*2.8 Continuity at the boundary for exponential families. Let $\{P_{\theta}, \theta \in \Theta\}$ be an exponential family where Θ is the natural parameter space and for some σ -finite measure μ ,

$$(dP_{\theta}/d\mu)(x) = C(\theta) \exp(\theta \cdot T(x)).$$

Then $1/C(\theta) = K(\theta) = \int \exp(\theta \cdot T(x))d\mu(x)$. In Theorem 2.5.8 we saw that $K(\theta)$ is a highly regular (analytic) function on the interior of Θ . Points on the boundary of Θ may or may not be in Θ . If they are, then differentiability properties would not hold in directions leading outside of Θ , although they might hold in directions leading into Θ . This section will treat the question whether the function K (and so C) is at least continuous at boundary points that happen to be in Θ . There will be one positive result, then a negative one and a counter-example.

Recall that the *convex hull* of a set A of points in a vector space is the smallest convex set including A. If A is a finite set, $A = \{a_1, ..., a_k\}$, then it is easily seen that the convex hull of A is the set of all sums $\sum_{j=1}^k \lambda_j a_j$ where $\lambda_j \ge 0$ for all j and $\sum_{j=1}^k \lambda_j = 1$. The convex hull of a finite set is a closed interval in \mathbb{R}^1 , a convex polygon in \mathbb{R}^2 , and a convex polyhedron in \mathbb{R}^d for $d \ge 3$, whose vertices are some of the a_j (other a_i may be contained in the convex hull of a_j for $j \ne i$).

A convex function on a closed interval is not necessarily continuous at the endpoints: for example let f(0) = f(1) = 1 and f(x) = 0 for 0 < x < 1. Then f is convex on [0, 1]. It turns out, though, that this kind of discontinuity on an interval can't happen for functions $K(\cdot)$ (a closed interval is the convex hull of its endpoints):

2.8.1 Theorem. Whenever a finite set of points, $F = \{\theta_1, \ldots, \theta_k\}$, is included in the natural parameter space Θ , $K(\cdot)$ and $C(\cdot)$ are both continuous on the convex hull H of F.

Proof. By Theorem 2.5.6, Θ is convex, so it includes H. By Jensen's inequality (RAP, 10.2.6), for any $\theta \in H$, so $\theta = \sum_{j=1}^{k} \lambda_j \theta_j$ where $\lambda_j \ge 0$ and $\sum_{j=1}^{k} \lambda_j = 1$,

$$\exp(\theta \cdot T) \leq \sum_{j=1}^{k} \lambda_j \exp(\theta_j \cdot T) \leq \exp(\theta_1 \cdot T) + \dots + \exp(\theta_k \cdot T).$$

By assumption, the function on the right is integrable for μ , while the function on the left is continuous in θ . It follows by dominated convergence that $K(\cdot)$ is continuous on H. Since $K(\theta) > 0$ for all θ , $C(\cdot)$ is also continuous on H.

If F is in the interior of Θ , then we have even stronger regularity properties of $K(\cdot)$ on H by Theorem 2.5.8. So Theorem 2.8.1 is of interest only when at least one θ_i is on the boundary of Θ . For example, if two of the θ_i are on the boundary, then the line segment joining them is included in the boundary and $K(\cdot)$ is continuous along such a line segment and also as the segment is approached from within H.

For any exponential family of order 1, Θ is an interval (which may be open or closed at each end). If either endpoint is in Θ , $K(\cdot)$ is continuous there, so $K(\cdot)$ is continuous everywhere on Θ . The situation can be different for families of order 2 or higher, as follows. **2.8.2.** Proposition. For any exponential family with natural parameter space Θ , if θ_0 is a point in Θ , on its boundary, which is a limit point of points ϕ_j on the boundary of Θ which are not in Θ , then $K(\cdot)$ is not continuous at θ_0 on Θ .

