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March 13, 2003 
22.7 Stein’s phenomenon and James-Stein estimators. Let  |y| := (y2 + · · · yd)1/2 
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for y ∈ Rd . Consider the normal location family N(µ, I), µ  ∈ Rd, on  Rd, having  density  
(2π)−d/2 exp(−|x − µ|2/2) with respect to Lebesgue measure dx, where  I is the d × d 
identity matrix. The problem is to estimate the unknown µ from an observation x. Here  
for simplicity n is taken equal to 1. If we had n i.i.d. observations X1, . . .  ,Xn, then  
X := (X1+· · ·Xn)/n is a minimal, Lehmann-Scheffé sufficient statistic having distribution √ √ 
N(µ, I/n), and nX is such a statistic with distribution N( nµ, I), so the situation would 
not be essentially different. 

The observation x is an unbiased estimator of µ, in  other  words  Exi = µi for i = 
1, . . .  , d. The information inequality holds in this case and gives for each i, Eµi

(Ti−µi)2 ≥ 
1 for each unbiased estimator Ti of µi. Thus  Eµ(|T −µ|2) ≥ d for each unbiased estimator 
T of µ. This lower bound is attained by T = x. 

It turns out, however, that for d ≥ 3, T = x is an inadmissible estimator of µ for 
squared-error loss. This fact is called “Stein’s phenomenon,” after Charles Stein, who 
discovered it. Let � 

d − 2 
� 

J(x) :=  1 − 
2 

x,|x|
called a James-Stein estimator of µ. Then  for  d ≥ 3, r(µ, J) < r(µ, x) for all µ, as will 
be proved for d = 3. It’s very surprising that although the coordinates x1, . . .  , xd are 
independent for any µ, the  xj for j �= i are useful in estimating µi. For  d = 2,  simply  
J(x) ≡ x. For  d = 1,  J would be a bad estimator with infinite risk for squared-error loss 

d−1because of a singularity at x = 0. Note however that for d ≥ 3, due to the factor |x|
in the volume element in spherical coordinates, |x/|x|2| = |x|−1 and |x/|x|2|2 = |x|−2 are 
integrable for any normal law despite being unbounded near 0. 

The estimator J is not admissible either; [max(0, 1 − (d − 2)|x|−2)]x is a better esti-
mator, but it is still not admissible (see the notes). Here, it will just be shown that Stein’s 
phenomenon occurs for d = 3 with the James-Stein estimator J . 

2.7.1 Proposition. For  d = 3 and the estimators J(x) := (1  − |x|−2)x and x for the 
mean µ in the normal location family {N(µ, I) :  µ ∈ R3}, we  have  r(µ, J) < r(µ, x) for  
all µ. Thus  x is an inadmissible estimator of µ. 

Proof. Clearly r(µ, x) = 3 for all µ. It will be enough to show that for all µ, 

(2.7.2) f(µ) :=  r(µ, J) =  g(µ) := 3  − Eµ(|x|−2). 

It seems to be difficult to prove this directly, so it will be done by an indirect method as 
follows. First, f(µ) =  f1(|µ|2) for some function f1, since for any orthogonal transformation 
(3 × 3 orthogonal matrix) U from R

3 to R
3 , J(Ux) ≡ UJ(x) and  N(µ, I) ◦ U−1 = 

N(Uµ, I), so by the image measure theorem (RAP, 4.1.11), 

r(Uµ, J) =  EUµ|J − Uµ|2 = |J(x) − Uµ|2dN(Uµ, I)(x) 

= |J(x) − Uµ|2d[N(µ, I) ◦ U−1](x) =  |J(Uy) − Uµ|2dN(µ, I)(y) 

1 



� � 

′ ′

� 

� 

� � �� 

� 

= |U(J(y) − µ)|2dN(µ, I)(y) =  |J(y) − µ|2dN(µ, I)(y) =  r(µ, J). 

For any µ and µ in R3 with |µ| = |µ |, there is an orthogonal U with Uµ  = µ′, so indeed 
f(µ) is a function, say f1, of  |µ|2 . It is also easily seen that f and f1 are continuous, where 
integrals can be bounded using spherical coordinates as mentioned above. 

Next, g(µ) ≡ g1(|µ|2) for some function g1, by a similar but shorter sequence of 
equations, where g and g1 are also continuous. Specifically, 

2EUµ(|x|−2) = (2π)−d/2 |x|−2 exp(−|x − Uµ| /2)dx 

2= (2π)−d/2 |y|−2 exp(−|y − µ| /2)dy = Eµ(|x|−2). 

For A >  0 let  EA denote the expectation of functions with respect to the N(0, AI) 
distribution. It will be shown that for all A >  0, 

1
(2.7.3) EAf = 3  − = EAg.

A + 1  

For µ with law N(0, AI) and, given µ, x having law N(µ, I), the pair (x, µ) have  a  
jointly normal distribution on R6, where the three 2-vectors (xi, µi) for  i = 1, 2, 3 are i.i.d. 

2Let E(A) be expectation for this joint distribution. We have E(A)xi = 0  and  E(x |µi) =i 
2 2µi + 1,  so  E(A)(xi ) =  A + 1, while by Lemma 2.1.1 

E(A)(xiµi) =  EAE(xiµi|µi) =  EA[µiE(xi|µi)] = EAµ 2 = A.i 

Thus each (xi, µi) has the bivariate normal law 

A + 1  A 
N 0, 

A A
, 

where 0 is the two-dimensional 0 vector. Now, we have 

−2 −2(2.7.4) EAg = 3  − EAEµ|x| = 3  − E(A)|x| . 

