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Abstract

In this thesis we introduce a technique that allows one to use Natural Language as
part of the state in Reinforcement Learning. We show that it is capable of solving
Natural Language problems, similar to Sequence-to-Sequence models, but using multi-
stage reasoning. We use Long Short-Term Memory Networks to parse the Natural
Language input, whose final hidden state is used to compute action scores for the
Deep Q-learning algorithm.
First part of the thesis introduces the necessary theoretical background, including
Deep Learning approach to Natural Language Processing, Recurrent Neural Networks
and Sequence-to-Sequence modeling. We consider two case studies: translation and
dialogue. In addition, we provide an overview of the existing techniques for the
Reinforcement Learning problems, with focus on Deep Q-learning algorithm.
In the second part of the thesis we present the multi-stage reasoning approach, and
demonstrate it on solving the sentence unshuffling problem. It achieves accuracy
5% better than a Sequence-to-Sequence model, while requiring 3 times less examples
to converge. Furthermore, we show that our approach is flexible and can be used
with multi-modal inputs - Natural Language and agent's sensory data. We propose a
system capable of understanding and executing Natural Language commands. It can
be used for many different tasks with minimal engineering effort - the only required
components being the reward function and example commands. We demonstrate its
performance using an experiment in which an agent is required to learn to complete
four types of manipulation tasks. The approach achieves nearly perfect performance
on two of them and good performance in the two others.

Thesis Supervisor: Brian C. Williams
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

Since the dawn of computing, it has been apparent that some problems, which people

solve effortlessly, are difficult to implement in software. Artificial Intelligence (Al) is a

field of study which aims to bridge this gap. AI is one of the central problems of XXI

century with far reaching implications. Metamind's image classification software

performs medical diagnosis, allowing professionals to focus on improving patients'

condition. Google, Tesla and numerous others are working on self-driving cars, which

can improve road safety (In USA alone over 30000 people die in car accidents every

year since 2000 2). Researchers at MIT have shown that intelligent robots can partic-

ipate in disaster relief especially in the areas that are too far away or too dangerous

for human rescuers to access [49]. Those are only a few examples of the applications

of AL.

There are two main approaches to advancing Al. Symbolic AI sets out to build an

elegant model of the environment using logic formulations and to make intelligent

decisions using inference. Statistical Al is about learning probabilistic representa-

tions of knowledge and making decisions based on likelihood of different scenarios.

Intuitively, statistical approach tends to result in systems which are fast, but often

inexact or even incorrect. Symbolic approach is often slower, exploring many sce-

narios before providing an answer which is often optimal given the model. For those

iwww.metamind. io
2http: //www-fars .nhtsa. dot . gov/Main/index. aspx

17



readers familiar with the book "Thinking Fast and Slow" [19], Statistical Al could be

compared to System 1 (fast, unconscious, automatic, error prone), while Symbolic AI

is closer to System 2 (slow, conscious, effortful and reliable).

1.1 Symbolic Al

Success Stories Even though inference problems considered in Symbolic AI are

NP-complete, the researchers have managed to solve problems of impressive sizes. For

example in 1996, IBM has built a computer that won a chess game with grandmaster

Garry Kasparov [41, which evaluated 200 million chess moves per second. Further-

more, while representing knowledge as a set of logical equations may seem restrictive,

it has been successfully applied to solve diverse high-level problems, such as diagnosis

and fault isolation [71, recognizing and executing tasks in human robot teams [25], or

even understanding the notion of risk and discovering execution strategies with upper

bounds on probability of failure [48].

Shortcomings At the time of writing (2016), the average cost of hiring a computer

engineer for one year is about $100 000, while the cost of maintaining a server for a

year is $1000. It means that minimizing the amount of engineering effort is at least as

important as computational performance, when choosing an approach for a particular

problem. One of the main shortcomings of the symbolic approach is the fact that

the amount of engineering work, required to build a model, can be significant. For

example, [471 demonstrates a system capable of controlling a robotic forklift based

on gestures and natural language. The proposed system requires many components

working in tandem: context analyzer, task planner, motion planner, navigator, object

detector, and manipulation planner. A system with such a large number of compo-

nents has two major disadvantages. First of all the raw complexity of the system

correlates negatively with its robustness - every interaction between different com-

ponents requires additional software and may introduce new bugs. Secondly, such a

system is difficult to extend. For example, updating the functionality to be able to

18



interpret new set of commands requires significant effort from the programmers, who

must have comprehensive knowledge of the system.

1.2 Statistical AI

Success Stories Recently, significant progress has been made in demonstrating the

usefulness of Neural Network methods, or more generally Non-Convex Optimization

3 4. In the past 5 years it has been applied to solve a vast array of problems. Con-

volutional Neural Networks significantly surpassed previous state of the art in object

recognition 122]. Recurrent Neural Networks achieved state of the art results in Ma-

chine Translation [41]. A combination of both types of networks yielded human-level

accuracy in speech recognition [1]. Furthermore, Convolutional Neural Networks used

as a function approximator in Bellman equation were used to learn controllers that

achieve high scores on many Atari games based solely on the image of the screen and

reward signal [301.

Shortcomings While Non-Convex Optimization methods rely very little on model

engineering, they instead utilize vast quantities of data. For example, the object

recognition network was trained using 15 million labeled images. Machine Transla-

tion experiment leveraged 12 million English-French translation pairs. Speech recog-

nition network was trained on 11,940 hours of speech including 8 million utterances,

each of which was labeled with corresponding English transcription. There have

been attempts at addressing this issue, the most notable of which is Transforming

Autoencoders [45], which achieved 1.74% error rate on the MNIST task (classifying

handwritten digits) with only 25 labeled examples (in an active learning setting).

Nevertheless such methods have never been validated on any problem of substantial

3 The author has decided to use the name Non-Convex optimization due to the fact that some
of the models presented in this thesis go well beyond the original framework of a backpropagation
based computation that can be represented as a single fully differentiable computational graph. The
name is overly general, but it is the best the author could come up with.

4 Non-Convex optimization is only one of many areas of studies considered to be a part of Statis-
tical AL. However, the author believes they are representative enough to demonstrate many of the
advantages and disadvantages of this type of techniques.

19



I ~ -
j

-Ore

Figure 1-1: A picture of a horse wearing a fly-repelling rug. When classified using state

of the art 1000-class Convolutional Neural Network provided by Metaniind (http:
//metamind. io) it reports Zebra as the highest probabilitv answer, while the borse
does not occur in top 5 answers. image source: http: //www. equiporium. co. uk/

size.

Furthermore. despitc the remarkable success of Non-Convex optimization methods.

there still are certain qIualitative differences between thle predictions made by Vhluminians.

and those nade by even the best Neural Network models. Consider figure 1-1 - even

though the picture has many features that may suggest the entity is a zebra, we can
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easily refute that hypothesis, in contrast to Neural Network. Notice, that most of

the people can accurately classify the image, even if it is the first instance of "horse

dressed as zebra" they have seen in their life.

1.3 The renaissance of Reinforcement Learning

Reinforcement Learning (RL) is a technique that allows one to learn a strategy for

choosing an action given the current knowledge, such that the current and future re-

wards are maximized. It is a promising approach addressing some of the shortcomings

of both Symbolic and Statistical Al:

Reinforcement Learning can leverage existing and future statistical models

In 1992 it was demonstrated that Reinforcement Learning can be used to achieve

above-human performance on the game of TD-gammon [43]. It used Multi-Layer

Perceptron as approximator of the value function. Unfortunately, due to poor con-

vergence characteristics and computational performance, the approach was deemed

impractical for problems of bigger sizes. However, in 2013 the Deep Q-learning al-

gorithm addressed some of those issues and was applied to achieve above-human

performance on many Atari games, based solely on the image of the screen and the

score function [30]. It was impactful, not only because it solved a problem much larger

than possible before, but also due to the fact that it used a complex statistical model

as part of the Q-value approximator - Convolutional Neural Networks [24]. One of the

main assumptions in this thesis is that the family of models that can be employed in

that role is much wider, which we validate using Long Short-term Memory networks

as an example.

Reinforcement Learning models are capable of multi-step reasoning Some

problems inherently require multiple steps of reasoning, where a part of computation

cannot be done before the previous one is completed. To better understand this issue,

let's consider a probabilistic equivalent of a parallel processing framework (chapter

27 of [6]). Given a particular computation, one can find a critical path - the shortest
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path of elementary operations, such that the next one cannot be executed before

the first one finishes. The longer the critical path, the harder the algorithm is to

parallelize. In a recent paper by Facebook Al [521, a set of 20 simple problems

were designed to be prerequisites for any system "capable of conversing with human".

One of the problems on which their Neural-Network-based system was performing

particularly poorly was path finding. The critical path for this problem is as long as

the length of the shortest solution. It is likely that the main reason for such a poor

performance is the inability of Neural Networks to perform multi-stage reasoning.

Another example is a competition organized by Kaggle, where the goal was to design

an algorithm for recognizing whales (particular individuals, rather than species) based

on their aerial photographs 5. Both winning teams have reported in their blog posts

6 7 that while naive application of Convolutional Neural Networks (CNN) failed to

achieve performance higher than chance, significant improvement was obtained by

breaking the problem up into pieces - one CNN identifying key feature for alignment

and another classifying the aligned image. Reinforcement Learning approach could

potentially address some of those problems in end-to-end fasion. It allows for multi-

stage reasoning - multiple actions can be part of a single execution of the model.

