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3.8 Efficiency of maximum likelihood estimators. Let K >> M for m x m matrices
K, M mean that K — M is nonnegative definite. Let T,, be a sequence of estimators such
that the distribution of /n(T,, — #) under Pry is asymptotically N(0,v(#)). By Theorem
3.7.11, under its assumptions, v(f) >> I(f)~! for Lebesgue almost all §. Thus, the
sequence {7}, } will be called “efficient” if for all 8, under Pry, \/n(T,, —0) is asymptotically
N(0,v(0)) with I(6)~! >> v(#). In practice, efficient estimators will have v(8) = I(0)~?! for
all 8. The definition allows for superefficiency for some set of § which, under the conditions
of Sec. 3.7, will have Lebesgue measure 0. The efficiency of maximum likelihood estimators
with v(6) = I(6)~! will be proved under the following assumptions.

(EML-1) {Py, 6 € O} is an equivalent family of laws on a sample space (X, B) having
densities f(6,-) > 0 with respect to a o-finite measure p, where © is an open subset of a
Euclidean space R™. The observations X1, Xs,..., are i.i.d. (Py,) for some 60, € ©.

Let L(0,x) = log f(0,x) and ¢¥(0,x) = VoL(0,x) where Vy denotes gradient with
respect to 6.

(EML-2) For each x € X, f(-,x) is C! with respect to §, and the Fisher information matrix
I(-) exists on © and is continuous and non-singular at 6.

If E9(VoL(0,2) = 0, which will be proved in Theorem 3.8.1 to follow from the given
assumptions, then I(0) is the covariance matrix C of (6, x).

(EML-3) {T},} is a sequence of maximum likelihood estimators and is consistent, in other
words T,, — 6 in Pry-probability as n — oo for all 6.

Conditions for consistency of M-estimators were given in Sections 3.3 and 3.5.
Conditions (AN-4) and (AN-5)(ii) in Section 3.6 will be assumed, locally uniformly in
0o. Specifically, recall that for 4 > 0 small enough, depending on 6,
w(0,2,0) = sup{[Y(n,z) —P(0,2)]: [n—0] <5}

(EML-4) (i) For each 0, ¢ € ©, M\4(0) := Eyp(0, ) exists in R™. Let A(:) = Xg, (-).
(ii) For some numbers b > 0 and v > 0, and some neighborhood U of 6y, for all
$,0 € U, |n— ¢| <~ implies n € O, and max(Fyu(¢, z,0), Eg[u(p,z,8)?]) < bé for
any ¢ such that 0 <46 < ~/2.

(EML-5) For some neighborhood V' of 6y, supyey Eg|t(6, z)|? < oo.
As in Theorem 3.6.15, let A be the Fréchet derivative of \(-) at 6 if it exists.

3.8.1 Theorem. Assume (EML-1) through (EML-5). Then A(6y) = 0 and A exists with
A = —1I(6p). Also, the distribution of \/n(T,, — 6y) converges to N(0,1(6y)~ ) as n — oo.

Proof. Take b,y > 0 such that (EML-4)(ii) holds and such that |¢ — 0y| < ~ implies
¢ € UNYV for V in (EML-5). For 6 # 6y with |# — 6y] < v/2 and 0 < ¢t < 1, let
0y := 0o+ t(6 —0p). Then for each x, by (EML-2),

L(0,2) — L(fo,2) — /0 (O, )t - (6 — O).
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By Theorem 3.3.15 (about Kullback-Leibler divergence),

0> / (L(6,2) — L(8o, 2)]f (o, x)du(z) =

1 1
// W0, 2)dE (0, 2)dp(z) - (0 — By) = / MOt - (6 — 6o)
0 0
where the interchange of integrals is justified since by (EML-4)(ii) for ¢ = g, [(6;, z)] <

|10, )| +u(fo, z,7/2), an integrable function for Py,. Since A(-) is continuous on U, also
by (EML-4)(ii),

1
/ A(O4)dt — N(Op) as w | 0,
0

and 0 > [3 M0p)dt - (B, — 00)/u = [3 M(0p)dt - (8 — 6p). So M) - (0 — 6p) < 0 for any
6 in a neighborhood of 6y, which implies A(6p) = 0. Also, by the same argument applied
to ¢ such that |¢ — 6y| < /2 in place of Oy, [Y(¢,x)f(¢,z)du(x) = 0 for all ¢ € U. For
(column) vectors n,( € R™, ¢ =n-¢ € R and ¢’ = n®( is the m xm matrix {n;¢; }"_; .
Next, for [0 — 0g| < v/2,

M) — ABo) = A(0) = / (0, 2) 1 (60, 2)dp(z)
- / P60, 2)[f(8,2) — (B0, ) du(z)
1
- [ [ [ w0001 0 - 9o>] dua)

/zpex U (01, 2) £ (6, )dt} dp(z)(0 — o).

/¢ 0,z [/ (0, 2)f (0, )dt] dp(z)

1 1
= // Y(Or, ) (0r, 2)' f (O, x)dt du(x) +7(0) = / I(6;)dt + r(0)
0 0

where, interchanging integrals by the Tonelli-Fubini theorem,

Now,

O < [ [ ulrn.16 - 8ol O )dn(o)de < 00 6]

by the Cauchy-Bunyakovsky-Schwarz inequality applied to the two functions ¢;(0,x) =
(04, 7, 10—60]) £ (61, %)/ using (EML-4) (i) for ¢ = 0, and hy(6,) := [(6,2)|f(6r, )"/
using (EML-5). Since I(-) is continuous at 6y, it follows that A = —I(6y) as stated. Recall
that the covariance C of (6, x) is 1(6p).



