough, while low asset values make the collateral less valuable. For the worst pair at
p = 40%, Vpp = -25%, the expected IRR for the RBO structure is 7.2%.

It should be noted that the expected IRR for the equity structure would not depend
on the correlation among the asset values if there were no distributions paid to the
equity investors before the final semester; i.e., all the dashed lines in Figure 2.3b would
collapse onto a single line. However, there is a slight dependence of the IRR on the
correlation in the equity-financed case in Figure 2.3b, since the equity capital is returned
to the investors upon receiving cash from the sale of the compounds reaching the target
phase.

The four panels in Figure 2.4 depict the probabilities of large returns (top panels)
and negative returns (bottom panels) for the RBO and equity portfolios. Figures 2.4a
and 2.4b demonstrate that the IRR distribution of the RBO structure clearly benefits
from a larger positive tail relative to the equity structure for all the asset values and
correlations considered here. As seen in Figure 2.4b, if the approval value is low, namely
less than 80% of the presumed value, the probability of receiving large equity returns
for the equity structure is the highest for the largest correlation value. This is in sharp
contrast with the trend for higher approval values, since the probability of large equity
returns is inversely proportional to the correlation for higher approval values. This is
an immediate impact of the correlation on the tail of the IRR distribution. Intuitively,
if the asset values are small, then a relatively large correlation is required to yield a
large return on equity.

While the RBO structure enjoys an IRR distribution with a large positive tail,
the negative tail of the IRR distribution is almost the same for both structures. In
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Figure 2.4. The probability of yielding large returns for the RBO and equity structures is illustrated

in panels (a) and (b) while the probability of delivering negative returns on these portfolios is presented

in (c) and (d).

Note. The textured shading in (a) and (c) and the solid lines in (b) and (d) correspond to the RBO

structure.

particular, regarding the probability of negative equity returns, for each correlation

value, there exists an approval value below which the RBO performance is worse than

the equity performance, and above which the RBO probability of a negative IRR is less

than that of the equity structure. This inflection point is seen in 2.4d for correlations

up to 20%. If the correlation value is larger than 20%, then for all the approval values

considered here, the RBO structure has a larger probability of yielding negative returns

than the equity structure, due to the fact that for large correlation values, the RBO
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portfolio is not diversified enough, becoming vulnerable to over-borrowed debt.
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Figure 2.5. Probability of default for the senior tranche is illustrated in panels (a) and (b) and the

expected loss for the senior tranche is presented in (c) and (d).

Figures 2.5 and 2.6 depict the PDs and ELs for the senior notes and the junior notes,

respectively. For the senior and mezzanine tranches, the PD and EL increase with the

correlation of asset values and with a decrease in the approval value. The worst-case

scenario for the senior tranche is for p = 40% and Vpp = -25%, where PD = 3.0

bps and EL = 0.5 bps, respectively. For the junior notes, the worst-case scenario

corresponds to the same scenario as in the senior tranche, for which PD = 6.6% and

EL = 2.6%.

As with the previous performance criteria, it is clear in Figure 2.7 that the number

of compounds sold in Phases II and III by the RBO structure is more sensitive to
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Figure 2.6. Probability of default for the mezzanine tranche is illustrated in panels (a) and (b) and

the expected loss for the mezzanine tranche is presented in (c) and (d).

both the change in the approval value and the correlation of asset values than is the

corresponding number of compounds sold by the equity structure. Ideally, for the best

scientific impact, the average performance of the equity structure should be completely

independent of the correlation. However, there is a slight dependence on p, as seen in

Figures 2.7b and 2.7d, because of distributions made to the equity investors.

N 2.8 Conclusion

The application of portfolio theory and securitization techniques to financing drug de-

velopment has the potential to be a disruptive technology. In this chapter we propose

a more efficient structure and higher returns to equity for investors by adding dy-
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Figure 2.7. The number of compounds sold in Phase III by the RBO and equity structures is illustrated
in panels (a) and (b) and the number of compounds sold in Phase II in these portfolios is presented in
(c) and (d).

Note. The textured shading in (a) and (c) and the solid lines in (b) and (d) correspond to the RBO
structure.

namic leverage, a novel securitization technique, to the megafund structure proposed

in [13, 14]. There are, of course, a number of practical challenges to launching and

managing a megafund. A comprehensive discussion of these challenges is beyond the

scope of this dissertation, but we address some of the most pressing issues in Appendix

A such as how the fund would be managed, whether the parameters we have assumed

are realistic, and how. Several other recent studies offer more detailed analysis of these

challenges and how they can be addressed [20-25]. The main result of this study is

that a fund incorporating dynamic leverage requires less upfront equity to finance the
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development of the compounds in the portfolio than previous implementations, and

generates higher returns with similar risks of default and loss. Furthermore, the volatil-

ity of equity returns is lower compared to a megafund structure with a static capital

structure. Borrowing more debt over time does not adversely affect the scientific out-

come because in the dynamically leveraged approach, the additional debt is only needed

if the portfolio is on its expected path.

Dynamic leverage magnifies performance, both positive and negative. If the actual

performance of the portfolio of projects is better than indicated by prior assumptions,

then the fund with dynamic leverage will outperform an equity-financed portfolio. If the

portfolio underperforms, however, then the equity-funded portfolio will perform better.

This result is expected, given the nature of leverage. The higher volatility (risk) of

equity returns in a megafund with dynamic leverage, as comparcd to an all-equity-

financed portfolio, is accompanied by a higher expected equity return. Nevertheless,

if further securitization technologies are introduced into the pharmaceutical portfolio

structure, we expect commensurate improvements to equity returns.
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Chapter 3

Drug Approval

Implicit in the drug-approval process is a trade-off between Type I and Type II error.

We propose using Bayesian decision analysis (BDA) to minimize the expected cost of

drug approval, where relative costs are calibrated using U.S. Burden of Disease Study

2010 data. The results for conventional fixed-sample randomized clinical-trial designs

suggest that for terminal illnesses with no existing therapies such as pancreatic cancer,

the standard threshold of 2.5% is too conservative; the BDA-optimal threshold is 27.9%.

However, for relatively less deadly conditions such as prostate cancer, 2.5% may be too

risk-tolerant or aggressive; the BDA-optimal threshold is 1.2%. We compute BDA-

optimal sizes for 25 of the most lethal diseases and show how a BDA-informed approval

process can incorporate all stakeholders' views in a systematic, transparent, internally

consistent, and repeatable manner.

N 3.1 Introduction

Randomized clinical trials (RCTs) have been widely accepted as the most reliable ap-

proach for determining the safety and efficacy of drugs and medical devices [26, 27], and

their outcomes largely determine whether new therapeutics are approved by regulatory

agencies such as the U.S. Food and Drug Administration (FDA). Because RCTs often

involve several thousand human subjects and require years to complete, the FDA is

sometimes criticized for being too conservative, requiring trials that are "overly large"

[28] and using too conservative a threshold of statistical significance.

In response to these concerns, the FDA has gone to great lengths to expedite the ap-

proval process for drugs intended to treat serious conditions and rare diseases [29, 30] .1

Four programs-fast-track, breakthrough-therapy, accelerated-approval, and priority-

review designations-provide faster reviews and/or use surrogate endpoints to judge

1See http: //www. fda. gov/f orpatients/approvals/f ast/ucm20041766.htm
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efficacy. However, the published descriptions [29, 30] do not indicate any difference in

the statistical thresholds used in these programs versus the standard approval process,

nor do they mention adapting these thresholds to the severity of the disease. Hence,

from the patient's perspective, the approval criteria in these programs may still seem

too conservative, especially for terminal illnesses with no existing treatment options.

Moreover, a large number of compounds are not eligible for these special designations,

and some physicians have argued that the regulatory safety requirements for drugs tar-

geting non-cancer life-threatening diseases, e.g., cirrhosis of the liver and hypertensive

heart disease, should be relaxed.

At the heart of this debate is the unavoidable regulatory trade-off between maxi-

mizing the benefits of effective therapies to patients and minimizing the risk to those

who do not respond to such therapies. Even under the current thresholds of statisti-

cal significance, both the U.S. and Europe have seen harmful drugs with severe side

effects make their way into the market [31-34]. Therefore, the FDA and the European

Medicine Agency (EMA)-government agencies mandated to protect the public-are

understandably reluctant to employ more risk-tolerant or aggressive statistical criteria

to judge the efficacy of a drug. However, we show in this chapter that when the risk of

adverse side effects is explicitly weighed against the severity of the disease, the standard

thresholds of statistical significance are often too conservative for the most serious af-

flictions such as pancreatic cancer. On the other hand, the same conventional statistical

thresholds can be too aggressive for milder illnesses such as prostate cancer. Therefore,

criticizing drug regulatory agencies for being overly conservative or aggressive without

explicitly specifying the burden of disease, i.e., the therapeutic costs and benefits for

current and future patients, is uninformed and vacuous.

In statistical terms, regulators must weigh the cost of a Type I error-approving an

ineffective therapy-against the cost of a Type II error-rejecting an effective therapy.

However, the term "cost" in this context refers not just to direct financial costs, but

also includes the consequences of incorrect decisions for all current and future patients.

Complicating this process is the fact that these trade-offs sometimes involve utilitarian

conundrums in which small benefits for a large number of patients must be weighed

against devastating consequences for an unfortunate few. Moreover, the relative costs

(risks) of the potential outcomes are viewed quite differently by different stakeholders;

patients dying of pancreatic cancer may not be as concerned about the dangerous side

effects of an experimental drug as a publicly traded pharmaceutical company whose

shareholders will bear the enormous cost of wrongful death litigation.
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The need to balance these competing considerations in decision-making for drug-

approval has long been recognized by clinicians, drug-regulatory experts and other

stakeholders [35-37]. It has also been recognized that these competing factors should

be taken into account when designing clinical trials [38-40] and one approach to quantify

this need is to assign different costs to the different outcomes [40].

In this chapter, we propose to make these trade-offs explicit by applying a Bayesian

decision analysis (BDA) framework to the design of RCTs as advocated by [40, 41]. In

this framework, Type I and II errors are assigned different costs, as first suggested by

[38-40], but we also take into account the delicate balance between the costs associated

with an ineffective treatment during and after the trial. Given these costs, other pop-

ulation parameters, and prior probabilities, we can compute an expected cost for any

fixed-sample clinical trial and minimize the expected cost over all fixed-sample tests to

yield the BDA-optimal fixed-sample trial design.

The concept of assigning costs to outcomes and employing cost-minimization tech-

niques to determine optimal decisions is well known [42]. Our main contribution is to

apply this standard framework to the drug-approval process by explicitly specifying the

costs of Type I and Type II errors using burden-of-disease data. This approach yields a

systematic, objective, transparent, and repeatable process for making regulatory deci-

sions that reflects differences in disease-specific parameters. Moreover, given a specific

statistical threshold, and assuming that this threshold is optimal from a BDA perspec-

tive, we can invert the relationship between cost parameters and their corresponding

BDA-optimal tests to impute the costs implicit in a given clinical trial design. This

allows us to infer the FDA's implicit weighting of Type I and II errors, which yields an

objective measure of whether its approval thresholds are too conservative or aggressive.

Using U.S. Burden of Disease Study 2010 data [43], we show that the current stan-

dards of drug-approval are weighted more on avoiding a Type I error (approving ineffec-

tive therapies) rather than a Type II error (rejecting effective therapies). For example,

the standard Type I error of 2.5% is too conservative for clinical trials of therapies for

pancreatic cancer-a disease with a 5-year survival rate of 1% for stage IV patients

(American Cancer Society estimate, last updated 3 February 2013) [44]. The BDA-

optimal size for these clinical trials is 27.9%, reflecting the fact that, for these desperate

patients, the cost of trying an ineffective drug is considerably less than the cost of not

trying an effective one. On the other hand, 2.5% may be too aggressive for clinical

trials testing prostate cancer therapies, for which the BDA-optimal significance level is

1.2%. It is worth noting that the BDA-optimal size is larger not just for life-threatening
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cancers but also for serious non-cancer conditions, e.g., cirrhosis of the liver (optimal

size = 16.6%) and hypertensive heart disease (optimal size = 8.1%).

Although there are obvious utilitarian reasons for weighting Type I errors more

heavily, they do not necessarily apply to all diseases or stakeholders. For terminal

illnesses where patients have no choice but death, the relative costs of Type I and

II errors are very different than for non-life-threatening conditions. This difference is

clearly echoed in the Citizens Council report published by the U.K.'s National Insti-

tute for Health and Care Excellence (NICE) [45], and has also been documented in a

series of public meetings held by the FDA as part of its five-year Patient-Focused Drug

Development Program, in which the gap between patients' risk/benefit perception and

the FDA's was apparent [46, 47]. Our BDA framework incorporates the severity of the

disease into its design-as advocated in part 312, subpart E of title 21 Code of Fed-

eral Regulation (CFR) [48]-and the FDA reports [46, 47], among many other sources,

can be used to determine the relative cost parameters from the patients' and even the

general public's perspective in an objective and transparent manner. As suggested in

[49], using hard evidence, i.e., available data, for assigning costs to different events is a

feasible remedy to the controversy often surrounding Bayesian techniques due to their

subjective judgment factor in the cost-assignment process. In fact, Bayesian techniques

have survived controversy and are currently used extensively in clinical trials for medi-

cal devices, mainly due to the support received from the FDA's Center for Devices and

Radiological Health (CDRH) and the use of hard evidence in forming priors in those

trials [49).

In Section 3.2, we describe the shortcomings of a classical approach in designing

a fixed-sample test. We then lay out the assumptions about the clinical trial to be

designed, and the primary response variable affected by the drug in Section 3.3. The

BDA framework is introduced in Section 3.4, which can be shown to mitigate the

shortcomings of the classical approach, and the BDA-optimal fixed-sample test is then

derived. We apply this framework in Section 3.5 by first estimating the parameters

of the Bayesian model using the U.S. Burden of Disease Study 2010 [43]. Using these

estimates, we compute the BDA-optimal tests for 25 of the top 30 leading causes of

death in the U.S. in 2010 and report the results in Section 3.6. We conclude in Section

3.7.
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N 3.2 Limitations of the Classical Approach

Two objectives must be met when determining the sample size and critical value for

any fixed-sample RCT: (1) the chance of approving an ineffective treatment should be

minimized; and (2) the chance of approving an effective drug should be maximized.