1.4 Reinforcement Learning for Natural Language

Processing

Natural Language Processing has two qualities that are desirable for evaluating Ar-

tificial Intelligence algorithms. Firstly, Natural Language is very diverse - the same

message can be expressed in many different ways; syntax can be varied arbitrarily,

while semantics remains unchanged; regardless of what I am trying to say, there are

many ways to verbalize it. Secondly, understanding language often requires multi-

step reasoning, e.g. "All roses are flowers. Some flowers fade quickly. Do some roses

'https ://www .kaggle . com/c/noaa-right-whale-recognit ion
6http://deepsense.io/deep-learning-right-whale-recognition-kaggle/
7http://felixlaumon.github.io/2015/01/08/kaggle-right-whale.html
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fade quickly?" (example from [191), requires a few steps of logical inference to answer

correctly.

While it is interesting from theoretical standpoint, Natural Language Processing has

many practical applications. The most pervasive one is Information Retrieval. Google

search engine performs over 3.5 billion searches per day [401. There are also many

specialized companies, that sell products capable of navigating specific types of data,

such as Sumologic, Palantir etc. Another application is understanding spoken com-

mands, which comes in two flavors - personal assistants such as Siri, Google Now or

Cortana, and intelligent robotic systems, e.g. Moley (robotic kitchen). Especially in

case of the later category, improving the underlying algorithms is a matter of not only

convenience and efficiency, but also safety; in 2015 a manufacturing robot pressed a

worker against a metal plate, leading to his death '. This accident could have been

avoided if the machine understood spoken commands or had better comprehension

of its surroundings.

Using Reinforcement Learning in Natural Language problems is not a new idea. For

example, it has been demonstrated as a viable approach for teaching an agent to

play Civilization II games based on game manual[3] and playing text-based games

like Fantasy World[33]. However, the benefit of using Non-Convex approach is that

it requires little modeling effort - it does not need part of speech tags, parse trees or

mapping for words to actions.

In this thesis we show how Reinforcement Learning can be used for Natural Language

Processing by incorporating language as part of the state. To accomplish that we use

Long Short-Term Memory Networks to parse the Natural Language input, where

the final hidden state of the network is used as the input to Multi-Layer Perceptron

computing action scores.

To verify the claim that multi-step reasoning in Reinforcement Learning settings

can lead to improvements on Natural Language Processing tasks, we evaluate our

approach on sentence unshuffling problem. Our approach achieves performance 5%

better than Sequence-to-Sequence approach, while requiring 3 times less examples

8http://www.cnn.com/2015/07/02/europe/germany-volkswagen-robot-kills-worker/
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for convergence. It is worth noting that no hand-engineered features are used and

the reward function is simple (the number of words put in correct positions). To

further demonstrate applicability of our approach, we trained a model to perform

manipulation tasks based on Natural Language commands. It showcases the flexibility

of our approach by incorporating not only Natural Language, but also sensory input

as part of the state available to the agent performing the task. The model jointly

learns to understand and execute, which means the only necessary, domain-specific

engineering is designing the reward function and providing examples of commands.

It achieves perfect performance on two of the tasks, that we proposed, and good

performance on the other two (significantly better than chance).

1.5 Overview of the thesis

The remainder of the thesis is structured in the following way. The second chapter

describes Non-Convex methods in Natural Language Processing, including the theory

and two use cases - Machine Translation and Dialogue. The third chapter lays out

the theory of Reinforcement Learning with particular focus on the Deep Q-learning

algorithm, as well as a simple experiment verifying its properties. The fourth chapter

demonstrates how the two can be combined in two experiments. The first experiment

shows how a simple NLP task - sentence unshuffling - can benefit from being posed as

a Reinforcement Learning problem. Second experiment demonstrates how Reinforce-

ment Learning agent can be thought to execute Natural Language commands based

on their Natural Language description and sensory input.
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Chapter 2

Natural Language Processing as a

Non-Convex Optimization Problem

The aim of this chapter is to familiarize the reader with Non-Convex techniques in

Natural Language Processing. The reason for that is twofold. Firstly, a family of

models - Sequence-to-Sequence Recurrent Neural Networks - is currently used in the

state of the art algorithms for many NLP problems, e.g. translation [41] or sentiment

analysis [351. We will use such a model as a baseline for one of the experiments

in chapter 4. Secondly, we illustrate how to approach constructing Non-Convex ar-

chitectures with focus on the ones useful in Natural Language Processing. This is

necessary to understand the key features of our model for Reinforcement Learning

using Natural Language as part of the state.

The chapter starts with a brief introduction to Non-Convex optimization techniques,

including relevant architectures, error functions and optimization techniques. After

that, we introduce the key insight for Non-Convex Optimization approach to Natural

Language Processing - Word Vectors. To better understand how this knowledge

fits together, we study two use cases - Translation and Dialogue Management. We

conclude this chapter with a short experiment, hinting at the way the Non-Convex

models are useful for encoding Natural Language as part of the state in Reinforcement

Learning.
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2.1 Background

Natural Language Processing problems have been traditionally solved by combining

building blocks composed mainly of hand designed features and classifiers [27]. In

recent years researchers have managed to demonstrate the usefulness of end-to-end

non-convex optimization approaches, which learn to solve complex Natural Language

Processing tasks based on example data. It has been demonstrated that such models

can solve many of the basic NLP tasks, such as: part-of-speech tagging, chunking,

named entity recognition and semantic role labeling [5]. Furthermore, such an end-

to-end approach achieves competitive results on fairly complex problems like Machine

Translation [41], Sentiment Analysis [38], and simple dialogue problems [53].

Using non-convex optimization for Natural Language is a relatively old idea. In

1986, Geoffrey Hinton has demonstrated this type of approach for learning the mean-

ing of relationships in a genealogy tree from simple statements about an example

family [16]. However only in recent years did the community manage to demonstrate

competitive results for real-world applications. This is a result of the combination

of hardware improvements and better theoretical understanding of non-convex opti-

mization. The former is important due to the fact that those models can be very

computationally expensive - for example in NLP we often encounter matrices with

size (number of words in language) x (size of distributed representation), which can

often have 100 000 000 or more entries. An example of the latter, a theoretical

breakthrough, would be a set of recently developed techniques for training long term

dependencies in Recurrent Neural Network [17].

This chapter describes the suite of algorithms used in non-convex approach for NLP

followed by two case studies - Machine Translation and Dialogue Management.

26



2.2 Introduction to Non-Convex Optimization

Data Backpropagation

Architecture
Architecture Solver 0

parameters

Error function

Figure 2-1: Overview of the non-convex optimization pipeline

Figure 2-1 outlines typical non-convex optimization pipeline in Machine Learning

setting. For a given problem we define an architecture which depends on some pa-

rameters. We would like to tune the parameters, such that the architecture performs

well on our problem subject to an error function, which estimates performance of

our model on some data. The key observation is that if the architecture and er-

ror functions are differentiable, we can use backpropagation algorithm to compute

a derivate of the error function. This information can be subsequently used by a

solver like Stochastic Gradient Descent algorithm to find a set of parameters for the

architecture that achieves low values of the error function.

2.2.1 The Data

Although theoretical analysis of non-convex optimization techniques remains incom-

plete as of today, many experiments have shown that performance on unseen examples

for a given problem can always be improved in presence of more data.

Data may have many shapes and forms depending on the scenario that we are inter-

ested in, but majority of the Non-Convex models operate in the supervised setting,

which is defined in the following way: given a set of example input and output pairs

(x 1, yi), ... , (Xn, y) which have been sampled from some distribution P(X, Y), find a
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model that approximates P(Y X). Example would be a set of sentences where each

word is tagged with their part of speech.

Collecting the data can be quite a challenge and often requires certain level of cre-

ativity. For example the imagenet dataset [8] created for the purpose of 1000-class

image recognition contained 3.2 million labeled images initially (current version ex-

ceeds 11 million). The main trick was to use publicly accessible image search engine

to find candidate images and then ask humans to judge whether the label is cor-

rectly assigned, which requires much less time and effort than looking up every image

separately.

There are many open problems as far as data acquisition is concerned. For example

assembling a large question answering corpus is an unsolved challenge. Such corpus

is of significant practical interest. For example Facebook recently (2015) invested

considerable resource in deploying natural language query personal assistant, which

is only partially automated, with the main goal of the project being data acquisition

1

2.2.2 The Architecture

When choosing a non-convex optimization architecture, one must take multiple fac-

tors into account. Is it capable of expressing the desired relationship - does the

"shape" of data fit the inputs/outputs of the architecture? Does it encode meaningful

relationship that we expect to see in data - for example location invariance in case

of Convolutional Neural Networks? Finally, can its parameters be optimized using

SGD or some other algorithm; does it suffer from exploding and vanishing gradient

problem or some other problems? Due to the fact that some of the first non-convex op-

timization architectures were neurobiologically inspired, they are often called Neural

Networks. In this section we present a few architectures that have been successfully

employed to solve real-life problems.

1https: //www. facebook. com/Davemarcus/posts/10156070660595195
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Multi-layer Perceptron

Figure 2-2: Example of a
state vector of size 3 and

h1,1

h1,2

x2  Y2

h 1,3

Multi-Layer Perceptron with input vector of size 2. hidden

ouitput vector of size 2.

The simplest inon-convex model is a Multi-Layer Perceptron (MLP). Simply pit. it

is a sequence of linear mapping interleave(l with nonlinearities (nonlinear functions).

