
May 6, 2003 

3.8 Efficiency of maximum likelihood estimators. Let  K >>  M  for m×m matrices 
K,M mean that K − M√is nonnegative definite. Let Tn be a sequence of estimators such 
that the distribution of n(Tn − θ) under Prθ is asymptotically N(0, v(θ)). By Theorem 
3.7.11, under its assumptions, v(θ) >> I(θ)−1 for Lebesgue almost all θ. Thus,  the  √ 
sequence {Tn} will be called “efficient” if for all θ, under Prθ , n(Tn −θ) is asymptotically 
N(0, v(θ)) with I(θ)−1 >> v(θ). In practice, efficient estimators will have v(θ) =  I(θ)−1 for 
all θ. The definition allows for superefficiency for some set of θ which, under the conditions 
of Sec. 3.7, will have Lebesgue measure 0. The efficiency of maximum likelihood estimators 
with v(θ) ≡ I(θ)−1 will be proved under the following assumptions. 

(EML-1) {Pθ , θ  ∈ Θ} is an equivalent family of laws on a sample space (X,B) having  
densities f(θ, ·) > 0 with respect to a σ-finite measure µ, where Θ is an open subset of a 
Euclidean space Rm . The observations X1,X2, . . . , are i.i.d. (Pθ0) for  some  θ0 ∈ Θ. 

Let L(θ, x) := log  f(θ, x) and  ψ(θ, x) :=  �θ L(θ, x) where  �θ denotes gradient with 
respect to θ. 

(EML-2) For each x ∈ X, f(·, x) is  C1 with respect to θ, and the Fisher information matrix 
I(·) exists on Θ and is continuous and non-singular at θ0. 

If Eθ (�θ L(θ, x) = 0, which will be proved in Theorem 3.8.1 to follow from the given 
assumptions, then I(θ) is the covariance matrix C of ψ(θ, x). 

(EML-3) {Tn} is a sequence of maximum likelihood estimators and is consistent, in other 
words Tn → θ in Prθ -probability as n → ∞ for all θ. 

Conditions for consistency of M-estimators were given in Sections 3.3 and 3.5. 
Conditions (AN-4) and (AN-5)(ii) in Section 3.6 will be assumed, locally uniformly in 

θ0. Specifically, recall that for δ >  0 small enough, depending on θ, 

u(θ, x, δ) := sup{|ψ(η, x) − ψ(θ, x)| : |η − θ| ≤ δ}. 
(EML-4) (i) For each θ, φ ∈ Θ, λφ(θ) :=  Eφψ(θ, x) exists  in  Rm. Let  λ(·) :=  λθ0(·). 

(ii) For some numbers	 b >  0 and  γ >  0, and some neighborhood U of θ0, for all 
φ, θ ∈ U , |η − φ| < γ  implies η ∈ Θ, and max(Eθ u(φ, x, δ), Eθ [u(φ, x, δ)2]) ≤ bδ for 
any δ such that 0 ≤ δ ≤ γ/2. 

2(EML-5) For some neighborhood V of θ0, supθ∈V Eθ |ψ(θ, x)| < ∞. 

As in Theorem 3.6.15, let A be the Fréchet derivative of λ(·) at  θ0 if it exists. 

3.8.1 Theorem. Assume (EML-1) through (EML-5). Then λ(θ0) = 0  and  A exists with √ 
A = −I(θ0). Also, the distribution of n(Tn − θ0) converges  to  N(0, I(θ0)−1) as  n → ∞. 

Proof. Take b, γ > 0 such that (EML-4)(ii) holds and such that |φ − θ0| < γ  implies 
φ ∈ U ∩ V for V in (EML-5). For θ �= θ0 with |θ − θ0| < γ/2 and  0  ≤ t ≤ 1, let 
θt := θ0 + t(θ − θ0). Then for each x, by (EML-2),  

� 1 

L(θ, x) − L(θ0, x) =  ψ(θt, x)dt · (θ − θ0). 
0 
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By Theorem 3.3.15 (about Kullback-Leibler divergence),


