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Abstract This work presents a general theory for the construction of a poly-
hedral outer approximation of the reachable set (“polyhedral bounds”) of a
dynamic system subject to time-varying inputs and uncertain initial condi-
tions. This theory is inspired by the efficient methods for the construction of
interval bounds based on comparison theorems. A numerically implementable
instance of this theory leads to an auxiliary system of differential equations
which can be solved with standard numerical integration methods. Meanwhile,
the use of polyhedra provides greater flexibility in defining tight enclosures on
the reachable set. These advantages are demonstrated with a few examples,
which show that tight bounds can be efficiently computed for general, non-
linear systems. Further, it is demonstrated that the ability to use polyhedra
provides a means to meaningfully distinguish between time-varying and con-
stant, but uncertain, inputs.
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1 Introduction

This work considers estimating the reachable set of the initial value problem
(IVP) in ordinary differential equations (ODEs)

ẋ(t,u) = f(t,u(t),x(t,u)),

where the initial condition is in some known set and the inputs u vary in some
known set (see Section 2 for notation and a formal problem statement). The
time-varying inputs u can model noise, disturbances, or control inputs; esti-
mating the reachable set in these cases is critical to robust model predictive
control (MPC) [2], fault detection [26] and global optimization of dynamic sys-
tems [43]. This work will focus on the construction of a time-varying (convex)
polyhedral enclosure of the reachable set. Specifically, given a matrix A, an
auxiliary initial value problem in ordinary differential equations is constructed
whose solution yields the function b, such that the set {z : Az ≤ b(t)} contains
the values of the solutions of the dynamic system at all times t.

The major contribution of this work is as follows. First, the construction
of the auxiliary system of bounding equations closely resembles the bounding
method in [39] which produces interval bounds (i.e., component-wise upper and
lower bounds) very quickly. The work in [39] is itself an extension of differential
inequality-based comparison theorems in, for instance, [14]. The extension of
these comparison theorems to the construction of polyhedral bounds is a signif-
icant improvement, allowing bounds with the increased flexibility of polyhedra
(as opposed to intervals) to be calculated with powerful and efficient methods
for numerical integration. The new theory in this work essentially permits the
extension of the interval bounding methods in [16,17] to the construction of
polyhedral bounds. Although this extension is fairly straightforward once the
theory is established, the subsequent analysis of the new algorithms to ensure
that they remain numerically well behaved is nontrivial.

The general concept of previous implementations of polyhedron-based bound-
ing methods, such as those in [1,6,8,13], is to “move” the faces of the approx-
imating polyhedra in accordance with the maximum value of the dynamics on
that face, which is similar to the theory in this work. However, these previ-
ous methods manually implement the time-stepping, which contrasts with the
proposed method, which takes advantage of established codes for numerical
integration, and thus benefits from their handling of step size to control errors
to a desired tolerance. The present work could be used to implement the step
forward in time in these previous methods; however, the work presented here
stands on its own as an effective method on the overall time scale of interest,
as demonstrated by the numerical experiments in Section 5. Further, these ex-
amples provide new insight into “intelligent” choices for the matrix A which
defines the polyhedral approximation.

Another significant contribution of this work is its ability to distinguish
meaningfully between time-varying inputs and constant, but unknown, param-
eters. This contrasts with the previous work involving comparison theorems,
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such as in [16,22,35,38,39]. As noted in [39], comparison theorems in gen-
eral take into account time-varying uncertainty, which can be an advantage
or disadvantage depending on one’s perspective or the model of interest. In
contrast, methods based on parametric Taylor-models, such as in [5,25], in-
trinsically handle constant, but uncertain parameter inputs. Since the present
work is inspired by comparison theorems, it is natural that it should be able to
handle time-varying uncertainty. But the use of polyhedra allows one to propa-
gate affine relaxations of the states with respect to the parameters by treating
the unknown parameters as extra states, but with time derivatives equal to
zero. This explicitly enforces these uncertain inputs to be constant, and as
demonstrated by an example in Section 5.3, this leads to an improvement in
the bounds.

Other work that should be mentioned involves the computation of the
reachable set or an approximation of it through a level set that evolves in
time, such as in [31]. However, this involves the solution of a Hamilton-Jacobi-
type partial differential equation, and consequently is more computationally
demanding than the comparison theorem based methods, including this work.
This is noted in [19], in which the solution of matrix exponentials is favored
over the solution of partial differential equations to obtain a polyhedral ap-
proximation of the reachable set of a dynamic system. However, that work
only considers linear dependence on the inputs, and weakly nonlinear dynam-
ics. Meanwhile, work dealing with differential inclusions is also related [9,21].
In particular, the work in [21] is theoretically more alike to the proposed work
and has a numerical implementation that is based on validated or set-based
numerical integrators (as in [33]). This class of methods have proven to be
relevant numerical methods for calculating bounds.

The rest of this work is organized as follows. Section 2 gives notation and
a rigorous problem statement. Section 3 is split into two subsections. Sec-
tion 3.1 states and proves one of the main results of this work, Theorem 1.
This theorem is a general result stating conditions under which a polyhedral-
valued mapping is an enclosure of the reachable set. Section 3.2 provides a
specific instance of this theory in Corollary 2, which states that the solution
of an auxiliary initial value problem yields polyhedral bounds. This leads to
a numerically implementable method for constructing polyhedral bounds dis-
cussed in Section 4. One of the main goals of Section 4 is to establish that the
auxiliary problem satisfies basic assumptions to be amenable to solution with
general classes of numerical integration methods. Section 5 demonstrates a nu-
merical implementation of the proposed bounding method on a few examples.
Section 6 concludes with some final remarks.

2 Problem Statement

Notation that is used in this work includes lowercase bold letters for vectors
and uppercase bold letters for matrices. The transposes of a vector v and ma-
trix M are denoted vT and MT, respectively. The exception is that 0 may
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denote either a matrix or vector of zeros, but it should be clear from con-
text what the appropriate dimensions are. Similarly, I will denote the identity
matrix whose dimensions should be clear from context. Inequalities between
vectors hold componentwise. For v, w ∈ Rn such that v ≤ w, [v,w] denotes
an interval in Rn. A polyhedron is any subset of Rn that can be expressed as
{z ∈ Rn : Mz ≤ d}, for some matrix M ∈ Rm×n and vector d ∈ Rm (i.e., it
is the intersection of a finite number of closed halfspaces). Consequently, it is
clear that polyhedra are always closed, convex sets. The equivalence of norms
on Rn is used often; when a statement or result holds for any choice of norm,
it is denoted ‖·‖. In some cases, it is useful to reference a specific norm, in
which case it is subscripted; for instance, ‖·‖1 denotes the 1-norm. The dual of
a norm ‖·‖ is denoted ‖·‖∗. For n ∈ N and a set T ⊂ R, denote the Lebesgue
space L1(T,Rn) ≡ {(v : T → Rn) :

∫
T
|vi| < +∞,∀i}. That is, v ∈ L1(T,Rn)

if each component of v is in L1(T ). For sets X, Y , a mapping S from X to the
set of subsets of Y is denoted S : X ⇒ Y . In a metric space, a neighborhood
of a point x is denoted N(x) and refers to an open ball centered at x with
some nonzero radius. If this radius δ is important, it may be emphasized as a
subscript, e.g. Nδ(x).

The problem statement follows. Let nx, nu ∈ N, interval T = [t0, tf ] ⊂ R,
Dx ⊂ Rnx , and Du ⊂ Rnu be given. For U ⊂ Du, let the set of time-varying
inputs be

U =
{
u ∈ L1(T,Rnu) : u(t) ∈ U, a.e. t ∈ T

}
,

and let the set of possible initial conditions be X0 ⊂ Dx. Given f : T ×Du ×
Dx → Rnx , the problem of interest is the IVP in ODEs

ẋ(t,u) = f(t,u(t),x(t,u)), a.e. t ∈ T, x(t0,u) ∈ X0. (1)

For given u ∈ U , a solution is an absolutely continuous mapping x(·,u) : T →
Dx which satisfies (1). The goal of this work is to construct a polyhedral-
valued mapping B : T ⇒ Rnx such that for all u ∈ U and any solution x(·,u)
(if one exists for this u), x(t,u) ∈ B(t), for all t ∈ T . Specifically, given a
m ∈ N and a matrix A ∈ Rm×nx , the goal is to find b : T → Rm such that
B(t) = {z : Az ≤ b(t)}. This mapping B will be referred to as polyhedral
bounds, or just bounds.

Assumption 1 For any z ∈ Dx, there exists a neighborhood N(z) and α ∈
L1(T ) such that for almost every t ∈ T and every p ∈ U

‖f(t,p, z1)− f(t,p, z2)‖ ≤ α(t) ‖z1 − z2‖ ,

for every z1, z2 ∈ N(z) ∩Dx.

Assumption 1 is fairly critical to the following general theory. However,
it is not restrictive at all. It is related to standard assumptions that general
classes of numerical integration methods are applicable to the IVP (1). Further
discussion along these lines is in Section 4.2. Furthermore, under Assumption
1 the solutions of IVP (1) for a given u ∈ U and fixed initial condition are
unique; see Theorem 2 in Section 1 of [10].
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3 Bounding Theory

This section will give a general theorem for polyhedral bounds, which requires
a specific assumption, then discuss how to satisfy this assumption.

3.1 General theory

First, two results from the literature. The first can be found as Theorem 3.1
in [45].

Lemma 1 Let T ⊂ R be an interval. If a : T → R is absolutely continuous
and ȧ(t) ≤ 0 for a.e. t ∈ T , then a is nonincreasing.

The next result is Lemma 4 in [39].

Lemma 2 Let T ⊂ R be an interval. For any γ > 0 and β ∈ L1(T ), there
exists an absolutely continuous, nondecreasing function ρ : T → R satisfying
0 < ρ(t) ≤ γ, ∀t ∈ T , and ρ̇(t) > |β(t)| ρ(t) for a.e. t ∈ T .

The following Assumption and Theorem provide the heart of the general
bounding theory. The parallels between this theory and that in [39] should
be fairly clear, but to emphasize a major difference, the current theory han-
dles polyhedral bounds as opposed to intervals. However, before continuing,
it is useful to note a definition of the matrix A and mappings Mi required
in Assumption 2 which yield the classic interval-based comparison theorem-
type results in [14], for instance. This example provides an intuitive geometric
interpretation to keep in mind while understanding the general theory. Inter-
val bounds are obtained by letting m = 2nx and A = [−I I]T. Then for
i ∈ {1, . . . , nx}, let Mi(t,d) be the ith lower face of the interval {z : Az ≤ d}
(assuming it is nonempty). Similarly, for i ∈ {nx + 1, . . . , 2nx}, let Mi(t,d) be
the (i− nx)th upper face of the interval. One can check that these definitions
satisfy Assumption 2.

