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3.5 Consistency of approximate M-estimators of ψ type. As in Sec. 3.3, let 
(X,A, P ) be a probability space and Θ a locally compact separable metric space. Let 
ψ(θ, x) be a function of x in X and θ ∈ Θ with values in a Euclidean space Rm. Let  
X1,X2, . . .  be independent with values in X and distribution P . A sequence of estimators 
Tn := Tn(X1, . . .  ,Xn) with values in Θ will be called approximate M-estimators of ψ 
type if 

1(3.5.1) n 

�n 
ψ(Tn,Xi) → 0 almost uniformly as n → ∞.i=1 

If ψ is jointly measurable, as will follow from assumptions to be given, then since estimators 
Tn by definition are assumed to be statistics (measurable functions of the observations), 
the almost uniform convergence in (3.5.1) will be equivalent to almost sure convergence. 
Recall that if Tn are M-estimators of ψ type, the expression on the left in (3.5.1) equals 0, 
at least with probabilities converging to 1. Convergence of Tn to some θ0 will be proved 
under some assumptions as follows. 

(B-1) For each θ ∈ Θ, the function ψ(θ, ·) is  A-measurable.

(B-2) For almost all x, ψ(·, x) is continuous on Θ.

(B-3) λ(θ) :=  Eψ(θ, ·) is defined and finite for all θ, and  for  some  θ0, λ(θ0) = 0, while


= 0  for  all  θ �λ(θ) � = θ0. 
(B-4) There is a continuous, positive function b(·) on Θ, bounded away from 0, so that for 

some b0 > 0, b(θ) ≥ b0 for all θ, and  
(i) Ψ(x) := supθ |ψ(θ, x)|/b(θ) is integrable, 
(ii) lim infθ→∞ |λ(θ)|/b(θ) ≥ 1, and 
(iii) E{lim supθ→∞ |ψ(θ, x) − λ(θ)|/b(θ)} < 1. 

A first question about the assumptions is: how are we to verify them, given that the 
true distribution P of the observations is unknown? (B-1) and (B-2) don’t depend on P , 
so they can be checked. In (B-3), ψ(θ, ·) will be integrable for all P and θ if it is a bounded 
function of x for each θ. If  ψ is bounded uniformly in x and θ, as for the classes of ψ 
functions with −A ≤ ψ(θ, x) ≤ A <  +∞ considered in the 1-dimensional location case, so 
much the better. 

To verify that there is unique θ0 with λ(θ0) = 0 is not as easy, but if ψ has some 
strict monotonicity property (or multidimensional extensions of such a property) it may 
be possible to show that this is true for all P . It may also be that existence of a pseudo-
true θ0 is a restriction on P , for example, in the case of the median, that P has to have a 
unique median (although actually (B-2) doesn’t hold for the ψ function corresponding to 
the median). 

For (B-4)(i), Ψ(x) will be integrable for all P if and only if it is bounded. For this, 
it’s sufficient that ψ(θ, x) be bounded uniformly in θ and x. 

For (B-4)(ii), if θ ∈ R and ψ is real-valued, one way to ensure the condition for all P 
is that for all x, 

lim inf ψ(θ, x)/b(θ) ≥ 1 and lim inf ψ(θ, x)/b(θ) ≤ −1. 
θ→−∞ θ→+∞ 
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In higher dimensions, the situation is more complicated because instead of just two direc-
tions for going to infinity there are infinitely many, but on the other hand for ψ vector 
valued, it will tend to be small or zero less often. 

(B-4)(iii) will hold if lim supθ→∞ |ψ(θ, x) − λ(θ)|/b(θ) < 1 for all x, but this may still 
not be straightforward to check since λ(θ) depends on the unknown P . 

A difficulty about (B-4) is that parts (i) and (iii) require b(θ) to be not  too small,  
whereas part (ii) requires it to be not too large. 

Some other comments on the assumptions: recall that one way ψ functions commonly 
arise is as the gradients with respect to θ of ρ functions. If so, then (B-2) implies that for 
almost all x, ρ(·, x) is  a  C1 function of θ, as the narrow-sense Huber functions are. (B-1) 
and (B-2) imply that ψ is separable, as in (A-1) of Sec. 3.3, with S any countable dense 
subset of Θ and A := {x : ψ(·, x) is not continuous }. (B-1), (B-2) and the integrability in 
(B-3) are mild regularity conditions. If there were θ �= φ with λ(θ) =  λ(φ) = 0, then (3.5.1) 
could hold by the law of large numbers when Tn is either near φ or near θ, so  Tn would 
not necessarily converge. Thus λ having a unique zero at some θ0 is a natural assumption 
for consistency, specifically Tn → θ0. (B-4) is the most technical, least intuitive of the 
assumptions. 

