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2.5 Exponential families. These will be families {Pθ , θ  ∈ Θ} of laws, including many 
of the best-known special families such as the binomial and normal laws, and for which 
there is a natural vector-valued sufficient statistic, whose dimension stays constant as the 
sample size n increases, and which has the Lehmann-Scheffé property. 

Definition. A family P = {Qψ : ψ ∈ Ψ} of laws on a measurable space (X,B), containing 
at least two different laws, is called an exponential family if there exist a σ-finite measure 
µ on (X,B), a positive integer k, and real functions θj on Ψ and measurable h with 0 < 
h(x) < ∞ and Tj on X for j = 1, . . .  , k, such that for all ψ ∈ Ψ, Qψ is absolutely continuous 
with respect to µ, and  for some  C(θ(ψ)) > 0, where θ(ψ) := (θ1(ψ), . . .  , θk (ψ)), 

(2.5.1) (dQψ /dµ)(x) =  C(θ(ψ))h(x) exp(  
�k

j=1 θj (ψ)Tj (x)). 

If we replace µ by ν where dν(x) =  h(x)dµ(x), the factor h(x) can be omitted, and ν 
is still a σ-finite measure. Given the θj , Tj , h, and  µ, the  number  C(θ(ψ)) is determined 

kby normalization, so it is, in fact, a function of θ(ψ) :=  {θj (ψ)}j=1. Thus,  given  Tj , h, 
and µ, Qψ is determined by the values of θj (ψ). 

It follows from the factorization theorem, Corollary 2.1.5, that for any exponential 
family, the vector-valued statistic (T1(x), . . .  , Tk (x)) is a sufficient statistic. The struc-
ture of an exponential family is essentially preserved by taking n i.i.d. observations, as 
follows. Let {Qψ , ψ  ∈ Ψ} be any exponential family and let X1, . . .  ,Xn be i.i.d. (Qψ ). 

nThen the distribution Qψ of (X1, . . .  ,Xn) is an exponential family for the σ-finite mea-
n sure µn on Xn, replacing Tj (x) by  

�
Tj (Xi), h(x) by Πj

n 
=1h(Xj ), and C(θ(ψ)) by i=1 

C(θ(ψ))n . It follows that for n i.i.d. observations from the exponential family, the k-vector 
{ n 

Tj (Xi)}k is a sufficient statistic. i=1 j=1 

Since exponentials are strictly positive, any exponential family is an equivalent family 
as defined in the last section. The Tj will be called affinely dependent if for some constants 
c0, c1, . . .  , ck , not all 0, c0 + c1T1 + · · · + ck Tk = 0 almost everywhere for µ. Then  ci �= 0  
for some i ≥ 1, and we can solve for Ti as a linear combination of other Tj and a constant. 
Then we can eliminate the Ti term and reduce k by 1, adding constants times θi(·) to  each  
θj (·) for  j �= i. Iterating this, we can assume that T1, . . .  , Tk are affinely independent, 
i.e. they are not affinely dependent. Likewise, we can define affine independence for the 
functions θj , where now the linear relations among the θj (·) and a constant would hold 
everywhere rather than almost everywhere (at this point we are not assuming a prior 
given on the parameter space Ψ). We can eliminate terms until θj (·) are also affinely 
independent. We will always still have k ≥ 1 since  P contains at least two laws. 

Let Θ be the range of the function ψ �→ θ(ψ) := (θ1(ψ), . . .  , θk (ψ)) from Ψ into Rk . 
Then clearly θ1(·), . . .  , θk (·) are affinely independent if and only if Θ is not included in any 
(k − 1)-dimensional hyperplane in Rk . Likewise, T1, . . .  , Tk are affinely independent (as 
defined above) if and only if for T := (T1, . . .  , Tk ) from  X into Rk , the measure µ ◦ T−1 

is not concentrated in any (k − 1)-dimensional hyperplane in Rk . For  each  θ ∈ Θ, let Pθ 

be the law on X with (dPθ /dµ)(x) =  C(θ)h(x)eθ·T (x) where θ · T := 
�k

j=1 θj Tj . Then  
Qψ = Pθ(ψ) for all ψ ∈ Ψ and  P = {Pθ : θ ∈ Θ}. 

A representation (2.5.1) of an exponential family will be called minimal if T1, . . .  , Tk 

are affinely independent, as are θ1(·), . . .  , θk (·). 
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A functionoid is an equivalence class of functions for the relation of almost sure equal-
ity for a measure. The well-known Banach spaces Lp of p-integrable functions, such as the 
Hilbert spaces L2 of square-integrable functions, are actually spaces of functionoids. For 
an exponential family, or any other equivalent family, almost sure equality is the same for 
Pθ for all θ. 

2.5.2 Theorem. Every exponential family P := {Qψ : ψ ∈ Ψ} has a minimal represen-
tation (2.5.1), and then k is uniquely determined. 

Proof. We already saw that the Tj (·) can be taken to be affinely independent, as can the 
θj (·), so that the representation (2.5.1) is minimal. As we also saw, the family P can be 
written as {Pθ , θ  ∈ Θ}, Θ  ⊂ Rk , where  

θ·T (x)(dPθ /dµ)(x) =  C(θ)h(x)e . 

Then the likelihood ratios are all of the form 

Rθ,φ := RPθ /Pφ 
= C(θ)C(φ)−1 exp{ 

�
j
k 
=1(θj − φj )Tj (x)}. 

