APPENDIX A. UNIQUENESS OF LIKELIHOOD RATIOS

Let (X,\mathcal{B}) be a measurable space. For two measures μ and ν on \mathcal{B},μ is said to be *absolutely continuous* with respect to ν if for each $B \in \mathcal{B}$, $\nu(B) = 0$ implies $\mu(B) = 0$. Recall that the measure ν is called σ -*finite* if X is the union of a sequence of sets $B_n \in \mathcal{B}$ with $\nu(B_n) < \infty$. Recall also that by the Radon-Nikodym theorem (e.g. RAP, Theorem 5.5.4), if μ is finite (i.e. $\mu(X) < \infty$), ν is σ -finite, and μ is absolutely continuous with respect to ν , then there is an integrable function $d\mu/d\nu := f \geq 0$ such that

$$
\int_B f \, d\nu \ = \ \mu(B) \ \text{ for all } \ B \in \mathcal{B}.
$$

Then for any integrable function g for μ ,

$$
\int gf \, d\nu \ = \ \int g \, d\mu;
$$

this is true for indicator functions $f = 1_B$, thus for simple functions, then by monotone convergence for nonnegative measurable functions, then by linearity for any μ -integrable function.

Now, if κ is a finite measure absolutely continuous with respect to μ , then letting $g := 1_B d\kappa/d\mu$ for any $B \in \mathcal{B}$, which is μ -integrable, we get from (A.1)

$$
\int_B \frac{d\kappa}{d\mu} \frac{d\mu}{d\nu} d\nu = \int_B \frac{d\kappa}{d\mu} d\mu = \kappa(B).
$$

It follows that a.e. ν , i.e. almost everywhere for ν ,

$$
\frac{d\kappa}{d\nu} = \frac{d\kappa}{d\mu}\frac{d\mu}{d\nu}.
$$

Let P and Q be probability measures on (X, \mathcal{B}) and for a σ -finite measure ν such that P and Q are both absolutely continuous with respect to ν , a form of likelihood ratio of Q to P is defined by

$$
R_{Q/P,\nu}(x) := \begin{cases} \frac{dQ/d\nu}{dP/d\nu}(x), & \text{if } (dP/d\nu)(x) > 0\\ +\infty, & \text{if } (dQ/d\nu)(x) > 0 = (dP/d\nu)(x) \\ 0, & \text{if } (dQ/d\nu)(x) = (dP/d\nu)(x) = 0. \end{cases}
$$

The likelihood ratio actually doesn't depend on ν :

A.3 Theorem. If P and Q are probability measures on (X, \mathcal{B}) , both absolutely continuous with respect to σ -finite measures ν and τ on (X,\mathcal{B}) , then

$$
R_{Q/P,\nu}(x) = R_{Q/P,\tau}(x)
$$

for $(P+Q)$ -almost all x.

Proof. We can assume $\tau = P + Q$, which is absolutely continuous with respect to ν . Then by $(A.2)$,

(A.4)
$$
\frac{dP}{d\nu} = \frac{dP}{d\tau} \frac{d\tau}{d\nu} \text{ and } \frac{dQ}{d\nu} = \frac{dQ}{d\tau} \frac{d\tau}{d\nu}, \quad \nu\text{-almost everywhere.}
$$

Thus

$$
R_{Q/P,\nu} \,\,=\,\,\frac{dQ/d\nu}{dP/d\nu} \,\,=\,\,\frac{dQ/d\tau}{dP/d\tau} \,\,=\,\, R_{Q/P,\tau}
$$

on the set where $d\tau/d\nu > 0$ and $dP/d\tau > 0$; *v*-almost everywhere on this set, $dP/d\nu > 0$ by (A.4). On the set where $d\tau/d\nu > 0 = dP/d\tau$, we have almost everywhere for ν , $dQ/d\nu > 0 = dP/d\nu$, so $R_{Q/P,\nu} = +\infty = R_{Q/P,\tau}$. The set where $d\tau/d\nu = 0$ has $(P+Q)$ -
measure 0, so $R_{Q/P,\nu} = R_{Q/P,\tau}$ almost everywhere for $P+Q$. measure 0, so $R_{Q/P,\nu} = \widetilde{R}_{Q/P,\tau}$ almost everywhere for $P+Q$.

Recall that $R_{Q/P}$ was defined in Sec. 1.1 as $R_{Q/P,\tau}$ for $\tau = P+Q$. Thus Theorem A.3 gives $R_{Q/P,\nu} = R_{Q/P} (P+Q)$ -almost everywhere, for any σ -finite ν dominating P and Q.