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3.6 Asymptotic normality of M-estimates. First, let’s note some of the conditions 
under which nonlinear functions of sample averages are asymptotically normal. Let f be 
a function from an open interval containing a point µ into R. Suppose the derivative 
f ′(µ) exists and is not 0. Let X1,X2, . . .  ,  be i.i.d. variables with mean µ and variance 
0 < σ2 := σ2(X1) < ∞. Let  Sn := X1 + · · ·  + Xn, and  Xn := Sn/n. Then  
|Xn − µ| = Op(n−1/2) by Chebyshev’s inequality, and 

f(Xn) =  f(µ) +  f ′(µ)(Xn − µ) +  o(|Xn − µ|), so 

n1/2(f(Xn) − f(µ)) = f ′(µ)((Sn − nµ)/n1/2) +  op(1). 

Thus the distribution of the left side converges to N(0, f ′(µ)2σ2) by the central limit 
theorem. This kind of reasoning is known as the “delta-method.” To extend the method 
to vector-valued random variables, let f be a real-valued function on an open set U ⊂ Rk . 
Then f is said to be Fréchet differentiable at a point t ∈ U if there is a vector v := f ′(t) ∈ 
R

k such that 
f(u) =  f(t) +  v · (u − t) +  o(|u − t|) 

as u → t. For  k = 1, this is equivalent to the usual derivative. For k >  1, the components 
of f ′(t) will be the partial derivatives ∂f(u)/∂ui|u=t, forming the gradient of f at t. Each  
partial derivative is a directional derivative in the direction of a coordinate axis. Existence 
of the Fréchet derivative means that not only these partial derivatives exist, but the graph 
of f has a tangent hyperplane at (t, f(t)) ∈ Rk+1, see  Problem 2.  

Using the central limit theorem in Rk , the delta-method extends straightforwardly to 
R

k -valued random variables having finite second moments. 
If f takes values in Rm then the definition of Fréchet derivative is formally the same, 

but with the vector v replaced by a linear transformation from Rk into Rm, given  by  an  
m × k matrix. The Fréchet differentiability of f is equivalent to that of each of its m 
component real-valued functions. 

Now, let’s consider an exponential family of order m in a minimal representation 
(2.5.3) with densities eθ·T (x)−j(θ), defined for θ ∈ Θ ⊂ R

m, the interior of the natural 
parameter space. Recall Theorem 3.3.17, on MLEs for exponential families, and its proof. 

1 nLet Tn := n T (Xi). The maximum likelihood estimator of θ, when it exists, is i=1 

(�j)−1(T n). Here �j has a continuous derivative which is an m×m matrix whose entries 
are second partial derivatives of j. The matrix is nonsingular and so has a nonsingular 
inverse, which is the derivative of (�j)−1 (e.g. Rudin, 1976, p. 223, (52)). Since T n 

is asymptotically normal by the multidimensional central limit theorem (RAP, Theorem 
9.5.6), it follows by the delta-method that the MLE is also. 

Next, asymptotic normality will be shown in quite general cases. Let Θ be an open 
subset of Rm, (X,A, P ) a probability space, and ψ a function from Θ × X into Rm. Let  
X1,X2, . . .  be i.i.d. with values in X and distribution P . It will be shown under further 
assumptions that for a sequence Tn = Tn(X1, . . .  ,Xn) of statistics with values in Θ, if 

n(3.6.1) n−1/2 ψ(Tn,Xi) → 0 in probability, i=1 

then the distribution of Tn will converge to some normal law. 
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Recall that the definition (3.5.1) of approximate M-estimators of ψ type had a fur-
ther factor of n−1/2 as compared to (3.6.1), although it also assumes a stronger form of 
convergence. So it seems a relatively mild condition to assume that the sequence {Tn} is 
consistent, as is shown under different conditions in Secs. 3.3 and 3.5. Also, asymptotic 
normality with mean 0 of n1/2(Tn − θ0) implies consistency in probability. At any rate, it 
will be an assumption here: 

(AN-1) For some θ0, Tn(X1, . . .  ,Xn) → θ0 in probability as n → ∞. 

In the next assumption, that each ψ(θ, ·) is measurable is the same as (B-1) in Sec. 
3.5: 

(AN-2) For each θ ∈ Θ, ψ(θ, ·) is measurable, and ψ(·, ·) is separable. 