If y has law N(0, I) on  R3, then by spherical coordinates, 
� ∞ 

2E|y|−2 = (2π)−3/24π exp(−r /2)dr = 1. 
0 

For x with law N(0, cI), x/c1/2 has law N(0, I), so 

� �−2 1 
E(|x|−2) =  E 

1 �� x �� 
� 

= . 
c c1/2 c 

Thus in (2.7.4), E(A)(|x|−2) = 1/(A + 1), and (2.7.3) holds for g. 
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We have for each i, E(A)(µi|xi) =  bxi where, using Lemma 2.1.1 again, 

A = E(A)(µixi) =  E(A)[E(A)(µixi|xi)] = E(A)(xibxi) =  b(A + 1)  

2gives b = bA := A/(A + 1).  Thus  given  xi, µi has law N (bAxi, τ  2 A) where  EAµ = A = i 

τ 2 + b2 
A(A + 1) implies τ 2 = A/(A + 1). In other words given x, µ = bAx + ζ where ζ isA A 

independent of x and has law N (0, AI/(A + 1)). Thus for conditional expectations given 
x we have 

2E(A){|J (x) − µ| |x} = E(A){|(1 − |x|−2)x − 
A

x − ζ|2|x}
A + 1  

=
3A 

+ 

� 

1 − |x|−2 − 
A 

�2 

|x|2 ,
A + 1  A + 1  

so for the unconditional expectation, 

3A 2 
E(A)(|J (x) − µ|2) =  

A + 1  
+ (A + 1)−2E(A)|x|2 − + E(A)|x|−2 

A + 1  

3A 3 2 1 1 
= + − + = 3  − 

A + 1  A + 1  A + 1  A + 1  A + 1  
, 

proving (2.7.3) for f , and so finishing its proof. 
Now, for the family of laws N (0, AI), A  >  0, for µ in R3 , |x|2 is a Lehmann-Scheffé 

sufficient statistic from the exponential form of the density (Theorem 2.5.10). By the 
Lehmann-Scheffé property it follows that f1 = g1 almost everywhere and (2.7.2) follows, 
completing the proof. � 

If we let µ have a prior distribution N (0, AI), it follows from the above proof that bx 
is a Bayes estimator of µ for b = A/(A+1), since for squared-error loss the Bayes estimator 
is the mean of the posterior distribution (by Proposition 2.6.1). So, up to equality almost 
surely, bx is the unique Bayes estimator. Thus for 0 < b <  1, bx is admissible by Theorem 
1.2.5. Such an estimator, however, has a large bias and large risk when |µ| is large. Letting 
b ↑ 1 we see that the inadmissible estimator x is a limit of admissible estimators bx. It  is  
much harder to give admissible estimators of µ which are better than x for d ≥ 3 (see the  
Notes). 

The estimator x, or  X for any n, for  µ is admissible for d = 1 (Lehmann, 1991, pp. 
265-267 gives two proofs), for squared-error loss and many other loss functions. Stein 
(1956) showed that X is admissible for d = 2.  

Recalling the notion of minimax decision rule, as defined in Sec. 1.2, the estimator x, 
or X for any n, is a minimax estimator of µ for any dimension d. To see this one can use 
again the fact that bx for 0 < b <  1 is admissible. We have r(µ, bx) =  db2 + (1  − b)2|µ| , 
which is minimized with respect to µ when µ = 0  (or  b = 1), with r(0, bx) =  db2. Letting  
b ↑ 1 (A → +∞) we see that the minimax risk is d, which is the risk of x for all µ. The  
supremum over µ of the risk for a James-Stein estimator, or any other estimator better 
than x, is  also  d. For the James-Stein estimator one can see that the risk r(µ, J ) approaches 
d as |µ| → ∞. On the other hand the estimators bx for 0 < b  <  1 are not minimax, in fact 
supµ r(µ, bx) = +∞. For  d ≥ 3, there is a large class of minimax estimators (Baranchik, 
1970; Lehmann, 1991, Theorem 4.6.3). 
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PROBLEMS


1. Show that for N(µ, I) on  Rd, the estimator bx for µ is inadmissible if b <  0 or  b >  1. 
2. Show that for a fixed vector v �= 0  in  Rd, to estimate  µ in N(µ, I), an estimator bx + v 

is 
(a) never admissible for b = 1,  
(b) always admissible for 0 < b  <  1. Hint: bx+ v = b(x− w)+  w where w = v/(1 − b). 
Consider a prior N(w,AI) for suitable A. 

3. For normal distributions N(µ, I) on  Rd , µ ∈ Rd, if  µ has a prior distribution N(0, I) and  
X1,X2, and X3 are observed, assumed to be i.i.d. N(µ, I), find the posterior distribution 
of µ. 

NOTES 

This section is based on the exposition in Lehmann (1991, Secs. 4.5 and 4.6). Stein 
(1956) discovered his phenomenon and James and Stein (1961) gave their estimator. Straw-
derman (1971) gave a rather complicated estimator better than x, i.e. minimax estimator, 
which is admissible for d ≥ 6, also mentioned by Lehmann (1991, p. 304). 
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