The need for maximizing the approval probability for an effective drug is obvious.

In the classical (frequentist) approach to hypothesis testing-currently the standard

framework for designing clinical trials-these two objectives are pursued by controlling

the probabilities of Type I and Type II errors. Type I error occurs when an ineffective

drug is approved, and the likelihood of this error is usually referred to as the size of

the test. Type II error occurs when an effective drug is rejected, and the complement

of the probability of this error is defined as the power of the test.

It is clear that, for a given sample size, minimizing one of these two error probabilities

is in conflict with minimizing the other (for example, the probability of a Type I error

can be reduced to 0 by rejecting all drugs). Therefore, a balance must be struck between

them. The classical approach addresses this issue by constraining the probability of

Type I error to be less than a fixed value, usually a = 2.5% for one-sided tests, and, by

choosing a large enough sample size, it maintains a power for the alternative hypothesis,

right around another somewhat arbitrary level, usually 1 - 0 = 80%.

The arbitrary nature of these values for the size and power of the test raises legit-

imate questions about their justification. As will be seen later, these particular values

correspond to a specific situation, which need not (and most likely does not) apply to

clinical trials employed to test new drugs for different diseases. It is also worth noting

that these numbers were brought to the design paradigm of clinical trials from other

industries, in particular, the manufacturing industry. Therefore, it is reasonable to ask

if these totally different industries should use the same values for the size and power

of their tests. The consequences of wrongly rejecting a high-quality product in quality

testing must be much different from the results of mistakenly rejecting an effective drug

for many patients with a life-threatening disease, who may desperately be looking for

effective therapeutics. In other words, there must be different costs associated with

each of these wrong rejections.

In addition to the arbitrary nature of the commonly used values for the size and

power of tests, there is an important ethical issue with regard to the classical design

of clinical trials. The frequentist approach aims to minimize the chance of ineffective

treatment after the trial, which is caused by Type I error. However, it does not take into
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account the ineffective treatment during the trial, and dismisses that at least half of the

recruited subjects are exposed to ineffective treatment during the trial, assuming a bal-

anced two-arm RCT [40, 50]. This ethical issue, along with financial considerations, is

the principal reason that the sample size in classical trial design is not further increased

to get more power. Recently there have been more novel frequentist designs for clinical

trials, e.g., group sequential and adaptive tests, to decrease the average sample size in

order to mitigate this ethical issue. However, one shortcoming of all these approaches

is that they do not take into account the severity of the target disease.

Finally, the classical approach to the design of clinical trials does not take into

account the possible number of patients who will eventually be affected by the outcome

of the trial. Patients suffering from the target disease may be affected positively in the

case of an approved effective drug, or adversely in the case of an approved ineffective

drug or a rejected effective drug. From this and similar arguments, it is clear that the

sample size of the trial should depend on the size of the population of patients who

will be affected by the outcome of the trial, as suggested in [39, 50, 51]. We refer to

the population to be affected by the outcome of the trial as the target population in

the rest of this chapter, and note that it is the same as the patient horizon originally

proposed in [38, 39] and later used in [50, 51]. This idea has an immediate and intuitive

consequence: If the target population of a new drug comprises 100,000 individuals, its

clinical trial must be larger than a trial designed for a drug with a target population of

only 10,000 individuals.

* 3.3 A Review of RCT Statistics

In this section, we explain the basic statistics of RCTs and define the notation employed

in this chapter. We begin with the design of the balanced two-arm RCT where the

subjects are randomly assigned to either the treatment or control arm, and there is an

equal number of subjects in each arm. For simplicity, the focus is only on fixed-sample

tests, where the number of subjects per arm, denoted by n, is determined prior to the

trial and before making any observations. Furthermore, only after collecting all the

observations, shall a decision be made on whether or not the drug is effective. However,

our approach is equally applicable to more sophisticated designs since the more novel

designs usually try to mimic the statistical performance of a fixed-sample test, e.g.,

frequentist power and size, while minimizing sample size.

A quantitative primary endpoint is assumed for the trial. For instance, the endpoint
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may be the level of a particular biochemical in the patient's blood, which is measured

on a continuous scale and modeled as a normal random variable [27, 52]. The subjects

in the treatment and control arms receive the drug and placebo, respectively, and each

subject's response is independent of all other responses. It is worth noting that if there

exists a current treatment in the market for the target disease of the drug, then the

existing drug, instead of the placebo, is assumed to be administered to the patients

in the control arm. In either situation, it is natural to assume that the administered

drug to the control arm patients is not toxic. The response variables in the treatment

arm, denoted by {Ti,..., T}, are independent and identically distributed (iid), where

Ti d V(1t,U .2 ). Similarly, for the control (placebo) arm responses, represented by

{X1, ... , Xn}, we assume Xi2 _ (p, I. 2 ), where the response variance in each arm

is known and equal to a 2 . The response variance is assumed to be the same for both

arms, but this assumption can easily be relaxed.

Furthermore, we focus only on superiority trials, in which the drug candidate is

likely to have either a positive effect or no effect (possibly with adverse side effects).2

Let us define the treatment effect of the drug, 6, as the difference of the response means

in the two arms, i.e., 6 A pt - px. The event in which the drug is ineffective and has

adverse side effects defines our null hypothesis, H0 , corresponding to 6 = 0 (and the

assumption of side effects is meant to represent a "worst-case" scenario since ineffective

drugs need not have any side effects). On the other hand, the alternative hypothesis,

H,, represents a positive treatment effect, 6 = 6 o > 0. Therefore, a one-sided superiority

test is appropriate for distinguishing between these two point hypotheses.

In a fixed-sample test with n subjects in each arm, we collect observations from the

treatment and control arms, namely, {T}L 1 and {X}n, respectively, and form the

following Z-statistic (sometimes referred to as the Wald statistic):

Zn = (Ti -Xi), (3.1)
i=1

where Zn is a normal random variable, i.e., Zn ~V K(6V'd, 1), and -n = 2 is the so-

called information in the trial [52]. The Z-statistic, Zn, is then compared to a critical

value, An, and the null hypothesis is not rejected, denoted by H = H0 , if the Z-statistic

is smaller than the critical value. Otherwise, the null hypothesis is rejected, represented

2 Non-inferiority trials-where a therapy is tested for similar benefits to the standard of care but

with milder side effects-also play an important role in the biopharma industry, and our framework

can easily be extended to cover these cases.
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by H= HI:
H=H1

Zn Z An. (3.2)
H=Ho

As is observed in (3.2), the critical value used to reject the null hypothesis, or equiv-

alently the statistical significance level, is allowed to change with the sample size of

the trial, hence the subscript n in An. This lends more flexibility to the trial than

the classical setting, where the significance level is exogenous and independent of the

sample size. Since a fixed-sample test is completely characterized by two parameters,

namely, its sample size and critical value, as seen in (3.2), we denote a fixed-sample

test with n subjects in each study arm and a critical value An by fxd(n, An). It should

be noted that, for the sake of simplicity, we use sample size and number of subjects

per arm interchangeably throughout this work. Finally, the assumption that individual

response variables are Gaussian is not necessary. Instead, as long as the assumptions

of the Central Limit Theorem hold, the distribution of the Z-statistic, Zn, in (3.1)

follows an approximately normal distribution. Therefore, this model should be broadly

applicable to a wide range of contexts.

M 3.4 Bayesian Decision Analysis

The costs associated with a clinical trial can be categorized into two groups: in-trial

costs and post-trial costs, where in-trial costs, while independent of the final decision

of the clinical trial, depend on the number of subjects recruited in the trial. Post-

trial costs, on the other hand, depend solely on the final outcome of the trial and are

assumed to be independent of the number of recruited patients. In particular, assume

there is no post-trial cost associated with making a correct decision, i.e., rejecting an

ineffective drug or approving an effective drug. We further allow asymmetric post-trial

costs associated with Type I and Type II errors, denoted by Ci and C2, respectively.

For brevity, let us call "the post-trial cost associated with Type I error" simply the

Type I cost, and similarly for the Type II cost.

Specifying asymmetric costs for Type I and Type II errors allows us to incorporate

the consequences of these two errors with different weights in our formulation. For ex-

ample, in the case of a life-threatening disease, where patients can benefit tremendously

from an effective drug, the Type II cost-caused by mistakenly rejecting an effective

drug-must be much larger than the Type I cost, i.e., C1 < C2. On the other hand, if

the disease to be treated is mild, e.g., mild anemia or secondary infertility, the cost of
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Table 3.1. Post-trial and in-trial costs associated with a balanced fixed-sample randomized clinical

trial.

Post-Trial In-Trial

H=HO H=H1

H = HO 0 C1 nc1

H = H1  C2 0 nfC2

C1 = Nc1 and C2 = Nc 2 .

adverse side effects can be much larger than the cost of not approving an effective drug

for the disease, hence, the Type I cost can be much larger than the Type II cost, i.e.,

C1 > C2. If the severity of the disease is intermediate, e.g., moderate anemia or mild

dementia, then these two post-trial costs may be more or less the same, i.e., C1 C2.

Furthermore, the two post-trial costs, C1 and C2, are assumed to be proportional to

the size of the target population of the drug. The larger the prevalence of the disease,

the higher the cost caused by a wrong decision in favor of/against the null hypothesis;

therefore, the larger the values of Ci and C2. Let us assume this relation is linear in the

target population size. More precisely, if the size of the target population is N, assume

there exist two constants, cl and C2, which are independent of the disease prevalence

and depend only on the adverse side effects of the drug and the characteristics of the

disease, respectively, such that the following linear relation holds:

Ci = Nci, i = 1, 2, (3.3)

where cl and c2 can be interpreted as the cost per person for Type I and Type II errors,

respectively. Lower case letters represent cost per individual, while uppercase letters

are used for aggregate costs.

In-trial costs are mainly related to patients' exposure to inferior treatment, e.g., the

exposure of enrolled patients to an ineffective but toxic drug in the treatment arm or

the delay in treating all patients (in the control group and in the general population)

with an effective drug. If the drug being tested is ineffective, since there are n subjects

in the treatment arm taking this drug, they collectively experience an in-trial cost of

nc1 . In this case, the patients in the control arm experience no extra cost, since the

current treatment or the placebo is assumed not to be toxic. However, if the drug is

effective, the situation is quite different. In this case, for every additional patient in the



trial, there will be an incremental delay in the emergence of the drug in the market.

This delay affects all patients, both inside or outside the trial. Therefore, we model

this cost to be a fraction of the aggregate Type II cost C2, and linear in the number of

subjects in the trial, n. To be more specific, we assign an in-trial cost of nTyC2 for an

appropriate choice of -y (for the results presented in Section 3.6, we use -y = 4 x 10-5).

All the cost categories associated with a fixed-sample test are tabulated in Table 3.1.

For a given fixed-sample test fxd(n, An), where Zn is observed, and the true under-

lying hypothesis is H, we can define the incurred cost, denoted by C(H, Zn, f xd(n, An)),

as the following:

Ncl11{z,} + nci, H = Ho

C(H, Zn, f xd(n, An)) = , (3.4)

{Nc2{Zf,<x,} + nyNc 2 , H = H1

where 1 is the indicator function and takes on the value 1 when its argument is true,

and is equal to zero otherwise. Here, the first line corresponds to the case where the

drug is ineffective, denoted by H = Ho. In this case, there will be a post-trial cost,

C1, caused by Type I error, i.e., approving the ineffective drug, which yields the first

term. The second term in the first line is the in-trial cost of having n patients in the

treatment arm taking this ineffective drug. The second line in (3.4) represents the case,

in which the drug is effective, denoted by H = H1 . In this case, the second term is

the in-trial cost, as explained earlier, and the first term is due to rejecting the effective

drug, i.e., if Zn < An, resulting in the post-trial Type II cost.

BDA-Optimal Fixed-Sample Test

Let us assume prior probabilities of po and p, for the null and alternative hypotheses,

respectively, i.e., P(Ho) = po and P(H1 ) = pi, where popi > 0 and po + pi = 1.

It is then straightforward to calculate the expected value of the cost, associated with

fxd(n, An) and given by (3.4), as the following:

C(fxd(n, An)) A E[C(H, Zn, f xd(n, An))]

= poc1 [NI>(-An) + N_2QIJ(An - JoV/Zj) + n(1 + 'yNT 2) , (3.5)

where 41 is the cumulative distribution function of a standard normal random variable,

Z ~ K(0, 1), and E is the expectation operator. It is worth noting that if po = pi = 0.5,
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then T2 = P1c2 reduces to T2 = ., i.e., the normalized Type II cost. For the remainder

of this chapter, we assume a non-informative prior, i.e., po = p, = 0.5, and hence regard

T2 as the normalized Type II cost that is the ratio of Type II cost to Type I cost.

A non-informative prior is consistent with the "equipoise" principle of two-arm

clinical trials [53]. However, in some cases we can formulate more informed priors

based on information accumulated through earlier-phase trials and other sources. In

such cases, the randomization of patients should reflect this information-especially, for

life-threatening conditions-for ethical reasons, and the natural framework for doing so

is a Bayesian adaptive design [28, 54]. Although this framework is beyond the scope of

our current analysis, BDA can easily be applied to adaptive designs and we will consider

this case in future research.

The optimal sample size n* and critical value A* are determined such that the

expected cost of the trial, given by (3.5), is minimized (see Appendix B.1 for a detailed

description). The fixed-sample test with these two parameters, i.e., fxd(n*, A*), will

be referred to as the BDA-optimal fixed-sample test. Furthermore, given any fixed-

sample test, fxd(n, A)-and assuming the test is a BDA-optimal test for a disease with

unknown severity (Type II cost) and prevalence-we can impute the severity of disease

and its prevalence (see Appendix B.2) implied by the threshold A.

* 3.5 ~Estimating the Cost of Disease

In this section, the two cost parameters, ci and c2, associated with adverse effects of

medical treatment and severity of the disease to be treated, respectively, are estimated.

