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APPENDIX C - SEPARABILITY OF PROCESSES 

Let (X,A, P ) be a probability space and Θ a set (parameter space). A function h from 
X × Θ into  [ ] is called a stochastic process if for each θ ∈ Θ, h(·, θ) is a measurable −∞,∞
function on X. 

Suppose (Θ, T ) is a topological space. The process h(·, ·) is called separable (relative 
to the closed sets) if there is a countable set S ⊂ Θ (called a separant) and  a set  A ⊂ X 
with P (A) = 0 such that for every closed set J ⊂ [ ] and every open set U ⊂ Θ,−∞,∞

{x : h(x, θ) ∈ J for all h(x, θ) ∈ J for all θ ∈ U}.θ ∈ S ∩ U} ⊂  A ∪ {x : 

For Sec. 3.3 the following is needed: 

C.1 Theorem. If  (Θ, T ) is separable, i.e. has a countable dense set Y , a process h(·, ·) 
is separable relative to the closed sets if and only if there is a countable dense set T ⊂ Θ 
and a set B ⊂ X with P (B) = 0 such that for all x /∈ B, the graph of h(x, ·) restricted  to  
T is dense in the whole graph. 

Proof. First, to check “if”, take A = B and S = T . If  x /∈ A and h(x, θ) ∈ J for all 
θ ∈ S ∩ U , then for  each  φ ∈ U , the  point (φ, h(x, φ)) is in the closure of the set of points 
(θ, h(x, θ)) for θ ∈ S ∩ U , which is included in the closed set Θ × J by assumption, so 
h(x, φ) ∈ J as desired. 

To prove “only if”, suppose h(·, ·) is separable for a set A ⊂ X and separant S. Let  
T := S ∪ Y , which is countable, dense in Θ, and still a separant. Let x /∈ A and suppose 
the graph GT of h(x, ·) restricted to T is not dense in the whole graph. Then take φ ∈ Θ 
such that (φ, h(x, φ)) is not in the closure of GT in Θ × [−∞,∞]. By definition of product 
topology, take an open neighborhood U of φ in Θ and an open neighborhood V of h(x, φ) 
such that GT is disjoint from U× V . Let  J := [ ]\ V , a closed set. Then h(x, θ) ∈ J−∞,∞
for all θ ∈ U ∩ T but h(x, φ) /∈ J , contradicting separability. Q.E.D. 

To put the next fact in a notation more familiar in probability theory, we will have 
Θ =  T ⊂ R, the probability space X will be written as Ω, and for t ∈ T and ω ∈ Ω we  
will write xt(ω) instead of h(ω, t). A main fact about separability, proved by Doob, is the 
following: 

C.2 Theorem. Let  xt, t  ∈ T ⊂ R, be any stochastic process with values in [−∞,∞], 
defined over a probability space (Ω,A, P ) . Then there exists another stochastic process 
(t, ω) → yt(ω), also for t ∈ T and ω ∈ Ω, and also with values in [−∞,∞], such that for 
each t ∈ T , P (xt = yt) = 1, and such that yt is separable relative to the class of closed 
subsets of [−∞,∞]. 

Remarks. Usually, xt will be a real-valued stochastic process. Then if the paths t xt(ω)→
for almost all ω can be taken to have some regularity property such as continuity or right-
continuity, for such a choice, the process will already be separable. For a general process, 
however, yt may need to take infinite values even if xt does not. 
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NOTE


The notion of separability for stochastic processes is due to J. L. Doob. I am thankful 
to Donald L. Cohn for telling me Theorem C.1. Theorem C.2 is given in Doob (1953) 
Theorem 2.4 of Chap. 2, p. 57. 
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