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3.7 Efficiency of estimators. In this and the following two sections the distribution of 
the data is assumed to belong to a parametric family {Pθ , θ  ∈ Θ}, having densities f(θ, x). 

The information inequality or Fréchet-Cramér-Rao lower bound, when Θ is an open 
interval in R and g is a differentiable real-valued function on Θ, is 

varθ (Tn) ≥ g ′(θ)2/(nI1(θ)), 

where I1(θ) :=  Eθ ((∂f(θ, x)/∂θ)2), as was proved in Theorem 2.4.10 under some regularity 
conditions when Tn is an unbiased estimator of g(θ). But by Theorem 2.4.15, if log f(θ, x) 
is C1 in θ, the lower bound is attained for all θ only when the family of distributions is 
exponential of order 1 with T (x) equal to the given estimator Tn(x) where  x = (x1, . . .  , xn). 
When this is true for one function T (·), the only other functions for which it holds are 
aT (·)+b where a �= 0  and  b are constants. So the only functions having unbiased estimators 
attaining the information inequality lower bound for all θ are ag(θ)+  b where now a and b 
are any constants and g is the specific function d log K(θ)/dθ for which T is the unbiased 
estimator, by Corollary 2.5.9. Even for exponential families of order 1, unique unbiased, 
admissible estimators (for other functions) may be unsatisfactory, as in the example at the 
end of Sec. 2.5. 

If the information inequality provided best possible lower bounds for mean-square 
errors only for estimating functions ag(θ)+  b as just described, it would not be very useful. 
There is, however, an asymptotic lower bound, 

(3.7.1) lim inf Eθ ([n 1/2(Tn − g(θ))]2) ≥ g ′(θ)2/I(θ), 
n→∞ 

where I(θ) ≡ I1(θ), which is valid under rather general conditions, without unbiasedness, 
as will be shown here first for g(θ) ≡ θ, so  g′(θ) ≡ 1, in Theorem 3.7.3, then for more 
general g in Theorem 3.7.9. First, though, it will be seen that the bound may no longer 
hold for all θ: 

Example. Let  X1,X2, . . .  ,  be i.i.d. with a normal distribution N(µ, 1). Then the sample 
mean X = (X1 + · · ·+ Xn)/n is an unbiased estimator of µ which attains the information 
inequality lower bound for all µ. Let  Tn(X1, . . .  ,Xn) :=  X if |X| ≥ n−1/4 and Tn := 0 
if |X| < n−1/4. If  µ �= 0, then the mean-square error of Tn will be asymptotic to 1/n, in  
other words nEµ(Tn − µ)2 → 1 as  n → ∞, as  for  X. But  if  µ = 0, the probability that 
Tn = 0 converges to 1, and nE0([Tn − 0]2) → 0. In fact, for µ = 0,  P (|X | ≥  n−1/4) =√ 
P (|Z| ≥ n1/4) ≤ 2e− n/2 where Z is a N(0, 1) variable (RAP, Lemma 12.1.6), so Tn = 0  
except with very small probability. Or, one can take Tn = cX for |X| < n−1/4 where√
0 < |c| < 1. Then for µ = 0,  nTn is asymptotically N(0, c2) where  0  < c2 < 1. 

A sequence of estimators which asymptotically attains the information inequality lower 
bound at a given θ is called “efficient” at that θ. A sequence with a smaller asymptotic 
variance, like the sequence in the last example at µ = 0, is called “superefficient” at the 
given θ. 

More complicated examples would show that without increasing the asymptotic vari-
ance of Tn for any µ, it could be made superefficient at some values of µ in a finite or 
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countable set. It will be shown under some conditions below that as θ varies over an 
interval in R, (3.7.1) will hold for almost all θ for Lebesgue measure. In other words, su-
perefficiency can occur at most for θ in a set of Lebesgue measure 0. First, the assumptions 
will be listed. 

Let (X,B) be a measurable space (sample space). Suppose that the parameter space 
Θ is an open  interval in  R. Let  {Pθ , θ  ∈ Θ}, be a family of laws on (X,B), dominated by 
a σ-finite measure ν on (X,B), with as usual f(θ, x) :=  (dPθ /dν)(x). Assume that the 
densities can be chosen so that 

(AV-1) There is a set B ∈ B  such that for all θ, f(θ, x) > 0 for all x ∈ B and f(θ, x) = 0  
for all x /∈ B. 

So, {Pθ , θ  ∈ Θ} is an equivalent family as defined in Sec. 2.4. 