A major component of Assumption 2 is a Lipschitz condition for the general
set-valued mappings Mi. To allow flexibility and practical implementation, this
assumption also allows that this Lipschitz condition only holds on some domain
DM satisfying certain conditions. Section 3.2 focuses on concrete definitions
of Mi and DM that satisfy Assumption 2, which will provide the basis for
the following numerical developments. The reader may wish to consult the
discussion in Section 3.2 to gain more insight into the nature of DM and Mi.

Assumption 2 Considering the problem stated in Section 2, for some m ∈ N
and for i ∈ {1, . . . ,m}, let ai ∈ Rnx . Assume

A =

aT
1
...

aT
m

 ∈ Rm×nx ,

DM ⊂ T ×Rm, and Mi : DM ⇒ Rnx satisfy the following conditions for each
i ∈ {1, . . . ,m}:
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{z : Az ≤ b(t)}

ai

Mi(t,b(t))

sup{aT
i
f(t, z) : z ∈ Mi(t,b(t))} ≤ ḃ(t)

Fig. 1: Graphical representation of the basic idea of Theorem 1. In this case f
is independent of controls u. Note that Assumption 2 allows Mi to be a strict
subset of the ith face of the polyhedron if external information is available, if
a subset at all; see Figure 2 and Proposition 1.

1. For any d ∈ Rm, if there exists (t,u) ∈ T ×U such that Ax(t,u) ≤ d and
aT
i x(t,u) = di for some solution x(·,u) of IVP (1), then (t,d) ∈ DM and

x(t,u) ∈Mi(t,d).
2. For any (t,d) ∈ DM , there exists a neighborhood N(d) of d, t′ > t, and

LM > 0 such that for any (s,d1), (s,d2) ∈ ([t, t′) × N(d)) ∩ DM and
z1 ∈Mi(s,d1), there exists a z2 ∈Mi(s,d2) such that

‖z1 − z2‖ ≤ LM ‖d1 − d2‖1 .

The main theorem follows. The hypothesis of most interest in this theorem
is Hypothesis 4, which, for a practical implementation of this bounding the-
ory, requires the overestimation of the dynamics on certain values of the Mi

mappings. A conceptual representation of this hypothesis is given in Figure 1.

Theorem 1 Let Assumptions 1 and 2 hold. If

1. b : T → Rm is absolutely continuous and B : T 3 t 7→ {z : Az ≤ b(t)},
2. X0 ⊂ B(t0),
3. for almost every t ∈ T and each i ∈ {1, . . . ,m}, (t,b(t)) ∈ DM and

Mi(t,b(t)) ⊂ Dx,
4. for almost every t ∈ T and each i ∈ {1, . . . ,m},

aT
i f(t,p, z) ≤ ḃi(t), ∀(p, z) ∈ U ×Mi(t,b(t)),

then for all u ∈ U and any solution x(·,u) of IVP (1), x(t,u) ∈ B(t), for all
t ∈ T .
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Proof Fix u ∈ U . If no solution of IVP (1) exists for this u, then the conclu-
sion of the theorem holds trivially. Otherwise, choose some solution and for
convenience use the abbreviation x(t) ≡ x(t,u). Let Tv be the set of t ∈ T
such that aT

i x(t) > bi(t) for some i. For a contradiction, assume Tv 6= ∅.

Let t1 = inf Tv. By Hypothesis 2 and continuity, Ax(t1) ≤ b(t1) and
aT
i x(t1) = bi(t1) for some i. Note that by Condition 1 of Assumption 2, this

implies (t1,b(t1)) ∈ DM . Further we must have t1 < tf .

Next, let Nδ(x(t1)) and α ∈ L1(T ) satisfy Assumption 1 at the point x(t1).
Let Nε(b(t1)), t5 > t1, and LM > 0 satisfy Condition 2 of Assumption 2 at
(t1,b(t1)) for each i. By continuity, we can choose t4 ∈ (t1, t5] so that

‖x(t)− x(t1)‖ < δ/2, (2)

‖b(t)− b(t1)‖∞ < ε/2, (3)

for all t ∈ [t1, t4].

By definition of t1 as the infimum of Tv, there exists a t ∈ (t1, t4] such that
for some i, aT

i x(t) > bi(t) + γ for some γ > 0. Meanwhile, by Lemma 2, there
exists an absolutely continuous and nondecreasing ρ : [t1, t4]→ R satisfying

0 < ρ(t) ≤ min{γ, ε/2, δ/(2mLM )}, ∀t ∈ [t1, t4], (4)

ρ̇(t) > mLM max
i
{‖ai‖∗} |α(t)| ρ(t), a.e. t ∈ [t1, t4].

Similarly to t1, let t3 = inf{s ∈ [t1, t4] : ∃i : aT
i x(s) ≥ bi(s) + ρ(s)}. Since

ρ ≤ γ, we know that there exists a t ∈ (t1, t4] such that aT
i x(t) > bi(t) + ρ(t)

for some i. Thus, t3 is the infimum of a nonempty set. Since ρ(t1) > 0, Ax(t1) <
b(t1)+ρ(t1)1. Then, from continuity, we have t1 < t3 and Ax(t) < b(t)+ρ(t)1,
for all t ∈ [t1, t3). Further, aT

k x(t3) = bk(t3) + ρ(t3) for some k. If not, we
either have aT

i x(t3) < bi(t3) + ρ(t3) or aT
i x(t3) > bi(t3) + ρ(t3) for each i. If

aT
i x(t3) > bi(t3) + ρ(t3) holds for any i, continuity contradicts t3 as a lower

bound. Meanwhile, continuity then contradicts t3 as the greatest lower bound
if aT

i x(t3) < bi(t3) + ρ(t3) holds for all i.

Now let t2 = sup{s ∈ [t1, t3] : aT
k x(s) ≤ bk(s)}. By continuity, t2 < t3 and

aT
k x(t2) = bk(t2). The following has been established:

Ax(t) < b(t) + ρ(t)1, ∀t ∈ [t1, t3), (5a)

bk(t) < aT
k x(t) < bk(t) + ρ(t), ∀t ∈ (t2, t3), (5b)

aT
k x(t3) = bk(t3) + ρ(t3), (5c)

aT
k x(t2) = bk(t2). (5d)

Let b̃ be defined componentwise by b̃i : t 7→ max{aT
i x(t), bi(t)}. Then, for

any t ∈ [t2, t3], Ax(t) ≤ b̃(t), and aT
k x(t) = b̃k(t). Consequently, by Condi-

tion 1 of Assumption 2, (t, b̃(t)) ∈ DM and x(t) ∈Mk(t, b̃(t)) for all t ∈ [t2, t3].

By (5a),
∥∥∥b̃(t)− b(t)

∥∥∥
∞
≤ ρ(t), so using the triangle inequality, Inequality (3),
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and Inequality (4),

∥∥∥b̃(t)− b(t1)
∥∥∥
∞
≤
∥∥∥b̃(t)− b(t)

∥∥∥
∞

+ ‖b(t)− b(t1)‖∞
< ε/2 + ε/2.

Thus, b̃(t) and b(t) are in Nε(b(t1)) for t ∈ [t2, t3]. And by Hypothesis 3,
(t,b(t)) ∈ DM for a.e. t ∈ [t2, t3]. So by Condition 2 of Assumption 2, there
exists zk(t) ∈Mk(t,b(t)) such that

‖x(t)− zk(t)‖ ≤ LM
∥∥∥b̃(t)− b(t)

∥∥∥
1
≤ mLMρ(t) ≤ δ/2 (6)

for a.e. t ∈ [t2, t3]. Combining this with the triangle inequality and Inequal-
ity (2),

‖zk(t)− x(t1)‖ ≤ ‖zk(t)− x(t)‖+ ‖x(t)− x(t1)‖ < δ.

Thus zk(t) ∈ Nδ(x(t1)) for a.e. t ∈ [t2, t3].

Then for a.e. t ∈ [t2, t3],

aT
k ẋ(t) = aT

k f(t,u(t),x(t))

= aT
k (f(t,u(t),x(t))− f(t,u(t), zk(t))) + aT

k f(t,u(t), zk(t))

≤ ‖ak‖∗ ‖f(t,u(t),x(t))− f(t,u(t), zk(t))‖+ ḃk(t),

where the last inequality follows from Hypothesis 4 since zk(t) ∈ Mk(t,b(t)).
By Assumption 1 and Inequality (6), this leads to

aT
k ẋ(t) ≤ ‖ak‖∗ |α(t)| ‖x(t)− zk(t)‖+ ḃk(t)

≤ ‖ak‖∗ |α(t)|mLMρ(t) + ḃk(t).

Using the properties of ρ, we have

aT
k ẋ(t)− ρ̇(t) ≤ ‖ak‖∗ |α(t)|mLMρ(t)− ρ̇(t) + ḃk(t)

< ḃk(t)

for a.e. t ∈ [t2, t3]. Thus aT
k x− ρ− bk is nonincreasing on [t2, t3] by Lemma 1;

that is

aT
k x(t2)− ρ(t2)− bk(t2) ≥ aT

k x(t3)− ρ(t3)− bk(t3).

But by (5), this means −ρ(t2) ≥ 0, which is a contradiction. ut
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3.2 Implementation

This section describes how to construct the mappings Mi such that they satisfy
Assumption 2 and lead to a numerically implementable bounding method.

The next result establishes “Lipschitz continuity” of the feasible sets, solu-
tion sets, and optimal objective value of certain parametric linear optimization
problems. This result is from the literature; see for instance Theorem 2.4 of
[28].

Lemma 3 Let m,n ∈ N. Let A ∈ Rm×n, b ∈ Rm, and c ∈ Rn. Consider the
linear program

q(b) = sup{cTz : Az ≤ b}.

Let P (b) = {z : Az ≤ b} (the feasible set), S(b) = {z ∈ P (b) : cTz = q(b)}
(the solution set), F = {b : P (b) 6= ∅}, and FS = {b : S(b) 6= ∅}. Then

1. there exists L > 0 such that for all b1,b2 ∈ F , for any z1 ∈ P (b1), there
exists a z2 ∈ P (b2) with

‖z1 − z2‖α ≤ L ‖b1 − b2‖β ,

2. there exists LS > 0 such that for all b1,b2 ∈ FS, for any z1 ∈ S(b1), there
exists a z2 ∈ S(b2) with

‖z1 − z2‖α ≤ LS ‖b1 − b2‖β ,

3. and q : FS → R is Lipschitz continuous,

for any choice of norms ‖·‖α, ‖·‖β.

