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3.44 Robustness, breakdown points, and 1-dimensional location M-estimators. 
[Parts of this section are more or less parallel to parts of Section 3.4. One difference is that 
here, breakdown points are defined in terms of finite samples. Eventually, this section and 
Section 3.4 will be merged into one or reorganized.] 

Let X = (X1, ..., Xn) and  Y = (Y1, ..., Yn) be samples of real numbers. For j = 1, ..., n 
let X = j Y mean that Xi = Yi except for at most j values of i. More specifically, for 
y = (y1, ..., yj) let  X = j,y Y mean that for some integers ir with 1 ≤ i1 < i2 < ... < ij ≤ n, 
Yir 

= yr for r = 1, ..., j and Yi = Xi if i �= ir for r = 1, ..., j. The idea is that in the latter 
case, Xi are i.i.d. from a nice distribution like a normal and yr are errors or “bad” data. So 
the sample X contains n − j good data points and j errors. A robust statistical procedure 
will be one that doesn’t behave too badly if j is not too large compared to n. 

“Breakdown point” is one of the main ideas in robustness. Let T = T (X1, ..., Xn) be  
a statistic taking values in some locally compact metric space Θ such as a Euclidean space. 
The closure of a set A ⊂ Θ will be denoted A. If Θ is a Euclidean space then a set A ⊂ Θ 
has compact closure if and only if sup{|x| : x ∈ A} < ∞. The  breakdown point of T at X, 
or more specifically the finite-sample breakdown point, is defined as 

1∗ε (T,  X) =  ε ∗(T ; X1, ..., Xn) =  max{j : {T (Y ) :  Y = j X} is compact}. 
n 

∗In other words ε (T,  X) =  j/n for the largest j for which there is some compact set K ⊂ Θ 
∗such that T (Y ) ∈ K whenever Y = j X. If ε (T,  X) doesn’t depend on X, which  is  often  

∗ ∗the case, then let ε (T ) :=  ε (T,  X) for all X. If Θ is a Euclidean space Rk, then the 
∗compactness condition in the definition of ε is equivalent to 

sup{|T (Y )| : Y = j X} < +∞. 

If a fraction of the data less than or equal to the breakdown point is bad (subject to 
arbitrarily large errors), the statistic doesn’t change too much (it remains in a compact 
set), otherwise it can escape from all compact sets (in a Euclidean space, or by definition 
in other locally compact spaces, it can go to infinity). There are a number of definitions 
of breakdown point. The definition of finite-sample breakdown point as above is given in 
Hampel et al., 1986, p. 98, for a real-valued statistic. 

Since j in the definition is an integer, the possible values of the breakdown point 
for samples of size n are 0, 1/n, 2/n, ..., 1. A statistic with a breakdown point of 0 is (by 
definition) not robust. Larger values of the breakdown point indicate more robustness, 
up to just less than 1/2. Finite-sample breakdown points ≥ 1/2 are unattainable in some 
situations, e.g. Theorem 3.44.2 below. 

Recall the definition of order statistics: for a sample X1, . . .  ,Xn of real numbers, let 
X(1) ≤ X(2) ≤  · · ·  ≤  X(n) be the numbers arranged in order. 

¯Examples. (i) For the sample mean T = X = (X1 + ... + Xn)/n, the breakdown point is 
¯0 since  for  j = 1,  if  we  let  y1 → ∞  then X → ∞  (for n fixed). 

(ii) Let T = X(1), the smallest number in the sample. Then the breakdown point of T is 
again 0 since for j = 1,  as  y1 → −∞  we have X(1) → −∞. Likewise the maximum X(n) of 
the sample has breakdown point 0. 
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¯So the statistics X,  X(1), X(n) are not robust. Other order statistics have some 
robustness (for fixed finite n): 

Theorem 3.44.1. For sample size n, and  each  j = 1, ..., n, the order statistic T = X(j) 
∗has breakdown point ε (T ) =  1 min(j − 1, n − j).n 

Proof. Take any sample X = (X1, ...,Xn). We have inf{T (Y ) :  Y = j X} = −∞ (let 
y1, ..., yj all go to −∞). Likewise sup{T (Y ) :  Y = n−j+1 X} = +∞ (let y1, ..., yn−j+1 → 