(AV-2) f(θ, x) is a  C2 function of θ, meaning that its first and second derivatives with 
respect to θ exist and are continuous at all θ in Θ, for all x. 

For the family of laws Pθ = U [θ, θ+1] on R, there exist (unbiased) estimators of θ with 
mean-square error of order 1/n2 (Sec. 2.4, Problem 3). Thus some regularity conditions 
(equivalence, differentiability in θ) cannot both just be removed. 

Let L(θ, x) :=  log  f(θ, x). Derivatives with respect to θ will be denoted by primes, 
so that L′(θ, x) :=  ∂L(θ, x)/∂θ, etc. Then by (AV-1) and (AV-2), L(θ, x) is a  C2 function 
of θ for any x ∈ B. The Fisher information I(θ) =  Eθ (L′(θ, x)2) as defined in Sec. 2.4. 
Note that if (AV-1) fails and the family is not equivalent, L(θ, x) can  be  −∞ on a set of 
x which has Pθ probability 0 but positive Pφ probability for some φ �= θ. 

(AV-3) For all θ ∈ Θ, the Fisher information I(θ) exists with  0  < I(θ) < ∞, and  
Eθ (L′(θ, x)) = 0. 

This last equation results if the equation ∫ f(θ, x)dν(x) = 1 can be differentiated under 
the integral sign, multiplying and dividing by f(θ, x), as noted in Sec. 2.4. 

(AV-4) Eθ (L′′(θ, x)) = −I(θ) for all θ. 

The latter equation follows if the differentiation under the integral sign just mentioned can 
be done also for the second derivative. 

(AV-5) For any θ0 ∈ Θ, there is a δ >  0 and  a  B-measurable function M(x) such that 
|L′′(θ, x)| ≤ M(x) for all x ∈ X and all θ with |θ − θ0| < δ, and  Eθ0M(x) < ∞. 

Let X1,X2, . . .  be a sequence of i.i.d. variables in X with distribution Pθ . For  n = 
1, 2, . . . , let  Xn be the set of all ordered n-tuples (x1, . . .  , xn) with  xi ∈ X for each i. Let  
Bn be the product σ-algebra in Xn, i.e. the smallest σ-algebra of subsets of Xn making each 
coordinate projection (x1, . . .  , xn) 
→ xi measurable for i = 1, . . .  , n. For any probability 
measure Q on (X,B), let Qn be the law on (Xn ,Bn) for which the coordinates are i.i.d. 
(Q). 

Let {Tn}n≥1 be a sequence of estimators (statistics), so that for each n, Tn is mea-
surable from Xn into Θ. It will be assumed that the Tn are consistent estimators of θ, at  
least in probability, and are asymptotically normal: 
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(AV-6) For each θ, there  is  a  v(θ) with 0  < v(θ) < ∞ such that as n → ∞, the distribution 
of n1/2(Tn − θ) under Pn converges to N(0, v(θ)).θ 

(AV-6) doesn’t allow the example near the beginning of this section of superefficient 
estimation at 0 with v(0) = 0. To deal with this we could add to the estimator Tn an 
independent variable with distribution N(0, δ/n) for  δ >  0 and  then  let  δ decrease to 0. 

The asymptotic normality was proved in Section 3.6 under some conditions. 
Let Prθ denote probabilities for the distribution where X1,X2, . . .  are i.i.d. with dis-

tribution Pθ . 
If (AV-6) holds, then 

v(θ) ≤ lim inf Eθ ([n 1/2(Tn − θ)]2), 
n→∞ 

as follows. For each K <  ∞, the function min(x2,K) is bounded and continuous on R, so  

Eθ min(K,n(Tn − θ)2) → min(K,x 2)dN(0, v(θ))(x). 

Thus for each K <  ∞ 

lim inf Eθ (n(Tn − θ)2) ≥ min(K,x 2)dN(0, v(θ))(x). 
n→∞ 

Then let K → ∞ and apply monotone convergence. 
Thus, assuming asymptotic normality (AV-6), if 