It is now possible to state a specific instance of the mappings which satisfy
Assumption 2. Similar to the work in [37,39], these mappings allow one to use
a priori information about the solution set of (1) in the form of a polyhedral-
valued mapping G : T ⇒ Rnx for which it is known that x(t,u) ∈ G(t), for all
t ∈ T and u ∈ U for which a solution exists. Figure 2 illustrates the definition of
the Mi mappings given in Proposition 1. A valid definition of the Mi mapping
would be to let it take the value of the ith face of the bounds; however, if the a
priori information G(t) is available, it can be used to restrict the Mi mapping
to a subset of the face. Some care must be taken to define Mi sensibly when
G(t) does not intersect the ith face, or else somehow exclude this possibility
through the definition of DM . The specific conditions are formalized in the
following assumption and subsequent result. The bounding methods from [16,
17] are special cases by defining A to yield interval bounds and assuming that
G is constant-valued.

Assumption 3 For mg ∈ N, let AG ∈ Rmg×nx and bG : T → Rmg . Assume
that for all u ∈ U and any solution x(·,u) of IVP (1), AGx(t,u) ≤ bG(t), for
all t ∈ T .



10 Stuart M. Harwood, Paul I. Barton

z2

z1

aj

G(t)

{z : Az ≤ d}

b

Mj(t,d)

ai

Mi(t,d)

Fig. 2: Graphical representation of the definition of the Mi mappings which
use the a priori information G(t); see Proposition 1. Note that in this case,
the jth face does not intersect G(t), however Mj is still well-defined.

Proposition 1 Let Assumption 3 hold. For m ∈ N, let A ∈ Rm×nx . Let

PM : (t,d) 7→ {z : Az ≤ d,AGz ≤ bG(t)}. (7)

Then A,

DM = {(t,d) ∈ T × Rm : PM (t,d) 6= ∅} , and (8)

Mi : (t,d) 7→ arg max{aT
i z : Az ≤ d,AGz ≤ bG(t)}. (9)

satisfy Assumption 2.

Proof To see that Condition 1 of Assumption 2 holds, choose any i ∈ {1, . . . ,m},
d ∈ Rm, and (t,u) ∈ T × U such that Ax(t,u) ≤ d and aT

i x(t,u) = di. Since
AGx(t,u) ≤ bG(t), it holds that x(t,u) ∈ PM (t,d), and thus (t,d) ∈ DM .
Further, since aT

i x(t,u) = di, and any z such that aT
i z > di would be infeasible

in LP (9), we must have x(t,u) ∈Mi(t,d).
Next, note that if PM (t,d) is nonempty, then Mi(t,d) is nonempty for

all i (Mi(t,d) is the solution set of a linear program that must be feasible
and bounded). Then to see that Condition 2 of Assumption 2 holds, choose
any (s,d1), (s,d2) ∈ DM . By definition of DM and the previous observation,
Mi(s,dj) is nonempty for i ∈ {1, . . . ,m} and j ∈ {1, 2}. Applying Lemma 3,
we have that there exists a L > 0 and for each z1 ∈ Mi(s,d1), there exists a
z2 ∈Mi(s,d2) such that

‖z1 − z2‖ ≤ L ‖(d1,bG(s))− (d2,bG(s))‖1 = L ‖d1 − d2‖1 .

ut
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Since there is no explicit requirement in Assumption 2 thatMi be nonempty-
valued everywhere in DM , one may be tempted to enlarge DM and, for in-
stance, make the definitions

DM = T × Rm,
Mi : (t,d) 7→ arg max{aT

i z : Az ≤ d,AGz ≤ bG(t)},

rather than the definitions in Equations (8) and (9) above. The issue is that
the Lipschitz condition (Condition 2 of Assumption 2) may be violated.

For example, consider what the definitions above mean for interval bounds;
disregard the a priori information G (let G map to all of Rnx , for instance) and
let A = [−I I]T so that if d = (−v,w) we have {z : Az ≤ d} = [v,w]. For
d1 = (−v1,w1) with v1 ≤ w1 and v1,i = w1,i for some i, for all neighborhoods
of d1 there exists a d2 = (−v2,w2) in this neighborhood with v2,i > w2,i. It
follows that (for any t) Mi(t,d1) is nonempty while Mi(t,d2) is empty (in
fact, for all i, Mi(t,d2) is empty since these are the faces of the empty interval
[v2,w2]). It follows that Condition 2 of Assumption 2 cannot hold; there does
not exist any z2 ∈Mi(t,d2) to satisfy the required inequality.

The following corollary establishes a useful topological property of the set
DM as well as the fact that it is non-trivial.

Corollary 1 Let Assumption 3 hold. Assume that bG is continuous and that
IVP (1) has a solution for some u ∈ U . Then for any choice of matrix A, DM

defined in Equation (8) is nonempty and closed.

Proof Let P : (d1,d2) 7→ {z : Az ≤ d1,AGz ≤ d2}. Note that F = {(d1,d2) :
P (d1,d2) 6= ∅} is closed. This follows from Section 4.7 of [4]; the argument is
that F is the projection of the polyhedron {(z,d1,d2) : Az− d1 ≤ 0,AGz−
d2 ≤ 0} and thus a polyhedron as well, and so closed.

We note that P (d,bG(t)) is exactly PM (t,d) defined in Eqn. (7), and so
DM is the set of (t,d) such that (d,bG(t)) ∈ F . Since IVP (1) has a solution
for u ∈ U , there exists x(·,u) such that for each t ∈ T , x(t,u) is in P (d,bG(t)),
where d = Ax(t,u). Therefore F and DM are nonempty. Finally, note that
the mapping (t,d) 7→ (d,bG(t)) is continuous from T ×Rm to Rm+mg . Thus,
the preimage of F under this mapping must be closed relative to T ×Rm, and
it is clear that this preimage must be DM . And since T × Rm is closed, a set
which is closed relative to it must be closed relative to R× Rm. ut

There are other possible choices for the definitions of DM and the mappings
Mi. For instance, the procedure for “tightening” an interval based on a set of
linear constraints, given in Definition 4 of [39], provides a potential alternative.
However, if this procedure is used, Mi would be interval-valued. In general, this
interval would not be degenerate, and this loosely means that the dynamics
must be overestimated on a much larger set, leading to more conservative
bounds. In contrast, Mi in Proposition 1 takes the value of the face of a
polyhedron (and thus is also polyhedral-valued), and therefore it is always
a set in an affine subspace with a lower dimension. Thus, the dynamics are
overestimated on a smaller set, leading to tighter bounds.
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Further, in applications, the set of possible input values U is typically at
least polyhedral (and more often an interval). Consequently, one notes that in
practice, Hypothesis 4 of Theorem 1 requires that a linear combination of the
dynamics is overestimated on a polyhedron. This observation shapes the fol-
lowing result, which combines Theorem 1 and Proposition 1 to obtain a system
of differential equations; the solution of this system is b, the right-hand sides
of the polyhedral-valued bounds B : t 7→ {z : Az ≤ b(t)}. However, as noted,
Hypothesis 4 requires that the dynamics of this system of differential equa-
tions overestimate potentially nonlinear optimization problems. Consequently,
what is proposed in the following corollary is to solve parametric linear pro-
gramming relaxations of these problems instead, which overall leads to a much
more efficiently solved system. This forms the basis of the numerical method
of the next section. Comparing with previous work, one could also use interval
arithmetic to try to satisfy Hypothesis 4, similar to [38,39], however interval
arithmetic in general would not be able to take advantage of the fact that the
Mi mappings have values that are subsets of an affine subspace.

Corollary 2 Let Assumptions 1 and 3 hold. For m ∈ N and A ∈ Rm×nx

define DM and Mi, i ∈ {1, . . . ,m} as in Equations (8) and (9). For i ∈
{1, . . . ,m}, let the mappings ci ≡ (cui , c

x
i ) : DM → Rnu ×Rnx and hi : DM →

R be given. Assume the following:

1. For some mu ∈ N, there exist AU ∈ Rmu×nu and bU ∈ Rmu such that
U = {p : AUp ≤ bU} and is nonempty and compact.

2. For i ∈ {1, . . . ,m} and all (t,d) ∈ DM , Mi(t,d) is compact and a subset
of Dx.

3. For i ∈ {1, . . . ,m}, for each (t,d) ∈ DM ,

aT
i f(t,p, z) ≤ (cui (t,d))Tp+(cxi (t,d))Tz+hi(t,d), ∀(p, z) ∈ U×Mi(t,d).

4. The mapping q : DM → Rm is defined componentwise by

qi(t,d) = max
(p,z)

(cui (t,d))Tp + (cxi (t,d))Tz + hi(t,d) (10)

s.t.

AU 0
0 A
0 AG

[p
z

]
≤

 bU
d

bG(t)

 ,
aT
i z = max{aT

i y : Ay ≤ d,AGy ≤ bG(t)}.

5. The mapping b : T → Rm is any solution of the initial value problem in
ordinary differential equations

ḃ(t) = q(t,b(t)), a.e. t ∈ T, (11)

with initial conditions that satisfy X0 ⊂ {z : Az ≤ b(t0)}.

Then for all u ∈ U and any solution x(·,u) of IVP (1), Ax(t,u) ≤ b(t), for
all t ∈ T .
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Proof First, it is clear that the feasible set of the linear program (10) which
defines qi(t,d) is the nonempty compact set U × Mi(t,d). It follows that
qi(t,d) is well defined for each (t,d) ∈ DM . Next, by assumption, Assumption
1 is satisfied. Further, if DM and Mi are defined as in Equations (8) and
(9), then by Proposition 1, Assumption 2 is satisfied. Let b be any solution
of the IVP (11). Then it is clear that b must be absolutely continuous. Let
B : t 7→ {z : Az ≤ b(t)}. Then by the assumption on the initial conditions
of b, X0 ⊂ B(t0). Thus, the first two hypotheses of Theorem 1 are satisfied.
Further, if b is a solution of IVP (11), then (t,b(t)) ∈ DM for almost every
t ∈ T , since otherwise q would not be defined and Equation (11) could not be
satisfied almost every t ∈ T . Consequently, by Hypothesis 2, Hypothesis 3 of
Theorem 1 is satisfied. Finally, by assumption on ci and hi and construction
of the linear programming relaxation q, for all (t,d) ∈ DM

qi(t,d) ≥ sup{aT
i f(t,p, z) : (p, z) ∈ U ×Mi(t,d)}.

