
April 2, 2003 

3.4 M-estimates and robust location estimates. M-estimators, as defined in Sec. 3.3, 
are sometimes called M-estimators of ρ type where the function h(θ, x) may also be called 
ρ(θ, x). Such estimators include maximum likelihood estimators as noted there. Another 
class of M-estimators is a class of estimators of location in R which are robust, meaning 
that they are not sensitive to contamination of the data by a few erroneous values, as will 
be seen. 

Let ψ(θ, x) be a jointly measurable function, of θ in a parameter space Θ and x 
in a sample space X, where  ψ has values in a Euclidean space Rk . A  statistic  Tn := 

n
Tn(X1, · · · ,Xn) will be called an M-estimator of ψ type if 

∑
ψ(Tn,Xi) ≡ 0. Such an i=1 

estimator is not necessarily an M-estimator of ρ type, but it is related in that if ρ(θ, x) has  
continuous first partial derivatives with respect to θ, then a necessary condition for Tn to be 
an M-estimator (of ρ type) is that it be  one  of  ψ type with ψ = gradient of  ρ. Under some 
rather special conditions, as for exponential families in Theorem 3.1.2, an M-estimator of 
ψ type where ψ is the gradient of ρ must also be one of ρ type. M -estimators of ψ type, 
where ψ is not necessarily a gradient, and the definition need only hold approximately as 
n → ∞, will be further treated in the next two sections. 

A class of examples of M-estimators other than maximum likelihood estimators is 
provided by some location estimators in R as follows. 

For any probability distribution P on R with ∫ x2dP < ∞, µ := ∫ xdP is the unique 
m for which ∫(x − m)2dP (x) is minimized. To see this, note that the latter integral is a 
quadratic function of m which is minimized where its derivative is 0. So, for observations 
in R, the sample mean X is an M-estimator for h(θ, x) := (x − θ)2 . It is an estimator 
of the true mean µ, which gives a consistent sequence of estimators (by the strong law of 

2large numbers) if and only if µ is defined and finite. In this case, if we set a(x) :=  x , 
then h is adjustable and a(·) is an adjustment function for any P with ∫∞ 

−∞ |x|dP (x) < ∞, 
in other words whenever µ is defined and finite. 

Suppose we have a location family in R, in other words a family of laws Pθ , θ  ∈ R, 
where dPθ (x) ≡ dP0(x − θ). If ∫ |x|dP0(x) = +∞, then the sample means a.s. do not 
converge as n → ∞ to a finite limit (RAP, Theorem 8.3.5). For example if P0 is the Cauchy 
distribution, dP0(x) :=  dx/[π(1 + x2)], then X has the same distribution as X1. (This  

−∞ e
itxdP0(x) =  e−|t|follows from the fact that the characteristic function ∫∞ for all real t; 
|it is easy to verify that the inverse Fourier transform of e−|t is the Cauchy density.) 

A measure of location which is finite for any law P on R is the median, where m is 
a median of a random variable X (with law P ) iff both  P (X ≤ m) ≥ 1/2 and  P (X ≥ 
m) ≥ 1/2. If there is only one median it is called the median. If X has no atoms in its 
distribution, in other words P (X = x) = 0 for all x, then  m is a median of P if and 
only if P (X ≤ m) = 1/2. A median always exists but may not be unique: for example if 
P (X = 0) =  P (X = 1) = 1/2, then all x in [0, 1] are medians. Let F be the distribution 
function of X or P , F (t) =  P (X ≤ t) for all real t. Then  F is always right-continuous and 
has left limits 

F (t−) := lim F (s) =  P (X <  t) 
s↑t 

for all t. We can equivalently define a median of X or P as a t such that F (t−) ≤ 1/2 ≤
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F (t). Let m� := inf{x : F (x) ≥ 1/2} and mu := sup{y : F (y−) ≤ 1/2}. For any 
y <  m�, we  have  F (y−) ≤ F (y) < 1/2, thus mu ≥ m�. It is then clear that the set of all 
medians of X or P is exactly the non-empty closed interval [m�,mu]. If m� < mu then we 
have F (t) = 1/2 for  m� < t  < mu, and, by right-continuity, also for t = m�. 