Assumption (B-4(i)) gives |ψ(θ, x)| ≤  Ψ(x)b(θ) for an integrable function Ψ. If U is 
a neighborhood of θ whose closure is compact, then b(·), being continuous, is bounded on 
U . It follows that 

sup{|ψ(θ, x) − ψ(φ, x)| : φ ∈ U}) ≤ 2Ψ(x) sup{b(φ) :  φ ∈ U}, 
an integrable function. This, assumption (B-2), and dominated convergence imply: 

(B-2′) For any θ, as a neighborhood U of θ converges to {θ}, 
E(sup{|ψ(θ, x) − ψ(φ, x)| : φ ∈ U}) → 0. 

Then, it follows that λ(·) as defined in (B-3) is continuous. 
The next fact is not needed for the proof of consistency (Theorem 3.5.4 below) but it 

may be useful in checking hypothesis (B-4) by suggesting what function(s) to use for b(θ), 
if we can control λ(θ) well enough without knowing P . 

3.5.2 Proposition. If (B-1) through (B-4) all hold, for some b(θ) and  b0, then  (B-
4) also holds for B(θ) := max(|λ(θ)|, b0) or  B1(θ) := max(|λ(θ)|, b′ 0) where  b′ :=0 

lim infφ→∞ |λ(φ)| in place of b(θ). 

Proof. Clearly, B(·) is continuous and ≥ b0. From (ii) for b(θ) and  b(θ) ≥ b0, we  have  
b′ 0 ≥ b0, so (ii) holds for B(·). Also, (ii) for b(·) implies that for any ε >  0, there is a 
compact K such that for θ /∈ K, b(θ) ≤ (1 + ε)|λ(θ)|. For ε small enough, this implies (iii) 
for B(·), and also (i) for the supremum over the complement of K. For the supremum over 
K, (i) is equivalent for any two positive continuous functions, such as b(·) and  B(·), both 
bounded away from 0. 

Since B1 ≥ B, clearly (i) and (iii) hold for B1. Also, from the definitions, (ii) holds 
for B1. � 

Assuming (B-1), (B-2) and (B-3), we have that (B-4) holds for some function b(·) if  
and only if both b′ 0 > 0 and (B-4) holds for B1(θ) in place  of  b(θ) by Proposition 3.5.2. 
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Still, the function λ(·) depends on the law P which usually is unknown to the statistician. 
Thus the assumptions would usually need to be checked for all P in some class (which may 
or may not be parametrized by Θ). 

3.5.3 Lemma. If (B-1) and (B-4) hold, then for any sequence {Tn} of approximate M-
estimators of ψ type there is a compact set C ⊂ Θ such that Tn ∈ C eventually a.s., 
specifically (3.3.11) holds. 

Proof. For a compact set C, let  

wC (x) := sup{|ψ(θ, x) − λ(θ)|/b(θ) :  θ /∈ C}. 
By (B-4) (i) and (iii) and dominated convergence, since 0 ≤ wC (x) ≤ Ψ(x) +  EΨ for any 
C, we  can  take  C large enough so that EwC (x) < 1. Then we can take ε >  0 small  
enough so that EwC < 1 − 3ε. Note  that  if  C ⊂ D for another compact set D, we have  
wD (x) ≤ wC (x) for all x and so EwD ≤ EwC . Thus by (B-4(ii)), we can take the compact 
C large enough so that |λ(θ)| > (1 − ε)b(θ) for  θ /∈ C, and  EwC < 1 − 3ε still holds. 