Next, we need to check the hypotheses of Section 3.6. (AN-1) follows from (EML-1)
and (EML-3). In (AN-2), measurability of ¥(6,-) follows from that of f(0,-) as a density,
and the fact that the components of the gradient of the measurable function L(-,-) with
respect to 6, which exist by (EML-2), are measurable as limits of a sequence of measurable
functions along sequences ¢, = 6 4 (1/k)e; as k — oo where e; is one of the m standard
unit vectors. Separability of ¢ follows from its continuity with respect to 6, (EML-2), since
f(-y-) >0 (EML-1). In (AN-3), existence of A(f) is assumed in (EML-4)(i), and A(6p) =0
has been proved. (AN-4)(i) follows from A = —I(fy), as proved, and the fact that I(6y)
is non-singular (EML-2). (AN-4)(ii) follows from (EML-4)(ii) and (AN-5) from (EML-5).
So we have all the hypotheses (AN-1) through (AN-5). By Theorem 3.6.15, recalling that
in this section ¥(0,z) = VoL(6,x) with covariance I(fy) at 8 = 6y, the distribution of
Vn(T, — 6p) converges to N(0,1(6g)~1), proving the theorem. O

It can be interesting to investigate the possibility that the assumption in (EML-2)
that f(-,z) be C! in § might be weakened. Huber (1967) proposed that the derivative of
L(-,-) with respect to 6 need only exist “in measure,” not necessarily at all x or 6, one
possible interpretation of which is: for each 6, there is a vector-valued function (6, )
such that for each ¢ € R™,

(3.8.2) lm[L(0 + 6, 2) — L(0,2))/t = &-1(0,),

where the convergence is in probability with respect to x, and 6 + t¢ € O for ¢t small
enough. Consider the following

Example. Let X = O be the open interval (0,1) C R and let

f0,2) == (14+0)"" [14 1,9 ()]

with respect to Lebesgue measure. Since 20 + (1 — ) = 1+ 6 this does give probability
densities. We have
L(0,z) = —log(1+0)+ (log2)1(g,g (),

and 0L(0,x)/00 = —1/(1 4 0) for x # 6, so this is the derivative in probability (6, z) by
the definition (3.8.2). Strangely, it does not depend on x. Thus A(§) = —1/(1 + ) also.
For n i.i.d. observations X,... , X,, 1/n times the log likelihood is

1 n
L, (0,{X;}7—,) = - > L0, X;) = —log(1+6)+ (log2)F,.(6),
j=1
where F), is the empirical distribution function based on Xi,...,X,. Let the true pa-

rameter 6y = ¢ for some ¢ € (0,1). We know by the Glivenko-Cantelli theorem (RAP,
Theorem 11.4.2) that almost surely F,(t) converges to the true distribution function F'(t)
uniformly in ¢. To find a maximum likelihood estimate of 6, we need approximately to
maximize n(f) = —log(1l+ 0)+ (log2)F (). The derivative of this with respect to 0 is

7(0) = —(1+6)"" + (log2)(1+¢) ™" [1+ 1(0,4(0)]
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for § # ¢. The right term is piecewise constant in 6, and the derivative of —(1 + 6)~! is
(1+6)72 > 0. It follows that n equals the convex function —log(1 + 6) plus a piecewise
linear function, so it is convex on each interval [0, ¢] and [¢, 1]. Clearly n(0) = n(1) = 0.
We have n(¢) = —log(1 + ¢) + (log2)(2¢)/(1 + ¢). To show that this is strictly positive
for 0 < ¢ < 1 we want to show that (1 + ¢)log(1 + ¢) < (2log2)¢. Both sides are 0
at 0 and equal 2log2 at 1. The left side is strictly convex since its second derivative is
1/(1 4 ¢) > 0, and the right side is linear, so it’s true that n(¢) > 0 for 0 < ¢ < 1. At
0 = ¢, the left and right derivatives of n satisfy n'(¢—) > 0, n'(¢+) < 0. Thus 6 = ¢ gives
a local maximum of 7. By the convexity on [0, ¢] and [¢, 1] and since n(0) = n(1) = 0,
0 = ¢ gives the unique global maximum of 7(-).

Since F;, is a right-continuous step function and increases at its jumps, maximum
likelihood estimators will exist for all n and each equals one of X71,... , X,. Almost surely
the values of the log likelihood at the X; are all different, so the MLE is unique. By the
Glivenko-Cantelli theorem, the maximum likelihood estimators will be consistent (converge
to ¢). Thus (EML-3) holds. It is not hard to verify that (EML-1), (EML-4), and (EML-5)
all hold and that the Fisher information I(6) exists and is continuous and non-zero. Thus
all of (EML-1) through (EML-5) hold except that in (EML-2), the C! condition has been
weakened to differentiability in probability. The given proof of Theorem 3.8.1 doesn’t work
in this case, since in the first display, L(0,x) — L(6p, x), which does depend on z, can’t be
equal to an integral of ¢ which doesn’t depend on x.

NOTE

The proof on efficiency of the maximum likelihood estimator is from Huber (1967).
Assumption (EML-2) is strengthened to make the proof work.
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