Example nonlinearities include sigmoid function (T). finh. or more recently rectified

linear units (often abbreviated ReLU). An example of a single hidden layer MLP is

presented on figure 2-2. Formally 1\LP is defined by the set of equations:

II = T(WiJ + l)

1- = 72(1W2h1 + 1)2)

y r(Wah,_i + b,1)

Where a is the input vector. g is the output vector and i ., h,_ are the intermediate

hidden vectors (also known as hidden layers). Additionally network has a set of n

linear transformation defined by (11", .bi), .. (W , ,) which are learned. The nber

aid sizes of layers n and the type of nonlinearities T1 , ... l, lse(l varies by the network

and is usually tmned for part icilar alpplicatiom. The nonlinearities are often designed

to resemble a step function while maintaining differentiability. One can think about a

MLP as if every mlnlmber in a hidden vector aid the output was a Logistic Regression

classifier, using previous vector as a set of input features. This is why MLP is often

29
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called a hierarchical classifier. Example use case for MLP would be oue where the

input is set of frecyueicies of word occurrences iin a docuiment and the output is that

d(ocimient's topic. As we will find out in chapter ?? MLP is the key bIilding l)lock

of the Deep Q-learning algorithm.

Recurrent Neural Network

MILPs can be useful for fixed size inpits. bit what abloit the eases where iuput size

varies )v example such as uatural lauguage seiiteiies? One solution would be to break

the problem jito pieces and coisider eadh pice independently using MLP. However

ill maiv eases it is the iiteracti(flo betweeii suibsequenlt elemeiits of a seqienie that

carries the most information. This is particullarly ilportanit for Natural Lainguage

Applications. For example. if a verb is preceded by the word not. its meaning dramat-

icallv changes. Recurrent Neural Network (RNN) is a type of non-convex model that

address those concerns. RNN is essentially a sequence of MLPs. bit when colmp)uting

a hiddenl vector it takes into account not only the ipuit. but also the value of hidden

vector preceding it in the sequence. An example RNN is presented in figure 2-3.

1i 17 1 Vr2

h, h 1  h, h- h- h' h- hl= hl- U U U h '-= h-

Figure 2-3: Example recurrent neural network. The input to the network is a vector

sequnicie. The ouitput of the ietwork is also a ve(tor se(uence. Both ipuit ad output
vectors are two inimbers each. For every step of a sequence we use a vector of three

numbers to represent the hidden state (memory). Crucially the weights (represented

by arrows) stay the same between the time steps.

To formally define an RPNN, let's consider a sequence of input vectors x'=' . =T

and a seqiueice of outlpuit vectors y=. .... Y". A single tilme step I of computation

is defilled by:
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h'! =T1(Whx' +\ + +b1)

t~t

/'Ii =T2(W//'h=, + +b2 )

yt=i =T(W h 1 + +' bn?)

The main difference between this set of equations and equations for MLP is the

addition of a set of linear transformations V1 , ... , K,,. This means that h'i depends on

h from the previous time step, which results in yt ' being (indirectly) dependent

to i t=(i-1) Jt= I

Long Short-Term Memory Network

As we will see in the remainder of this thesis RNNs are great tools suitable for variety

of tasks. However, they do have one serious flaw: When trained over sequences longer

than a few items they suffer from vanishing and exploding gradient problems. That

is gradient values are all either 0 or oc for early time steps 1171. This was initially

a major obstacle preventing successfully applying RNNs for real world problems. In

1997 the first solution to that problem was presented in the form of Long Short-Term

Memory Network (LSTM) 1181. It is quite interesting to point out that the solution

was not really algorithmic., but architectural - by manipulating the set of equations

defining the network's architecture the authors of the paper managed to ensure that

there's always a direct (constant number of nonlinearities) path from the networks

output to any input, which alleviates the vanishing exploding gradients problem.

Nonstandard Architectures

There are many interesting attempts at creating models inspired by above ideas, but

more suitable for specific problems. Examples include Neural Turning Machine 1121,

Memory Networks [54], Hierarchical LSTMs [36], Tree-LSTMs [421 and many more.
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2.2.3 Backpropagation and the Solver

Once we have defined our error function E(D, A(6)), given data D and architecture

A parametrized by 9, we can use the backpropagation algorithm [24] [51] to compute

derivative of E w.r.t 6 (leveraging the fact that A is differentiable). Then we can use

that derivative to find a local minimum of E using Stochastic Gradient Descent [9]:

O' = 0 - a (2.1)
00

Where a is a problem dependent parameter. Equation 2.1 is repeatedly applied until

convergence, or until performance on validation set stops improving.

When deciding how to apply a non-convex solver to a particular problem, it is im-

portant to understand that that optimizing the performance on a particular set of

examples does not guarantee similar results on unseen examples. Because of that

when designing experiments, it may be beneficial to consider the following modifica-

tions to the simple scheme described above.

" Rather than training error function on the entire dataset at once, we train it

on a small batches of examples from the dataset to improve generalization and

computational performance.

* Certain non-differential architectures can still be successfully optimized - for

example, it has been demonstrated neural networks augmented with Dropout

[39] are less likely to overfit.

Moreover, SGD is only guaranteed to find a local minimum, when the learning rate is

low enough. However, low learning rates are undesirable, because they increase the

total number of iterations before convergence. Fortunately it is sometimes possible to

improve one without sacrificing the other by changing the update equations (replacing

eq. 2.1), e.g. momentum methods, RMSprop, Adadelta [55] etc.
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2.2.4 The Error Function

Appropriate choice of error function can drastically affect the properties of model

that we learn. Let's consider for example loss function for multi-class classification

problem with n classes c1 , ... , cn. Assume a scenariowhere we want to compute an

error for single example where correct class is c* and model assigned scores si, ..., sn

to ci, ... , cn respectively (if si's are positive and add up to 1, they can be thought of

as probabilities). If there are multiple examples, we sum the error on every one of

them. Let's define a posteriori distribution over different classes, for which we know

the correct label p* as:

* if i = i*
=(2.2)

0 otherwise

Where i* is such that c* ci Below we present three alternative formulations of error

function:

(a) Squared loss

The error is simply

Z (si -p) 2  (2.3)
i=1

(b) Cross-entropy loss tries to minimize the distance between the score distribution

predicted by the model and p*.

n

- p* log si (2.4)
i=1

It is therefore required that si's satisfy the constraints of a discrete probability

distribution:

n

S si=i V.si > 0
i=1

Cross-entropy loss has a beautiful mathematical interpretation - it is the minimum

number of bits required to compress the output, given the model and the input.
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This bound is tight and can be achieved by Arithmetic Coding [28], which means

that given a prediction model, there exists an algorithm that can make optimal

use of the model for compression. Hutter prize 2 is a competition with $50000

prize pool for compressing the first 100MB of Wikipedia, argumenting that "Being

able to compress well is closely related to intelligence [.. . The intention of this

prize is to encourage development of intelligent compressors/programs as a path

to Artificial General Intelligence."

(c) Margin ranking loss 1541 is perhaps the simplest and quite surprisingly the

most recent of the three loss functions presented here. This is perhaps due to

the fact that it contains a non-differentiable point around 0. For a given value of

margin y (typically around 0.1) it is defined as

max(si. - si + y, 0) (2.5)
i:=1

It has a desirable property that target class score si. is bigger than score for some

other class si by at least -, then the derivative w.r.t both of those scores is zero.

Sometimes it helps to simultaneously optimize multiple objectives. For example

in case of Dynamic Memory Networks [23] and Hierarchical LSTM [36] it is critical

to simultaneously optimize prediction performance and fact selection performance.

Furthermore auxiliary functions like Occam's Gates [36] can improve model general-

ization and interpretability.

2.3 Word Vectors - The Core Idea behind Modern

NLP.

In his ACL 2015 keynote Chris Manning 3 called word vectors the most enabling

invention in past decade of Natural Language Processing research. To understand

2http://prize.hutterl.net/
3Professor from Stanford specializing in Natural Language Processing
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what word vectors are, one must answer the following question: what is a statistically

sound way of representing a single word? The simplest idea is one-hot encoding - for

n words that are known, we represent the i-th word by a vector v E R' such that

vi = 1 and Vjg.vj = 0. Unfortunately, this type of representation has three main

disadvantages:

1. it is very high dimensional and therefore computing over it can be inefficient.

2. no meaningful relations between the words can be inferred from it.

3. it is hard to extend it with new words (and vocabularies evolve all the time -

think of words like google, tweet).

Word vectors are designed to address those concerns. The main idea is very simple.

Assume a representation exists, where we have vectors representing words in dictio-

nary. We will denote the vectors for words wi, ... , w, by vi, ... , v, E Rd for some choice

of d. The vectors are such that vi encodes the semantics of word wi. Under that as-

sumption, we could use those them to solve NLP tasks, like estimating probability

that two words will co-occur in the same passage of text, or classifying sentiment of a

sentence. We could formalize this condition by defining it as exceeding some perfor-

mance score P on a particular dataset D for a given problem. One can think of it as

a necessary condition for word vectors. But is it also sufficient, i.e. if we satisfy it do

we obtain a word vector representation, that carries meaning? This seems to be the

case; even though we don't have a complete formal theory yet, all the experiments

seem to support that statement. Armed with that piece of knowledge we can provide

a simple algorithm for finding word vectors - take a machine learning model that

takes word vectors as its input for solving a particular NLP problem (co-occurrence,

sentiment etc.). During optimization word vectors are treated as model parameters

- after the model converges one can hope that the optimal set of parameters yields

meaningful word vectors.

Such an experiment has been carried out independently by many researchers. All the

resulting representations satisfy three properties mentioned:
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1. It is fairly low dimensional. Glove [34] vectors are between 50 and 300. Word2vec

[29] is of size between 50 and 600. Additionally, for most tasks where word vec-

tors are used the classification performance improves with dimensionality, which

makes for desirable computational efficiency versus performance trade-off.