To estimate these two parameters, we use the U.S. Burden of Disease Study 2010 [43],

which follows the same methodology as of the comprehensive Global Burden of Disease

Study 2010 (GBD 2010), however, with only U.S.-level data. Since only the ratio of c2

over ci, i.e., T2, appears in the expected cost of the trial in (3.5), we use the severity

estimates of adverse effects of medical treatment and of disease in the U.S. for ci and

c2, respectively.

One of the key factors in quantifying the burden of disease and loss of health due to

different diseases and injuries in the GBD 2010 and the U.S. Burden of Disease Study is

the YLD (years lived with disability) attributed to each disease in the study population.

To compute YLDs, these studies first specify different sequelae (outcomes) for each

specific disease, and then multiply the prevalence of each sequela by its disability weight,

which is a measures of severity for each sequela and ranges from 0 (no loss of health) to 1
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(complete loss of heath, i.e., death). For example, the disability weight associated with

mild anemia is 0.005; for the terminal phase of cancers without medication, the weight is

0.519. These disability weights are robust across different countries and different social

classes [55], and the granularity of the sequelae is such that the final YLD number for

the disease is affected by the current status of available treatments for the disease. This

makes YLDs especially suitable for our work, because c2 is the severity of the disease to

be treated, taking into account the current state of available therapies for the disease.

We estimate the overall severity of disease using the following equation:

D + YLD
c= (3.6)D+N'

where D is the number of deaths caused by the disease, YLD is the number of YLDs

attributed to the disease and N is the prevalence of the disease in the U.S., all in 2010.

It should be noted that YLDs are computed only from non-fatal sequelae; hence, to

quantify the severity of each disease, we add the number of deaths (multiplied by its

disability weight, i.e., 1) to the number of YLDs and divide the result by the number

of people afflicted with, or who died from, the disease in 2010, hence D + N in the

denominator. Furthermore, instead of using the absolute numbers for death, YLD,

and prevalence, we use their age-standardized rates (per 100,000) to get a severity

estimate that is more representative of the severity of the disease in the population.

Age-standardization is a stratified sampling technique, in which different age groups

in the population are sampled based on a standard population distribution proposed

by the World Health Organization (WHO) [56]. This technique facilitates meaningful

comparison of rates for different populations and diseases.

To estimate ci, which is the current cost of adverse effects of medical treatment per

patient, we insert the corresponding numbers for the adverse effect of medical treatment

in the U.S. from the U.S. Burden of Disease Study 2010 [43] into (3.6), and the result is

ci = 0.07. It is worth noting that the value of ci can be made more precise and tailored

to the drug under test if the information from earlier clinical phases, e.g., Phase I and

Phase II, is used. However, for simplicity, we only consider a universal value for ci for

all diseases.

* 3.6 BDA-Optimal Tests for the Most Deadly Diseases

Using (3.6) and the YLD, death and prevalence rates reported in the U.S. Burden of

Disease Study 2010 [43], we can now estimate the severity of some of the leading causes
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of death in the U.S. in 2010. Using the estimated severity of each disease, we can then

determine the BDA-optimal fixed-sample test for a drug intended to treat that disease.

The drug is assumed to have either a positive effect on the disease (corresponding to

6o = I) or no effect with adverse side effects (corresponding to 6 = 0).

The leading causes of death, listed in Table 3.2, are determined in [43] by ranking

diseases and injuries based on their associated YLLs (Years of Life Lost due to prema-

ture death) in the U.S. in 2010. The following categories, while among the leading causes

of premature mortality in the U.S., are omitted from Table 3.2 either because they are

not diseases or because they are broad collections (their U.S. YLL ranks are listed in

parentheses): road injury (5), self harm (6), interpersonal violence (12), preterm birth

complications (14), drug-use disorders (15), other cardiovascular/circulatory diseases

(17), congenital anomalies (19), poisonings (26), and falls (29). We have also divided

two categories into subcategories in Table 3.2: stroke is listed as ischemic stroke (3a)

and non-ischemic stroke (3b), and lower respiratory tract infections is divided into four

diseases (11a)-(11d). These choices yield 25 leading causes of death for which we com-

pute BDA-optimal thresholds and compare them to more traditional values.

The estimated severity for each disease, c2, is reported in the fourth column of

Table 3.2. As can be seen, some cancers are not quite as severe as other non-cancerous

diseases. For instance, prostate cancer (c2 = 0.05), is much less harmful than cirrhosis

(c2 = 0.49), which must be due to the current state of medication for prostate cancer

and the lack of any effective treatment for cirrhosis in the U.S. On the other hand, some

cancers are shown to be extremely deadly, e.g., pancreatic cancer with c2 = 0.71. Using

this measure of severity, we have an objective data-driven framework where different

diseases with different afflicted populations can be compared with one another.

Having estimated the severity of different diseases, we apply the methodology in-

troduced in Section 3.4 to determine BDA-optimal fixed-sample tests for testing drugs

intended to treat each disease listed in Table 3.2. The sample size, critical value, size,

and statistical power of these BDA-optimal tests are reported in Table 3.2. For com-

parison, we have also listed the imputed prevalence and severity for three conventional

2.5%-level fixed-sample tests in the last three rows of Table 3.2 under the assumption

that these conventional thresholds are BDA-optimal (see Appendix B.2).

Some of the diseases listed in Table 3.2 are no longer a single disease but rather a

collection of diseases with heterogeneous biological and genetic profiles, and with dis-

tinct patient populations [8, 57], e.g., breast cancer. This trend towards finer and finer

stratifications is particularly relevant for oncology, where biomarkers have subdivided
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Table 3.2. Selected diseases from the 30 leading causes of premature mortality in the U.S., their rank
with respect to their U.S. YLLs, prevalence, and severity. The sample size and critical value for the
BDA-optimal fixed-sample tests as well as their size and statistical power at the alternative hypothesis
are reported.

Optimal Optimal
YLL Prevalence Sample Critical Size Powera

Rank Disease Name (Thousands) Severity Size Value (%) (%)

1 Ischemic heart disease

2 Lung cancer

3a Ischemic stroke

3b Hemorrhagic/other non-ischemic stroke

4

7
8

Chronic obstructive pulmonary disease

Diabetes

Cirrhosis of the liver

9 Alzheimer's disease

10
11a

Colorectal cancer

Pneumococcal pneumonia

11b Influenza

11c H influenzae type B pneumonia

11d
13

16
18

20

21

Respiratory syncytial virus pneumonia

Breast cancer

Chronic kidney disease

Pancreatic cancer

Cardiomyopathy

Hypertensive heart disease

22 Leukemia

23 HIV/AIDS

24

25
27
28

Kidney cancers

Non-Hodgkin lymphoma

Prostate cancer

Brain and nervous system cancers

30 Liver cancer

- 2.5%-level Fixed-Sample (85% power)

- 2.5%-level Fixed-Sample (90% power)

- 2.5%-level Fixed-Sample (95% power)

8,895.61
289.87

3,932.33
949.33

32,372.11
23,694.90

78.37
5,145.03

798.90
84.14

119.03

21.15

14.90

3,885.25
9,919.02

22.67

416.31

185.26
139.75

1,159.58

328.94
282.94

3,709.70
59.76

31.27
15.12

17.51
24.60

0.12

0.45

0.15
0.16

0.06

0.05
0.49

0.18

0.15
0.30
0.20

0.26

0.07
0.05
0.04

0.71

0.17
0.27
0.21

0.10

0.12

0.13

0.05
0.30

0.44

0.02

0.02

0.04

2,028

1,373
1,936
1,902

2,343

2,387

1,300
1,845

1,905
1,550
1,744

1,453

1,491

2,374

2,447

1,027

1,853
1,633
1,724

2,087

2,011

1,944

2,414

1,524

1,302

1,150
1,345

1,664

1.845

1.055

1.744

1.709

2.177
2.221

0.969
1.640

1.714

1.311
1.552
1.279

1.692
2.212

2.283

0.587

1.659
1.401

1.522
1.915

1.846

1.772
2.252
1.290

3.25
14.56

4.06

4.37

1.47

1.32

16.64

5.05

4.33

9.49

6.03
10.04

4.53

1.35

1.12

27.86

4.86

8.06
6.40

2.77

3.24

3.82
1.22

9.86

98.36

98.68

98.40

98.40

98.22

98.20
98.67
98.45

98.40

98.49

98.38

98.17

95.73
98.19

98.17
98.76

98.41

98.50
98.41

98.31

98.29

98.32
98.17
98.46

1.004 15.77 98.56

1.960 2.50 85.02

1.960 2.50 90.00
1.960 2.50 95.01

Bayesian decisionAbbreviations. YLL: Number of years of life lost due to premature mortality, BDA:
analysis.

a The alternative hypothesis corresponds to Jo



certain types of cancer into many subtle but important variations [57]. However, be-

cause burden-of-disease data are not yet available for these subdivisions, we use the

conventional categories in Table 3.2, i.e., where each cancer type is decided based on

the organ host of the tumor.

The reported values for the power of BDA-optimal tests are quite high (all but one

have power larger than 98%). This is because the overall burden of disease (C2 = Nc 2 )

associated with each of these diseases is quite high, due to either severity (large c2), e.g.,

pancreatic cancer, or high prevalence (large N), e.g., prostate cancer. Therefore, not

approving an effective drug is a costly option by this measurement, hence these BDA-

optimal tests exhibit high power to detect positive treatment effects. This general

dependence of the statistical power on the overall burden of disease, i.e., its prevalence

multiplied by its severity, can be observed in Figure 3.1. In Figure 3.1a, the contour

plot of the power of BDA-optimal tests is presented, where most of the contour lines

coincide with constant overall burdens of disease, i.e., Nc 2 = cte, which are straight

lines with negative slope on a log-log graph. Also, to facilitate visualizing where each

disease in Table 3.2 lies in the prevalence-severity plane, we have superimposed the

YLL rank of each disease in Figure 3.1a. For example, pancreatic cancer is number 18,

which has the highest severity among the listed diseases. We have also included the

cross-sections of power for BDA-optimal tests in Figures 3.1b and 3.1c.

In sharp contrast to the consistently high power for the BDA-optimal tests in Table

3.2, the size of these tests varies dramatically across different diseases. As is seen in

Table 3.2, with few exceptions, the size of the test mainly depends on the severity of

the disease. In general, as the severity of the disease increases, the critical value to

approve the drug becomes less conservative, i.e., it becomes smaller. This is because

the cost per patient of not approving an effective drug becomes much larger than the

cost per patient associated with adverse side effects. Consequently, the probability of

Type I error, i.e., the size of the test, increases. For example, for pancreatic cancer,

the critical value is as low as 0.587, while for the conventional 2.5%-level fixed-sample

test it is 1.960. This results in a relatively high size (27.86%) for the BDA-optimal test

for a drug intended to treat pancreatic cancer, consistent with the necessity for greater

willingness to approve drugs intended to treat life-threatening diseases that have no

existing effective treatment.

However, it should be noted that the conventional value of 2.5% for the probability of

Type I error, while too conservative for terminal diseases, is not conservative enough for

less severe diseases, e.g., diabetes, for which the size of the BDA-optimal test is 1.32%.
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104 10'

Figure 3.1. The statistical power of the BDA-optimal fixed-sample test at the alternative hypothesis.

Note. Panel (a) shows the contour levels for the power, while panels (b) and (c) demonstrate its

cross-sections along the two axes. The contour lines corresponding to the power levels 1 - 3 =

85%, 90%, 95%, 98%, and 98.5% are highlighted in panel (a). The superimposed numbers in panel (a)

denote the YLL rank of each disease in Table 3.2. The alternative hypothesis corresponds to 6o

YLL: Number of years of life lost due to premature mortality, BDA: Bayesian decision analysis.
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The size of BDA-optimal tests for a large range of severity and prevalence values is

presented in Figure 3.2. The size monotonically increases with the severity of disease

for any given prevalence, and as seen in Figures 3.2a and 3.2b, it becomes independent

of the prevalence for all target populations with more than 200,000 patients, hence the

horizontal contour lines for x values larger than 200 in Figure 3.2a. This insensitivity

of the size to the prevalence of disease makes our model quite robust against estimation

noise in the disease prevalence.

It is useful to investigate the dependence of the sample size of BDA-optimal tests

on the prevalence and severity of disease. First, we observe in Figure 3.3b that, for

any given severity value, the sample size of the BDA-optimal test increases with the

prevalence of the disease. This supports the intuitive argument that the sample size

should increase with the size of the target population. Furthermore, a unique trend is

observed in Figure 3.3c: as the severity of the disease increases, for a large enough target

population (N > 500,000), the optimal sample size continuously shrinks to avoid any

delay in getting the effective drug into the market because of the high toll (C2 = Nc 2 )

that the disease has on society.

On the other hand, for relatively small populations, e.g., N = 20,000, the optimal

sample size peaks somewhere in the middle of the severity spectrum. This occurs

because of two opposing trends. The disease burden on society is quite low for small

populations and a disease of low severity, hence being exposed to toxic treatment in

the trial is not worth the risk. Under these conditions, the sample size should be as

small as possible. However, for small populations and a disease of high severity, i.e., a

large overall burden of disease, the risk of taking inferior treatment in the trial becomes

much smaller than that of waiting for an effective treatment to be approved. Hence,

the sample size for N = 20,000 over very large severity values decreases as severity

increases.

In between these two extremes, where the overall burden of disease is not that high,

and the disease has intermediate severity, the sample size of the trial is allowed to

become larger to guarantee an appropriate balance between approving an effective drug

as fast as possible and not exposing the patients to a drug with adverse side effects.

It is worth emphasizing that, as with the size of the test, the sample size of BDA-

optimal tests is quite insensitive to the disease prevalence for large target populations

(hence, horizontal contour lines in Figure 3.3a over large values of prevalence), which

suggests that these results are robust.

Finally, inspecting the conventional fixed-sample tests and the disease prevalence
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Figure 3.2. The size of the BDA-optimal fixed-sample test as a function of disease severity and

prevalence.

Note. Panel (a) shows the contour levels for the size, while panels (b) and (c) demonstrate its cross-

sections along the two axes. The contour lines corresponding to a = 2.5% and a = 5.0% are highlighted

in panel (a). The superimposed numbers in panel (a) denote the YLL rank of each disease in Table 3.2.