The next condition is similar to (B-3) in Sec. 3.5: 

(AN-3) λ(θ) :=  Eψ(θ, x) is defined and finite for all θ, and  for  θ0 in (AN-1), λ(θ0) = 0.  

= 0  for  θ �The further condition in (B-3), that λ(θ) � = θ0, is not needed here because 
of (AN-1), and for θ near θ0, (AN-4)(i) below. 

The norm | · |  on Rm will be taken to be |θ| := max(|θ1|, . . .  , |θm|). Then if ‖ · ‖ is 
the usual Euclidean norm, we have |θ| ≤ ‖θ‖ ≤ m1/2|θ| for all θ, so (like any two norms 
on Rm) the two norms are equivalent within constant multiples. 

For the next condition, given any θ ∈ Θ, since Θ is open, for δ >  0 small enough, 
|φ − θ| < δ  implies φ ∈ Θ. For such a δ >  0 depending on θ, let  

u(θ, x, δ) := sup{|ψ(φ, x) − ψ(θ, x)| : |φ − θ| ≤ δ}. 

(This is called the modulus of continuity of ψ(·, x) at  θ.) The next assumption is: 

(AN-4) For some numbers a >  0, b  >  0 and  γ >  0, 
(i) for |θ − θ0| ≤ γ, we have  θ ∈ Θ and  |λ(θ)| ≥  a|θ − θ0|; 
(ii) max(Eu(θ, x, t), E[u(θ, x, t)2]) ≤ bt for any t ≥ 0 such that |θ − θ0| ≤ γ − t. 

The last assumption is 

(AN-5) E|ψ(θ0, x)|2 < ∞. 

In practice, since θ0 is unknown, we would need to have a function ψ(·, ·) such that 
E|ψ(θ, x)|2 < ∞ for all θ. Since  P is also unknown, this means either that we assume P 
belongs to a family of laws for which the given assumptions hold, or we choose a ψ such 
that they hold for all P . For (AN-5) this would mean that ψ(θ, ·) is a bounded function 
of x for each θ. 

On first reading, I advise skipping to Lemma 3.6.13 and its “heuristic proof,” then to 
the main Theorem 3.6.15 on asymptotic normality and its short proof. 

The detailed and rigorous proof (by Huber) is as follows. For any τ and θ let η(θ, x) :=  
ψ(θ, x) − λ(θ) and  

n
Zn(τ, θ) :=  | [η(τ,Xi ) − η(θ,Xi)]|/(n1/2 + n|λ(τ)|).i=1

Most of the work in proving asymptotic normality will be in the following: 
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3.6.2 Lemma. If assumptions (AN-2), (AN-3) and (AN-4) hold for some θ0, then  

sup{Zn(τ, θ0) :  |τ − θ0| ≤ γ} →  0 

in probability as n → ∞. 

Proof. By an affine change of coordinates, take θ0 = 0  and  γ = 1 (this may change the 
values of a, b). 

The cube |τ | ≤ 1 will be decomposed into smaller cubes on which Zn(τ, 0) will be 
bounded separately. Recall that 	x
 is the smallest integer ≥ x. Given ε >  0, let 

(3.6.3) M := 	max(2, (3b)/(aε))
. 
Let q := 1/M . Let  K be a positive integer and consider the cubes centered at the 
origin, Ck := {θ : |θ| ≤  (1 − q)k }, for  k = 0, 1, . . .  ,K.  For k ≥ 1, decompose 
the difference Ck−1 \ Ck into smaller cubes, as shown in Fig. 3.6A, with edges of length 
� := �k := (1 − q)k−1q. Let  d := �/2. Then the centers of the smaller cubes are points 
ξ whose coordinates are odd multiples of d, with  |ξ| = (1  − q)k−1(1 − q/2). (A reason for 
using the norm | · | is to make the latter norms |ξ| all equal, as they would not be for other 
norms such as the Euclidean norm.) 

For each k ≥ 1, Ck−1 \ Ck is decomposed into less than 2m(2M)m−1 of the smaller 
cubes, so the grand total number N of the smaller cubes satisfies N <  2mKmMm−1. Let  
them be numbered B1, . . .  , BN . K will be chosen depending on n, specifically K = K(n) 
is the unique integer such that 

≤ n−3/4(3.6.4) (1 − q)K < (1 − q)K−1 , 

or equivalently 

K(n) − 1 < (3/4) log(n)/| log(1 − q)| ≤  K(n), 

which implies 

(3.6.5) N = O(log n) as  n → ∞. 