2. Most word vector representations have very useful properties. Here are some

examples of properties satisfied by Glove [34] vectors:

* Euclidean distance is small for semantically similar objects and large for

different objects. For example for Glove the four closest vectors to Vfrog

are Vtoad, Vlitoria, Vleptodactylidae, Vrana (where the last two words are species of

frog).

* Similar type of analogies are represented by vectors close to each other:

Vking - Vqueen _ Vman - Vwoman

VMIT - VMassachusetts VStan ford - VCalif ornia

Those properties have far reaching consequences - for example it has been shown

that we can use a simple MLP to map between brain activity of person thinking

about a word and Vword [50]

3. Adding new words is easy - one just needs to find a way to project them on

the linear space in meaningful way. This can be done, for example, by retrain-

ing the word vectors with extended vocabulary, while keeping the previously

trained vectors constant. In fact we can go one step further. It has been shown

that for two sets of word embeddings trained independently for two different

languages, we can project one onto the other with a simple linear projection,

while preserving most of the semantic relationships across the languages [10].

Word vectors are strongly related to diffusion maps [13]. One can imagine that words

normally reside in some high dimensional manifold, which we try to unfold onto linear
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space. It tunis out that even though (liffusion niaps were not an inspiration for wor(

vectors, the i(lea hehiid(I wor( vector coniutation can be generalized to a very efficienit

algoritlun for coinputing (liffusion miaps 113].

2.4 Case study: Translation

It has been shown that LSTM networks can be use( to translate sentences with j)erfor-

mance coinparablle to or better than state of the art approaches base( on engieered

features [411.

Jestem robotem <EOS>

I am a robot <EOS>

Figuire 2-4: Depiction of architecture use(i for Sequence-to-Sequelne machine trans-

lation.

The data There are ilultiple inachine translation (latasets, but perhaps the most

cleverly obtaineci one is the opensubtitles (lataset. which uses t he publicly available

movie subtitles, an(l aligns sentences in (liffereint languages 1441. Taking English-

French translation as an exanpjle. today there exists about 1 000 000 000 tokens of

tranislation (lata in all the revisions of openisubtitles corpus.

The architecture Figure 2-4 is a high-level (lepiction of network's architecture.

The blue network is a M\ilti-Layer LSTM ani( it serves as an encoder network. The

green network is of the same architecture an( (imens)ions as the blie network. but uses

different set of parameters. Its p)rpose is to (eco(e hi(den represeiitation obtained

by the blue network. to produce a translation. The <EOS> synibol ini(cates endls of

sequence, which allows extra coniputation to bc perforne( after having rea(l emitire

sentence. The inputs to the encoder network are English words which are encoded
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using word vectors. Decoder network outputs a probability distribution over all the

words in the dictionary. This is done by projecting the hidden state to a vector of

size equal to the number of words in the dictionary. Such vector is subsequently

normalized to form a probability distribution using softmax function:

exi
softmax(x)i = (2.6)

Due to the fact that projection matrix between hidden state and vocabulary can be

quite big (1000 x 80 000 in the original paper [41]), researchers have come up with more

sophisticated ways of modeling probability distributions over words, like hierarchical

softmax [32]. Interestingly the original paper isolated the projection operation and

distributed it over 4 Graphical Processing Units (GPU), in addition to other 4 GPUs

optimizing the rest of the network.

The error function To compute the error, the network is evaluated for input

and output sentences (including the <EOS>). For every output word distribution we

apply cross entropy error function between the output distribution and the target

word (including <EOS>). The sum of errors for every word is the total error for that

example.

Note that we can evaluate error because during training time we know exactly for

how many steps to run the decoder network. When using a trained model we don't

know the resulting sentence length and we therefore run the network until the most

probable output token is EOS.

2.5 Case study: Dialogue Management

The term Natural Language Dialogue is used to refer to a broad class of problems,

some of which we can efficiently solve using Non-Convex Optimization. Perhaps the

most impressive work to date is the Neural Conversational Model [46], where the

model learns, based on real world data, to answer open-ended questions, like "What
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is the usual color of a leaf?", or "What is morality?". In this section, we chose to

describe a model, capable of answering questions based on context information. The

architecture for this problem is a good example of a complex NLP architecture.

The data Facebook Al Research recently proposed a set of 20 tasks designed to be

"prerequisites" for any system "capable of conversing with human" [52]. The dataset

for each task is a set of stories, each composed of many facts, some of which are

marked as relevant, a question and the correct answer.

1 Daniel and Sandra journeyed to the of- 1 The football fits in the suitcase.

fice. 2 The suitcase fits in the cupboard.

2 Then they went to the garden. 3 The box of chocolates is smaller

3 Sandra and John traveled to the kitchen. than the football.

4 After that they moved to the hallway. Will the box of chocolates fit in the

Where is Daniel? : _ rdV suitcase? 1.

The tasks are synthetic and lack complex nature of the real-world Natural Language,

which makes them easy to solve with hand-engineered systems. However, the chal-

lenge proposed in [521, is to create a general model capable of solving all of these

tasks, without any manual, problem-specific feature engineering.

The architecture The architecture is presented in figure 2-5. There are four LSTM

networks used in that model:

1. Question Reader Network. Colored in Red. It is used to read the question

and compute its hidden representation (which is hidden state at the last time

step).

2. Fact Reader Network. Colored in Blue. It is used to precess facts from the

context story and compute their hidden representation. It is executed for every

fact independently.
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What color is Greg <EOS>

t t t

Lily is a swan <EOS>

Lily is white <EOS>

-- HIDDEN

Greg is a swan <EOS>

white <EOS>

HIDDEN

Figure 2-5: Depiction of the hieraiclijeal LSTM inodel for questioll answering with

coitext an(d (le(lction.

3. High-level Network. Colored in Green. It takes question hi(lden as input

in the first step and in subsequent steps it takes fact hiddens. The last node

denoted by HIDDEN. encapsulates all the information froin question, context

a(l detive reasoning that was pJerforned. The rhombi (lenote gates. They

are simlple linear functions of ligh-level network hi(l(len at a time stepl and a

hid(len representation of corresp)odl(lin1g fact. That linear function is fe(d through

siginoid nonlinearity to obtain a single ntunber gi in range [0. 1] - the (legree to

wich a given fact is colsi(lere(l relevant. The fact hiddeIn is nultiplie(d by gi

befo)re being use(l by input to a network. In some cases that leads to improved

peIfornance, as network learns to compute over only the relevant facts. This

idea is explored further in 1361.

4. Decoder Network. Colored in Yellow. It takes HIDDEN as initial hidden and
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decodes it into output sequence of words.

The error function The error function is regular cross entropy error on predicted

sequence (just like in the case of translation). However, this time we have auxiliary

objective to selecting correct values of gi, which we can be included in our error

function, because the training data explicitly includes information about which facts

are relevant. The actual error function is therefore weighted sum of the two objectives

- fact selection error and prediction error.

This model is a great example of how inductive bias encoded in network's architecture

can make a huge difference. When we solve this problem by naively applying LSTM

(using context and the question as one long sequence read by the network), the

model answers questions with average 50% accuracy. In contrast model based on

idea described above achieves 94% accuracy [23].

2.6 Bridging Natural Language and Reinforcement

Learning

In order to apply ideas learned from this chapter to Reinforcement Learning, we

use statistical signal obtained in the distributed representation. To illustrate, let's

consider the Skip-Thought Vectors model [21]. It has been trained to read a big

corpus of 8290 books [56], and based on each sentence in isolation, it predicts two

sentences: one before and one after. The intermediate hidden vector that is the

output of the reader network and input to prediction networks constitutes a good

semantic representation of a sentence read. For example, consider the problem of

designing Siri-like automated assistant for a smart house. Figure 2-6 presents example

queries and distance-preserwing projection of their hidden vectors onto 2D plane.

Even though skip-thoughts were not designed for this type of problem, they provide

a good separation already.
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My electric
car needs
charging.

1 Please charge
my car before
charging my

phone.

Make charging
Maintain room my vehicle a
temperature priority!

Keep the overnight.
heater on

until I leave
for work.

Make sure it
does not get

too cold
before morning.

My phone needs
to be charged

soon.

-0.5

Figure 2-6: Skip thought vectors for various Natural Language queries

he used as state for a problell of sCliedulillg activities ill smart house.

which could
The original

dimension was 4800. whieh was projected onto 2D plane using using Spectral Embed-

ding with a Gaussian kernel. which is known to preserve cluster pairwise distances.

2.7 Conclusion

In this chalpter we descriled Non-Convex Optimization techniques. including relevait

architectures., error functionis and algorithins. W\'e (discussed ini detail Word Vectors,

their properties and wavs of conmipitilig themii. To ground the theory in examples we

presented two use cases - Translation and Dialogue Managenent. We concluded the

chapter with an experiment that deumionstrates how Seqmene-to-Sequeee nodels are

(apal)ble of learning semnantically meaingfnl representations. which are of interest in

the Reinforcement Learning applications.
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Chapter 3

Reinforcement Learning as a

Non-convex Optimization Problem

In this chapter we provide an overview of Reinforcement Learning theory. First, we

give the formal definition of a Markov Decision Process, as well as the simulator set-

ting which is a formulation better aligned with real-world problems. Next, we state

the Bellman Equation which is the fundamental building block of the majority of Re-

inforcement Learning approaches. Continuing on, we describe a few major approaches

focusing on their relation to Bellman Equation, as well as the issues addressed by each

of them. In particular, we present in detail the Deep Q-learning algorithm, as it is the

main component of our approach for Reinforcement Learning with Natural Language

as part of the state. We conclude the chapter with a demonstration of performance on

marble collection game, which allows one to better understand the effect of changes

to the discount rate and introduces the a reinforcement learning problem very similar

to the one used in the manipulation experiment in section 4.2, but without Natural

Language as part of the state.