YLL: Number of years of life lost due to premature mortality, BDA: Bayesian decision analysis.
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Figure 3.3. The sample size of the BDA-optimal fixed-sample test for different severity and prevalence

values.

Note. Panel (a) shows the contour levels for the size, while panels (b) and (c) demonstrate its cross-

sections along the two axes. The contour lines associated with the sample size of conventional fixed-

sample tests with a = 2.5% and 1 - 0 = 85%, 90%, 95%, 98%, and 98.5% are highlighted in panel
(a). The superimposed numbers in panel (a) denote the YLL rank of each disease in Table 3.2. YLL:

Number of years of life lost due to premature mortality, BDA: Bayesian decision analysis.
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and severity implied by them in Table 3.2 highlights the conservatism of current regu-

latory requirements imposed on clinical trials and their conduct if we assume that these

values are BDA-optimal (see Appendix B.2).

N 3.7 Conclusion

To address the inflexibility of traditional frequentist designs for clinical trials, we pro-

pose an optimal fixed-sample test within a BDA framework that incorporates both the

potential asymmetry in the costs of Type I and Type II errors, and the costs of inef-

fective treatment during and after the trial. Assuming that the current FDA standards

represent BDA-optimal tests, the imputed costs implicit in these standards are overly

conservative for the most deadly diseases and overly aggressive for the mildest ones.

Therefore, changing the one-size-fits-all statistical criteria for FDA drug approval is

likely to yield greater benefits to a greater portion of the population.

The BDA framework proposed in this chapter also fills a need mandated by the fifth

authorization of the Prescription Drug User Fee Act (PDUFA) for an enhanced quanti-

tative approach to the benefit-risk assessment of new drugs [46]. Due to its quantitative

nature, BDA provides transparency, consistency, and repeatability to the review pro-

cess, which is one of the key objectives in PDUFA. The sensitivity of the final judgment

to the underlying assumptions, e.g., cost vs. benefit, can be easily evaluated and made

available to the public, which renders the proposed framework even more transparent.

However, the ability to incorporate prior information and qualitative judgments about

relative costs and benefits preserves important flexibility for regulatory decision-makers.

In fact, a Bayesian approach is ideally suited for weighing and incorporating patient

perspectives into the drug-approval process. The 2012 Food and Drug Administration

Safety and Innovation Act (FDASIA) [58] has "recognized the value of patient input to

the entire drug development enterprise, including FDA review and decision-making."

One proposal for implementing this aspect of FDASIA is for the FDA to create a

patient advisory board consisting of representatives from patient advocacy groups, with

the specific charge of formulating explicit cost estimates of Type I and Type II errors.

These estimates can then be incorporated into the FDA decision-making process, not

mechanically, but as an additional inputs into the FDA's quantitative and qualitative

deliberations.

To incorporate other perspectives from the entire biomedical ecosystem, the mem-

bership of this advisory board could be expanded to include representatives from other
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stakeholder groups-caregivers, physicians, biopharma executives, regulators, and pol-

icymakers. With such expanded composition, this advisory board could play an even

broader role than the concept of a Citizens Council adopted by NICE.3 The diverse set

of stakeholders can provide crucial input to the FDA/EMA, reflecting the overall view

of society on critical cost parameters. However, the role of such a committee should

be limited to advice; drug-approval decisions should be made solely by FDA officials.

The separation of recommendations and final decisions helps ensure that the adaptive

nature of the proposed framework will not be exploited or gamed by any one party.

In fact, because of its role as the trusted intermediary in evaluating and approving

drug applications, the FDA is privy to information about current industry activity and

technology that no other party possesses. Therefore, the FDA is in the unique role

of formulating highly informed priors on various therapeutic targets, mechanisms, and

R&D agendas. Applying such priors in the BDA framework could yield very different

outcomes from the uniform priors we used in Section 3.6, which assumes a 50/50 chance

that a drug candidate is effective. While 50/50 may seem more equitable, from a social

welfare perspective it is highly inefficient, potentially allowing many more expensive

clinical trials to be conducted than necessary. Although the FDA cannot be expected

to play the role of social planner, and should be industry neutral in its review process,

nevertheless, ignoring scientific information in favor of 50/50 does not necessarily serve

any stakeholder's interest. Moreover, using 50/50 when more informative priors are

available could be considered unethical in cases involving therapies for terminal illnesses.

For example, for pancreatic cancer, if the prior probability of efficacy is 60% instead of

50%, the size of the BDA-optimal test would be 51.2% rather than 27.9%, leading to

many more approvals of such therapies. The BDA framework can yield decisions that

are both more economically efficient and more humane.

Finally,the drug-approval process is not always a binary choice, and in such cases,

the BDA framework can be extended by defining costs for a finer set of events. In fact,

the variability of drug response in patient populations-attributed to biological and be-

havioral factors-has been recognized as a critical element in causing uncertainty and

creating the so-called "efficacy-effectiveness" gap [59] (where efficacy refers to therapeu-

tic performance in a clinical trial and effectiveness refers to performance in practice).

Several proposals have been made for integrated clinical-trial pathways to bridge this

gap [60].

Moreover, new paradigms have also been proposed to address the risk associated

3 See https: //www.nice. org.uk/Get-Involved/Citizens-Council.
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with the binary nature of the current approval process, e.g., staggered approval [61, 62]

and adaptive licensing [63], which the EMA is actively pursuing [64]. In fact, one of

the design principles called for by [63] is less stringent statistical significance levels

to be employed in efficacy trials for drugs targeting life-threatening diseases and/or

rare conditions. Our BDA framework provides an explicit quantitative method for

implementing this principle. The fact that the adaptive pathway has great potential

to benefit all key stakeholders [65] provides more motivation for employing BDA in the

drug-approval process.



Chapter 4

Reimbursement for Curative

Therapies

There has been much debate among several stakeholder communities over the prices of

certain drugs, especially those that treat serious conditions such as cancer, Hepatitis C

Virus (HCV) infection, and rare diseases. Apart from important ethical and social issues

surrounding the affordability of life-saving therapies, there is a more practical issue of

how payments can be financed. We propose to address the financing issue through

healthcare loans (HCLs), which are the equivalent of mortgages for large healthcare

expenses such as the cost of curing a disease using highly personalized therapies that

are not fully covered by insurance. We then propose using securitization-an efficient

financial engineering method- to finance a large pool of these HCLs using both debt

and equity. Using numerical simulations, we demonstrate that the proposed financing

vehicle is viable under a wide array of economic environments and cost parameters,

making new therapies accessible to a much broader patient population. Moreover, the

proposed framework better aligns the interests of all stakeholders, and has the potential

to accelerate biomedical innovation while reducing aggregate healthcare costs.

* 4.1 Introduction

Much has been written about the failings of our current drug development pipelines.

Many new drugs offer little or no benefit over currently available and less expensive

alternatives. Others, most commonly among cancer therapies, offer very small im-

provements in outcome at high prices. In contrast with these incremental advances,

new therapies that truly transform medical care (e.g., penicillin for pneumococcal in-

fection, highly active anti-retroviral therapy for human immunodeficiency virus (HIV),

imatinib for chronic myelogenous leukemia (CML)) are few and far between. When
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these transformative products emerge, there is a compelling urgency to extend them

as broadly as possible. Doing so introduces a new challenge, specifically the cost of

offering treatment to all who could benefit.

Two recent advances have attracted significant attention from the medical and lay

communities. The first is curative therapy with antiviral drugs that target NS3/4A

protease, NS5B polymerase and NS5A replication complex in patients with Hepatitis

C Virus (HCV). Over 90% of infected individuals are believed to be cured of HCV

infection with only 6-8 weeks of combinations that include these agents at a price

of around $84,000 [66]. Extending curative treatment to all 2 million Americans with

chronic HCV infection at that price would cost $168 billion. Extending curative therapy

to all 180 million people worldwide with HCV infection would cost over $15 trillion.

The second example of a truly transformative therapy is chimeric antigen receptor-T

(CAR-T) cells, which may cure up to 85% of children with relapsed and refractory acute

lymphoblastic leukemia (ALL) after a single infusion. These children have no other

options and would otherwise die of their disease. The price of a CAR-T cell infusion

has not been set as the Food and Drug Administration (FDA) has not yet licensed

any CAR-T cell products. Approvals are likely to be forthcoming, so it will soon be

necessary to ask, what is an appropriate price for a single infusion that extends the life

of a 3-year old child by 80 years? On the basis of quality-adjusted life years (QALYs),

using $50,000/QALY as an accepted standard, the back-of-envelope calculation argues

that $4 million may be appropriate. As a benchmark, the fund to compensate families

of those killed on 9/11 paid an average of $2 million per victim. This provides further

support that our society values a single American life at amounts in this range.

If one accepts that the imperative is to offer truly transformative therapies, as

quickly and broadly as possible, creative solutions are clearly needed. This is true

whether the therapy is directed against an infectious disease with a large prevalence

that is also a public health concern (like HCV or HIV), or an orphan disease that is

invariably fatal (like refractory ALL or CML). The Lancet Commission on Addressing

Liver Disease in the U.K. recently estimated that with new therapies, we could "con-

template the eradication of infections from chronic hepatitis C virus in the U.K. by

2030." This is a tremendously under-ambitious goal, considering that it would permit

the morbidity, mortality, and spread of HCV to continue for 15 years when the only

factor preventing eradication on a much shorter timeline is the aggregate upfront cost.

Insurance companies would not have too big a problem providing access to these thera-

pies for future patients because the incidence rate of the disease can be quite precisely

62



estimated for coming years, and the insurance premiums can be adjusted accordingly.

However, covering the existing patients, the so-called "warehoused" patients, is highly

burdensome for insurance companies right after a new therapy emerges in the mar-

ket. This is the main reason that some patients are currently denied coverage for their

therapies-they are not "sick enough."

To alleviate the issue of large aggregate upfront payments for insurance companies,

we propose healthcare loans (HCLs)-the equivalent of drug mortgages-for patients

to cover the portion of the drug's price that insurance companies cannot pay for. Like

home mortgages, HCLs are loans taken out by patients that they repay over a period of

time following their treatment. We then use portfolio theory and financial engineering

techniques [13, 67] to design an efficient financing vehicle for these healthcare loans

and to reduce the borrowing cost for the patients to lowest possible levels. Insurance

companies, in addition to paying a portion of the therapy's price upfront, would play a

critical role in ensuring that the proposed vehicle functions as planned so as to attract

the cheapest type of financing, i.e., highly-rated debt.

There have previously been other proposals on payers making annuity-based pay-

ments for curative therapies, specifically gene therapies [68]; however, to the best of

our knowledge, we are first to propose a detailed and practical annuity-based payment

structure, where patients rather than payers make periodic payments.

* 4.2 Portfolio Theory

Suppose a $40,000 loan is granted to a patient, and he/she is required to repay it by

making annual payments of $6,700 for 9 consecutive years following the loan origina-

tion, referred to as the repayment period. Because during the repayment period, the

borrower might stop their payments-due to either default on the loan or death-there

are distinct scenarios for the stream of payments that can occur. For example, the

lender might receive one payment of $6,700 in the first year, and nothing afterwards.

In another scenario, the lender may receive all the payments over the repayment period

as scheduled. For simplicity, we assume that, in each year, the scheduled payment is

either fully made or missed, and if a payment is missed, all subsequent payments will be

missed too. Any investment that yields different streams of cash flows under different

conditions is referred to as a "risky" investment [69]. The natural question to ask is:

what is the value of this future risky stream of payments from the lender's perspective?

Clearly, if the lender values this investment below $40,000, he/she will not lend under
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these circumstances.

In financial economics, it is common to use the discounted cash flow valuation

(net present value) methodology to value multi-period risky investments including the

example considered here [69, 70]. This approach can be divided into two separate

parts: First, the net present value of the cash flow stream associated with each scenario

is derived by properly discounting future cash flows (net of costs) to present (because

$1 next year is less valuable than $1 today). For example, the present value of the cash

flow stream in the case where the borrower stops their payments after making the first

k payments, denoted by PVk, is given by:

k X X _h Ikl
PVk =k = 0, 1. .. , n, (4.1)

i(1 + R)z R 1+ R.

where X = $6,700 and n = 9 years, and R > 0 represents the rate of return expected

(required) by the lender to justify bearing the risk of the investment, and is explained

in more detail below. The value of the investment, denoted by V, is then simply the

expectation of the present values over all possible scenarios:

V =E[PV]= pkPVk= pkX ( R_ ) , (4.2)
k=O k=O

where E[.] is a shorthand for expectation, and Pk represents the probability that only

the first k payments are made and the remaining payments are missed. We derive the

final equation by substituting the expression given in (4.1) for PVk.

Now, suppose that the combined probability of death and default for each year is

denoted by po = 5.0%, and defaults/deaths in different years are independent. Then,

the probabilities, Pks, in (4.2) can be derived as the following:

po (1 -po)k , k =0,1,1 ... , n - I

Pk = (4.3)

1(1 - PO)k, k = n

Using the expressions for probabilities in (4.3), the value of the investment in (4.2)

can be calculated for different expected returns, as presented in Figure 4.1a. In Figure

4.1a, the expected return for which the value is equal to the initial investment ($40,000)

is R = 3.69%.
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As observed in Figure 4.1a, the value of the lending, given by (4.2), decreases with

the expected return of the lender, R. The higher the expected return, R, the lower the

value of the investment, V, from the investor's perspective ceteris paribus. The expected

rate of return, sometimes referred to as the cost of capital, of the lender represents the

annual profit on every dollar that the investor demands to gain, on average, from the

initial investment. For example, if R = 10%, the lender requires to obtain 10 cents

per year on every invested dollar. If the investment meets this hurdle, i.e., if V in

(4.2) is larger than the initial investment ($40,000 in our example), he/she makes the

investment; otherwise, making the investment is not justified. Hence, in our example,

the lender lends only if R < 3.69%.

Different classes of investors have different expectations and risk appetites. And, the

larger the investor's risk appetite, the larger the return they demand on the investment.