n1Let Pn be the empirical measure Pn := n 

∑
δXi

, where  δx is a point mass at x.i=1 

Then a sample median is any median of Pn. If  n = 2r is even, then a sample median is any 
point in the interval between order statistics [X(r),X(r+1)], which is the interval [m�,mu] 
for Pn in that case. If n = 2r − 1 is odd, then the sample median is unique and equals 
X(r). 

If ∫ |x|dP < ∞, then  m is a median for P if and only if it minimizes ∫ |x−m|dP , so  a  
sample median is an M-estimator for h(θ, x) :=  |x−θ|, and the condition ∫ |x|dP (x) < ∞ 
can be removed by an “adjustment,” replacing h(θ, x) by  h(θ, x) − a(x) for  a(x) :=  |x| in 
this case, as was mentioned in Sec. 3.3 and will now be shown. 

3.4.1 Proposition. (a)  For  any  law  P on R, m is a median of P if and only if 
∫ |x− θ| − |x|dP (x) is minimized for θ = m. (b)  If  ∫ |x|dP (x) < ∞, then  m is a median of 
P if and only if ∫ |x − θ|dP (x) is minimized for θ = m. 

Proof. Clearly (b) follows from (a) by adding the finite constant ∫ |x|dP (x) to  the  quantity  
being minimized, so it will suffice to prove (a). 

Let h(θ, x) :=  |x − θ| − |x|. For any fixed value of x, clearly h(·, x) is a convex 
function of θ. We  have  |h(θ, x)| ≤ |θ| for all x and θ. For  fixed  θ, h(θ, ·) is a bounded, 
continuous function of x. Let  γ(θ) :=  E(|X − θ| − |X|) =  Eh(θ,X). The expectation is 
finite for each θ and preserves the inequalities in the definition of convex function, so γ(·) 
is a convex function. Any convex real function of a real variable on an open interval (in 
this case, the whole line) has left and right derivatives at every point (RAP, 6.3.3). 

Whenever φ <  θ, 
⎧ ⎪ θ − φ, for x ≤ φ, ⎨ 

h(θ, x) − h(φ, x) =  |x − θ| − |x − φ| = θ + φ − 2x, for φ ≤ x ≤ θ, ⎪ ⎩ 
φ − θ, for x ≥ θ. 

We have |h(θ, x) − h(φ, x)| ≤ |θ − φ| for all x, θ and φ. 
Let F be the distribution function of P and φ < θ. Let  

g(φ, θ, x) :=  
|x − θ| − |x − φ|

. 
θ − φ 

Then g(φ, θ, x) = 1  for  x ≤ φ and −1 for  x ≥ θ. For  φ < x < θ  we have |g(φ, θ, x)| ≤ 1, 
so the same holds for all x. If  we  fix  φ and let θ↓φ then g(φ, θ, x) converges boundedly to 
1x≤φ − 1x>φ. Thus by dominated convergence, γ′(φ+) = F (φ) − (1 − F (φ)) = 2F (φ) − 1. 
Or, if we fix θ and let φ↑θ then g(φ, θ, x) converges boundedly to 1x<θ − 1x≥θ . Thus  
γ′(θ−) =  F (θ−) − (1 − F (θ−)) = 2F (θ−) − 1. 

