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1.7 Proof of optimality of the SPRT. For the Neyman-Pearson Lemma, we had a 
statement, Theorem 1.1.3, not involving losses or priors, and another (Theorem 1.1.8) 
when there are losses and a prior. Here, the statement of Theorem 1.5.1 again did not 
involve losses or priors, and did not involve the cost c per observation, but the proof to 
be given for it will do so, much as in Theorems 1.2.5 and 1.2.6 which showed that under 
some conditions Bayes decision rules are admissible. 

For a sequential randomized test {φn} of P vs. Q as defined in the last section, we can 
represent the randomization as follows. Let A = {−1, 0, 1}. Let  (Ω,F , µ) be a probability 
space on which there are i.i.d. random variables y1, y2, . . .  ,  uniformly distributed in [0, 1]. 
Take the yi to be independent of the Xj . Then  given  ω ∈ Ω, let 

⎧ ⎪ −1, if yn ≤ φn(X1, . . .  ,Xn)(−1) ⎨ 
φω 

n (X1, . . .  ,Xn) :=  1, if yn > 1 − φn(X1, . . .  ,Xn) (1)  ⎪ ⎩ 0, otherwise. 

If ω is chosen from Ω according to µ, then the non-randomized sequential test φω is applied, n 
the probabilities of decisions are just as in the randomized test. Randomized tests will, 
then, be represented by such φω , where  for  each  ω, {φω }n≥0 is a sequential test in the n n 
previously defined (non-randomized) sense. So, sequential randomized tests of P vs. Q are 
all “realizable” in a natural analogy with the notion defined in Sec. 1.3 and treated in Sec. 
1.4, and {φω 

n (·) :  n ≥ 0, ω  ∈ Ω} will be called a realized sequential test for P vs. Q. Here  
N will be the random n at which a choice of P or Q is made (or +∞ if the choice is never 
made). So N depends on ω as well as {Xj }j≥1. Error probabilities such as α(P, φ) and  
average sample numbers such as EP,φN are naturally defined for sequential randomized 
tests. 

For any given losses, let v := LPQ, the loss if Q is chosen when P is true, and 
w := LQP , the loss if P is chosen when Q is true. If a prior π is defined, let p := π(P ) 
and q := 1 − p := π(Q). 

For a sequential randomized test φ = {φn}, cost  c per observation and p, v, etc. as 
above, the overall risk is defined as the total expected cost plus loss: 

r(p, φ) :=  pvα(P, φ) +  qwα(Q,φ) +  pcEP,φ N + qcEQ,φN. 

Note that as a function of p, for  fixed  φ, P , Q, v and w, r(·, φ) is an affine (linear) function 
r(p, φ) =  a+ bp (since q ≡ 1 − p), i.e. a polynomial of degree 1 in p (or a constant). To see 
this, note that on the right side in the above definition there are two terms times p and 
two terms times q, which don’t otherwise depend on p or q. Since  q = 1  − p,  this risk is an  
affine function of p. 

Given P, Q, p, c > 0, v  >  0, and w >  0, a φ which minimizes r(p, φ) and has 
finite risk will be called Bayes, agreeing with previous definitions except that we now have 
additional terms depending on the cost per observation. 

For any test φ and x ∈ X let φ(x) be the test defined by 

(y1, . . .  , yn) :=  φωφ(x),ω 
n+1(x, y1, . . .  , yn)n 
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for all x, y1, . . .  , yn in X and n = 1, 2 . . . . 
An equation φn = u for a realized test φ will mean that φω = u for (almost) all ω,n 

where both φn and u may depend on X1, . . .  ,Xn. 
It will be shown that for any test taking at least one observation, the risk equals the 

expected posterior risk after one observation. In other words, 

1.7.1 Lemma. If  φ is a realized sequential test with φ0 ≡ 0, then 

r(p, φ) =  c + r(px, φ(x),ω )d(pP + qQ)(x)dµ(ω) 

where px is the posterior probability of P after observing x. 