The same holds true for investments: The higher the risk of an investment, the larger

the expected return it should offer to be viable. At one extreme, debt investors ask for

quite low expected returns (e.g., R = 2% - 3%), and in exchange, they have a small risk

tolerance, i.e., they favor "safe" investments that have fewest cash flow scenarios most,

and avoid investments with a lot of possible ups and downs. For example, Treasury

bonds issued by the U.S. government are considered as one of the safest investments-

because of the full faith and credit in the U.S. government-and they consequently

offer a rather small return (R = 1.51% for 5-year Treasury bonds, updated September

2, 2015). At the other extreme, there are equity investors who are willing to take a lot of

risk (a lot of possible downsides and upsides) if the possible upside and consequently the

expected return are large enough to justify the risk-taking (e.g., double digit returns,

R > 12%).

The standard deviation of the cash flows that an investment generates can serve

as a proxy for its risk. The solid line and the blue bars in Figure 4.1b demonstrate

the expected value and standard deviation of the payments, respectively, for a single

loan during the repayment period. To analyze the risk of the investment from another

perspective, the blue staircase curve in Figure 4.1c presents the cumulative probability

distribution (CDF) of the normalized present value of the stream of payments for a

single loan, given by (4.1). The present value is calculated using R = 3.69%, and is

normalized by the initial investment, i.e., $40,000. This expected return is used because,

as seen in Figure 4.1a, it makes the value of the investment, which is the expectation

of the present values, equal to the initial investment. However, while the mean of the

blue distribution in Figure 4.1c is 1, there is a significant likelihood of receiving only
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Figure 4.1. (a) Investment value, given by (4.2), over a range of expected returns, R. (b) Expected

value and standard deviation of cash flows normalized by the number of loans over the 9 years following

the origination of loan(s). (c) The cumulative probability distribution (CDF) of the present value of

the investment normalized by the initial investment for a few portfolio sizes, N.

Note. The expressions in (4.2) and (4.3) along with R = 3.69% are used to calculate present values.

Expected value is denoted by E[-], and std(-) represents standard deviation.

a fraction of the initial investment. Visually, the blue curve has a wide spread around

the vertical line where the normalized present value is equal to 1.

Therefore, by inspecting Figures 4.11) and 4.1c, lending a single loan is deemed too

risky for investors with low expected returns. On the other hand, if investors with

higher expected returns who have a larger risk appetite were considered, the risk of the

investment might be acceptable for them while its expected value might seem too weak

as seen in Figure 4.1a.

The solution to this conundrum is diversification. Consider making loans to N
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customers rather than a single borrower, i.e., investing in a portfolio of N loans. The

initial investment required is N times larger than for a single loan and so is the expected

cash flow in each year. Hence, if normalized by N, the expectation of the cash flow is

independent of the size of the portfolio. However, assuming each borrower's payments

are to some extent independent of others', the standard deviation of future cash flows

does not increase linearly in N. Hence, if normalized by N, the cash received in each

year becomes increasingly more certain with the number of loans in the portfolio. This is

shown in Figure 4.1b, where each bar graph demonstrates the standard deviation of the

normalized cash flow for each portfolio size over the repayment period. The expectation

of the normalized cash flows, however, is independent of the portfolio size. The risk

reduction can further be seen in Figure 4.1c, where the distribution of the normalized

present value becomes increasingly narrower as the portfolio grows in size, while the

mean of the distribution remains intact at 1. In financial economics, diversification

plays a significant role in risk reduction, and is the centerpiece of the portfolio theory

[71, 72]. By reducing the risk of the portfolio through diversification, it is possible to

make it attractive to more risk-averse investors such as debt investors, who are the low

end of the expected-return spectrum. By appealing to these investors and considering

the current near-zero interest rate environment, we can keep the cost of borrowing for

the patients (borrowers) at lowest possible levels to control the financial burden of our

proposal. In the following section, we explain how to use diversification and to design

a "safe" investment for debt investors, who have a small risk appetite, so as to take of

advantage of the low cost of debt financing.

* 4.3 Securitization

As discussed in the previous section, there are different classes of investors, each of

which possessing a different risk-return profile. The financing cost can be reduced by

shifting to the most risk-intolerant investors, who demand a great deal of protection

against risk. The other end of the financing cost spectrum has the greatest risk tolerance

while expects a large upside in return, increasing the cost of financing. Securitization

is a commonly used financial engineering method that allows us to benefit the most

from the whole investor spectrum by issuing different types of debt and equity [67, 73].

Securitization effectively slices the investment into sub-investments, each of which is

tailored to a different risk-return profile and is supported by a portion of the assets in

the portfolio. By tailoring these sub-investments to different investors' expectations,

67Sec. 4.3. Securitization



securitization allows us to tap into global capital markets to share risk among an enor-

mous pool of investors. By using debt financing, the financing costs can be reduced to

historically low levels while using equity and other credit enhancements protects debt

investors against capital loss to the extent demanded by the debt investors.

For example, as seen in 4. 1c, for large portfolio sizes, there is a 50% chance of having

a present value less than the initial investment, regardless of the size of the portfolio.

Therefore, if the investors expect a 1% chance of receiving less than promised, the

diversification per se does not resolve that issue. Instead, we can raise a portion, e.g.,

80%, of the initial investment from these risk-averse investors and the remaining 20%

can be raised from equity investors who have a larger risk appetite. As observed in

4.1c, the likelihood of receiving less than 80% of the initial investment decreases with

the size of the portfolio, and for large enough portfolios, this likelihood can definitely

be less than 1%. To summarize, by using diversification and securitization, we can

reduce the cost of financing without becoming overly risk-averse; i.e., we can find a

sweet spot in the risk-return spectrum that most closely matches the characteristics of

the investment.

N 4.4 HCL Fund for HCV Curative Therapies as an Illustrative Example

Suppose a drug's price is $84,000 and the insurance company can pay only $44,000 for

each drug. In our proposed framework, the insurance company pays this portion of

the price and a "special purpose entity" (SPE) is set up to pay the remaining amount

($40,000 per drug) on behalf of the patient so that he/she can get access to the drug

immediately (Figure 4.2a). The amount paid by the SPE is effectively a loan (mortgage)

granted to the patient that has to be repaid over a pre-specified period of time, referred

to as the repayment period (9 years in our simulations). If we assume a 9.1% annual

interest rate on the loan, the HCL payments will be $6,700 per year for each borrower

(Figure 4.2b). We assume that each patient fulfills their payment obligations until

they either die or default on their loan. Under either condition, the payments will

stop completely; i.e., the recovery rate on loans with stopped payments is zero. In

the following sections, we explain our assumptions with regard to financing, default

characteristics, and mortality rates of the patients after going through the course of

therapy.
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* 4.4.1 Portfolio Dynamics

The SPE holds a portfolio of claims on the future loan-payment streams (12,500 loans

in our simulations) to benefit from diversification as explained in Section 4.2. This is

similar to the securitization of home mortgages, student loans, auto loans, and credit

card receivables, to name a few. The size of the fund managed by the SPE is $500mm,

where mm denotes million (12,500 x $40,000 = $500mm). The SPE usually sets up

an independent entity, usually referred to as the fund's general partner, to manage

the portfolio; however, for simplicity, we refer to both the manager and this special

purpose entity as the SPE. The SPE raises the required $500mm by selling notes to

both equity and bond investors. More precisely, 80% of the fund, i.e., $400mm, is

raised through the sale of senior bonds, which are highly-rated bonds that have low

default probabilities and small default losses. These bonds have an annual coupon rate

of 2.1% and pay the investors once a year (in the U.S., bonds usually have semi-annual

payments, however, for simplicity, we assume only annual payments). Of the remaining

20% of the fund, half (i.e., 10% or equivalently, $50mm) is raised by selling subordinate

(junior) notes that have less protection against possible losses and offer a higher coupon

rate in return compared to the senior bonds (e.g., 2.50% in our simulations). In addition

to interest payments, both senior and junior bonds repay their principals in nine equal

annual installments starting in the first year; i.e., they amortize in the first year. Equity

investors invest in the remaining 10% of the fund that amounts to a $50mm investment.

There are not any scheduled payments for these investors; however, they receive cash

distributions in each year provided that the fund has excess cash after making scheduled

bond principal and interest payments and saving $1mm in a cash reserve account to

preserve the fund's liquidity.

In the governing documents of the fund, the cash flow waterfall specifies the order

with which different investors (senior bondholders, junior bondholders, equity investors)

receive payments in both normal times and default events. The senior bondholders have

the highest priority, followed by junior bondholders, and the equity investors have the

lowest payment priority (Figure 4.2b). Therefore, equity investors are first to absorb

any losses to the portfolio-due to loan defaults-then junior bondholders, and senior

debt investors are last to experience any losses (losses propagate through the capital

structure of the fund from the bottom to the top in Figure 4.2b). This provides senior

bonds with a degree of protection because they only constitute 80% of the capital

employed in the fund, hence, even if the portfolio experiences a loss, so long as the loss

is less than 20% of the fund's capital, senior bonds do not experience any default or
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Investment Period

Insurance Company Special Purpose

44,000/Drug

Drug Company

Senior Bonds ($400M)
Entity

~-.4 Junior Bonds ($50M)
Equity ($50M)

P 40,000/Drug

12,500 Patients

(a)

Each Repayment Period

Special Purpose Entity
U,

U,
U,
0

-J

Annual Payments/Person = $6,700

Annual Interest Rate 9.1%

(b)

Senior Bonds

Junior Bonds
Equity

Patients

C 2.1%

C 2.5%
No Coupons

Figure 4.2. Schematic cash flow diagram for the proposed HCL fund. Panel (a) demonstrates the

investment period in which the investors buy the notes issued by the special purpose entity (SPE), and

using the cash raised from the sale of the notes, the SPE pays a portion of the drug's price, and the

patients receive the curative therapy. The bottom panel (b) shows the flow of cash in each repayment

period, in which the patients make their annual loan payments, and the investors receive cash payments

based on the seniority of their notes. The losses propagate from the bottom to the top.

Note. The source of the pill picture is Hepatitis C Online (http: //www.hepatitisc.uw. edu).
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loss. This layering of the capital structure is usually referred to as subordination, and

is commonly used to protect the most senior bonds. In addition to the subordination

employed in the fund's capital structure, we use extra credit enhancement techniques,

such as interest coverage and overcollateralization tests as well as cash flow diversion

mechanisms, to provide additional protection to the bonds, especially the senior bonds.

For more detail on these techniques, see Appendix C.1.

As the last layer of protection for bondholders, we assume a third-party guarantor

for the bonds issued by the SPE, promising to make scheduled interest and principal

payments were the SPE unable to do so. Having guarantees on the bonds helps insure

debt investors against extreme events, and consequently, the bonds' coupon rates and

therefore financing costs can be reduced to decrease the financial burden of the loans

on the patients (for a detailed description of the relation between risk and expected

return see Section 4.2).

* 4.4.2 Loan Default Dynamics

Considering that the debt-payment-to-income ratio, defined as the ratio of annual debt

payments to annual income, is a commonly used proxy for debt burden [74], we assume

that the borrower's expected default probability increases with this ratio. We design

a statistical model for the relationship between a loan's default probability and the

debt-payment-to-income ratio attributed to that loan, and we then calibrate the model

parameters using federal student loan data as explained in Appendix C.2. Because

different borrowers have possibly different incomes, the dependence of the expected

default probability on the debt-payment-to-income ratio creates a realistic heterogeneity

among loan defaults in the portfolio, which is crucial for any statistical modeling of a

portfolio of loans. In addition, we estimate the probability distribution of the annual

household income for patients afflicted with HCV using the Chronic Hepatitis Cohort

Study (CHeCS) data on U.S. patients with chronic HCV infection [75]. Using the

estimated income distribution, the annual loan payments, and the relationship between

expected probability of loan default and borrower's debt-payment-to-income ratio, we

can then model the credit risk of the portfolio of loans in our proposed framework. We

further make the loan defaults in the portfolio correlated by making all the expected loan

default probabilities in each year rise or fall together within a pre-specified range (75%

to 125% of the initially assumed values). The induced default correlation is larger for

lower-income patients than the patients with a higher household income (e.g., 10% for

two patients with the annual household income of $40,000, and 5% for annual incomes of
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$80,000), consistent with the intuition that the higher the debt burden-associated with

lower incomes-the more correlated the loan defaults due to any changes in the economy

and wages. As is known in modern portfolio theory, correlation among loan defaults

limits the ability of diversification in reducing the risk of the portfolio indefinitely since

it makes the defaults more likely to occur simultaneously rather than independently

[72].

Because the debt burden and the expected default probability become larger as

the income falls, we set a cutoff income threshold ($35,000) in our simulations. In

other words, we assume that all the patients, who are granted an HCL, have annual

household incomes of at least $35,000. This is a practical assumption because it is most

likely that the patients with household incomes below $35,000 have Medicaid coverage.

Our focus here is on private insurance companies only, while a different structure can

be used solely for Medicaid patients who would most likely be heavily burdened by

the proposed payments in this chapter. In that Medicaid-specific financing vehicle, the

U.S. government guarantees the bonds so that they can have the lowest possible coupon

rates. On the other hand, the loan repayment period can be made longer than assumed

here to bring the payment burden down to an acceptable range. Writing the guarantees

would in turn cost the government a small fraction of what Medicaid would have to pay

upfront in the current pricing environment (see Table 4.1).

Lastly, to evaluate the performance of the HCL fund under a few conditions, we

consider three scenarios for the dependence of the expected probability of HCL default

on the borrower's income as presented in Figure 4.3a, and referred to as the pessimistic,

baseline, and optimistic scenarios. The baseline case is our original estimated relation-

ship between the probability of default and the patient's income, while the pessimistic

and optimistic scenarios assume higher and lower default probabilities, respectively,

across almost all the incomes compared to the base case. For a detailed description of

these three scenarios, see Appendix C.2.

