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18.466 review session May 14, 2003: excerpts of sections 3.3-4.1. It’s important to 
know all definitions given in this document. Several theorems are stated in simplified forms 
without listing all their assumptions. In place of such assumptions it’s sufficient to say 
“under technical assumptions.” 

March 20, 2003 

3.3 M-estimators and their consistency. A sequence of estimators Tn , one for each 
sample size n, possibly only defined for n large enough, is called consistent if for X1,X2 , . . .  ,  
i.i.d. (Pθ ), Tn = Tn(X1, . . .  ,Xn) converges in probability as n → ∞  to a function  g(θ) 
being estimated. This section will treat consistency of estimators which are more general 
than maximum likelihood estimators in two ways, first that the function being maximized 
may not be a likelihood, and second that it only needs to be approximately maximized. 

It will be assumed that the parameter space Θ is a locally compact separable metric 
space with a metric d, such as an open or closed subset of a Euclidean space. (X,A, P ) 
will be any probability space, and h = h(θ, x) is a measurable function on Θ × X with 
values in the extended real number system [−∞,∞]. One example will be the negative of 
the log likelihood function, h(θ, x) ≡ − log f(θ, x). This will be called the log likelihood 
case. Let  X1,X2, . . .  be independent random variables with values in X and distribution 
P . A  statistic  Tn = Tn(X1, ...,Xn) with values in Θ will be called an M-estimator if 

n 1 n1 h(Tn ,Xi) = infθ∈Θ n h(θ,Xi). n i=1 i=1 

Thus, in the log likelihood case, an M-estimator is a maximum likelihood estimator. 

...... 

Statistics Tn = Tn(X1, ...,Xn ) with values in Θ will be called a sequence of approximate 
M-estimators if as n → ∞, 

n n1(3.3.1) n 

∑
i=1 h(Tn,Xi) − infθ∈Θ

1 h(θ,Xi) → 0 n i=1 

almost surely. 

...... 

For any real function f , as  usual  let  f+ := max(f, 0) and f− := −min(f, 0). A 
function h(·, ·) of  x and θ will be called adjusted for P if 

(3.3.2) Eh(θ, x)− < ∞ for all θ ∈ Θ, and 

(3.3.3) Eh(θ, x)+ < ∞ for some θ ∈ Θ. 

To say that h is adjusted is equivalent to saying that Eh(θ, ·) is well-defined (possibly +∞) 
and not −∞ for all θ, and for some θ, also  Eh(θ, ·) < +∞, so it is some finite real number. 

If a(·) is a measurable real-valued function on X such that h(θ, x) − a(x) is adjusted 
for P , then  h(·, ·) will be called adjustable for P and a(·) will be called an adjustment 
function for h and P . The next assumption is: 
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(A-3) h(·, ·) is adjustable for P . 

From here on, if h(θ, x) is adjustable but not adjusted, let γ(θ) :=  γa (θ) :=  
E[h(θ, x) − a(x)] for a suitable adjustment function a(·). As an example, let h(θ, x) :=  
|x − θ| for θ, x ∈ R. If  P is a law on R, such as the Cauchy distribution with density 
(π(1 + x2))−1 , with  ∫ |x|dP (x) =  +∞, then  h itself is not adjusted and an adjustment 
function is needed. Let a(x) :=  |x| in this case. Then for each θ, |x − θ| − |x| is bounded 
in absolute value (by |θ|), so γ(θ) is defined and finite for all θ. Thus  |x| is in fact an 
adjustment function for any P . 

...... 

Another assumption is: 

(A-4) There is a θ0 ∈ Θ such that γ(θ) > γ(θ0) for all θ �= θ0.


θ0 is called the pseudo-true value of θ.


.....

3.3.13 Theorem. Let  {Tn} be a sequence of approximate M-estimators. Assume (A-1) 
through (A-5) hold and Tn are measurable statistics. Then Tn → θ0 almost surely. 

...... 

To apply Theorem 3.3.13 to the case of maximum likelihood estimation the following 
will help. Let P and Q be two laws on a sample space (X, B). Let 

I(P, Q) :=  log(RP/Q)dP = − log(RQ/P )dP, 

called the Kullback-Leibler information of P with respect to Q. Here  we  have  RP/Q  ≡ 
1/RQ/P with 1/0 :=  +∞ and 1/ + ∞ := 0. 