Proof. It will be enough to prove this for non-randomized tests, then integrate. Let 
r(P, φ) :=  r(1, φ) and  r(Q,φ) :=  r(0, φ). For f(x) :=  RQ/P (x) we  have  px = 
p/(p + qf(x)) and qx := 1 − px = qf(x)/(p + qf(x)). Note that in this case the 
predictive measure γ on X is pP + qQ. Recall that by Theorem 1.3.7, the posterior is 
well-defined for γ-almost all x and doesn’t depend on the dominating measure. Next, 

r(px, φ(x) = pxr(P, φ(x)) +  qxr(Q,φ(x)). 

Then, decomposing the integral with respect to x over the two sets {f <  ∞} and {f = ∞}
gives 

r(px, φ(x))(p + qf(x))dP (x) +  r(px, φ(x))qdQ(x) 
f<∞ f =∞ 

= pr(P, φ(x)) +  qf(x)r(Q,φ(x))dP (x) +  q r(px, φ(x))dQ(x) 
f<∞ f =∞ 

(1.7.2) = p r(P, φ(x))dP (x) +  q r(Q,φ(x))dQ(x). 

〈x1, x
(1)〉On the other hand, r(p, φ) =  pr(P, φ) +  qr(Q,φ). For x ∈ X∞ write x = 

where x(1) := {xj }j≥2 and φ(x) =  〈φ0, {φn(x1, . . .  , xn) }n≥1〉. Let  N := N(x) be the  
least n such that φn(x1, . . .  , xn) �= 0, in other words the time a decision is made. Let 
1{. . . } denote the indicator function of the set {. . . }. Then  

r(P, φ) =  L(P, φ(x))dP∞(x) with  L(P, φ(x)) := cN(x) +  v1{φN = 1}, 

and where P∞ is the distribution for which x1, x2, . . .  are i.i.d. with distribution P . By  
the Tonelli-Fubini theorem, 

L(P, φ(〈x1, x
(1)〉))dP∞ (x(1))dP (x1).r(P, φ) =  
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For y = x1 fixed, and since φ0 = 0, the inner integral equals c + r(P, φ(y)). The corre-
sponding fact for Q then combines to give 

r(p, φ) = (p + q)c + p r(P, φ(y))dP (y) +  q r(Q, φ(y))dQ(y), 

and using (1.7.2) completes the proof of Lemma 1.7.1. � 

Now, if we multiply the cost c per observation and the losses v and w all by a constant 
h >  0, leaving p fixed, then we multiply r(p, φ) by  h for any test φ. (This  can  be  considered  
a choice of units or scale for costs and losses.) So if φ is Bayes for c, v and w, it is also  for  
hc, hv and hw. So in this proof (the proof of Theorem 1.5.1), letting h := 1/(v + w), we 
can and will assume v + w = 1.  

Let r(p) := inf{r(p, φ) :  φ ∈ C} where C is the class of all realized sequential tests 
φ with φ0 ≡ 0, so that N ≥ 1 always. Then for all φ ∈ C, r(p, φ) ≥ c for 0 ≤ p ≤ 1. If V 
is a test with V0 ≡ 0 and  V1 ≡ 1, then r(p, V ) =  c + pv, so  c ≤ r(p) ≤ c + pv and r(·) is  
continuous at 0 (see Fig. 1.7A). Likewise, c ≤ r(p) ≤ c + (1  − p)w implies r is continuous 
at 1. If 0 < t  <  1 and  x, y ∈ [0, 1], then for any test φ,  we have by the  affine  form  of  
r(p, φ) as a function of p (with other quantities fixed), as noted just after the definition of 
r(p, φ), that 

(1.7.3) r(tx + (1  − t)y, φ) ≡ tr(x, φ) + (1  − t)r(y, φ), 

and so 

r(tx + (1  − t)y) = inf{tr(x, φ) + (1  − t)r(y, φ) :  φ ∈ C}  ≥  tr(x) +  (1  − t)r(y). 

Thus r(·) is concave, and so continuous on the open interval (0, 1) (RAP, Theorem 6.3.4; 
−r is convex). So r(·) is continuous on the closed interval [0, 1]. 

Let R(p) := infφ r(p, φ) (the infimum over all tests, not just those in C). Then R(·) 
can be approximated as follows: 

1.7.4 Lemma. For any ε >  0 there is a function F from [0, 1] to the set of all realized 
sequential tests, where F has finitely many tests as possible values, each on an interval, 
and where for 0 ≤ p ≤ 1, R(p) ≤ r(p, F (p)) ≤ R(p) +  ε. 