* 4.4.3 Post-Medication Mortality Dynamics

There have been many longitudinal studies on post-medication mortality rates for

HCV treatments with interferon and/or ribavirin regimens (see [76-78] and references

therein). However, because NS5B polymerase inhibitors such as Sovaldi are relatively

new, there has not yet been any published study on mortality rates for patients treated

with these regimens. On the other hand, the studies on interferon and ribavirin treat-

ments unanimously demonstrate that all-cause mortality rates for patients with a sus-
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tained virological response (SVR) are statistically indifferent from mortality rates of

a matched general population [76]. Therefore, considering that more than 90% of the

patients treated with the new generation of direct-acting agents achieve a 12-week SVR

(SVR,12) with less adverse effects than previous standards of care, as shown in the

NUETRINO trial [66], we use general population mortality rates as a proxy for patient

mortality rates after receiving this new line of treatment [79, 80].
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Furthermore, because more than 75% of the HCV-infected population is estimated

to be baby-boomers (born between 1945 and 1965),1 we use the projected population

numbers for the U.S. baby-boomer cohort, published by the U.S. Census Bureau [81],

to estimate a post-medication survival curve (for a detailed description, see Appendix

C.3). The estimated survival curve and annual death probabilities are drawn in Figures

4.3c and 4.3d. Our estimated 10-year survival rate (89.3%) is close to the rates reported

elsewhere [76, 80, 82].

To demonstrate the overall impact of HCL defaults and post-medication mortality

of patients on the portfolio, the cumulative losses of the portfolio throughout the fund's

life for the baseline scenario are presented in Figure 4.4. The cumulative losses of the

portfolio are drawn in Figure 4.4 both as a percentage of the number of initial HCLs in

the portfolio and as a percentage of the original balance of the HCLs in the portfolio.

E 4.4.4 Performance Results

We use 10,000,000 Monte Carlo simulation paths per each scenario of HCL default prob-

ability, drawn in Figure 4.3a, to evaluate the performance of the HCL fund. Different

performance metrics for each scenario are reported in Table 4.1. Total cash return is a

simple measure of the equity investment performance, which measures how much equity

investors receive throughout the fund's life per every dollar of their initial investment

(with no time-discounting), and is defined as the following:

TCR -= Cumulative cash returned to equity investros over the fund's life (4.4)
Initial equity investment

Another metric for equity performance is the internal rate of return (IRR), which is

the solution to the following equation and can serve as a proxy for the annual growth

of the equity investment:
n

Io = ck (4.5)
k=1 (1 + IRR)k'

where I0 represents the initial equity investment (Io = $50mm in our simulations), the

life of the fund is given by n (in our simulations, n = 9 years) and ck denotes the cash

received by equity investors in year k.

It is clear in Table 4.1 that the equity performance is worst in the pessimistic sce-

nario (IRR = 9.4%, TCR = 131.0%), while the optimistic scenario yields the best equity

1See http: //www. cdc. gov/knowmorehepatitis/Media/PDFs/FactSheet-Boomers . pdf.
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Table 4.1. Performance results of the proposed HCL fund for three scenarios of loan defaults.

Pessimistica,b Baselinea, Optimistic"d

Loan default assumption
Expected annual loan PD (%) 4.6 4.3 4.0

Equity tranche performance
Expected total cash return (%) 131.0 144.8 161.6
Expected annualized IRR (%) 9.4 12.5 15.8
Pr(IRR < 0%) (%) 1.1 < 0.1 0.0
Pr(IRR > 5%) (%) 87.3 98.7 100.0
Pr(IRR > 10%) (%) 46.3 79.6 98.4

Pr(IRR > 15%) (%) 5.2 22.5 63.6

Pr(IRR > 20%) (%) < 0.1 0.2 4.0

Debt tranches performance

Senior bonds

Weighted average lifee (years) 4.98 4.99 5.00
Probability of default (bps) < 0.1 < 0.1 < 0.1
Expected loss (bps) < 0.1 < 0.1 < 0.1

Junior bonds

Weighted average life (years) 5.00 5.00 5.00
Probability of default (bps) < 0.1 < 0.1 < 0.1
Expected loss (bps) < 0.1 < 0.1 < 0.1

Guarantee performancef

Pr(draw on guarantee) (%) 3.2 0.1 0
Expected cost of guarantee ($K) 26.9 0.6 0

98th-percentile of guarantee cost ($K) 407.7 0 0

9 9 th-percentile of guarantee cost ($mm) 1.0 0 0
Maximum cost of guarantee ($mm) 6.3 3.9 0

Abbreviations. PD: probability of default, IRR: internal rate of return, bps: basis points
(1 bp = 0.01%), Pr: probability, K: thousands, mm: millions.

a For each scenario, 10 million Monte Carlo simulation paths are used.
b The expected loan default probability in this case is given by (C.2), and depicted by
the dashed purple line in Figure 4.3.

' The expected loan default probability in this scenario is defined in (C.1), and repre-
sented by the solid orange line in Figure 4.3.
d The expected loan default probability for this scenario is defined in in (C.3), and
represented by the dotted green line in Figure 4.3.

e For the definition of weighted average life, see (4.6).

f Cost of guarantee is derived using (4.7), where the guarantor's cost of capital is Rg =

2%.
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Figure 4.4. Cumulative losses of the portfolio over the fund's life both as a percentage of the number

of initial HCLs and as a percentage of the original balance of HCLs in the portfolio.

performance (IRR = 15.8%, TCR = 161.6%), and the baseline case falls in between

(IRR = 12.5%, TCR = 144.8%). The samples of the IRR distributions listed in Table

4.1 for these scenarios further support the same trend for their equity performances, as

expected due to the trend in the probability of loan defaults across these scenarios (Fig-

ure 4.3a) and its impact on the equity performance. The probability density functions

(pdfs) of the IRRs for the equity tranche of the HCL fund in each of the three scenarios

are depicted in Figure 4.5. As is seen in Figure 4.5, the equity performance across all

the considered scenarios is within an acceptable range for potential equity investors.

For the performance of HCL debt tranches, we evaluate the probability of default

(PD) and the expected loss (EL) for the senior and junior tranches. Because of the

guarantees on the bonds, both debt tranches demonstrate lowest possible PDs and ELs
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for all the three scenarios, making the bonds attractive to prospective investors. We also

report the weighted average life (WAL) of the notes in Table 4.1, which is calculated as

the following:

WAL ( kPk) ( P (4.6)
k=1 k=1

where Pk is the principal returned to the bondholders of each debt tranche in year

k. Put simply, the weighted average life associated with each debt tranche denotes

how long on average it takes for every invested dollar to be returned to the investors

of that debt tranche. Because of credit enhancement techniques-especially, the cash

flow diversion mechanisms-in place, the senior bonds have a shorter WAL than the

scheduled 5-year WAL if the probability of loan default is large, i.e., in the baseline
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and pessimistic scenarios in Table 4.1. For a detailed description of credit enhancement

techniques, see Appendix C.1.

Lastly, we calculate the cost of guarantee (G), i.e., the cost incurred by the guarantor

of the bonds, using the following equation:

n

G = dk (47)
k=1 (I+Rg)k

where dk is the amount drawn from the available guarantee in year k, and R9 is the

assumed cost of capital for the guarantor (R9 = 2% for the numbers in Table 4.1, for a

description of cost of capital, see Section 4.2).

Cost of guarantee, G in (4.7), is the present value of the drawn guarantee over the

fund's life, and the expected cost of guarantee is simply its expected value. We report

the probability that the guarantee is ever used to cover debt obligations during the

entire life's fund, namely, Pr(G > 0), where Pr(.) denotes probability.

In the pessimistic scenario, this probability is largest, standing only at 3.2%, while in

the baseline and optimistic scenarios it is only 0.1% and 0, respectively. Not surprisingly,

the pessimistic scenario has the highest expected cost of guarantee because of the higher

loan default probabilities in this case. However, the cost of guarantee even in this worst-

case scenario is only $26.9K, a tiny fraction (0.6 bps) of the face value (amount) of the

bonds, i.e., $450mm, where bp stands for basis point and 1 bp = 0.01%. Lastly, the 9 8 th

and 9 9 th percentiles of the cost of guarantee distribution as well as the maximum cost

of guarantee, listed in Table 4.1, are clear testimonies to the negligible cost of guarantee

compared to the face value of the bonds, i.e., $450mm, across all the three scenarios.

* 4.5 Aligning Interests: Moving Beyond "Pay for Performance"

We recommend that the insurance companies guarantee the bonds. On the one hand,

by shifting a portion of the price to the patients, the insurance companies can, to some

extent, reduce the large burden of upfront payments that they would face to cover all

the warehoused patients in the current pricing environment. On the other hand, as

discussed in the previous section, the cost of guarantee is a small fraction of the face

value of the bonds; hence, in exchange for the savings the insurance companies make in

this framework, they are highly motivated to guarantee the bonds so as to makes them

attractive to the bond investors who are willing to lend at the lowest possible interest

rates. This in turn reduces the financial burden of the loans on patients.
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Another natural candidate for the guarantor of the bonds and/or investment in

the junior bonds are pension funds whose financial liabilities move inversely with the

mortality rates. Therefore, the guarantees or a position in the junior tranche would act

as a natural hedge for their investment, reducing their exposure to changes in mortality

rates.

The proposed structure can further be used in a pay-for-performance pricing en-

vironment, a recent focus of the medical profession and patient advocates. The per-

formance of the equity tranche deteriorates if the death rates are relatively high (e.g.,

in the case where the therapy is not really curative). Pharmaceutical companies can,

in theory, write some specialized contracts on the equity investment, not unlike stock

put options, guaranteeing a bottom-line equity return for equity investors. With these

contracts, the equity investors would be protected against high mortality rates and in-

effective drugs, while the drug company would effectively disgorge a portion of their

fees if these adverse events occur. This motivates pharmaceutical companies to produce

more effective medications and to follow patients to ensure continued efficacy.

Lastly, because in our proposal, each patient is involved in the payments for their

treatment, they would have some "skin in the game" (literally and figuratively), and will

take better care of themselves, e.g., through more diligent adherence to their prescribed

drug regimen, diet, exercise, and other actions that will "protect" their healthcare

investment.

* 4.6 Conclusion

In the current pricing environment for highly curative therapies and because of the

lack of innovative payment options, the burden of the upfront payment, caused by

the current high prices of such drugs and/or a large prevalence of the disease, makes it

practically impossible for insurance companies to provide the largest number of patients

with potentially life-saving therapies. To address this issue, we propose a new financing

paradigm by having patients pay a portion of their drug's price over time through

healthcare loans. We then use portfolio theory and securitization techniques to design

a new fund to finance these loans, while keeping the cost of borrowing for the patients

to the lowest possible levels. By estimating the post-treatment mortality rates of the

patients and using a few statistical models for the default characteristics of these loans,

we demonstrate a great potential for the proposed fund under practical conditions.

Considering the extremely large burden of some prevalent diseases such as HCV that
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already have curative therapies, taking action may not be a choice, but could soon

become a necessity.



Chapter 5

Discussion and Conclusion

In this dissertation, we focus on three areas of pharmaceutical innovation and propose

candidate solutions to improve the performance of each area. First, we investigate and

improve upon a recently introduced financing vehicle for early-stage drug research and

discovery. We use state-of-the-art financial engineering techniques to bring large sums

of capital from global financial markets to early-stage pharmaceutical R&D projects.

This method allows pharmaceutical companies to tap into a much larger pool of capital,

and to engage in risk-sharing activities with a much larger pool of investors with a

diverse set of risk appetites. We show that by slicing a drug R&D investment into

appropriate sub-investments-ach tailored to a different set of investors with distinct

risk tolerances and associated return expectations-we can create a structure, where

all the stakeholders benefit from the risk-sharing paradigm. This is feasible because we

can reduce the inefficiency of current financing techniques used in the pharmaceutical

industry by employing the proposed financing vehicle.

The second area on which we focus is the drug-regulatory environment, especially,

drug-approval criteria for life-threatening illnesses. We propose a new quantitative

framework which can objectively incorporate the severity of disease into the drug-

approval criteria and into the required balance between benefits and risks in order

for a drug to be approved. We use Bayesian decision analysis to design a model to

explicitly take into account the severity of disease at the drug-approval stage and we

then use the Global Burden of Disease Study 2010 to set the parameter values in the

model [43]. Using the proposed framework, we demonstrate that the current drug-

regulatory criteria may be too conservative for the most life-threatening diseases while

too permissive for milder conditions.

In the last part of this dissertation, we look at the burdensome aggregate cost,

that would be incurred by insurance companies were they to cover the largest patient

population for some of the recently approved curative therapies. To support the reward

81



82 CHAPTER 5. DISCUSSION AND CONCLUSION

system for pharmaceutical companies and to keep them motivated to discover truly

innovative medicine, we propose a new financing paradigm for these highly curative

therapies. This new financing method is tailored to the current environment as the

industry moves closer to personalized medicine and more innovative solutions are needed

to cover the costs of those therapies.



Appendix A

Appendix to Chapter 2

In focusing our study on the implications of dynamic leverage in Chapter 2, we have

not addressed a number of practical issues regarding the launching and management of

a megafund. Some of these issues have been addressed in other articles [13, 14, 20-25],

but in the interest of completeness and convenience, we summarize the most relevant

of these issues here in the form of "frequently asked questions".

Q: What is the intuition for the advantages of dynamic leverage, should you

also consider dynamic equity (new equity issues), and is it related to the

tax deductibility of interest payments?

A: The intuition for the advantages of dynamic leverage is that the cost of equity for

biotech businesses is in the 15% to 30% range whereas the cost of debt is assumed to

be in the 5% to 8% range, and this lower cost of capital allows equity-holders to benefit

from the spread. Moreover, we adjust the level of debt every period to make sure

that bondholders are not being over-compensated when the default risk is too little. If

dynamic equity could enhance the model, we could incorporate that as well. However,

based on our analysis, as the portfolio matures, it is effectively over-equitized (we return

equity to equity investors, rather than needing additional equity) and to achieve an

optimal capital structure, all additional capital should be debt. Tax deductibility would

be an additional benefit.

Q: Does dynamic leverage not increase the risk to equity holders?

A: There is no doubt in that the equity risk is higher with debt than without debt (the

risk of the megafund's equity tranche is higher than that of the equity-only portfolio).

However, in Chapter 2, we assert that the equity return of the megafund with dynamic

leverage is better than the equity return of the megafund without dynamic leverage.