Now,


Pr{sup{Zn(τ, 0) : τ ∈ C0} ≥ 2ε} ≤ 

(3.6.6) 

Pr(sup{Zn(τ, 0) : τ ∈ CK } ≥ 2ε) +  
�

j
N 
=1 Pr(sup{Zn(τ, 0) : τ ∈ Bj } ≥ 2ε). 

It will be shown that the right side of (3.6.6) goes to 0 as n → ∞, which will prove the 
Lemma. 

Consider any of the cubes Bj with center ξ and edges of length � = 2d = (1  − q)k−1q, 
for some k = 1, . . .  ,K. For any τ ∈ Bj , we have by (AN-4) |λ(τ)| ≥  a|τ | ≥  a(1 − q)k , 
and so 

(3.6.7) |λ(τ) − λ(ξ)| ≤  Eu(ξ, x, d) ≤ bd ≤ b(1 − q)k q. 

Next, 
n

Zn(τ, 0) ≤ Zn(τ, ξ) +  | � [η(ξ,Xi) − η(0,Xi)]/(n1/2 + n|λ(τ)|), soi=1
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Figure 3.6A: M = 2  
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Fig. 3.6 A. Decomposition of cubes: proof of Lemma 3.6.2
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(3.6.8) sup{Zn(τ, 0) : τ ∈ Bj } ≤  Un + Vn 

where 

Un := n 
i=1[u(ξ, Xi, d) +  Eu(ξ, x, d)]/(na(1 − q)k ), 

Vn := 
�n 

i=1[η(ξ, Xi ) − η(0,Xi)]/(na(1 − q)k ). 

Then 
nPr(Un ≥ ε) = Pr{ 

�
[u(ξ, Xi , d) − Eu(ξ, x, d)] ≥ εna(1 − q)k − 2nEu(ξ, x, d)}.i=1

By (3.6.7) and (3.6.3), 

εa(1 − q)k − 2Eu(ξ, x, d) ≥ εa(1 − q)k − 2bq(1 − q)k ≥ bq(1 − q)k , 

which by (AN-4)(ii) and Chebyshev’s inequality implies 

(3.6.9) Pr(Un ≥ ε) ≤ 1/[bqn(1 − q)k ]. 

For Vn, 

E[(η(ξ, ·) − η(0, ·))2] = var[η(ξ, ·) − η(0, ·)] = var[ψ(ξ, ·) − ψ(0, ·)] 

≤ E[u(0, ·, |ξ|)2] < b(1 − q)k−1 . 

Then by Chebyshev’s inequality again, since (3.6.3) implies b/(a2ε2) ≤ 1/(9bq2), we have 

(3.6.10)	 Pr(Vn ≥ ε) ≤ 1/[9nbq2(1 − q)k+1]. 

From (3.6.4), (3.6.8), (3.6.9) and (3.6.10) we get 

(3.6.11) Pr(sup{Zn(τ, 0) : τ ∈ Bj } ≥ 2ε) ≤ Jn−1/4 

where J := [bq(1 − q)]−1 + [9bq2(1 − q)2]−1 . Thus by (3.6.5), as n → ∞  

Pr(sup{Zn(τ, 0) : τ ∈ C0 \ CK } ≥ 2ε) ≤ NJn−1/4 = O(n−1/4 log n). 

Also, 
nsup{Zn(τ, 0) : τ ∈ CK } ≤  n−1/2 [u(0,Xi, δ) +  Eu(0, x, δ)]i=1

for δ := (1 − q)K ≤ n−3/4 by (3.6.4). So, 

Pr (sup{Zn(τ, 0) : τ ∈ CK } ≥ 2ε) ≤ 
nPr i=1[u(0,Xi, δ) − Eu(0, x, δ)] ≥ 2n1/2ε − 2nEu(0, x, δ) . 

Since by (AN-4)(ii) Eu(0, x, δ) ≤ bδ ≤ bn−3/4, there  is  an  n0 such that 
1/2ε2n1/2ε − 2nEu(0, x, δ) ≥ n for n ≥ n0. 

