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Abstract  

Purpose: To demonstrate a novel method that utilizes retrospective data to develop statistically 

optimal dosing strategies for medications with sensitive therapeutic windows. We illustrate our 

approach on intravenous unfractionated heparin, a medication which typically considers only patient 

weight and is frequently misdosed.  

Methods: We identified available clinical features which impact patient response to heparin and 

extracted 1511 patients from the Multi-parameter Intelligent Monitoring in Intensive Care II 

database which met our inclusion criteria.  These were used to develop two multivariate logistic 

regressions, modeling sub- and supra-therapeutic activated partial thromboplastin time (aPTT) as a 

function of clinical features. We combined information from these models to estimate an initial 

heparin dose that would, on a per-patient basis, maximize the probability of a therapeutic aPTT 

within 4-8 hours of the initial infusion. We tested our model's ability to classifying therapeutic 

outcomes on a withheld dataset and compared performance to a weight-alone alternative using VUS 

(a multiclass version of AUC).  

Results:  We observed statistically significant associations between sub- and supra-therapeutic 

aPTT, race, ICU type, gender, heparin dose, age and Sequential Organ Failure Assessment scores 

with mean validation AUC of 0.78 and 0.79 respectively. Our final model improved outcome 

classification over the weight-alone alternative, with VUS values of 0.48 versus 0.42.  

Conclusions: This work represents an important step in the secondary use of health data in developing 

models to optimize drug dosing. The next step would be evaluating whether this approach indeed achieves 

target aPTT more reliably than the current weight-based heparin dosing in a randomized controlled trial. 
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Introduction  

Retrospective data provides a valuable opportunity to investigate clinical practice when clinical trials 

are either unavailable, violate ethical boundaries for provision of best care, or are too costly to 

effectively evaluate treatment effect heterogeneity across patient subsets and clinical contexts [1]. 

Heparin is one example of a medication where retrospective data provides valuable insight as 

clinical trials must exclude patients who exhibit a high propensity for bleeding or severe 

complications caused by bleeding [2]. 

 

The current dosing guidelines for unfractionated heparin (UFH) are weight-based, and arose from a 

1993 randomized control trial which showed that accounting for weight led to therapeutic 

anticoagulation more rapidly than a standard care nomogram [3].  Given the risks of misdosing 

UFH, we believe that weight-based heparin dosing alone is sub-optimal and may place patients at 

unnecessary risk in the formative hours of their hospital stay. In this paper we propose a potential 

solution to this issue by applying a novel perturbation of multinomial logistic regression, designed to 

probabilistically estimate an optimal heparin dose as a function of known feature values, and a 

specified therapeutic range. We chose heparin as a candidate drug given its widespread use, clinical 

relevance, and inconsistency in dosing practices across institutions but would like to stress that the 

technique is applicable to any drug with an arbitrary therapeutic window.  

 

Selecting the correct initial bolus and infusion rates for UFH are necessary to ensure that 

anticoagulation, which is commonly measured by  activated partial thromboplastin time (aPTT), 

reaches a therapeutic window in a timely manner. Many clinicians consider a therapeutic aPTT 

range to be 1.5-2.5 times the control value, however there remains significant controversy 

surrounding the optimal heparin dosing range [4-7].  The current guidelines for UFH dosing at 

Boston's Beth Israel Medical Center (BIDMC) prescribes an 80 (UI/kg*hr) bolus followed by 18 
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(UI/kg*hr) continuous IV infusion, with lower infusion rates recommended for some indications. 

Guidelines also dictate checking aPTT 6 hours after the initial infusion of UFH, followed by 

continuous dose adjustments as required to achieve a therapeutic aPTT within 24 hours (See 

Appendix, Section 6 in supplement materials for the complete BIDMC guidelines).   

It is desirable to avoid supra-therapeutic aPTT at 6 hours after UFH infusion, as it has been 

associated with increased bleeding, with further worse outcomes for supra-therapeutic aPTT at 12 

hours [8].  While the relationship between initial heparin dose, efficacy, and safety has been well 

described in the literature,
 
the risk factors for sub- and supra-therapeutic aPTT response to the use of 

UFH is less well understood [9].
 
To the best of our knowledge, the only recognized risk factors for 

supra-therapeutic aPTT are higher weight-normalized initial rate of heparin infusion, older age, and 

female gender [8,10]. Renal impairment inhibits excretion of heparin at higher doses, but this has not 

been correlated with aPTT and is not considered cause to adjust heparin dosing [11]. 

