
Sublinear-Time Algorithms for Counting Star

Subgraphs with Applications to Join Selectivity

Estimation

by

John Lee Thompson Peebles, Jr.

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2016

@ Massachusetts Institute of Technology 2016. All rights reserved.

Author
Signature redacted

Department of Electrical Engineering and Computer Science
December 1, 2015

Certified
0 TJon Kelner

Certified by..

Professor of Mathematics
Thesis Supervisor

Signature redacted...................
Ronitt Rubinfeld

Professor Professor of Electrical Engineering and Computer Science

Accepted by.
Signature redacted

6 j V

Thesis Supervisor

..................
Leslie Kolodziejski

Graduate Officer, Electrical Engineering and Computer Science

MAssA S TUTE
Of ECH GY

APR 15 201 6

LIBRARIES
ARCHIVES

2

Sublinear-Time Algorithms for Counting Star Subgraphs with

Applications to Join Selectivity Estimation

by

John Lee Thompson Peebles, Jr.

Submitted to the Department of Electrical Engineering and Computer Science
on December 1, 2015, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science

Abstract

We study the problem of estimating the value of sums of the form Sp A Z (g) when

one has the ability to sample xi ;> 0 with probability proportional to its magnitude.

When p = 2, this problem is equivalent to estimating the selectivity of a self-join query

in database systems when one can sample rows randomly. We also study the special

case when {x} is the degree sequence of a graph, which corresponds to counting the

number of p-stars in a graph when one has the ability to sample edges randomly.

Our algorithm for a (1 E)-multiplicative approximation of Sp has query and time

complexities (' "). Here, m = E xi/2 is the number of edges in the graph,E 2 Sp
or equivalently, half the number of records in the database table. Similarly, n is the

number of vertices in the graph and the number of unique values in the database

table. We also provide tight lower bounds (up to polylogarithmic factors) in almost

all cases, even when {xi} is a degree sequence and one is allowed to use the structure

of the graph to try to get a better estimate. We are not aware of any prior lower

bounds on the problem of join selectivity estimation.

For the graph problem, prior work which assumed the ability to sample only

vertices uniformly gave algorithms with matching lower bounds [Gonen, Ron, and

Shavitt. SIAM J. Comput., 25 (2011), pp. 1365-14111. With the ability to sample
edges randomly, we show that one can achieve faster algorithms for approximating

the number of star subgraphs, bypassing the lower bounds in this prior work. For

example, in the regime where Sp ; n, and p = 2, our upper bound is O(n/S / 2), in

contrast to their Q(n/Si/3) lower bound when no random edge queries are available.

In addition, we consider the problem of counting the number of directed paths

of length two when the graph is directed. This problem is equivalent to estimating

the selectivity of a join query between two distinct tables. We prove that the general

version of this problem cannot be solved in sublinear time. However, when the ratio

between in-degree and out-degree is bounded-or equivalently, when the ratio between

the number of occurrences of values in the two columns being joined is bounded-we

give a sublinear time algorithm via a reduction to the undirected case.

3

Thesis Supervisor: Jon Kelner
Title: Professor of Mathematics

Thesis Supervisor: Ronitt Rubinfeld
Title: Professor Professor of Electrical Engineering and Computer Science

4

Acknowledgments

The results and writeup of this thesis are taken from a paper that is joint work with

Maryam Aliakbarpour, Amartya Shankha Biswas, Themistoklis Gouleakis, Ronitt

Rubinfeld, and Anak Yodpinyanee. This material is based upon work supported by

the National Science Foundation Graduate Research Fellowship under Grant No. CCF-

1217423, CCF-1065125, CCF-1420692, and CCF-1122374. Any opinion, findings, and

conclusions or recommendations expressed in this material are those of the authors(s)

and do not necessarily reflect the views of the National Science Foundation. We thank

Peter Haas and Samuel Madden for helpful discussions.

5

6

Contents

1 Introduction 13

1.1 Our Contribution . 15

1.2 Our Approaches. 17

1.3 Related W ork . 18

2 Preliminaries 21

2.1 Graph Specification . 21

2.2 Q uery Access . 22

2.3 Queries in the Database Model . 22

3 Upper Bounds for Counting Stars in Undirected Graphs 25

3.1 Unbiased Estimator Subroutine . 25

3.2 Full Algorithm . 27

3.3 Removing the Dependence on m . 28

3.3.1 Approximating m . 29

3.3.2 Comparing m to n and Sp . 29

3.4 Allowing Neighbor Queries . 30

4 Lower Bounds for Counting Stars in Undirected Graphs 33

4.1 Lower Bound for Sp < n . 33

4.2 Overview of the Lower Bound Proof for S, > n 34

A Useful Inequalities 45

7

B Proof of Lemma 3.1.1

C Proof of Lower Bounds for Undirected

C.1 Graph Representations

C.2 Main Lemma

C.3 Our Constructions

C.3.1 Construction of D

C.3.2 Answering Random Edge Queri(

C.4 Proof of Lemma C.2.1

C.5 Establishing Lower Bounds

C.6 Extension to Directed Graphs

C.6.1 Lower Bound

C.6.2 Upper Bound

Graphs with

8

Sp > n

47

49

49

50

51

51

54

55

56

57

58

59

es

List of Figures

C-1 first few columns of L1 . 51

C-2 Comparison between tables L1 and L2 . L"'Y (a) and (b) show two

different possibilities for L"'Y depending on the values of x and y. 52

C-3 m atchings in Lx' . 53

9

10

List of Tables

1.1 Summary of the query and time complexities for counting p-stars on

undirected graphs, given a different set of allowed queries. E is assumed

to be constant. Adjacent cells in the same column with the same

contents have been merged. 16

11

12

Chapter 1

Introduction

We study the problem of approximately estimating S, A Z= (g) when one has the

ability to sample xi > 0 with probability proportional to its magnitude. To solve this

problem we design sublinear-time algorithms, which compute such an approximation

while only looking at an extremely tiny fraction of the input, rather than having to

scan the entire data set in order to determine this value.

We consider two primary motivations for this problem. The first is that in undi-

rected graphs, if xi is the degree of vertex i then S, counts the number of p-stars in

the graph. Thus, estimating S, when one has the ability to sample xi with probability

proportional to its magnitude corresponds to estimating the number of p-stars when

one has the ability to sample vertices with probability proportional to their degrees

(which is equivalent to having the ability to sample edges uniformly). This problem

is an instance of the more general subgraph counting problem in which one wishes

to estimate the number of occurrences of a subgraph H in a graph G. The sub-

graph counting problem has applications in many different fields, including the study

of biological, internet and database systems. For example, detecting and counting

subgraphs in protein interaction networks is used to study molecular pathways and

cellular processes across species [SIKS06.

The second application of interest is that the problem of estimating S2 corresponds

to estimating the selectivity of join and self-join operations in databases when one

has the ability to sample rows of the tables uniformly. For example, note that if we

13

set xi as the number of occurrences of value i in the column being joined, then S 2 is

precisely the number of records in the join of the table with itself on that column.

When performing a query in a database, a program called a query optimizer is used to

determine the most efficient way of performing the database query. In order to make

this determination, it is useful for the query optimizer to know basic statistics about

the database and about the query being performed. For example, queries that return

a very larger number of records are usually serviced most efficiently by doing simple

linear scans over the data whereas queries that return a smaller number of records

may be better serviced by using an index [HILM09]. As such, being able to estimate

selectivity (number of records returned compared to the maximum possible number)

of a query can be useful information for a query optimizer to have. In the more

general case of estimating the selectivity of a join between two different tables (which

can be modeled with a directed graph), the query optimizer can use this information

to decide on the most efficient order to execute a sequence of joins which is a common

task.

In the "typical" regime in which we wish to estimate S2 given that n < S2 n2 ,

our algorithm has a running time of O(Vfi) which is very small compared to than the

total amount of data. Furthermore, in the case of selectivity estimation, this number

can be much less than the number of distinct values in the column being joined on,

which results in an even smaller number of queries than would be necessary if one

were using an index to compute the selectivity.

We believe that our query-based framework can be realized in many systems. One

possible way to implement random edge queries is as follows: because edges normally

take most of the space for storing graphs, an access to a random memory location

where the adjacency list is stored, would readily give a random edge. Random edge

queries allow us to implement a source of weighted vertex samples, where a vertex is

output with probability proportional to its weight (magnitude). Weighted sampling

is used in [MPX07, BBSO9 to find sublinear algorithms for approximating the sum

of n numbers (allowing only uniform sampling, results in a linear lower bound). We

later use this as a subroutine in our algorithm.

14

Throughout the rest of the paper, we will mostly use graph terminology when

discussing this problem. However, we emphasize that all our results are fully general

and apply to the problem of estimating S, even when one does not assume that the

input is a graph.

