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1.3 Bayes decision theory. The distinguishing feature of Bayesian statistics is that a 
probability distribution π, called a prior, is given on the parameter space (Θ, T ). Some-
times, priors are also considered which may be infinite, such as Lebesgue measure on the 
whole real line, but such priors will not be treated here at least for the time being. 

A Bayesian statistician chooses a prior π based on whatever information on the un-
known θ is available in advance of making any observations in the current experiment. In 
general, no definite rules are prescribed for choosing π. Priors are often useful as technical 
tools in reaching non-Bayesian conclusions such as admissibility in Theorems 1.2.5 and 
1.2.6. 

Bayes decision rules were defined near the end of the last section as rules which 
minimize the Bayes risk and for which the risk is finite. Bayes tests of P vs. Q, treated  
in Theorem 1.1.8, are a special case of Bayes decision rules. We saw in that case that 
Bayes rules need not be randomized (Remark 1.1.9). The same is true quite generally in 
Bayes decision theory: if, in a given situation, it is Bayes to choose at random among two 
or more possible decisions, then the decisions must have equal risks (conditional on the 
observations) and we may as well just take one of them. Theorem 1.3.1 will give a more 
precise statement. 

In game theory, randomization is needed to have a strategy that is optimal even if 
the opponent knows it and can choose a strategy accordingly. If one knows the opponent’s 
strategy then it is not necessary to randomize. Sometimes, statistical decision theory is 
viewed as a game against an opponent called “Nature.” Unlike an opponent in game 
theory, “Nature” is viewed as neutral, not trying to win the game. Assuming a prior, as 
in Bayes decision theory, is to assume in effect that “Nature” follows a certain strategy. 

In showing that randomization isn’t needed, it will be helpful to formulate randomiza-
tion in a fuller way, where we not only choose a probability distribution over the possible 
actions, but then also choose an action according to that distribution, in a measurable 
way, as follows: 

Definition. A randomized decision rule d : X DE is realizable if there is a probability →
space (Ω,F , µ) and a jointly measurable function δ : X × Ω A such that for each → 
x in X, δ(x, ·) has distribution d(x), in other words d(x) is the image measure of µ by 
δ(x, ·), d(x) =  µ ◦ δ(x, ·)−1 . 

For example, a randomized test as in Sec. 1.1 is always a realizable rule, where we can 
take Ω as the interval [0, 1] with Lebesgue measure and let δ(x, t) =  dQ if t ≤ f(x) and  dP 

otherwise. 
It is shown in the next section that decision rules are realizable under conditions wide 

enough to cover a great many cases, for example whenever the action space is a subset of 
a space  Rk with Borel σ-algebra. It will be shown next that randomization is unnecessary 
for realizable Bayes rules. The idea is that the Bayes risk of a realizable randomized Bayes 
rule d(·) is an average of Bayes risks of non-randomized rules δ(·, ω). Since a Bayes rule 
has minimum Bayes risk, the risks of δ(·, ω) are no smaller, so they must almost all be 
equal to that of d(·). Then such non-randomized δ(·, ω) for  fixed  ω are Bayes rules. 
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1.3.1 Theorem. For any decision problem for a measurable family {Pθ , θ  ∈ Θ} and prior 
π, if there is a realizable Bayes randomized decision rule d, then there is a non-randomized 
Bayes decision rule. 

Proof. First, here is a helpful technical fact: 

1.3.2 Lemma. For any measurable family {Pθ , θ  ∈ Θ} and nonnegative, jointly 
measurable function f : θ, x, ω〉 f(θ, x, ω), the function g defined by g(θ, ω) :=  →
∫ f(θ, x, ω)dPθ (x) is jointly measurable. 

Proof. If f(θ, x, ω) = 1T (θ)1B (x)1F (ω) for  some  T , B ∈ B and F ∈ F , then  ∈ T
g(θ, ω) =  Pθ (B)1T (θ)1F (ω) is  measurable  in  〈θ, ω〉 since θ Pθ (B) is  measurable  by  →
assumption. The rest of the proof of the Lemma is like that of Prop. 1.2.4. � 

Now to prove Theorem 1.3.1, take (Ω, F , µ) and  δ(·, ·) as in the definition that d is 
realizable. For each fixed ω ∈ Ω, δ(·, ω) is a non-randomized decision rule. So r(π, δ(·, ω)) ≥ 
r(π, d) since  d is Bayes for π. Also, writing ν(da) :=  dν(a) for  a  measure  ν, 

r(π, d) =  r(θ, d)dπ(θ) =  
� �  

r(θ, d(x))dPθ (x)dπ(θ) (by the definitions) 

L(θ, a)d(x)(da)dPθ (x)dπ(θ) =  
� � �  

L(θ, δ(x, ω))dµ(ω)dPθ (x)dπ(θ) 

by the image measure theorem, e.g. RAP, 4.1.11. So by the Tonelli-Fubini theorem for 
nonnegative measurable functions, twice, and the measurability shown in Lemma 1.3.2, we 
get 

r(π, d) =  
� � �  

L(θ, δ(x, ω))dPθ (x)dπ(θ)dµ(ω) =  r(π, δ(·, ω))dµ(ω). 