0 ≥ [L(θ, x) − L(θ0, x)]f(θ0, x)dµ(x) =  

� �  1 � 1 

ψ(θt, x)dt f(θ0, x)dµ(x) · (θ − θ0) =  λ(θt)dt · (θ − θ0) 
0 0 

where the interchange of integrals is justified since by (EML-4)(ii) for φ = θ0, |ψ(θt, x)| ≤
|ψ(θ0, x)|+ u(θ0, x, γ/2), an integrable function for Pθ0 . Since  λ(·) is continuous on U , also  
by (EML-4)(ii), � 1 

λ(θtu)dt → λ(θ0) as  u ↓ 0, 
0 

1and 0 ≥ ∫01 λ(θtu)dt · (θu − θ0)/u = ∫0 λ(θtu)dt · (θ − θ0). So λ(θ0) · (θ − θ0) ≤ 0 for any 
θ in a neighborhood of θ0, which implies λ(θ0) = 0. Also, by the same argument applied 
to φ such that |φ − θ0| ≤ γ/2 in place  of  θ0, ∫ ψ(φ, x)f(φ, x)dµ(x) = 0 for all φ ∈ U . For  

m(column) vectors η, ζ ∈ R
m , η′ζ = η ·ζ ∈ R and ηζ ′ = η⊗ζ is the m×m matrix {ηiζj }i,j=1. 

Next, for |θ − θ0| ≤ γ/2, 

λ(θ) − λ(θ0) =  λ(θ) =  ψ(θ, x)f(θ0, x)dµ(x) 

= − ψ(θ, x)[f(θ, x) − f(θ0, x)]dµ(x) 

� �� 1 � 

= − ψ(θ, x) ψ(θt, x)f(θt, x)dt · (θ − θ0) dµ(x) 
0 � �� 1 �′ 

= − ψ(θ, x) ψ(θt, x)f(θt, x)dt dµ(x)(θ − θ0). 
0 

Now, � �� 1 �′ 
ψ(θ, x) ψ(θt, x)f(θt, x)dt dµ(x) 

0
� �  1
 � 1 

= ψ(θt, x)ψ(θt , x)′f(θt, x)dt dµ(x) +  r(θ) =  I(θt)dt + r(θ) 
0 0 

where, interchanging integrals by the Tonelli-Fubini theorem, 

� 1 � 
|r(θ)| ≤  u(θt, x,  |θ − θ0|)|ψ(θt, x)|f(θt, x)dµ(x)dt ≤ O(|θ − θ0|1/2) 

0 

by the Cauchy-Bunyakovsky-Schwarz inequality applied to the two functions gt(θ, x) :=  
u(θt, x,  |θ−θ0|)f(θt, x)1/2 using (EML-4)(ii) for φ = θt and ht(θ, x) :=  |ψ(θt, x)|f(θt , x)1/2 

using (EML-5). Since I(·) is continuous at θ0, it follows that A = −I(θ0) as stated. Recall 
that the covariance C of ψ(θ0, x) is  I(θ0). 
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Next, we need to check the hypotheses of Section 3.6. (AN-1) follows from (EML-1) 
and (EML-3). In (AN-2), measurability of ψ(θ, ·) follows from that of f(θ, ·) as a density, 
and the fact that the components of the gradient of the measurable function L(·, ·) with  
respect to θ, which exist by (EML-2), are measurable as limits of a sequence of measurable 
functions along sequences φk = θ + (1/k)ei as k → ∞ where ei is one of the m standard 
unit vectors. Separability of ψ follows from its continuity with respect to θ, (EML-2), since  
f(·, ·) > 0 (EML-1). In (AN-3), existence of λ(θ) is assumed in (EML-4)(i), and λ(θ0) = 0  
has been proved. (AN-4)(i) follows from A = −I(θ0), as proved, and the fact that I(θ0) 
is non-singular (EML-2). (AN-4)(ii) follows from (EML-4)(ii) and (AN-5) from (EML-5). 
So we have all the hypotheses (AN-1) through (AN-5). By Theorem 3.6.15, recalling that 
in this section ψ(θ, x) =  �θ L(θ, x) with covariance I(θ0) at  θ = θ0, the distribution of √ 

n(Tn − θ0) converges  to  N(0, I(θ0)−1), proving the theorem. � 

It can be interesting to investigate the possibility that the assumption in (EML-2) 
that f(·, x) be  C1 in θ might be weakened. Huber (1967) proposed that the derivative of 
L(·, ·) with respect to θ need only exist “in measure,” not necessarily at all x or θ, one  
possible interpretation of which is: for each θ, there is a vector-valued function ψ(θ, x) 
such that for each φ ∈ R

m , 

(3.8.2) lim[L(θ + tφ, x) − L(θ, x)]/t = φ · ψ(θ, x), 
t→0

where the convergence is in probability with respect to x, and  θ + tφ ∈ Θ for  t small 
enough. Consider the following 