Then by Chebyshev’s inequality, since var(u(0, x, δ)) ≤ E[u(0, x, δ)2] ≤ bδ ≤ bn−3/4 , 

(3.6.12) Pr(sup{Zn(τ, 0) : τ ∈ C0} ≥ 2ε) ≤ O(n−3/4) +  O(n−1/4 log n), 

which gives Lemma 3.6.2. � 
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The next step toward asymptotic normality is: 

3.6.13 Lemma. Assume that (AN-1) through (AN-5) hold and Tn are estimators sat-
isfying (3.6.1). For the rigorous proof, instead of (AN-1), it suffices to assume that 
Pr{|Tn − θ0| ≤ γ} → 1 as  n → ∞. Then  

n 
n1/2 λ(Tn) +  1 ψ(θ0,Xi) → 0 in probability. n i=1 

Notes. As  n → ∞, the second term being multiplied by n1/2 converges to λ(θ0), which is 
0 by (AN-3). The second term is Op(n−1/2) but not op(n−1/2) in general, by the central 
limit theorem. Thus the Lemma implies that λ(Tn) is of the same order. See Problem 1. 

(AN-1) states that Tn → θ0 in probability, and so Pr{|Tn − θ0| ≤ γ} → 1. The proof √
will show that from (3.6.1), Tn → θ0 at an Op(1/ n) rate.  

Heuristic proof of Lemma 3.6.13. Here Lemma 3.6.2 won’t be applied. Assumptions 
(AN-4) about E[u(θ, x, t)2] for  θ = θ0 and t = γ and (AN-5) imply that for all θ in a 
neighborhood U of θ0, namely  |θ − θ0| < γ, we  have  E(|ψ(θ, ·)|2) < ∞. So, we can apply 
the multidimensional central limit theorem (RAP, Theorem 9.5.6) to get that for θ ∈ U , 
the distribution of 

1 
n 

√ ψ(θ,Xi) − ψ(θ0,Xi) − λ(θ) 
n 

i=1 

converges as n → ∞  to a normal distribution N(0, C) where the covariance matrix C = 
Cθ,θ0 depends on θ and θ0. (Recall that λ(θ0) = 0.)  As  θ → θ0, E(|ψ(θ, ·) −ψ(θ0, ·)|2) → 0 
by (AN-4)(ii), and so Var(ψj (θ, ·) − ψj (θ0, ·)) → 0 for  j = 1, . . .  ,m. It follows that the 
matrix Cθ,θ0 → 0 as  θ → θ0. 

Now, substituting θ = Tn and recalling that as n → ∞, Tn → θ0 in probabil-
nity by (AN-1), and n−1/2 ψ(Tn,Xi)	 → 0 in probability, we are left with Dn := �	 i=1 

n 
n−1/2 

i=1(−ψ(θ0,Xi) − λ(Tn )) having asymptotic distribution N(0, CTn,θ0), but since 
Tn → θ0, Dn → 0 in probability. With a minus sign, this gives the conclusion of Lemma 
3.6.13. 

Rigorous proof of Lemma 3.6.13. As in the proof of Lemma 3.6.2, assume that θ0 = 0  
and γ = 1.  Note  that  

n �n	 n
ψ(Tn ,Xi) =  [ψ(Tn,Xi) − ψ(0,Xi) − λ(Tn)] + [ψ(0,Xi) +  λ(Tn)].i=1 i=1	 i=1

So, with probability converging to 1, 

| n [ψ(0,Xi) +  λ(Tn)]|/(n1/2 + n|λ(Tn)|) ≤i=1

nsup{Zn(τ, 0) : |τ | ≤ 1} + n−1/2| ψ(Tn,Xi)|.i=1 

The terms on the right approach 0 in probability as n → ∞ by Lemma 3.6.2 and (3.6.1), 
so  the left side does  also.  

Given 0 < ε  <  1, let V 2 := 2E(|ψ(0, x)|2)/ε, which is finite by (AN-5), and V ≥ 0. 
Then by Chebyshev’s inequality, there is an n0 such that for n ≥ n0, the inequalities 

n 
n−1/2| ψ(0,Xi)| ≤  Vi=1 

(3.6.14)	 and 
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| n [ψ(0,Xi) +  λ(Tn)]| ≤ ε(n1/2 + n|λ(Tn)|)i=1

each hold except with probability ≤ ε/2, so both are true on an event with probability at 
least 1 − ε. The latter inequality implies 

n 
n1/2|λ(Tn )|(1 − ε) ≤ ε + n−1/2| ψ(0,Xi)|,i=1 

so when (3.6.14) holds, n1/2|λ(Tn )| ≤ (V + ε)/(1 − ε). So for n ≥ n0, with probability at 
least 1 − ε, we have  

|n 1/2λ(Tn ) +  n −1/2 
n � 

i=1 

ψ(0,Xi)| ≤ ε 

� 

1 +  
ε + V 
1 − ε 

� 

= ε · V + 1  
1 − ε 

. 