1.1 Our Contribution

Prior theoretical work on this problem only considered the version of this problem

on graphs and assumed the ability to sample vertices uniformly rather than edges.

Specifically, prior studies of sublinear-time algorithms for graph problems usually

consider the model where the algorithm is allowed to query the adjacency list rep-

resentation of the graph: it may make neighbor queries (by asking "what is the ith

neighbor of a vertex v") and degree queries (by asking "what is the degree of vertex

V"7).

We propose a stronger model of sublinear-time algorithms for graph problems

which allows random edge queries. Next, for undirected graphs, we construct an al-

gorithm which uses only degree queries and random edge queries. This algorithm and

its analysis is discussed in chapter 3. For the problem of computing an approximation

S satisfying (1 - e)Sp S, (1 + e)Sp, our algorithm has query and time complex-

ities O(m log log n/21/VP). Although our algorithm is described in terms of graphs,

it also applies to the more general case when one wants to estimate S, = E (X)
without any assumptions about graph structure. Thus, it also applies to the problem

of self-join selectivity estimation.

We then establish some relationships between m and other parameters so that

we may compare the performance of this algorithm to a related work by Gonen et

al. more directly ([GRS11I). We also provide lower bounds for our proposed model

in chapter 4, which are mostly tight up to polylogarithmic factors. This comparison

is given in Table 1.1. We emphasize that even though these lower-bounds are stated

for graphs, they also apply to the problem of self-join selectivity estimation.

To understand this table, first note that these algorithms require more samples

15

when S, is small (i.e., stars are rare). As S, increases, the complexity of each al-

gorithm decreases until-at some point-the number of required samples drops to

O(n'-1 /P). Our algorithm is able to obtain this better complexity of O(n-1/P) for a

larger range of values of Sp than that of the algorithm given in [GRS11]. Specifically,

our algorithm is more efficient for S, < n11/P, and has the same asymptotic bound

for Sp up to nrP. Once S, > nP, it is unknown whether the degree and random edge

queries alone can provide the same query complexity. Nonetheless, if we have access

to all three types of queries, we may combine the two algorithms to obtain the best

of both cases as illustrated in the last column.

permitted types of queries

range of Sp neighbor, degree degree, random edge all types of queries

(IGRS11I) (this paper) (this paper)

Sp <n ~ n

6(< S, </ ni+1/
-- < Sp<(l'/-1P1)P1/P) (1-1/p)

~1+1/p <Sp rP I (-/P) (n ~llP

~~ <Sp 1p _______ P/
011p g< o g(1-1/p P-/ 6n -/

Table 1.1: Summary of the query and time complexities for counting p-stars on
undirected graphs, given a different set of allowed queries. c is assumed to be constant.

Adjacent cells in the same column with the same contents have been merged.

We also consider a variant of the counting stars problem on directed graphs in

Appendix C.6. If one only needs to count "stars" where all edges are either pointing

into or away from the center, this is essentially still the undirected case. We then

consider counting directed paths of length two, and discover that allowing random

edge queries does not provide an efficient algorithm in this case. In particular, we

show that any constant factor multiplicative approximation of Sp requires Q(n) queries

even when all three types of queries are allowed. However, when the ratio between

the in-degree and the out-degree on every vertex is bounded, we solve this special

case in sublinear time via a reduction to the undirected case where degree queries

and random edge queries are allowed.

This variant of the counting stars problem can also be used for approximating join

16

selectivity. For a directed graph, we aim at estimating the quantity EvCV(G) deg (v).

deg+(v). On the other hand in the database context, we wish to compute the quantity

= xi -yi, where xi and yi denote the number of occurrences of a label i in the column

we join on, from the first and the second table, respectively. Thus, applying simple

changes in variables, the algorithms from Appendix C.6 can be applied to the problem

of estimating join selectivity as well.

1.2 Our Approaches

In order to approximate the number of stars in the undirected case, we convert the

random edge queries into weighted vertex sampling, where the probability of sampling

a particular vertex is proportional to its degree. We then construct an unbiased

estimator that approximates the number of stars using the degree of the sampled

vertex as a parameter. The analysis of this part is roughly based on the variance

bounding method used in [AMS96J, which aims to approximate the frequency moment

in a streaming model. The number of samples required by this algorithm depends

on Sp, which is not known in advance. Thus we create a guessed value of Sp and

iteratively update this parameter until it becomes accurate.

To demonstrate lower bounds in the undirected case, we construct new instances

to prove tight bounds for the case in which our model is more powerful than the

traditional model. In other cases, we provide a new proof to show that the ability

to sample uniformly random edges does not necessarily allow better performance in

counting stars. Our proof is based on applying Yao's principle and providing an

explicit construction of the hard instances, which unifies multiple cases together and

greatly simplifies the approach of [GRS11I. 1

'One useful technique for giving lower bounds on sublinear time algorithms, pioneered by
[BBM12J, is to make use of a connection between lower bounds in communication complexity and
lower bounds on sublinear time algorithms. More specifically, by giving a reduction from a commu-
nication complexity problem to the problem we want to solve, a lower bound on the communication
complexity problem yields a lower bound on our problem. In the past, this approach has led to
simpler and cleaner sublinear time lower bounds for many problems. Attempts at such an approach
for reducing the set-disjointness problem in communication complexity to our estimation problem on
graphs run into the following difficulties: First, as explained in [Gol13], the straightforward reduc-
tion adds a logarithmic overhead, thereby weakening the lower bound by the same factor. Second,

17

For the directed case, we prove the lower bound using a standard construction and

Yao's principle. As for the upper bound when the in-degree and out-degree ratios are

bounded, we use rejection sampling to adjust the sampling probabilities so that we

may apply the unbiased estimator method from the undirected case.

1.3 Related Work

Motivated by applications in a variety of areas, the subgraph detection and counting

problem and its variations have been studied in many different works, often un-

der different terminology such as network motif counting or pathway querying (e.g.,

[MSOI+02, PCJO4, Wer06, SIKS06, SSRS06, GK07, HBPS07, HA08, ADH+08J). As

this problem is NP-hard in general, many approaches have been developed to ef-

ficiently count subgraphs more efficiently for certain families of subgraphs or input

graphs (e.g., [DLR95, AYZ97, FG04, KIMA04, ADH+08, AG09, VW09, Wil09, GS09,

KMPT1O, AGM12, AFS12, FLR+12J). As for applications to database systems, the

problem of approximating the size of the resulting table of a join query or a self-join

query in various contexts has been studied in [SS94, HNSS96, AGMS99]. Selectiv-

ity and query optimization have been considered, e.g., in [P197, LKC99, GTKO1,

MHK+07, HILM09J.

Other works that study sublinear-time algorithms for counting stars are [GRS 11

that aims to approximate the number of stars, and [Fei06, GR08I that aim to approx-

imate the number of edges (or equivalently, the average degree).' Note that [GRS11

also shows impossibility results for approximating triangles and paths of length three

in sublinear time when given uniform edge sampling, limiting us from studying more

sophisticated subgraphs. Recent work by Eden, Levi and Ron (jELR15) and Se-

shadhri ([Ses15J) provide sublinear time algorithms to approximate the number of

triangles in a graph. However, their model uses adjacency matrix queries and neigh-

bor queries. The problem of counting subgraphs has also been studied in the stream-

the reduction seems to work only in the case of sparse graphs. Although it is not clear if these
difficulties are insurmountable, it seems that it will not give a simpler argument than the approach
that we present in this work.

18

ing model (e.g., [BYKSO2, BFL+06, BBCG08, MMPS11, KMSS12]). There is also a

body of work on sublinear-time algorithms for approximating various graph parame-

ters (e.g., [PR07, NO08, YYI09, HKNO09, ORRR12J).

Abstracting away the graphical context of counting stars, we may view our prob-

lem as finding a parameter of a distribution: edge or vertex sampling can be treated

as sampling according to some distribution. In vertex sampling, we have a uniform

distribution and in edge sampling, the probabilities are proportional to the degree.

The number of stars can be written as a function of the degrees. Aside from our work,

there are a number of other studies that make use of combined query types for esti-

mating a parameter of a distribution. Weighted and uniform sampling are considered

in [MPX07, BBSO9I. Their algorithms may be adapted to approximate the number

of edges in the context of approximating graph parameters when given weighted ver-

tex sampling, which we will later use in this paper. A closely related problem in

the context of distributions, is the task of approximating frequency moments, mainly

studied in the streaming model (e.g., [AMS96, CK04, IW05, BGKS06J). On the other

hand, the combination of weighted sampling and probability distribution queries is

also considered (e.g., [CR141).

19

20

Chapter 2

Preliminaries

In this thesis, we construct algorithms to approximate the number of stars in a graph

under different types of query access to the input graph. As we focus on the case of

simple undirected graphs, we explain this model here and defer the description for

the directed case to Appendix C.6.