This is true because, as mentioned above, we raise debt to pay distributions to equity,

hence, the return on equity is smoother than the case where there is no debt adjustment

noting that the equity is the most junior tranche. We should note that we are able to
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achieve this performance enhancement with no added risk for equity-holders, compared

to the megafund without dynamic leverage, because the bondholders are not over-

compensated when the portfolio performs well.

Q: Would existing bondholders not object to new debt issues, and would it

not be a challenge to get their permission each time leverage is dynamically

adjusted?

A: First, because we only increase the amount of junior debt-which is less senior than

the senior debt (i.e., has a lower priority for default payments, etc.)-senior bondhold-

ers should not object to this mechanism. However, the point made about the junior

bondholders losing a part of their investment value because of maintaining a constant

default probability, is exactly why we propose using the dynamic leverage method in the

first place. Otherwise, in situations where the portfolio performs well, the bondholders

will be paid yields that are much higher than what the market suggests for those new

(and lower) default rates. As we stated above, the level of debt is adjusted every period

to make sure that bondholders are not being over-compensated when the default risk

is too little.

In addition, the dynamic leverage structure would be transparent to the initial

lenders/investors and they would participate with the knowledge that additional debt

can be added under specific conditions. The loan documents or securitization indenture

would incorporate a contractual ability to increase leverage if certain conditions are

met. The assumption is that those conditions are described by the model developed.

An analog in the securitization world is a master trust for credit card debt. As more

receivables are added to the pool, additional debt may be issued. This debt may be

structured to have identical terms to the existing debt, or may be "tranched" into

different rating classes that have terms equal to previously issued bonds. Another

example is a bank loan facility secured by a pool of assets. As the pool of assets

increases, additional funds may be drawn from the lenders. In more complex structures,

this may entail several tranches of debt of different seniority. In each case, the ability

to issue or draw more debt depends on the specific conditions of the loan agreements

or indentures.

Q: How would a megafund be managed?

A: A megafund is not merely a passive investment vehicle, but must be professionally

managed by a team of experts in life-sciences investing, i.e., former biotech venture

capitalists or financial analysts of the bio-pharmaceutical industry. An existing example

of such a structure is a drug royalty investment company such as Royalty Pharma. The
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example is not exact because Royalty Pharma currently does not invest in early-stage

assets.

Q: Is it not difficult to value assets?

A: Drug royalty investment companies often hire scientific consultants as well as third-

party valuation groups to provide valuations. Similar approaches are used in securiti-

zation strategies in other industries such as credit-card receivables, student and auto

loans, film royalties, music royalties, etc. Among securitizations of future cash flows,

film royalty securitizations are the closest to the drug megafund structure. In those

deals, the valuation of the individual films is not known in advance and the securi-

tization is based on the probability that the cashflows will meet or exceed historical

results.

Q: What protects the megafund from adverse selection, i.e., being offered

the poorest assets by drug developers?

A: Misaligned incentives can indeed result in the adverse selection of projects, in which

a megafund is shown the least attractive assets and never has the opportunity to acquire

the most attractive ones. This potential bias is the reason that a megafund has to be

managed by a team of experienced life-sciences investment professionals. However, this

bias can be addressed if the drug developer or asset owner has sufficient "skin in the

game," i.e., a continuing ownership interest in the compound even after the megafund

acquires it. In this way, the interests of both drug developer/asset owner and investor

will be aligned. Currently, the parameters for success rates that we have used in our

simulations are estimated using databases that include compounds licensed to different

companies at some point in their development cycle. Hence, if partnership strategies

have any negative effect on the success rate of compounds, this effect is likely to be

reflected in the data used to estimate our model's parameters. A megafund would

certainly have detailed incentives, operating plans and governance controls, all outside

the scope of our paper, to ensure that the risk of adverse selection is minimized and

contained.

Q: The simulations employ parameters that are based on historical averages;

are these likely to apply to current and future projects?

A: There are two issues implicit in this question: (a) do historical averages reflect po-

tential incentive issues that would reduce success rates?; and (b) are historical averages

representative of future performance? We have addressed (a) in our previous answer,

and believe that historical figures already incorporate the impact of adverse selection,

and with sufficiently skilled investment management, a megafund should be able to



achieve such rates or better. However, (b) is a broader concern, especially given the

scientific progress that has occurred in just the past five years in biomedicine. It is

quite likely that historical success rates do not reflect the recent breakthroughs in bio-

informatics, companion diagnostics, and the various "omics." These innovations are

likely to make our historical success rates conservative estimates of what a megafund

could realize today. Moreover, even though history is an imperfect guide for the future,

investors have no choice but to use historical data as the basis for their investment deci-

sions, and clearly they do so on a regular basis, as the popularity of various commercial

drug development databases from EvaluatePharma, Informa, Thomson Reuters, and

other vendors suggest.

Q: Are your parameter assumptions realistic?

A: With respect to our biomedical parameter assumptions such as clinical success

rates, we have no domain-specific expertise and therefore rely on industry publica-

tions to select these parameters. However, open-source software used to perform these

simulations is available online and readers are encouraged to re-run our simulations

using their own parameter values to check the robustness of our results (see http:

//alo.mit. edu/wp-content/uploads/2015/06/RBOtoolbox-f inal. zip and [13] for

further details).

The simulations conducted in this study focus specifically on orphan diseases, and

the parameters we use are specifically chosen for these types of assets [14]. A recent

study using a live portfolio of orphan drug projects managed by the National Cen-

ter for Advancing Translational Sciences (NCATS) suggests that our parameters are

conservative [21].

With respect to our financial parameters, the assumed yields for our debt tranches

are actually quite a bit higher than current market rates, given their default rates and

expected losses. For example, as of Friday November 13, 2015, the composite corporate

bond yield for a 20-year AAA corporate bond is 3.92%1 and the cumulative average

default probability for AAA bonds 10 years after issuance is 0.77% or 77bps.2 Our

simulations assume that such a bond yields 5.00% and the simulated default rate in our

analysis is less than 0.1bps hence our assumptions are considerably more conservative

than current market values. In addition, a cushion was added to incorporate additional

costs such as hedging, fees and expenses of the financing, commitment fees, etc.

'See http: //f inance.yahoo. com/bonds/composite-bond-rates.
2 See Table 24 of https://www.nact.org/resources/2014_SPGlobalCorporateDefaultStudy.

pdf.
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Appendix B

Appendix to Chapter 3

In this Appendix, we derive the expected-cost-minimizing critical value and sample size

in Section B.1, and in Section B.2 we show how to impute the costs of Type I and Type

II errors implicit in any one-sided fixed-sample test of a given size and power under the

assumption that it is BDA-optimal.

* B.1 Expected Cost Optimization

We determine the optimal sample size and the critical value for the fixed-sample test,

f xd(n, An), by minimizing its expected cost in (3.5) over all possible values for n and

An. Keeping the sample size n fixed, the critical value An that minimizes the expected

cost, C(fxd(n, An)) in (3.5), can be determined by setting the partial derivative of the

expected cost, with respect to An, to zero:

C(f xd(n, An)) = Npoci [-0 (-A*) + 24 (A* - Jo ) = 0, (B.1)

where # is the probability density function (pdf) of a standard normal random variable,

i.e., O(x) = exp (- x2 ). Now, solving (B.1) for A* yields:

_ 1 ____

A* - log (2) + 2 (B.2)

where log is the natural logarithm and h, = n . By calculating the second derivative

of the expected cost in (3.5), it is straightforward to prove that A*, given by (B.2),

indeed minimizes the expected cost, C(f xd(n, An)). Assuming po = pi = 0.5, if Type I

and Type II costs were equal, it is clear that the optimal critical value should be the

midpoint of the means of the Z-statistic under the two hypotheses, hence the existence

of the term 50 in (B.2). However, in a general case, where the two costs are distinct,
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the first term in (B.2) plays the role of a correction term, and adjusts the optimal

critical value to incorporate the difference between Type I and Type II costs.

Given a specific value of E2, the optimal critical value, i.e., A* in (B.2), can be

considered a function of the sample size. The behavior of this function over differ-

ent sample sizes for three values c2 = 0.01,0.07,0.34, corresponding to Z2 = 0.2, 1, 5,

respectively, is depicted in Figure B.1, where the alternative hypothesis corresponds

to Jo = 2. The conventional critical value, regularly used for one-sided tests, i.e.,

ZL, = (D1(1 - a) = 1.96 for a = 2.5%, is also drawn in Figure B.1 for comparison. It is

observed that, in all of these cases, the optimal critical value changes with the sample

size contrary to the classical critical value, which is independent of the sample size.

Now, if we assume equally likely hypotheses, i.e., po = pi = 0.5, the parameter

Z2 becomes the ratio of Type II cost to Type I cost, which must be larger for life-

threatening diseases than for mild diseases, as discussed in Section 3.4. In other words,

the parameter Z2 can be considered as a normalized indicator of the severity of the

target disease. The more dangerous the disease, the higher the value of T2 should be,

and the larger chance we should give to an effective drug to be approved. Therefore,

across all sample sizes in Figure B.1, by increasing the value of Z2, the optimal critical

value becomes smaller and moves toward the mean of the Z-statistic under the null

hypothesis, namely, the constant zero line. In other words, the optimal critical value

becomes less conservative as the importance of Type II cost relative to Type I cost

increases, modeling a more life-threatening disease. This explains why the red line lies

completely below the green line and the green curve is below the blue line. If 2 is large

enough, the optimal critical value may even cross the zero line and become negative,

e.g., if Z2 = 5, A* becomes negative over sample sizes smaller than 779. Finally, for

Z2 < 1, implying a larger weight for the Type I cost, corresponding to mild diseases,

the behavior of the optimal critical value is qualitatively different from the other two

cases, in which the optimal critical value is monotonically increasing in the sample size.

Using the optimal critical value in (B.2), the size, a, and the power of the test at

the alternative hypothesis, 1 - /, are given by

a = a given (E2) th ,ts a (B.3)

I = 4 1 l1g (Z2) + . (B.4)

Next, for a given n, the expected cost obtained by using the optimal critical value, A*
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in (B.2), can be calculated by substituting (B.2) into (3.5) and is given by

C(f xd(n, A*)) = poc1 N<D(-A*) + N42 <(A* - 60 I) + n(1 + 7N 2)] (B.5)

where the optimal sample size should be determined to minimize this expected cost over

all possible sample sizes. Let us consider a continuum of values, rather than discrete

values, for the sample size, n, and take the partial derivative of the expected cost in
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(B.5) with respect to n as the following:

+ C(f xd(n, A*)) = A* N -#(-A*) + Z22(A* - 0 )an n an n

- ( 0 + ) N1 2#(A* - 6o V ) + (1 + yN2), (B.6)

where the first line is proportional to (B.1), and therefore, equal to zero. By simplifying

(B.6) and setting it to zero to evaluate the optimal sample size n*, we have:

C(fxd(nA*)) = (1 + -YNC 2 ) - / NT 2q(A* - 6o= 0.
n n=n* n \ n n=n*

(B.7)

Now, if we define x* = * (6oV/I) 2, and rearrange terms in (B.7), then x* can be

represented as the fixed point of a function, g, i.e., X* = g(x*). This function is given

by

g(x) = A exp (-- (lo(T2) + X) (B.8)

where

A = I (B.9)
167r 2. 2 / [(1 + -NN2

and T2 = P12 as defined earlier. Now, if N is large enough to make yNT2 much larger
podi

than 1, A becomes independent of N. Since the exponential function in g is independent

of N as well, we observe the insensitivity of the optimal sample size to the prevalence

of disease, N, in the case of large burden of disease, i.e., large C2 = Nc 2 . In the

following, we revisit the three cases, for which the optimal critical value is drawn in

Figure B.1. Let us consider, for all these cases, a target population of N = 500,000

patients, an alternative hypothesis associated with 6o = ' and equal prior probabilities

for the two hypotheses, i.e., po = pi. We consider T2 = 0.2 (equivalently c 2 = 0.01)

corresponding to an innocuous disease, C2 = 1 (equivalently c2 = 0.07) representing a

disease with medium severity, and T2 = 5 (equivalently c2 = 0.34) corresponding to a

life-threatening disease. By using (B.8), we first determine the optimal sample size,

then substitute this n* into (B.2) to determine the optimal critical value, and finally,

using (B.3) and (B.4), we calculate the size of the optimal tests, and their power for

the alternative hypothesis. The results are tabulated in Table B.1.
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Table B.1. The optimal sample size, critical value, size, and statistical power for three trials, each
designed to test a treatment targeting a disease with a different severity.

Severity Optimal Sample Size Optimal Critical Value Size (%) Power (%)

0.01 2,719 2.654 0.40 97.47

0.07 2,236 2.090 1.83 98.17

0.34 1,534 1.266 10.28 98.59

For the three listed trials, the size of the target population is N = 500,000 and the alternative

hypothesis corresponds to Jo = S, for which the power is reported.

In the following section, we employ the cost model proposed in Section 3.4 and the

results of this section to determine the implicit costs in the current standards of clinical

trials.

U B.2 Imputing the Cost of Type I and Type 11 Errors

We consider a typical one-sided fixed-sample test and assume that it is a BDA-optimal

test in our framework using some unknown normalized cost parameter Z2 and unknown

prevalence, N, and infer these parameters for the trial. The FDA regulations require

that one-sided tests have at most 2.5% probability of Type I error. For this current

standard, it is easy to see that the critical value in a fixed-sample test, on the Z-scale,

is

A* = zA <I->(1 - a), (B.10)

where a = 2.5% and hence, z, = 1.960. Also, because the Type II error associated

with 6o is equal to 3, we have:

,3 =,<D(A* - 6o id ) z,, 1D--1(1 - 6)=,, A* 6o5 - z,. (B. 11)

Substituting (B.10) and (B.11) into (B.2) gives us:

_ __c1 z__+ 2__ '-
zae = (zC' + zo) I log (O )+ Zc , log =Pc .Z (B. 12)

Pli2 2 i2 PlC - 2

This yields the ratio of Type II cost to Type I cost as:

Z2 = exp z = exp o n - z. n) (B.13)
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Note that the cost ratio depends on the number of subjects recruited in the trial.

However, in our model, this cost ratio is an exogenous variable which is related to the

severity of the targeted disease, the state of current therapies for the disease, and the

side effects of the drug. Therefore, the ratio should not depend on the sample size.