Therefore, b must satisfy ḃi(t) ≥ aT
i f(t,p, z), for all (p, z) ∈ U ×Mi(t,b(t)),

for each i ∈ {1, . . . ,m} and almost every t. Thus, all the assumptions and
hypotheses of Theorem 1 are satisfied and so B must bound all solutions of
IVP (1). ut

4 Numerical Implementation

The goals of this section are to state an algorithm to compute q defining
IVP (11), and in specific, a method to compute the affine relaxations (ci, hi)
required in Hypothesis 3 of Corollary 2. Furthermore, it is established that,
with these definitions, q satisfies an appropriate Lipschitz continuity condition
to ensure that IVP (11) is amenable to numerical solution.

4.1 Computing affine relaxations and the dynamics

To implement a bounding method based on Corollary 2, specific affine relax-
ations are needed. Affine relaxations (of certain classes of functions) on inter-
vals can be obtained in a number of ways; subgradients to convex and concave
relaxations [32] and first-order Taylor models [27] are two possibilities. How-
ever, in the next subsection, some specific parameterization properties of these
relaxations are required. To simplify the discussion, the following assumption is
made. Appendix A considers a way to construct affine relaxations on intervals
which satisfy Assumption 4. With this assumption, one only needs to calculate
an interval enclosure of Mi(t,d) to establish Hypothesis 3 of Corollary 2.

Assumption 4 Let DI
x = {(v,w) ∈ Rnx × Rnx : v ≤ w, [v,w] ⊂ Dx}. As-

sume that for each i ∈ {1, . . . ,m}, there exist continuous c̃i ≡ (c̃ui , c̃
x
i ) :

T × DI
x → Rnu × Rnx and continuous h̃i : T × DI

x → R such that for each
(v,w) ∈ DI

x and t ∈ T ,

aT
i f(t,p, z) ≤ (c̃ui (t,v,w))

T
p + (c̃xi (t,v,w))

T
z + h̃i(t,v,w),
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for all (p, z) ∈ U × [v,w]. Further, for all (v,w) ∈ DI
x, there exists a neigh-

borhood N i(v,w) and L̃i > 0 such that for all (t,v1,w1), (t,v2,w2) ∈ T ×
N i(v,w) ∩DI

x

‖c̃i(t,v1,w1)− c̃i(t,v2,w2)‖ ≤ L̃i ‖(v1,w1)− (v2,w2)‖ ,∣∣∣h̃i(t,v1,w1)− h̃i(t,v2,w2)
∣∣∣ ≤ L̃i ‖(v1,w1)− (v2,w2)‖ .

At this point, a specific algorithm for computing q defining the dynamics
in IVP (11) can be stated. See Algorithm 1. In Step 1 of Algorithm 1, an
interval enclosure of Mi(t,d) is given by [vi(t,d),wi(t,d)]. This step uses
the procedure for “tightening” an interval, given a set of linear constraints,
from Definition 4 in [39]. The essential operation is repeated in Algorithm 2;
this algorithm defines the operation It, which tightens an interval [v,w] by
excluding points which cannot satisfy a given linear constraint mTz ≤ d.
Specifically, the discussion in Section 5.2 of [39] establishes that the tightened
interval It(v,w, d; m) satisfies [v,w] ⊃ It(v,w, d; m) ⊃ {z ∈ [v,w] : mTz ≤
d}.

Thus, Algorithm 1 recursively applies the tightening operation It to some
interval enclosure of the overall polyhedron {z : Az ≤ d,AGz ≤ bG(t)}. In
the algorithm, this initial enclosure is taken as the interval hull. However, this
means that none of the constraints defining the overall polyhedron will result in
a reduction of the size of the interval when applying the tightening operation.
Thus, what should be noted is that the first inequality used in tightening is
the one unique to the definition of Mi(t,d): −aT

i z ≤ −b∗i (t,d). Intuitively,
using this constraint first results in the most significant reduction in the size
of the interval.

4.2 Lipschitz continuity of the dynamics

This section establishes a kind of Lipschitz continuity condition on q defined
in Algorithm 1. Theoretically, this condition ensures that if a solution exists,
then it must be unique; see Theorem 1.10 of Chapter II of [29] or Theorem 2 in
Section 1 of [10]. Further, a similar condition establishes that many numerical
integration methods, including Runge-Kutta and linear multistep methods,
are convergent for problem (11); see, for instance, Theorem 1.1 of Section 1.4
of [23], and Definition 1.6 of Section II.1 and the convergence analyses in
Section III.3 and Section VII.4 of [29]. It should be noted that the domain of
q defined in Algorithm 1 is DM . Unfortunately, this is not necessarily an open
set, which can often cause numerical issues [15]. However, in the experience of
the authors, the Lipschitz condition on q is sufficient for the successful solution
of IVP (11) with most numerical integration methods.

The following result helps establish this Lipschitz continuity condition. It
appears in various forms in the literature; see for instance Theorem 14 in [46]
and Proposition 3 in [16].
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Algorithm 1 Calculation of dynamics q of bounding IVP (11)

Require: (t,d) ∈ DM
Calculate b∗(t,d) by b∗i (t,d) = max{aT

i z : Az ≤ d,AGz ≤ bG(t)}.
Calculate [v∗(t,d),w∗(t,d)] by

v∗j (t,d) = min{zj : Az ≤ d,AGz ≤ bG(t)},

w∗j (t,d) = max{zj : Az ≤ d,AGz ≤ bG(t)}.

for i ∈ {1, . . . ,m} do
1. Calculate [vi(t,d),wi(t,d)] by the following:

(a) Set [v̂, ŵ] = [v∗(t,d),w∗(t,d)].
(b) Set [v̂, ŵ] = It(v̂, ŵ,−b∗i (t,d);−ai).
(c) For k ∈ {1, . . . ,m}, set [v̂, ŵ] = It(v̂, ŵ, b∗k(t,d);ak).
(d) For k ∈ {1, . . . ,mg}, set [v̂, ŵ] = It(v̂, ŵ, bG,k(t);aG,k).
(e) Set [vi(t,d),wi(t,d)] = [v̂, ŵ].

2. Calculate cui (t,d) = c̃ui (t,vi(t,d),wi(t,d)), cxi (t,d) = c̃xi (t,vi(t,d),wi(t,d)), and

hi(t,d) = h̃i(t,v
i(t,d),wi(t,d)) (See Assumption 4 and Appendix A).

3. Calculate

qi(t,d) = max
(p,z)

(cui (t,d))Tp + (cxi (t,d))Tz + hi(t,d)

s.t.

AU 0
0 A
0 AG

[p
z

]
≤

 bU
d

bG(t)

 ,
aT
i z = b∗i (t,d).

end for
return q(t,d)

Algorithm 2 Definition of the interval-tightening operator It

Require: m ∈ Rnx , d ∈ R, (v,w) ∈ Rnx × Rnx , v ≤ w
(v̂, ŵ)← (v,w)
for j ∈ {1, . . . , nx} do

if mj 6= 0 then

γ ← median
{
v̂j , ŵj , 1/mj

(
d+

∑
k 6=j max{−mk v̂k,−mkŵk}

)}
if mj > 0 then
ŵj ← γ

end if
if mj < 0 then
v̂j ← γ

end if
end if

end for
return It(v,w, d;m)← [v̂, ŵ]
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Lemma 4 Given m,n ∈ N and a matrix A ∈ Rm×n, let the polyhedron
P (d) = {z : Av ≤ d} for d ∈ Rm. Let F = {d : P (d) 6= ∅}. Assume
P (d) is bounded (i.e. compact) for all d ∈ F . Then q̂ : Rn×F → R defined by

q̂(c,d) = max{cTz : Az ≤ d}

is locally Lipschitz continuous.

The following lemma helps establish that the affine relaxations (ci, hi)
defined in Algorithm 1 have the appropriate continuity properties required in
Theorem 2 below.

Lemma 5 Let Assumptions 3 and 4 hold. For m ∈ N and A ∈ Rm×nx define
DM as in Equation (8). Assume the following:

1. bG is continuous on T .
2. For i ∈ {1, . . . ,m} and all (t,d) ∈ DM , vi, wi : DM → Rnx defined by

Step 1 in Algorithm 1 satisfy [vi(t,d),wi(t,d)] ⊂ Dx.
3. For i ∈ {1, . . . ,m}, define ci = (cui , c

x
i ) : DM → Rnu×Rnx and hi : DM →

R by Step 2 in Algorithm 1; i.e.

cui (t,d) = c̃ui (t,vi(t,d),wi(t,d)), cxi (t,d) = c̃xi (t,vi(t,d),wi(t,d)),

hi(t,d) = h̃i(t,v
i(t,d),wi(t,d)).

Then for i ∈ {1, . . . ,m}, ci and hi are continuous, and for all (t,d) ∈
DM , there exists a neighborhood N i(d) of d and Li > 0 such that for all
(t′,d1), (t′,d2) ∈ (T ×N i(d)) ∩DM

‖ci(t′,d1)− ci(t
′,d2)‖ ≤ Li ‖d1 − d2‖ ,

|hi(t′,d1)− hi(t′,d2)| ≤ Li ‖d1 − d2‖ .

Proof By Lemma 3 and the fact that bG is continuous, v∗, w∗, and b∗ defined
in Algorithm 1 are continuous, and that there exists a L > 0 such that for any
(t,d1), (t,d2) ∈ DM

‖v∗(t,d1)− v∗(t,d2)‖ ≤ L ‖d1 − d2‖ ,

and similarly for w∗ and b∗. Next, it should be clear that the It operation
defined in Algorithm 2 is a well-defined Lipschitz continuous mapping on Dit =
{(v,w, d) ∈ Rnx × Rnx × R : v ≤ w} (that is, the endpoints of the interval
defining It are Lipschitz continuous with respect to its first three arguments).
Consequently, an inductive argument shows that vi and wi are continuous
and must satisfy ∥∥vi(t,d1)− vi(t,d2)

∥∥
1
≤ Lv,i ‖d1 − d2‖ , (12)∥∥wi(t,d1)−wi(t,d2)

∥∥
1
≤ Lv,i ‖d1 − d2‖ . (13)

for some Lv,i > 0 and all (t,d1), (t,d2) ∈ DM .
Choose (t,d) ∈ DM . By Hypothesis 2, (vi(t,d),wi(t,d)) ∈ DI

x (as de-
fined in Assumption 4). Let N i(vi(t,d),wi(t,d)) be the open neighborhood
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of (vi(t,d),wi(t,d)) assumed to exist by Assumption 4. Assume without loss
of generality that N i(vi(t,d),wi(t,d)) = Nδ(v

i(t,d)) ×Nδ(wi(t,d)). By In-
equalities (12) and (13), if (t,d′) ∈ DM satisfies that ‖d− d′‖ < δ/Lv,i = εi,
it follows that (vi(t,d′),wi(t,d′)) ∈ N i(vi(t,d),wi(t,d)). Consequently, for
any (t,d1), (t,d2) ∈ (T ×Nεi(d)) ∩DM ,∥∥c̃i(t,vi(t,d1),wi(t,d1))− c̃i(t,v

i(t,d2),wi(t,d2))
∥∥

≤ L̃i
∥∥(vi(t,d1),wi(t,d1))− (vi(t,d2),wi(t,d2))

∥∥
1

≤ L̃i (Lv,i ‖d1 − d2‖+ Lv.i ‖d1 − d2‖)

= 2L̃iLv,i ‖d1 − d2‖ .