Thus, r(π, δ(·, ω)) = r(π, d) for  µ-almost all ω, and  so  for some  ω, providing a Bayes 
non-randomized decision rule δ(·, ω). � 

If every randomized rule is realizable, as is shown in the next section under conditions 
given there, then Theorem 1.3.1 shows that the non-randomized rules form an essentially 
complete class, as defined in Sec. 1.2. It will also be shown in Sec. 2.2 below that non-
randomized rules are (essentially) complete under some other conditions. 

Definition. A  family  {Pθ , θ  ∈ Θ} of laws on a measurable space (X, B) will be called 
dominated if for some σ-finite measure v, each  law  Pθ is absolutely continuous with respect 
to v, in other words for any A ∈ B, v(A) = 0 implies Pθ (A) = 0 for all θ. 

Often, v would be Lebesgue measure on Rk ; or, if the measures were all concentrated 
on a countable set such as the integers, v would be counting measure (the measure giving 
mass 1 to each point) on the set. 
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If Pθ is absolutely continuous with respect to v, then by the Radon-Nikodym theorem 
(RAP, 5.5.4), it has a density or Radon-Nikodym derivative f(θ, x) := (dPθ/dv)(x). A 
σ-algebra B is called countably generated if there is a countable subcollection C ⊂ B  such 
that B is the smallest σ-algebra including C. In any separable metric space, the Borel σ-
algebra is countably generated (taking C as the set of balls with rational radii and centers 
in a countable dense set). In the great majority of applications of statistics, sample spaces 
are separable metric spaces, in fact Euclidean spaces Rk . At any rate, from here on it will 
be assumed that B is countably generated, unless something to the contrary is stated. 

1.3.3 Theorem. If  {Pθ, θ  ∈ Θ} is a dominated, measurable family on a sample space 
(X, B), for a parameter space (Θ, T ) and  a  σ-finite measure v, then the density function 
f(θ, x) = (dPθ/dv)(x) can be taken to be jointly measurable in θ and x. 

Proof. Let Br, r  = 1, 2, . . .  ,  be an increasing sequence of finite Boolean algebras of 
subsets of X whose union generates B. (Such algebras exist by the blanket assumption 
that B is countably generated.) There is a probability measure Q equivalent to (mutually 
absolutely continuous with) v: to see this, let X be a union of disjoint measurable sets Aj 

with 0 < v(Aj ) < ∞, and  for  any  B ∈ B let Q(B) =  
�∞ 

j=1 v(B ∩ Aj )/(2j v(Aj )). So we 
can assume that v is a probability measure. 

For each θ, let  g(θ, ·) :=  dPθ/dv. Let  gr (θ, ·) be the conditional expectation of g(θ, ·) 
given Br for v, gr(θ, ·) :=  E(g(θ, · r ). This can be defined in either of two ways. One )|B
is that since Pθ remains absolutely continuous with respect to v if both are restricted to 

r, and  gr(θ, ·) =  dPθ/dv (Radon-Nikodym derivative) for these restrictions to Br. The  B
other is that Br is generated by a finite collection of atoms, which are non-empty sets 

r of which no proper, non-empty subset belongs to Br. Then  for  x in such an atom A ∈ B
A, gr (θ, x) =  Pθ(A)/v(A), or if v(A) = 0  then  let  gr(θ, x) = 0.  Let  Bri for i = 1, . . .  , I(r) 
be the atoms of Br. Then  since  {Pθ, θ  ∈ Θ} is measurable, for each fixed x, gr(·, x) is  
measurable. There are only finitely many possibilities for this function, each for x in a 
measurable set Bri, so  gr is jointly measurable in θ and x. 

Here a fact from probability theory will be used: for each fixed θ, the sequence gr(θ, ·) 
of functions on X is a right-closed martingale (RAP, p. 283), with g∞ := g, and  gr(θ, x) → 
g(θ, x) as  r → ∞ for Pθ-almost all x. 

The set on which a sequence of measurable real-valued functions converges is mea-
surable (RAP, proof of Theorem 4.2.5). Let f(θ, x) := limr→∞ gr(θ, x) whenever the 
limit exists and f(θ, x) = 0  otherwise.  Then  f is jointly measurable and for each θ, 
f(θ, x) =  g(θ, x) almost surely for Pθ, so  f(θ, ·) is a density of Pθ with respect to v. � 

Under the hypotheses of Theorem 1.3.3, it will be assumed from here on that f(θ, x) 
is jointly measurable in θ and x. 