3.3.15 Theorem. Let  (X, B) be a sample space and P, Q any two laws on it. Then 
I(P, Q) ≥ 0 and  I(P, Q) = 0 if and only if P = Q. 

..... 

Consistency of approximate maximum likelihood estimators, under suitable condi-
tions, does follow from Theorem 3.3.13, and assumption (A-3), and (A-4) for the true θ0, 
will follow from Theorem 3.3.15 rather than having to be assumed: 

3.3.16 Theorem. Assume (A-1) holds in the log likelihood case, so that h(θ, x) :=  
− log f(θ, x). Also suppose P = Pθ0 for some θ0 ∈ Θ and  Pθ0 � = θ0. Then  = Pθ for any θ �
h is always adjustable, with a(x) =  − log f(θ0, x). Assume Tn are approximate maximum 
likelihood estimators, i.e. approximate M-estimators in this case. If (A-2) and (A-5) also 
hold, then the Tn are consistent. 

..... 

It turns out apparently to be simpler to treat exponential families directly rather than 
apply the above general theorems to them: 

3.3.17 Theorem. Let  {Pθ , θ  ∈ Θ} be an exponential family in a minimal representation, 
where Θ is the interior of the natural parameter space, and P = Pθ0 for some θ0 ∈ Θ. 
Then maximum likelihood estimators exist eventually a.s. and are consistent. 
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3.4 M-estimates and robust location estimates. M-estimators, as defined in Sec. 3.3, 
are sometimes called M-estimators of ρ type where the function h(θ, x) may also be called 
ρ(θ, x). Such estimators include maximum likelihood estimators as noted there. Another 
class of M-estimators is a class of estimators of location in R which are robust, meaning 
that they are not sensitive to contamination of the data by a few erroneous values, as will 
be seen. 

Let ψ(θ, x) be a jointly measurable function, of θ in a parameter space Θ and x 
in a sample space X, where  ψ has values in a Euclidean space Rk . A  statistic  Tn := 

n
Tn(X1, . . .  ,Xn) will be called an M-estimator of ψ type if ψ(Tn,Xi ) ≡ 0. Such an i=1 
estimator is not necessarily an M-estimator of ρ type, but it is related in that if ρ(θ, x) has  
continuous first partial derivatives with respect to θ, then a necessary condition for Tn to be 
an M-estimator (of ρ type) is that it be  one  of  ψ type with ψ = gradient of  ρ. Under some 
rather special conditions, as for exponential families in Theorem 3.1.2, an M-estimator of 
ψ type where ψ is the gradient of ρ must also be one of ρ type. M -estimators of ψ type, 
where ψ is not necessarily a gradient, and the definition need only hold approximately as 
n → ∞, will be further treated in the next two sections. 

..... 

3.4.1 Proposition. (a)  For  any  law  P on R, m is a median of P if and only if 
∫ |x− θ| − |x|dP (x) is minimized for θ = m. (b)  If  ∫ |x|dP (x) < ∞, then  m is a median of 
P if and only if ∫ |x − θ|dP (x) is minimized for θ = m. 

...... 

There is a class of M-estimators of location having some properties like those of the 
median, including robustness, but which are more often, or always, unique. A non-constant 
function ρ(θ, x) for  x and θ real will be called a wide-sense Huber function if ρ(θ, x) ≡ 
ρ(|x − θ|) where  ρ(x) ≡ ρ(−x), ρ is convex, and ρ(x)/|x| is bounded as |x| → ∞. The  
convexity and symmetry properties imply that ρ attains its absolute minimum at 0 (and 
perhaps elsewhere). Examples of wide-sense Huber functions include 
(a) ρ(x) :=  |x|, 

2)1/2(b) ρ(x) := (c2 + x for any real c, and  
2(c) ρ(x) :=  x for |x| ≤ b and ρ(x) :=  c|x| − d for |x| > b  where b >  0 and the other 

constants are chosen to make ρ continuously differentiable, so that cb − d = b2 and 
2b = c, so  d = b2 and for |x| > b,  ρ(x) =  b(2|x| − b). 

Since Huber especially studied functions defined by (c), they might be called “narrow-
sense Huber functions.” 

April 23, 2003 

3.44 Robustness, breakdown points, and 1-dimensional location M-estimators. 

..... 