The logarithms of these likelihood ratios (log likelihood ratios) plus constants span a real 
vector space VT of functionoids on X, included in the vector space WT of functionoids 
spanned by 1, T1, . . .  , Tk . Then  WT is (k + 1)-dimensional since T1, . . .  , Tk are affinely 
independent by minimality. Also, since θ1, . . .  , θk are affinely independent on Θ, VT = WT . 
Now V := VT is determined by the family P, not depending on the choice of µ or T , so  
V and k are uniquely defined for the family P. � 

The number k will be called the order of the exponential family. From here on it 
will be assumed that the representation of an exponential family is minimal unless it is 
specifically said not to be. 

Any exponential family P can be parameterized by a subset of Rk , replacing θj (ψ) by  
θj , with Θ  =  {θ(ψ) :  ψ ∈ Ψ}, and  

(2.5.3) (dPθ /dµ)(x) =  C(θ)h(x) exp(
�k

j=1 θj Tj (x)), θ  ∈ Θ ⊂ Rk , 

where now Qψ = Pθ(ψ) for all ψ ∈ Ψ. The parameterization in (2.5.3) is then one-to-one: 

2.5.4 Theorem. If an exponential family has a minimal representation (2.5.3), then for 
= φ in Θ, Pθ �any θ � = Pφ. 

Proof. If Pθ = Pφ, then for  θ · T := j θj Tj , we  have almost everywhere  

θ · T − log C(θ) =  φ · T − log C(φ), 

or (θ− φ) · T = c for some c not depending on x. But  θ �= φ means that the Tj are affinely 
dependent, contradicting minimality. � 

Any subset of an exponential family is also an exponential family with the same Tj 

and ν, recalling that dν(x) :=  h(x)dµ(x). It can be useful to take an exponential family 
as large as possible. Given ν and Tj , j  = 1, . . .  , k  the natural parameter space of the 
exponential family is the set of all θ = (θ1, . . .  , θk ) ∈ Rk such that 
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(2.5.5) K(θ) :=  exp( 

�k
j=1 θj Tj (x))dν(x) < ∞. 

Clearly K(θ) > 0 for all θ. For any θ in the natural parameter space, we can define 
C(θ) := 1/K(θ) and get a probability measure Pθ given by (2.5.3). So we have a family 
of laws Pθ indexed by the natural parameter space. The family doesn’t extend to values 
of θ outside the natural parameter space since then normalization is not possible. 

2.5.6 Theorem. For any given σ-finite ν and measurable functions Tj on (X,B), the 
natural parameter space is a convex set in Rk . 

→ eyθProof. First, for any real y (which can be positive or negative), θ � is a convex 
function of θ ∈ R (its second derivative is positive, so its first derivative is increasing, 
which implies convexity). It follows that for any real y1, . . .  , yk , the function 

θ = (θ1, . . .  , θk ) �→ exp(y1θ1 + · · · + yk θk ) 

is convex on Rk . The inequalities defining convexity are preserved when integrated with 
respect to a nonnegative measure, so K(θ) is a convex function, whose values may be 
infinite for some θ (just those θ outside the natural parameter space). The set where a 
convex function < +∞ is clearly a convex set. � 

2.5.7 Proposition. For any exponential family, the natural parameter space is the same 
for any number n of i.i.d. observations. 

Proof. If Kn(θ) is the integral K(θ) for  n observations, then from the definitions and the 
Tonelli-Fubini theorem, Kn(θ) =  K1(θ)n for all n, so  Kn(θ) is finite if and only if K1(θ) 
is. � 

2.5.8 Theorem. For an exponential family as in (2.5.3) let U be the interior of the 
natural parameter space. Then for ξ = (ξ1, . . .  , ξk ) in  U and η = (η1, . . .  , ηk ) ∈ R

k , 
let W := {ζ = ξ + iη : ξ ∈ U, η ∈ R

k } so that ζj = ξj + iηj for j = 1, . . .  , k. 
Then the function K(z) in (2.5.5) is, on W , an analytic (holomorphic) function of z, 
representable by a power series in the k coordinates zj − ζj in the neighborhood of any 
point ζ in W . In  particular  K has, on W , continuous partial derivatives of all orders 
with respect to z, which can be obtained by differentiating under the integral sign. In 
other words, for any p = (p1, . . .  , pk ), where the p(i) :=  pi are nonnegative integers and 

[p] :=  p1 + · · · pk , the partial derivative DpK := ∂[p]K(z)/∂z
p(1) · · · ∂z

p(k) exists and 1 k 

t
p(1)is continuous, and equals ∫ T (x)p exp( 

�k
j=1 zj Tj (x))dν(x), where tp := · · · tp(k). For  1 k 

any ξ ∈ U, Eξ T
p = DpK(ξ)/K(ξ). 

Proof. Let ζ = ξ + iη ∈ W , so  ξ ∈ U and η ∈ Rk . Take  ε >  0 small enough so that if 
|uj − ξj | ≤  ε for all j = 1, . . .  , k  then u ∈ U , so  u + iv ∈ W for any v ∈ Rk . Then for any 
T = T (x) ∈ Rk , 

|e(u+iv)·T | = e u·T = e(u−ξ)·T ξ·T e . 