3.1 Introduction

Control of autonomous agents, in particular robotic agents, is still largely an unsolved

problem (fig. 3-1). Thanks to the advancements in Control Theory, Trajectory Plan-
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kWOW1W jjjL-"--
Figurn 3-1: A robot pcarti( ipant in Dar-pa Roboti s ChallenIge 2015 attempj)ting to

)el'frform (1oor1 openllg seqenee.

niing al Integer (pI)tiiization. we are now able to optiize trajeetories an(l stabilize

them 1311. Those methods allowed for some impressive results. sueh as ladl(ling robotie

bird on a pereh 1311. and high speed (9 nm s) eontirol of UAVs in eluttere(d eiivironments

121. However, they (1o have two signifieant (isa(vantages:

1. A model of state transition is required - ill or(Ier to ol)tiimlize a trajectorv

ve lnee(l to un(lerstan(l how the aetions affeet future states preeisely (in the

ease of robot ies this information is broadly referred to as (Ivilamies). Obtaining

sieh mflo(dels 1C aii be a very time-e onsuing proess - a lot of person hours for

human designed 11o(el or lar'ge numlIiber' of examl)les for a leane( umodel. This

is espejially relevant wlhen(l building a model that col(ernis not only the agent,

but also the environment.

2. Low degree of adaptation to unforeseen scenarios - any signifieant (e-

viation from plane(l trajeetory (a result ill eoiitiol poliey being ulnable to

reeover. Although it has beeni su(iessfully deiiioiistiratel that by 'olstru(ting

high level 1o(lels and leveraging exeCtion Ionitoring teehniques some11 failure

cases ean be deteeted and ireovered from. it eomes at the eost of greater model

eomplexitv 1251.

A promising (ireotionl in addressing those eoneerns is Reinforeement Learning (RL).

Instead of iisiing a model. the agent has access to the environment, where it is free

to interaet and learn. The leairning proeess is guide(l by the rewarl sigual, whieh

inereases when agent pxerforims well. The reward signal ean be as simj)le as (listalle
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to goal location, or a number of collected objects. One must understand the difference

between RL and optimization over a learned model. In the former case we learn the

model implicitly and jointly with optimizing the control policy. In the latter case the

algorithms can be smart about which parts of the model to learn and which to ignore,

such that the discovered control policy is the best possible, given the representational

capacity of the model. Due to high complexity of learning task at the core of RL,

it used to be impractical to use this approach for real world applications. Recently

there has been a renaissance in RL related to advances in non-convex optimization.

In particular, in the paper published by DeepMind, an algorithm (Deep Q-learning)

was proposed that leverages Non-Convex Optimization as Q-value approximator [30]

in Reinforcement Learning. They managed to teach a model to play Atari games

based solely on the image of the screen and game score as a reward signal. This

approach is compelling because the Q-value approximator was not an ordinary MLP,

but a Convolutional Neural Network. This is a piece of evidence that the Deep Q-
learning algorithm can leverage many different types of Non-Convex models. This

key insight is the base of our approach for incorporating Natural Language as part of

the state in Reinforcement Learning.

3.2 Problem statement

Markov Decision Process (MDP) is specified by the following items:

" set of states S

" set of actions A

" transition function T : S x A -+ S (for simplicity we assume deterministic

transitions)

* instantaneous reward function r : S x A -+ R

Given a MDP, the challenge is to come up with a policy7r : S -+ A. Given a starting

state so E S a policy induces a trajectory of states st = r(st), actions at = lr(st)
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and rewards rt = r(st, at) . The value of a trajectory is

00

V,(s0) = Z1 rt (3.1)
t=o

Here 0 < ' < 1 is a discounting factor which is chosen for a particular problem. The

higher 'y is, the more future rewards influence the value of a trajectory. In particular

y = 0 means that greedy strategy is optimal - one has to always pick action with

highest instantaneous reward. We say that a policy is optimal if for any given starting

state it induces a trajectory of maximum possible value, we denote any policy with

that property 7r*.

In this chapter we will consider MDPs where we don't know T and r explicitly, but

instead we have access to simulator A = (S, A, s, 6) where S is the state space, A is

the action space, s E S is a variable representing the current state and 6 is simulator

advancement procedure. It takes action a C A as a parameter and returns the reward

and the next state 6(a) = (r(s, a), T(s, a)). Furthermore, it has a side effect of

updating the current state, so that s becomes T(s, a), which makes this model more

restrictive than general MDP, because we cannot find out what reward we would have

gotten if we chosen different action when at state s (unless not until the simulator

revisits that state). Nevertheless, this formulation is more realistic, especially if one

does not have accurate computer simulation of outside environment, but rather wishes

to use a real-world environment, which, to the best of the author's knowledge, does

not support traveling back in time.

3.3 Reinforcement learning theory and algorithms

3.3.1 Bellman equation

Bellman equation was proposed by Richard Bellman as part of his work on Dynamic

Programming. Almost any RL algorithm depends on some formulation of that equa-

tion. In the simplest form it states that the following is a necessary condition for 7r*
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to be optimal:

VEsV- (s) = max[r(s, a) + -yV, (T(s, a))] (3.2)
aeA

Notice that the condition is not straightforward to verify. Firstly computing V'-

requires evaluating infinite sum. Secondly the state space S can be huge or infinite

(e.g. all the possible configurations of joints of a robot). Fortunately, in the case of

the first problem the solution is simple and has been successfully used for over 60

years - Dynamic Programming. Solving the second problem is one of the main topics

in this chapter.

3.3.2 Curse of Dimensionality

The famous term Curse of Dimensionality was coined by Richard Bellman when

considering Reinforcement Learning and other Dynamic Programing problems. Many

RL algorithms require construction of table of size ISI or even ISI x JAl. For example,

if the state space is a d dimensional binary vector, that means one would need to

create a table of size 2d to represent all the possible trajectories. For example if an

input is 17 x 17 black and white photograph then the number of states that we need

to memorize exceeds the estimated number of atoms in the observable universe.

3.3.3 Value Iteration

In Value Iteration we try to find V explicitly by applying the following update function

repeatedly for all the states s E V until convergence:

V(s) = max r(s, a) + V(T(s, a)) (3.3)
aeA

Optimal policy (described in eq. 3.2) is a fixed point of the update equation. The

disadvantage of this method is that ones needs to know the transition function T in

order to pick the optimal action during execution, which means that it does not work

in the simulator setting.
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3.3.4 SARSA

In SARSA we try to estimate the action-value function (denoted by Q) which is

expected to ultimately (at convergence) represent the utility of choosing action a

while at state s, i.e. if we denote Q at convergence by Q* we would like it to satisfy:

Q* (s, a) = R(s, a) + -yV,, (T(s, a)) (3.4)

which can be also written as

Q*(st, at) = rt + -y max Q*(st+1, a') (3.5)
a'EA

The name of the SARSA algorithm comes from the data used for every update to the

Q function which is st, at, rt, st+1, at+,:

Q(st, at) = Q(st, at) + a (rt + 7Q(st+1, at+1) - Q(st, at)) (3.6)

Where a is a parameter used to control the learning. One way to think about SARSA

is that used to slowly bring Q(st, at) closer to satisfying the Bellman equation. Notice

that at convergence we have

Q*(st, at) = rt + yQ*(st+1, at+,) (3.7)

which is a fixed point of equation 3.6, but only if 7r*(st+1) = at+,, which may not be

the case.

3.3.5 Q-learning

Q learning is very similar to SARSA with a key difference that rather than considering

at+1 we consider the action that maximizes the estimate of Q value at st+i:

Q(st, at) = Q(st, at) + a rt + ymaxQ(st+1, a') - Q(st, at) (3.8)
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The advantage of this approach is optimal Q function (eq. 3.5) is unconditionally

a fixed point of the update equation. The disadvantage is that it is biased towards

more "optimistic" solutions (higher Q values than the solution) as evidenced in [14].

3.3.6 Temporal Difference Learning[43

All of the methods described above suffer form the Curse of Dimensionality. One

of the early successes at addressing this issue was the work on TD-Gammon, which

is an RL based agent playing Backgammon. To address the issue of large state

space S, instead of representing the value function directly, the authors of [431 used

a Multi-Layer Perceptron to learn a compressed representation of V. The original

value iteration update rule (eq. 3.3) was found to produce too large gradient values

and instead a custom update rule was introduced.

3.3.7 Deep Q-learning [30]

The Deep Q-learning can be thought of as a successor of TD learning algorithm. It

addresses the limitations of value iteration algorithm and further improves learning

stability. It was successfully employed in [30] to learn to play Atari games based

solely on the image of the screen. The algorithm uses Q learning algorithm at its

heart. Deep Q-learning assumes that state can be represented as a vector of real

numbers S = Rn and the set of possible actions is finite A = {A 1, ... , Ak}. The Q

function is a Multi-Layer Perceptron, where input vector is a state from S and the

output vector 0 = (Q(s, A1 ), ... , Q(s, Ak)). Instead of using the Q Learning update

equation (eq. 3.8), it is implicitly implemented as a Stochastic Gradient Descent

(SGD) optimization in the following way: Given a transition (st, at, rt, St+i), let the

target value be yt = rt + y maxa/EA Q(st+i, a'). Now we define an error function

Et = (Q(st, at) - yt)2 which can be optimized with SGD. When using vanilla SGD

this is equivalent to Q learning update rule (with oz being the learning rate), but

using this formulation we can employ more sophisticated optimizers (e.g. [30] uses

RMSprop). To increase the convergence speed the following ideas were introduced:

49



1. Unlike TD-Gammon we do not update the network based on subsequent transi-

tions (st, at, rt, st+i1) , but each time we independently sample a random subset

of transitions from the past. This means that the subsequent updates to the

network are uncorrelated, which in theory is required for SGD correctness.

