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APPENDIX D - BASIC PROBABILITY THEORY


Probability theory has an axiomatization, as follows. There is a set, say X, called 
the sample space. An observation will be a point x of X. Probabilities will be defined for 
some subsets of X, called events. The collection B of all events will be assumed to be a 
σ-algebra, in other words, to satisfy the following conditions: 

(a) The empty set ∅ and X are in B; 
(b) The complement Ac := X \ A is the set of all x in X not in A. If  A is in B, so  

is Ac . 
(c) For any sequence A1, A2, ... of sets in B, the union 

�∞ 
An, in  other  words  the  n=1 

set of all x such that x ∈ An for some n, is  also in  B. 

It follows easily from the definition that any intersection of σ-algebras of subsets of X 
is a σ-algebra of subsets of X. The collection 2X of all subsets of X is a σ-algebra. Thus 
for any collection A of subsets of X, there is a smallest σ-algebra including A, called the 
σ-algebra generated by A, namely, the intersection of all σ-algebras including A, one  of  
which is 2X . If  X is the real line R then an important σ-algebra of subsets of X is the 
Borel σ-algebra generated by the collection of all open intervals (a, b) for  a <  b  in R. 

If X is a set and B is a σ-algebra of subsets of X then (X, B) is called a measurable 
space. 

If (X, B) is a measurable space then a function µ on B is called a measure if: 
(d) 0 ≤ µ(A) ≤ +∞ for all A ∈ B; 
(e) µ(∅) = 0;  
(f) For any sequence A1, A2, ..., of sets in B which are disjoint, in other words Ai∩Aj = 

∅ whenever i � n=1 n=1 µ(An).= j, we  have  µ( 
�∞ 

An) =  
�∞


Then (X, B, µ) is called a measure space.


A main example of a measure space is given by X = R, with  B as the Borel σ-algebra, 
and µ as Lebesgue measure λ, which equals the length for intervals. 

A measure space (X, B, µ) is called a probability space if and only if µ(X) = 1.  Then  
µ is often written as P , or as  Q if two probability measures are considered, or sometimes 
as Pr. 

If (X, B) is any measurable space, then a real-valued function f on X is called mea
surable if for any Borel set A ⊂ R, f −1(A) :=  {x : f (x) ∈ A} ∈ B. It turns out to be 
equivalent that for any t ∈ R, f −1((t, ∞)) := {x : f (x) > t} ∈ B. 

If X is a countable set such as the set N of nonnegative integers, then the usual σ-
algebra on X will be the collection 2X of all its subsets. A measure µ on such a set will 
be called discrete. Then  µ of any set is given by a sum, µ(A) =  x∈A µ({x}), where {x}
is the set whose only member is x. Lebesgue measure λ, on the other hand, is not given 
by such sums, since λ({x}) = 0 for all x. On  X,  we have the  counting measure c where 
c(A) is the number of elements of A if A is finite and c(A) =  ∞ if A is infinite. Any 
probability measure P on the countable set X has a density f with respect to counting 
measure,  which in this case  is called a  probability mass function. Thus  P (A) =  

� 
f(x)x∈A 

for any set A ⊂ X. 
For Lebesgue measure one can define an integral for suitable functions, fdλ  = 

f(x)dx. In a very analogous way, one can define the integral fdµ  for suitable functions 
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f on a measure space. See RAP, Chapters 3 and 4. Specifically, if f is any nonnegative, 
measurable function, then fdµ  is always defined but may be +∞. If  f is real-valued let 
f+ := max(f, 0) and f− := − min(f, 0), so f+ ≥ 0, f− ≥ 0, and f ≡ f+ − f−. A  
measurable function f is said to be integrable if and only if both f+dµ and f−dµ are 
finite, and then fdµ  is defined as f+dµ − f−dµ. 

In probability theory, if (Ω, B, P  ) is a probability space then a random variable on Ω 
will be a real-valued, measurable function on Ω, often called X, Y , etc.  The  expectation 
or mean of X is defined by EX = XdP  if X is either nonnegative or integrable. 