Let X = (X1 , ...,Xn ) and  Y = (Y1, ..., Yn ) be samples of real numbers. For j = 1, ..., n 
let X = j Y mean that Xi = Yi except for at most j values of i. More specifically, for 
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y = (y1, ..., yj ) let  X = j,y Y mean that for some integers ir with 1 ≤ i1 < i2 < ... < ij ≤ n, 
Yir = yr for r = 1, ..., j and Yi = Xi if i �= ir for r = 1, ..., j. The idea is that in the latter 
case, Xi are i.i.d. from a nice distribution like a normal and yr are errors or “bad” data. So 
the sample X contains n − j good data points and j errors. A robust statistical procedure 
will be one that doesn’t behave too badly if j is not too large compared to n. 

“Breakdown point” is one of the main ideas in robustness. Let T = T (X1, ..., Xn ) be  
a statistic taking values in some locally compact metric space Θ such as a Euclidean space. 
The closure of a set A ⊂ Θ will be denoted A. If Θ is a Euclidean space then a set A ⊂ Θ 
has compact closure if and only if sup{|x| : x ∈ A} < ∞. The  breakdown point of T at X, 
or more specifically the finite-sample breakdown point, is defined as 

1∗ε (T,  X) =  ε ∗(T ; X1 , ..., Xn ) =  max{j : {T (Y ) :  Y = j X} is compact}. 
n 

∗In other words ε (T,  X) =  j/n for the largest j for which there is some compact set K ⊂ Θ 
∗such that T (Y ) ∈ K whenever Y = j X. If ε (T,  X) doesn’t depend on X, which is often 

∗ ∗the case, then let ε (T ) :=  ε (T,  X) for all X. If Θ is a Euclidean space Rk , then the 
∗compactness condition in the definition of ε is equivalent to 

sup{|T (Y )| : Y = j X} < +∞. 

If a fraction of the data less than or equal to the breakdown point is bad (subject to 
arbitrarily large errors), the statistic doesn’t change too much (it remains in a compact 
set), otherwise it can escape from all compact sets (in a Euclidean space, or by definition 
in other locally compact spaces, it can go to infinity). There are a number of definitions 
of breakdown point. The definition of finite-sample breakdown point as above is given in 
Hampel et al., 1986, p. 98, for a real-valued statistic. 

Since j in the definition is an integer, the possible values of the breakdown point 
for samples of size n are 0, 1/n, 2/n, ..., 1. A statistic with a breakdown point of 0 is (by 
definition) not robust. Larger values of the breakdown point indicate more robustness, 
up to just less than 1/2. Finite-sample breakdown points ≥ 1/2 are unattainable in some 
situations, e.g. Theorem 3.44.2 below. 

Recall the definition of order statistics: for a sample X1, . . .  ,Xn of real numbers, let 
X(1) ≤ X(2) ≤  · · ·  ≤  X(n) be the numbers arranged in order. 

¯Examples. (i) For the sample mean T = X = (X1 + ... + Xn)/n, the breakdown point is 
¯0 since for j = 1,  if  we  let  y1 → ∞  then X → ∞  (for n fixed). 

(ii) Let T = X(1) , the smallest number in the sample. Then the breakdown point of T is 
again 0 since for j = 1,  as  y1 → −∞  we have X(1) → −∞. Likewise the maximum X(n) of 
the sample has breakdown point 0. 

¯So the statistics X,  X(1), X(n) are not robust. Other order statistics have some 
robustness (for fixed finite n): 

Theorem 3.44.1. For sample size n, and  each  j = 1, ..., n, the order statistic T = X(j) 
∗has breakdown point ε (T ) =  1 min(j − 1, n  − j).n 

..... 
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For real-valued observations X1, . . .  ,Xn, a real-valued statistic T = T (X1, ...,Xn ) 
will be called equivariant for location if for all real θ, and letting X = (X1, . . .  ,Xn ) and  
X + θ = (X1 + θ, ...,Xn + θ), 

T (X + θ) =  T (X) +  θ 

for all n-vectors X of real numbers and all real θ. 
¯For example, the order statistics X(j) and the sample mean X are clearly equivariant 

for location. 

Theorem 3.44.2. For any real-valued statistic T equivariant for location, the breakdown 
point is < 1/2 at  any  X = (X1, ...,Xn ). 

..... 

