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*2.8 Continuity at the boundary for exponential families. Let  {Pθ , θ  ∈ Θ} be an 
exponential family where Θ is the natural parameter space and for some σ-finite measure 
µ, 

(dPθ /dµ)(x) =  C(θ) exp(θ · T (x)). 

Then 1/C(θ) =  K(θ) =  ∫ exp(θ · T (x))dµ(x). In Theorem 2.5.8 we saw that K(θ) is a  
highly regular (analytic) function on the interior of Θ. Points on the boundary of Θ 
may or may not be in Θ. If they are, then differentiability properties would not hold in 
directions leading outside of Θ, although they might hold in directions leading into Θ. This 
section will treat the question whether the function K (and so C) is at least continuous at 
boundary points that happen to be in Θ. There will be one positive result, then a negative 
one and a counter-example. 

Recall that the convex hull of a set A of points in a vector space is the smallest convex 
set including A. If  A is a finite set, A = {a1, ..., ak }, then it is easily seen that the convex 
hull of A is the set of all sums 

�k where λj ≥ 0 for all j and 
�k 

λj = 1.  The  j=1 λj aj j=1 

convex hull of a finite set is a closed interval in R1, a convex polygon in R2, and  a convex  
polyhedron in Rd for d ≥ 3, whose vertices are some of the aj (other ai may be contained 
in the convex hull of aj for j �= i). 

A convex function on a closed interval is not necessarily continuous at the endpoints: 
for example let f(0) = f(1) = 1 and f(x) = 0  for  0  < x <  1. Then f is convex on [0, 1]. It 
turns out, though, that this kind of discontinuity on an interval can’t happen for functions 
K(·) (a closed interval is the convex hull of its endpoints): 

2.8.1 Theorem. Whenever a finite set of points, F = {θ1, . . .  , θk }, is included in the 
natural parameter space Θ, K(·) and  C(·) are both continuous on the convex hull H of F . 

Proof. By Theorem 2.5.6, Θ is convex, so it includes H. By Jensen’s inequality (RAP, �k10.2.6), for any θ ∈ H, so  θ = j=1 λj θj where λj ≥ 0 and  
�k 

λj = 1,  j=1 

≤ 
�kexp(θ · T ) j=1 λj exp(θj · T ) ≤ exp(θ1 · T ) +  · · · + exp(θk · T ). 

By assumption, the function on the right is integrable for µ, while the function on the left 
is continuous in θ. It follows by dominated convergence that K(·) is continuous on H. 
Since K(θ) > 0 for all θ, C(·) is also continuous on H. � 

If F is in the interior of Θ, then we have even stronger regularity properties of K(·) 
on H by Theorem 2.5.8. So Theorem 2.8.1 is of interest only when at least one θi is on the 
boundary of Θ. For example, if two of the θi are on the boundary, then the line segment 
joining them is included in the boundary and K(·) is continuous along such a line segment 
and also as the segment is approached from within H. 

For any exponential family of order 1, Θ is an interval (which may be open or closed 
at each end). If either endpoint is in Θ, K(·) is continuous there, so K(·) is continuous 
everywhere on Θ. The situation can be different for families of order 2 or higher, as follows. 
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2.8.2. Proposition. For any exponential family with natural parameter space Θ, if θ0 

is a point in Θ, on its boundary, which is a limit point of points φj on the boundary of Θ 
which are  not in Θ, then  K(·) is not continuous at θ0 on Θ. 

Proof. By Fatou’s Lemma (RAP, 4.3.3), K(θ) must approach +∞ as θ approaches φj 

from within Θ for each j. Let  θj for j ≥ 1 be a point of Θ at distance less than 1/j from 
φj such that K(θj ) > j. Then  θj → θ0, so  K(·) is not continuous at θ0. � 

Now, it will be shown that the situation in the last proposition can actually occur. 

2.8.3 Proposition. There is an exponential family of order 2 with natural parameter 
space Θ = {(ψ, φ) ∈ R2 : ψ >  0, φ  >  0}∪ {(0, 0)}. Thus the function K(·, ·) for the family 
is not continuous at (0, 0). 

Proof. Let P(ψ,φ) have density C(ψ, φ)e−ψx−φy with respect to the measure µ := µ1 + µ2√ 
on R2 defined by dµ1(x, y) =  dx/(1 + x2) on the  curve  x ≥ 0, y  = − x and dµ2(x, y) =  
dy/(1 + y2) on  the  curve  y ≥ 0, x  = −√ 

y. Evidently the family is exponential as in (2.5.3), 
with T (x, y) ≡ (−x,−y). The measure µ is finite, so (0, 0) ∈ Θ. For any ψ >  0 and  
φ >  0, ∞ √ −ψx+φ xe dx/(1 + x 2) < ∞, 

0 
√ 

and likewise for µ2. For  ψ = 0  < φ, ∫∞ eφ xdx/(1 + x2) =  +∞, and likewise for φ = 0  < ψ0 

and µ2. Clearly (ψ, φ) with  ψ <  0 or  φ <  0 are not in Θ, so it is as described. Since (0, 0) 
is in Θ and is a limit of points in the boundary of Θ not in Θ, K(·, ·) is not continuous on 
Θ at (0, 0) by Proposition 2.8.2, completing the proof. � 

Note that for the example in the last proof, for any δ >  0, K(ψ, φ) is continuous as 
ψ ↓ 0 and  φ ↓ 0 through a region δψ < φ < ψ/δ, by Theorem 2.8.1, but K is not continuous 
at (0, 0) along some curves tangent to the vertical or horizontal axis. 
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PROBLEM


1. If the natural parameter space Θ of an exponential family of order 2 is the open unit 
square together with parts of its boundary as follows, at what points of Θ is K(·) 
restricted to Θ continuous? Explain. 

(a) Θ = {0 ≤ θ1 ≤ 1, 0 ≤ θ2 ≤ 1}. 
(b) Θ = {0 ≤ θ1 < 1, 0 ≤ θ2 < 1}. 
(c) Θ = {0 < θ1 < 1, 0 < θ2 < 1} ∪ {0 ≤ θ1 ≤ 1, θ2 = 0}. 

2. (a) For any exponential family, show that the natural parameter space is an Fσ , that  is,  
a countable union of closed sets. Hint: show that for any n = 1, 2, ..., {θ : K(θ) ≤ n}
is closed. 

(b) For the natural parameter space Θ as in Proposition 2.8.3, find explicitly a sequence 
of closed sets Fn whose union is Θ (not by way of part (a)). 

(c) Show that any convex set in R2 whose interior is the same as that of Θ in Propo-
sition 2.8.3 must necessarily be an Fσ . 

NOTES 

Barndorff-Nielsen (1978) calls an exponential family “regular” if its natural parameter 
space Θ is open. It is not difficult to give examples of exponential families for which Θ has 
non-empty boundary and is closed (an example of order 1 is given in Section 3.2 below). I 
assume that the results of this section are known but at this writing I do not have literature 
references for them. 
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