2.1 Graph Specification

Let G = (V, E) be the input graph, assumed to be simple and undirected. Let n and

m denote the number of vertices and edges, respectively. The value n is known to the
def

algorithm. Each vertex v E V is associated with a unique ID from [n] {1, ... ,n}.

Let deg(v) denote the degree of v.

Let p > 2 be a constant integer. A p-star is a subgraph of size p + 1, where one

vertex, called the center, is adjacent to the other p vertices. For example, a 2-star is

an undirected path of length 2. Note that a vertex may be a center for many stars,

and a set of p + 1 vertices may form multiple stars. Let S, denote the number of

occurrences of distinct stars in the graph.

Our goal is to construct a randomized algorithm that outputs a value that is within

a (1 c)-multiplicative factor of the actual number of stars Sp. More specifically, given

a parameter e > 0, the algorithm must give an approximated value Sp satisfying the

inequality (1 - c)S < p < (1 + c)Sp with success probability at least 2/3.

21

2.2 Query Access

The algorithm may access the input graph by querying the graph oracle, which answers

for the following types of queries. First, the neighbor queries: given a vertex v E V

and an index 1 < i < n, the ith neighbor of v is returned if i < deg(v); otherwise,

I is returned. Second, the degree queries: given a vertex v E V, its degree deg(v) is

returned. Lastly, the random edge queries: a uniformly random edge. {u, v} c E is

returned. The query complexity of an algorithm is the total number of queries of any

type that the algorithm makes throughout the process of computing its answer.

Combining these queries, we may implement various useful sampling processes.

We may perform a uniform edge sampling using a random edge query, and a uniform

vertex sampling by simply picking a random index from [n]. We may also perform a

weighted vertex sampling where each vertex is obtained with probability proportional

to its degree as follows: uniformly sample a random edge, then randomly choose one

of the endpoints with probability 1/2 each. Since any vertex v is incident with deg(v)

edges, then the probability that v is chosen is exactly deg(v)/2m, as desired.

2.3 Queries in the Database Model

Now we explain how the above queries in our graph model have direct interpretations

in the database model. Consider the column we wish to join on. For each valid label

i, let xi be the number of rows containing this label. We assume the ability to sample

rows uniformly at random. This gives us a label i with probability proportional to xi,

which is a weighted sample from the distribution of labels. We also assume that we

can also quickly compute the number of other rows sharing the same label with a given

row (analogous to making a degree query). For example, this could be done quickly

using an index on the column. Note that if one has ail index that is augmented with

appropriate information, one can compute the selectivity of a self-join query exactly

in time roughly O(k log n) where k is the number of distinct elements in the column.

However, our methods can give runtimes that are asymptotically much smaller than

22

this.

23

24

Chapter 3

Upper Bounds for Counting Stars in

Undirected Graphs

In this chapter we establish an algorithm for approximating the number of stars, S,,

of an undirected input graph. We focus on the case where only degree queries and

random edge queries are allowed. This illustrates that even without utilizing the

underlying structure of the input graph, we are still able to construct a sublinear

approximation algorithm that outperforms other algorithms under the traditional

model in certain cases.

3.1 Unbiased Estimator Subroutine

Our algorithm uses weighted vertex sampling to find stars. Intuitively, the number

of samples required by the algorithms should be larger when stars are rare because it

takes more queries to find them. While the query complexity of the algorithm depends

on the actual value of S, our algorithm does not know this value in advance. In order

to overcome this issue, we devise a subroutine which-given a guess Sp for the value

of Sp-will give a (1 6) approximation of Sp if Sp is close enough to S, or tell us

that S, is much larger than S,. Then, we start with the maximum possible value of

SP aid guess multiplicatively smaller and smaller values for it until we find one that

is close enough to S,, so that our subroutine is able to correctly output a (1 E)

25

approximation.

Our subroutine works by computing the average value of an unbiased estimator

to Sp after drawing enough weighted vertex samples. To construct the unbiased

estimator, notice first that the number of p-stars centered at a vertex v is (deg(v) 1

Thus, S = EvC (d e("))

Next, we define the unbiased estimator and give the corresponding algorithm.

First, let X be the random variable representing the degree of a random vertex

obtained through weighted vertex sampling, as explained in section 2.2. Recall that

a vertex v is sampled with probability deg(v)/2m. We define the random variable

Y = g (X) so that Y is an unbiased estimator for Sp; that is,

E [dgY] 2m deg(v)) deg(v)) P

vEV 2m deg(v) k p vEV P

Algorithm 1 Subroutine for Computing Sp given S, with success probability 2/3

1: procedure UNBIASED-ESTIMATE(Sp, 6)

2: k +- 36m / pE2Sj/P

3: for i = to k do
4: v <- weighted sampled vertex obtained from a random edge query
5: d +- deg(v) obtained from a degree query
6: Y+ ()

7: <Y
8: return Y

Clearly, the output Y of Algorithm 1 satisfies E[Y} = Sp. We claim that the

number of samples k in Algorithm 1 is sufficient to provide two desired properties:

the algorithm returns an (1 c)-approximation of S, if p is in the correct range; or,

if p is too large, the anomaly will be evident as the output Y will be much smaller

than Sp. In particular, we may distinguish between these two cases by comparing Y

against (1 - c)5,, as specified through the following lemma.

Lemma 3.1.1 For 0 < c < 1/2, with probability at least 2/3:

'For our counting purpose, if x < y then we define (X) = 0.

26

1. If !Sp 5 Sp < 6Sp, then Algorithm 1 outputs Y such that (1 - E)SP Y <

(1 + C)SP;

moreover, if S, < Sp then Y > (1 - E)SP.

2. If Sp > 6Sp, then Algorithm 1 outputs Y such that Y < !Sp < (1 - c)Sp.

The first item of Lemma 3.1.1 can be proved by bounding the variance of Y

using various Chebyshev's Inequality and identities of binomial coefficients, while the

second item is a simple application of Markov's Inequality. Detailed proofs for these

statements can be found in Appendix B.

3.2 Full Algorithm

Our full algorithm proceeds by first setting Sp to n(",-1), the maximum possible value

of Sp given by the complete graph. We then use Algorithm 1 to check if Sp > 6Sp; if

this is the case, we reduce Sp then proceed to the next iteration. Otherwise, Algorithm

1 should already give an (1t c)-approximation to S, (with constant probability). We

note that if e > 1/2, we may replace it with 1/2 without increasing the asymptotic

complexity.

Since the process above may take up to O(log n) iterations, we must amplify the

success probability of Algorithm 1 so that the overall success probability is still at

least 2/3. To do so, we simply make f = O(log log n) multiple calls to Algorithm 1

then take the median of the returned values. Our full algorithm can be described as

Algorithm 2 below.

Theorem 3.2.1 Algorithm 2 outputs SP such that (1 - e)Sp < Sp < (1 + c)Sp with

probability at least 2/3. The query complexity of Algorithm 2 is 0 .mlognlolog n

Proof: If we assume that the events from Lemma 3.1.1 hold, then the algorithm will

take at most [log (n(n-1) (p + 1) log n iterations. By choosing f = 40(logp+

log log n), Chernoff bound (Theorem A.0.3) implies that excepted for probability

1/ 3 (p+ 1) log n, more than half of the return values of Algorithm 1 satisfy the desired

27

Algorithm 2 Algorithm for Approximating SP
1: procedure COUNT-STARS(E)
2: Sp +- n(n,2), 1) - 40(log p + log log n)
3: loop
4: fori=1tof do
5: Zi +- UNBIASED-ESTIMATE(S,,)
6: Z +- median{Zi, - - - , Zj}
7: if Z > (1 -)Sp then
8: SP +- Z
9: return SP

10: p <- Sp/2

property, and so does the median Z. By the union bound, the total failure probability

is at most 1/3.

Now it is safe to assume that the events from the two lemmas hold. In case

S > 6S, our algorithm will detect this event because Z < (1 - C)S, implying

that we never stop and return an inaccurate approximation. On the other hand, if

Sp < S,, our algorithm computes Z > (1 - f)Sp and must terminate. Since we only

halve Sp on each iteration, when Sp < S, first occurs, we have Sp > !Sp. As a result,

our algorithm must terminate with the desired approximation before the value Sp is

halved again. Thus, Algorithm 2 returns S, satisfying (1 - c)S, Sp < (1 + c)Sp

with probability at least 2/3, as desired.

Recall that the number of samples required by Algorithm 1 may only increase when

Sp decreases. Thus we may use the number of samples in the last round of Algorithm

2, where p = E(Sp), as the upper bound for each previous iteration. Therefore, each

of the O(log n) iterations takes O(m log log n / c2S1/P) samples, achieving the claimed

query complexity. U

3.3 Removing the Dependence on m

As described above, Algorithm 1 picks the value k and defines the unbiased estimator

based on m, the number of edges. Nonetheless, it is possible to remove this assumption

of having prior knowledge of m by instead computing its approximation. Furthermore,

28

we will bound m in terms of n and Sp, so that we can also relate the performance of

our algorithm to previous studies on this problem such as [GRS11I, as done in Table

1.1.