Thus, replacing dν(x) by  eξ·T (x)dν(x), we can assume that ξ = 0.  Then  |uj | ≤  ε for 
j = 1, . . .  , k. 
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We have eu·T = Πj
k 
=1 exp(uj Tj ), 

r rexp(u1T1) =  
�∞ 

r=0(u1T1)r /r!, |(u1T1)r | = |u1| |T1| , and �∞ |u1T1|r /r! = exp(|u1T1|) ≤ exp(−εT1) + exp(εT1),r=0 

and likewise for any j = 2, . . .  , k  in place of j = 1.  By  choice  of  ε, 

∫  · · · ∫  Πj
k 
=1 exp(±εTj )dν(x1) · · · dν(xk ) < ∞ 

for any choices of ±, where  Tj := Tj (xj ) for  each  j,  so the  sum over all  2k possible choices 
of ± of the integrals is finite. Thus by dominated convergence, the series 

u·T �∞ 
e = Πj

k 
=1 rj =0(uj Tj )rj /rj ! 

converges absolutely if |uj | ≤  ε for all j, and can be interchanged with 

· · ·  ·dν(x1) · · · dν(xk ). 

The integral yields a power series in u1, . . .  , uk . In  the  above,  uj can be replaced by uj +ivj 

if |uj + ivj | ≤  ε for each j. So we get a power series converging to K(z) for  z = u + iv. 
Since such a series exists in some neighborhood of each point in W , K(·) is holomorphic 
on W as stated. 

To show that derivatives can be taken under the integral sign, first let k = 1  and  
p = 1.  If  0  < t < c  and y >  0 then for  λ := t/c and x := cy, by  convexity  
eλx ≤ λex + (1  −λ)e0 ≤ λex + 1,  so  (ety − 1)/t ≤ ecy /c. Likewise, for 0 < |t| < c  and all y, 
|(ety −1)/t| ≤  (ecy + e−cy )/c. For  u in U , and  c small enough, u ± c ∈ U , so the functions 
{(e(t+u)T (x) − euT (x))/t : 0  < |t| < c} are dominated by an integrable function. So 

d 
e θT (x)dν(x)|θ=u = T (x)e uT (x)dν(x). 

dθ 

Also, |y| ≤  (ecy + e−cy )/c. 
c−p(ecy + e−cy )p ≤ (2/c)p(epcy + eFor p >  1, −pcy ). For fixed p, u ± pc ∈ U for c 

small enough, so we can again apply dominated convergence to get 

(dp/dθp) e θT (x)dν(x)|θ=u = T (x)pe uT (x)dν(x). 

Now for k >  1, and any p ∈ Nk , the  2k (or fewer) points (u1 ± cp1, . . .  , uk ± cpk ) are  all in  
U if c is small enough. Dominated convergence applies once more, so the derivatives can 
be interchanged with integrals as stated. 

The final statement follows easily since C(θ) ≡ 1/K(θ), finishing the proof. � 

Suppose given an exponential family as in (2.5.3) and let j(θ) :=  log  K(θ) =  
− log C(θ), so that dPθ /dν = exp(−j(θ) +  θ · T ) where  θ · T := j θj Tj (x). Since the 

kvector T := {Tj }j=1 gives a sufficient statistic for the family, the means and variances of 
its components are of interest. They have nice expressions in terms of derivatives of the 
function j. The gradient of j is the vector-valued function �j := (∂j/∂θ1, . . .  , ∂j/∂θk ). 
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2.5.9 Corollary. For any θ in the interior of the natural parameter space of the expo-
nential family (2.5.3), Eθ T = �j(θ) and  for any  r, s = 1, . . .  , k, 

covθ (Tr , Ts) =  Eθ (Tr Ts) − Eθ Tr Eθ Ts = ∂2j(θ)/∂θr ∂θs. 

Proof. Theorem 2.5.8 gives Eθ (Tr Ts) = (∂2K/∂θr ∂θs)/K(θ) and  

Eθ Tr = (∂K/∂θr )/K(θ) =  ∂j(θ)/∂θr . 

This gives the first conclusion. Taking ∂/∂θs of both sides of the last equation, the latter 
conclusion follows. � 

Any convex set  in  Rk either has non-empty interior or is included in some lower-
dimensional affine subspace (RAP, 6.2.6). So for an exponential family of order k, the  
natural parameter space in a minimal representation, and so in Rk , has non-empty interior. 
(Here k ≥ 1 since by definition an exponential family contains at least two laws.) So for 
an exponential family in a minimal representation on its natural parameter space the 
hypothesis of the following theorem holds: 

2.5.10 Theorem. If for an exponential family (2.5.3), Θ includes a non-empty open set 
U , then  T is a Lehmann-Scheffé statistic. 

Proof. As noted above, T = (T1, . . .  , Tk ) is sufficient. Let p = (p1, . . .  , pk ) ∈ U . Replac-
ing dν by exp( j pj Tj (x))dν, we can assume that p = 0.  For  some  ε >  0, U includes the 
cube Cε := {θ : |θj | ≤ ε for j = 1, . . .  , k}. 

Recall that a function measurable for T−1(F), where in this case F is the Borel σ-
algebra in R, is of the  form  f ◦T for some measurable f (Theorem 2.1.3). Let f : R

k → R 

be such that Eθ f(T (x)) = 0 for all θ ∈ Θ. Let f = f+ − f− where f+ := max(f, 0) and 
f− := −min(f, 0), so that f+ ≥ 0 and  f− ≥ 0. Let m := ν ◦ T−1 on on Rk . Then  for  
all θ ∈ Cε, 

u(θ) :=  exp( j θj tj )f+(t)dm(t) =  v(θ) :=  exp( j θj tj )f−(t)dm(t). 

From u(0) = v(0) we see that ∫ f+dm = ∫ f−dm. Multiplying f by a constant, we 
can assume ∫ f+dm = 1 (if it’s zero, we are done). Then letting dP+ := f+dm and 
dP− := f−dm, P+ and P− are probability measures. 