If {Pθ, θ  ∈ Θ} is a dominated, measurable family of laws on x, with jointly measur-
able densities q(θ, x) with respect to some measure v, then the family of laws for n i.i.d. 
observations, {P n : θ ∈ Θ} on Xn, is clearly dominated and measurable, with jointly mea-θ 
surable densities f(θ, x) =  

�n
j=1 q(θ, xj ). For a dominated, measurable family and for a 

fixed x, f(·, x) is a function on Θ called the likelihood function. The  posterior distribution 
on Θ given x is the law πx having density with respect to π given by f(·, x)/ ∫ f(θ, x)dπ(θ), 
provided that the integral in the denominator is strictly positive and finite. In other words, 
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for any measurable set C of parameters, 

(1.3.4) πx(C) =  f(θ, x)dπ(θ)/ f(θ, x)dπ(θ). 
C 

Here the denominator is a measurable function of x by joint measurability. By the Tonelli-
Fubini theorem, ∫ ∫ f(θ, x)dπ(θ)dv(x) = 1,  so  ∫ f(θ, x)dπ(θ) < ∞ for v-almost all x. If  x 
is such that ∫ f(θ, x)dπ(θ) = 0, then the posterior given x is not defined. Observing such 
an x indicates that the prior and/or likelihood function are incorrectly specified. If before 
taking the observation the (Bayesian) statistician believed that θ had the prior distribution 
π, then after  observing  x the distribution of θ becomes πx. 

Next, π and {Pθ , θ  ∈ Θ} give a joint distribution for θ and x: 

1.3.5 Proposition. For any measurable family {Pθ , θ  ∈ Θ} and prior π on (Θ, T ), there 
is a probability distribution Pr on (Θ ×X, T ⊗B) for which the marginal distribution on 
Θ is  π and for each θ, the conditional distribution of x is Pθ . 

Proof. For any A ∈ T  ⊗ B, let  Pr(A) :=  ∫ ∫ 1A(θ, x)dPθ (x)dπ(θ) if the integrals are 
defined. The collection of all sets A for which the integrals are defined contains all sets 
C ×B for C ∈ T  and B ∈ B. Thus it contains all measurable sets, as in the construction of 
product measures (RAP, Sec. 4.4). So Pr is well-defined and by monotone convergence is 
a countably additive probability measure on T ⊗B. Clearly, π is the marginal distribution 
of θ for Pr and Pθ is a conditional distribution of x given θ. � 

The marginal distribution of x for Pr, namely the law γ on X having density 
∫ f(θ, x)dπ(θ) with respect to v, is called the predictive distribution of x. For any B ∈ B
we have 

(1.3.6) γ(B) =  Pθ (B)dπ(θ). 

Next is an existence fact for posteriors: 

1.3.7 Theorem. For any dominated, measurable family {Pθ , θ  ∈ Θ} and prior π, we  
have 0 < ∫ f(θ, x)dπ(θ) < ∞ for γ-almost all x, and the posterior πx is well-defined. 

Proof. As noted above, ∫ f(θ, x)dπ(θ) < ∞ for v-almost all x. If  B ∈ B  and v(B) = 0,  
then Pθ (B) = 0  for  π-almost all θ, so  γ(B) = 0 by (1.3.6). So “v-almost” implies “γ-
almost” all x. 

Let D := x : ∫ f(θ, x)dπ(θ) =  0}. Then by (1.3.6), {

γ(D) =  
� �

D 
f(θ, x)dv(x)dπ(θ) =  f(θ, x)dπ(θ)dv(x) = 0. 

D 

So the given inequalities are proved. To finish the proof it will be shown that the posterior 
distribution πx doesn’t depend on the choice of the σ-finite dominating measure v. More  
precisely, if v and w are two such measures and πv 

x, πw the corresponding posteriors, it x 
will be shown that πv = πw for γ-almost all x.x x 
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Here v + w will be another dominating measure, and v + w is σ-finite since we can 
take Ai ∩ Bj with v(Ai) < ∞ and w(Bj ) < ∞. So we can replace w by v + w. Applying 
the Radon-Nikodym theorem on sets where v and w are both finite, we get a measurable 
function dv/dw := g ≥ 0 such that v(A) =  ∫A gdw for all A ∈ B. We  also  have  

dPθ dPθ dv 
= 

dw dv 
·
dw 

almost everywhere for w. Thus in the definition of posterior, for a given x, both numerator 
and denominator are multiplied by g(x), so the posterior is unchanged if g(x) > 0. The 
set C where g = 0  has  v(C) = 0  and  so  γ(C) = 0 as desired, finishing the proof. � 

The conditional risk of an action c ∈ A, given  x, is defined as 

rx(π, c) :=  L(θ, c)dπx(θ) 

if πx exists, as we just saw it does for γ-almost all x. The next fact shows that decision 
rules are Bayes if they minimize the conditional risk for almost all observations. 