Proof. As with r(·), R(·) is concave. Let S be the test with S0 ≡ 1 and  T the test 
with T0 ≡ −1. So S chooses Q and T chooses P , each with no observations (N ≡ 0). 
Then r(p, S) =  pv and r(p, T ) =  qw. If at least one observation is taken, the risk is r(p). 
The overall risk, as a function of p, is the minimum of these three risks (and could not be 
reduced by choosing at random among S, T and a test in C). So as shown in Fig. 1.7A, 

(1.7.5) R(p) ≡ min(pv, r(p), (1 − p)w), 

so R(·) is continuous for 0 ≤ p ≤ 1. Also, for any fixed test φ, r(p, φ) is affine (linear) in p 
by (1.7.3) and so continuous. For each p ∈ [0, 1] there is a test φp with r(p, φp) < R(p)+  ε, 
and so r(u, φp) < R(u) +  ε for all u in some relatively open interval Jp containing p in 
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c = cost per observation 

v = LPQ  = loss  when  P is true, Q is chosen 

w = LQP = loss  when  Q is true, P is chosen 

(c, v, w) normalized so that v + w = 1  
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R(p) =  min  (pv, r(p), (1 − p)w) 
= minimum risk 
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risk if P is 
chosen without 
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Figure 1.7A. 
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Fig. 1.7.A. Minimum risk for sequential tests
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[0, 1]. By compactness these intervals have a finite subcover Jp(i), i = 1, . . .  ,m. Then  we  
can take disjoint subintervals Ii ⊂ Jp(i) which cover [0, 1] (but are no longer open), and 
set F (u) =  φp(i) for u ∈ Ii for each i = 1, . . .  ,m. � 

We also see in (1.7.5) that if a Bayes test φ of P vs. Q exists, and pv is strictly less 
than either of the other two terms on the right, we must have φ0 ≡ 1. If (1 −p)w is strictly 
the smallest of the three terms, then φ0 ≡ −1. And if r(p) is strictly smallest, then φ0 ≡ 0. 

Now if r(w) ≤ vw, then the function g(p) :=  r(p) − pv is concave and continuous 
on [0, 1], g(0) > 0, and g(w) ≤ 0. Thus by the intermediate value theorem, g has a root 
pL with 0 < pL ≤ w (again, see Fig. 1.7A). Since g(0) > 0 and  g is concave, the root is 
unique (if 0 < a  < b <  1 and  g(b) = 0  then  g(a) > 0 by concavity). Likewise, the function 
h(p) :=  r(p) − (1 − p)w has a unique root pU with w ≤ pU < 1. Or if r(w) > vw, then  
let pL := pU := w. 

1.7.6 Proposition. If  pL < p < pU then 

R(p) =  c + R(px)d(pP + qQ)(x). 

Proof. In the given range, R(p) =  r(p). Let φ be any test with φ0 = 0. Then by Lemma 
1.7.1, 

r(p, φ) =  c + r(px, φ(x))d(pP + qQ)(x) ≥ c + R(px)d(pP + qQ)(x). 

Taking the infimum over such φ (φ ∈ C) gives  

R(p) =  r(p) ≥ c + R(px)d(pP + qQ)(x). 

(Note that since x →
 px is measurable and R is continuous, x 
→ R(px) is measurable.) 
For the reverse inequality, given ε >  0 and  a fixed  p, take  F from Lemma 1.7.4 and 

define a test η with η0 ≡ 0 and  η(x) := F (px) for all x. Then by Lemma 1.7.1 again, 

R(p) ≤ r(p, η) =  c + r(px, η(x))d(pP + qQ)(x) 

≤ c + ε + R(px)d(pP + qQ)(x). 