(3.7.2) v(θ) ≥ 1/I(θ) 

holds, then so does (3.7.1) for g(θ) ≡ θ. 
The next theorem will give an almost everywhere lower bound on efficiency of esti-

mators of a 1-dimensional parameter. In the proof there will be a relationship between 
efficiency of estimators and tests (Lemma 3.7.4). Suppose, based on a sample of size n i.i.d. 
Pθ ,  we want to test a  hypothesis  θ = θ0 against some alternatives φn depending on n, with  
a size that converges to some probability α other than 0 or 1. Let φn := θ0 + an for some 
numbers an ↓ 0. To have a specific example in mind, suppose that Pθ = N(θ, 1). Then if √ √ 
an = o(1/ n), the power of the tests will converge to α. If  1/ n = o(an), the power of the 
tests will converge to 1. An interesting case is where an is of the same order of magnitude √ √
as 1/ n, specifically, an = c/ n for some constant c >  0, giving a sequence of so-called 
“Pitman alternatives.” The asymptotic power of a sequence of tests of θ0 against φn gives 
a measure of the efficiency of the sequence of tests, called Pitman efficiency. We will not 
be dealing explicitly any further with Pitman efficiency, but Lemma 3.7.4 and its proof 
bring tests and the Neyman-Pearson lemma into a proof about efficiency of estimators. 
Under our assumptions, Lemma 3.7.6 will show that for Pitman alternatives, the power 
will converge to a limit larger than α. 

3.7.3 Theorem. Under assumptions (AV-1) through (AV-6), (3.7.2) holds for almost all 
θ in the open interval Θ for Lebesgue measure. 
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Proof. First, the following will be helpful: 

3.7.4 Lemma. Under the assumptions of Theorem 3.7.3, if θ0 ∈ Θ and  for  θ(n) :=  
θ0 + n−1/2 ,


lim inf Prθ(n){Tn < θ(n)} ≤  1/2,

n→∞ 

then (3.7.2) holds for θ = θ0. √
Remark. For  a  fixed  θ, Prθ ( n(Tn − θ) < 0) → 1/2 as  n → ∞ by (AV-6). 

Proof. Consider a likelihood ratio (Neyman-Pearson) test of θ0 against the simple alter-
native θ(n) based on X(n) := (X1, . . .  ,Xn). For any θ ∈ Θ, n and X(n), let  

n
Ln(θ,X(n)) :=  L(θ,Xi), I  := I(θ0), andi=1 

Kn := Kn(θ0,X
(n)) :=  [Ln(θ(n),X(n)) − Ln(θ0,X

(n)) +  I/2]/I1/2 . 

Then Kn is a strictly increasing function (an affine function of the logarithm) of the 

likelihood ratio R(n) of Pn to Pθ
n 
0 
. In proving Lemma 3.7.4 another fact will be θ(n),θ0 θ(n) 

needed: 

3.7.5 Lemma. As  n → ∞, the distribution of Kn under Pθ
n 
0 

converges to N(0, 1). 

Proof. By (AV-2) and Taylor’s theorem with remainder, 

−1/2L′Ln(θ(n),X(n)) =  Ln(θ0,X
(n)) +  n n(θ0,X

(n)) + (2n)−1L′′ 
n(φn,X(n)) 

where θ0 < φn < θ(n) and  φn depends on X(n), say  φn := φn(X(n)). Let ξn := 
n−1|L′′ 

n(φn,X(n)) − L′′ 
n(θ0,X

(n))|. 
Claim. ξn → 0 a.s.  for  P∞ 

θ0 
as n → ∞. 

Proof of Claim. For any δ >  0 and  x ∈ Xn, let  

A(x, δ) := sup{|L′′(θ, x) − L′′(θ0, x)| : θ ∈ Θ, |θ − θ0| < δ}. 
Let m(δ) :=  Eθ0A(·, δ). (AV-5) implies that m(δ) < ∞ for δ small enough. (AV-1) 
and (AV-2) imply that L′′ is continuous in θ for all x (in B), and (AV-5) gives dominated 
convergence, so m(δ) ↓ 0 as  δ ↓ 0. Given ε >  0, take δ >  0 such that m(δ) < ε. Then  for  
each n > δ−2 and all X(n), we have  

1 
n1 

n 
−1/2)ξn ≤ A(Xi, n  ≤ A(Xi , δ) 

n n 
i=1 i=1 

since |φn − θ0| < n−1/2 . So by the strong law of large numbers, lim supn→∞ ξn ≤ ε a.s. 
Letting ε ↓ 0 finishes the proof of the Claim. � 

−1L′′From (AV-4) and the strong law of large numbers, it follows that n n(θ0,X
(n)) → 

−I a.s. as n → ∞. Then from the definition of Kn and the Taylor expansion, 

� 1 1 � 1 � �Ln(θ(n),X(n)) − Ln(θ0,X
(n)) − √ L′ 

n(θ0,X
(n)) +  In(θ0,X

(n)) +  
I �� ≤ ξn + � L′′ � n 2 � 2 n 
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which converges to 0 a.s. Thus from the definition of Kn, 

1 
� 

1 � 1 � 
Kn = I−1/2 √ L′ 

n(θ0) +  In(θ0,X
(n)) +  O ξn + � L′′ � 

n 2 n 

where the O term goes to 0 a.s., so a.s. 