 

 

Materials and Methods  

Study Population  

Data for this study was extracted from the publicly available Multi-parameter Intelligent Monitoring 

in Intensive Care database (MIMIC-II) [12]. All data were extracted from the database using the 

SQL programming language. We extracted a total of 4779 unique adult individuals from the MIMIC-

II database by selecting all patients who received heparin during their ICU stay. We included only 

those patients with aPTT measurements 4-8 hours after the initial infusion. This reduced the cohort 

size to 2873. We further removed any subjects with missing values for the covariates, reducing the 

cohort size to 2125. Lastly, we removed any patients that were transferred from another hospital, 

leaving the final cohort size at 1511. Transfer patients were removed as the heparin might have been 

started prior to ICU admission. Transfer patients were removed as we had no access to medical 

procedures that were performed on the population at other institutions. 
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The amount of time patients spent in the therapeutic range was studied by extracting aPTT at 

approximately 6 (4-8 hours), 12 (9-20 hours), and 24 (21-32) hours after initiation of therapy. We 

empirically identified the time ranges in which the intended 6, 12, and 24 hour aPTT measures 

actually occurred.  For the 6 hour window this was accomplished by selecting the time frame where, 

across all patients, the greatest proportion of first aPTT measurements occurred. Similarly, for the 12 

hour window, we selected the time frame where, across all patients, the greatest proportions of 

measures were the second measure for the patient population. The 24 hour window was identified in a 

similar way. 

 

 

Study Covariates and Outcome  

The outcome of interest was aPTT 4-8 hours after the initial heparin infusion. We defined the 

therapeutic range as an aPTT between 60-100 seconds (with values above this range considered 

supra-therapeutic, and values below considered sub-therapeutic). In this study we utilized data from 

the Beth Isreal Deaconess Medical Center, and as such used their definition of therapeutic aPTT when 

developing our predicative models. This is not to imply that the guidelines provided by the BIDMC 

are more effective than those of other institutions but rather, will serve to illustrate how our techniques 

may be used to estimate a dose which is more likely to produce an outcome aligned with the 

institution's specific definition of therapeutic.  (See the Appendix, Section 6 )),   

Measurements of both renal and hepatic function were included as features of interest. A binary 

variable was created for liver injury, which was coded as positive in patients with either aspartate 

aminotransferase (AST) or alanine transaminase (ALT) greater than five times the upper limit of 

normal. Other covariates included the weight-normalized heparin dose, the time between heparin 

infusion and the first aPTT measurement (measure time), patient age, gender, ethnicity (coded as 

white vs. nonwhite), the Elixhauser comorbidity index (an indicator of chronic illness), [13,14] ICU 

care unit type (medical vs. surgical) and the Sequential Organ Failure Assessment score (SOFA) 

measure closest to the time of heparin initiation. Due to limitations in the data source, we were 

unable to obtain information on heparin boluses for the vast majority of our patients;,the feature 
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was not included in our main analysis. Instead, we performed a subset analysis on the patients 

which had heparin bolus information and discuss these results separately. Additionally, We were 

unable to reliably determine the indication for heparin in a significant fraction of the study cohort. For 

this reason, we left the indication for therapeutic UFH out of the primary model and opted for ICU 

Type as a proxy. We also performed a subset analysis, selecting the heparin indication from ICD9 

code when possible.  Lastly We evaluated interaction terms but none significantly improved the 

performance of the models – see Section 3 of the Appendix for more details.  

 

Guideline Development  

Multivariate logistic regression can be understood as providing a probability of some outcome given 

a set of static feature values. The underlying linear assumption is ill-suited to directly model 

phenomenon such as therapeutic aPTT, whose probability is a not a monotonic function of the input 

features. However, sub-therapeutic and supra-therapeutic aPTT can be thought of as monotonically 

dependent on the input features (the higher the dose, the higher the probability of supra-therapeutic 

and vice-versa). As patients can only take on one of three possible therapeutic states, it follows that 

we can construct the probability of therapeutic aPTT quite simply as:  

 

P(therapeutic) = 1 [P(supra-therapeutic) + P(sub-therapeutic)]  (1)  

 

Where P(supra-therapeutic) is the multivariate logistic regression model for supra-therapeutic 

aPTT, and P(sub-therapeutic) is the multivariate logistic regression model for sub-therapeutic aPTT. 