Now, we’ll consider breakdown points of 1-dimensional location M-estimators. Let 
ψ be a real-valued function of a real variable which is odd (meaning ψ(−x) ≡ −ψ(x)), 
nondecreasing, nonconstant, and bounded. Then ψ(−t) ≤ 0 =  ψ(0) ≤ ψ(t) for all t ≥ 0 
and ψ(−t) < 0 < ψ(t) for  some  t >  0 since  ψ is nonconstant. We will have ψ(t) → A as 
t → +∞ for some A >  0. Examples of such functions ψ include the derivatives ρ′(x) of  
wide-sense Huber functions (as defined in §3.4), where such derivatives are defined, with 
suitable choices where they are not defined, specifically, ψ(0) = 0 in all cases, ψ(x) :=  
ρ′(x+) := limh↓0(ρ(x + h) − ρ(x))/h and ψ(−x) :=  −ψ(x) for  x >  0. Then for location, 
the psi function of two variables is defined by ψ(θ, x) :=  ψ(x− θ), which is nonincreasing 
in θ. Given  a  sample  (X1 , . . .  ,Xn), let 

n 
∗ ∗θ := θ (X1, ...,Xn ) := sup  θ : ψ(Xi − θ) > 0 . 

i=1 

This is finite since the sum is ≤ 0 for  θ ≥ X(n) and also < 0 when  θ ≥ X(n) + t for some t 
such that ψ(t) > 0. Analogously, define 

n 
∗∗ ∗∗θ := θ (X1, . . .  ,Xn ) := inf  θ : ψ(Xi − θ) < 0 , 

i=1 

∗which is also finite since the sum is ≥ 0 for  θ ≤ X(1) . We  have  θ ≤ θ∗∗ because of 
the monotonicity of ψ. Then a statistic Tn = Tn(X1, . . .  ,Xn) will be an M-estimator of 

∗ ∗∗extended ψ type if and only if θ ≤ Tn ≤ θ . In order to have a unique estimator, the 
M-estimator defined by ψ and the sample will be defined, as for the sample median, by 

2
(θ ∗ ∗∗θ̂ := θ̂((x1, . . .  , xn) ) :=

1 
+ θ )((x1 , . . .  , xn) ). 

As will be seen, such estimators have the same (finite sample) breakdown points as the 
median, converging to 1/2 as  n → ∞ and as large as possible. Consider also scale-adjusted 

n nM-estimators, where instead of i=1 ψ(Xi − θ) we have  ψ((Xi − θ)/S) and  S is a i=1 
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∗ ∗scale estimator, with nonnegative values. The resulting θ , θ∗∗, and  θ̂ will be called θS , 
∗∗∗, and  θ̂S := (θ + θ∗∗)/2 respectively. If S = 0, then by definition set θS ⎧ ⎪ A, Xi > θ  ⎨ 

ψ((Xi − θ)/S) :=  0, Xi = θ ⎪ ⎩ −A, Xi < θ.  

It’s easily seen that if S = 0 then the M-estimator θ̂S based on the above definitions is 
exactly the median. 

To get a particular choice of S, let  M be the median of the sample, defined as X(k+1) 

if n = 2k + 1 is odd, and (X(k) + X(k+1) )/2 if  n = 2k is even. Let MAD denote the 
median absolute deviation, namely the median of |Xi − M |, and  S = MAD/.6745, where 
the constant 0.6745 is (to the given accuracy) the median of |Z| for a standard normal 
variable Z, and thus, S estimates the standard deviation σ for normally distributed data. 

Theorem 3.44.5. Let  ψ be a function from R into R, which is odd, nondecreasing, 
nonconstant, and bounded. Then the M -estimator θ̂ defined by ψ has breakdown point 
1 − 1 if n is even and 1 − 1 if n is odd. The same holds for the scale-adjusted M-estimator 2 n 2 2n 

θ̂S where we consider  ψ((Xi − θ)/S) for  the  S just defined. 
April 23, 2003 

3.5 Consistency of approximate M-estimators of ψ type. As in Sec. 3.3, let 
(X,A, P ) be a probability space and Θ a locally compact separable metric space. Let 
ψ(θ, x) be a function of x in X and θ ∈ Θ with values in a Euclidean space Rm. Let  
X1,X2, . . .  be independent with values in X and distribution P . A sequence of estimators 
Tn := Tn(X1, . . .  ,Xn) with values in Θ will be called approximate M-estimators of ψ 
type if 

n(3.5.1) 1 ψ(Tn ,Xi) → 0 almost surely as n → ∞. n i=1 

Recall that if Tn are M-estimators of ψ type, the expression on the left in (3.5.1) equals 
0, at least with probabilities converging to 1. Convergence of Tn to some θ0 holds under 
some assumptions: 

..... 