3.3.1 Approximating m

We briefly discuss how to apply our algorithm when m is unknown by first computing

an approximation of m. Using weighted vertex sampling, we may simulate the algo-

rithm from [MPX07 or [BBSO9] that computes an (1 E)-approximation to the sum

of degrees using o(fii) weighted samples. More specifically, we cite the following

theorem:

Theorem 3.3.1 ([MPX07]) Let x1 ,...,x be n variables, and define a distribution

P that returns (i, xi) with probability xi/ E', x3 . There exists an algorithm that

computes a (1 e)-approximation of S == xi using o(-/,i) samples from D.

Thus, we simulate the sampling process from D by drawing a weighted vertex sample

v, querying its degree, and feeding (v, deg(v)) to this algurithm. We will need to

decrease e used in this algorithm and our algorithm by a constant factor to account

for the additional error. Below we show that our complexities are at least O(n1 -1 /P)

which is already o(v/i-) for p = 2, and thus this extra step does not affect our

algorithm's performance asymptotically.

3.3.2 Comparing m to n and S.

For comparison of performances, we will now show some bounds relating m to n and

Sp. Notice that the function (de,()) is convex with respect to deg(v). 2 Then by

applying Jensen's inequality (Theorem A.0.4) to this function, we obtain

S z (E deg(v) > (EVE deg(v)/n n 2m/n

2 We may use the binomial coefficients () for non-integral value x in the inequalities. These can
be interpreted through alternative formulations of binomial coefficients using falling factorials or
analytic functions.

29

First, let us consider the case where the stars are very rare, namely when S, < n.

The inequality above implies that m < np/2. Substituting this formula back into the

bound from Theorem 3.2.1 yields the query complexity O(n / 2

Now we consider the remaining case where Sp > n. If m < np/2 = O(n), then

the query complexity from Theorem 3.2.1 becomes O(n 1 1 /P / c2). Otherwise we have

2m/n > p, which allows us to apply the following bound on our binomial coefficient:

S !n2m/n >n2m P

P (np)

This inequality implies that m < pn'-/PSp/P/ 2 , also yielding the query complexity

O(nil-/P / (2).

Compared to [GRS11I, our algorithm achieves a better query complexity when

SK < n1 +1 /P, where the rare stars are more likely to be found via edge sampling

rather than uniform vertex sampling or traversing the graph. Our algorithm also

performs no worse than their algorithm does for any S, as large as nrP. Moreover, due

to the simplicity of our algorithm, the dependence on c of our query complexity is only

1/E2 for any value of S, while that of their algorithm is as large as 1/d0 in certain

cases. This dependence on c may be of interest to some applications, especially when

stars are rare whilst an accurate approximation of S, is, crucial.

3.4 Allowing Neighbor Queries

We now briefly discuss how we may improve our algorithm when neighbor queries are

allowed (in addition to degree queries and random edge queries). For the case when

Sp > nP, it is unknown whether our algorithm alone achieves better performance than

[GRS11J (see table 1.1). However, their algorithm has the same basic framework as

ours, namely that it also starts by setting S to the maximum possible number of

stars, then iteratively halves this value until it is in the correct range, allowing the

subroutine to correctly compute a (1 c)-approximation of Sp. As a result, we may

achieve the same performance as them in this regime by simply letting Algorithm

30

2 call the subroutine from [GRS11 when Sp > nP. We will later show tight lower

bounds (up to polylogarithmic factors) to the case where all three types of queries

are allowed, which is a stronger model than the one previously studied in their work.

31

32

Chapter 4

Lower Bounds for Counting Stars in

Undirected Graphs

In this chapter, we establish the lower bounds summarized in the last two columns

of Table 1.1. We give lower bounds that apply even when the algorithm is permitted

to sample random edges. Our first lower bound is proved in section 4.1; While this

is the simplest case, it provides useful intuition for the proofs of subsequent bounds.

In order to overcome the new obstacle of powerful queries in our model, for larger

values of S, we create an explicit scheme for constructing families of graphs that are

hard to distinguish by any algorithm even when these queries are present. Using this

construction scheme, our approach obtains the bounds for all remaining ranges for

SP as special cases of a more general bound, and the general bound is proved via the

straightforward application of Yao's principle and a coupling argument. Our lower

bounds are tight (up to polylogarithmic factors) for all cases except for the bottom

middle cell in Table 1.1.

4.1 Lower Bound for Sp < n

Theorem 4.1.1 For any constant p ;> 2, any (randomized) algorithm for approxi-

mating Sp to a multiplicative factor via neighbor queries, degree queries and random

edge queries with probability of success at least 2/3 requires Q(n/S '/) total number

33

of queries for any S, < nr.

Proof: We now construct two families of graphs, namely F and F 2 , such that any

G1 and G 2 drawn from each respective family satisfy Sp(G 1) = 0 and Sp(G2) = O(s)

for some parameter s > (p + 1)P = 0(1). We construct G1 as follows: for a subset

S C V of size [sI/P1 + 1, we create a union of a (p - 1)-regular graph on S and a

(p - 1)-regular graph on V \ S, and add the resulting graph G to F 1. To construct

all graphs in F 1 , we repeat this process for every subset S of size [s1/Pl + 1. F2 is

constructed a little differently: rather than using a (p - 1)-regular graph on S, we

use a star of size Fs/Pl on this set instead. We add a union between a star on S and

a (p - 1)-regular graph on V \ S of any possible combination to F 2.

By construction, every G, E F contains no p-stars, whereas every G2 E F 2 has

(0(81/p)) - 0(s) p-stars. For any algorithm to distinguish between F1 and F 2 , when

given a graph G2 E F2 , it must be able to detect some vertex in S with probability

at least 2/3. Otherwise, if we randomly generate a small induced subgraph according

to the uniform distribution in F 2 conditional on not having any vertex or edge in S,

the distribution would be identical to the uniform in F1 . Furthermore, notice that

S cannot be reached via traversal using neighbor queries as it is disconnected from

V \ S. The probability of sampling such vertex or edge from each query is O(s1/p/n).

Thus, Q(n/s/P) samples are required to achieve a constant factor approximation with

probability 2/3. U

4.2 Overview of the Lower Bound Proof for Sp > n

Since graphs with large Sp contain many edges, we must modify our approach above

to allow graphs from the first family to contain stars. We construct two families

of graphs F1 and F 2 such that the number of stars of graphs from these families

differ by some multiplicative factor c > 1; any algorithm aiming to approximate SP

within a multiplicative factor of V/2 must distinguish between these two families with-

probability at least 2/3. We create representations of graphs that explicitly specify

their adjacency list structure. Each G1 E F1 contains ni vertices of degree dj, while

34

the remaining n2 = n - n, vertices are isolated. For each G 2 E T 2 , we modify our

representation from F1 by connecting each of the remaining n 2 vertices to d2 >> d,

neighbors, so that these vertices contribute sufficient stars to establish the desired

difference in Sp. We hide these additional edges in carefully chosen random locations

while ensuring minimal disturbance to the original graph representation; our repre-

sentations are still so similar that any algorithm may not detect them without making

sufficiently many queries. Moreover, we define a coupling for answering random edge

queries so that the same edges are likely to be returned regardless of the underlying

graph.

While the proof of [GRS11I also uses similar families of graphs, our proof analysis

greatly deviates from their proof as follows. Firstly, we apply Yao's principle which

allows us to prove the lower bounds on randomized algorithms by instead showing

the lower bound on deterministic algorithms on our carefully chosen distribution of

input instances.1 Secondly, rather than constructing two families of graphs via ran-

dom processes, we construct our graphs with adjacency list representations explicitly,

satisfying the above conditions for each lower bound we aim to prove. This allows

us to avoid the difficulties in [GRS11J regarding the generation of potential multiple

edges and self-loops in the input instances. Thirdly, we define the distribution of

our instances based on the permutation of the representations of these two graphs,

and the location we place the edges in G 2 that are absent in G1. We also apply the

coupling argument, so that the distribution of these permutations we apply on these

graphs, as well as the answers to random edge queries, are as similar as possible.

As long as the small difference between these graphs is not discovered, the interac-

tion between the algorithm and our oracle must be exactly the same. We show that

with probability 1 - o(1), the algorithm and our oracle behave in exactly the same

way whether the input instance corresponds to G, or G 2 . Simplifying the arguments

from [GRS11J, we completely bypass the algorithm's ability to make use of graph

structures. Our proof only requires some conditions on the parameters ni, di, n2 , d2 ;

this allows us to show the lower bounds for multiple ranges of Sp simply by choosing

'See e.g., [MR10] for more information on Yao's principle.