For complex θj = ξj + iηj , in  the  strip  S : |ξj | < ε,  j  = 1, . . .  , k, the  above  
integrals u(θ) and  v(θ) converge absolutely. By Theorem 2.5.8, they represent holomorphic 
(analytic) functions of θ in S. Since  u ≡ v for θ real (all ηj = 0),  u and v have the same 
derivatives of all orders at 0. So u ≡ v in a complex neighborhood of 0, and by analytic 
continuation (e.g. Bochner and Martin, 1948, p. 34), u ≡ v throughout S. Taking  ξj = 0  
for all j, we  see  that  P+ and P− on Rk have the same characteristic function. So P+ = P− 

by the uniqueness theorem (RAP, Theorem 9.5.1). (Here we have obtained a uniqueness 
theorem for Laplace transforms in a neighborhood of 0.) So f+ = f− and f = 0  almost  
everywhere for ν, proving the Lehmann-Scheffé property. � 
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Theorem 2.4.15 shows that the lower bound in the information inequality is attained, 
for densities continuously differentiable in θ, if and only if the family of laws is exponential 
as in (2.5.1) where the estimator T is an affine (linear) function of T1, T = aT1 + b for some 
constants a, b. On the other hand by Theorem 2.5.10, in such a case T1 is an LS sufficient 
statistic. By Corollary 2.5.9, it is an unbiased estimator of j′(θ) where  j(θ) = log  K(θ). 

Let η be any function not equal (even almost everywhere) to an affine function, such 
that Eθ (η(T1)2) < ∞ for all θ. Then  η(T1) is an unbiased estimator of y(θ) :=  Eθ h(T1) 
which, among unbiased estimators, has smallest possible variance and minimal risk for all 
convex loss functions by Theorem 2.3.5, but where the information inequality lower bound 
is not attained for some θ. So the information inequality produces sharp results only in 
rather special cases. It may be more useful in the form allowing bias, Theorem 2.4.12, or 
in an asymptotic form, Theorem 3.8.3 below. 

The existence of a k-dimensional sufficient statistic T = (T1, . . .  , Tk ) for an expo-
nential family extends to any sample size n for n i.i.d. observations, as noted previously, 

nreplacing each Ti by 
�

j=1 Ti(Xj ). When R. A. Fisher first defined exponential families, 
one of the main properties he pointed out was the possibility of data reduction in this way. 
Moreover, he stated that if the data can be reduced, in other words if for i.i.d. X1, . . .  ,Xn 

there is a sufficient statistic of dimension k <  n  (even for one value of n) then the fam-
ily of laws must be exponential. This is true under some regularity conditions, one of 
which is that the family be equivalent. For example, the family of uniform distributions 
on intervals [0, θ], 0 < θ  <  ∞, has a 1-dimensional sufficient statistic, the largest order 
statistic X(n), but is evidently not equivalent and (so) not exponential. Other regularity 
conditions of continuity and differentiability will be assumed. If there were no such con-
ditions, the “dimension” of a sufficient statistic would not be meaningful. For example, if 
X and Y are any two uncountable Borel sets in complete separable metric spaces, such as 
X = Rk and Y = Rm, then there is always a 1-1, Borel measurable function from X onto 
Y with measurable inverse (RAP, Sec. 13.1). Any Borel measurable function is continuous 
when restricted to sets having nearly full measure (Lusin’s theorem, RAP, Theorem 7.5.2). 
Also, for any m there is a continuous function from Rm into R, 1-1 almost everywhere for 
Lebesgue measure (Denny, 1964). 

The following example may illustrate the point. Let x and y be two numbers in [0, 1], 
each represented by its decimal expansion, x = xn/10n where each xn is 0, 1, . . .  ,  or n≥1 

9, and likewise for y. By alternating digits define a real number z with digits z2n−1 = xn 

and z2n = yn for n = 1, 2, . . . . This gives a correspondence between ordered pairs (x, y) of  
real numbers and individual real numbers z. Although it is not quite well-defined, because 
of ambiguities such as 0.099999999 . . .  = 0.100000 . . .  ,  1-1 or continuous, the correspon-
dence illustrates a reduction of dimension (from 2 to 1) which is not a real reduction in 
the sense of statistical interest. The example also shows why some regularity conditions 
such as differentiability may be expected in proofs about data reduction implying that a 
family is exponential. 

Let P be an equivalent family of probability measures. Let Q be a fixed law in the 
family. If T is a sufficient statistic for {Pn : P ∈ P}, the family of laws of n i.i.d. 
observations X1, . . .  ,Xn with laws in P, then by Corollary 2.1.5 for each P in P there is 
a function ρP with 
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(2.5.11) Πj
n 
=1RP/Q(xj ) =  ρP (T (x1, . . .  , xn)) 

for almost all x1, . . .  , xn. T will be called strongly sufficient (with respect to given choices 
of Q and of RP/Q  for all x and all P ∈ P) if (2.5.11) holds for all (and not only almost 
all) x. 

Let φP (x) := log  RP/Q(x) for any P in P. We will be considering families for which 
the likelihood ratios RP/Q  are continuous non-zero functions of x, so  that  φP is continuous, 
and where every neighborhood of each point in the sample space has positive measure for 
each law in P, so  that  φP is determined everywhere by continuity and not only almost 
everywhere. So, strong sufficiency is a reasonable assumption. 