Example. Let  X = Θ be the open interval (0, 1) ⊂ R and let 

f(θ, x) :=  (1  +  θ)−1 
� 
1 + 1(0,θ](x) 

with respect to Lebesgue measure. Since 2θ + (1  − θ) ≡ 1 +  θ this does give probability 
densities. We have 

L(θ, x) =  − log(1 + θ) + (log 2)1(0,θ](x), 

and ∂L(θ, x)/∂θ = −1/(1 + θ) for  x �= θ, so this is the derivative in probability ψ(θ, x) by  
the definition (3.8.2). Strangely, it does not depend on x. Thus  λ(θ) =  −1/(1 + θ) also.  

For n i.i.d. observations X1, . . .  ,Xn, 1/n times the log likelihood is 

� � 1 
n 

Ln θ, {Xj }n := L(θ,Xj ) =  − log(1 + θ) + (log 2)Fn(θ),j=1 n 
j=1 

where Fn is the empirical distribution function based on X1, . . .  ,Xn.  Let  the true pa-
rameter θ0 = φ for some φ ∈ (0, 1). We know by the Glivenko-Cantelli theorem (RAP, 
Theorem 11.4.2) that almost surely Fn(t) converges to the true distribution function F (t) 
uniformly in t. To find a maximum likelihood estimate of θ, we need approximately to 
maximize η(θ) :=  − log(1 + θ) + (log 2)F (θ). The derivative of this with respect to θ is 

η′(θ) =  −(1 + θ)−1 + (log 2)(1 + φ)−1 1 + 1(0,φ](θ) 
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for θ �= φ. The right term is piecewise constant in θ, and the derivative of −(1 + θ)−1 is 
(1 + θ)−2 > 0. It follows that η equals the convex function − log(1 + θ) plus a piecewise 
linear function, so it is convex on each interval [0, φ] and  [φ, 1]. Clearly η(0) = η(1) = 0. 
We have η(φ) =  − log(1 + φ) + (log 2)(2φ)/(1 + φ). To show that this is strictly positive 
for 0 < φ <  1 we want to show that (1 + φ) log(1  +  φ) < (2 log 2)φ. Both sides are 0 
at 0 and equal 2 log 2 at 1. The left side is strictly convex since its second derivative is 
1/(1 + φ) > 0, and the right side is linear, so it’s true that η(φ) > 0 for  0  < φ <  1. At 
θ = φ, the left and right derivatives of η satisfy η′(φ−) > 0, η′(φ+) < 0. Thus θ = φ gives 
a local  maximum of  η. By the convexity on [0, φ] and  [φ, 1] and since η(0) = η(1) = 0, 
θ = φ gives the unique global maximum of η(·). 

Since Fn is a right-continuous step function and increases at its jumps, maximum 
likelihood estimators will exist for all n and each equals one of X1, . . .  ,Xn. Almost  surely  
the values of the log likelihood at the Xj are all different, so the MLE is unique. By the 
Glivenko-Cantelli theorem, the maximum likelihood estimators will be consistent (converge 
to φ). Thus (EML-3) holds. It is not hard to verify that (EML-1), (EML-4), and (EML-5) 
all hold and that the Fisher information I(θ) exists and is continuous and non-zero. Thus 
all of (EML-1) through (EML-5) hold except that in (EML-2), the C1 condition has been 
weakened to differentiability in probability. The given proof of Theorem 3.8.1 doesn’t work 
in this case, since in the first display, L(θ, x) − L(θ0, x), which does depend on x, can’t  be  
equal to an integral of ψ which doesn’t depend on x. 

NOTE 

The proof on efficiency of the maximum likelihood estimator is from Huber (1967). 
Assumption (EML-2) is strengthened to make the proof work. 
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