Suppose f is a nonnegative, measurable function on R with ∫ ∞ 
−∞ f(x)dx = 1.  Then  

f is called a probability density on R. A probability measure P with density f is defined 
by setting P (A) :=  

A 
f(x)dx := 1Af dλ  for any Borel set A, where  1A(x) := 1  for  

x ∈ A and 0 for x /∈ A. 
If P has density f and g is a random variable whose expectation is defined, then it 

can be shown that Eg = g(x)f(x)dx (“The law of the unconscious statistician”). This 
follows directly from the definition if g = 1A for some Borel set A. It then follows for 
any finite linear combination of such functions, and then by usual methods of Lebesgue 
integral theory (monotone convergence, e.g. RAP, Proposition 4.1.5 and Theorem 4.3.2) 
for any nonnegative measurable function, thus for g+ and g−, then from the definitions 
whenever Eg is defined. 

Here are three (families of) examples of probability densities on R: 
(i) For any constant c >  0, an exponential density is defined by f(x) =  ce−cx for all x ≥ 0 
and f(x) =  0  for  x <  0. Let P be the probability measure with density f and let X be 
the identity function, X(x) =  x for all x. Then by integration by parts one can check that 
EX = 1/c. 
(ii) For any µ ∈ R and 0 < σ  <  ∞, the  normal density for the probability distribution 
N(µ, σ2) is defined by 

1 
� 

(x − µ)2 
f(x) =  √ exp − 

2σ2 
. 

σ 2π 

If X has this density it is not hard to show that EX = µ. 
(iii) The Cauchy density on R is defined by f(x) := 1/(π(1 + x2)) for all x. Let  P be 
the probability measure with this density and again let X be the identity function on R. 
Then EX is not defined because EX+ = EX− = +∞. 

Some notations for orders of magnitude, O, o, Op and op. For two functions f and g of 
a real variable, f = O(g) or  f(x) =  O(g(x)) as x → +∞ will mean that g(x) > 0 for  x 
large enough and f/g  remains bounded as x → +∞. Here “O” seems to refer to “order 
of magnitude;” f = O(g) means  that  f is of the same order of magnitude as g, or smaller. 
f = O(g) can also be defined for any other limiting behavior of x, for example, f = O(g) 
as x↓0 means  that  g(x) > 0 for  x >  0 small enough and f/g  remains bounded as x↓0. 
f = O(1) thus means in either case that f remains bounded. 

On the other hand, f(x) =  o(g(x)) as x → +∞ will mean that g(x) > 0 for  x large 
enough and f(x)/g(x) → 0 as  x → +∞. f = o(g) as  x↓0 is defined analogously. Thus 
f = o(g) means  that  f is of smaller order of magnitude than g under a given limiting 
behavior of x. 

Both O and o notations are also defined for functions of an integer n as n → +∞. 
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Now for orders of magnitude in probability, let Xn be a sequence of random variables. 
Recall that Xn is said to converge to 0 in probability if for every ε > 0, P (|Xn| > ε) → 0 
as n → ∞. Then  Xn = op(1) will mean that Xn → 0 in probability. A sequence Yn of 
random variables will be said to be bounded in probability if for every ε >  0 there  is  an  
M < ∞ such that P (|Yn| > M) < ε for all n. Then one writes Yn = Op(1). 

If Xn and Yn are two sequences of random variables, then Xn = Op(Yn) will mean 
that Yn > 0 almost surely for n large enough and Xn/Yn = Op(1), in other words, Xn/Yn 

is bounded in probability. Xn = op(Yn) will mean that Yn > 0 almost surely for n large 
enough and Xn/Yn = op(1), in other words, Xn/Yn → 0 in probability. 

NOTE 

The axiomatization of probability became widely known from and is generally at-
tributed to a book by A. N. Kolmogorov published in 1933. Actually the axiomatization 
appeared a bit earlier in much less known publications, one by Kolmogorov himself and 
one by S. Ulam. See RAP, notes to section 8.1. 

The O and o notations in analysis were apparently invented by the British mathe-
matician G. H. Hardy. I don’t know who first defined the Op and op notations. 
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