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1.5 The sequential probability ratio test. Sec. 1.1 treated tests between two laws 
P and Q on a sample space X. If we have independent, identically distributed (i.i.d.) 
observations X1, . . .  ,Xn with distribution P or Q, then  X can be replaced by the Cartesian 
product Xn of n copies of X on which one decides between two laws Pn and Qn, so  that  we  
are back in the situation of deciding between two laws on a sample space. But now, decision 
procedures will be considered where the statistician, instead of having to decide between P 
and Q for a fixed n, is allowed to gather additional observations. An infinite amount of data 
would allow a correct decision to be made between any two different probability measures 
with zero error probabilities, but now it will be assumed that each observation has a cost 
c, measured on the same scale as loss functions. So if c >  max(LPQ, LQP ), it would not be 
worth taking any observations; for a prior π one should choose P if π(Q)LQP < π(P )LPQ, 
choose Q if π(Q)LQP > π(P )LPQ, and make an arbitrary choice if π(Q)LQP = π(P )LPQ. 
More typically, the cost c per observation is rather small relative to LPQ  and LPQ, so  it  
will be worth taking some observations. A decision rule will choose among three options 
after the nth observation: decide in favor of P or of Q (and stop taking observations), 
or take at least one more observation. Note that if nc > max(LPQ, LQP ), more would 
be spent on n observations than could be lost by making a wrong decision, so for a good 
strategy, the probability of taking n or more observations should not be too high. Still, if 
one has already made n − 1 observations, the (n − 1)c spent on them is already lost and 
it may well be that the next observation, with cost c, is worth taking. 

We will have a sequence of possible observations X1,X2, . . .  ,  i.i.d. with distribution 
µ = P or Q. Let  f be the likelihood ratio RQ/P on X. Then  0  ≤ f ≤ +∞. After  n 
observations the likelihood ratio of Qn to Pn is 

RQn/P n (X1, . . .  ,Xn) :=  rn(X1, . . .  ,Xn) :=  
�n 

f(Xj )j=1 

for n = 1, 2, . . . . Let  r0 ≡ 1. 
The probability that rn is an undefined product 0 · ∞  will be 0 under either Pn or 

Qn, since  f = 0 has probability 0 for Q and f = ∞ has probability 0 for P . For  a  fixed  
n, the Neyman-Pearson lemma (Sec. 1.1) tells us to choose P if rn is small and Q if rn is 
large. In the sequential probability ratio test (SPRT) to be defined, the idea is that if rn 

is in an intermediate range, we make no decision and continue sampling. Specifically, for 
0 ≤ A ≤ B ≤ ∞, the SPRT(A,B) is the decision rule which calls for taking observations 
X1, . . .  ,Xn until the least n such that rn ≤ A or rn ≥ B, then to choose P if rn ≤ A or Q 
if rn ≥ B (and rn > A, which will be true automatically except in the unusual case that 
rn = A = B). We will usually have 0 < A <  1 < B  <  ∞. If  A ≥ 1 the test chooses P , or  
for B ≤ 1 and  A <  1 it  chooses  Q, for  n = 0, that is, without taking any observations. 

In general, a sequential test (non-randomized) will be a sequence of measurable func-
tions {φn(X1, . . .  ,Xn)}n≥0. Each  φn has possible values −1, 0 and  1,  where we  stop  
sampling at N , the  least  n such that φn �= 0,  and  then  choose  P if φn = −1 and  Q if 
φn = 1.  Here  N is random. We would like to choose a test so as to minimize the expec-
tations of N under P or Q as well as the error probabilities. The total cost + loss will be 
Nc  plus the loss LPQ  or LQP , if any.  

For any sequential test φ = {φn} of P vs. Q, let  α(µ, φ) be the probability that φ 
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rejects µ when it is true, and let Eµ,φN be the expectation of N if µ is true, both for µ = P 
or Q. Sequential probability ratio tests have an optimality property among all sequential 
tests, as follows: 

1.5.1 Theorem (A. Wald, J. Wolfowitz, T. Ferguson, D. Burkholder, R. Wijsman). Let 
ψ = SPRT(A,B) where  0  < A <  1 < B  <  ∞ and let φ be any other sequential test. 
Suppose that for two laws P and Q, α(P, φ) ≤ α(P,ψ) and  α(Q,φ) ≤ α(Q,ψ). Then 
EP,ψ N ≤ EP,φ N and EQ,ψ N ≤ EQ,φN . 