Letting ε ↓ 0, V  = O(ε−1/2), V ε  = O(ε1/2), and the lemma follows. � 

Since λ(·) takes the open set Θ ⊂ R
m into Rm, its  Fréchet derivative at θ0, if it exists, 

is a linear transformation A from Rm into itself, given by an m × m matrix. Note that 
if A exists and is non-singular, then (AN-4)(i) follows. Let B′ denote the transpose of a 
matrix B. 

3.6.15 Theorem. Assume (AN-1) through (AN-5), that Tn satisfy (3.6.1), and that λ has 
a non-singular Fréchet derivative A at θ0. Then  n1/2(Tn − θ0) is asymptotically normal 
with mean 0 and covariance matrix A−1C(A−1)′, where  C is the covariance matrix of 
ψ(θ0, x). 

Proof. Since λ(θ0) = 0,  we  have  |λ(θ) − A(θ − θ0)| = o(|θ − θ0|) as  |θ − θ0| → 0. 
By Lemma 3.6.13, the central limit theorem (RAP, Sec. 9.5), and Lemma 11.9.4 of 

RAP, as n → ∞, n1/2λ(Tn) has distribution converging to N(0, C) (a minus sign doesn’t 
change this distribution). Thus |A(Tn − θ0)| + o(|Tn − θ0|) =  Op(n−1/2). Since A is non-
singular, o(|Tn −θ0|) =  o(|A(Tn −θ0)|). By (AN-1), Tn → θ0 in probability. It follows then 
that |A(Tn − θ0)| = Op(n−1/2), and |Tn − θ0| = Op(n−1/2), so o(|Tn − θ0|) =  op(n−1/2),√
and A( n(Tn − θ0)) → N(0, C) in distribution, again using (RAP, Lemma 11.9.4). Thus 
by the continuous mapping theorem (RAP, Theorem 9.3.7) applied to A−1 , 

√ 
n(Tn − θ0) → N(0, C) ◦ (A−1)−1 = N(0, A−1C(A−1)′ ) 

(RAP, Proposition 9.5.12). � 

PROBLEMS 

1. Let ψ(θ, x) :=  x − θ. Suppose the observations X1,X2, . . .  are i.i.d. for a probability 
measure P such that ∫ xdP = θ0. Suppose that in (3.6.1) the estimators Tn are chosen 
so that the given expression is 0 rather than just converging to 0. Then evaluate Tn 

and λ(·) explicitly. Show that the expression which converges to 0 in probability in the 
conclusion of Lemma 3.6.13 is actually identically 0 in this case. 

2. Let (r, θ) be the usual polar coordinates on R2. Let  f(x, y) := sin(2θ) for  r >  0 and  
f(0, 0) := 0. Show that the partial derivatives ∂f/∂x and ∂f/∂y exist at all points 
and are both 0 at (0, 0), but f is not Fréchet differentiable or even continuous at (0, 0). 
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3. Let f (x) :=  x + x2 sin(1/x2) for  x �= 0  and  f (0) := 0. Show that f is differentiable 
at all x and f ′(0) = 1, but f ′ is unbounded in every neighborhood of 0, so f is not C1 . 
Also, f is not one-to-one in any neighborhood of 0. 

NOTES 

This section is based on Sec. 4 of Huber (1967). If the function λ(·) is  C1, and  
has a non-singular derivative at θ0, then  a  C1 local inverse function λ−1 exists from a 
neighborhood of 0 to a neighborhood of θ0, by the inverse function theorem, e.g. Rudin 
(1976, p. 223, (52)), or Hoffman (1975, Sec. 8.5, Theorem 7), and the delta-method applies 
to the inverse function. It turns out to be unnecessary to assume existence of the Fréchet 
derivative of λ except at θ0 in Theorem 3.6.15 but, since θ0 is unknown, in practice we would 
need the differentiability everywhere and in the cases actually encountered in statistics, 
it seems that λ(·) will then be C1. Non-C1 functions having derivatives everywhere exist 
even in one dimension (Problem 3) but seem to be rather pathological. 
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