A function f on a region in Rk is called C1 if it has continuous first partial derivatives 
with respect to each of the k variables. It will be called BC1 if these derivatives are also 
bounded. A real-valued function f on an interval U ⊂ R will be called piecewise BC1 if f 
is continuous on U and there is a finite set F ⊂ U such that f is BC1 on U \ F , i.e. f is 
BC1 on each of finitely many open intervals whose endpoints are in F or are endpoints of 
U . Now a fact can be stated: 

2.5.12 Theorem. Let  P be a family of laws defined on a connected open set U in Rr and 
having continuous densities fP , P  ∈ P, with respect to Lebesgue measure λ on U , with  
fP (x) > 0 for all x ∈ U and P in P (so P is equivalent). Suppose that all the functions 
fP are continuous on U and that for some positive integers k <  n, there is a statistic T , 
continuous from Un into Rk , strongly sufficient for {Pn : P ∈ P}, where  RP/Q  := fP /fQ. 
Then 
(a) If k = 1,  P is an exponential family of order 1. 
(b) If all the densities fP are BC1, or  if  r = 1 and they are piecewise BC1, then  P is 

exponential of order at most k. 

Proof. For a given n, let  S := ST be the set of all continuous real functions φ such that 
for some function ζ, 

(2.5.13) φ(x1) +  · · · + φ(xn) =  ζ(T (x1, . . .  , xn)) 

for all x1, . . .  , xn in U . (Such an equation results from taking logarithms in (2.5.11) with 
φ(x) :=  φP (x).) Clearly S is a vector space of functions containing the constants. Suppose 
S has dimension k+1. Then it has a basis consisting of the constant 1 and k other functions 
φ1, . . .  , φk , and each function φP is of the form a0(P ) +  a1(P )φ1(x) +  · · · + ak (P )φk (x), 
so the family is exponential of order at most k. 
Case 1: r = 1,  so  U is an open interval in R, and  k = 1. It will be enough to prove that 
the dimension of S is at most 2. 

Suppose the hypothesis holds for some n >  2. It will be shown that it holds for n = 2.  
Let’s indicate the dependence of ρP and T on n in (2.5.11) by writing them as ρ(n) andP 
T (n) respectively. By our choice of RP/Q  = fP /fQ, we  have  0  < RP/Q(y) < ∞ for all 
y ∈ U . Fix  any  y3, ..., yn ∈ U . Then (2.5.11) holds for n = 2  with  

ρ
(2)

T (2)(x1, x2) :=  T (n)(x1, x2, y3, ..., yn) and  (t) :=  ρ(n)(t)/Πj
n 
=3RP/Q(yj )P P 

for any t ∈ R. Clearly T (2) is continuous. So the hypothesis holds for n = 2 and it suffices 
to treat that case. The following will be useful: 
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2.5.14 Lemma. If  k = 1, n  = 2, φ  ∈ S, x0, y  and z are in U , φ(y) =  φ(z) and  
s := T (x0, y) �= t := T (x0, z), then φ is constant in some neighborhood of x0. 

Proof. We can assume that s < t  and then that  y <  z, otherwise interchanging x and 
−x. Let  y1 := sup{u : u < z  and T (x0, u) =  s}. Then by (2.5.13) and continuity of φ, 
φ(y) =  φ(y1). So we can assume y = y1. Likewise, we can assume z = inf{u : y1 < u  and 
T (x0, u) =  t}. Then  by  continuity  of  T and the intermediate value theorem, 

(2.5.15) s <  T (x0, u) < t  for y <  u  <  z. 

Since φ(y) =  φ(z), by Rolle’s theorem there is some v with y <  v <  z  at which φ 
attains either its absolute maximum or absolute minimum on the closed interval [y, z]. By 
symmetry, suppose it is an absolute minimum. Let t0 := T (x0, v). Then for ζ in (2.5.13), 
ζ(t0) = min{ζ(w) :  s ≤ w ≤ t} since T (x0, ·) takes  [y, z] onto [s, t] by the intermediate 
value theorem and φ(u) ≡ ζ(T (x0, u)) − φ(x0) (continuity  of  ζ is not assumed or needed 
here). 

Now s < t0 < t  by (2.5.15). For x in some neighborhood V of x0, by  continuity,  
T (x, y) < t0 < T (x, z) and  s < T (x, v) < t. By the intermediate value theorem again, for 
each x in V there is some g(x) with  T (x, g(x)) = t0 and y <  g(x) < z. Then  for  each  
x ∈ V , by (2.5.13) twice, 

ζ(t0) =  φ(x) +  φ(g(x)) ≥ φ(x) +  φ(v) =  ζ(T (x, v)) ≥ ζ(t0). 

So both inequalities just above are equations. Also, ζ(t0) =  ζ(T (x0, v)) = φ(x0) +  φ(v), 
so φ(x) =  φ(x0), proving Lemma 2.5.14. � 

Now let g and γ be in S and suppose g is not constant, so g(y) �= g(z) for  some  y and z 
in U . Then for any x0 ∈ U , T (x0, y) �= T (x0, z). For some c ∈ R, γ(y)−cg(y) =  γ(z)−cg(z). 
Let φ := γ − cg. Then  φ ∈ S and φ(y) =  φ(z), so by Lemma 2.5.14, φ is constant on 
a neighborhood of x0. Since  x0 was arbitrary in U and U is connected, φ ≡ b on U for 
some constant b, so  γ ≡ cg + b and S is at most 2-dimensional, finishing the proof for 
Case 1. 

Case 2: r = 1  and  k >  1. Here we use: 

2.5.16 Lemma. Let  f1, . . .  , fn be piecewise BC1 functions from an open interval U into 
n n

R, x = (x1, . . .  , xn) ∈ Un, and  G(x) :=  { fi(xj )}i=1. If 1, f1, . . .  , fn are linearly j=1 

independent, then for some y ∈ Un, det  J(y) �= 0  where  J is the Jacobian matrix of G, 
Jij := fi 

′(xj ) for  i, j = 1, . . .  , n. 