By the strong law of large numbers for w(·), a.s. for n large enough 

n � 

i=1 

|

n � 

i=1 

w(Xi) ≤ 1 − 2ε, 
1 1 

ψ(θ, Xi) − λ(θ)|/b(θ) :  θ /∈ C} ≤{sup
n n 

so for θ not in C, 

n 

�n |ψ(θ, Xi) − λ(θ)| ≤ (1 − 2ε)b(θ) ≤ (1 − 2ε)|λ(θ)|/(1 − ε) ≤ (1 − ε)|λ(θ)|,i=1


1
so |n 

�n 
ψ(θ, Xi)| ≥ ε|λ(θ)| ≥ ε(1 − ε)b0 > 0.i=1 

This implies (3.3.11). � 

3.5.4 Theorem. Let  {Tn} be a sequence of approximate M-estimators of ψ type. If 
(a) (B-1), (B-2), (B-3) and (B-4) hold, 
or if 
(b) (B-1), (B-2′) and (B-3) hold, and (3.3.11) holds for some compact C, 
then Tn → θ0 almost uniformly. 

Proof. Hypotheses (a) imply (B-2′ ) as noted at its statement, and (3.3.11) by Lemma 
3.5.3, so we can assume hypotheses (b). Then, we can assume that Θ is the compact set 
C in (3.3.11). By (B-2′ ), λ(·) is continuous. Let U be any open neighborhood of θ0. Then  
on the compact set C \U , λ is strictly positive by (B-3) and attains its infimum, which is 
≥ 5δ for some δ >  0. For each θ ∈ C \ U , take a neighborhood Uθ by (B-2′ ) such that 

(3.5.5) E(sup{|ψ(φ, x) − ψ(θ, x)| : φ ∈ Uθ }) ≤ δ. 

Then |λ(φ) − λ(θ)| ≤  δ for φ ∈ Uθ . Since  C \ U is compact, take a finite subcover 
Uj := Uθj 

for some M <  ∞ and j = 1, . . .  ,M . Then  

1

n � 

i=1 

S
 := sup
{ |
n

ψ(φ, Xi) − λ(φ)| : φ ∈ C \ U} ≤ T1 + T2 + T3 
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1where T1 := max1≤j≤M n 

�
i
n 
=1 sup{|ψ(φ,Xi) − ψ(θj ,Xi)| : φ ∈ Uj }, 

n 

T2 := max
1 |

� 
ψ(θj ,Xi) − λ(θj )|, 

1≤j≤M n
i=1 

and T3 := maxj sup{|λ(φ) − λ(θj )| : φ ∈ Uj }. Then  T3 ≤ δ by (3.5.5) since for each 
φ ∈ Uj , 

|λ(φ) − λ(θj )| = |Eψ(φ, x) − Eψ(θj , x)| ≤  E|ψ(φ, x) − ψ(θj , x)|. 

Almost surely for n large enough, T1 ≤ 2δ by (3.5.5) applied to θ = θj and the strong 
law of large numbers M times; also, T2 ≤ δ by (B-3) and the strong law of large numbers 
M times, once for each θj . Then  S ≤ 2δ + δ + δ = 4δ. But |λ(φ)| ≥ 5δ for φ ∈ C \ U �nimplies that 1 | ψ(φ,Xi)| ≥ δ for φ ∈ C \U and n large enough, which implies Tn ∈ U n i=1 

eventually a.s., specifically 1Tn∈U → 1 almost uniformly. So Tn → θ0 almost uniformly. � 

PROBLEMS 

1. Consider ψ(θ, x) =  ρ′(x − θ) for  ρ equal to wide-sense Huber function (b) on p. 6 of 
section 3.4, ρ(x) = (c2 + x2)1/2 for some c >  0. Take c = 1. Verify that in this section, 
conditions (B-1) through (B-4) all hold for any law P . Hints: for (B-3), show that λ′(θ) < 0 
for all θ, and find limits of λ(θ) as  θ → −∞ or +∞. 

2. Consider the narrow-sense Huber functions, (c) on p. 6 of section 3.4, where for some 
b >  0, ρ(x) =  x2 for |x| ≤ b and c|x| + d otherwise, where c and d are chosen to make ρ 
a C1 function. Show that in this case there is always a θ0 such that λ(θ0) = 0  (by  the  
intermediate value theorem: show that λ(·) is continuous, positive at some θ and negative 
and some other θ). Show however that if a law P has an interval of medians longer than 
2b, in other words its distribution function F (x) =  P ((−∞, x]) is equal to 1/2 on such an  
interval, then λ(θ) is not  0 at a unique point  θ0 but is zero on some interval (u, v) with  
u <  v. 

NOTES 

This section is based on the paper by Huber (1967), pp. 224-226. 
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