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CHAPTER 3. MAXIMUM LIKELIHOOD AND M-ESTIMATION 

3.1 Maximum likelihood estimates — in exponential families. Let (X,B) be  a  
measurable space and {Pθ , θ  ∈ Θ} a measurable family of laws on (X,B), dominated by a 
σ-finite measure v. Let  f(θ, x) be a jointly measurable version of the density (dPθ /dv)(x) 
by Theorem 1.3.3. For each x ∈ X, a  maximum likelihood estimate (MLE) of θ is any 
θ̂ = θ̂(x) such that f(θ̂, x) = sup{f(φ, x) :  φ ∈ Θ}. In  other  words,  θ̂(x) is a point at  
which f(·, x) attains its maximum. In general, the supremum may not be attained, or 
it may be attained at more than one point. If it is attained at a unique point θ̂, then  θ̂
is called the maximum likelihood estimate of θ. A measurable function θ̂(·) defined on a 
measurable subset B of X is called a maximum likelihood estimator if for all x ∈ B, θ̂(x) 
is a maximum likelihood estimate of θ, and  for  v-almost all x not in B, the supremum of 
f(·, x) is not attained at any point. 

Examples. (i)  For  each  θ >  0 let  Pθ be the uniform distribution on [0, θ], with f(θ, x) := 

1[0,θ](x)/θ for all x. Then  if  X1, . . .  ,Xn are observed, i.i.d. (Pθ ), the MLE of θ is X(n) :=

max(X1, . . .  ,Xn). Note however that if the density had been defined as 1[0,θ)(x), its

supremum for given X1, . . .  ,Xn would not be attained at any θ. The  MLE  of  θ is the

smallest possible value of θ given the data, so it is not a very reasonable estimate in some

ways. For example, it is not Bayes admissible.

(ii). For Pθ = N(θ, 1)n on Rn, with usual densities, the sample mean X is the MLE of


n
θ. For  N(0, σ2)n, σ  >  0, the MLE of σ2 is j=1 Xj 

2/n. For  N(m,σ2)n, n  ≥ 2, the MLE 
nof (m,σ2) is (X,  

�
j=1(Xj −X)2/n). Here recall that the usual, unbiased estimator of σ2 

has n − 1 in place  of  n, so that the MLE is biased, although the bias is small, of order 
1/n2 as n → ∞. The  MLE  of  σ2 fails to exist (or equals 0, if 0 were allowed as a value 
of σ2) exactly on the event that all Xj are equal for j ≤ n, which happens for n = 1, but 
only with probability 0 for n ≥ 2. On this event, f((X,σ2), x) → +∞ as σ ↓ 0. 

In general, let Θ be an open subset of Rk and suppose f(θ, x) has first partial deriva-
tives with respect to θj for j = 1, . . .  , k, forming the gradient vector 

k�θ f(θ, x) :=  {∂f(θ, x)/∂θj }j=1. 

If the supremum is attained at a point in Θ, then the gradient there will be 0, in other 
words the likelihood equations hold, 

(3.1.1) ∂f(θ, x)/∂θj = 0  for  j = 1, . . .  , k.  

If the supremum is not attained on Θ, then it will be approached at a sequence of points 
θ(m) approaching the boundary of Θ, or which may become unbounded if Θ is unbounded. 

The equations (3.1.1) are called “maximum likelihood equations” in a number of 
statistics books and papers, but that is unfortunate terminology because in general a 
solution of (3.1.1) could also be (a) only a local, not a global maximum of the likelihood, 
(b) a local or global minimum of the likelihood, or (c) a saddle point, as in an example to 
be given below. 
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For exponential families, it will be shown that MLE’s can be found from the likelihood 
equations, as follows: 

3.1.2 Theorem. Let  {Pθ, θ  ∈ Θ} be an exponential family of order k, where Θ is the 
natural parameter space in a minimal representation (2.5.3). Let U be the interior of Θ 
and j(θ) :=  − log C(θ). Then for any n and observations X1, . . .  ,Xn i.i.d. (Pθ), there is 
at most one MLE θ̂ in U . The likelihood equations have the form 

n(3.1.3) ∂j/∂θi = j=1 Ti(Xj )/n for i = 1, . . .  , k,  

and have at most one solution in U , which if it exists is the MLE. Conversely, any MLE 
in U must be a solution of the likelihood equations. If an MLE exists in U for v-almost all 
x, it is a sufficient statistic for θ. 

Proof. Maximizing the likelihood is equivalent to maximizing its logarithm (the log 
likelihood), which is �n �k−nj(θ) +  j=1 i=1 θiTi(Xj ), 

and the gradient of the likelihood is 0 if and only if the gradient of the log likelihood is 
0, which evidently gives the equations (3.1.3). Then K = ej is a smooth function of θ on 
U by Theorem 2.5.8, hence so is j, and the other summand in the log likelihood is linear 
in θ, so the log likelihood is a smooth (C∞ ) function of θ. So  at  a  maximum  in  U , the  
gradient must be 0, in other words (3.1.3) holds. 

A real-valued function f on a convex set in Rk is called concave if −f is convex and 
strictly concave if −f is strictly convex. It is easily seen that a strictly concave function on 
a convex open set has at most one local maximum, which then must be a strict absolute 
maximum. Adding a linear function preserves (strict) convexity or concavity. So, to show 
that the log likelihood is strictly concave on U is equivalent to showing that j is strictly 
convex on U . 

