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APPENDIX F: The Lagrange multiplier technique. 

Let f be a real-valued function defined on an open set U ⊂ Rk such that f has a 
gradient �f = (∂f/∂x1, . . .  , ∂f/∂xk ) at each point of U . Then at any local maximum 
or minimum x of f , �f(x) = 0. The classical Lagrange multiplier technique extends this 
necessary condition on extrema to extrema subject to a constraint g(x) =  c. Namely,  
let λ be a new real variable called a Lagrange multiplier. For λ ∈ R and x ∈ U let 
F (x, λ) :=  f(x) +  λ[g(x) − c]. Set �x,λF = 0  where  �x,λ = (∂/∂x1, . . .  , ∂/∂xk , ∂/∂λ). 
Solutions will satisfy the constraint since ∂F/∂λ = g(x)− c. As will be shown, under some 
conditions, extrema of f under the constraint will be among those x with �x,λF (x, λ) =  0  
for some λ. (But, with or without constraints, f need not in general have any extrema, 
even though there are points where the gradient is 0, as in Solari’s example in Section 3.2.) 

The following Theorem F.1 includes the assumption that �g(x) �= 0 at all x where 
g(x) =  c. If  �g(x) = 0,  then  �x,λF (x, λ) = (�xf(x), g(x) − c) = 0 implies �xf(x) = 0,  
as for an unconstrained extremum, which will often be incompatible with the constraint. 
Here is a specific example. Let k = 2, let  f(x, y) := (x− 1)2 +y2, and let the constraint be 
g(x, y) :=  x2 = c := 0, Here g is a “bad” function in that its gradient is 0 when g = c. To  
minimize f subject to g = c, we have  f(0, y) = 1  +  y2, minimized at x = y = 0.  But  with  
a Lagrange multiplier we get F ((x, y), λ) =  (x − 1)2 + y2 + λx2. Setting �x,λF = 0  gives  
∂F/∂y = 2y = 0 (correct), ∂F/∂λ = x2 = 0 (correct), but ∂F/∂x = 2(x − 1) + 2λx = 0  
which with x = 0  gives  −2 = 0, a contradiction. 

The theorem stated next says that under its hypotheses, minima of f subject to g = c 
exist and can be found via Lagrange multipliers. Hypothesis (b) follows from conditions 
in Proposition F.2. 

F.1 Theorem. (a)  Let  f and g be C1 functions  from an open set  U ⊂ Rk into R, where  
k ≥ 2. Let c ∈ R, suppose g(x) =  c for some x ∈ U and that the gradient �g(x) �= 0  for  
all such x. 

(b) Also suppose that for some compact C ⊂ U with C1 := {x ∈ C : g(x) =  c} �= ∅, 

K := inf{f(x) :  x ∈ C1} < inf{f(x) :  x ∈ U \ C}. 

Let C2 := {x ∈ C1 : f(x) =  K}. Then  C2 is non-empty and at every point x of C2, 
�x,λF (x, λ) =  0  for  some  λ. 

Proof. C1 is compact and non-empty, so C2 �= ∅ since a continuous real function on a 
compact set attains its infimum. At every point y of the boundary of C, f(y) ≥ inf{f(x) :  
x ∈ U \ C}. Thus  C2 is included in the interior of C. 

The equation ∂F (x, λ)/∂λ = g(x) − c = 0 holds for all x ∈ C1 ⊃ C2 and all λ. 
= 0 by hypothesis. Thus ∂g(x)/∂xj �Let x ∈ C2. Then  �g(x) � = 0  for  some  j, where  

we can assume j = 1. In a neighborhood of x, we  can  make  a  C1 change of coordinates 
G(x1, x2, ..., xk ) := (g(x), x2, ..., xk ) which has a non-zero Jacobian determinant equal to 
∂g/∂x1 and so G has a C1 inverse. Thus we can assume g(x) ≡ x1 in a neighborhood of 
x. 
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The vector equation 0 = �xF (x, λ) =  �xf (x)+λ�x g(x) is  equivalent to  �xf (x) =  
−λ�xg(x) =  (−λ, 0, ..., 0). Thus λ = −∂f (x)/∂x1, which can be solved trivially by taking 
it as the definition of λ at x. We get the further equations ∂f (x)/∂xj = 0  for  j = 2, ..., k, 
and these are, indeed, necessary for f to have a minimum at x in the hyperplane x1 = c. 
The Theorem is proved. � 

F.2 Proposition. If hypotheses (a) of Theorem F.1 hold and f (x) → +∞ as x approaches 
the boundary of U or |x| → +∞, x ∈ U , then hypotheses (b) hold. 

Proof. Choose x0 ∈ U with g(x0) =  c. Every  point  x of U has a neighborhood Ux with 
compact closure included in U . Since  U is separable, countably many such neighborhoods 
Ux(n) form a base of the topology of U (RAP, Proposition 2.1.4), so U = 

� 
Ux(n). Let  Cnn 

nbe the closure of 
�

Ux(j). Then  Cn is compact. If yn ∈ U \Cn for all n and for some M <j=1 

∞, f (yn) ≤ M for all n, then  |yn| must be bounded, so yn has a subsequence converging 
to some y ∈ R

k . By the definitions, y must be in the boundary of U , a contradiction. So, 
taking M := f (x0) + 1, there is a compact C ⊂ U such that f (x) > f  (x0) + 1 for all 
x ∈ U \ C, with  C = Cn for some n. The Proposition follows. � 

Remark. In the example given just before Theorem F.1, f and g are C1 (in fact C∞), 
U = R2 , c = 0,  and  f (x, y) → +∞ as |(x, y)| = x2 + y2 → +∞. So  all  the  hypotheses  
of Theorem F.1 and Proposition F.2 hold except that �g(x, y) = 0  when  g = c. 
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