This establishes that ci is continuous and satisfies the Lipschitz condition. A
similar argument establishes that hi is continuous and satisfies this condition
as well. ut

Theorem 2 below shows that q defined in Algorithm 1 satisfies the desired
Lipschitz continuity assumption of many numerical integration methods, and
thus that IVP (11) is amenable to numerical solution.

Theorem 2 Let Assumptions 3 and 4 hold. For m ∈ N and A ∈ Rm×nx

define DM as in Equation (8). In addition, assume the following.

1. For some mu ∈ N, there exist AU ∈ Rmu×nu and bU ∈ Rmu such that
U = {p : AUp ≤ bU} and is nonempty and compact.

2. bG is continuous on T .
3. IVP (1) has a solution for some u ∈ U .
4. For i ∈ {1, . . . ,m} and all (t,d) ∈ DM , vi, wi : DM → Rnx defined by

Step 1 in Algorithm 1 satisfy [vi(t,d),wi(t,d)] ⊂ Dx.

Then the mapping q defined in Algorithm 1 is continuous, and for all (t,d) ∈
DM , there exists a neighborhood Nq(d) of d and Lq > 0 such that for all
(t′,d1), (t′,d2) ∈ (T ×Nq(d)) ∩DM

‖q(t′,d1)− q(t′,d2)‖ ≤ Lq ‖d1 − d2‖ .

Proof For i ∈ {1, . . . ,m}, define b∗i : DM → R by b∗i (t,d) = max{aT
i y : Ay ≤

d,AGy ≤ bG(t)}. It is clear that b∗i is well defined (i.e. the maximum is indeed
attained for any (t,d) ∈ DM ). Furthermore, since bG is continuous and by
Lemma 3 the optimal objective value of an LP is continuous with respect to
the right-hand side of its constraints, b∗i is continuous. Applying Lemma 3
again, we have that there exists a L∗i > 0 such that

|b∗i (t1,d1)− b∗i (t2,d2)| ≤ L∗i ‖(d1,bG(t1))− (d2,bG(t2))‖1
= L∗i ‖d1 − d2‖1 + L∗i ‖bG(t1)− bG(t2)‖1

for all (t1,d1), (t2,d2) ∈ DM . Let m̂ = mu + m + mg + 2. Let b̂i : DM →
Rm̂ be given by b̂i(t,d) = (bU ,d,bG(t), b∗i (t,d),−b∗i (t,d)). Again, b̂i is the
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composition of continuous functions and so is continuous. We also have∥∥∥b̂i(t1,d1)− b̂i(t2,d2)
∥∥∥
1

= ‖d1 − d2‖1 + ‖bG(t1)− bG(t2)‖1 + 2 |b∗i (t1,d1)− b∗i (t2,d2)|
≤ (2L∗i + 1)(‖d1 − d2‖1 + ‖bG(t1)− bG(t2)‖1)

for all (t1,d1), (t2,d2) ∈ DM . From this inequality, there exists a L̂i > 0 such
that ∥∥∥b̂i(t,d1)− b̂i(t,d2)

∥∥∥
1
≤ L̂i ‖d1 − d2‖1

for all (t,d1), (t,d2) ∈ DM . Further, since bG is continuous on compact T it
is also bounded, and for any (t,d) ∈ DM and (bounded) neighborhood N(d)
of d, there exists a finite k ≥ 0 such that∥∥∥b̂i(t1,d1)− b̂i(t2,d2)

∥∥∥ ≤ k
for all (t1,d1), (t2,d2) ∈ (T ×N(d)) ∩DM , which is to say that the image of

(T ×N(d)) ∩DM under b̂i is bounded.
For i ∈ {1, . . . ,m}, define ci = (cui , c

x
i ) : DM → Rnu × Rnx and hi :

DM → R as in Step 2 in Algorithm 1 (the same definition in Lemma 5). Then
by Lemma 5 each ci (and hi) are continuous, and so a similar boundedness
condition holds for each ci: For any (t,d) ∈ DM and bounded neighborhood
N(d) of d, denote the closure of N(d) by N(d). Then T ×N(d) is compact.
By Corollary 1, DM is nonempty and closed, so (T ×N(d))∩DM is compact,
and so its image under ci is compact and thus bounded.

Let

Âi =


AU 0
0 A
0 AG

0 aT
i

0 −aT
i

 .
For d ∈ Rm̂, let Pi(d) = {y : Âiy ≤ d}. Let Fi = {d : Pi(d) 6= ∅}. Fi is a
closed set, by a similar argument as in Corollary 1. Let q̂i : Rnu+nx × Fi → R
be given by q̂i(c,d) = max{cTy : Âiy ≤ d}. We note that

Pi(b̂i(t,d)) = U × arg max{aT
i z : Az ≤ d,AGz ≤ bG(t)}.

By the definition of DM and Hypothesis 1, Pi(b̂i(t,d)) is nonempty for each
(t,d) ∈ DM . By Hypothesis 4 and the discussion in Section 4.1,

[vi(t,d),wi(t,d)] ⊃ arg max{aT
i z : Az ≤ d,AGz ≤ bG(t)}

and so along with Hypothesis 1, Pi(b̂i(t,d)) is also compact for each (t,d) ∈
DM . This also establishes that b̂i(t,d) ∈ Fi for each (t,d) ∈ DM . Applying
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Lemma 3, we note that there exists a L > 0 such that for all d1,d2 ∈ Fi, for
each y1 ∈ Pi(d1), there exists a y2 ∈ Pi(d2) such that

‖y1 − y2‖ ≤ L ‖d1 − d2‖ .

Since Pi(b̂i(t,d
′)) is nonempty and compact for all (t,d′) ∈ DM , there exists

a finite k(t,d′) ≥ 0 such that for all y′1,y
′
2 ∈ Pi(b̂i(t,d′)),

‖y′1 − y′2‖ ≤ k(t,d′).

Thus, for any d ∈ Fi, and for any y1,y2 ∈ Pi(d), we can fix (t,d′) ∈ DM and

y′1,y
′
2 ∈ Pi(b̂i(t,d′)) such that

‖y1 − y2‖ ≤ ‖y1 − y′1‖+ ‖y′1 − y′2‖+ ‖y′2 − y2‖

≤ 2L
∥∥∥d− b̂i(t,d

′)
∥∥∥+ k(t,d′) < +∞.

Consequently, Pi(d) is compact for each d ∈ Fi. It follows that q̂i is finite and
well-defined on Rnu+nx × Fi, and further by Lemma 4 it is locally Lipschitz
continuous.

Finally, note that qi(t,d) = q̂i(ci(t,d), b̂i(t,d)) + hi(t,d). We have that qi
is continuous, since q̂i, ci, b̂i, and hi are continuous. Now choose (t,d) ∈ DM .
By Lemma 5 there exists a neighborhood N i(d) of d and Li > 0 such that for
all (t′,d1), (t′,d2) ∈ (T ×N i(d)) ∩DM

‖ci(t′,d1)− ci(t
′,d2)‖ ≤ Li ‖d1 − d2‖ ,

|hi(t′,d1)− hi(t′,d2)| ≤ Li ‖d1 − d2‖ .

Let Ki be the image of (T × N i(d)) ∩ DM under (ci, b̂i). As established

earlier, ci and b̂i are bounded on (T × N i(d)) ∩ DM , and so it follows that
Ki is bounded and so its closure is a compact subset of Rnu+nx × Fi. Since q̂i
is locally Lipschitz continuous, it is Lipschitz continuous on Ki, and so there
exists L̂q > 0 such that

|qi(t′,d1)− qi(t′,d2)| ≤ L̂q ‖ci(t′,d1)− ci(t
′,d2)‖1 +

L̂q

∥∥∥b̂i(t′,d1)− b̂i(t
′,d2)

∥∥∥
1

+

|hi(t′,d1)− hi(t′,d2)|

for all (t′,d1), (t′,d2) ∈ (T ×N i(d)) ∩DM . Then, applying the properties of

ci, b̂i and hi, we have that

|qi(t′,d1)− qi(t′,d2)| ≤ (L̂qLi + L̂qL̂i + Li) ‖d1 − d2‖ ,

for all (t′,d1), (t′,d2) ∈ (T ×N i(d))∩DM , applying the equivalence of norms
on Rn as necessary. Since this holds for each i ∈ {1, . . . ,m}, the desired con-
clusion holds. ut
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5 Numerical Examples

This section considers the performance of a numerical implementation of the
bounding method established in Corollary 2, using the definition of q in Al-
gorithm 1. This implementation is a C/C++ code which solves the IVP (11)
with the implementation of the Backwards Differentiation Formulae (BDF) in
the CVODE component of the SUNDIALS suite [18] (http://computation.
llnl.gov/casc/sundials/main.html). Newton’s method is used for the cor-
rector iteration. CPLEX [20] version 12.4 is used to solve the linear programs
required to define the dynamics in Algorithm 1. Further, all LPs are solved
with advanced starting information (“warm-started”) with dual simplex. This
results in a fairly significant speedup of the code, as Phase I simplex typically
can be skipped. The feasibility and optimality tolerances used to solve the LPs
and the integration tolerances are given below for each individual example. It
should be noted that for these values of the tolerances, an infeasible LP is
never encountered in these examples. All numerical studies were performed
on a 64-bit Linux virtual machine allocated a single core of a 3.07 GHz Intel
Xeon processor.