(B-3) λ(θ) :=  Eψ(θ, ·) is defined and finite for all θ, and for some θ0, λ(θ0) = 0, while 
= 0  for  all  θ �λ(θ) � = θ0. 

.......


In (B-3), ψ(θ, ·) will be integrable for all P and θ if it is a bounded function of x 
for each θ. If  ψ is bounded uniformly in x and θ, as for the classes of ψ functions with 
−A ≤ ψ(θ, x) ≤ A <  +∞ considered in the 1-dimensional location case, so much the 
better. 

...... 
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3.5.4 Theorem. Let  {Tn} be a sequence of measurable approximate M-estimators of ψ 
type. If (B-1), (B-2), (B-3) and (B-4) hold, then Tn → θ0 almost surely. 

May 8, 2003 

3.6 Asymptotic normality of M-estimates. First, let’s note some of the conditions 
under which nonlinear functions of sample averages are asymptotically normal. Let f be 
a function from an open interval containing a point µ into R. Suppose the derivative 
f ′(µ) exists and is not 0. Let X1,X2, . . .  ,  be i.i.d. variables with mean µ and variance 
0 < σ2 := σ2(X1) < ∞. Let  Sn := X1 + · · ·  + Xn, and  Xn := Sn/n. Then  
|Xn − µ| = Op(n−1/2) by Chebyshev’s inequality, and 

f(Xn) =  f(µ) +  f ′(µ)(Xn − µ) +  o(|Xn − µ|), so 

n1/2(f(Xn) − f(µ)) = f ′(µ)((Sn − nµ)/n1/2) +  op(1). 

Thus the distribution of the left side converges to N(0, f ′(µ)2 σ2) by the central limit 
theorem. This kind of reasoning is known as the “delta-method.” To extend the method 
to vector-valued random variables, let f be a real-valued function on an open set U ⊂ Rk . 
Then f is said to be Fréchet differentiable at a point t ∈ U if there is a vector v := f ′(t) ∈ 
R

k such that 
f(u) =  f(t) +  v · (u − t) +  o(|u − t|) 

as u → t. For  k = 1, this is equivalent to the usual derivative. For k >  1, the components 
of f ′(t) will be the partial derivatives ∂f(u)/∂ui|u=t, forming the gradient of f at t. Each  
partial derivative is a directional derivative in the direction of a coordinate axis. Existence 
of the Fréchet derivative means that not only these partial derivatives exist, but the graph 
of f has a tangent hyperplane at (t, f(t)) ∈ Rk+1, see  Problem 2.  

Using the central limit theorem in Rk , the delta-method extends straightforwardly to 
R

k -valued random variables having finite second moments. 
If f takes values in Rm then the definition of Fréchet derivative is formally the same, 

but with the vector v replaced by a linear transformation from Rk into Rm, given  by  an  
m × k matrix. The Fréchet differentiability of f is equivalent to that of each of its m 
component real-valued functions. 

Next, asymptotic normality can be shown in quite general cases. Let Θ be an open 
subset of R

m, (X,A, P ) a probability space, and ψ a function from Θ × X into R
m . 

Let X1,X2, . . .  be i.i.d. with values in X and distribution P . It is true under further 
assumptions that for a sequence Tn = Tn(X1, . . .  ,Xn) of statistics with values in Θ, if 

n(3.6.1) n−1/2 ψ(Tn,Xi) → 0 in probability, i=1 

then the distribution of Tn will converge to some normal law. 

...... 

3.6.13 Lemma. Assume that (AN-1) through (AN-5) hold and Tn are estimators satis-
fying (3.6.1). Then 

n 
n1/2 λ(Tn) +  1 ψ(θ0,Xi) → 0 in probability. n i=1 

..... 
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Since λ(·) takes the open set Θ ⊂ Rm into Rm, its  Fréchet derivative at θ0, if it exists, 
is a linear transformation A from Rm into itself, given by an m × m matrix. Note that 
if A exists and is non-singular, then (AN-4)(i) follows. Let B′ denote the transpose of a 
matrix B. 