To generate guidelines of the form in (1), we performed two independent multivariate logistic 

regressions, using the same features, with sub-therapeutic aPTT and supra-therapeutic aPTT as the 

outcomes of interest. We then combined these models to generate a model which describes the 

probability of all three therapeutic states of a patient as a function of initial dose, and other features.  

 

Model Analysis and Validation 

To validate the predictive performance of our sub- and supra-therapeutic models, we used 10 fold 
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cross validation to predict outcomes on a withheld test set given a known training set. We reported 

the mean AUC and standard deviation from this validation in addition to the results of a Hosmer -

Lemeshow test. To test our model's capabilities as a classifier of three distinct therapeutic states, 

we computed the Volume Under Surface (VUS) measure [15]. The VUS measure is similar to 

AUC, with the difference being that it may be used to quantify the performance of a classifier with 

more than two outcomes. We compared the VUS of our model to a weight-based model to gauge 

our method's improvement in classification performance. Lastly, we checked the statistical 

significance of the improvement in our model's predictive performance versus the weight-based 

approach using a likelihood-ratio test. All statistical analyses were performed using MATLAB 

Version R2013a. 

 

Alternative Models: 

To validate our approach's performance compared to standard forms of multinomial, and ordinal 

logistic regression, we performed several validation experiments, which can also be found in the 

Appendix, Sections 1 and 2. In addition to the logistic regression based methods, we attempted several 

other forms of machine learning algorithms as a means of validating our approach. Specifically, we 

compared our approach against a single and double layer neural network, two ensemble learning based 

approaches, and a multiclass support vector machine. In each case, the methods were allowed to train 

and validate on 70% of the data, and tested on the remaining 30%. We found that the more advanced 

methods did not perform as well on the testing portion of the classification task as our proposed 

approach – see Section 4 of the Appendix for full details. 

 

Results  

 

Main Analysis 

A total of 4779 unique adult individuals from the MIMIC-II database who received IV UFH during 

their ICU stay were identified. Patients who were transferred from another hospital or missing a full 

set of feature data were excluded, leaving the final cohort size at 1511. Summary information on our 
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patient population is shown in Table 1.  

 

The trends in our cohort's aPTT from heparin onset to approximately 24 hours after infusion are 

illustrated in Figure 1. The proportion of patients with supra-therapeutic aPTT decreased over time, 

from over a quarter of all patients at approximately 6 hours after infusion to roughly 5% by 

approximately 24 hours. 

In Figure 2 we show the distribution of initial heparin doses provided to our cohort as well as their 

aPTT values classified by therapeutic range. The figure illustrates two important points: (1) a large 

number of patients received heparin dosing outside the amount recommended in the guidelines from 

the institution, and (2) heparin misdosing is frequent even when the dosing is at guideline levels. Table 

2 provides the results of the multivariate logistic regression model for the risk of a supra- and sub-

therapeutic aPTT Combining our logistic regression models as shown in equation (1), the 

probability of sub-therapeutic, supra-therapeutic, and therapeutic aPTT as a function of initial dose 

for two example patients was plotted and shown in Figure 3. In comparing these models we found a 

VUS of 0.48 for our model versus 0.42 for the weight-based approach. While the increase in 

performance is modest, it is statistically significant according to the likelihood-ratio test (p < 0.01).  

 

Bolus Subset  

Of our original cohort, only 485 patients had data available on their initial heparin bolus. After 

removing transfer patients, we were left with 353 patients who met the inclusion criteria for a 

subgroup analysis. For this subgroup, a weight-normalized bolus term was not found to be 

statistically relevant (See Table A-10 of the Appendix). This suggests that our analysis is sound 

despite the lack of information on heparin bolus. Comparison of the patients who did and did not have 

data for heparin boluses is given in Table A-12 of the Appendix. 

 

Heparin Indication Subset 

We did not have sufficient information captured in the database to determine the exact indication for 

anticoagulation in this population of patients. For patients in which the indication was easily inferred 
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from ICD9 Codes, the distribution of therapeutic outcomes (goal aPTT range set by BIDMC 

guidelines) vs. initial heparin dose is shown by indication in Figures 7 through 10. Information 

regarding the primary diagnosis for enrolled patients is summarized in the Appendix, Tables A-13 

and A-14. When models were constructed using primary indication for heparin therapy as a covariate, 

the AUC increased in each case by <0.02. This analysis is shown in the Appendix, in Table A-15. 