∗+∞). So ε (T,X) ≤ 1 min(j − 1, n − j).n 
If Y = j−1 X then the smallest possible value of Y(j) occurs when yi < Xk for all 

i and k and for at least one k such that Xk = X(1), Xk is not replaced, so Y(j) ≥ X(1). 
Similarly, if Y = n−j X the largest possible value of Y(j) satisfies Y(j) ≤ X(n). So  if  
r = min(j − 1, n  − j) and  Y = r X, then  X(1) ≤ Y(j) ≤ X(n) so Y(j) is bounded and 
∗ 1ε (T,X) =  n min(j − 1, n  − j) as claimed. Since this is true for an arbitrary X, the  

theorem is proved. � 

If j = 1  or  n, the breakdown point of X(j) is 0 as noted in the Examples above. If 
n is odd, so n = 2k + 1 for an integer k, then the sample median X(k+1) has breakdown 

1 kpoint 2 − 1 = . If  n = 2k for an integer k, then the two endpoints of the interval of 2n n 
medians, Y(k) and Y(k+1), each have breakdown point 1 − 1 . So any median has breakdown 2 n 

1 1point at least  2 − 1 → as n → ∞. From Theorem 3.44.1, no other order statistic has n 2 ∗any larger breakdown point than the median, so ε (X(j)) < 1/2 for all j.  This is typical  
behavior for interesting estimators. But, larger breakdown points are possible. If T has 
values in a compact set, then it trivially has breakdown point 1 by our definition. Or, let 
T = minj |Xj | for observations in Rk . Then one can check that T has breakdown point 
1 − 1 . n 

For real-valued observations X1, . . .  ,Xn, a real-valued statistic T = T (X1, ...,Xn) 
will be called equivariant for location if for all real θ, and letting X = (X1, . . .  ,Xn) and  
X + θ = (X1 + θ, ...,Xn + θ), 

T (X + θ) =  T (X) +  θ 

for all n-vectors X of real numbers and all real θ. 
¯For example, the order statistics X(j) and the sample mean X are clearly equivariant 

for location. 

Theorem 3.44.2. For any real-valued statistic T equivariant for location, the breakdown 
point is < 1/2 at  any  X = (X1, ...,Xn). 

Proof. Let the breakdown point of T at X be j/n. Then there is an M <  ∞ such that 

(3.44.3) |T (Y )| ≤ M whenever Y = j X. 

Let θ = 3M . Now  W = Y + θ for some Y with Y = j X if and only if W = j X + θ. 
Then T (W ) =  T (Y ) +  θ. So  

(3.44.4) |T (W ) − θ| ≤ M whenever W = j X + θ, and then 2M ≤ T (W ) ≤ 4M. 
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But if j ≥ n/2 there  is  a  W with W = j X and also W = j X + θ. For  such  a  W , (3.44.3) 
and (3.44.4) give a contradiction, proving Theorem 3.44.2. � 

Now, we’ll consider breakdown points of 1-dimensional location M-estimators. Let 
ψ be a real-valued function of a real variable which is odd (meaning ψ(−x) ≡ −ψ(x)), 
nondecreasing, nonconstant, and bounded. Then ψ(−t) ≤ 0 =  ψ(0) ≤ ψ(t) for all t ≥ 0 
and ψ(−t) < 0 < ψ(t) for  some  t >  0 since  ψ is nonconstant. We will have ψ(t) → A as 
t → +∞ for some A >  0. Examples of such functions ψ include the derivatives ρ′(x) of  
wide-sense Huber functions (as defined in §3.4), where such derivatives are defined, with 
suitable choices where they are not defined, specifically, ψ(0) = 0 in all cases, ψ(x) :=  
ρ′(x+) := limh↓0(ρ(x + h) − ρ(x))/h and ψ(−x) :=  −ψ(x) for  x >  0. Then for location, 
the psi function of two variables is defined by ψ(θ, x) :=  ψ(x− θ), which is nonincreasing 
in θ. Given a sample (X1, . . .  ,Xn), let 

n 
∗ ∗θ := θ (X1, ...,Xn) := sup  θ : ψ(Xi − θ) > 0 . 