If F (θ) < 1/2, then γ′(θ+) < 0, so γ is not minimized at θ. If  F (θ−) > 1/2, then 
γ′(θ−) > 0, so γ is not minimized at θ. In  either  case,  θ is not a median of X. The  
remaining case is that F (θ−) ≤ 1/2 ≤ F (θ), in other words, θ is a median of X. In  that  
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∫ 

case γ′(θ−) ≤ 0 ≤ γ′(θ+). If the median is unique it is also the unique minimum of γ. Or  
if m� < mu, then by the non-decreasing property of the one-sided derivatives of γ (RAP, 
6.3.3) it follows that γ′(t) =  0  for  m� < t <  mu and γ is constant on [m�,mu], so it attains 
its minimum exactly on this interval. � 

For a set of data, arranged as order statistics X(1) ≤  · · ·  ≤  X(n), if  n ≥ 3 the  sample  
median is unchanged if X(1) is replaced by any value s <  X(1), or  if  X(n) is replaced by any 
t > X(n). On the other hand the sample mean X can be affected by a large amount for 
extreme values of s or t. A very large value of X(n), or a very negative value of X(1), may  
be considered an “outlier” and one may prefer estimates that are relatively insensitive to 
outliers, in other words robust estimates. A more precise definition of robustness can be 
based on the notion of breakdown point, which in turn will require a definition of distance 
between probability measures. 

Definitions. Let  (S, d) be a separable metric space and P, Q any two laws (probability 
measures on the Borel σ-algebra) on S. Then the Prokhorov metric d0(P,Q) is defined by 

d0(P,Q) := inf{ε >  0 :  P (A) ≤ Q(Aε) +  ε for all Borel sets A} 

where Aε := {y : d(x, y) < ε  for some x ∈ A}. 
A real-valued function f on S is Lipschitz if 

‖f‖L := sup{|f(x) − f(y)|/d(x, y) :  x �= y} < ∞. 

Let ‖f‖∞ := sup{|f(x)| : x ∈ S}. Let  ‖f‖BL := ‖f‖L + ‖f‖∞ for any bounded, 
Lipschitz function f . Let  

dBL(P,Q) := sup{| fd(P − Q)| : ‖f‖BL ≤ 1}. 

It is known that both the Prokhorov metric d0 and the “dual-bounded-Lipschitz” 
metric dBL or d1 := dBL/2 define metrics, for the same topology, on the set of all laws 
on S, and metrize weak convergence: for any sequence Qn of laws on S, as  n → ∞, 
d0(Qn, Q) → 0 if and only if d1(Qn, Q) → 0 if and only if ∫ fdQn → ∫  fdQ  for every 
bounded continuous real-valued function f on S (RAP, Sec. 11.3). We have d1 ≤ d0 (RAP, 
Corollary 11.6.5). If Q is a law on S and X1,X2, · · ·  are i.i.d. variables with values in S and 
distribution Q (such Xi exist, for example as coordinates on a product S∞: RAP, Sec. 8.2), 
let Qn be the empirical measure which is the sum of measures 1/n at Xi for i = 1, · · ·  , n. 
Then almost surely d0(Qn, Q) → 0 as  n → ∞  (a theorem of V. S. Varadarajan, given in 
RAP, Sec. 11.4). 

Now estimators Tn will be considered as functions Tn(Pn) taking values in a locally 
compact non-compact separable metric space U such as Rk . 

Definition. Given a separable metric space S and a metric e for laws on S, a sequence

{Tn} of estimators has breakdown point at P for e given by b({Tn}, P, e) := 

sup{ε >  0 : for some compact set K ⊂ U , e(P,Q) < ε  implies Pr ∗(Tn(Qn)) /
∈ K) → 0 
as n → ∞}, where the probability Pr is for X1,X2, · · ·  i.i.d. with distribution Q, and  
Pr∗(C) :=  inf{Pr(D) :  D measurable, D ⊃ C} for any set C. 
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An estimator with low breakdown point, specifically, one with breakdown point 0, is 
not robust. An estimator as robust as possible should have a breakdown point as high as 
possible. In estimating location in R we will have U = R. The sample mean functional is 
X := Tn(Qn) :=  ∫ xdQn. It is easily seen that it has breakdown point 0 for e either of 
the given metrics d0 or d1. 

