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APPENDIX E: Line-fitting by distance: errors-in-variables regression. Regres-
sion of y on x is  based on the  idea  that  the  points  xi are not random variables but some 
fixed points, measured (essentially) without error or with very small error, while the yi 

are random variables. Thus y-on-x regression minimizes the sum of squared vertical de-
viations. One can also do x-on-y regression which assumes that the points yi are some 
fixed points while xi are random variables and/or are measured with errors. So x-on-y 
regression minimizes the sum of squares of horizontal deviations of the data points from a 
line. 

For given (X1, Y1), . . .  , (Xn, Yn), with n ≥ 2, let sx be the sample standard deviation 
of the Xi, and  sy of the Yi, 
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sx = (Xi − X)2 , sy = (Yi − Y )2 . 
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If sx = 0 then the y-on-x line is not uniquely determined. Any line through (X,Y ) will 
minimize the sum of squares of vertical deviations of the points from the line. Likewise if 
sy = 0  the  x-on-y line is not unique. In all other cases these regression lines are defined 
and unique. 

If all the points are on a line, then that line will clearly be the best-fitting line either for 
vertical deviations (y-on-x) or horizontal deviations (x-on-y) because these deviations will 
be 0 in that case. It may be surprising that these are the only times these two regressions 
agree: 

Theorem 1. For given observations in the plane, (X1, Y1), . . .  , (Xn, Yn), where n ≥ 2, 
s2 > 0 and  s2 > 0, the lines given by y-on-x and x-on-y regression only agree when all the x y 

points (Xi, Yi) are on a line. 

Proof. Both regression lines pass through the point (X,Y ). The slope of the y-on-x line 
is r · sy/sx (Hogg and Tanis, 6th Ed., p. 241) where r is the correlation coefficient of the 
observations. The slope of the x-on-y line, if we take the y axis as horizontal and the x 
axis as vertical, is then r · sx/sy. In the original orientation where the x axis is horizontal 
and the y axis is vertical, the slope is replaced by its reciprocal, which is (1/r)sy/sx. So,  
the two lines are only the same if r = 1/r so r2 = 1, r  = ±1. Then the points (Xi, Yi) are  
all on a line (with positive slope if r = 1 or negative slope if r = −1), as stated in Hogg 
and Tanis, p. 239, Q.E.D. 

So, the two regression lines will in most cases be different. If the y-on-x regression 
line has a positive slope, but the correlation r <  1, then the x-on-y line always has a larger 
slope, by a factor of 1/r2 . In many situations, the assumptions for y-on-x and x-on-y 
regression may not hold. We need something better. 

A third way of fitting a line to a set of points (x1, y1), . . .  , (xn, yn) is to minimize the 
sum of squared distances of the points to the line. This corresponds to what is sometimes 
called “errors-in-variables” regression. The idea is that both xi and yi are measured with 
error, so that both are random variables. 
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For any point p and line L in the plane, let d(p, L) be the distance from p to L. Given 
a joint distribution of (X, Y ) in the plane, where E(X2 + Y 2) < ∞, a line Lo will be called 
a bfd line (best-fitting by distance line) if E[d((X, Y ), L)2] is minimized at L = Lo. This  
will apply to data sets (xi, yi), i  = 1, . . .  , n, by adding up probabilities 1/n at each point 
(xi, yi). 

Let Cov(X, Y ) =  E(XY  ) − EXEY , the covariance of X and Y , for any random 
variables (X, Y ). If the standard deviations σX > 0 and  σY > 0 then the correlation of X 
and Y is defined by ρ = ρX,Y = Cov(X, Y )/(σXσY ). Then −1 ≤ ρ ≤ 1. 

Let La,b be the line y = ax + b for any real numbers a, b. Let  L∞;c be the vertical 
line x ≡ c, −∞ < y  <  ∞. So every line in the plane is either a line La,b or a line L∞;c for 
some a, b or c. Then bfd lines are characterized as follows. 

Theorem 2. For any random vector (X, Y ) in the plane with E(X2 + Y 2) < ∞ there 
is at least one bfd line. All such lines go through the point (EX, EY ). Let σ = σX and 
τ = σY . If  σ = τ = 0,  or  σ = τ >  0 and  ρ = ρX,Y = 0, then every line through (EX, EY ) 
is a bfd line. 