Proof. The proof will be by induction on n. The result clearly holds for n = 1. Suppose 
it holds for n − 1 but fails for n, for  some  f1, . . .  , fn. Expanding the determinant by the 
minors of the last column gives 

(2.5.17) 0 = a1(x1, . . .  , xn−1)f1
′ (xn) +  · · · + an(x1, . . .  , xn−1)f ′ 

n(xn) 

for all x ∈ Un with xn not in the finite union of finite sets where fi 
′ don’t exist. Here 

an(x1, . . .  , xn−1) is the determinant for the n − 1 case and  f1, . . .  , fn−1, so  for  some  
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z ∈ Un−1 , an(z1, . . .  , zn−1) �= 0.  Let  xi = zi for i = 1, . . .  , n − 1 and integrate (2.5.17) 
with respect to xn over an interval, say from (a constant) b to (a variable) x, so  

n0 ≡ j=1 aj (z1, . . .  , zn−1)(fj (x) − fj (b)). 

Since an(z1, . . .  , zn−1) �= 0, this contradicts the linear independence of 1, f1, . . .  , fn, prov-
ing Lemma 2.5.16. � 

Now to prove Case 2, it is enough to show that the dimension of the space S1 of C1 

functions in S is at most k+1.  If  not,  let  1, f1, . . .  , fn be linearly independent functions in 
S1 with n = k+ 1. The hypotheses hold for n = k+ 1 since they hold for some n > k, as  in  
Case 1. By Lemma 2.5.16 there is a point x ∈ Un with det J(x) �= 0. Then by the inverse 
function theorem, e.g. Rudin (1976, Theorem 9.24), G is 1-1 on some neighborhood of x. 
But also, G = H(T ) where  T = (t1, . . .  , tk ) and  H(T ) =  (ψ1(T ), . . .  , ψn(T )) for some 
functions ψi, so  T must be 1-1 on the neighborhood. But this is impossible since T is 
continuous and reduces the dimension (see Appendix B), finishing the proof in Case 2. 
Case 3: r >  1. Consider part (b). To show that the dimension of S1 is at most k + 1,  
since it contains the constants, is equivalent to showing that for any {f1, . . .  , fk+1} ⊂  S1, 
the range of the function x �→ (f1(x), . . .  , fk+1(x)) is included in some k-hyperplane (i.e. 
k-dimensional hyperplane) in Rk+1, in  other  words 1, f1, ..., fk+1 are linearly dependent. 

Otherwise, there exist such fi and points x1, . . .  , xk+2 in U such that the points 
k+1{fj (xi)} for i = 1, . . .  , k  + 2 are not all in any k-hyperplane in Rk+1. To  see  this,  we  j=1 

can recursively select x1, x2, ..., xk+2 such that x2 �= x1 and for j ≥ 3, xj is not in the 
unique (j − 2)-dimensional hyperplane containing x1, ..., xj−1. For  each  j, since  fj ∈ S, 
take ψj such that fj (y1) +  · · · + fj (yn) ≡ ψj (T (y1, . . .  , yn)). Let γ be a BC1 curve, i.e. 
a BC1 function from an open interval I1 := (a, b) into  U , whose range contains all the 
points x1, . . .  , xk+2. Such a γ exists since U is open and connected. In more detail, for 
each u ∈ U the open ball B(u, r) ⊂ U for some r >  0 where  B(u, r) :=  {y : |y − u| < r}. 
Let W (u) be the  set of all  v such that for some n <  ∞ there exist u0 = u, u1, ..., un = v and 
ri > 0, i  = 0, 1, ..., n such that B(ui, ri) ⊂ U for each i and B(ui, ri) ∩ B(ui−1, ri−1) �= ∅ 
for each i = 1, ..., n. It is easily seen that W (u) is an open set included in U and that two 
sets W (u) and  W (u′), if they intersect, are identical. Thus by connectedness, W (u) =  U 
for each u ∈ U . Now  if  v ∈ W (u) it is easy to construct a BC1 curve within U joining u 
to v. 

Let

V (t1, . . .  , tk+1) :=  T (γ(t1), . . .  , γ(tk+1))


for any ti in I1. Then  V is continuous. Let gi(t) :=  fi(γ(t)) for any t in I1. Then  

gi(t1) +  · · · + gi(tk+1) =  ψi(V (t1, . . .  , tk+1)) 

for any t1, . . .  , tk+1 ∈ I1 and i = 1, . . .  , k  + 1.  Since  fi and γ are BC1 functions, so are 
gi, and they belong to the space S1 for r = 1,  I1 in place of U , and  V in place of T . 
But the range of t �→ (g1(t), . . .  , gk+1(t)) for t ∈ I1 is not included in any k-hyperplane, 
contradicting Case 2. If k = 1,  then  fi need not be BC1 and Case 1 is applied instead, 
finishing the proof of Theorem 2.5.12. � 
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Example. This will show why the connectedness of U is, or the continuity hypotheses 
are, needed in Theorem 2.5.12. Let U := (0, 1) ∪ (2, 3) (which is not connected). Let 
the dominating measure ν be the sum of Lebesgue measures on the two intervals. For 
0 < λ <  1, 0 < θ  <  ∞ let 

φθ,λ(x) :=  λθe θx/(e θ − 1), 0 < x  <  1; 

:= (1 − λ)θeθ(x−2)/(e θ − 1), 2 < x <  3. 