In general, breakdown points are not expected to be larger than 1/2. To see why, 
suppose that Q = (P + µ)/2 where  P and µ are any two laws on S. Then  d0(P,Q) ≤ 1/2, 
and also d1(P,Q) ≤ 1/2. Suppose {Tn} had a breakdown point > 1/2 at  P and at µ. Then  
Tn(Qn) should with high probability take values in one compact set for the definition of 
breakdown point at P , and another compact set for µ. If  Tn are to be consistent for some 
parameter, which is very different for P and µ, then the compact set must be large to 
contain both parameters. This is possible in general, but can be ruled out in certain cases, 
for example as follows. 

A real-valued statistic Tn based on real observations X1, · · ·  ,Xn is called equivariant 
(for translation) iff 

Tn(X1 + c, · · ·  ,Xn + c) ≡ Tn(X1, · · ·  ,Xn) +  c 

for any real constant c. For example, X is equivariant for translation. 

3.4.2 Proposition. Let  {Tn} be a sequence of equivariant real-valued statistics. Let 
dPθ (x) :=  dP0(x − θ), θ  ∈ R, be a family of laws on R. Let  e be d0 or d1. Then  if  {Tn}
has breakdown point > 1/2 at  Pθ for all θ, it cannot be a consistent sequence of estimators 
of θ for any θ. 

Proof. If {Tn} is consistent for some θ, i.e. Tn → θ as n → ∞  for Tn = Tn(X1, · · ·  ,Xn) 
and Xi i.i.d. Pθ , then  {Tn} is consistent for all θ by equivariance. If {Tn} has breakdown 
point r >  1/2 for  θ = 0, take the compact set K from the definition of breakdown point 
for some ε with 1/2 < ε < r. Then  for  some  t large enough, K + t := {x + t : x ∈ K}
is disjoint from K. By equivariance, {Tn} has breakdown point r also for θ = t with the 
compact set K + t working for ε. Let  Q := (P0 + Pt)/2. Then by definition of breakdown 
point, for n large enough, Pr∗{Tn(Qn) /∈ L} < 1/2 for  L = K and for L = K + t, but this 
implies that Pr ∗ of the whole probability space is less than 1, a contradiction. � 

While the d0 and d1 metrics are defined for laws on any metric space, there is another 
metric for the special case of the line R, called the Lévy metric L, defined as follows. If 
laws P and Q on R have respective distribution functions F and G, let  

L(P,Q) := inf{ε >  0 :  G(x − ε) − ε ≤ F (x) ≤ G(x + ε) +  ε for all x}. 

It is easy to check that L(·, ·) is indeed a metric for laws on R and that L(P,Q) ≤ d0(P,Q), 
considering half-lines as sets A in the definition of the Prokhorov metric d0. Here  d0 may 
be substantially larger than L: if  P has mass 1/n at each of 2, 4, · · ·  , 2n, and  Q has mass 
1/n at each of 1, 3, · · ·  , 2n − 1, then L(P,Q) = 1/n but d0(P,Q) ≡ 1. Such P and Q 
have mass “escaping to ∞” and don’t converge to any law. The Lévy metric does metrize 
the same topology as that of d0 and d1: for any laws Pn and P on R, d0(Pn, P ) → 0 
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is equivalent to L(Pn, P ) → 0, which is equivalent to the distribution functions of Pn 

converging to that of P at all points where the latter is continuous (Helly-Bray property, 
e.g. RAP, 11.1.2, in light of 11.1.1 and 11.3.3). 

Before treating specific robust estimators further, a little general theory of robustness 
will be developed. Let e be a metric for laws and T a real-valued functional on the class 
of all laws which is continuous for e at a law P0. Thus  for  ε >  0 small enough, 

b1(ε) := sup{|T (P ) − T (P0)| : e(P,P0) < ε} < ∞. 

Let as before Tn = Tn(Pn) where  Pn is an nth empirical measure for P . Let  M(P, Tn) be  
the median, specifically, the smallest median of the distribution of Tn − T (P ). Let 

b(ε) := lim infn→∞ sup{M(P, Tn) :  e(P,P0) < ε}, 
b(ε) := lim supn→∞ sup{M(P, Tn) :  e(P,P0) < ε}. 