2. Some gradient updates would cause the network weights to be close to infinite,

which is a state from which we cannot expect to recover when using IEEE

floating point numbers. Therefore all the gradient updates with gradient norm

higher than some constant value were discarded.

3. Due to the fact that the network can get stuck in a strategy that corresponds

to a local minima (e.g. always move to the left, hide in the corner, etc.), we

only learn based on a fixed number of recent transitions. This means that at's

are more in line with current policy.

4. When computing yt we use a exponentially averaged version of Q network (de-

note it QD). Each time Q is updated we set QD = rQ (1 _ r)QD. This

decreases the oscillation of the error function and leads to more stable learning.

3.4 Experiments

3.4.1 Experimental setup

To better understand the Deep Q-learning algorithm, a simple experiment was imple-

mented, which was inspired by work done by Andrej Karpathy 1. The experiment is

set up in the following way: There is a board with red and green marbles and a hero.

The goal of the game is to collect green marbles while avoiding collecting red. Every

time a marble is collected a new one is spawn of exactly the same color. Marbles

are subject to rules of physics - they travel with constant velocity and they bounce

of walls (the collision is perfectly elastic, so the speed remains constant). The hero

is subject to the same rules, but we are able to control its acceleration. Figure 3-2

'http: //cs . stanford . edu/people/karpathy/reinf orcej s/index .html
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0

0 0

*8

Figure 3-2: Example state of a board in the gaiie. The goal is to collect green marbles
wile avoiding red. Yellow inarble depicts the hero. The lblack lines are the visibility
lines (lescribed in section 3.4.1.

shows exalmlple game state. We wish to formulate tis exp~erimenit as a MIDP and we

thIerefore ineed to (lefine st ate space. actioni space. tranisitions and rewardls.

Startinug at hero'.s position there are ,32 visibility lines (VL) exteninig, outwards. Each

VL can be thought of' as an *cc" of the hecro - it can se0 or 1 objects. Each VL

indhuces 5 mulmbmlers in the state. First there numbers are dlistamnces to the lilt rect iom

wVithl the green miar-ble, red marble and a wall normalized to 1.0. If no such object

imtersects a visib)ility line then the correspondiing number is one(. If there are mnultip~le

ob jects intersecting thle visibilitY line, oimlv the closest (list aice is represenltedl and the

rest is set to 1.0. The remiaiing two iiuimibers rep~reseint the velocity vector of the

object intersecting as lie (if that object is a wall or there is io olbject. then those

numbers are set to (). For examle if a particular red iarble iin tersects a VL i
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Figure 3-3: Performance of two different reinforcement learning agents on the marble

collection game. The number plotted on the graph is the ratio of green to red marbles

collected ill the past 1000 seconds. The x-axis is time in seconds. Note that scales on

v-axes are not the same.

the middle of its length. and that marble travels with speed 0.7 to the right then the

state induced is [1.0. 0.5. 1.0. 0.7. 0.0]. Aside from state induced by VLs. hero's speed

is also part of the state. Total length of the state vector is therefore 32 * 5 + 2 162.

The state transitions are dictated by the laws of physics. and to make a valid MIDP

formulation we define (It = 0.1, as the amount of time that passes between subsequent

states.

There are for available actions - UP. DOWN LEFT. RIGHT. and each corresponding

to constant change of velocity in a given direction. The reward function is 0.1 for

every green and -0.1 for every red marble collected since last state transition. Notice

that the reward is often zero.

3.4.2 Results

Agent

original

2x more marbles

hero does not bounnce

2x shorter visibility

0.99) greedv(Q = 0)
10.23

7.7
6.5

4.4
3.9

3.74
2.2

hand-coded
6.01
5.4

5.97
3.1

Table 3.1: Results demonstrating how well different strategies generalize when the

gaime setting is slightly modified.
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Figure 3-4: Illustration of the strat
depict preferred action for any given

by greedy (-egy learned
position.
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Figure 3-: Illustration of the strategy learlled( by long-term

Arrows depict preferred action for any given position.

rewards (-, 0.99) agent.
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Three different agents were implemented for the scenario described above: two Deep

Q-learning controllers with y = 0.0 (greedy) and 7 = 0.99 (long-term reward) and one

hand-coded controller which always goes in the direction where the ratio of visible

green/red marbles is the highest. The Deep-Q learning agents used a Multi-Layer

Perceptron with two hidden layers of size 200 and tanh activation function. The

gradient optimization was performed using RMSProp with learning rate 0.0001 and

momentum 0.9.

The results are summarized in the top row of table 3.1. The long-term agent out-

performed greedy and hand-coded. Considering the fact that greedy algorithm only

learns when it is very close to the consumed marble it might seem surprising that the

learned strategy is so good. Nevertheless once the network learns to go towards green

balls and away from red balls at close distances, due to the way the state vector is

created, one can expect similar activation to arise when the marbles are further away.

Figure 3-3 shows the performance of Deep Q-learning agents over time. Both of the

agents seem to achieve their peak performance around the same time, but the perfor-

mance of long-term agent is over twice as good and learning curve is less oscillatory.

Figures 3-4 and 3-5 depict the strategy learned by the greedy and long-term agent

respectively. One can see that greedy agent sometimes makes nonsensical decisions,

like going away from a green marble, especially at a slight distance.

Finally to test how well the strategy learned in the original game setting generalizes

to new situations three modifications were considered:

1. 2x more marbles - instead of 25 green and 25 red marbles, the board had 50

green and 50 red marbles - with the same board size.

2. hero does not bounce - the hero collides with the wall perfectly inelastically

- its speed is set to zero.

3. 2x shorter visibility - the length of the visibility lines is cut by half.

We can see that all three agents generalize well to new scenarios, with the long-term

agent generalizing the poorest. This is because the long term reward strategy might

be more situation specific than greedy strategy.
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3.5 Conclusion

In this chapter we provided an overview of Reinforcement Learning including defini-

tion of Markov Decision Process, Bellman Equation and various approaches to finding

a good policy. We focused in particular on the Deep Q-learning algorithm and ver-

ified that it is capable of finding policies that better than the greedy strategies in

the marble collection game. In addition we demonstrated that the algorithm learns a

robust strategy which is capable of good performance even when we perturb some of

the environment parameters. In chapter 4 we will explore a similar experiment, but

rather than optimizing it for a specific type of task we will show that it can achieve

good performance on many different tasks, when the objective of each task is provided

as a Natural Language description.

56



Chapter 4

Reinforcement Learning Problems

with Natural Language State

In this chapter we verify our claim that multi-step reasoning in Reinforcement Learn-

ing settings can lead to improvements on Natural Language Processing problems.

The insights from previous chapters are combined to build a Reinforcement Learn-

ing model that can process Natural Language. We show that our model supports

the claim by evaluating our approach on sentence unshuffling task and comparing its

performance to a Sequence-to-Sequence model.

In the second experiment we showcase the flexibility of our approach by incorporating

multi-modal input as part of the state. We teach an agent to perform simple manip-

ulation tasks based on objective description in Natural Language. The input to the

architecture consists of not only Natural Language, but also sensory data observed

by the agent.

4.1 Natural Language Processing as Reinforcement

Learning

This section introduces sentence unshuffling problem, and then evaluates two ap-

proaches: Sequence-to-Sequence RNN and Reinforcement Learning.
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4.1.1 The Problem

The problem is defined in the following way: given a sentence with its words shuffled,

predict the original sentence. For example, given the words "a Today interesting read

John very book", the correct output is "Today John read a very interesting book". The

unshuffling task is useful for high-level grammar correction, for example if user types

"Today I read an book excellent.", we wish to determine that it is incorrect and suggest

swapping the last two words. While we use unshuffling tasks as an illustration of our

approach, it could be applied to many other NLP problems. Coreference resolution

problem (given a piece of text, understanding which phrases refer to the same entity)

seems particularly well suited - one could define action space as adding/removing

a pair of words to/from the coreference clique. Furthermore, by augmenting the

action space with deletions, substitutions and swaps, we could perform translation,

or improve the quality of translations output by the Sequence-to-Sequence model.

4.1.2 Evaluation Criterion

The most straightforward evaluation criterion is the number of examples for which

model predicts the original sentence correctly. However, notice that the correct output

sentence might be ambiguous, for example the sentence "met Daniel Sandra", could

be interpreted as both "Daniel met Sandra" and "Sandra met Daniel". Fortunately,

we can alleviate this issue, while avoiding the need to model this ambiguity explicitly.

We will incorrectly consider only one of those options correct (the one that appears in

the training set), but rather than computing accuracy as the percentage of sentences

correctly predicted, we will evaluate the percentage of words in the predicted sentence

that appear at the correct positions. For example predicting "Sandra met Daniel",

while the original sentence was "Daniel met Sandra" results in 33% accuracy. Notice

that human performance is strictly less than 100 %, using this criterion.
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4.1.3 Data

The (lata is asseinble(l fro a subset of 5 Facebook toy problems 1521. From each of

the task we extracte(l 120 training, 30 validation and 30 test exaIples. yielklinlg the

total of 600 training. 150 validation and 150 test examIples. The vali(latioln was used

to indicate when to stop training the iietwork ("Early stoppiig"). Test set was used

onily once to evaluate the perforinance base(d on the set of parameters that achieved

best perforniance on the validiatioii set.