Proof. By Fatou's Lemma (RAP, 4.3.3), $K(\theta)$ must approach $+\infty$ as θ approaches ϕ_j from within Θ for each j. Let θ_j for $j \ge 1$ be a point of Θ at distance less than 1/j from ϕ_j such that $K(\theta_j) > j$. Then $\theta_j \to \theta_0$, so $K(\cdot)$ is not continuous at θ_0 .

Now, it will be shown that the situation in the last proposition can actually occur.

2.8.3 Proposition. There is an exponential family of order 2 with natural parameter space $\Theta = \{(\psi, \phi) \in \mathbb{R}^2 : \psi > 0, \phi > 0\} \cup \{(0, 0)\}$. Thus the function $K(\cdot, \cdot)$ for the family is not continuous at (0, 0).

Proof. Let $P_{(\psi,\phi)}$ have density $C(\psi,\phi)e^{-\psi x-\phi y}$ with respect to the measure $\mu := \mu_1 + \mu_2$ on \mathbb{R}^2 defined by $d\mu_1(x,y) = dx/(1+x^2)$ on the curve $x \ge 0$, $y = -\sqrt{x}$ and $d\mu_2(x,y) = dy/(1+y^2)$ on the curve $y \ge 0$, $x = -\sqrt{y}$. Evidently the family is exponential as in (2.5.3), with $T(x,y) \equiv (-x,-y)$. The measure μ is finite, so $(0,0) \in \Theta$. For any $\psi > 0$ and $\phi > 0$,

$$\int_0^\infty e^{-\psi x + \phi \sqrt{x}} dx / (1 + x^2) < \infty,$$

and likewise for μ_2 . For $\psi = 0 < \phi$, $\int_0^\infty e^{\phi\sqrt{x}} dx/(1+x^2) = +\infty$, and likewise for $\phi = 0 < \psi$ and μ_2 . Clearly (ψ, ϕ) with $\psi < 0$ or $\phi < 0$ are not in Θ , so it is as described. Since (0,0)is in Θ and is a limit of points in the boundary of Θ not in Θ , $K(\cdot, \cdot)$ is not continuous on Θ at (0,0) by Proposition 2.8.2, completing the proof. \Box

Note that for the example in the last proof, for any $\delta > 0$, $K(\psi, \phi)$ is continuous as $\psi \downarrow 0$ and $\phi \downarrow 0$ through a region $\delta \psi < \phi < \psi/\delta$, by Theorem 2.8.1, but K is not continuous at (0,0) along some curves tangent to the vertical or horizontal axis.

PROBLEM

- 1. If the natural parameter space Θ of an exponential family of order 2 is the open unit square together with parts of its boundary as follows, at what points of Θ is $K(\cdot)$ restricted to Θ continuous? Explain.
 - (a) $\Theta = \{ 0 \le \theta_1 \le 1, \ 0 \le \theta_2 \le 1 \}.$
 - (b) $\Theta = \{ 0 \le \theta_1 < 1, \ 0 \le \theta_2 < 1 \}.$
 - (c) $\Theta = \{0 < \theta_1 < 1, 0 < \theta_2 < 1\} \cup \{0 \le \theta_1 \le 1, \theta_2 = 0\}.$
- 2. (a) For any exponential family, show that the natural parameter space is an F_{σ} , that is, a countable union of closed sets. *Hint*: show that for any $n = 1, 2, ..., \{\theta : K(\theta) \le n\}$ is closed.
 - (b) For the natural parameter space Θ as in Proposition 2.8.3, find explicitly a sequence of closed sets F_n whose union is Θ (not by way of part (a)).
 - (c) Show that any convex set in \mathbb{R}^2 whose interior is the same as that of Θ in Proposition 2.8.3 must necessarily be an F_{σ} .

NOTES

Barndorff-Nielsen (1978) calls an exponential family "regular" if its natural parameter space Θ is open. It is not difficult to give examples of exponential families for which Θ has non-empty boundary and is closed (an example of order 1 is given in Section 3.2 below). I assume that the results of this section are known but at this writing I do not have literature references for them.

REFERENCE

Barndorff-Nielsen, O. (1978). See Sec. 2.5.