Letting ε ↓ 0 finishes the proof. � 

The Neyman-Pearson lemma on admissibility (Theorem 1.1.3) was proved above be-
fore the characterization of Bayes tests (Theorem 1.1.8). In contrast, for sequential tests, 
the following sufficient condition for the Bayes property will be proved, then used in the 
rest of the proof of Theorem 1.5.1. 
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1.7.7 Theorem. Suppose given P, Q, c, p and v with 0 < w  := 1 − v <  1. Let 
q := 1 − p, A := p(1 − pU )/(qpU ) and  B := p(1 − pL)/(qpL). Then ψ := SPRT(A,B) 
is Bayes for P vs. Q. 

nConversely, any Bayes sequential test of P vs. Q must, almost surely for P n and Q 
for each n, if no previous decision was made, continue (take at least one more observation) 
when A < rn < B, or choose  P if rn < A, or  Q if rn > B. 

Proof. If p ≥ pU , then  A ≥ 1 and  ψ chooses P immediately, attaining r(p, ψ) =  R(p) =  
(1 − p)w. Likewise if p ≤ pL and p < pU , then  A < B  ≤ 1 and  ψ chooses Q immediately, 
attaining r(p, ψ) =  R(p) =  pv. So  ψ is Bayes in these cases. 

If r(w) ≥ vw, then  pL = pU = w and p ≥ pU or p ≤ pL for all p. So we can assum 
r(w) < vw, 

We are left with the main case pL < p < pU . Let  p(x) :=  px. Now  px ≥ pU is 
equivalent to p ≥ pU (p + qf(x)) or f(x) ≡ r1(x) ≤ A, while px ≤ pL is likewise equivalent 
to r1(x) ≥ B. Thus  if  pL < p  < pU , but p(X1) ≤ pL or p(X1) ≥ pU , then  ψ makes a 
choice after one observation, achieving a risk c + R(p(X1)), matching the corresponding 
part of the integral in Proposition 1.7.6. The case pL < p(X1) < pU remains. After n 
observations, the posterior probability of P is 

p(n) := p(n)(x1, . . .  , xn) :=  p/(p + rnq), 

where rn := 
∏ 

1≤j≤n f(Xj ). Now pL < p(n) if and only if B >  rn. Also,  p(n) < pU if and 
only if rn > A. 

Moreover, by the remarks after the proof of Lemma 1.7.4, applied after the nth ob-
servation, if a Bayes sequential test has not made a decision previously, it must choose P 
if rn < A, choose  Q if rn > B, and continue if A < rn < B, proving the last statement in 
Theorem 1.7.7. 

Let Cn be the event that A < rj < B  for j = 0, 1, . . .  , n, so  that  ψ takes at least n+1  
observations. For n ≥ 1 let  Vn := Cn−1 ∩ {rn ≤ A} and Wn := Cn−1 ∩ {rn ≥ B}. 
1.7.8 Lemma. If  pL < p <  pU and n = 1, 2, . . . , then  

n 

R(p) ≥ Tn(p) :=  p[P j (Wj )(v + jc)] + q[Qj (Vj )(w + jc)] + jc[pP j (Vj ) +  qQj (Wj )]. 
j=1 

Proof. The proof will be by induction on n. For  n = 1,  

T1(p) =  c[(pP + qQ)(W1 ∪ V1)] + vpP (W1) +  wqQ(V1) ≤ R(p) 

by Proposition 1.7.6 as follows. The coefficient of c above is ≤ 1. For px ≥ pU , which  is  
the event V1, R(px) = (1  − px)w. Likewise for px ≤ pL, which  is  W1, R(px) =  pxv. 

For the induction step, note that Tn(p) is the risk restricted to the complement of Cn. 
If x(n) :=  (x1, . . .  , xn), then on Cn, pL < πx(n) < πR, so Proposition 1.7.6 applies to the 
induction step from n to n + 1 just as in the proof for n = 1.  � 

5
 



∫ ∫ 

∫ ∫ 

On the other hand, 

r(p, ψ) =  pr(P,ψ) +  qr(Q,ψ) =  p L(P,ψ(x))dP∞(x) +  q L(Q,ψ(x))dQ∞(x) 

≤ Tn(p) +  p L(P,ψ(x))dP∞(x) +  q L(Q,ψ(x))dQ∞(x). 
Cn Cn 

As n → ∞, the events Cn decrease, P∞(Cn) ↓ 0 and  Q∞(Cn) ↓ 0 by Lemma 1.5.2. On 
Cn−1 \ Cn, L(µ,ψ(x)) ≤ nc + max(v,w) for  µ = P or Q. By Lemma 1.5.2 and the fact 
that 

∑ 
(a + nc)γn converges whenever γ <  1, for any constants a, c, it follows that n 

the integrals in the last display are finite and decrease to 0 by dominated convergence or 
monotone convergence. So r(p, ψ) ≤ R(p), and r(p, ψ) =  R(p) and  ψ is Bayes, finishing 
the proof of Theorem 1.7.7. � 

Now, the dependence of pL and pU on c and v (with v + w = 1) will be indicated in 
the notation, setting pL := pL(c, v), pU := pU (c, v). 