In all other cases the bfd line L is unique. 
If σ >  0 =  τ then L = L0,EY , or if  σ = 0  < τ  then L = L∞,EX . 
If σ >  0 and  τ >  0 then: if ρ = 0  and  σ2 > τ2 then L = L0,EY , or  if  σ2 < τ2 then 

L = L∞,EX . 
If σ >  0, τ  >  0 and  ρ �= 0 (the general case) then L = La+,b+ where 

a+ = [τ2 − σ2 + {(σ2 − τ2)2 + 4ρ2σ2τ2}1/2]/(2ρστ), b+ = EY − a+EX. 

Proof. To find the distance from a point (X, Y ) to a line L, if  L = L∞;c it’s |X − c|. If  
L = L0,b it’s |Y − b|. So suppose L = La,b with a �= 0. We first find the line through 
(X, Y ) perpendicular to La,b , which has slope −1/a, so the line is y − Y = −(x − X)/a. 
The intersection of this with La,b gives ax + b = Y − (x − X)/a, 

x = ξ = (Y − b + X/a)/(a + a −1) = (aY − ab + X)/(a 2 + 1), 

y = η = aξ + b = (a 2Y + aX + b)/(a 2 + 1). 

So the square of the distance from (X, Y ) to  La,b is 

(X − ξ)2 + (Y − η)2 = [(a 2X − aY + ab)2 + (Y − aX − b)2]/(a 2 + 1)2 

= [a 2(Y − aX − b)2 + (Y − aX − b)2]/(a 2 + 1)2 = (Y − aX − b)2/(a 2 + 1). 

So E(d((X, Y ), La,b)2) =  E((Y − aX − b)2)/(a2 + 1). For fixed a, this  is  a  quadratic  
function of b, and  goes  to  +∞ as |b| does. So it will be minimized at the unique point 
where the partial derivative with respect to b is 0, which gives −2E(Y − aX) + 2b = 0,  or  
b = EY − aEX. This says that the point E(X, Y ) = (EX, EY ) is on the line La,b. Then  
we want to minimize 

f(a) :=  E([Y − EY − a(X − EX)]2)/(a 2 + 1)  =  (τ2 − 2aCov(X, Y ) +  a 2σ2)/(a 2 + 1). 
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If σ = τ = 0  then  f(a) ≡ 0 and any line through (EX, EY ) is bfd.  Or if  σ = 0  < τ , then  
f(a) =  τ2/(a2 + 1)  > 0 which is smallest as a → ±∞. The bfd line is L∞,EX . 

If σ >  0 =  τ then f(a) =  a2σ2/(a2 + 1) is clearly minimized when a = 0  and  L0,EY is 
bfd. 

Suppose then that σ >  0 and  τ >  0. Then 

2σ2f(a) = [τ2 − 2aρστ + a ]/(a 2 + 1). 

If ρ = 0  then  f(a) =  σ2 + (τ2 − σ2)/(a2 + 1), and: 
(a) If σ = τ then f(a) ≡ σ2 and all lines through (EX, EY ) are bfd. 
(b) If σ2 > τ2 then f is minimized at a = 0  and  L0,EY is the unique bfd line. 
(c) If σ2 < τ2 then f is smallest as a → ±∞  and the unique bfd line is L∞,EX . 

So suppose ρ �= 0. Then setting f ′(a) =  0  gives  

0 = (a 2 + 1)(−2ρστ + 2aσ2) − 2a(τ2 − 2aρστ + a 2σ2) = 2[ρστa 2 + (σ2 − τ2)a − ρστ ], 

and the factor of 2 on the right side can be cancelled since the expression equals 0. This 
quadratic in a has two distinct real roots, 

a± = [τ2 − σ2 ± {(σ2 − τ2)2 + 4ρ2σ2τ2}1/2]/(2ρστ). 

Next, f ′(0) = −2ρστ . If  ρ >  0 then  a− < 0 < a+ and f ′(a) < 0 for  a− < a < a+ so 
a+ gives a bfd line (minimum of f(a)). If ρ <  0 then  a+ < 0 < a− and f ′(a) > 0 for  
a+ < a < a− so again a+ gives the bfd line, proving the Theorem. � 

When fitting a line to a finite sample (x1, y1), . . .  ,  (xn, yn), EX is replaced by x, EY 
n 21 2 n−1 sY , and  ρ by the sample correlation by y, σ2 by n

n−1 sx, τ2 by ni=1(xi − x)2 = n 
coefficient r. 

If the distribution of (X, Y ) is concentrated in a line La,b with σ >  0 and  a �= 0,  we  
have ρ = +1  if  a >  0 and  ρ = −1 if  a <  0. Then τ = |a|σ, a± = [τ2−σ2±(σ2+τ2)]/(2ρστ), 
and a+ = τ/(ρσ) =  |a|/ρ = a as it should. 
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