4.1.4 Models

Model A - Sequeiice-to-Sequeice Approach

John read a book <EOS>

EF f C I
a read John book <EOS>

Figure 4-1: \lodel A: Sequence-to-Sequeiice molel which takes a shuffled sentence as

an 1iput and outputs an unshuffled sentence. Blue network is the encoder LSTI and

green iietwork is the lecoder LSTM.

This 11ol(( is very similar to the trailslatioll mo(el d(escribe(d ini section 2.4. The

only (liffercice is that the ilipult is a slffled selitence adl(l the output is the original

sentence. The embe(dilg size was 50 and 1oth ciicoler network aiil (ieco(er network

has 3 LSTM layers of sizes 72, 62 and 50. To ensure that the results preselited are

the best possible for this type of miodel. we tried varying differeiit parameters - solver

type (vanilla stochastic gradient (ecelit or Adam 1201), learning rate alndi batch size

(the number of examples used to compute the gradient for each optimization step).

The error finctioii was the same as ili case of the traiislationi imodel - cross entropy

error betweenl the (listributionls of the predicted and the target words. The model is

presenlted on figure 4-2.
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Training procedure The network is optimllize(d over as many ill)lut-olltput pairs as

t here are sentences ill the training set. For eaei exaiple. tle original senitenee is the

expeeted output and input is its random pernuitatioi. Every epoeb we use (lifferent

)ermllutations, but olily one per seutence.

Model B - Reinforcement Learning Approach

ACTION
A SCORE

a Today read John book

Figure 4-2: Model B: Neural Network nmiodel used for Q-valne al)l)roximlationi ill the

Deep Q-learning algorithm.

To interpret the problem as an MDP. we eonsider the following formulation: State

space consists of sequences of words. Each action mi1o(lifies the order of those words.

Rewards are aliglled witi our evaluiation eriterion.

Action Space We propose two alternative eharacterizations of actions space:

" swaps - action (X, y) corres)oids to swapping elements on )ositioln x with ele-

iieiit on p)ositioli y. For exampl)le action (0. 2) transfornms -a Today read John

book" into 'read Today a John book".

" moves - action (Y. y) corres)onds to movilig element on )osition x to position

y-th position from the left (excluding its old )ositioln). For exaimi)le action if

ve start, with "a Today read John book- action (2. 1) transforms it into "a read

Today John book. while action (2, 3) transforms it into a "Today Jolmn book

read".

Both action spaces include a special STOP action after wich 0o further actions are

taken.
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Reward Function The reward was computed based on the following objective

function. If the current state is composed of words in order s = (w1,..., w) and

the original sentence was (gi, ... , gn), then the objective function is (where [P] is the

Iverson bracket):

n

o(s) = Z[wi = gi]
i=1

The reward function is computed as change in the objective function as a result of an

action, i.e. if we transition from state si to state S2 as a result of an action a, then

the reward is O(s2) - o(si). This means that moving to state with higher objective

value yields higher reward. Notice that in this formulation the value of the objective

o(s) is only equivalent to long term reward at state s as the discount rate -y increases

to infinity.

The Network The Q-value network is presented on figure 4-2. The blue squares

represent state parsing LSTM network with 3 hidden layers of sizes 100, 100, and

50. The final hidden state of the top layer is projected onto action space. The two

most important parameters in the model are the discount rate 'y and target network

update rate r (described in section 3.3.7).

Training Procedure In every epoch, the Deep-Q controller is used for unshuffling

a random permutation of each of the training examples until it uses the STOP action

or until it executes more actions than twice the length of the input sentence.

Note on the Network Sizes

Networks in models A and B were chosen to ensure that the number of parameters is

approximately the same. The total number of parameters in Model A is 178386, and

in Model B it is 174022.

61



4.1.5 Results

Model A

Optimizer used batch size value of T epochs validation test
until con- accuracy accuracy
vergence

8 1 29 75 73
8 0.1 29 62 60

sgd 16 1 30 71 69
16 0.1 23 49 48
8 le-2 28 82 81
8 le-3 26 77 76

adam 16 le-2 30 79 77
16 le-3 30 72 71

Table 4.1: Results of model A on unshuffling task.

The results are summarized in table 4.1. The best performing model was trained with

Adam using learning rate of 0.01 with batch size 8. In general lower batch sizes often

improve prediction performance, but increase the total computation time. The best

performing model correctly predicted 81% of words on the test set.

Model B

Actions space value of y value of T epochs until validation test
convergence accuracy accuracy

0.0 le-4 16 85 86
0.99 le-4 13 85 86

swaps 0.9999 le-3 2 37 34
0.9999 le-4 11 85 86

0.0 le-4 17 61 62
0.99 le-4 12 71 72

moves 0.9999 le-3 2 23 23
0.9999 le-4 12 83 82

Table 4.2: Results of model B on unshuffling task.

The results are summarized in table 4.2. The best result was achieved by the swap

model which achieved 86% accuracy on the test set.
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Effects of different parameters

" Effect of action space - While both actions sets achieve high performance,

the swaps model achieves better performance. This is possibly because of the

fact that actions in the swap model only act on two positions in the state, while

moves can with a single move change elements on all the positions (when moving

the last element to the front of the sentence). Therefore the latter action space

has more complicated effect on state, which is harder to be encoded by the

network.

" Effect of target model update rate - Usiwg target network update rate is

essential for proper training. When r was set to 1.0, which is equivalent to

using unaveraged target network, we were not able to achieve any results better

than chance.

* Effect of y - It turns out that in the swaps action space, greedy strategy is

optimal, so varying -y has little effect on final performance. However, non-zero

values of gamma improve convergence speed. In case of the moves action space,

greedy strategy is no longer optimal and therefore higher values of y yield better

final performance.

4.1.6 Discussion

Performance

The best performance of the Reinforcement Learning model exceeds the best perfor-

mance of Sequence-to-Sequence model by 5%. Additionally RL requires many fewer

examples to converge - it converges after only 10 epochs (6000 example permutations),

while the LSTM needs 30 epochs (18000 example permutations) to converge. Figure

4-3 shows a comparison of convergence speed of both models.
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Figure 4-3: Comparison of the learning curves for the best parameters for model A
and for model B. The values represent performance on the validation set.

Learned Representations

The representations learned by model B have the same desirable properties as the

ones that often emerge in Sequence-to-Sequence models. Notice that all the are

few separable clusters related to places, people, verbs applicable to people., verbs

applicable to objects etc. Despite small number of examples used in training, the

embeddings seem to be encoding semantically meaningful relations.

Error Analysis

Model A When browsing errors that the best instance of model A makes, we will

observe one dominant type of an error: confusing the names of subject and objects

of sentences. For example instead of "Sandra grabbed the football there", we get

"Mary grabbed the apple there". This is likely due to the poor ability of LSTMs

to memorize, which is studied in more detail in 112] - the publication shows that

LSTM needs hundreds of thousands of examples to learn to memorize 20 8-bit vectors.

Furthermore, even with that many examples, it never does better than average 1 bit

error in copy task.
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Figure 4-4: The word vectors being part of the best )erforining set of I)araiieters

for model B. The vectors have been projectc(l on 2 diniensional )lanie using Spectral

Ernbedding with a Gaussian kernel.

Model B il\ajority of the errors were inavoidable, for examnl)le -Daniel passed the

ap)le to John" is one of the two correct aiiswers along with "John l)asse(l the aI)I)le

to Daniel". Occasionally the network "forgot" a single swa). for exaiiple "Mary )t

the (owln apple".

4.2 Learning by Doing

Learning by doing. or Experiential learning is the process of learning through exl)e-

riece, an( is more specifically defined as learning through reflectioni on doing"l11.

Accoriig to National Trainiig Institute. retemition in ex)erimental learning (learning

by (oing) is significantly higher than in encyclope(lic learining (learning by reading)

1261. Omne might wonder if this concept is in ally way applicable to Machine Learning.

The exercise described iin this sectioi is a ste)ping stone towards testing this hypoti-

esis - we (lescribe a framework where agent learns to liiu(lerstand natural language



sentence (learning) and is expected to perform a task in Reinforcement Learning

setting (doing).

In this experiment we investigate a scenario where an agent needs to accomplish a

mission such that its statement is written in natural language. The agent needs to

choose actions based on the statement as well as the sensory information. Every

mission statement is associated with a reward function which is positive if agent is

getting closer to fulfilling the mission and negative otherwise. The approach described

in this section can be applied to real-life robotic agents. It would be especially useful

when it is non-trivial to separate the understanding from the execution, for example

commands like "pass me the strange-looking book" or "neatly arrange items on the

table" are not easily expressed symbolically. Furthermore, since the representations of

words' meaning are obtained by doing, rather than reading, one could hope that they

would amount to a qualitative jumpy in language understanding. That last claim

could be further explored in the future work.

4.2.1 Experimental Setup

Figure 4-6 presents example state of the simulation. The state is composed of two

parts - sensory data and natural language data. Sensory data is the same as the one

described in section 3.4.1. Natural language data is a brief sentence describing the

mission to be accomplished. State transitions are governed by physics, just like in

section 3.4.1. The reward function is based on the task objectives. Task objectives

are designed such that they are always non-negative and the mission is considered

"accomplished" when their value is close to zero. The reward is based on changes

in task objective and is equal to the difference in task objective between successive

states. Table 4.3 describes all the types of tasks used in the simulation.
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4.2.2 The Model

E711

find blue marble <EOS> action
scores

- I -
00

Figure 4-6: The model used in Deep Q-learning algorithm as Q vale approxinator.

Colored in Blue is the LSTM network used to process the Natural Lannage state

(mission statement). Colored in yellow is the Multi-Layer Perceptron that processes

the sensory input. Fiially. colored ill green is the igh-level MLP which combines

sesory and natural language data.