 

Discussion  

The results of Figure 2 illustrate a surprisingly large variation in the initial dosing of UFH at the 

Beth Israel Medical Center. Of note, even when the guidelines are being followed, the variance in 

aPTT response remains large. This suggests that the wide variation in the initial aPTT results from 

both inter-provider practice variability and patient factors. This variance might be the result of 

clinicians dosing UFH according to known or presumed risk factors, despite the guidelines at their 

institution. An Austrian survey in 2010 also showed relatively lax adherence to dosing of 

enoxaparin for thromboprophylaxis in ICU practice [16]. 

 

As shown in Table 2, all of our chosen variables except the Elixhauser score, creatinine, liver 

function, and measurement time exhibited statistically significant relationships (p < 0.05) with the 

first measured aPTT. These results are consistent with what has been observed in the limited 

literature available. A 2008 study using data from 31,445 high risk patients across 420 hospitals 

determined that increased age and female sex were associated with elevated aPTT when using UFH, 

but that this effect was driven primarily by higher initial dosing relative to weight [10]. 

 

Figure 3 shows how two patients evaluated using our model exhibit distinctive probabilities of over-, 

under-, and therapeutic-dosing profiles. Figure 4 compares our model versus a weight-alone 

alternative. Our full-featured model recommends an initial UFH dose which will, for the same patient, 

provide a 5-10% increase in the probability of a therapeutic aPTT at six hours. Given the frequency 

with which patients are treated with UFH drips, an improvement on this order of magnitude would 

result in enhanced safety for a substantial number of patients. Since the covariates of our analysis are 
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commonly measured in an ICU setting, a clinician could employ our method to predict the risk for a 

supra- or sub-therapeutic aPTT for any given patient in real time, and dose a UFH drip accordingly 

following from Equation 1. Additionally, since the actual target aPTT range can be arbitrarily 

specified in the model to follow institution specific guidelines, it can be used to adjust initial heparin 

dosing to any desired therapeutic range. For instance, the goal aPTT for acute coronary syndromes at 

The Beth Israel Deaconess Medical Center  is 50-80 (see Section 6 of the Appendix); our model is 

capable of targeting this or other ranges (driven by physician preference) with only very minor 

adjustments. 

 

While our model's VUS exhibited modest (albeit significant) gains over a weight based approach, 

we feel that our work is a good starting point for the development of more effective heparin dosing 

guidelines and the approach would be strengthened as clinical databases continue to grow in size. 

The models require validation on other ICU datasets. This approach should also be evaluated in a 

randomized controlled trial. 

 

The simplicity of this approach makes it relatively easy to embed in a website as an online 

calculator. The model would require input of some fairly standard variables about a patient (age, 

ethnicity, gender, ICU type, and SOFA score) to dynamically generate the probability of reaching, 

overshooting, or undershooting a target range at six hours. With such a tool, a physician could 

choose an aPTT target range based on expected or tolerated risk of bleeding, and see the risk of over- 

or undershooting in real time for any initial heparin drip rate. 

 

Despite the encouraging results, our study has several limitations. Firstly, information concerning the 

initial heparin bolus for our patients was incomplete; only 353 of the patients in the cohort had bolus 

information available. In this sub-population, the amount of the weight-adjusted bolus did not have a 

significant impact on aPTT at 6 hours. One potential explanation for this is that information about the 

heparin bolus is correlated with – and therefore contained within – the infusion rate for the heparin 

drip. That is, a higher infusion rate is associated with a higher heparin bolus, and vice versa. We do 
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not consider the lack of information about a heparin bolus a significant flaw in our study design, but it 

does preclude us from making conclusions about the impact of heparin bolus on aPTT at six hours. 

 

In table A-14 we observe that 21.3% of patients had acute coronary syndromes as their primary 

diagnosis, followed by 12.8% with venous or arterial thrombosis (not in the brain or heart), 5% with 

primary valve disorders, 3.4% with ischemic strokes. and 1.6% of patients with atrial fibrillation. 

More than half (55.7%) had a primary diagnosis that does not require anticoagulation. In the 

subgroups for which information regarding primary indication was available, an indication of acute 

coronary syndrome or valvular disorder was associated with a higher probability of sub-therapeutic 

dosing and a lower probability of supra-therapeutic dosing. An indication of arterial or venous 

thrombosis was associated with a higher probability of supra-therapeutic dosing, with no change to 

the probability of sub-therapeutic dosing. The absence of this information is a real limitation of our 

results, and should be addressed as other groups build on our work using more complete databases. 