Kn − (nI)−1/2L′ 
n(θ0,X

(n)) → 0. 

Lemma 3.7.5 then follows from (AV-3), the central limit theorem (RAP, Sec. 9.5), and 
the fact that if Un, Vn are random variables such that |Un − Vn| → 0 in probability, while 
the laws of Vn converge to some limit law Q, then  Un have the same limiting distribution 
(RAP, Lemma 11.9.4). � 

Continuing with the proof of Lemma 3.7.4, let Φ be the standard normal distribution 
function. Let t be a constant and for each n let Cn := Cn,t := {X(n) : Kn ≥ t}. The  
next step is: 

3.7.6 Lemma. For any t ∈ R, Prθ0(Cn,t ) → 1 − Φ(t) and  Prθ(n)(Cn,t ) → 1 − Φ(t − I1/2) 
as n → ∞. 

Proof. The first statement is clear from Lemma 3.7.5. For the second, let Hn be the 
distribution function of Kn under Prθ0 . Then  

1 − Prθ(n)(Cn,t ) = Prθ(n)(Kn < t) =  exp(Ln(θ(n), x))dνn (x)
Kn<t 

= exp[Ln(θ(n), x) − Ln(θ0, x)]dPθ
n 
0
(x)

Kn<t � � t = e−I/2 exp(I1/2Kn)dP n = e−I/2 
−∞ exp(I1/2z)dHn(z).

Kn<t θ0 

Let o(1) denote (as always) any term that goes to 0 as n → ∞. It follows from Lemma 3.7.5 
and the Helly-Bray theorem (RAP, Theorem 11.1.2), since z 
→ exp(I1/2z) is bounded and 
continuous on (−∞, t] and Φ is continuous, that 

� t � t 

exp(I1/2 z)dHn(z) → exp(I1/2 z)dΦ(z). 
−∞ −∞ 

Next, we have 

� √ � � t 2 √ 1 
� t (z − I)2 

e −I/2 √ 
1
2π −∞ 

exp − 
z

2
+ Iz  

� 

dz = √ exp − dz 
2π −∞ 2 

√ 

1 
� t− I 2x

= √ exp − dx = Φ(t − I1/2). 
2π −∞ 2 

Lemma 3.7.6 now follows. � 
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Now continuing with the proof of Lemma 3.7.4, for each n let 

Dn := {X(n) : Tn(X(n)) ≥ θ(n)}. 

Take any fixed constant t > I1/2 and define Cn := Cn,t as before. Then by Lemma 3.7.6, 
Prθ(n)(Cn) converges to a limit less than 1/2, and lim supn→∞ Prθ(n)(Dn) ≥ 1/2 by the  
hypothesis of Lemma 3.7.4. So there is a sequence of positive integers, say m1 < m2 <  . . . , 
such that 

Prθ(n)(Dn) > Prθ(n)(Cn) for  n = m1,m2, . . .  .  

For each n, consider  Cn and Dn as critical regions for testing the hypothesis θ0 against 
the alternative θ(n). Since by the Neyman-Pearson Lemma (Theorem 1.1.3), Cn is an 
admissible critical region, by the statement just before Lemma 3.7.5, but Dn has larger 
power, it must also have larger size: 

Prθ0(Dn) > Prθ0(Cn) for  n = m1,m2, . . .  .  

By (AV-6) and the definitions of θ(n) and  Dn, recall that by Lemma 3.7.6, Prθ0(Cn ) → 
1 − Φ(t). Let v := v(θ0). Then 

√ 
Prθ0(Dn) =  Pθ

n 
0
(Tn ≥ θ(n) =  θ0 + n −1/2) =  Pθ

n 
0
( n(Tn − θ0) ≥ 1), 

which by (AV-6) converges as n → ∞ to 

√ −1/2)N(0, v(θ0))([1,+∞)) = N(0, 1)([1/ v,+∞)) = 1 − Φ(v ≥ 1 − Φ(t) 

(via n = mj ), so v−1/2 ≤ t. Letting t ↓ I1/2, it follows that (3.7.2) holds for θ = θ0, 
proving Lemma 3.7.4. � 