35

appropriate parameters.

We provide the full details in Appendix C. The main results of our constructions

are given as the following theorems. We note that lower bounds apply when only

subsets of these three types of queries are provided. This concludes all of our lower

bounds in Table 1.1.

Theorem 4.2.1 For any constant p 2, any (randomized) algorithm for approxi-

mating S, to a multiplicative factor via neighbor queries, degree queries and random

edge queries with probability of success at least 2/3 requires Q(n- 11 /P) total number of

queries for any Sp = O(nP).

Theorem 4.2.2 For any constant p 2, any (randomized) algorithm for approxi-

mating Sp to a multiplicative factor via neighbor queries, degree queries and random

edge queries with probability of success at least 2/3 requires Q n2 total number

of queries for any S, = Q(nP).

36

Bibliography

[ADH+08] Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari,

and S Cenk Sahinalp. Biomolecular network motif counting and discovery

by color coding. Bioinformatics, 24(13):i241-i249, 2008.

[AFS12I Omid Amini, Fedor V Fomin, and Saket Saurabh. Counting subgraphs

via homomorphisms. SIAM Journal on Discrete Mathematics, 26(2):695-

717, 2012.

[AG091 Noga Alon and Shai Gutner. Balanced hashing, color coding and approx-

imate counting. In Parameterized and Exact Computation, pages 1-16.

Springer, 2009.

[AGM12 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches:

sparsification, spanners, and subgraphs. In Proceedings of the 31st sym-

posium on Principles of Database Systems, pages 5-14. ACM, 2012.

[AGMS99 Noga Alon, Phillip B Gibbons, Yossi Matias, and Mario Szegedy. Tracking

join and self-join sizes in limited storage. In Proceedings of the eighteenth

ACM SIGMOD-SIGACT-SIGART symposium on Principles of database

systems, pages 10-20. ACM, 1999.

[AMS96 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of

approximating the frequency moments. In Proceedings of the twenty-

eighth annual ACM symposium on Theory of computing, pages 20-29.

ACM, 1996.

37

[AYZ97 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given

length cycles. Algorithmica, 17(3):209-223, 1997.

[BBCG08 Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. Ef-

ficient semi-streaming algorithms for local triangle counting in massive

graphs. In Proceedings of the 14th ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, pages 16-24. ACM, 2008.

[BBM12] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower

bounds via communication complexity. Computational Complexity,

21(2):311-358, 2012.

[BBS09 Tugkan Batu, Petra Berenbrink, and Christian Sohler. A sublinear-time

approximation scheme for bin packing. Theoretical Computer Science,

410(47):5082-5092, 2009.

[BFL+061 Luciana S Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-

Spaccamela, and Christian Sohler. Counting triangles in data streams. In

Proceedings of the twenty-fifth ACM SIGMOD-SIGACT-SIGART sympo-

sium on Principles of database systems, pages 253-262. ACM, 2006.

[BGKS06] Lakshminath Bhuvanagiri, Sumit Ganguly, Deepanjan Kesh, and Chan-

dan Saha. Simpler algorithm for estimating frequency moments of data

streams. In Proceedings of the seventeenth annual ACM-SIA M symposium

on Discrete algorithm, pages 708-713. ACM, 2006.

[BYKSO2 Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. Reductions in stream-

ing algorithms, with an application to counting triangles in graphs. In

Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete

algorithms, pages 623-632. Society for Industrial and Applied Mathemat-

ics, 2002.

[CK041 Don Coppersmith and Ravi Kumar. An improved data stream algorithm

for frequency moments. In Proceedings of the fifteenth annual A CM-SIAM

38

symposium on Discrete algorithms, pages 151-156. Society for Industrial

and Applied Mathematics, 2004.

[CR141 C16ment Canonne and Ronitt Rubinfeld. Testing probability distributions

underlying aggregated data. arXiv preprint arXiv:1402.3835, 2014.

IDLR95] Richard A Duke, Hanno Lefmann, and Vojtech Rddl. A fast approxi-

mation algorithm for computing the frequencies of subgraphs in a given

graph. SIAM Journal on Computing, 24(3):598-620, 1995.

[ELR15] Talya Eden, Amit Levi, and Dana Ron. Approximately counting triangles

in sublinear time. arXiv preprint arXiv:1504.00954, 2015.

[Fei06] Uriel Feige. On sums of independent random variables with unbounded

variance and estimating the average degree in a graph. SIAM Journal on

Computing, 35(4):964-984, 2006.

[FG04] J6rg Flum and Martin Grohe. The parameterized complexity of counting

problems. SIAM Journal on Computing, 33(4):892-922, 2004.

[FLR+12] Fedor V Fomin, Daniel Lokshtanov, Venkatesh Raman, Saket Saurabh,

and BV Rao. Faster algorithms for finding and counting subgraphs. Jour-

nal of Computer and System Sciences, 78(3):698-706, 2012.

[GK07] Joshua A Grochow and Manolis Kellis. Network motif discovery using

subgraph enumeration and symmetry-breaking. In Research in Compu-

tational Molecular Biology, pages 92-106. Springer, 2007.

[Gol13J Oded Goldreich. On the communication complexity methodology for

proving lower bounds on the query complexity of property testing. Elec-

tronic Colloquium on Computational Complexity (ECCC), 20:73, 2013.

[GR081 Oded Goldreich and Dana Ron. Approximating average parameters of

graphs. Random Structures & Algorithms, 32(4):473-493, 2008.

39

[GRS11I Mira Gonen, Dana Ron, and Yuval Shavitt. Counting stars and other

small subgraphs in sublinear-time. SIAM Journal on Discrete Mathe-

matics, 25(3):1365-1411, 2011.

[GS091 Mira Gonen and Yuval Shavitt. Approximating the number of network

motifs. Internet Mathematics, 6(3):349-372, 2009.

[GTK01] Lise Getoor, Benjamin Taskar, and Daphne Koller. Selectivity estimation

using probabilistic models. In ACM SIGMOD Record, volume 30, pages

461-472. ACM, 2001.

[HA081 David Hales and Stefano Arteconi. Motifs in evolving cooperative net-

works look like protein structure networks. Networks and Heterogeneous

Media, 3(2):239, 2008.

[HBPS07] Fereydoun Hormozdiari, Petra Berenbrink, Natasa Przulj, and S Cenk

Sahinalp. Not all scale-free networks are born equal: the role of the seed

graph in ppi network evolution. PLoS computational biology, 3(7):e118,

2007.

[HILM09J Peter J Haas, Ihab F Ilyas, Guy M Lohman, and Volker Markl. Dis-

covering and exploiting statistical properties for query optimization in

relational databases: A survey. Statistical Analysis and Data Mining:

The ASA Data Science Journal, 1(4):223-250, 2009.

[HKNO09 Avinatan Hassidim, Jonathan A Kelner, Huy N Nguyen, and Krzysztof

Onak. Local graph partitions for approximation and testing. In Founda-

tions of Computer Science, 2009. FOCS'09. 50th Annual IEEE Sympo-

sium on, pages 22-31. IEEE, 2009.

[HNSS96 Peter J Haas, Jeffrey F Naughton, S Seshadri, and Arun N Swami. Selec-

tivity and cost estimation for joins based on random sampling. Journal

of Computer and System Sciences, 52(3):550-569, 1996.

40

[IW05] Piotr Indyk and David Woodruff. Optimal approximations of the fre-

quency moments of data streams. In Proceedings of the thirty-seventh

annual ACM symposium on Theory of computing, pages 202-208. ACM,

2005.

[KIMA04]

[KMPT10I

Nadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. Efficient

sampling algorithm for estimating subgraph concentrations and detecting

network motifs. Bioinformatics, 20(11):1746-1758, 2004.

Mihail N Kolountzakis, Gary L Miller, Richard Peng, and Charalampos E

Tsourakakis. Efficient triangle counting in large graphs via degree-based

vertex partitioning. In Algorithms and Models for the Web-Graph, pages

15-24. Springer, 2010.

[KMSS12I Daniel M Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. Count-

ing arbitrary subgraphs in data streams. In Automata, Languages, and

Programming, pages 598-609. Springer, 2012.

[LKC99I Ju-Hong Lee, Deok-Hwan Kim, and Chin-Wan Chung. Multi-dimensional

selectivity estimation using compressed histogram information. In ACM

SIGMOD Record, volume 28, pages 205-214. ACM, 1999.

[MHK+07]

[MMPS1 11

Volker Markl, Peter J Haas, Marcel Kutsch, Nimrod Megiddo, Utkarsh

Srivastava, and Tam Minh Tran. Consistent selectivity estimation via

maximum entropy. The VLDB journal, 16(1):55-76, 2007.