5.1 Lotka-Volterra problem

The Lotka-Volterra problem is a classic problem in the study of nonlinear
dynamic systems and often serves as a benchmark for numerical methods. It
is thought of as a model for the evolution in time of the populations of a
predator and a prey species, and the solution is asymptotically periodic. The
equations describing this system are

ẋ1(t) = u1(t)x1(t)(1− x2(t)), (14)

ẋ2(t) = u2(t)x2(t)(x1(t)− 1). (15)

For this study the initial conditions are x(0) = (1.2, 1.1). The goal is to com-
pute enclosures of the solutions for any value of the inputs u ∈ U , where
U = [2.99, 3.01]× [0.99, 1.01]. These are the same input ranges and initial con-
ditions used in [25], which demonstrates the performance of the code VSPODE,
an implementation of a Taylor model based bounding procedure.

For this example, one could claim that since x1 and x2 represent the pop-
ulations of species, they should always be nonnegative, and consequently one
could set AG = −I and bG : t 7→ 0. However, for what will be considered
“meaningful” bounds, this kind of a priori enclosure does not make a difference.
Consequently, for the purpose of applying the theory, the vacuous enclosure
given by AG = [0, 0] and bG : t 7→ 0 is used, although in the implementation
this information is unnecessary and is easily omitted.

In [25], VSPODE manages to propagate upper and lower bounds on the
solution which remain a subset of the interval in state space [0.5, 1.5]×[0.5, 1.5]
on the time interval T = [0, 10]. This is used as a metric to determine whether
the calculated bounds are “meaningful.” First, interval bounds are calculated,

http://computation.llnl.gov/casc/sundials/main.html
http://computation.llnl.gov/casc/sundials/main.html
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which is to say that the matrix A = [−I I]T is used. Unfortunately, despite
the use of affine relaxations to improve the estimate of the dynamics, the
upper and lower bounds for each species calculated using the above A matrix
cease to be a subset of the interval [0.5, 1.5]× [0.5, 1.5] before t = 4, or before
the completion of one full cycle. This, of course, is one of the drawbacks of
pure interval enclosures, and what has motivated the development of Taylor
model bounding methods. It should be noted that although the bounds are
meaninglessly loose in this case, there is no associated numerical “breakdown”
before t = 10; the solution of the linear programs defining the dynamics and
the numerical integration method still proceed without error.

However, using the polyhedral bounding theory discussed in the present
work, it is possible to obtain much better upper and lower bounds, which
remain a subset of the interval [0.5, 1.5] × [0.5, 1.5] for all t ∈ T . This can be
achieved by letting the ith row aT

i of the matrix A ∈ R16×2 be given by

aT
i =

[
cos ((i/16)2π) , sin ((i/16)2π)

]
. (16)

Each row of A merely represents the normal of a face of a 16-sided polygon.
Lower and upper bounds on each component can be chosen from these bound-
ing hyperplanes. The results are plotted in Figure 3. The upper and lower
bounds resulting from A in Equation (16) are superior, and indeed are a sub-
set of [0.5, 1.5] × [0.5, 1.5] for all t ∈ [0, 10]. In effect, the use of the current
theory more than doubles the time interval over which meaningful bounds can
be calculated.

Using LP feasibility and optimality tolerances of 10−5 and 10−6, respec-
tively, and absolute and relative integration tolerances of 10−6, the CPU time
required to solve the bounding system is 0.050s (with A defined in Equa-
tion (16)). For comparison, the purely interval bounds require 0.020s, while
the time required by VSPODE (on a processor with a comparable clock speed)
reported in [25] is 0.59s. Although the enclosure obtained from VSPODE is
tighter, it is solving an intrinsically different problem; namely, one in which the
inputs u1 and u2 are constant functions on T . That is, for all t ∈ T , u(t) ≡ û
for some û ∈ U .

5.2 Stirred-tank reactor

This next example demonstrates that, in contrast to the previous example, a
brute-force approach to constructing polyhedral bounds is not necessary in all
cases. For the following class of engineering-relevant problems, an intelligent
choice of bounds is available. Furthermore, much of the justification that the
choice is intelligent does not have anything to do with the idea that it “wraps”
the reachable set in an intelligent manner, which is the typical geometric jus-
tification of many bounding methods. Rather, it relates to the idea that the
quantities that must be estimated to construct these bounds can be estimated
well with tools such as interval arithmetic.
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Fig. 3: Upper and lower bounds on the components of the solution of the
Lotka-Volterra problem versus time; x1 is in gray, while x2 is in black. Results
from polyhedral bounds using A as in Equation (16) are solid lines, while
results from purely interval bounds are dashed.

The general form of the material balance equations for a homogeneous,
constant-density, stirred-tank reactor with constant material volume is

ẋ(t) = Sr(t,x(t)) + (1/V ) (Cin(t)vin(t)− vout(t)x(t)) , x(t0) = x0, (17)

where x(t) is the vector of the nx species concentrations at time t, S ∈ Rnx×nr

and r are the stoichiometry matrix and vector of nr rate functions, respectively,
V is the constant reactor volume, vin(t) ∈ Rp is the vector of the volumetric
flow rates of the p inlets to the reactor at t, the jth column of Cin(t) ∈ Rnx×p

is the vector of species concentrations in the jth inlet, and 1Tvin(t) = vout(t) is
the volumetric flow rate of the single outlet from the reactor, where 1 denotes
a vector of ones in Rp.

For a system of this form, a linear transformation yields a system in terms
of reaction “variants” and “invariants” [44]. For instance, if S is full column
rank, the rows of N are left null vectors of S, and S+ is the Moore-Penrose
pseudoinverse of S (see Chapter 1 of [3]), then letting y1 = S+x and y2 = Nx
one obtains

ẏ1(t) = ry(t,y(t)) + (1/V )
(
S+Cin(t)vin(t)− vout(t)y1(t)

)
, y1(t0) = S+x0,

(18)

ẏ2(t) = (1/V ) (NCin(t)vin(t)− vout(t)y2(t)) , y2(t0) = Nx0,

where the subscript y on r denotes that ry is considered a function of the
transformed variables. If the system has no inlets or outlets, i.e. is a batch
reactor, then ẏ2(t) = 0 for all t, and so is constant. From the perspective of
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the original system, the solution must obey the affine constraints Nx(t) = Nx0

for all t. This forms the basis of the a priori enclosures used in [16,38,39].
However, the addition of inlets and outlets complicates this kind of a priori

enclosure. It is possible to salvage this enclosure, by noting that the linear
transformation partially decouples the system of equations. If Cin and vin
are known, simple functions or are constant parameters, then an analytical
solution for y2 can be obtained fairly easily. The result is that the a priori
enclosure is now time-varying; specifically, the solution must obey Nx(t) =
y2(t), where again y2 is now known explicitly. This kind of information still
satisfies Assumption 3, and could be used in the current bounding theory. But
again, matters are more complicated if, for instance, the values of Cin or vin
are subject to some unknown, but bounded time-varying disturbance.

Instead, the approach taken here will be to use a bounding polyhedron
that will implicitly enforce this time-varying enclosure, without the need to
determine explicitly y2, or some other functions that take the role of bG. Since
the solution x describes concentrations, the components must be nonnegative,
and so for this example the only a priori enclosure used is given by these
nonnegativity constraints. In general, the bounding matrix is given by

A =


−I
I
−D+

D+

−N
N

 , (19)

where D+ is the Moore-Penrose pseudoinverse of D, a matrix formed from
a maximal set of linearly independent columns of S, and the rows of N are
linearly independent and span the left null space of S.

Before considering the specifics of the example, the merits of this form of
polyhedral bounds, as determined by the matrix A above, are discussed. It
helps to write the dynamics of the system (17) in the following general form:

f(t,p, z) =
[
S I
] [ rp(t,p, z)

g1(t,p)− g2(t,p)z

]
= Ŝr̂(t,p, z),

where the functions g1 and g2 take into account the possibility that the inlet
flow rates and concentrations are modeled as controls, parameters, or distur-
bances, and rp takes into account that the reaction kinetics might not be
known exactly. In general, the more rows that the matrix A has, the tighter
the bounds. Of course, too many superfluous rows slows down the calcula-
tion and does little to improve the bounds. To a certain extent, the bounds
on the individual components (that is, the interval bounds) are improved the
most when linear combinations of the states that are “estimated well” are
included in the bounds. Inspired by the previous discussion, the linear combi-
nations y2 = Nz, which no longer depend on the reaction rates, are a good
candidate. Part of this relates to the specifics of how the affine overestimators
of the dynamics are constructed. The affine relaxation method described in
Appendix A requires interval arithmetic, and it is well known that the effec-
tiveness of interval arithmetic is diminished by the dependency problem (see
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for instance Section 1.4 in [34]). As a general observation, the “simpler” the
expression, the more effective interval arithmetic is at generating a tight esti-
mate of its range. Thus, the quantities y2, whose dynamics no longer depend
on the potentially nonlinear rate function rp, have a good chance of being
estimated well by interval arithmetic and the affine relaxation method. Fur-
ther, the dynamics for y2 are decoupled. This is significant since the value of
aT
i z is unique for z ∈ Mi(t,d), and it is over Mi(t,d) which the dynamics

must be estimated. This means that if ai is the jth row of N, then aT
i z = y2,j

and aT
i f(t,p, z) = aT

i g1(t,p)− g2(t,p)y2,j . In a loose sense, uncertainty with
respect to the states has been removed, and overestimating the dynamics in
this case only requires overestimation with respect to the inputs.

Similar reasoning supports why the quantities y1 = D+z also are estimated
well. If S is full column rank, one can choose D = S and then D+ = S+, and so
D+S = I. The result is that the dynamics of these quantities y1 only depend
on a single component of the rate function rp (in fact, in a batch system,
this motivates their interpretation as “extents of reaction”). As before, the
simpler the expression, the more likely it is to be estimated well via the affine
relaxation procedure. If S is not full column rank, for instance S = [D E],
then D+S = [I D+E], and again, the expression for the dynamics of the
quantities y1 is potentially simplified.

At this point it is reasonable to wonder why not apply an interval-based
bounding method to the transformed system (18). The complicating fact is
that this requires explicitly rewriting the rate function in terms of the trans-
formed variables to obtain ry. In general, this is not a trivial task. Although
it is possible to automate the evaluation of ry, since the transformation from
x to y is invertible in certain cases [44], it is likely that extending this evalua-
tion to interval arithmetic will suffer from dependency issues. For this reason,
explicitly bounding the original variables, in terms of which the rate function
is originally written, helps reduce the overestimation of the original variables,
and in turn reduce the overestimation of the range of the rate function on the
various sets it must be estimated. Finally, as upper and lower bounds on the
original variables are most likely the ultimate goal of estimating the reach-
able set of this system, there is little reason to exclude bounding them in the
definition of A.