3.6.15 Theorem. Assume (AN-1) through (AN-5), that Tn satisfy (3.6.1), and that λ has 
a non-singular Fréchet derivative A at θ0. Then  n1/2(Tn − θ0) is asymptotically normal 
with mean 0 and covariance matrix A−1C(A−1 )′, where  C is the covariance matrix of 
ψ(θ0, x). 

May 8, 2003 

3.7 Efficiency of estimators. In this and the following two sections the distribution of 
the data is assumed to belong to a parametric family {Pθ , θ  ∈ Θ}, having densities f(θ, x). 

The information inequality or Fréchet-Cramér-Rao lower bound, when Θ is an open 
interval in R and g is a differentiable real-valued function on Θ, is 

varθ (Tn) ≥ g ′(θ)2/(nI1(θ)), 

where I1(θ) :=  Eθ ((∂f(θ, x)/∂θ)2), as was proved in Theorem 2.4.10 under some regularity 
conditions when Tn is an unbiased estimator of g(θ). But by Theorem 2.4.15, if log f(θ, x) 
is C1 in θ, the lower bound is attained for all θ only when the family of distributions is 
exponential of order 1 with T (x) equal to the given estimator Tn(x) where  x = (x1, . . .  , xn). 
When this is true for one function T (·), the only other functions for which it holds are 
aT (·)+b where a �= 0  and  b are constants. So the only functions having unbiased estimators 
attaining the information inequality lower bound for all θ are ag(θ)+  b where now a and b 
are any constants and g is the specific function d log K(θ)/dθ for which T is the unbiased 
estimator, by Corollary 2.5.9. Even for exponential families of order 1, unique unbiased, 
admissible estimators (for other functions) may be unsatisfactory, as in the example at the 
end of Sec. 2.5. 

If the information inequality provided best possible lower bounds for mean-square 
errors only for estimating functions ag(θ)+  b as just described, it would not be very useful. 
There is, however, an asymptotic lower bound, 

(3.7.1) lim inf Eθ ([n 1/2(Tn − g(θ))]2) ≥ g ′(θ)2/I(θ), 
n→∞ 

where I(θ) ≡ I1(θ), which is valid under rather general conditions, without unbiasedness, 
as will be shown here first for g(θ) ≡ θ, so  g′(θ) ≡ 1, in Theorem 3.7.3, then for more 
general g in Theorem 3.7.9. 

...... 

For the family of laws Pθ = U [θ, θ+1] on R, there exist (unbiased) estimators of θ with 
mean-square error of order 1/n2 (Sec. 2.4, Problem 3). Thus some regularity conditions 
(equivalence, differentiability in θ) cannot both just be removed. 

Let L(θ, x) :=  log  f(θ, x). Derivatives with respect to θ will be denoted by primes, 
so that L′(θ, x) :=  ∂L(θ, x)/∂θ, etc. Then by (AV-1) and (AV-2), L(θ, x) is a  C2 function 
of θ for any x ∈ B. The Fisher information I(θ) =  Eθ (L′(θ, x)2) as defined in Sec. 2.4. 
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..... 

Let {Tn}n≥1 be a sequence of estimators (statistics), so that for each n, Tn is mea-
surable from Xn into Θ. It will be assumed that the Tn are consistent estimators of θ, at  
least in probability, and are asymptotically normal: 

(AV-6) For each θ, there  is  a  v(θ) with 0  < v(θ) < ∞ such that as n → ∞, the distribution 
of n1/2(Tn − θ) under Pn converges to N(0, v(θ)).θ 

..... 

Assuming asymptotic normality (AV-6), if 

(3.7.2) v(θ) ≥ 1/I(θ) 

holds, then so does (3.7.1) for g(θ) ≡ θ. 
The next theorem will give an almost everywhere lower bound on efficiency of estima-

tors of a 1-dimensional parameter. 

..... 

3.7.3 Theorem. Under assumptions (AV-1) through (AV-6), (3.7.2) holds for almost all 
θ in the open interval Θ for Lebesgue measure. 

...... 

Next, Theorem 3.7.3 will be extended to estimators of functions g(θ), by the delta-
method. The factor g′(θ)2 is familiar from information inequalities (Section 2.4). Note 
that (AV-1) through (AV-5) don’t mention any estimators Tn. 