If b(ε) =  b(ε), call their common value b(ε). 

3.4.3 Proposition. For any ε >  0, if T (Pn) → T (P ) in probability as n → ∞  for every 
law P with e(P,P0) < ε, then  b(ε) ≥ b1(ε). 

Proof. We can assume T (P0) = 0. For each P in the given neighborhood, since T (Pn) → 
T (P ) in probability, the median M(P, Tn ) → T (P ) also.  Thus  b(ε) ≥ T (P ) for each such 
P , so  b(ε) ≥ b1(ε) by definition of b1. � 

Under a stronger, uniformity assumption there is a converse: 

3.4.4 Proposition. Assume that for a given ε >  0, as n → ∞, e(Pn, P ) → 0 in probability 
as n → ∞ uniformly for P such that e(P0, P ) < ε, in other words for any δ >  0, 

sup{Pr{e(Pn, P ) > δ} : e(P,P0) < ε} →  0 

as n → ∞. Then  b(ε) ≤ b1(ε+) := limγ↓0 b1(ε + γ). 

Proof. It will be enough to show that for each fixed γ >  0, b(ε) ≤ b1(ε + γ). By the 
triangle inequality, as n → ∞  

sup{Pr{e(Pn, P0) ≥ ε + γ} : e(P,P0) < ε} →  0. 

As soon as this supremum of probabilities is less than 1/2, the median M(P, Tn) satisfies  

M(P, Tn ) ≤ sup{|T (P ) − T (Q)| : e(Q,P0) ≤ ε + γ} = b1(ε + γ). � 

In  the case  of the  line and  Lévy metric, we have: 

3.4.5 Proposition. If the sample space is R and e is the Lévy metric, then the hypothesis 
of Prop. 3.4.4 holds. 

Proof. The Glivenko-Cantelli theorem (RAP, Theorem 11.4.2) implies that empirical 
distribution functions Fn almost surely converge uniformly on R to the true distribution 
function. Moreover, the proof of the Glivenko-Cantelli theorem shows that the convergence 
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for all distributions on R reduces to the case of U [0, 1] and so is uniform over all laws on R. 
Also, the Lévy distance between two laws on R is less than or equal to the supremum of the 
absolute difference of their distribution functions. This implies that on R, L(Pn, P ) → 0 
as n → ∞ (almost surely) at a rate which is uniform over all laws P on R. � 

One can say that “the median is equivariant” in the sense that it is equivariant (for 
translation) whenever it is unique, and when there is an interval of more than one median, 
a translation of the data gives a translation of the interval of medians. The median is 
sometimes defined as the midpoint (m� + mu)/2 of the interval of medians or as the 
smallest median m�. 

There is a class of M-estimators of location having some properties like those of the 
median, including robustness, but which are more often, or always, unique. A non-constant 
function ρ(θ, x) for  x and θ real will be called a wide-sense Huber function if ρ(θ, x) ≡ 
ρ(|x − θ|) where  ρ(x) ≡ ρ(−x), ρ is convex, and ρ(x)/|x| is bounded as |x| → ∞. The  
convexity and symmetry properties imply that ρ attains its absolute minimum at 0 (and 
perhaps elsewhere). Examples of wide-sense Huber functions include 

(a) ρ(x) :=  |x|, 
(b) ρ(x) := (c2 + x2)1/2 for any real c, and  

(c) ρ(x) :=  x2 for |x| ≤ b and ρ(x) :=  c|x| − d for |x| > b  where b >  0 and the other 
constants are chosen to make ρ continuously differentiable, so that cb − d = b2 and 
2b = c, so  d = b2 and for |x| > b,  ρ(x) =  b(2|x| − b). 

Since Huber especially studied functions defined by (c), they might be called “narrow-
sense Huber functions.” 