→ Prθ (Tn < θ) is a measurable function of θ ∈ Θ, or that (θ, x) 


Now continuing with the proof of Theorem 3.7.3, for any real θ let fn(θ) :=  |Prθ (Tn < 
θ)− 1 | if θ ∈ Θ, or 0 otherwise. To see that this is a measurable function of θ, it is enough to 
show that θ 
 → Prθ (Tn < x) 
is jointly measurable. In x, the function is nondecreasing and left-continuous. For each x 
and each positive integer m let j(x,m) be the largest integer with j(x,m) ≤ 2mx. Then  
j(x,m)/2m ↑ x and Prθ (Tn < j(x,m)/2m ) ↑ Prθ (Tn < x) for all x and θ. Each  j(·,m) is  
clearly a measurable function of x. So it will be enough to show that θ 
→ Prθ (Tn < y) is  
measurable for each fixed y. This is a special case of the property that the family of laws 
Prθ is a measurable family as defined in Sec. 1.2. To see that it is in this case, we have 
that f(θ, x) is continuous in θ by (AV-2). Thus by Fatou’s Lemma, for any measurable set 
A ⊂ Xn, and any convergent sequence θk → θ in Θ, 

Pθ
n(A) :=  Πj

n 
=1f(θ,Xj )dνn(X(n)) ≤ lim inf Πj

n 
=1f(θk ,Xj )dνn(X(n)). 

A k→∞ A 

So θ 
→ Pθ
n(A) is a lower semicontinuous function: {θ : Pθ

n(A) ≤ c} is closed for any real 
c.  This implies that  θ 
→ Pθ

n(A) is Borel measurable as desired. 
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It follows from (AV-6) that for each θ, Prθ (Tn < θ) → 1/2 as  n → ∞. So,  0  ≤ 
fn(θ) ≤ 1/2 and  fn(θ) → 0 as  n → ∞ for all θ. Let  gn(θ) :=  fn(θ + n−1/2) for any 
θ ∈ Θ. Then 0 ≤ gn ≤ 1/2 also. We next need another lemma: 

3.7.7 Lemma. There  is  a  set  N of Lebesgue measure 0 and a sequence n1 < n2 <  . . .  
such that for any θ ∈ Θ with  θ /∈ N , limr→∞ g (θ) =  0.  nr 

∞ ∞Proof. ∫−∞ gn(θ)dΦ(θ) =  ∫−∞ fn(θ + n−1/2)dΦ(θ) 

� ∞ 1 η 
� 

= fn(η) exp  − + √ dΦ(η) → 0
2n n−∞ 

as n → ∞ by dominated convergence since exp(n−1/2η) ≤ eη + 1  for  all  η. Convergence in 
L1 implies convergence in probability, which implies that there is a subsequence g → 0nr 

almost surely for N(0, 1) (RAP, Theorem 9.2.1), and so almost everywhere for Lebesgue 
measure. � 

′′(·→ I(θ) is continuous since L , x) is continuous by (AV-1) and (AV-
2), we can apply (AV-4), and (AV-5) provides domination for the dominated convergence 
theorem. Thus I(·) is Borel measurable. To show that (3.7.2) holds for Lebesgue almost 
all θ it may be good to know that (3.7.2) holds for θ in a measurable set, which will follow 
from the next lemma. This lemma will also be applied in the multidimensional case. (AV-
6) implies that lim infn→∞ nE((Tn − θ)2) ≥ v(θ), but the lim inf could be larger than 
v(θ), so a different approach to it is needed. 

For any distribution function F and 0 < p <  1, the p quantile of F is defined by 
F←(p) := inf{x : F (x) ≥ p}. Then  F← is a non-decreasing, left-continuous function of 

The function θ 


p. 

3.7.8 Lemma. Under the assumptions (AV-2) and (AV-6), v(θ) in (AV-6) is a measurable 
function of θ. 

Proof. Let Fn,θ (t) := Prθ (Tn ≤ t) for  −∞ < t  <  ∞. In the proof of Theorem 
3.7.3, before Lemma 3.7.7, it is shown from (AV-2) that (θ, u) 
→ Prθ (Tn < u) is jointly  
measurable. Taking u = t + 1 ↓ t, it follows that (θ, t) 
→ Fn,θ (t) is jointly measurable. k 
Restricting this function to t rational, we have for 0 < p < 1 that  