By Corollary 2.5.9, the matrix of second partial derivatives of j is the covariance 
matrix of the components of T . Since the representation is minimal, the covariance matrix 
is non-singular: otherwise there would be a non-zero linear combination of the Ti with 
0 variance and so equal to a constant almost surely. Since a covariance matrix is always 
nonnegative definite, in this case it is positive definite. Then, restricted to any line segment 
included in U , j has a strictly positive second derivative along the segment by the chain 
rule, which implies that j is strictly convex. For any strictly concave function h on a convex 
open set, if the gradient of h exists and is 0 at a point θ, then  h has a strict local maximum 
at θ, as can be seen first in the one-dimensional case, then taking all lines through θ in 
general. Then θ is a strict global maximum of h as desired. 

If for almost all x, (3.1.3) has a solution θ = θ(x) in  U , which is then unique, then by 
n k(3.1.3), the vector { Ti(Xj )}i=1, which is a sufficient k-dimensional statistic as noted j=1 

in Section 2.5, is a function of θ(x) which thus must also be sufficient. � 

Next is an example to show that if a maximum likelihood estimate exists almost surely 
but may be on the boundary of the parameter space, it may not be sufficient. Let v be 
the law with density 2x−3 on [1,∞) and 0 elsewhere. Consider the exponential family of 
order 1 having densities C(θ)eθx with respect to v, where  C(θ) as usual is the normalizing 
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constant. Then the natural parameter space is (−∞, 0]. According to Barndorff-Nielsen 
(1978, p. 153), if x ≥ 2 is observed the MLE is θ = 0. This can be proved as follows. We 
have K(θ) = 2  ∫ ∞ eθxx−3dx. Since the density is nonincreasing in x for any θ ≤ 0 it  is  1 

enough to show that e2θ < K(θ) for any θ < 0. Some classical special functions are defined 
for t > 0 and  n = 0, 1, 2, ..., by En(t) :=  ∫1 ∞ e−txx−ndx (Gautschi and Cahill, hereafter 
G&C, (5.1.4)). Thus g(t) :=  K(−t) =  2E3(t) for all t > 0 and we want to show this is 
larger than e−2t . Both functions equal 1 at t = 0.  

−2tCase 1: 0  < t ≤ 1/2. It will be enough to show that g′(t) =  −2E2(t) > −2e , or  
equivalently E2(t) < e−2t for 0 < t ≤ 1/2. We have E2(t) ≡ e−t − tE1(t) (integration 
by parts, G&C 5.1.14), so we want to show that tE1(t) > e−t − e−2t . By G&C, (5.1.20), 
E1(t) > (e−t/2) log(1 + 2 ), so it will be enough to show that t 

t 2 −th(t) :=  
2

log 1 +  − 1 +  e > 0, 
t 

0 < t ≤ 0.5. Note that e−t ≥ 1 − t + 1 t2 − 1 t3 for all t ≥ 0, since both sides are equal at 2 6
t = 0, then taking derivatives and iterating. Thus it’s enough to show that 

2 
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for 0 < t ≤ 1/2, which is equivalent to 

t 
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1 2log 1 +  − 2 +  t − t > 0, or log 1 +  − 2 +  t − t > 0.

2 t 3 t 3 

.Let f(t) := log  1 +  2 and g(t) := 2  − t + 1 t2. We  can  check  that  f(1/2) = log 5 = t 3.1.6094 > g(1/2) = 19/12 = 1.5833. So it suffices to check that f ′(t) =  −2/[t/(t + 2)]  < 
2t g′(t) =  3 − 1 for  0  < t  <  1/2. So we need to check that 6t <  2t3 + t2 + 6  which  holds  

since 6t < 6. 
Case 2: t ≥ 0.33. On this half-line we use the continued fraction for E3(t) given  by  

G&C, (5.1.22), and the fact (noticed by Euler) that for continued fractions with all terms 
positive, successive convergents are alternately above and below the value of the continued 
fraction. This gives us a lower bound 2E3(t) ≥ 2(t+5)e−t/[t2 +8t+ 12] which we want to 
prove larger than e−2t . Equivalently, we want to prove j(t) := 2(t+5)et − t2 − 8t− 12 > 0 
for t ≥ 0.33. This can be directly verified for t = 0.33. We have j′ (t) = (2t+12)et −2t−8 =  
2t(et − 1) + 4(3et − 2) > 0 for all t > 0, so j(t) > 0 for all t ≥ 0.33 as desired. 

So, 0 is the MLE for any observation x ≥ 2 as stated. But, the identity function 
x is a Lehmann-Scheffé sufficient statistic by factorization and Theorem 2.5.10, therefore 
minimal sufficient by Theorem 2.3.3, so the maximum likelihood estimator is not sufficient 
in this case although it is defined almost surely. 
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PROBLEMS


1. Let X1, ..., Xn be i.i.d. Poisson with unknown parameter λ, 0  < λ  <  ∞. 
(a) As a function of λ, find the probability that a MLE exists in the parameter space. 
(b) When the MLE exists, show that it can be found from the likelihood equation and 
evaluate it. 

−∞ K(θ)dθ. Using  
dπ(θ) =  K(θ)dθ/c0, evaluate the Bayes estimator of θ for squared-error loss. 

NOTES 

For the example in which for x ≥ 2 the  MLE  is 0,  M. Manstavičius provided some 
steps in the proof. 
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