Madhusudan Manjunath, Kurt Mehlhorn, Konstantinos Panagiotou, and

He Sun. Approximate counting of cycles in streams. In Algorithms-ESA

2011, pages 677-688. Springer, 2011.

[MPX07 Rajeev Motwani, Rina Panigrahy, and Ying Xu. Estimating sum by

weighted sampling. In Automata, Languages and Programming, pages

53-64. Springer, 2007.

41

IMR10I Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms.

Chapman & Hall/CRC, 2010.

[MSOI+02] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri

Chklovskii, and Uri Alon. Network motifs: simple building blocks of

complex networks. Science, 298(5594):824-827, 2002.

[NO08J Huy N Nguyen and Krzysztof Onak. Constant-time approximation al-

gorithms via local improvements. In Foundations of Computer Science,

2008. FOCS'08. IEEE 49th Annual IEEE Symposium on, pages 327-336.

IEEE, 2008.

[ORRR12I Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. A

near-optimal sublinear-time algorithm for approximating the minimum

vertex cover size. In Proceedings of the Twenty-Third Annual ACM-SIAM

Symposium on Discrete Algorithms, pages 1123-1131. SIAM, 2012.

IPCJ04] N Przulj, Derek G Corneil, and Igor Jurisica. Modeling interactome:

scale-free or geometric? Bioinformatics, 20(18):3508-3515, 2004.

[P197] Viswanath Poosala and Yannis E loannidis. Selectivity estimation with-

out the attribute value independence assumption. In VLDB, volume 97,

pages 486-495, 1997.

[PR07I Michal Parnas and Dana Ron. Approximating the minimum vertex cover

in sublinear time and a connection to distributed algorithms. Theoretical

Computer Science, 381(1):183-196, 2007.

[Ses151 C Seshadhri. A simpler sublinear algorithm for approximating the triangle

count. arXiv preprint arXiv:1505.01927, 2015.

[SIKS06I Jacob Scott, Trey Ideker, Richard M Karp, and Roded Sharan. Effi-

cient algorithms for detecting signaling pathways in protein interaction

networks. Journal of Computational Biology, 13(2):133-144, 2006.

42

[SS941 Arun Swami and K Bernhard Schiefer. On the estimation of join result

sizes. Springer, 1994.

[SSRS06I Tomer Shlomi, Daniel Segal, Eytan Ruppin, and Roded Sharan. Qpath:

a method for querying pathways in a protein-protein interaction network.

BMC bioinformatics, 7(1):199, 2006.

[VW09I Virginia Vassilevska and Ryan Williams. Finding, minimizing, and count-

ing weighted subgraphs. In Proceedings of the forty-first annual ACM

symposium on Theory of computing, pages 455-464. ACM, 2009.

[Wer06I Sebastian Wernicke. Efficient detection of network motifs. IEEE/ACM

Transactions on Computational Biology and Bioinformatics (TCBB),

3(4):347-359, 2006.

[Wil09] Ryan Williams. Finding paths of length k in o * (2k) time. Information

Processing Letters, 109(6):315-318, 2009.

[YYI09] Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. An improved constant-

time approximation algorithm for maximum. In Proceedings of the 41st

annual A CM symposium on Theory of computing, pages 225-234. ACM,

2009.

43

44

Appendix A

Useful Inequalities

This section provides standard equalities that we use throughout our paper. These

inequalities exist in many variations, but here we only present the formulations which

are most convenient for our purposes.

Theorem A.0.1 (Chebyshev's Inequality) For any random variable X and a > 0,

Var[X]
P[IX - E[X|| > a] a 2

Theorem A.0.2 (Markov's Inequality) For any non-negative random variable X and

a > 0,

P[X > a] < .
a

Theorem A.0.3 (Chernoff Bound) Let X 1, , X,, be independent Poisson random

variables such that P[Xi = 1] = p for all i E [n], and let X = En 1 Xi. Then for

any 0 < 6 < 1,

P[X > (1 + 6)p] < e-

Theorem A.0.4 (Jensen's Inequality) For any real convex function f with x1 ,.- ,x

in its domain,

f (Xi) ;>nf (i)

45

46

Appendix B

Proof of Lemma 3.1.1

Lemma 3.1.1 For 0 < f < 1/2, with probability at least 2/3:

1. If 'Sp < Sp 6Sp, then Algorithm 1 outputs Y such that (1 - E)SP & Y K

(1 +)S;

moreover, if S, < 5, then Y > (1 - e)Sp.

2. If Sp > 6Sp, then Algorithm 1 outputs Y such that Y < ! <(1-

Proof: Let us first consider the first item. Since Var[Y] E[Y 2], we will focus on

establishing an upper bound of E[Y 2]. We compute

E[Y2] =E
veV

deg(v)
2m

2m deg(v) 2

deg(v) p)
= 2mZ

vV

d (deg(v)) 2

deg(v) p

= 2mS2-1/pp< 2m deg(v) 2-1/p

vV)

where the first inequality holds because (deg(v))P > (deg(v)). Rearranging the terms,

we have the following relationship:

E[Y 2]
S2

2m

-- 1/

47

(y 2-1/p

< 2m _., (deg(v))
VGV p

Now let us consider our average Y. Since Y are identically distributed, we have

k k~ Var[Y] =Var Y = Var Y] Var [YJ E E[Y2.
I =1 I . i= .

By Chebyshev's inequality (Theorem A.0.1), we have

Var[Y] 1 2m
Pr[IY - E[Y]j ;> cSp] - -5 k

f2S2 -k pC2SP

In order to achieve the desired value V such that (1 - c)S Y < (1+ c)Sp with error

probability 1/3, it is sufficient to take 6m /pc 2S1/P samples. Recall the assumption

that P satisfying !Sp < p 6Sp. Thus, the number of required samples to achieve

such bound with probability 1/3 is

k =36mk 2 '/P

For the second item, we apply Markov's Inequality (Theorem A.0.2) to the given

condition to obtain

~ E [_] Sp _ g _ I

2 > - ! ~ = Sp 3 2 2. - 2 S 5

implying the desired success probability.

Lastly, we substitute E < 1/2 to obtain the relationship between Y and (1 - c),,

which establishes the condition for deciding whether the given S, is much larger than

SP, as desired. M

48

Appendix C

Proof of Lower Bounds for

Undirected Graphs with Sp > n

In this chapter, we provide the proof of lower bounds claimed in section 4.2. Firstly, to

properly describe the adjacency list representation of the input graphs, we introduce

the notion of graph representation. Next, we state a main lemma (Lemma C.2.1)

that establishes the constraints of parameters ni, di, n2, d2 that allows us to create

hard instances. We then move on to describe our constructions, including both the

distribution for applying Yao's principle, and the implementation of the oracle for

answering random edge queries. We prove our main lemma for our construction,

and lastly, we give the appropriate parameters that complete the proof of our lower

bounds.

C.1 Graph Representations

Consider the following representation L of an adjacency list for an undirected graph

G. Let us say that each vertex vi has deg(vi) ports numbered 1, . . . , deg(v) attached,

where the jth port of vertex vi is identify as a pair (i, j), which is used as an index

for L. L imposes a perfect matching between these ports; namely, L(i i ,ji) = (i2 ,J 2)

indicates that ports (ii,ji) and (i2 ,j2) are matched to each other, and this implies

L(-2, 12) = (i1 , J,) as well. We use L to define the adjacency list of our graph; that is,

49

if L(ii, ji) = (i 2 , j 2) then the jih neighbor of vi, is vi2 (and vice versa). Note that there

can be many such representations of G, and some perfect matchings between ports

may yield graphs parallel edges or self-loops. Furthermore, each edge e is associated

with a unique pair of matched cells.

C.2 Main Lemma

Our proof proceeds in two steps. First, we show the following lemma that applies to

certain parameters of graphs.

Lemma C.2.1 Let n 1 , d1, n2 , d2 be positive parameters satisfying the following prop-

erties: d1 and n2 are even, n2 < d 1 2d2 and d1 + 2d2 <in1 . Let n = n1 + n2 , and

define the following two families of graphs on n vertices:

* JF1: all graphs containing n1 vertices of degree d1 and n2 isolated vertices;

* F2 : all graphs containing n1 vertices of degree d1 and n2 vertices of degree d2 -

Let r = (di+d2)n2 and q = o(1/r). Then, there exists a distribution D of representa-d i

tions of graphs from 1 U F2 such that for any deterministic algorithm A that makes

at most q total neighbor queries, degree queries and random edge queries, on the graph

representation randomly drawn from D, A cannot correctly identify whether the given

representation is of a graph from F1 or F2 with probability at least 2/3.

By applying Yao's principle, the following corollary is implied.