The model used to solve this problem is presented on figure 4-6. The sensory input is

processed by scnsoryI MLP. the Natural Language is processed by lan]uagc LSTM and

the final hidden states of both of those networks are concatenated and used as ilpluts

to the h igh-icvei MLP. which outputs the action scores. Notice that concatentation

can be easily handled by the backprogragtion algorithm, by splitting the gradient

of the concatenated vector into two parts relevant to each of the inpults. Ne used

PRMSProp optinlizer with learning rate 0.0001. We used discount rate - = 0.99 and

target network ld)(late rate = 0.0001. Scnsory AILP had twvo hidden layers of sizes

250 and 150. languay LSTM had embedding size 50. oie hidden layer of size 150.

and 1ighh-Ic'cl MLP had two hidden layers of size 200 and 100.

4.2.3 Results and Discussion

The results are summiarized by the plots in figure 4-7. Our original model achieved

perfect p1erforian(e on the nove task and got (lose to the same for Move to Object

task. When evaluiatinig differclt sets of paralleters and observing the learned policies,

we devised a number of optimizations sullllarized below.
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(a) The model with the same learning rate across all the parameters and no goal state
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(b) The model with different learning rates for the LSTM and the rest of the model
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(c) The model with different learning rates aid extra goal state reward.

Figure 4-7: Performance of three different models in the manipulation problem. The

accuracy which is y-axis of the plots is the value of task objective at the end of 10

second simulation (zero means perfect performance).
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Reward discretization [30] suggests discretizing the reward function, i.e. all the

reward increases are represented by 1, decreases by -1 and no change is represented

by 0 reward. The reason for doing that is to avoid the need to hand tune learning

rate for different tasks (because the scale of rewards can vary, which influences the

norm of the gradient). Given the fact that in this problem we deal with multiple

tasks within the same optimization process, one could argue this change would have

positive impact on the overall performance. We found however that this approach

leads to a very subtle bug. Because available actions correspond to acceleration, the

agent was learning a strategy where it would accelerate quickly away from the goal

state and then move slowly towards it. This results in high long term rewards, because

there was a small number of transitions when backing away (negative reward) and

many steps moving towards the target (positive reward).

Learning rate adaptation The way we set up the experiment, the Natural Lan-

guage state representations are changing much less often, than the sensory data - for

10 second simulation at 30 frames per second, there will be a single value of natural

language statement and 300 different sensory inputs (assuming the agent keeps mov-

ing). In order to balance that, we used different learning rate for the language LSTM

than for the rest of the model - it was decreased to 0.00001 by a factor of ten with

respect to the rest of the model. The effect on performance is presented on figure

4-7b. This optimization allows our model to confidently arrive at the near-optimal

solution for the Move to Object task and increases the convergence speed.

Goal state reward Since it often takes time to discover a state of optimal solu-

tion of a particular task, we tried increasing the "region of attraction" of the correct

solution by setting the reward to 1 unconditionally as soon as the task objective was

zero in hope that it accelerates convergence. The effect on performance is presented

on figure 4-7c. This optimization further increases the convergence speed.
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Figure 4-8: The effect of verbal diversity on convergence of the model.

Effect of Verbal Diversity

Real world language is very noisy, but nevertheless we would like the agent to be able

to understand it. In order to understand how verbal diversity influences the learning,

we run a single experiment where the agent was supposed to learn the Move task.

We run the experiment in two settings:

* no diversity - only uses one type of statement, i.e. move to -location corner

where location is one of upper left, upper right, bottom left or bottom right.

" verbal diversity - uses multiple types of statements i.e. '<prefix> <:location->

suffix , where prefix is one of move to, arrive at, find or locate and suffix is

one of promptly, now or empty string.

The resulting convergence curves are presented on figure 4-8. There is no noticeable

effect on convergence.

4.3 Conclusion

Our claim that multi-step reasoning in Reinforcement Learning settings can lead

to iiprovements on Natural Language Processing tasks has been validated. We
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have demonstrated 5% improvement in accuracy and 300% improvement in data

efficiency with respect to the Sequence-to-Sequence model on sentence unshuffling

problem. Furthermore, we have shown that our approach is capable of jointly learning

to understand and execute Natural Language commands. For the four tasks that we

proposed our model preforms near-perfectly on two of them and well on the other

two.
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Task description task objective example mis-
sion statements

Move The goal of this Move to upper left
task is for the hero corner, Apprach
to move towards la - ci - V2/r lower right corner
one of the corners . promptly
of the board. where c is corner

location eg. (0, 0)
for upper left and
a is agent location
and r is radius of
an object.

Move to object The goal of this Locate green mar-
task is for the hero ble now, Find or-
to move towards la - ol - 2r ange thingy
one an object of
particular color, where o is loca-

tion of target ob-
ject and a is agent
location and r is
radius of an ob-
ject.

Avoid an object The goal of this Move away from
task is to move as blue marble,
far away as pos- | - c| - |a - 01 Avoid blue fellow
sible from a par-
ticular type of ob- where o is loca-
ject. tion of the object,

a is location of an
agent and c is lo-
cation of a cor-
ner that is further
away from the ob-
ject o

Push object towards The goal of this Push orange to-
task is to push ob- wards blue thingy,
ject of one color 101 - 021 - 2r Push blue towards
towards an object orange marble
of another color. where 01 and

02 are objects
that we want
to push towards
each other and
r is radius of an
object.

Table 4.3: Summary of tasks in learning by doing experiment.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis we show how Reinforcement Learning can be used for Natural Language

Processing by incorporating language as part of the state. We used Long Short-Term

Memory Networks to parse the Natural Language input, where the final hidden state

of the network is used as the input to Multi-Layer Perceptron computing action scores.

We demonstrated a system capable of solving Natural Language problems, similar

to Sequence-to-Sequence models, but capable of multi-stage reasoning. We used the

approach to solve the sentence unshuffling problem and showed that it achieves ac-

curacy 5% better than Sequence-to-Sequence model and that it requires 3 times less

examples to converge.

Furthermore, we have shown that our approach is flexible and can be used with

multi-modal inputs. We evaluated a system capable of understanding and executing

Natural Language commands, which can be used for many different tasks with mini-

mal engineering effort - the only required components being the reward function and

example commands. We demonstrated that it is capable of achieving nearly perfect

performance on two of the proposed tasks (Move to Corner and Move to Object)

and good performance on the two others (Avoid Object and Push Object toward An-

other). Finally, we described a set of optimizations that improves convergence speed

and the final performance.
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5.2 Future Work

The work done for this thesis has inspired many ideas for future work, some of which

are application-driven and others could further the capabilities of Al.

5.2.1 Beyond Deep Q Learning

The success of Deep Q learning is encouraging not only because of its performance,

but also because, as evidenced by recent literature in Non-Convex optimization those

methods allow for modeling flexibility, which encourages experimentation. One such

idea is combining RL with NLP, but there are many other interesting ideas to purse.

Particularly noteworthy examples include:

* Relaxing Markovian assumption - One of the major problems preventing

the Deep Q-learning algorithm from achieving human-level performance on some

of the Atari games is the fact that the policy chooses an action based only

on current image on the screen, ignoring the past. An interesting approach

to address this issue is presented in [15], in which the authors used LSTM to

combine observations from fixed number of past timesteps. However considering

the entirety of the past states is still an open problem. The author of this thesis

proposes three approaches to this problem:

- consider only the "surprising" past states (i.e. poor autoencoder perfor-

mance or a result of a drastic change in state encoding)

- construct a K clusters of past states and only consider one most recent

state from each cluster the clusters are periodically recomputed during

training

- explicitly train choice function about which states to remember and which

to discard, by subsampling candidate states to remember during training.

e Reward attribution - Consider the following scenario - given a state s, one

needs to choose n actions before receiving reward: first one from set A 1, second
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one from set A 2 and so on. It is an interesting problem to devise an approach

that can efficiently navigate such an environment. One approach is to simply

consider one "super-action" from set A1 x A 2 x ... x A,, but the action space grows

exponentially. Another approach is to consider an RL scenario where first n - 1

decisions receive 0 reward, but the n-th decision receives the cumulative reward.

This is also unsatisfactory, because the errors in Q-value estimate at first action

increase exponentially with n. An interesting approach was demonstrated by

Deepmind [37], where they shown a very simple algorithm which seems to be

able to perform reward attribution for execution traces of go games.

5.2.2 Deep Q learning and NLP intersection

Chapter 4 merely laid out the foundations for what could be a part of much greater

piece of research impacting Natural Language Processing and Autonomous Agent

Control. The two directions that are interesting to pursue are:

" Using RL for different NLP problems - understanding for which problems,

other than sentence unshuffling, the RL approach is beneficial. In particular,

coreference resolution seems particularly well suited - one could define action

space as adding/removing a pair of words to/from the coreference clique. Fur-

thermore, by augmenting the action space with deletions, substitutions and

swaps, we could perform translation, or improve the quality of translations out-

put by the Sequence-to-Sequence model.

" Further experimentation in robot manipulation based on NLP com-

mands - Two experiments that could be interesting are: building a bigger sim-

ulation with larger number of commands, and replicating the results on actual

robots. In case of the latter it was already demonstrated that Deep Q-learning

can be applied to real-world robots 1, but it would be even more impressive to

demonstrate robot performing tasks, based on input spoken by a person.

'https ://www .youtube . com/watch?v=-YMfJLFynmA
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* Question answering by imagining - one could use the architecture similar

to the one used in manipulation scenario, but instead of commands the net-

work would receive questions and it would be asked to jointly simulate (use the

"imagination") and output the answer to the question. First step would be to

demonstrate the capability on a narrow domain, like path finding.
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