1.7.9 Lemma. The functions pL(·, v) and  pU (·, v) are continuous in c for c >  0 and  each  
fixed v. 

Proof. For each p and φ, the  risk  r(p, φ) is a non-decreasing function of c, which  will  be  
called r(p, φ; c) or  r(p, φ; c, v). Thus, r(p; c, v) :=  r(p; c) :=  r(p) is non-decreasing in c 
for each fixed p and v. Given p, c and δ >  0, let φ be a test such that r(p, φ; c) < r(p; c)+δ. 
Let M := max(EP,φ N,EQ,φN) < ∞ since c >  0 and  

M ≤ [r(p; c) +  δ]/(c · min(p, q)). 

Take any c1 ≤ c ≤ c2. Then  

M ≤ M1 := [r(p; c2) +  δ]/(c1 · min(p, q)). 

Then if c1 ≤ c <  c2, for any h >  0 such that c1 ≤ c < c + h ≤ c2, 

r(p; c + h) ≤ r(p, φ; c + h) ≤ r(p, φ; c) +  M1h ≤ r(p; c) +  M1h + δ. 

Letting δ ↓ 0 gives  that  0  ≤ r(p; c + h) − r(p; c) ≤ M1h. In  other  words  r(p; c) is,  for  
  
c >  0, locally Lipschitz in c. So, it is continuous in c. Recall that r(p; c) ≥ c for all p.
 
Thus there is a unique smallest c := c0 := c0(v) :=  c0(v, p, P,Q)
 
such that r(w; c) ≥ vw, with  r(w; c0) =  vw, or equivalently such that pL = pU = w.
 
Thus for c ≥ c0, pL(c, v) =  w, which is continuous (being constant) in c. For  0  < c  ≤
 
c0, r(w; c) ≤ vw and pL(c, v) is the unique solution p for 0 < p <  1 of  r(p; c) =  pv, with  
  
r(p; c) > pv  if p < pL and r(p; c) < pv  if p >  pL. For any d ≥ c, we have  
  

vpL(d, v) =  r(pL(d, v); d, v) ≥ r(pL(d, v); c, v), 

and hence pL(d, v) ≥ pL(c, v), so pL is non-decreasing in c. 

6 



′ 

′ 

′ 

′ 

Suppose cn ↓ c < c0 and pL(cn, v) ↓ p > pL(c, v). Then 

r(p ′; c, v) < vp  ≤ r(p ′; cn, v) → r(p ′; c, v), 

a contradiction. So pL is continuous in c from the right. Likewise if cn ↑ c ≤ c0 and 
pL(cn, v) ↑ p < pL(c, v), then 

r(p ′; c, v) > vp  ≥ r(p ′; cn, v) → r(p ′; c, v), 

again a contradiction. Thus pL is continuous in c. The proof for pU is symmetrical. � 

1.7.10 Lemma. For any ε >  0, P  �= Q, 0 < A <  1 < B  <  ∞, and  ψ = SPRT(A,B), 
there exist c >  0, v  ∈ (0, 1), and p ∈ (0, ε) such that ψ is Bayes for the given P, Q, p, c 
and v, and another such p with 1 − ε < p <  1. 

Proof. Fix v ∈ (1 − ε/B, 1) and let 

j(c) :=  pL(c, v)[1 − pU (c, v)]/[pU (c, v)(1 − pL(c, v))]. 