i=1 

This is finite since the sum is ≤ 0 for  θ ≥ X(n) and also < 0 when  θ ≥ X(n) + t for some t 
such that ψ(t) > 0. Analogously, define 

n 
∗∗ ∗∗θ := θ (X1, . . .  ,Xn) := inf  θ : ψ(Xi − θ) < 0 , 

i=1 

∗which is also finite since the sum is ≥ 0 for  θ ≤ X(1). We  have  θ ≤ θ∗∗ because of 
the monotonicity of ψ. Then  a  statistic  Tn = Tn(X1, . . .  ,Xn) will be an M-estimator of 

∗ ∗∗extended ψ type if and only if θ ≤ Tn ≤ θ . In order to have a unique estimator, the 
M-estimator defined by ψ and the sample will be defined, as for the sample median, by 

2
(θ ∗ ∗∗θ̂ := θ̂((x1, . . .  , xn) ) :=

1 
+ θ )((x1, . . .  , xn) ). 

It will shown that such estimators have the same (finite sample) breakdown points as the 
median, converging to 1/2 as  n → ∞ and as large as possible. Consider also scale-adjusted 

n ∑nM-estimators, where instead of i=1 ψ(Xi − θ) we have  ψ((Xi − θ)/S) and  S is a i=1 
∗ ∗scale estimator, with nonnegative values. The resulting θ , θ∗∗, and  θ̂ will be called θS , 

∗∗ ∗θS , and  θ̂S := (θ + θ∗∗)/2 respectively. If S = 0, then by definition set 

⎧ ⎪ A, Xi > θ  ⎨ 
ψ((Xi − θ)/S) :=  0, Xi = θ ⎪ ⎩ −A, Xi < θ.  

It’s easily seen that if S = 0 then the M-estimator θ̂S based on the above definitions is 
exactly the median. 
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To get a particular choice of S, let  M be the median of the sample, defined as X(k+1) 

if n = 2k + 1 is odd, and (X(k) + X(k+1))/2 if  n = 2k is even. Let MAD denote the 
median absolute deviation, namely the median of |Xi − M |, and  S = MAD/.6745, where 
the constant 0.6745 is (to the given accuracy) the median of |Z| for a standard normal 
variable Z, and thus, S estimates the standard deviation σ for normally distributed data. 

The following fact and proof are adapted from Huber (1981), pp. 52-53. 

Theorem 3.44.5. Let  ψ be a function from R into R, which is odd, nondecreasing, 
nonconstant, and bounded. Then the M -estimator θ̂ defined by ψ has breakdown point 
1 − 1 if n is even and 1 − 1 if n is odd. The same holds for the scale-adjusted M-estimator 2 n 2 2n 

θ̂S where we consider  ψ((Xi − θ)/S) for  the  S just defined. 

Proof. As t → ∞ we have ψ(t)↑A. For  0  < ε <  1 there  is  a  κ <  ∞ such that ψ(κ) ≥ 
n(1 − ε)A. Then  ψ(X(i) − θ) < 0 if  X(i) − θ <  −κ for j values of i where −j(1 − ε)A+i=1 

(n − j)A <  0, or equivalently j >  n/(2 − ε). Now θ >  X(i) + κ for at least j values of i 
∗∗is equivalent to θ >  X(j) + κ. So  we  have  θ ≤ X(j) + κ where j is the smallest integer 

> n/(2 − ε). 
Now if Yi = Xi for at least j values of i = 1, ..., n, we  have  Y(j) ≤ X(n), so  

∗∗	 ∗∗θ (Y1, ..., Yn) ≤ X(n) + κ and θ remains bounded above under the given conditions. 
Symmetrically, θ∗ stays bounded below. It follows that θ̂ stays bounded, so the break-
down point of θ̂ is at least 1 − j/n. 

If i > n/2, then for some ε >  0, i  >  n/(2 − ε), so we can take j as the smallest integer 
greater than n/2. Then for n = 2m even, or for n = 2m + 1 odd, we have j = m + 1.  It  
follows that the breakdown point of θ̂ is at least as large as stated for each sample size. 

θ̂ is a location equivariant estimator, so its breakdown point is less than 1/2 by  
Theorem 3.44.2. So the breakdown point is no larger than for the median and is the 
same as for the median, proving the first statement in the theorem. 