The functions in (b) and (c) are strictly convex in neighborhoods of 0, and the ones in 
n(b) are strictly convex everywhere. Note that if ρ is convex, then the sum 

∑
ρ(Xi − θ)i=1 

is convex in θ for any Xi. Also, if ρ is strictly convex for |x| ≤ b, then the sum is strictly 
convex in a neighborhood of θ for any θ such that |Xi − θ| < b  for some i. For  n large 
and b not too small, the set of such θ will often include the set on which the sum takes 
its smallest values, so that the minimum (M-estimator) will be unique. We will always 
have uniqueness if ρ is strictly convex everywhere, as (c2 + x2)1/2 is. Clearly, whenever an 
M-estimator (of ρ type) is unique for a wide-sense Huber function ρ, it will be equivariant, 
so the following shows that such estimators have the highest possible breakdown point: 

3.4.6 Proposition. Any M-estimator sequence in R where ρ is a wide-sense Huber func-
tion has breakdown point 1/2 for  the  Lévy metric or the Prokhorov metric at any law 
P0. 

Proof. Difference-quotients (ρ(b) − ρ(a))/(b − a) for  0  < a <  b  are positive and non-
decreasing as a → +∞ and/or b → +∞, and they are bounded above by the assumption 
that ρ(x)/|x| is bounded. Thus ρ is a Lipschitz function with γ := ‖ρ‖L < ∞ and as 
|x| → ∞, ρ(x)/(γ|x|) → 1 where  γ >  0. Letting a(x) :=  ρ(x), and recalling ρ(θ, x) ≡ 
ρ(|x − θ|), it follows that |ρ(θ, x) − a(x)| ≤ γ|θ| for all x and θ. 

Let ψ(x) :=  ρ′(x). This is defined except for at most countably many values of x: 
ρ, being convex, has left and right derivatives everywhere (RAP, Corollary 6.3.3), with 
possibly ρ′(x−) < ρ′(x+) for x in a countable set. To be specific, let ψ(x) :=  ρ′(x−) 
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for all x. Then  ψ is non-decreasing. Now, our estimators of ρ type will also be of ψ type 
except that the value 0 may not be attained. Letting ψ(t, x) :=  ψ(x − t), an estimator 

n
Tn will be said to be of extended ψ type if 

∑
ψ(θ,Xi) is  ≥ 0 for all θ <  Tn and ≤ 0 for  i=1 

all θ >  Tn. 
Let λ(t, P ) :=  ∫ ψ(x − t)dP (x) =  Eψ(X − t) where  X has law P . Then  λ(·, P ) 

is nonincreasing in t. Also,  λ(t, P ) increases  if  X becomes stochastically larger, in other 
words if X is replaced by X + Y with Y ≥ 0. We have ψ(u) < 0 as  u → −∞  and ψ(u) > 0 

∗ ∗∗as u → +∞. Let  T (P ) :=  sup{t : λ(t, P ) > 0} and T (P ) := inf{t : λ(t, P ) < 0}. 
∗ ∗∗ ∗ ∗∗ ∗ ∗∗Then T (P ) ≤ T (P ). If T (P ) < T (P ) then  λ(t, P ) =  0  for  T (P ) < t  < T (P ). 

If F0 is the distribution function of P0 and F is that of P , then to make the distribution 
P stochastically as large as possible in the neighborhood L(P,P0) ≤ ε, take  F = G where 
G(x) := max(0, F0(x − ε) − ε) for all x. The maximum value of G on R is 1 − ε. G can 
be viewed as a probability distribution function on (−∞,∞] placing  mass  ε at +∞; or,  if  
desired, one can consider a law putting mass ε at some large M and let M → +∞. The  
result is the same for integrals of ψ, which approaches limits as x → ∞  or x → −∞. 