Then j is a continuous function of c >  0, by Lemma 1.7.9, since 0 < pL < 1 and  0  < pU < 1. 
For c large enough, pL = pU , and  then  j(c) = 1.  As  n → ∞, the infimum of error 
probabilities 

inf{max(α(P, φ), α(Q,φ)) : φ ∈ Cn} →  0 

where Cn is the class of ordinary (non-sequential) tests φ(x1, . . .  , xn) , as can be seen 
from 1.5.3 with B and 1/A (in 1.5.3, not here) large, then 1.5.2. Thus as c → 0, 
sup0≤p≤1 r(p; c) → 0, so pL(c, v) → 0 and  pU (c, v) → 1. So j(c) → 0. Thus by the 
intermediate value theorem there is a c such that j(c) =  A/B. 

For that c, let  pL := pL(c, v), pU := pU (c, v) and  p := pLB/(1 − pL + pLB), with 
q := 1 −p. Then  p/q = pLB/(1 −pL) =  pU A/(1 −pU ), so by Theorem 1.7.7, SPRT(A,B) 
is Bayes. We have 0 < p  ≤ pLB ≤ wB < ε as desired. To find another p >  1 − ε, choose  
instead v ∈ (0, Aε), proceeding otherwise as above. Then q = (1  −pU )/(1 −pU + pU A) ≤ 
(1 − pU )/A ≤ v/A < ε. � 

Proof of Theorem 1.5.1. The optimality of SPRTs will be proved also as compared 
to sequential randomized tests of P vs. Q. Given ψ = SPRT(A,B), with 0 < A <  1 < 
B <  ∞, and  ε >  0, Lemma 1.7.10 gives a v, w = 1  − v, c > 0, and a p with 0 < p < ε  
for which ψ is Bayes. Let φ be another (randomized) test with α(P, φ) ≤ α(P,ψ) and  
α(Q,φ) ≤ α(Q,ψ). 
Case I. Suppose EP,φN <  ∞ and EQ,φN <  ∞. Then by the Bayes property of ψ, 

0 ≤ r(p, φ) − r(p, ψ) =  pv(α(P, φ) − α(P,ψ)) + qw(α(Q,φ) − α(Q,ψ)) 

+pc(EP,φ N−EP,ψ N)+qc(EQ,φ N−EQ,ψ N) ≤ εc(EP,φN−EP,ψ N)+c(EQ,φ N−EQ,ψ N). 

Letting ε ↓ 0, it follows that EQ,φ N ≥ EQ,ψ N . Likewise, taking p >  1 − ε from Lemma 
1.7.10 so that q <  ε  and letting ε ↓ 0 gives  EP,φN ≥ EP,ψ N as desired. 
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Case II. Suppose EP,φN = +∞. (Note: this case has little practical interest, as one would 
not want to use a test with infinite risk (expected cost of observations) under P , even  if  
it had a smaller expectation for N under Q.) For a proof by contradiction, suppose that 
EQ,φ N <  EQ,ψ N. 
Case IIa: Suppose also α(P,ψ) > 0 and  α(Q,ψ) > 0. Let C := α(Q,ψ)/2, D  := 
2/α(P,ψ), and T := SPRT(C,D). Then by Lemma 1.5.2, EP,T N <  ∞ and EQ,T N <  ∞. 
By Lemma 1.5.3, α(P, T ) < α(P,ψ) and  α(Q,T ) < α(Q,ψ). Let T (t) be a randomized 
sequential test with Pr(T (t) =  T ) =  t and Pr(T (t) =  φ) =  1  − t. For  t small enough, 

α(P, T ) < α(P,ψ), α(Q,T (t)) < α(Q,ψ), and EQ,T (t)N <  EQ,ψ N. 

For each k = 1, 2, . . . , let  T (t, k) be the test with T (t, k)j = T (t)j for j <  k  and T (t, k)k = 1,  
so that T (t, k) acts the  same  as  T (t) through the first k−1 observations, then T (t, k) chooses  
Q. For  T (t, k) we  have  N ≤ k, so  EP,T (t,k)N <  ∞ for any k. We  have  

α(Q,T (t, k)) ≤ α(Q,T (t)) < α(Q,ψ) and  EQ,T (t,k)N ≤ EQ,T (t)N <  EQ,ψ N, 

while for k large enough, α(P, T (t, k)) < α(P,ψ). This contradicts Case I.
 