It is straightforward to check that this is a probability density for each θ and λ. Let  x1, x2 

be i.i.d. with this density. Then the likelihood function is 

u(θ, λ, x1, x2)θ2 exp(θ(x1 + x2))/(e θ − 1)2 

where u(θ, λ, x1, x2) :=  λ2 for 0 < x1 + x2 < 2, 2λ(1 − λ)e−2θ for 2 < x1 + x2 < 4, and 
(1 − λ)2e−4θ for 4 < x1 + x2 < 6. It follows by Corollary 2.1.5, not only because of the 
factor exp (θ(x1 + x2)) but because the ranges for different formulas for u(·, ·, x1, x2) also  
are functions of x1 + x2, that  x1 + x2 is a k = 1-dimensional sufficient statistic for the 
family with n = 2.  Let  γ(θ, λ) := log[θ/(eθ − 1)]. Then one can check that 

log φθ,λ(x) =  γ(θ, λ) + log  λ + θx + [log((1 − λ)/λ) − 2θ]12<x<3. 

Since the functions x and 12<x<3 are affinely independent, as are the functions θ and 
log((1 − λ)/λ), we see that the family is exponential of order 2, not 1. Thus the conclusion 
of Theorem 2.5.12(a) does not hold in this case. The connectedness of the interval U is 
used in the proof more than once, by way of the intermediate value theorem. 

Of course, connectedness is only meaningful in connection with continuity of some 
functions. We could take U := (0, 2) to be connected in the example while φθ,λ and T 
are discontinuous by replacing (2, 3) by [1, 2) and letting x1(x) =  x for 0 < x <  1 and  
x1(x) =  x + 1  for  1  ≤ x <  2, while taking x2 as an i.i.d. copy of x1. 

Or, replacing the union of two intervals by a union of as many intervals as we like, 
we can get the exponential family to be of arbitrarily high order for n = 2. Similarly, by 
spreading the intervals farther apart, for example taking (0, 1)∪(n, n+1)∪(n2+n, n2+n+ 
1), ..., we can get a 1-dimensional sufficient statistic for any number n of i.i.d. observations, 
again if U is not connected or the densities and T are not continuous. 

Note that for r >  1, the dimension of the full data vector (X1, . . .  ,Xn) is  nr, but 
that the assumption in Theorem 2.5.12 is k <  n  (and not k <  nr). Suppose we consider 
a family of distributions Rr having densities with respect to some measure (not Lebesgue 
measure) which are functions of the first coordinate x1. Then  x1 is a sufficient statistic. 
For n i.i.d. variables there is an n-dimensional sufficient statistic and n < nr, but the 
family need not be exponential. So the assumption k <  n  in Theorem 2.5.12 is sharp. 

Example. For a normal distribution N(m,σ2) on  R, we can write the density as 

2 2x m
(2πσ2)−1/2 exp − 

2σ2 
+ 

mx − 
2σ2 

. 
σ2 
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These laws form an exponential family with T1(x) =  x2, Q1(m,σ2) =  −1/(2σ2), T2(x) =  
n 2x, and  Q2(m,σ2) =  m/σ2. For  N(m,σ2)n on Rn, we  get  T1(x) =  j=1 xj , T2(x) =  

n

j=1 xj .


2.5.18 Proposition. Let  X1, . . .  ,Xn be i.i.d. with law N(m,σ2) and  n ≥ 2. Then 
n2 

�
s := (n − 1)−1 

j=1(Xj − X)2 has, among unbiased estimators of σ2, smallest risk for 
squared-error loss, for all (m,σ2). The risk of s2 is 2σ4/(n − 1). 

Proof. We know that s2 is an unbiased estimator of σ2. Let  S be the smallest σ-algebra 
for which T1 and T2 are measurable in this case. Then S is sufficient. It is Lehmann-Scheffé 
by Theorem 2.5.10. Since s2 = (n− 1)−1(T1 − T2

2/n), s2 is S-measurable. Then it follows 
from Theorem 2.3.5 that s2 has minimum risk for squared-error loss (which is convex). 

To find the variance of s2, first  note that  if  X has distribution N(0, σ2), then EX4 = 
3σ4, by integration by parts or the moment generating function. Also, Es2 = σ2 and 
we can assume m = 0. Make an orthogonal change of coordinates from (X1, . . .  ,Xn) 
to (Y1, . . .  , Yn) where  the  Y1 axis is in the direction of (1, 1, . . .  , 1), so that Y1 = n1/2X. 

nThen the Yj are i.i.d. N(0, σ2) and  s2 = (n − 1)−1 
j=2 Yj 

2. So  

E((s 2)2) =  (n − 1)−2σ4[3(n − 1) + (n − 1)(n − 2)] = (n + 1)σ4/(n − 1), 

and var(s2) = 2σ4/(n − 1). � 

Recall that for an unbiased estimator, the risk for squared-error loss is the same as the 
variance. Proposition 2.5.18 completes example (3) following Theorem 2.4.10 and shows 
that the information inequality lower bound (2.4.3) cannot be attained in this case. 

Unbiased estimators which are LS sufficient statistics are thereby optimal among un-
biased estimators, but may fail in other ways. In Sec. 2.2, just after the definition of 

−λunbiased estimator, an example was given of an inadmissible unbiased estimator for e
where λ is the parameter of a Poisson random variable X which is observed conditional on 
X ≥ 1. Now, note that Poisson distributions conditional on X ≥ 1 form an exponential 
family of order 1. So the pathology of unbiased estimators occurs even in this case where 
we have an LS sufficient one-dimensional statistic. We had also noted that a constant 
estimator may be admissible though biased. 