Now, consider the specifics of the example. Let the components of the
solution be x = (xA, xB, xC, xD), which are the concentration profiles (in M)
of the four chemical species A, B, C, and D, respectively. Let

ẋ(t,u) =


−1 −1 1 0 0 0
−1 0 0 1 0 0

1 −1 0 0 1 0
0 1 0 0 0 1




u3(t)xA(t,u)xB(t,u)
k2xA(t,u)xC(t,u)

(1/V )(u1(t)vA − xA(t,u)(vA + vB))
(1/V )(u2(t)vB − xB(t,u)(vA + vB))

(1/V )(−xC(t,u)(vA + vB))
(1/V )(−xD(t,u)(vA + vB))

 . (20)

The known parameters are V = 20 (L), k2 = 0.4 (M−1min−1), vA = vB =

1 (L(min)
−1

). The time-varying uncertainties are the inlet concentration of
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Fig. 4: Interval hull of enclosures versus time for the stirred-tank reactor (Equa-
tion (20)). Solution trajectories for various constant inputs are thin solid lines.
Results from A in Equation (19) are solid black lines, while results from A′

and A′′ as in Equation (21) are dotted lines and dashed lines, respectively.

species A, u1(t) ∈ [0.9, 1.1] (M), the inlet concentration of species B, u2(t) ∈
[0.8, 1.0] (M), and the rate constant of the first reaction, u3(t) ∈ [10, 50]
(M−1min−1). Initially, the concentration of each species is zero, and at t = 0,
A and B begin to flow in. The time period of interest is T = [0, 10] (min). The
first two columns of the matrix in Equation (20) correspond to the stoichiom-
etry matrix S. It columns are linearly independent, and so let

D+ = S+ =

[
−1/3 −1/3 1/3 0
−1/3 0 −1/3 1/3

]
and N =

[
−1 2 1 0

1 −1 0 1

]
.

Results for two representative species are in Figure 4. For comparison, the
interval hull of the enclosures that result from using

A′ =

[
−I

I

]
or A′′ =


−D+

D+

−N
N

 (21)

as the matrix that defines the polyhedral enclosure are included. These are
interval bounds on the original system (17), and (roughly) the transformed
system (18), respectively. The interval hull of the polyhedral enclosures are
calculated in a post-processing step for the purpose of comparing the different
results on an equal footing. It is clear that the bounds that result from using
A in Equation (19) are superior, and much tighter than just the intersection
of the bounds resulting from the other enclosures. Finally, with LP feasibility
and optimality tolerances of 10−5 and 10−6, respectively, and absolute and
relative integration tolerances of 10−6, the CPU time required to solve the
bounding system is 0.030s.
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5.3 Piecewise affine relaxations

An interesting application of this theory is to the construction of piecewise
affine relaxations of the solutions of initial value problems in parametric ordi-
nary differential equations. The initial value problem in parametric ordinary
differential equations is a special case of the problem of interest (1), when the
uncertainty is fixed, i.e. not time-varying. Certainly, the theory as it stands
can handle this case already, but intuitively the bounds produced may not
be as tight as those produced by a method that explicitly takes advantage of
the fact that the uncertain inputs have a constant value in time, such as the
Taylor-model methods described in [25].

The idea is fairly straightforward; the fixed uncertain parameters are treated
as extra state variables with zero time derivatives and an uncertain set of ini-
tial values. Of course, nothing is gained from this reformulation if one can
only propagate interval bounds on the states, but if one propagates polyhe-
dral bounds the reformulation is meaningful.

To demonstrate this, an example adapted from Example 2 in [39] is con-
sidered, involving the following enzymatic reaction network:

A + F 
 F:A→ F + A′,

A′ + R 
 R:A’→ R + A.

The dynamic equations governing the evolution of the species concentrations
x = (xA, xF, xF:A, xA′ , xR, xR:A′) in a closed system are

ẋA = −k1xFxA + k2xF:A + k6xR:A′ ,

ẋF = −k1xFxA + k2xF:A + k3xF:A,

ẋF:A = k1xFxA − k2xF:A − k3xF:A, (22)

ẋA′ = k3xF:A − k4xA′xR + k5xR:A′ ,

ẋR = −k4xA′xR + k5xR:A′ + k6xR:A′ ,

ẋR:A′ = k4xA′xR − k5xR:A′ − k6xR:A′ .

The time interval of interest is T = [0, 0.04] (s). For the original states x, the
initial conditions are x0 = (34, 20, 0, 0, 16, 0) (M). Let the uncertain, but con-
stant, parameters be (p1, p2) = (k1, k6) ∈ [0.1, 1] × [0.3, 3] = P . The other ki
are known: (k2, k3, k4, k5) = (0.1815, 88, 27.5, 2.75). To obtain the reformulated
system, append the equations ṗ = 0 to Equations (22) and now for the refor-
mulated system, the initial conditions are uncertain: (x(0),p(0)) ∈ {x0} × P .
As in [39], the following a priori enclosure is available for the reformulated
system:

G ≡ {(z, r) ∈ R6 × R2 : 0 ≤ z ≤ x̄,Nz = Nx0, r ∈ P}, with

N =

0 −1 −1 0 0 0
0 0 0 0 −1 −1
1 −1 0 1 −1 0

 ,
x̄ = (34, 20, 20, 34, 16, 16).
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The bounding matrix A used in this example is

A =


−I 0

I 0
−I M

I −M


where M is the matrix whose columns are (approximately) the sensitivities of
x with respect to each pi, evaluated at the final time tf = 0.04 and at the
midpoint of the interval P . These sensitivities, as calculated numerically with
CVODES, are[

−14.4 −3.12 3.12 1.99 −9.28 9.28
0.105 −0.00577 0.00577 −0.00748 0.103 −0.103

]T
,

however, any value with magnitude less than 10−2 is set to zero to construct
M. The reasoning behind this form of A is that the first half of its rows
give interval bounds, while the second half of its rows give affine under- and
over-estimators of each original state with respect to p, and specifically, these
should be “good” estimators at the final time point tf .

Figure 5 shows the piecewise affine underestimator (maximum of the lower
bound and affine underestimator) and overestimator (minimum of the upper
bound and affine overestimator) for a certain concentration on the set P .
When only interval bounds are propagated, the interval bound on the state
xF:A at tf is [0.517, 4.79], while the use of the affine relaxations reduces this to
[0.582, 4.09], corresponding to an 18% reduction in the width of the enclosure.
Thus, using the extra bounds in the form of affine under and overestimators
also improves the interval bounds. This contrasts with the methods in [40] and
[42], where the benefit is one-way; relaxations with respect to the parameters
cannot improve the interval bounds.

With LP feasibility and optimality tolerances of 10−5 and 10−6, respec-
tively, and absolute and relative integration tolerances of 10−6, the CPU time
required to solve the bounding system is 0.15s. In comparison, the methods for
constructing convex and concave relaxations of the solutions of parametric or-
dinary differential equations presented in [40,41] also involve the solution of an
auxiliary dynamic system, but this system must be solved at each parameter
value of interest to determine the value of the relaxations. The current method
only requires that the auxiliary dynamic system is solved once to obtain the
value of the relaxation on the entire parameter range.

6 Conclusions

This work has presented a general theory, as well as an efficient numerical
implementation, for the construction of polyhedral bounds on the reachable
set of a dynamic system subject to time-varying inputs and uncertain initial
conditions. Some more fine-tuning of the current numerical implementation of
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Fig. 5: Piecewise affine under and overestimators of xF:A at tf on P ; the
sampled parametric solution surface is in the middle.

the bounding method is a subject for future research. For instance, the function
q defining the dynamics of the bounding system is nonsmooth, and it may
be beneficial to supply approximate or “locked” Jacobian information to the
numerical integrator. As mentioned in Section 4.2, to ensure that one does not
run into viability issues, the reformulation in [11] could be used. Alternative
implementations of the theory are also a subject for future research; that is,
defining the general mappings Mi differently provides avenues for different
numerical implementations. These different numerical implementations might
avoid some of the cost of the solution of the linear programs, and provide
a slightly faster method, although potentially at the cost of producing more
conservative bounds. Nevertheless, the present work as is stands as an effective
method.

Other future work might include using the proposed method in the reach-
ability analysis of hybrid systems [7,30,36]. In such an analysis, bounds are
required for the continuous dynamics, which could be obtained by the meth-
ods in the present work. It should be noted that the work in this area often
focuses on the case that the continuous dynamics of the hybrid system are
linear or affine, as demonstrated by the recent thesis [24]. In this case, certain
properties of linear systems (such as the fact that they preserve convexity of
sets under the “flow” of the dynamics [12]) can be used, of which the present
method does not explicitly take advantage.
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A Parametric Affine Relaxations

This section discusses a method for constructing affine relaxations of the dynamics which
satisfy Assumption 4. The method relies on Proposition 5.1 in [17], which is repeated below.
It is a general result, and to implement it, one needs specific relaxations of various arithmetic
operations. Such operations are listed in Table 1 below.

Proposition 2 (Proposition 5.1 in [17]) Let m, n ∈ N. Let Z ⊂ Rn be a nonempty
open set, and let Y ⊂ Rm. Let g : Z → Rm and f : Y → R. Define ZI = {(v,w) ∈
Rn ×Rn : v ≤ w, [v,w] ⊂ Z}, and similarly define Y I. For i ∈ {1, . . . ,m}, let gali and gaui
be locally Lipschitz continuous mappings ZI → Rn and gbli , gbui , gLi , gUi be locally Lipschitz

continuous mappings ZI → R which satisfy

gali (v,w)Tz + gbli (v,w) ≤ gi(z) ≤ gaui (v,w)Tz + gbui (v,w), ∀z ∈ [v,w],

gLi (v,w) ≤ gi(z) ≤ gUi (v,w), ∀z ∈ [v,w],

[gL(v,w),gU (v,w)] ⊂ Y,

for all (v,w) ∈ ZI. Let fal and fau and be locally Lipschitz continuous mappings Y I → Rm
and fbl and fbu be locally Lipschitz continuous mappings Y I → R which satisfy

fal(v′,w′)Ty + fbl(v′,w′) ≤ f(y) ≤ fau(v′,w′)Ty + fbu(v′,w′), ∀y ∈ [v′,w′],

for all (v′,w′) ∈ Y I.
Let h : Z → R be defined by h(z) = f(g(z)). For i ∈ {1, . . . ,m}, let

hali (v,w) =

{
fali (gL(v,w),gU (v,w))gali (v,w) if fali (gL(v,w),gU (v,w)) ≥ 0,

fali (gL(v,w),gU (v,w))gaui (v,w) otherwise,

hbli (v,w) =

{
fali (gL(v,w),gU (v,w))gbli (v,w) if fali (gL(v,w),gU (v,w)) ≥ 0,

fali (gL(v,w),gU (v,w))gbui (v,w) otherwise,

haui (v,w) =

{
faui (gL(v,w),gU (v,w))gaui (v,w) if faui (gL(v,w),gU (v,w)) ≥ 0,

faui (gL(v,w),gU (v,w))gali (v,w) otherwise,

hbui (v,w) =

{
faui (gL(v,w),gU (v,w))gbui (v,w) if faui (gL(v,w),gU (v,w)) ≥ 0,

faui (gL(v,w),gU (v,w))gbli (v,w) otherwise.