3.7.9 Theorem. Assume (AV-1) through (AV-5). Let g be a C1 function: Θ → R. 
Suppose that for each θ ∈ Θ, there is a w(θ) ≥ 0 such that for each θ with g′(θ) �= 0,  √
0 < w(θ) < ∞ and the distribution of n(Tn − g(θ)) under Pn converges to N(0, w(θ)).θ 
Then for Lebesgue almost all θ ∈ Θ, w(θ) ≥ g′(θ)2/I(θ). 

..... 

If A is a k × m matrix, then A′ denotes its transpose, with (A′)ij := Aji for 
i = 1, . . .  ,m, j = 1, . . .  , k. In particular, if x is a row vector (x1, . . .  , xm ) then  x is the 
corresponding column vector, and vice versa. In fact, elements of Rm will usually be taken 
as column vectors y, so that  y is the corresponding row vector. Matrix multiplication is 

mwritten by juxtaposition. Thus for x, y ∈ R
m , x y = j=1 xj yj is the usual dot product 

m 
x · y. If  x, y ∈ R

m and C is an m × m matrix, then x Cy is the number i,j=1 Cij xiyj . 
The Fisher information for a single parameter extends to the Fisher information matrix 

for several parameters, defined as follows. Let Θ be an open set in R
m. For  θ := 

(θ1, . . .  , θm), let 

(3.7.10) I(θ)ij := Eθ 
∂L(θ, x) ∂L(θ, x) 

) 

∂θi ∂θj 
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∣ (( ) ) ∫ 
if the partial derivatives exist and have finite variances. Alternate forms of Iij are 

I(θ)ij = Eθ 
∂Rφ,θ ∂Rφ,θ ∣ ∂f(θ, x) ∂f(θ, x) 1 ∣ = dν(x). 
∂φi ∂φj φ=θ ∂θi ∂θj f(θ, x) 

...... 

(AC-3) Let L(θ, x) :=  log  f(θ, x). For each θ ∈ Θ, the Fisher information matrix I(θ) as  
defined by (3.7.10) exists and is strictly positive definite. Also, Eθ (�θ L(θ, x)) = 0 for the 
gradient of L. 

(AC-4) {Eθ ∂
2L(θ, x)/∂θi∂θj }m = −I(θ) for all θ ∈ Θ.i,j=1 

..... 

(AC-6) Tn are estimators of θ ∈ Θ such that for each θ, the distribution of n1/2(Tn − θ) 
under Prθ converges as n → ∞ to some multivariate normal law N(0, v(θ)) where v(θ) is  
a nonnegative definite symmetric matrix. 

3.7.11 Theorem. Assume (AC-1) through (AC-6). Then for Lebesgue almost all θ ∈ Θ, 
v(θ) − I−1(θ) is nonnegative definite. Thus, v(θ) is positive definite. 

May 6, 2003 

3.8 Efficiency of maximum likelihood estimators. Let  K >>  M  for m ×m matrices 
K, M mean that K − M√is nonnegative definite. Let Tn be a sequence of estimators such 
that the distribution of n(Tn − θ) under Prθ is asymptotically N(0, v(θ)). By Theorem 
3.7.11, under its assumptions, v(θ) >> I(θ)−1 for Lebesgue almost all θ. Thus,  the  √ 
sequence {Tn} will be called “efficient” if for all θ, under Prθ , n(Tn −θ) is asymptotically 
N(0, v(θ)) with I(θ)−1 >> v(θ). In practice, efficient estimators will have v(θ) =  I(θ)−1 for 
all θ. The definition allows for superefficiency for some set of θ which, under the conditions 
of Sec. 3.7, will have Lebesgue measure 0. The efficiency of maximum likelihood estimators 
with v(θ) ≡ I(θ)−1 holds under some assumptions. 

..... 

The observations X1,X2, . . .  , are i.i.d. (Pθ0 ) for  some  θ0 ∈ Θ. Let L(θ, x) :=  log  f(θ, x) 
and ψ(θ, x) :=  �θ L(θ, x) where  �θ denotes gradient with respect to θ. 

(EML-2) For each x ∈ X, f(·, x) is  C1 with respect to θ, and the Fisher information matrix 
I(·) exists on Θ and is continuous and non-singular at θ0. 

If Eθ (�θ L(θ, x) = 0, which is shown in Theorem 3.8.1 to follow from the given as-
sumptions, then I(θ) is the covariance matrix C of ψ(θ, x). 