Now, in classical hypothesis testing, A* = z, which is independent of the sample

size. Using this fact, we can further simplify the conditions for optimal sample size by

noting that the optimal sample size n*, is the integer value n, for which:

C(fxd(n + 1, A* 1 )) C(f xd(n - 1, A* 1 ))
n+)> I and n > 1. (B. 14)

C(fxd(n, A*)) - C(fxd(n, A*))

By expanding the left-hand side of (B.14), we have:

C(f xd(n + 1, A*+1) NG(-z,) + NE2 I(zQ - (z + z) +)+ (n + 1)(1 + 7NT2)

C(fxd(n, A*)) N4(-z,) + NT2((-Zfl) + n(1 + -yNT 2 )

(1 + -YN 2 ) - NT 2 [P(-z0) - (-(Q+z,3 ) 1 + - 1 -z")]
I1+ C(fxd(n,A*))

1 + (1 + yN2 2 ) - NE2 Pr(-z, - el < Z < -z, 3 ) >1
C(f xd(n, A*))

(B.15)

where Z ~r (O,1) and il = (zQ + z3) I+ i+ - I]. Furthermore, by expanding the

second inequality in (B.14), we have:

C(f xd(n - 1, A*)) N(-za) + N- (za + zO) V 5) + (r - 1)(1 + yNE2 )

C(f xd(n, A*)) N4(-z,) + NT24(-z,6) + n(1 + -yNT 2 )

-(1 + -yNZ 2 ) + NZ 2 [.((z 0 + z") [I - 1 - - z") - D(-zO)
= 1 + C(f xd(n, A*))

+- (I + -N_2) + N-C2 Pr(-zp8 < Z < -Z,3 + 62)>
C(f xd(n, A*))

(B.16)

where C2 = (Za + z,) 1 - 1 - . Next, combining (B.15) and (B.16) yields:

1 + TyNE2Pr(-z,3 - E < Z < -z3) < Pr(-z3 < Z < -zo + C2). (B.17)
N-2
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Now, both el and 2 can be well-approximated by El ~ E2 2 n 2 _ 2)

Hence, for a relatively large sample size,1 n, we can simplify (B.17) to yield:

1+yN-2  (Z+z 1 1 Z2)] 1 0 12
2nexp 2 =2 exp 2z). (B.18)

NZ22n v/ 227 . 2/r 2V 2

Now, we multiply the result in (B.18) by (B.13) to get the following ratio:

1+N2 1 ( 1 2'
N +Vy7~ 1 0 exp -- z for large n. (B.19)
N 2rn' 2U.2 2 '

Therefore, for a balanced two-arm fixed-sample test with n subjects per arm and a size

of a, i.e., f xd(n, z.), which has a power of 1 - 3 at o, we can estimate the normalized

Type II cost and prevalence of the disease as:

c2 =exp - =exp (n - za n ,(B.20)

N ~ (B.21)

21 ex(-lz2) _ exp(z

where N is the size of the target population of the drug under test.

To put the results in (B.20) and (B.21) into perspective, let us assume that a fixed-

sample test is required with size a = 2.5%, and a power of 1 -3 = 85% for an alternative

hypothesis corresponding to 6 0 = i. Using the classical hypothesis-testing calculations,

this leads to a sample size of n = 1,150 which meets the FDA's criterion. Now let us

assume a non-informative prior, i.e., po = p, = 0.5. For this trial, we get the following

severity and prevalence:

C2 = 0.02, N = 15,119. (B.22)

Having obtained a severity equal to 0.02 in (B.22), we can conclude that the current

standards for clinical trials are optimal for testing only innocuous diseases, as discussed

in Sections 3.2 and 3.4, and cannot be optimal for more life-threatening diseases like

pancreatic cancer. In general, as observed in Table B.1, for a given target population,

the test should become less conservative (its critical value should become smaller) and

'For the numerical example given at the end of this section, if the number of recruited patients is
more than 100, n is large enough for this approximation to hold.
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Table B.2. The required sample size, implied severity, and prevalence of the target disease for four
conventional trials.

Power (%) Required Sample Size Implied Severity Implied Prevalence (x 1000)

80 1,005 0.01 13.68

85 1,150 0.02 15.12

90 1,345 0.02 17.51

95 1,664 0.04 24.60

Each trial corresponds to a different power for the alternative hypothesis, namely, 1 - 3 =

80%, 85%, 90%, 95%, and all the trials have a size of a = 2.5%. For all the trials, the alterna-

tive hypothesis corresponds to Jo = '.

the sample size should shrink as the severity of the disease increases to avoid exposure

to inferior treatment during the trial. Now, maintaining all our assumptions and only

changing the power of the test for the alternative hypothesis, we get different values for

the required sample size, implied severity, C2, and prevalence, N. We have reported the

results for four different power levels for the alternative hypothesis, namely, 1 - 0 =

80%, 85%, 90%, and 95%, in Table B.2. As observed in Table B.2, all the implied severity

values for these classical tests are too small, especially, for a high power level of 95%

where the implied severity is only 0.04 (last row in Table B.2). These small numbers

underscore the fact that the current standards of clinical trials are quite conservative

and not suitable for terminal illnesses with no effective treatment.
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Appendix C

Appendix to Chapter 4

* C.1 Credit Enhancement Techniques

In this section, we describe two of the most commonly used credit enhancement tech-

niques employed in securitization vehicles.

* C.1.1 Interest Coverage Test

After making all the bond payments in each year, we calculate the ratio of the expected

cash, to be received in the next year from the loan repayments, to the payments sched-

uled for the senior bonds in the next year. If this ratio is lower than 125%, we divert

cash flows to the senior bonds, and reduce their outstanding principal such that this in-

terest coverage ratio becomes lower than 125%, available cash permitting. After having

the interest coverage ratio for the senior tranche pass, we calculate a similar ratio with

the same numerator but a different denominator for the junior bonds. The denominator

this time is the sum of the bond payments scheduled for both senior and junior notes.

If this new ratio is less than 110%, we start paying the principal of the senior bonds

down until the ratio is back in line. If all the principal of the senior bonds is paid, and

the ratio is still higher than 110%, we pay down a portion of the junior bonds' principal

to bring back the ratio to below 110%. After having both of these interest coverage

tests pass, we move on to the overcollateralization test explained next.

* C.1.2 Overcollateralization Test

For this test, instead of comparing the expected cash flow to be received by the portfolio

with the scheduled payments to be made by the portfolio, we compare the outstanding

amount of the assets in the portfolio, i.e., the loans, with the outstanding principals of

the junior and senior tranches. Similar to the interest coverage ratio, for each tranche,

the denominator is the sum of the outstanding principals of that tranche and all the
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tranches senior to it. The numerator is simply the outstanding amount of the assets

that the portfolio currently holds, i.e., the loans that have not stopped their payments.

We use the same thresholds for cash diversion to the two tranches.

* C.2 Loan Default Models

In this section, we propose a simple statistical model for two borrowers' default prob-

abilities as drawn in Figure C.1. Suppose Alice (A) and Bob (B) are two borrowers,

with two debt-payment-to-income ratios (DPI), defined as the ratio of the annual loan

payments ($6,700 in our simulations) to the borrower's annual income. These DPIs

derive the leftmost blocks in Figure C.1, where each borrower's initial expected default

probability is uniquely determined by the input to the block, namely, his/her DPI. In

each year, a common stochastic factor, modeling all the movements in economic condi-

tions and wages, modulates both the initial expected default probabilities to yield the

borrowers' final expected probabilities of default that are correlated with each other.

We assume that the magnitude of the modulating signal is uniformly distributed over

the interval [75%, 125%], and that the magnitude in one year is independent of the

magnitudes in other years. Finally, these correlated expected default probabilities feed

into two separate beta random variable generators (the rightmost blocks in Figure C.1),

creating two correlated beta random variables, each of which has a mean equal to its

corresponding expected default probability (the input to the block).

Our goal in this section is to estimate the dependence of each initial expected default

probability on its corresponding debt-payment-to-income ratio in the leftmost blocks

in Figure C.1. We propose three different parametric models for this dependence, each

of which is characterized by two parameters, and we then use student loan data to

calibrate the parameters of each model. The baseline model, a generalization of the

commonly used logistic model, is given by:

1+exp (-0 1-(DPI)+a) O<DPI <1

E[PD] = , (C.1)

1< DPI

where E[PD] is the expected loan default probability, <r (-) is the inverse of the cumu-

lative distribution function (CDF) of the standard normal random variable, and a > 0

and / 0 are the model parameters.
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E[PD] f(PD)

EA[PD]

DPIA PDA

DPI PD

Z-1(0.75,1.25)-

E[PD] f(PD)

EB[PD

DPIB PDB

-DPI PD

Figure C.1. The statistical model used to generate loan default probabilities.

Note. The object U(a, b) denotes the uniform probability distribution over the interval (a, b). DPI and
PD stand for debt-payment-to-income ratio and probability of default, respectively.

The second model, referred to as the pessimistic model, is characterized by two

parameters a > 0 and / > 0 as the following:

exp( (DPI-1-1), 0 DPI < 1

E[PD] (C.2)

{7, 1<DPI

Lastly, the third model, labeled as the optimistic model, has two parameters a > 0

and / > 0, and is given by:

exp (- (1DPI)'), 0 DPI <1
E[PD] (C.3)

I, 1<DPI

The pessimistic and optimistic models are two variations of the Weibull distribution,

for which the independent variable is DPI- 1 - 1 and 1 - DPI, respectively.

We use the 3-year cohort default rates of the federal student loans for the fiscal

years 2009-2011 made available by the U.S. Department of Education' to estimate

'For a detailed description of the cohort default rates and their calculation, see .
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Figure C.2. The cumulative distribution of the annual probability of default for federal student loans,

and (b) the estimated cumulative distribution of family-income for student loan borrowers along with

the empirical numbers reported by the National Association of Student Financial Aid Administrators.

a probability distribution for the annual default probability on federal student loans.

Since the reported default rates correspond to a 3-year time window and our goal is

to estimate the annual default probabilities, we annualize the default rates using p1=

1 - (1 - P3) , where p, and p3 denote the annual and 3-year default rates, respectively.

The estimated distribution of the annual default probabilities is drawn in Figure C.2a.

To estimate the distribution of family-income for the student loan borrowers, we

then use the family-income levels of the students who received subsidized and unsub-

sidized Stafford loans2 in the year 2007-08, reported by the National Association of

Student Financial Aid Administrators (NASFAA) [83]. We fit a lognormal distribution

to these empirical data to get a continuous cumulative distribution function (CDF) for

the family-income distribution of the student loan borrowers, and the result is presented

in Figure C.2b.

We use the reported numbers in [84] as a proxy for the debt-payment-to-income ratio

of student loan borrowers for different family-income categories along with the estimated

income distribution in Figure C.2b, and each of the proposed models to calculate the

probabilities of default for each income category and the overall population of student

loan borrowers. We then minimize the distance of these estimated probabilities from

the empirical probabilities to determine the optimal values of a and 3 for each model.

2 The Stafford loans are a part of the Direct Loan program, formerly known as the Federal Family

Education Loan Program (FFELP).
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Figure C.3. The empirical distribution of federal student loan annual defaults for the fiscal years
2009-2011, and the resulting distributions from the models given by (C.1), (C.2), and ((.3) with their
parameter values tabulated in Table C.1.

Table C.1. The optimal values of the two parameters, a and 0, for the models given by (C.1), (C.2),
and (C.3).

Pessimistic Baseline Optimistic

0.28 1.24 2.02

0.11 1.70 0.48

These optimal values for each scenario are tabulated in Table C.1, and we present the

resulting default probability distributions for each model using these optimal parameter

values in Figure C.3.
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* C.3 Post-Treatment Survival Curve Estimation

In this section, we use the projected population numbers for the baby-boom cohort in

the U.S., published by the U.S. Census Bureau [81], to derive a post-treatment survival

curve for the HCV patients in the U.S. We focus on this specific cohort because an

estimated 75%+ of the patients with HCV infection in the U.S. are baby-boomers. If

the estimated population size at year t is given by N(t), we define the survival curve of

the population as the following:

S(t) = ,Nt t > 2015. (C.4)
N(2015)

The population numbers, N(t)'s, are reported over years with 5-year increments,

i.e., for t = 2015,2020,2025,, etc., and we interpolate the curve between every two

adjacent samples that are 5-year apart. By inspecting the given survival rates for the

selected years and their logarithms, we propose the following functional form:

S(t) = exp(-A(t)), t > 2015, (C.5)

where exp(.) is the exponential function, and the cumulative hazard function, A(t), is

given by

A(t + 2015) = -1 + exp (at2 + bt), t > 0. (C.6)

To avoid over-fitting when estimating the survival curve for the first 9 years (the time

period required for our simulation), we use the survival numbers for t = 2015, 2020, 2025,

2030, and 2035; i.e., we consider the survival curve for 11 more years than required for

our simulations. We then determine the values of parameters a and b in (C.6) such that

they jointly minimize the error function, given by

4 2
E(a, b) = E (S(2015 + 5k) - S(2015 + 5k)). (C.7)

k=O

The minimizing values are a* = 5.0 x 10-4 and b* = 57.5 x 10-4, and the estimated

survival curve is presented in Figure C.4.

To verify the accuracy of our estimated survival curve, we compare our estimate to

the result obtained by using the 3-parameter Burr Type XII distribution [85] instead

of the functional form given by (C.5) and (C.6). The Burr distribution is commonly

used in survival analyses and encompasses twelve different distributions, including the
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Figure C.4. Estimated Survival curves using the model given by (C.5) and (C.6), and using the Burr

Type XII distribution. The projected population trend for the U.S. baby-boom cohort by the U.S.

Census Bureau is also presented.

Weibull, logistic, and log-logistic distributions, as its special cases [85, 861. The obtained

results using this distribution are drawn in Figure C.4. The estimate error using the

Burr distribution is higher than the estimate error using our proposed model in (C.5)

and (C.6), and the results of the Burr distribution are a little more optimistic (i.e.,

yielding higher survival rates) over the first 9 years. However, as seen in Figure C.4,

both estimates are pretty close.
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