From what has been said so far it might seem that an estimator which is both unbiased 
and admissible, especially for an exponential family of order 1, might be a good estimator. 
But it may not be: consider the binomial distributions for n = 2 (for the number X of 
successes in 2 independent trials) and probability p of success, where 0 < p  <  1. Suppose 

2the problem is to estimate p . It’s easily seen that the unique unbiased estimator U 
measurable for the minimal sufficient σ-algebra is U(0) = U(1) = 0 (here U(1) = 0 is 
surprising and bad) and U(2) = 1. Now, it will be shown that U is admissible for a wide 
class of loss functions. If the loss is a continuous function f of the difference T − p2 for an 
estimate T , with  f ≥ 0 and  f(x) = 0 if and only if x = 0,  the  risk  for  a  given  p is 

r(p, T ) = (1  − p)2f(T (0) − p 2) + 2p(1 − p)f(T (1) − p 2) +  p 2f(T (2) − p 2), 

so that r(p, U) = (1  − p)2f(−p2) + 2p(1 − p)f(−p2) +  p2f(1 − p2). If for some s >  1/2, 
f(x) =  O(|x|s) as  |x| → 0, which holds if f is convex for s = 1, and where we can assume 
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s ≤ 1, then r(p, U) =  O(p2s) as  p ↓ 0. If T is an estimator with r(p, T ) ≤ r(p, U) for all 
p, then taking  p ↓ 0, and noting that 2s >  1, it is easily seen that T (0) = 0 and then that 
T (1) = 0. Then letting p ↑ 1 shows  that  T (2) = 1. So T = U and U is admissible. 

Thus the two “good” properties of being admissible (for a great many loss functions) 
and unbiased, even in combination, and for an exponential family of order 1, still allow 
the absurd inference that the probability of success is 0 when 1 success is observed in 2 
trials. Moreover, there do not seem to be theorems providing in adequate generality that 
there are admissible and/or unbiased estimators which behave well. So in the search for 
really good estimators we will need to consider other properties, such as those in the next 
chapter. 

PROBLEMS 

In problems 1-4, show that the given family P of laws is exponential. Specifically, 
find a σ-finite measure µ such that the densities of laws in P with respect to µ are of the 
form C(θ)h(x) exp(  j θj Tj (x)) as in (2.5.1). Find the order of the family and a minimal 
representation. Give Tj , h, and  C(θ) explicitly. Then find the natural parameter space 
(largest possible set of {θj }), and indicate what functions the θj are of the usual parameters. 
1. Let F be a finite set with k elements and P the family of all laws P on F which are 

not 0 at any point. 
2. Let P be the family of binomial distributions B(n, p), 0 < p <  1, for any fixed n. 
3. (a) P is the family of geometric distributions P (k) = (1  − p)k−1p for k = 1, 2, . . .  ,  with 

0 < p <  1. 
(b) P is the family of Poisson distributions Pλ(k) :=  e−λλk /k! for  k = 0, 1, . . .  ,  with 
0 < λ  <  ∞. 

4. Let F be the so-called “extreme value” distribution function F (x) := exp(−e−x) for  
−∞ < x <  ∞. Let its density be f(x) and consider the location family of all laws with 
densities f(x − θ), θ  ∈ R. 

5. Show that the family of all normal laws N(µ, σ2) on  R is exponential of order 2 and has 
a 1-dimensional continuous strongly sufficient statistic (for n = 1). Show that the family 
of distributions of i.i.d. normal (X1, . . .  ,Xn) has a 2-dimensional continuous strongly 
sufficient statistic for each n ≥ 2. 

6. Let Qψ be distributions on R2 such that X has distribution N(0, τ2) and, given X, Y 
has distribution N(a + bX, σ2), where ψ = (σ2, τ2, a, b). Find a minimal representation 
with functions θi(ψ). Describe the family as a subset of the family given by the natural 
parameter space. 

7. Same question with a + bX replaced by a + bX + cX2 . 
8. Find the natural parameter space for the exponential family on R with k = 1, T1(x) ≡ 

x, and  
| dµ(x) =  e−|x|(a) dµ(x) =  e−|x dx (b) dx/(1 + x2). 

NOTES 
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Fisher (1934) began the theory of exponential families. An important book on the 
topic is Barndorff-Nielsen (1978), who on p. 136 reviews the history of the subject, noting 
that characteristically Fisher was “mathematically somewhat imprecise.” Brown (1986) is 
a more recent monograph. 

Let’s say there is “data reduction” for a family of laws if for n i.i.d. observations 
there is a sufficient statistic of dimension less than n. From the beginning, one of the 
main properties of interest for exponential families was to be equivalent families allow-
ing data reduction. Other early references are Darmois (1935), Koopman (1936) and 
Pitman (1936). Their names have sometimes been used for exponential families, as 
in “Koopman-Darmois,” “Darmois-Koopman,” “Koopman-Pitman-Darmois” or “Fisher-
Darmois-Koopman-Pitman” families. 

The current form of Theorem 2.5.12, that under some continuity conditions the pos-
sibility of data reduction implies that a family is exponential, is due for r = 1  to  Brown  
(1964) with earlier work by Dynkin (1951), and for r > 1 to Barndorff-Nielsen and Ped-
ersen (1968), which was the source of the proof given for Theorem 2.5.12. Interestingly, 
the precise statement (let alone the proof) is not given, although it is cited, in the book 
of Barndorff-Nielsen (1978), and Brown (1986) doesn’t cite Brown (1964) or Barndorff-
Nielsen and Pedersen (1968). 
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