Next, consider the scale-adjusted case and first, the breakdown point of S. If  j is 
again the smallest integer > n/2, and Y = n−j X, so that  Yi = Xi for at least j values of 
i, then  X(1) ≤ Yi ≤ X(n) for at least j values of i.  Thus as noted  above  

(3.44.6)	 Y(j) ≤ X(n) 

and if MY is the median of Y1, ..., Yn, then  X(1) ≤ MY ≤ X(n). Also,  |Yi − MY | ≤
X(n)−X(1) for at least j values of i, so  MADY , the median of |Yi −MY |, satisfies  MADY ≤ 
X(n) − X(1) and 

(3.44.7) SY := S(Y1, ..., Yn) ≤ KX := (X(n) − X(1))/0.6745. 

On the other hand if Y = k X for k ≥ n/2 we  can  have  MY unbounded and also MADY 

unbounded. So the MAD and S have the same breakdown point as the median itself. 
It’s possible that S = 0 if there are enough tied observations. As noted above, the 

M-estimator θ̂S equals the sample median in that case. 
Returning to the case where j is the smallest integer > n/2 and  Y = n−j X, take  ε >  0 

small enough so that j >  n/(2 − ε) and  choose  κ accordingly. Then we will have 
n 

(3.44.8)	 ψ((Yi − θ)/SY ) < 0 
i=1 
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if Yi − θ <  −κSY for at least j values of i, in  other  words  if  Y(j) − θ <  −κSY or θ >  
Y(j) + κSY . This does hold when SY = 0:  then  if  Yi − θ <  0 for at least j values of i, we  

nhave by the definitions 
∑

ψ((Yi − θ)/SY ) ≤ −jA + (n − j)A = (n − 2j)A <  0. Now i=1 

(3.44.8) holds if θ >  X(n) + κKX by (1) and (2). So 

∗∗θ (Y1, ..., Yn) ≤ X(n) + κKX . 

Symmetrically, we have 
∗θ (Y1, ..., Yn) ≥ X(1) − κKX . 

So θ̂(Y1, ..., Yn) remains bounded for Y = n−j X and the breakdown point of θ̂ is at least as 
large as for the median. If S = 0, this doesn’t cause breakdown of the M-estimator because 
the median of a sample Y1, ..., Yn containing more than n/2 of the original observations 
X1, ..., Xn must be between X(1) and X(n) and so can’t become unbounded. 

Since θ̂S is also location equivariant, its breakdown point is also < 1/2 and so equals 
that of the median, as stated in the Theorem. � 

PROBLEMS 

1. Let k be a positive integer and n = 4k + 3.  Let  X1, ..., Xn be a sample of real numbers 
with order statistics X(1) ≤ X(2) ≤  · · ·  ≤  X(n). Then the sample median is X(2k+2). 
Define X(k+1) to be the lower quartile and X(3k+3) to be the upper quartile. (Quartiles are 
defined for sample sizes not of the form 4k + 3 as combinations of adjoining order statistics 
around 1/4 and  3/4 of the way up the ordering.) The interquartile range is defined by 
IR  = X(3k+3) − X(k+1). What is its breakdown point? Does it depend on the sample? 

2. Suppose we want to estimate a scale parameter σ with 0 < σ  <  ∞ (not necessarily 
a standard deviation). Each compact set in the parameter space is included in a set 
1/M ≤ σ ≤ M . 

(a) For what samples X1, ..., Xn of real numbers is the median absolute deviation 
MAD in the parameter space? 

(b) If the observations Xj are all different, what is the breakdown point of MAD with 
the given parameter space? Hint: if the parameter space is [0, ∞), so that 0 is a possible 
value, the breakdown point is found in the proof of Theorem 3.44.5. 

(c) Suppose that r of the Xj are the same for some r = 2, ..., n and the rest are all 
different. Then what is the breakdown point of MAD at such a sample? 

3. For the wide-sense Huber functions ρ on p. 6 of Section 3.4, (a), (b) and (c), and 
ψ(x) =  ρ′(x) for  x �= 0,  ψ(0) = 0, find the number A = limx→+∞ ψ(x) in each case. 

4. Show that for n = 2, the M-estimate for location defined by any ψ function satisfying 
the hypotheses of Theorem 3.44.5 is (X1 + X2)/2. 

√ 
5. Show that for the ρ function ρ(x) =  1 +  x2 and corresponding ψ function ψ(x) =  ρ′(x), 

∗ ∗∗we have θ = θ for any sample. 
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