In other words, if ψ is a sequential probability ratio test with α(P,ψ) =  α and 
α(Q,ψ) =  γ, then in the class of all sequential tests φ with α(P, φ) ≤ α and α(Q,φ) ≤ γ, 
the SPRT ψ minimizes EP,φ N , and it minimizes EQ,φN . This optimality property is un-
expectedly strong, since one might have thought that by allowing EP,φN to be larger one 
could make EQ,φN smaller, or vice versa. 

Theorem 1.5.1 will be proved in Sec. 1.7. First, here are some other facts. 

1.5.2 Lemma. For any ψ = SPRT(A,B) of  P vs. Q with 0 < A  ≤ B <  ∞, there  is  a  δ 
with 0 < δ  <  1 and  a  C <  ∞ such that µn(N >  n) ≤ C(1 − δ)n for µ = P or Q. 

Proof. If A = B then N ≡ 0 and  there is no problem.  So assume  A < B. Let  
Zi := log f(Xi). Then Zi are independent, identically distributed random variables 
with −∞ ≤ Zi ≤ +∞. Let  Sn := Z1 + · · ·  + Zn, which is well-defined almost surely 
for Pn or Qn. Then  N >  n  if and only if log A < Sj < log B for j = 1, . . .  , n. Since  
P �= Q, there  is  a  b >  0 such that p := µ(|Z1| ≥  b)/2 > 0 for  µ = P or Q. So  for  

msome m large enough, there is probability at least p that |Sm| > log(B/A). The events 
Di := {|Sim − S(i−1)m | > log(B/A)} are independent for i = 1, 2, . . .  ,  and if Di occurs 
then N ≤ im. So the probability that N >  im  is ≤ (1 − pm)i for µ = P or Q. Thus  for  
all j = 1, 2, . . . , Pr(N ≥ j) ≤ (1 − pm)[j/m], where  [x] is the largest integer ≤ x and Pr 
= µn, µ  = P or Q. Thus  Pr(N >  j) ≤ (1 − pm)j/m − 1, so  let  δ := 1 − (1 − pm)1/m and 
C := 1/(1 − pm). � 

It follows from Lemma 1.5.2 that EP,ψ N <  ∞ and EQ,ψ N <  ∞. To apply sequential 
probability ratio tests it is useful to know relations between A,B and the error probabilities 
α(P,ψ) and  α(Q,ψ) such as the following. 

1.5.3 Proposition. For  the  test  ψ = SPRT(A,B) of  P vs. Q, with  0  < A <  1 < B  <  +∞, 
let α0 := α(P,ψ) and  α1 := α(Q,ψ). Then 

α0 ≤ (1 − α1)/B ≤ 1/B and α1 ≤ (1 − α0)A ≤ A. 

Proof. Let Fn be the event that N = n and rn ≥ B. Then the events Fn are disjoint and 

Bα(P,ψ) =  B

∞ �

Pn(Fn) ≤

∞ �

Q
n(Fn) = 1  − α(Q,ψ). 
n=1 n=1 

The other inequality is proved symmetrically, since SPRT(A,B) for  P vs. Q is equivalent 
to SPRT(1/B, 1/A) for  Q vs. P . � 
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Examples. Here is a class of examples to show that of the four inequalities in Proposition 
1.5.3, the first and third are sharp (they become equalities in special cases). Of course, 
the second inequality is an equation only for α1 = 0 and the fourth for α0 = 0. Zero error 
probabilities are possible but unusual. 

There are P and Q such that r1 := RQ/P takes only two values t and 1/t, where  
1 < t  <  ∞. Specifically, if p := P (r1 = t), then 1 = Q(X) =  pt+(1  −p)/t so p = 1/(t+1). 