1.3.8 Theorem. If for a given measurable family {Pθ , θ  ∈ Θ}, prior  π and loss function 
L, a(·) is a decision rule such that for γ-almost all x, 

(1.3.9) rx(π, a(x)) = inf{rx(π, c) :  c ∈ A}, 

and if there exists a rule e(·) with finite risk, then a(·)  is a Bayes rule,  and any  Bayes rule  
b(·) in place  of  a(·) also satisfies (1.3.9). 

∈ B where γ(B) = 0.  
Then by (1.3.6), Pθ (B) = 0  for  π-almost all θ. From the definitions and the Tonelli-Fubini 
theorem, for any decision rule b(·), 

Proof. Applying Theorem 1.3.7, let πx exist and (1.3.9) hold for x /

(1.3.10) 

r(π, b) =  
� �

X\B 
L(θ, b(x))f(θ, x)dv(x)dπ(θ) =  L(θ, b(x))f(θ, x)dπ(θ)dv(x). 

X \B 

Given x, minimizing ∫ L(θ, c)f(θ, x)dπ(θ) with respect to c is equivalent to minimizing 

rx(π, c) =  L(θ, c)f(θ, x)dπ(θ)/ f(ψ, x)dπ(ψ), 

since ∫ f(ψ, x)dπ(ψ) is strictly positive and finite and doesn’t depend on c. So  a(x) achieves  
this minimum for x /∈ B. Thus for any decision rule b(·), 

(1.3.11) L(θ, a(x))f(θ, x)dπ(θ) ≤ 
� 

L(θ, b(x))f(θ, x)dπ(θ) 
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for x /∈ B. Taking  ∫ of both sides and applying (1.3.10) gives r(θ, a(·)) ≤ r(θ, b(·)).X\B 
Taking b(·) =  e(·) we see that the minimum risk, which a(·) achieves, is finite. In other 
words, a(·) is  Bayes.  If  b(·) is also  Bayes, then  r(π, b(·)) = r(π, a(·)). Thus the inequality 
in (1.3.11) must be an equality for v-almost and so γ-almost all x, and (1.3.9) must hold 
for b(·) in place  of  a(·) and  for  γ-almost all x. � 

If A is finite, then any function on A attains its minimum, so Bayes rules always exist. 
They may not when A is infinite, as was mentioned in the last section for decision problems 
without a sample space: 

1.3.12 Example. For  A infinite, a Bayes rule need not exist even if X is a singleton, say 
X = {0}, so that an observation makes no difference and {Pθ , θ  ∈ Θ} reduces to the single 
law {δ0}. For example let A be the set of positive integers and let L(m) :=  L(δ0,m) :=  
1/m for m = 1, 2, . . .  .  Then the infimum of risks is 0 but it is not attained by any decision 
rule. 

The following will not be hard to prove: 

1.3.13 Proposition. For any dominated measurable family {Pθ , θ  ∈ Θ} of laws on a 
sample space (X, B) and prior π on Θ, the posterior distribution πx given x is a conditional 
distribution of θ for Pr (defined in Proposition 1.3.5) given x. 

Proof. From the proof of Proposition 1.3.5, Pr has a density f(θ, x) with respect to 
π × v. Thus for any C ∈ T , π(C) =  ∫X ∫C f(θ, x)dπ(θ)dv(x). Multiplying and dividing 
by ∫ f(ψ, x)dπ(ψ), which by Theorem 1.3.7 is strictly positive and finite for γ-almost all 
x, we get  

π(C) =  πx(C) f(ψ, x)dπ(ψ)dv(x) =  πx(C)dγ(x) 
X Θ X 

since γ is the X marginal of Pr. It follows that a conditional distribution of θ given x for 
Pr is the posterior distribution πx. � 

PROBLEMS 

1. If P = {P, Q} as in the Neyman-Pearson situation, and π is a prior with π(P ) =  p = 
1 − q, find the posterior probabilities given x in terms of p, q and RQ/P (x). 

2. Suppose the action space A is countable and there is a Bayes randomized decision rule 
d such that for each x, we  have  d(x)(a) > 0 for every a ∈ A. Then, show that every 
randomized decision rule is Bayes. 

3. Let X be the Cartesian product of n copies of {0, 1} (the vertices of the unit n-cube) 
and let Pθ be the product of n copies of the law with probability θ at 1 and 1 −θ at 0 for 
θ ∈ Θ = [0, 1]. In other words, suppose we have n independent trials with probability θ 
of success. Suppose that the prior for θ is the uniform distribution on 0 ≤ θ ≤ 1. If the 
observations (in other words, the coordinates of “the” observation) consist of k 1’s and 
n − k 0’s, find the posterior distribution of θ. 
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