→ F←θ 
 n,θ (p) = inf{q ∈ Q : Fn,θ (q) ≥ p} 

is measurable. Then (AV-6) implies that n(F← 
n,θ (1/2))2 → Φ←(3/4)2v(θ) as  n,θ (3/4) − F← 

n → ∞ where Φ is the standard normal distribution function. (Note that Φ←(1/2) = 0. 
.Here Φ←(3/4)2 = 0.455.) The Lemma follows. � 

Lemma 3.7.7 implies that lim inf n→∞ gn(θ) = 0 for almost all θ. By the definitions, 
this implies that the hypothesis, and so the conclusion, of Lemma 3.7.4 for θ in place of 
θ0 holds for almost all θ, which finishes the proof of Theorem 3.7.3. � 

Next, Theorem 3.7.3 will be extended to estimators of functions g(θ), by the delta-
method. The factor g′(θ)2 is familiar from information inequalities (Section 2.4). Note 
that (AV-1) through (AV-5) don’t mention any estimators Tn. 
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3.7.9 Theorem. Assume (AV-1) through (AV-5). Let g be a C1 function: Θ → R. 
Suppose that for each θ ∈ Θ, there is a w(θ) ≥ 0 such that for each θ with g′(θ) �= 0,  √
0 < w(θ) < ∞ and the distribution of n(Tn − g(θ)) under Pn converges to N(0, w(θ)).θ 
Then for Lebesgue almost all θ ∈ Θ, w(θ) ≥ g′(θ)2/I(θ). 

Proof. For all θ ∈ Θ such that g′(θ) = 0, the inequality is trivial. Since g is C1, the  set  
where g �′ = 0 is open and thus a countable disjoint union of open intervals. Thus replacing 
Θ by a smaller interval as needed, we can assume that on the interval Θ, g′(θ) �= 0,  and  
specifically g′(θ) > 0. Then g is one-to-one and has a C1 inverse g−1. For  a  given  θ ∈ Θ, 
we have 

g −1(g(θ) +  φ) =  θ + (g −1)′ (g(θ))φ + o(|φ|) 
as φ → 0. We have Tn → g(θ) in probability for Prθ as n → ∞. Also,  (g−1)′(g(θ)) ≡ 
1/g′(θ). Thus as n → ∞, 

√ √ 
n(g −1(Tn) − θ) =  n(Tn − g(θ))/g′(θ) +  op(1), 

√
so the distribution of n(g−1(Tn ) − θ) converges  to  N(0, w(θ)/g′(θ)2), where one can 
use e.g. RAP, Lemma 11.9.4. Thus (AV-6) holds for the estimators g−1(Tn) of  θ and 
v(θ) :=  w(θ)/g′(θ)2 . Then by Theorem 3.7.3, w(θ)/g′(θ)2 ≥ 1/I(θ) for Lebesgue almost 
all θ ∈ Θ, which proves the theorem. � 

If A is a k × m matrix, then A′ denotes its transpose, with (A′)ij := Aji for 
i = 1, . . .  ,m, j = 1, . . .  , k. In particular, if x is a row vector (x1, . . .  , xm) then  x is the 
corresponding column vector, and vice versa. In fact, elements of Rm will usually be taken 
as column vectors y, so that  y is the corresponding row vector. Matrix multiplication is 

mwritten by juxtaposition. Thus for x, y ∈ Rm , x y = 
�

j=1 xj yj is the usual dot product 
m 

x · y. If  x, y ∈ Rm and C is an m × m matrix, then x′Cy is the number i,j=1 Cij xiyj . 
The Fisher information for a single parameter extends to the Fisher information matrix 

for several parameters, defined as follows. Let Θ be an open set in Rm. For  θ := 
(θ1, . . .  , θm), let 

∂L(θ, x) ∂L(θ, x) 
� 

(3.7.10) I(θ)ij := Eθ 
∂θi ∂θj 

if the partial derivatives exist and have finite variances. In passing, let’s note here that 

m 

ds2 := I(θ)ij dθidθj 

i,j=1 

defines a Riemannian metric on the parameter space Θ which doesn’t depend on the choice 
of parametrization. As in the development between (2.4.2) and (2.4.3), alternate forms of 
Iij are 

I(θ)ij = Eθ 
∂Rφ,θ ∂Rφ,θ � ∂f(θ, x) ∂f(θ, x) 1 � = dν(x). 
∂φi ∂φj φ=θ ∂θi ∂θj f(θ, x) 
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Bahadur (1964, p. 1550) pointed out that Theorem 3.7.3 extends to multidimensional 
parameter spaces. Such an extension might be considered non-trivial in view of the Stein 
phenomenon and James-Stein estimators (Section 2.7). But it turns out that the Stein 
phenomenon doesn’t affect the asymptotic efficiency as n → ∞. First, multidimensional 
forms of the assumptions (AV-1) through (AV-6) will be given. 