Corollary C.2.2 Let ni1 , d1, in 2 , d2 be parameters satisfying the properties specified in

Lemma C.2.1. Let s = n1 (') and s2 = ni (d) +n 2 (d2). If si = e(f(n, p)) and S2 >

c - si for some constant c > 1, then any (randomized) algorithm for approximating Sp

to a multiplicative factor via neighbor queries, degree queries and random edge queries

with probability of success at least 2/3 requires Q(q) queries for S, = 0(f(n,p)).

As a second step, we propose a few sets of parameters for different ranges of Sp.

Applying Corollary C.2.2, this yields lower bounds for the remaining ranges of Sp.

50

1 2 3 4 5 6 ...

i+

Figure C-1: first few columns of L1

C.3 Our Constructions

C.3.1 Construction of E

We prove this lemma by explicitly constructing the distribution.

Construction of graph representations for -1. We now define the representation

L1 for the graph G1 E F1 as follows. We let v 1, ... , v,,, be the vertices with degree di.

Let us refer to the jth pair of consecutive columns (with indices 2j - 1 and 2j) as the

jth slab. Then, in the jth slab, we match each cell on the left column with the cell at

distance j below on the right column. Figure C-1 illustrates the matching of cells in

the first few columns of L 1. More formally, for each integer i E [In 1] and j E [di/2],

we match the cells (i, 2j - 1) and (i + j mod ni1, 2j) in L 1 .

Since d, is even, this construction fills the entire table of L 1 . We wish to claim

that we do not create any parallel edges with this construction. Clearly, this is true

within a slab. For different slabs, recall that we map cells in the jth slab with those at

vertical distance j away. Thus, it suffices to note that no pair of slabs uses the same

distance mod ni1. Equivalently, we can note that as the maximum distance is di/2

and d1/2 < n1 /2 by our assumption, the set of distances {j, n, - j} for j E [dl/2] are

all disjoint. That is, our construction creates no parallel edges or self-loops.

Construction of graph representations for F2 . Next, for each integer x E [1l

and y E [d/2], we define a graph G2'" with corresponding representation Lx'Y by

modifying L, as follows. First, recall that we need to add neighbors to the previously

51

(x, 2y - 1)

_ (x, 2y - 1)

1n d2

2n 2

t t
n2 n2

d2

L7 (a) Lx'Y (b)

Figure C-2: Comparison between tables L1 and L2 . L"'Y (a) and (b) show two different
possibilities for L'" depending on the values of x and y.

isolated vertices v.1Hi, ... ,vn. These neighbors are represented as a table of size

n2 x d2 in Lx'y; in Figure C-2, it is represented as the green rectangle in Figure Lx'2

(a) which is not present in L1 . We match the cells in this new table to a subtable of

size d 2 x n2 , which is shown as the yellow rectangle in Figure Lx'Y (a). The top-left

cell of this subtable corresponds to the index (x, 2y - 1) in Lx'y, and note that if

x + d2 > ni or 2y + n2 > di, this subtable may wrap around as shown in Figure Lx'Y

(b). Since n2 < di and d 2 < ni, the dimensions of this yellow rectangle does not

exceed the original table in L1 .

Now we explain how we miatch the cells. Between the yellow and green subtables,

we iap then in a transposed fashion. That is, the cell with index (i, j) (relative to

the green table) is mapped to the yellow cell with index (j, i) (relative to the yellow

subtable), as shown in Figure C-3 (a). This method guarantees that no two rows

contain two pair of matched cells between them. As a result, we do not create any

parallel edges or self-loops.

As we place tile yellow subtable, sorme edges originally in L1 may now have only

one endpoint in the yellow subtable. We refer to the cells in the table that correspond

to such edges as U'nmatchcd. Since r12 is even and we set our offset to (X, 2y - 1),

then every slab either does not overlap with the yellow subtable, or overlaps in the

52

- di/2

(a) (b)

Figure C-3: matchings in L"'

exact same rows for both columns of the slab. Thus, the only edges that have one

endpoint in the yellow subtable are those that go from a cell above it to one in it.

Roughly speaking, we still map the cells in the sairie way but ignore the distance it

takes to skip over the yellow subtable. More formally, in the Jth slab, we pair each

unmatched cell from the left and right respectively that are at vertical distance j+d2

away (instead of j), as shown with the red edges in Figure C-3 (b).

Now the set of distaiices between the cells corresponding to an edge in the jth slab

are {j, J+ d2 , ni - j, ni - (j+ d2)}, since distances cani be measured both by going

down and by going up amid looping around. From our assumption, d 1/2 < d2 and

di/2 + d2 < ni/2, and thus nto distance is shared by iultiple slabs, and thius there

are no parallel edges or self-loops.

Permutation of graph representations. Let 7 be a permutation over [n].' Giveii

a graph representation L, we define T(L) as a new presentation of the same underlying

graph, such that the iiidices of the vertices are permuted according to -r. We mmay

coiisider this operation as an interface to tile original oracle. Narmiely, aiiy query made

on a vertex index i is translated into a query for index wr(j) to the original oracle. If

a vertex idex j is an answer from the oracle, then we returi ir- (j) instead.

The distribution D. Let S, denote the set of all n! permutations over [n}. We

define D foriially as follows: for any permutation 7 C S,, the representation wT(LI)

'A permutation 7r over [n] is a bijection 7r : [n] - [n].

53

corresponding to G, is drawn from D with probability 1/(2n!), and each represen-

tation 7r(LX'") corresponding to Gx'" is drawn with probability 1/(nidin!) for every

(x, y) c [ni x [d 1/2]. In other words, to draw a random instance from V, we flip an

unbiased coin to choose between families _J and _72. We obtain a representation L1

if we choose F; otherwise we pick a random representation L"'Y for T2. Lastly, we

apply a random permutation 7r to such representation.

C.3.2 Answering Random Edge Queries

Notice that Yao's principle allows us to remove randomness used by the algorithm,

but the randomness of the oracle remains for the random edge queries. For any

representation we draw from D, the oracle must return an edge uniformly at random

for each random edge query. Nonetheless, we may choose our own implementation

of the oracle as long as this condition is ensured. We apply a coupling argument

that imposes dependencies between the behaviors of our oracle between when the

underlying graph is from Fi or T2. Let mi = dini/2 and m 2 = (dini + d2n2)/2

denote the number of edges of graphs from T1 and F2, respectively.

Our oracle works differently depending on which family the graph comes from.

The following describes the behavior of our oracle for a single query, and note that

all queries should be evaluated independently.

Query to Ll. We simply return an edge chosen uniformly at random. That is, we

pick a random matched pair of cells in L1 , and return the vertices corresponding to

the rows of those cells.

Query to L". Let mp'y denote the number of edges shared by both Ll and L"

With probability mp'/m2 , we return the same edge we choose for L1. Otherwise, we

return an edge chosen uniformly at random from the set of edges in L"'Y but not in

L1.

Our oracle clearly returns an edge chosen uniformly at random from the corre-

sponding representation. The benefit of using this coupling oracle is that we increase

the probability that the same edge is returned to mp'Y/m 2 . By our construction, the

cells in L1 that are modified to obtain Li'Y are fully contained within the subtable of

54

size (d1 + d2)n2 obtained by extending the yellow subtable to include di/2 more rows

above and below. mg'y > (din, - (d1 + d2)n2)/2. Thus, our oracle may only return a

different edge with probability

1 mn' d1 n1 - (d1 + d2)n2 d1n21- = 1- =. KT.
M2 din, + d2 n2 din, + d2n2

C.4 Proof of Lemma C.2.1

Recall that we consider a deterministic algorithm A that makes at most q = o(1/r)

queries. We may describe the behavior between A and the oracle with its query-

answer history. Notice that since A is deterministic, if every answer that A receives

from the oracle is the same, then A must return the same answer, regardless of

the underlying graph. Our general approach is to show that for most permutations

7r, running A with instance 7r(Li) will result in the same query-answer history as

running with 7r(Lx'y) for most random parameters 7r and (x, y). If these histories are

equivalent, then A may answer correctly for only roughLy half of the distribution.

Throughout this chapter, we refer to our indices before applying 7r to the represen-

tation. We bound the probability that the query-answer histories are different using

an inductive argument as follows. Suppose that at some point during the execution

of A, the history only contains vertices of indices from [n1], and all cells in the history

are matched in the same way in both L1 and Lx'y. This inductive hypothesis restricts

the possible parameters w and (x, y) to those that yield same history up to this point.

We now consider the probability that the next query-answer pair differs, and aim to

bound this probability by 0(r).