Let A = 1/tj and B = tk for some positive integers j and k. For all n, clearly 
rn = ti for some i ∈ Z := {0,±1,±2, . . . }. If  rn = ti then rn+1 = ti±1. So  if  rN ≥ B 
then rN = B (recalling the definition of N) and  if  rN ≤ A then rN = A. So  the  only  
inequality in the proof of Proposition 1.5.3 for B becomes an equation, and likewise for A. 
So α0 = (1  − α1)/B and α1 = (1  − α0)A. The two linear equations can then be solved for 
α0 and α1, giving α0 = (1  − A)/(B − A) and  α1 = (B − 1)A/(B − A). 

In general, however, it can easily happen that rN > B  (“overshoot”) or rN < A  
(“undershoot”). If r1 is bounded above by K, then  rN ≤ KB, and  if  r1 is bounded below 
by ε, then  rN ≥ εA. 

Proposition 1.5.3 gave bounds for error probabilities for SPRTs, which became equa-
tions in the last example. In that example, it is also possible to find explicitly the average 
sample numbers Eµ,ψ N for µ = P and Q. 

Definition. A random variable τ which is a function of X1,X2, . . .  is a stopping time if 
τ has nonnegative integer values and for all n = 1, 2, . . .  there is an event An such that 
τ ≤ n if and only if (X1, . . .  ,Xn) ∈ An, while for n = 0,  {τ = 0} is either empty or the 
whole space. 

For example, if τ = N for an SPRT or any sequential test φ, N ≤ n if and only if 
for some j ≤ n, φj (X1, . . .  ,Xj ) �= 0,  so  N is a stopping time. Recall that “i.i.d.” means 
“independent and identically distributed.” 

1.5.4 Wald’s identity. If  Y1, Y2, . . .  are i.i.d., E|Y1| < ∞, Tn := Y1 + · · ·+ Yn for n ≥ 1, 
T0 := 0, and Eτ < ∞, then  ETτ = EτEY1. 

Proof. The identity is clear if τ ≡ 0, so we can assume τ ≥ 1 almost surely. A mathemat-
ical note: the following proof will apply first in the case where Y1 ≥ 0 a.s., replacing Yi by 
|Yi| for all i, which will justify interchanging sums, and sums with expectations, then for 
general Yi. We  have  

∞ �
P (τ = n)E(Y1 + · · · + Yn|τ = n) =  

∞ � 

n=1 

P (τ = n)

n � 

j=1 

E(Yj |τ = n)ETτ = 
n=1 

where the conditional expectation is replaced by 0 if P (τ = n) = 0.  Note:  if  Yj were 
independent of {τ = n} for j ≤ n then E(Yj |τ = n) =  EYj and Wald’s identity would 
follow. But this independence does not hold in general. Instead, 

ETτ = 
∞ � 

j=1 

∞ � 

n=j 

∞ � 

j=1 

∞ �
E(Yj |τ = n)P (τ = n) =  E(Yj 1τ =n) 

n=j 
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� 

∞ � 

j=1 

E(Yj 1τ ≥j ) =  
∞ � 

j=1 

E(Yj (1 − 1τ ≤j−1)).= 

The event {τ ≤ j − 1 is independent of Yj , so  } 

∞ � 

j=1 

EY1 

∞ � 

j=1 

E(Yj )P (τ ≥ j) =  P (τ ≥ j).ETτ = 

Now 

∞ � 

j=1 

∞ � 

j=1 

∞ � 

k=1 

k � 

j=1 

1 = 

∞ � 

k=1 

kP (τ = k) =  Eτ
� 

≥k j 

P (τ ≥ j) =  P (τ = k) =  P (τ = k) 

and the identity follows.


Recall the examples just after Prop. 1.5.3, where r1
 = f = RQ/P only has values 1/t, 1 
or t for some t >  1, and we do a test ψ = SPRT(A, B) for  A = 1/tj and B = tk for some 
positive integers j, k. Then  rN has only two possible values A, B. Take  Yi := log f(Xi), 
which has possible values 0 or ± log t, and  TN has possible values log A or log B. Then  
P ∞(rN = B) =  α(P, ψ) =  α0 and Q∞(rN = A) =  α(Q, ψ) =  α1. Recall that α0 

and α1 can be found explicitly in this case in terms of A, B. Thus we can find EµTτ and 
by Wald’s identity, we can evaluate Eµ,ψ N = EµTτ /EµY1 where Eµ is the expectation 
when µ is the true probability law and µ = P or Q. 