(AC-1) Let Θ be an open set in a Euclidean space Rm and let (X, B) be a sample space. 
Let {Pθ , θ  ∈ Θ} be an equivalent family of laws on (X, B), and let ν be an equivalent law, 
e.g. ν = Pφ for some fixed φ, with  f(θ, x) := (dPθ /dν)(x), and f(θ, x) > 0 for all θ and 
x. 

(AC-2) For all x, f(θ, x) is  C2 with respect to θ, so that the first and second partial 
derivatives of f with respect to θ exist and are continuous at all θ ∈ Θ for all x. 

(AC-3) Let L(θ, x) :=  log  f(θ, x). For each θ ∈ Θ, the Fisher information matrix I(θ) as  
defined by (3.7.10) exists and is strictly positive definite. Also, Eθ (�θ L(θ, x)) = 0 for the 
gradient of L. 

(AC-4) {Eθ ∂
2L(θ, x)/∂θi∂θj }m = −I(θ) for all θ ∈ Θ.i,j=1 

(AC-5) (AV-5) holds for each of the second partial derivatives ∂2L(θ, x)/∂θi∂θj in place 
of L′′ . 

(AC-6) Tn are estimators of θ ∈ Θ such that for each θ, the distribution of n1/2(Tn − θ) 
under Prθ converges as n → ∞ to some multivariate normal law N(0, v(θ)) where v(θ) is  
a nonnegative definite symmetric matrix. 

3.7.11 Theorem. Assume (AC-1) through (AC-6). Then for Lebesgue almost all θ ∈ Θ, 
v(θ) − I−1(θ) is nonnegative definite. Thus, v(θ) is positive definite. 

Proof. We first prove a lemma. 

3.7.12 Lemma. Let  C be a symmetric, positive definite real m × m matrix and 0 �= η ∈ 
Rm. Then  

min{φ′Cφ : φ ∈ Rm, η′φ = 1} = 1/(η′C−1η) 

and is attained for φ = C−1η/(η′C−1η). 

Proof. Since C is positive definite, φ′Cφ → +∞ as |φ| → +∞. Thus by the Lagrange 
multiplier method, Appendix F, Theorem F.1 and Proposition F.2, φ 
→ φ′Cφ attains its 
minimum on the hyperplane {φ : η′φ = 1} at some φ, and for each such φ, there  is  a  
λ ∈ R such that �φ,λ[φ′Cφ + λ(η′ φ − 1)] = 0. Thus 2Cφ + λη = 0,  so  φ = λC−1η/2, 
1 =  λη′C−1η/2, λ = 2/(η′C−1η), and φ = C−1η/(η′C−1η) as stated, so this φ gives the 
unique minimum. The value of the minimum is 

φ′Cφ = (C−1η)′η/(η′ C−1η)2 = η′C−1η/(η′C−1η)2 = 1/(η′C−1η), 

proving the Lemma. � 

Now continuing with the proof of Theorem 3.7.11, let’s first see what we can infer 
from Theorem 3.7.3 about families with a 1-dimensional parameter. Let ζ ∈ Rm and 
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� � � 

0 �= φ ∈ Rm. Since  Θ  is  open  in  Rm, the  real  t such that θ := ζ + tφ ∈ Θ form  
an open set in R, which is a countable union of open intervals. Consider the family 
with 1-dimensional parameter t for t in such an interval, Qt := Qζ,φ;t with densities 
dQt(x)/dv = fζ,φ(t, x) :=  f (ζ + tφ, x) for  ζ + tφ ∈ Θ. Let η ∈ Rm satisfy η′φ = 1.  Then  √ √ 
η′(ζ + tφ) ≡ η′ζ + t. Under Prθ , η′ n[Tn − (ζ + tφ)] = n[η′(Tn − ζ) − t] has distribution 
converging as n → ∞ to N (0, η′v(ζ + tφ)η). Let Kζ,φ(t) be the Fisher information of 
the family Qt, a real-valued function of t. Taking the gradient �θ f (θ, x), then letting 
θ = ζ + tφ, we get  

(3.7.13) Kζ,φ(t) =  φ′I(θ)φ 

because 
Kζ,φ(t) =  Eζ+tφ[(∂ log f (ζ + tφ, x)/∂t)2] 