Let x0 := inf{x : F0(x) > ε}. Then  F0(x0) =  ε, unless P0 has an atom at x0. We  
have G(x) = 0  for  x < x0 + ε and G(x) =  F0(x − ε) − ε for x ≥ x0 + ε. Then for any F 
with L(P0, P ) < ε, 

∫ ∞ 

λ(t, F ) ≤ λ(t,G) =  ψ(x − t)dF0(x − ε) +  εψ(+∞) 
x0+ε 

∫ ∞ 

= ψ(x + ε − t)dF0(x) +  εψ(+∞), 
x0 

where ψ(+∞) := limu→∞ ψ(u), and functionals of laws are written as functionals of 
∗∗ ∗∗their distribution functions. Let b+(ε) := sup{T (F ) :  L(F,F0) ≤ ε} = T (G). 

Symmetrically to G, let  H be the distribution function for the stochastically smallest 
random variable with L(F0,H) ≤ ε, so  that  H(x) := min(1, F0(x+ ε)+  ε). Here H yields 

∗a distribution on [−∞,∞) with  mass  ε at −∞. Then  b−(ε) := inf{T (F ) :  L(F,F0) ≤ 
∗∗ε} = T (G). 

As the set K in the definition of breakdown point consider the interval [b−(ε), b+(ε)]. 
Let’s see for which ε this is compact. Now b+(ε) < ∞ if for some t, λ(t,G) < 0, which 
is true if and only if (1 − ε)ψ(−∞) +  εψ(+∞) < 0. For our case, ψ(−∞) =  −ψ(+∞) so  
the condition on ε is ε/(1 − ε) < 1 which is equivalent to ε <  1/2. Consideration of b−(ε) 
leads to the same condition, ε <  1/2. 

If L(F0, F ) < ε, then  L(F0, Fn) < ε  with probability → 1 as  n → ∞. Then for any 
∗ ∗∗M-estimators Tn of ρ type, T (H) =  b−(ε) ≤ Tn ≤ b+(ε) =  T (G). These facts imply 

that the breakdown point of the sequence {Tn} is at least 1/2 for  the Lévy metric. 
Now since the Prokhorov metric is at least as large as the Lévy metric, d0 ≥ L, 

d0(P0, P ) ≤ ε implies L(P0, P ) ≤ ε which implies G(x) ≤ F (x) ≤ H(x) for all x. On  the  
other hand, let Y be a random variable with distribution function G. Such a Y exists having 
the following joint distribution with a random variable X0 having distribution P0: Y = +∞ 
with probability ε, specifically if X0 < x0 and if P0(x0) > 0, then Pr(Y = +∞|X0 = x0) 
has whatever value is needed to make Pr(Y = +∞) =  ε, while Y <  ∞ for X0 > x0. In  
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fact when Y is not +∞ it is X0 + ε. So  Y is always within ε of X0, except with probability 
ε. So the Ky Fan distance between the random variables X0 and Y is ε (RAP, 9.2.2 and 
11.6.4), and it follows that the Prokhorov distance between F0 and G is ≤ ε and so = ε. 
So the breakdown point is also at least 1/2 for the Prokhorov metric. 

On the other hand, to show that the breakdown point is at most 1/2, so that it is 
exactly 1/2 for both metrics, suppose r > 1/2. For any M < ∞, taking a distribution F 
close to F0, we will have for some δ > 0, λ(t, F ) > δ for all t ≤ M , and likewise for Fn 

with high probability for n large. Then Tn ≥ M . Letting M → ∞, it follows that there 
is no compact set K as required in the definition of breakdown point, so the breakdown 
point is 1/2. � 

In some cases one can prove the breakdown point is at least 1/2 by applying 3.4.2, 
but not in the generality of Prop. 3.4.6: consider the distribution with density 1/2 each  
on [0, 1] and [2, 3], with ρ(x) :=  |x|, so that the estimators are medians. Since sample 
medians don’t converge in this case, consistency and Proposition 3.4.2 don’t apply, even if 
we choose medians to be equivariant estimators. 

NOTES 

The facts in this section are as in Huber (1981). 
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