PROBLEMS 

1. Let X = {0, 1, 2}, P  (0) = Q(2) = 1/3, P (1) = Q(1) = 1/2, and P (2) = Q(0) = 1/6. 
For ψ = SPRT(1/4, 4) of P vs. Q, find upper bounds (as small as possible) for the error 
probabilities α0 and α1. 

2. For ψ in Problem 1, evaluate the average sample numbers EP,ψ N and EQ,ψ N . Hint:  
use Wald’s identity, applied to Yi = log  RQ/P (Xi). 

3. Suppose that for some K >  1, RQ/P (x) ≤ K for all x. Show that on the event Fn in 
the proof of Proposition 1.5.3, B ≤ rN < KB. Then show that α0 ≥ (1 − α1)/(KB). 
Similarly if RQ/P (x) ≥ 1/M for all x, show that α1 ≥ (1 − α0)A/M . 

4.	 Pairs of patients participate in a trial of a blood pressure drug. One of each pair is 
chosen at random to get the drug while the other gets a placebo which has no effect. 
Later, the patients’ blood pressures are measured. For the ith pair, let Xi be the 
measurement [average of systolic and diastolic] for the patient getting the drug minus 
that of the other member of the pair. Hypothesis P is the “null” hypothesis that the 
drug is ineffective, so P (Xi < 0) = 1/2. Hypothesis Q has Q(Xi < 0) = 0.6. Let Yi = 1  
if Xi < 0 and  Yi = 0  otherwise.  Based on the  Yi data, we want to find a test ψ = 
SPRT(1/B, B) of  P vs. Q such that the error probabilities α0 and α1 are both ≤ 0.05. 

(a) Give a	 B1 such that B ≥ B1 is sufficient, using α0 ≤ 1/B and α1 ≤ A in 
Proposition 1.5.3. 

(b) Give a B0 such that B ≥ B0 is necessary, using the previous problem. 
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5. In the example at the end of the section with t = 2,  and  RQ/P = t or 1/t (not 1), 
(a) Find the smallest sample size n for which a (possibly randomized but non-sequen-
tial) test for  n observations given by the Neyman-Pearson lemma (Sec. 1.1) has 
both error probabilities ≤ 0.05 (in other words, size ≤ 0.05 and power ≥ 0.95). 
Hint: if b(k, n, p) is the probability of exactly k successes in n independent trials 
with probability p of success on each trial, and E(k, n, p) the probability of k or 

.	 .more successes, then E(12, 23, 1/3) = 0.04805 while E(12, 22, 1/3) + 1b(11, 22, 1/3) = 2
0.05572. 

(b) Find an SPRT(A, B) for the same P and Q with both error probabilities ≤ 0.05. 
(c) To evaluate the relative efficiency of the SPRT, find EN/n for P and for Q with 
n from (a) and N from (b), or give an upper bound for it as small as possible (we 
hope, less than 1). 

6. In problem 2 of Sec. 1.1, find an SPRT(A, B) for  P vs. Q having both error probabilities 
≤ 0.05, with B as small as possible, B >  1, for which the inequality in Proposition 1.5.3 
becomes an equality. Then, find the actual error probabilities (which may be less than 
0.05). 

7.	 This relates to Wald’s identity 1.5.4 and its proof. Let Y1, Y2, . . .  be independent, 
identically distributed random variables with P (Y1 = −1) = P (Y1 = 3) = 1/2. Let τ 
be the least j such that |Yj | > 2. Which of the following equations are valid? Show in 
each case what the left and right sides do equal. 

(a) E(Y1|τ = 1) =  EY1,  (b)  E(Y1|τ = 2)  =  EY1, 
(c) E(Y2|τ = 2) =  EY2,  (d)  E(Y1 + Y2|τ = 2) = 2EY1, 
(e) E(Y1|τ ≥ 1) = EY1,  (f)  E(Y2|τ ≥ 2) = EY2, 
(g) E(Y1 + Y2|τ ≥ 2) = 2EY1. 
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