Firstly, we consider a degree query. By our hypothesis, for a vertex of index

outside [ni] to be queried, A must specify a vertex it has not chosen before. Notice

that A may learn about up to 2 vertices from each query-answer pair, so at least n -2q

vertices have never appeared in the history. Since we pick a random permutation -r

for our construction, the probability that the queried vertex has index outside [ni] is

n2/(n - 2q). As r > n2/ni > 1/ni, we have q = o(ni) and our probability simplifies

55

to at most

n - 2q (ni + n2) - 2. o(ni) - 1 (I - o(l))

Next, we consider a neighbor query. From the argument above, with probability

1 - O(r), the queried vertex given by A has an index from [n1]. Similarly, A may

learn about up to 2 cells from each query-answer pair. Notice that there are (d1 +

d2)n2 different possible (x, y) for which each of these cells could be located in the

yellow subtable or the two (d 1/2) x n2 strips above and below it. As a result, out of

di n, - ((d1 + d2)n2)q remaining possible locations for the yellow subtable, the queried

cell and the corresponding answer may be in at most 2(d1 + d2)n2 of them. As (x, y)

is randomly chosen, the probability that this next query-answer pair is different is at

most
2(di + d2)n2 2r 2.

din, - ((d, + d2)n2)q 1 - rq 1 - o(1)

Lastly, we consider a random edge query. From the construction in subsec-

tion C.3.2 above, the probability that the returned random edge differs is O(r),

regardless of the parameters.

From this inductive argument, the probability that the history differs at each step

is at most O(r). As A only make q queries, the probability that the history differs

is at most q - O(r) = o(1). Thus with probability 1 - o(1), it is impossible for A

to distinguish whether the underlying graph is from T1 or F2 . Since each family is

included in D with probability density 1/2, as A is deterministic, the answer given by

A for these cases is correct for only half of them. Thus, the probability of A correctly

distinguish between the two graph families is only 1 - !(1 - o(1)) = + + o(1), as

required.

C.5 Establishing Lower Bounds

Now we propose the feasible asymptotic parameters according to Lemma C.2.1 and

Lemma C.2.2 in order to establish our lower bounds through the following claim.

56

Claim C.5.1 There exists parameters n1 , d1 , n2 , d2 satisfying the properties specified

in Lemma C.2.1, yielding values s 1 , s 2 satisfying the properties in Lemma C.2.2, for

each of the following cases:

1. ni = E(n), di = E((s/n)'/P), n2 = E(1), d2 = E(s1/P) for f(n, p) = O(nP)

2. ni = E(n), di = E((s/n)1/P), n2 = e(s/nP), d2 = e(n) for f(n, p) =(nP)

We omit the proof of this claim; our proof only requires straightforward calcula-

tion, and a very similar analysis can be found in [GRS11I. By computing the value r

for each case and applying Lemma C.2.2, we obtain Theorem 4.2.1 and Theorem 4.2.2,

respectively.

C.6 Extension to Directed Graphs

In this section, we extend our model to the directed case. Firstly, we formally give the

specification of this new model. Since most of the specification from the undirected

graph model given in Section 2 still applies to the directed case, we only explain the

differences between these models. We assume separate adjacency lists for in-neighbors

and out-neighbors, allowing for a neighbor about either type of neighbor. Similarly,

a degree query may ask for either of the in-degree or the out-degree. Random edge

queries now return directed edges (u, v); the algorithm knows both the endpoints

and the direction. We focus on the simplest case of stars with mixed directions:

approximately counting the number of paths of length two.

Notice the number of stars where all edges point inward or outward can be com-

puted easily by modifying the weighted vertex sampling to sample using in-degree or

out-degree respectively and then applying the algorithm from Section 3. This works

because the numbers of such stars only depend on the in-degrees and the out-degrees,

respectively. Thus, we turn to the problem of counting directed paths of length two

as the next simplest case.

57

C.6.1 Lower Bound

By constructing hard instances similar to those of Lemma 4.1, we obtain a lower

bound of Q(n). More formally, letting L(G) denote the number of paths of length

two in the directed graph G, we prove the following theorem.

Theorem C.6.1 Any (randomized) algorithm for approximating L(G) to a multi-

plicative factor via neighbor queries, degree queries and random edge queries requires

Q(n) total number of queries. In particular, this number of queries is necessary to

distinguish the case where L(G) = 0 and the case where L(G) = n with probability

2/3.

Proof: Without loss of generality, we assume n is even. Now, we partition the vertex

set V into S and T such that ISI = ITI = n/2. Let g1 be the family of graphs that

contains only G1, the complete bipartite graph where every vertex in S has an edge

pointing to every vertex in T. Let g 2 be the family of graphs G(t,,) constructed by

taking the graph from g1 and adding one extra back edge (t, s) E T x S. Notice that

there can be many adjacency list representations of each graph, and this affect the

answers to neighbor queries. We associate each possible adjacency list representation

to each graph, and include all possible such representations in the family.

Clearly, L(G 1) = 0, whereas L(G(t,,)) = n for every G(t,,) E g2. For any algorithm

to distinguish between g1 and G2 , when given a graph G(t,,) from g 2 , it must be able

to detect the vertex s or t, the endpoints of the extra edge, with probability at least

2/3. Otherwise, if neither s nor t is discovered, the subgraph induced by vertices that

the algorithm sees from both families would be exactly the same. The probability

of sampling vertices s or t from a vertex sampling, as well as their incident edges

from an edge sampling, is 0(1/n). Similarly, in order to reach s or t from one of

their neighbors, the algorithm must provide the index of s or t in order to make

such neighbor query, which may only succeed with probability O(1/n). Thus, q(n)

samples are required in order to find s or t with probability 2/3, which establishes

our lower bound. U

58

C.6.2 Upper Bound

For each v E V, define 1(v) = deg- (v) -deg+ (v), which represents the number of length

two paths whose middle vertex is v. Thus the number of paths of length two, which

we aim to approximate, can be written as L = EVV l(v). Notice that 2n degree

queries suffice for exactly computing the number of such paths, already matching the

lower bound. We explore this problem further by making an assumption in attempt

to obtain an algorithm that requires o(n) queries. To this end, we restrict to direct

graphs such that there exists a bound on the ratio of in-degree to out-degree. More

specifically, we assume that there exists a value r > 1 such that 1 deg (v) < r
_ r - de-g +(v)

limiting the ratio between the in-degree and the out-degree of any vertex in G.

Under this additional assumption, we obtain a sublinear time algorithm by re-

duction to what is essentially the undirected case. Our approach is to modify the

weighted vertex sampling process via rejection sampling so that the probability of

sampling a vertex v becomes proportional to V(v), bringing the sampling probabil-

ity of each vertex closer to the number of paths centered at that vertex by the rejection

sampling method. Then we use Algorithm 2 to approximate E, t(V-)) 2 , which

requires some modification to the algorithm, explained later. First, we explain the

details of our rejection sampling method.

Claim C.6.2 In the directed graph model, given weighted vertex sampling and de-

gree queries, we may generate a random vertex such that each vertex v is returned

with probability VI(v) I:,/E V l(v') by making O(r) queries in expectation given the

aforementioned assumption.

Proof: We draw a random edge sample (u, v), and query for u's in-degree and out-

degree. We return u with probability .d (Otherwise, discard u and repeat

the process.

Each vertex u is chosen from a random edge sampling is proportional. to its in-

degree, deg- (u). We only keep u with probability d , so the probability that

any vertex u is actually returned is proportional to deg+(u) - = (u), asVdeg+ (u) ,a

59

desired. Since d Kr we have that < ') K 1. Thus, O(r) queriesdesired.+Sinc- < r - V deg+ (v)

are required to generate one such sample. U

Define L' = EV 1(v). We now have a method to sample a vertex v with

probability l(v)/L' by increasing the time or query complexities only asymptotically

by a factor of r. Now we make the following changes to Algorithm 1 so that it

approximates L. First, the algorithm should draw random vertices from the new

distribution given above. Second, we redefine X = 1(v) and Y =XL' = 1(v) -L',

so that E[Y] = L. Note that the value L' can be approximated via essentially the same

method as in Section 3.3.1. The proof of the variance bound (Lemma 3.1.1) can be

subsequently modified to obtain Var[Y] = O(V/-L 2). (This is essentially the problem

of approximating the second frequency moment: see [AMS96 for more details.) That

is, O(Vf) samples from this new distribution, or equivalently O(rj'ni) queries, suffice

to obtain a (1 c)-approximation of L. This concludes the proof of the following

theorem.

Theorem C.6.3 Assuming there exists some value r such that 1 < deg(v) < r forr - eg,(vM -

every v E V in the directed graph G, then there exists an algorithm that, using degree

queries and random edge queries, computes a (1 k c)-approximation of the number of

paths of length two in G with success probability 2/3 using O(rV'fi) queries.

Corollary C.6.4 Assuming that the ratio between the in-degree and the out-degree

of every vertex in the directed graph G is bounded above and below by a constant,

then there exists an algorithm that, using degree queries and random edge queries,

computes a (1 E)-approximation of the number of paths of length two in G with

success probability 2/3 using O(v/) queries.

60