Let hal, hau : ZI → Rn and hbl, hbu : ZI → R be defined by

hal(v,w) =
∑
i

hali (v,w), hbl(v,w) = fbl(gL(v,w),gU (v,w)) +
∑
i

hbli (v,w),

hau(v,w) =
∑
i

haui (v,w), hbu(v,w) = fbu(gL(v,w),gU (v,w)) +
∑
i

hbui (v,w).

Then hal, hau, hbl, hbu are locally Lipschitz continuous mappings on ZI which satisfy

hal(v,w)Tz + hbl(v,w) ≤ h(z) ≤ hau(v,w)Tz + hbu(v,w), ∀z ∈ [v,w],

for all (v,w) ∈ ZI.

Constructing relaxations which satisfy Assumption 4 proceeds by recursively applying
Proposition 2, illustrated by the following example.

Example 1 This example demonstrates how to construct affine relaxations for a simple
function (in fact, this function is part of the dynamics of the Lotka-Volterra problem in
Section 5.1). Let f : R × R2 3 (p, z) 7→ pz1(1 − z2). As in the Lotka-Volterra problem, p is
an uncertain parameter. The goal is to construct, for any p ∈ [pL, pU ] such that pL > 0,
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Table 1: Some arithmetic operations f and their parameterized affine relax-
ations on [yL,yU ]

Underestimators

f fal(yL,yU ) fbl(yL,yU )
s ∈ R, y 7→ sy s 0
s ∈ R, y 7→ y + s 1 s
(y1, y2) 7→ y1 + y2 (1, 1) 0
(y1, y2) 7→ y1 − y2 (1,−1) 0

(y1, y2) 7→ y1y2
(
yL2 +yU2

2
,
yL1 +yU1

2

)
−1/2(yL1 y

L
2 + yU1 y

U
2 )

y > 0, y 7→ 1/y −(yU )−2 2/yU

Overestimators

f fau(yL,yU ) fbu(yL,yU )
s ∈ R, y 7→ sy s 0
s ∈ R, y 7→ y + s 1 s
(y1, y2) 7→ y1 + y2 (1, 1) 0
(y1, y2) 7→ y1 − y2 (1,−1) 0

(y1, y2) 7→ y1y2
(
yL2 +yU2

2
,
yL1 +yU1

2

)
−1/2(yU1 y

L
2 + yL1 y

U
2 )

y > 0, y 7→ 1/y −1/(yLyU ) (1/(yLyU ))yL + 1/yL

affine relaxations of f(p, ·) on any interval [zL, zU ] such that zL1 > 0 and zL2 > 1 (in the
context of Assumption 4, obtaining a nontrivial c̃ui is beneficial only when U is not an
interval). Furthermore, one desires that these relaxations are locally Lipschitz continuous
with respect to (zL, zU ).

The process resembles the construction of an interval enclosure of the range of f via in-
terval arithmetic, and indeed part of the method involves interval arithmetic. Evaluation of f
is broken down into a sequence of auxiliary variables called “factors,” which can be expressed
as simple arithmetic operations on previously computed factors. An interval enclosure and
affine relaxation of each factor can also be computed, and following the rules in Proposition
2 and Table 1, the affine relaxations will also be locally Lipschitz continuous in the manner
desired. See Table 2 for the factored expression. Note that factor v3, corresponding to the
parameter p, is initialized with the trivial affine relaxations 0Tz+ pL ≤ p ≤ 0Tz+ pU . This
ensures that the final relaxations obtained are valid for all p ∈ [pL, pU ]. Also, note that the
restrictions zL1 > 0, zL2 > 1, and pL > 0, simplify the evaluation and preclude the need to
consider the different “branches” when constructing the affine relaxations for factors v5 and
v6, as indicated in Proposition 2 (for example, this implies that 1/2(vL4 +vU4 ) < 0). Although
in general, the different cases must be taken into account.

The final factor, v6, gives the value of f , and thus one also has

(val6 )Tz + vbl6 ≤ f(p, z) ≤ (vau6 )Tz + vbu6

for all (p, z) ∈ [pL, pU ] × [zL, zU ]. However, by virtue of Proposition 2, val6 , vau6 , vbl6 , vbu6
can be considered locally Lipschitz continuous functions with respect to (zL, zU ).

More generally, Assumption 4 requires parametric relaxations which are continuous on
T × DI

x. To include dependence on t, one could construct relaxations with respect to t as
well, over the degenerate interval [t, t]. Then it is clear that the final relaxations would be
locally Lipschitz continuous on (T ×Dx)I. The following lemmata show that this yields the
desired properties.

Lemma 6 Assume m, n, p ∈ N. Let C ⊂ Rm be nonempty and compact and D ⊂ Rn be
nonempty. Let g : C ×D → Rp be locally Lipschitz continuous. Then for all z ∈ D, there
exists a neighborhood N(z) and L > 0 such that for all (y, z1), (y, z2) ∈ C ×N(z) ∩D

‖g(y, z1)− g(y, z2)‖ ≤ L ‖z1 − z2‖ .
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Table 2: Factored expression, corresponding interval enclosures, and corre-
sponding affine relaxations for Example 1

Factor Value Lower bound Upper Bound

v1 z1 vL1 = zL1 vU1 = zU1

v2 z2 vL2 = zL2 vU2 = zU2

v3 p vL3 = pL vU3 = pU

v4 1− v2 vL4 = 1− vU2 vU4 = 1− vL2
v5 v1v4 vL5 =

min{vL1 vL4 , vL1 vU4 , vU1 vL4 , vU1 vU4 }
vU5 =
max{vL1 vL4 , vL1 vU4 , vU1 vL4 , vU1 vU4 }

v6 v3v5 vL6 =
min{vL3 vL5 , vL3 vU5 , vU3 vL5 , vU3 vU5 }

vU6 =
max{vL3 vL5 , vL3 vU5 , vU3 vL5 , vU3 vU5 }

Factor Underestimator Overestimator

v1 val1 = (1, 0), vbl1 = 0 vau1 = (1, 0), vbu1 = 0

v2 val2 = (0, 1), vbl2 = 0 vau2 = (0, 1), vbu2 = 0

v3 val3 = (0, 0), vbl3 = pL vau3 = (0, 0), vbu3 = pU

v4 val4 = −vau2 , vbl4 = 1− vbu2 vau4 = −val2 , vbu4 = 1− vbl2
v5 val5 = 1/2(vL4 + vU4 )vau1

+1/2(vL1 + vU1 )val4 ,
vbl5 = −1/2(vL1 v

L
4 + vU1 v

U
4 )

+1/2(vL4 + vU4 )vbu1
+1/2(vL1 + vU1 )vbl4

vau5 = 1/2(vL4 + vU4 )val1
+1/2(vL1 + vU1 )vau4 ,

vbu5 = −1/2(vU1 v
L
4 + vL1 v

U
4 )

+1/2(vL4 + vU4 )vbl1
+1/2(vL1 + vU1 )vbu4

v6 val6 = 1/2(vL5 + vU5 )vau3
+1/2(vL3 + vU3 )val5 ,

vbl6 = −1/2(vL3 v
L
5 + vU3 v

U
5 )

+1/2(vL5 + vU5 )vbu3
+1/2(vL3 + vU3 )vbl5

vau6 = 1/2(vL5 + vU5 )val3
+1/2(vL3 + vU3 )vau5 ,

vbu6 = −1/2(vU3 v
L
5 + vL3 v

U
5 )

+1/2(vL5 + vU5 )vbl3
+1/2(vL3 + vU3 )vbu5

Proof Choose z ∈ D. For each y ∈ C, let N(y, z) be a neighborhood of (y, z) such that g
is Lipschitz continuous on N(y, z) ∩ (C ×D), with corresponding Lipschitz constant L(y).
However, this collection of open sets form an open cover of C × {z}, which is compact, and
thus we can choose a finite number of these neighborhoods {N(yi, z) : 1 ≤ i ≤ k}, such

that their union, Ñ , contains C × {z}. Let L be the (finite) maximum of the corresponding

Lipschitz constants (i.e. L = max{L(yi) : 1 ≤ i ≤ k}). Note that Ñ is an open set, and g is

Lipschitz continuous on Ñ ∩ (C ×D) with Lipschitz constant L.

We claim that there exists a δ > 0 such that C ×Nδ(z) ⊂ Ñ (where Nδ(z) is viewed as
a subset of Rn). This follows from, for instance, Lemma 1 in Section 5 of [10]. The argument

is that the complement of Ñ , ÑC , is closed and disjoint from C ×{z}, and so there exists a

δ > 0 such that the distance between any point in C × {z} and any point in ÑC is greater

than δ. This implies that C×Nδ(z) is disjoint from ÑC , which in turn implies C×Nδ(z) ⊂ Ñ .
The result follows from Lipschitz continuity on (C×Nδ(z))∩ (C×D) = C×Nδ(z)∩D. ut

Lemma 7 Assume n, p ∈ N. Let T ⊂ R be nonempty and compact and D ⊂ Rn be
nonempty. Define (T ×D)I = {(s,v, t,w) : s ≤ t,v ≤ w, [s, t]× [v,w] ⊂ T ×D} and define
DI similarly. Let g̃ : (T ×D)I → Rp be locally Lipschitz continuous. Define g : T ×DI → Rp
by g(t,v,w) = g̃(t,v, t,w). Then g is continuous, and for all (v,w) ∈ DI there exists a
neighborhood N(v,w) and L > 0 such that for all (t,v1,w1), (t,v2,w2) ∈ T×N(v,w)∩DI

‖g(t,v1,w1)− g(t,v2,w2)‖ ≤ L ‖(v1,w1)− (v2,w2)‖ .
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Proof The mapping h : (t,v,w) 7→ (t,v, t,w) is Lipschitz continuous, and so g, as the
composition of locally Lipschitz g̃ and h is locally Lipschitz continuous on T ×DI. Applying
Lemma 6 we obtain the desired result. ut
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