φ′�θ f (ζ + tφ, x) 
�2 

= φ′I(ζ + tφ)φ.= Eζ+tφ 
f (ζ + tφ, x) 

By Theorem 3.7.3 applied to the family Qt and to η′(Tn − ζ) as a sequence of estimators 
of t, we get  for  θ := ζ + tφ 

(3.7.14) η′ v(θ)η ≥ 1/[φ′I(θ)φ] 

for Lebesgue almost all t such that θ = ζ + tφ ∈ Θ. 
Now, supposing heuristically for the moment that (3.7.14) holds for all φ such that 

η′φ = 1, or at least for a countable dense set of such φ, we can take the supremum of the 
right side of (3.7.14) by taking the infimum of the denominator, which by Lemma 3.7.12 
gives 

(3.7.15) η′ v(θ)η ≥ sup{1/[φ′I(θ)φ] :  η′φ = 1} = η′I(θ)−1η. 

This is the conclusion of Theorem 3.7.11 if we can prove it for λm-almost all θ. 
Returning to the rigorous proof, let D1 be a countable dense set in the unit sphere 

Sm−1 := {y ∈ Rm : |y| = 1}. For  each  η ∈ D1, let  Eη be a countable dense set in the 
hyperplane {φ ∈ Rm : η′φ = 1}, the same relation between η and φ as in (3.7.14) above. 
For each η ∈ D1, φ ∈ Eη and ζ ∈ φ⊥ := {ζ ∈ Rm : ζ ′φ = 0} such that θ = ζ + tφ ∈ Θ 
for some real t, we get a one-parameter family Qt as defined above. 

Now θ 
→ I(θ) is continuous from Θ into Rm 2 since f is C2 in θ by (AC-2) and f >  0 
by (AC-1), so log f is C2 in θ.  We use  the form  of  I(θ) given by (AC-4), and we have local 
domination by (AC-5), so the dominated convergence theorem applies to give continuity 
of I(·). 

Applying Lemma 3.7.8 to η′v(θ)η for suitable unit vectors η, namely the basis vectors √ 
m = j, which we can assume are all in D1, we  see  that  ej := {δij }i=1 and (ei + ej )/ 2, i �

the matrix elements of v(θ) and thus v(θ) itself are measurable functions of θ. Thus  the  
set of all θ ∈ Θ for which (3.7.14) holds for fixed η and φ is a measurable set. For φ fixed 
and ζ varying in φ⊥ , t ∈ R, by the Tonelli-Fubini theorem, we get that (3.7.14) holds for 
Lebesgue almost all θ ∈ Θ for given η and φ. 
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Taking a countable union of sets of Lebesgue measure 0, we get that for any η �= 0,  
for Lebesgue almost all θ ∈ Θ, we get (3.7.15) for φ ∈ Eη , which suffices since Eη is dense 
in {φ : φ′η = 1}, namely  

η′ v(θ)η ≥ sup{1/[φ′I(θ)φ] :  φ ∈ Eη } = η′I(θ)−1η 

by Lemma 3.7.12. Taking another countable union over η ∈ D1, we  get  that  v(θ) − I(θ)−1 

is nonnegative definite for Lebesgue almost all θ ∈ Θ. When this occurs, since I(θ)−1 is 
strictly positive definite, so is v(θ), proving the Theorem. � 

NOTES 

The idea that n times the variances of consistent and asymptotically normal estima-
tors Tn should be asymptotically at least 1/I(θ) goes back to Fisher. J. L. Hodges found 
the example as given after (3.7.1) where 1/I(θ) is asymptotically attained for all θ �= 0 and  
the variance is smaller (asymptotically vanishing) for θ = 0, a phenomenon called “superef-
ficiency.” The example was published in LeCam (1953) along with the first statement and 
proof that n · var(Tn ) is asymptotically bounded below by 1/I(θ) for Lebesgue almost all θ. 
Bahadur (1964) stated and proved the version of that fact given in this section, Theorem 
3.7.3. Lehmann (1983, Theorem 6.1.1) gave a statement, but not proof, of Bahadur’s theo-
rem. Theorem 3.7.3 benefited from both Bahadur’s and Lehmann’s expositions. Lehmann 
points out the step from Theorem 3.7.3 to Theorem 3.7.9 by the delta-method. For another 
proof of the multidimensional Theorem 3.7.11, see van der Vaart (1998), Theorem 8.9. 
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