 

One additional weakness of our study is that the incidence of bleeding was available for our 

population. It is quite possible that the risk of bleeding for any given patient is more strongly 

influenced by individual patient factors than by aPTT. However, given that the risk for bleeding is 

known to increase with increasing aPTT and that a sub-therapeutic aPTT indicates ineffective 

therapy, it is certainly more desirable to have an aPTT in the therapeutic range from a safety 

standpoint. The same applies for thrombosis or thrombosis recurrence. 

 

Another limitation of this work is that the BIDMC heparin protocol was implemented in 

approximately 2002 (with uneven rollout throughout the hospital); some of the data included in the 

MIMIC-II database are from prior to the implementation of the guidelines. Due to the nature of our 

dataset (dates have been shifted for de-identification), we cannot identify which patients were treated 

based on the BIDMC weight-based protocol vs. physician-determined dose, since physicians were 

allowed to modify the dose at will, based on their assessment of the patient’s bleeding risk. However, 

the guideline used does not impact the construction or applicability of the model. The model is built 
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using weight-normalized heparin dose, regardless of whether or not a guideline was followed. The 

aPTT range targeted at BIDMC may be different from those at other institutions (in some cases 

substantially so), but since the model predicts a probability distribution of aPTT category, the upper 

and lower bounds of the therapeutic range can be arbitrarily specified. 

 

Lastly, the data in this study were collected retrospectively and as such were limited to what had 

been recorded on patients at the time. Further refinements could be made to the model by collecting 

information on levels of heparin-binding proteins and other substances affecting heparin activity, as 

well as the size of heparin boluses given with the heparin drips.  There remains the distinct 

possibility that aPTT is in fact immaterial to patient outcomes. Should a superior method to monitor 

the effect of heparin emerge, the approach described in the paper can be applied using that 

measurement as the outcome. In future prospective studies, it would be useful to include information 

on anti-Xa levels and bleeding/thrombotic outcomes in patients to allow comparison against aPTT 

and potentially help specify more clinically relevant endpoints [17]. 

 

Having clearly outlined these limitations, we feel that our work is valid and demonstrates that it is 

possible to improve on current weight-based heparin dosing practice using a data-driven approach. As 

more of these variables (such as anti-Xa activity and protein levels) move into clinical practice and the 

data become available, the ability to predict aPTT on the basis of available data will likely improve as 

well. 

 

Conclusion 

A central aim of this study was to create an approach that would help clinicians determine the 

optimal initial dose of a drug to safely and quickly reach a therapeutic aPTT window. One serious 

disadvantage of heparin risk factor analyses based on clinical trials alone is that they exclude patients 

who exhibit a high propensity for bleeding or severe complications caused by bleeding [2]. 

Retrospective analyses like ours are able to overcome this issue by utilizing clinical data that is 

reflective of the entire population actually receiving treatment. 
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The model we developed allows clinicians to determine the initial dose which would maximize the 

probability of a therapeutic aPTT by plotting P(Therapeutic) versus a viable range of dose values.  

This approach utilizes modeling techniques which are common in medical research, and could be 

easily replicated for other medications. Indeed, the applicability of the approach we described in this 

paper is not limited to heparin dosing, or to the ICU setting. Given any large, comprehensive data 

set, it is possible to use a combination of logistic regression curves to model the risks for over- or 

under-dosing in which either or both of these poses a significant risk. Potential applications include 

the use of any medication with a measured range of therapeutic blood levels (antibiotics such as 

vancomycin or aminoglycosides, antiepileptics such as valproic acid, post-transplant 

immunosuppressants such as tacrolimus, etc.), or medications that are titrated to effect (such as 

antihypertensives and insulin). Similar health informatics [18] techniques have already been used to 

improve interpretation of pulmonary artery catheter data [19] and quality of glycemic control 

algorithms [20]. As large datasets become more broadly available in multiple hospital systems, it will 

be possible to create institution- or patient population-specific prediction tools that can be used in 

real time to guide decisions regarding initial dosing. By reducing the time required to reach 

therapeutic range, patients will have reduced exposure to morbidity risk associated with over or 

under-dosing. 
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Tables 

 

Table 1: Summary statistics of selected features for the study cohort partitioned according to the 

partial thromboplastin time (aPTT) categories approximately 6 hours after the initial infusion of 

heparin. 