(EML-3) {Tn} is a sequence of maximum likelihood estimators and is consistent, in other 
words Tn → θ in Prθ -probability as n → ∞ for all θ. 

Conditions for consistency of M-estimators were given in Sections 3.3 and 3.5. 
Conditions (AN-4) and (AN-5)(ii) in Section 3.6 will be assumed, locally uniformly in 

θ0. Specifically, recall that for δ >  0 small enough, depending on θ, 

u(θ, x, δ) := sup{|ψ(η, x) − ψ(θ, x)| : |η − θ| ≤ δ}. 
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(EML-4) (i) For each θ, φ ∈ Θ, λφ(θ) :=  Eφψ(θ, x) exists  in  Rm. Let  λ(·) :=  λθ0 (·). 
..... 

As in Theorem 3.6.15, let A be the Fréchet derivative of λ(·) at  θ0 if it exists. 

3.8.1 Theorem. Assume (EML-1) through (EML-5). Then λ(θ0 ) = 0  and  A exists with √ 
A = −I(θ0). Also, the distribution of n(Tn − θ0) converges  to  N(0, I(θ0)−1) as  n → ∞. 

May 12, 2003 

3.9 A likelihood ratio test for nested composite hypotheses: Wilks’s theorem. 
Let Θ be a d-dimensional parameter space, specifically, an open set in Rd. Let  H0 be a 
k-dimensional subset of Θ, in a sense to be made more precise below, for some k <  d. 
For example, H0 could be the intersection with Θ of a k-dimensional flat hyperplane. Let 
{Pθ , θ  ∈ Θ} be an equivalent family of laws on a sample space (X,B) with a likelihood 
function f(θ, x) > 0 for all θ ∈ Θ and  x ∈ X. 

Assume that observations X1, . . .  ,Xn are i.i.d. Pθ for some θ ∈ Θ. We want to test the 
hypothesis that θ ∈ H0. S. S. Wilks proposed the following test: let L(θ, x) := log  f(θ, x) 
be the log likelihood. For n observations, let the maximum log likelihoods over Θ and H0 

be respectively 

n n ∑ ∑ 
MLLd := sup L(θ,Xj ),  MLLk := sup L(θ,Xj ). 

θ∈Θ j=1 θ∈H0 j=1 

Let W := 2(MLLd − MLLk ). Wilks found that if the hypothesis H0 is true, then the 
distribution of W converges as n → ∞ to a χ2 distribution with d− k degrees of freedom, 
not depending on the true θ = θ0 ∈ H0. Thus,  H0 would be rejected if W is too large in 
terms of the tabulated χ2 distribution.d−k 

It turns out that Wilks’s conclusion can be proved under the same assumptions as are 
used to prove the lower bounds on asymptotic efficiency of estimators in Section 3.7 and 
efficiency of maximum likelihood estimators in Section 3.8. 

..... 

3.9.1 Theorem (Wilks’s theorem). Assume (AC-1) through (AC-5) in Section 3.7 and 
(EML-1) through (EML-5) in Section 3.8 for Θ where in (EML-3), Tn are maximum 
likelihood estimators of θ ∈ Θ. Let H0 be a smooth k-dimensional subset of Θ containing 
θ0 for some k <  d. Let  Un be maximum likelihood estimators of η in H0, assumed to exist 
and be unique with probability converging to 1 as n → ∞. Assume also that Un → θ0 in 
probability as n → ∞. 

Then as n → ∞, the distribution of W converges to a χ2 distribution.d−k 

Here is a summary of section 4.1 on consistency of posteriors: Posteriors πn,x are 
said to be consistent if for every neighborhood U of the true parameter θ0, πx,n (U) → 1 
almost surely as n → ∞. Theorem 4.1.4 says that under very general conditions, this 
holds for π-almost all θ0 where π is the prior. Theorem 4.1.1 gives sufficient conditions, 
similar to those for consistency of M-estimates in section 3.3, so that we have consistency 
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of posteriors for all θ0 ∈ Θ. Proposition 4.1.2 and an example after it show, however, 
that consistency can fail at an individual θ0 if as θm → θ0, although f(θm, x) → f(θ0, x) 
for all x, the densities f(θm, ·) are moving away from f(θ0, ·) in terms of Kullback-Leibler 
distance, and if the prior π gives probabilities to neighborhoods U of θ0 that approach 0 
very fast as U shrinks to θ0. 
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