APPENDIX C - SEPARABILITY OF PROCESSES

Let (X, \mathcal{A}, P) be a probability space and Θ a set (parameter space). A function h from $X \times \Theta$ into $[-\infty, \infty]$ is called a *stochastic process* if for each $\theta \in \Theta$, $h(\cdot, \theta)$ is a measurable function on X.

Suppose (Θ, \mathcal{T}) is a topological space. The process $h(\cdot, \cdot)$ is called *separable* (relative to the closed sets) if there is a countable set $S \subset \Theta$ (called a *separant*) and a set $A \subset X$ with P(A) = 0 such that for every closed set $J \subset [-\infty, \infty]$ and every open set $U \subset \Theta$,

 $\{x: h(x,\theta) \in J \text{ for all } \theta \in S \cap U\} \subset A \cup \{x: h(x,\theta) \in J \text{ for all } \theta \in U\}.$

For Sec. 3.3 the following is needed:

C.1 Theorem. If (Θ, \mathcal{T}) is separable, i.e. has a countable dense set Y, a process $h(\cdot, \cdot)$ is separable relative to the closed sets if and only if there is a countable dense set $T \subset \Theta$ and a set $B \subset X$ with P(B) = 0 such that for all $x \notin B$, the graph of $h(x, \cdot)$ restricted to T is dense in the whole graph.

Proof. First, to check "if", take A = B and S = T. If $x \notin A$ and $h(x, \theta) \in J$ for all $\theta \in S \cap U$, then for each $\phi \in U$, the point $(\phi, h(x, \phi))$ is in the closure of the set of points $(\theta, h(x, \theta))$ for $\theta \in S \cap U$, which is included in the closed set $\Theta \times J$ by assumption, so $h(x, \phi) \in J$ as desired.

To prove "only if", suppose $h(\cdot, \cdot)$ is separable for a set $A \subset X$ and separant S. Let $T := S \cup Y$, which is countable, dense in Θ , and still a separant. Let $x \notin A$ and suppose the graph G_T of $h(x, \cdot)$ restricted to T is not dense in the whole graph. Then take $\phi \in \Theta$ such that $(\phi, h(x, \phi))$ is not in the closure of G_T in $\Theta \times [-\infty, \infty]$. By definition of product topology, take an open neighborhood U of ϕ in Θ and an open neighborhood V of $h(x, \phi)$ such that G_T is disjoint from $U \times V$. Let $J := [-\infty, \infty] \setminus V$, a closed set. Then $h(x, \theta) \in J$ for all $\theta \in U \cap T$ but $h(x, \phi) \notin J$, contradicting separability. Q.E.D.

To put the next fact in a notation more familiar in probability theory, we will have $\Theta = T \subset \mathbb{R}$, the probability space X will be written as Ω , and for $t \in T$ and $\omega \in \Omega$ we will write $x_t(\omega)$ instead of $h(\omega, t)$. A main fact about separability, proved by Doob, is the following:

C.2 Theorem. Let $x_t, t \in T \subset \mathbb{R}$, be any stochastic process with values in $[-\infty, \infty]$, defined over a probability space (Ω, \mathcal{A}, P) . Then there exists another stochastic process $(t, \omega) \mapsto y_t(\omega)$, also for $t \in T$ and $\omega \in \Omega$, and also with values in $[-\infty, \infty]$, such that for each $t \in T$, $P(x_t = y_t) = 1$, and such that y_t is separable relative to the class of closed subsets of $[-\infty, \infty]$.

Remarks. Usually, x_t will be a real-valued stochastic process. Then if the paths $t \mapsto x_t(\omega)$ for almost all ω can be taken to have some regularity property such as continuity or rightcontinuity, for such a choice, the process will already be separable. For a general process, however, y_t may need to take infinite values even if x_t does not.

NOTE

The notion of separability for stochastic processes is due to J. L. Doob. I am thankful to Donald L. Cohn for telling me Theorem C.1. Theorem C.2 is given in Doob (1953) Theorem 2.4 of Chap. 2, p. 57.

REFERENCE

Doob, J. L. (1953). Stochastic Processes. Wiley, New York.