Mean (Standard Deviation) aPTT< 60sec 

(n = 747) 

60sec ≤ aPTT ≤100sec 

(n = 382) 

aPTT>100sec 

(n = 382) 

 

Age, years 

 

67.3 (14.8) 

 

68.6 (15.6) 

 

70.5 (14.8) 

 

SOFA Score 

 

5.3 (4.1) 

 

5.2 (4.0) 

 

6.4 (4.3) 

 

Elixhauser 

 

5.2 (5.1) 

 

5.6 (5.1) 

 

7.0 (5.7) 

 

Heparin Dose, UI/Kg*Hr 

 

11 (4.6) 

 

12.7 (3.7) 

 

14.8 (3.9) 

 

Measurement Time 
b
, hours 

 

6.3 (1.0) 

 

6.2 (1.1) 

 

6.3 (1.0) 

 

Creatinine, mg/dL 
a
 

 

1.5 (1.5) 

 

1.6 (1.5) 

 

1.7 (1.6) 

 

Ethnicity, % White 

 

69% 

 

66% 

 

69% 

 

Gender, % Male 

 

59% 

 

58% 

 

49% 

 

ICU Type, % Medical 

 

65% 

 

72% 

 

79% 

 

Pulmonary Embolism 

 

6% 

 

9% 

 

14% 

 

Obesity 

 

37% 

 

31% 

 

31% 

 

AST/ALT > 5x Upper Limit of 

Normal 

 

6% 

 

6% 

 

6% 

a 
SI conversion factor: To convert creatinine to mol/L, multiply by 88.4 

b 
 Measurement time is the time between heparin initiation and aPTT measurement.  
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Table 2: Results of a logistic regression for modeling supra-therapeutic (Table 2a)   and sub-

therapeutic (Table 2b) aPTT 6 hours after the initial dosing of heparin. 

2a 

Validation AUC Mean (Standard Deviation) =  0.79(0.02) 

HL test p-value =  0.118 

 

Odds 

Ratio 

 

95% Confidence Interval 

(Lower/Upper) 

 

p-value 

Age (Years) 1.01 1.01/1.02 < 0.01 

 

SOFA Score 1.09 1.05/1.13 < 0.01 

 

Elixhauser 1.01 0.99/1.03 0.42 

 

Heparin Dose, UI/Kg*Hr 1.27 1.23/1.32 < 0.01 

 

Measurement Time 
b 
,hours 0.99 0.87/1.12 0.86 

 

Creatinine mg/dL
a
 0.98 0.89/1.07 0.64 

 

Ethnicity, White 0.56 0.40/0.79 < 0.01 

 

Gender, Male 0.60 0.46/0.78 < 0.01 

 

ICU Type, Medical 1.60 1.17/2.17 < 0.01 

 

AST/ALT > 5x Upper Limit of Normal 1.28 0.72/2.29 0.40 

2b 

Validation AUC Mean (Standard Deviation) =  0.78(0.03) 

HL test p-value =  0.158 

 

Odds 

Ratio 

 

95% Confidence Interval 

(Lower/Upper) 

 

p-value 

Age 0.98 0.97/0.99 < 0.01 

 

SOFA Score 0.96 0.94/1.00 0.02 

 

Elixhauser 1.01 0.99/1.03 0.56 

 

Heparin Dose, UI/Kg*Hr 0.79 0.77/0.82 < 0.01 

 

Measurement Time
 
† 1.04 0.93/1.16 0.49 

 

Creatinine mg/dL
*
 1.01 0.93/1.10 0.83 

 

Ethnicity, White 1.64 1.20/2.23 < 0.01 

 

Gender, Male 1.44 1.13/1.82 < 0.01 

 

ICU Type, Medical 0.62 0.48/0.79 < 0.01 

 

AST/ALT > 5x Upper Limit of  

Normal 

0.77 0.46/1.29 0.33 

a 
SI conversion factor: To convert creatinine to mol/L, multiply by 88.4 

b 
 Measurement time is the time between heparin initiation and aPTT measurement.   
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Fig. 2The distribution of our cohort's partial thromboplastin time (aPTT) measures approximately 6 

hours after initial dosing as a function of the initial, weight-based heparin dose. 

 

Fig. 3Logistic probability models of sub-therapeutic, supra-therapeutic, and therapeutic dosing as a 

function of initial dose for two distinct patients. The dashed lines represent the response of a 40 year 

old, non-white, female, in the SICU with a SOFA score of 13. The solid lines represent a 20 year old, 

white, male subject in the SICU with a SOFA score of 5.  

 

Fig. 4A depiction of the logistic probability models of sub-therapeutic, supra-therapeutic, and 

therapeutic dosing as a function of initial dose for a 20 year old, white, male subject in the SICU with a 

SOFA score of 5 compared to the recommendations from a weight-alone based model. 