Case IIb: α(P,ψ) = 0. So also α(P, φ) = 0. Note that α(Q,ψ) < 1 by Lemma 1.5.3
 
since A <  1. If P (r1 > 1) > 0, then for some ε >  0, P (r1 > 1 +  ε) > ε.  For each n,
 
Pn(rj > (1 + ε)j for j = 1, . . .  , n) > εn. For  some  n, (1  +  ε)n > B  so α(P,ψ) > εn > 0,
 
a contradiction. Thus P (r1 > 1) = 0. Since Q �
= P , Q{r1 < ∞} = ∫ r1dP < 1. Let 
F := {r1 = ∞}, so  Q(F ) > 0. 
Case IIb1: α(Q,ψ) = 0 also. Then just as P (r1 > 1) = 0 we also have Q(r1 < 1) = 0. So 
r1 = 0, 1 or +∞ almost everywhere for P + Q, and the values of rn are also 0, 1 or +∞ 
almost surely for Pn or Qn . Both error probabilities are 0 for both tests. So on the event 
that r1 = r2 = · · ·  = rn = 1, almost surely neither test has made a decision yet. Thus ψ, 
which decides the first time rn �= 1,  has  EQ,ψ N ≤ EQ,φ N as desired. 
Case IIb2: α(Q,ψ) > 0. Let U(k) be the  test  which takes  k observations and chooses Q if 
rk = +∞, otherwise  P . For  k large enough, α(Q,U(k)) = (1 − Q(F ))k < α(Q,ψ), while 
α(P,U(k)) = 0. Let Us do φ with probability s and U(k) with probability 1 − s, where  
0 < s <  1. Then α(P,Us) = 0, α(Q,Us) < α(Q,ψ), and EQ,Us 

N <  ∞. 
Let V (j) be  the  test  which equals  Us before time j, and after the jth observation, 

if no decision was made previously, V (j) chooses  P . Then  α(P, V (j)) = 0. For j large 
enough, α(Q,V (j)) < α(Q,ψ). So by Case I 

EQ,ψ N ≤ EQ,V (j)N ≤ EQ,Us 
N = sEQ,φN + (1  − s)EQ,U (k)N ≤ sEQ,φ N + (1  − s)k. 

Letting s ↑ 1, we get EQ,ψ N ≤ EQ,φN , finishing cases IIb2, IIb and II.
 
Case III, interchanging P and Q in Case II, is symmetrical. So Theorem 1.5.1 is proved.�
 

Risks can be defined without priors, as in Sec. 1.2, as follows. These will be denoted 
here by ρ(·, ·) to distinguish them from risks r(p, ·) depending on priors. Let 

ρ(µ, φ) :=  Lµν α(µ, φ) +  cEµ,φN 
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where (µ, ν) =  (P,Q) or (Q,P ) and  φ is any sequential test of P vs. Q. Recall that for 
two such tests φ, η, φ � η means ρ(µ, φ) ≤ ρ(µ, η) for  µ = P and µ = Q, and  φ ≺ η means 
that in addition, the inequality is strict for µ = P or Q. A sequential test η is inadmissible 
if there exists φ ≺ η, otherwise  admissible. 

1.7.11 Corollary. For given c, v, w, P and Q, if  A and B are defined as in Theorem 1.7.7, 
for any p = 1  − q with 0 < p <  1, then ψ := SPRT(A,B) is admissible. 

Proof. We have for 0 ≤ p ≤ 1 and any sequential test φ, r(p, φ) ≡ pρ(P, φ) +  qρ(Q,φ). 
If φ ≺ ψ then since 0 < p  <  1 it would follow that r(p, φ) < r(p, ψ), contradicting Theorem 
1.7.7.	 � 

The Corollary is really a special case of Theorem 1.2.6.
 

PROBLEM
 
1.	 Suppose that in a sequential test of P vs. Q, there  is  a  loss  of  v = LPQ  =$20 if P 

is true and Q is chosen, and a loss w = LQP =$20 if Q is true and P is chosen. Let 
the cost per observation be c =$1. Let p be the prior probability of P . Suppose that 
the minimum risk over all tests taking at least one observation is r(p) = 1  +  5p(1 − p) 
dollars. 

(a) Find pL, such that if p < pL but not if p > pL, we should choose Q without taking 
any observation. 

(b) Find pR, such that if p >  pR but not if p <  pR, we should choose P without taking 
any observation. 
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