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3.9 A likelihood ratio test for nested composite hypotheses: Wilks’s theorem. 
Let Θ be a d-dimensional parameter space, specifically, an open set in Rd. Let  H0 be a 
k-dimensional subset of Θ, in a sense to be made more precise below, for some k <  d. 
For example, H0 could be the intersection with Θ of a k-dimensional flat hyperplane. Let 
{Pθ , θ  ∈ Θ} be an equivalent family of laws on a sample space (X,B) with a likelihood 
function f(θ, x) > 0 for all θ ∈ Θ and  x ∈ X. 

Assume that observations X1, . . .  ,Xn are i.i.d. Pθ for some θ ∈ Θ. We want to test the 
hypothesis that θ ∈ H0. S. S. Wilks proposed the following test: let L(θ, x) := log  f(θ, x) 
be the log likelihood. For n observations, let the maximum log likelihoods over Θ and H0 

be respectively 
n	 n 

MLLd :=	 sup L(θ,Xj ),  MLLk := sup L(θ,Xj ). 
θ∈Θ j=1 θ∈H0 j=1 

Let W := 2(MLLd − MLLk ). Wilks found that if the hypothesis H0 is true, then the 
distribution of W converges as n → ∞ to a χ2 distribution with d− k degrees of freedom, 
not depending on the true θ = θ0 ∈ H0. Thus,  H0 would be rejected if W is too large in 
terms of the tabulated χ2 distribution.d−k 

It turns out that Wilks’s conclusion can be proved under the same assumptions as 
are used to prove the lower bounds on asymptotic efficiency of estimators in Section 3.7 
and efficiency of maximum likelihood estimators in Section 3.8. It will be said that H0 is 
a k-dimensional C2 imbedded submanifold of Θ for some k <  d  if for each θ ∈ H0, after  
a translation of coordinates taking θ to 0 and a suitable rotation of coordinates, H0 has a 
tangent hyperplane K0 at 0 given by θk+1 = · · · = θd = 0, meaning that the intersection 

kof H0 with a neighborhood V of 0 is given by θj = fj ({θi}i=1) for  j = k + 1, . . .  , d, where  
fj are C2 functions defined on an open neighborhood W of 0 in Rk with fj (0) = 0 and 
�fj (0) = 0 ∈ R

k for each j = k + 1, . . .  , d. 
We have the following: 

3.9.1 Theorem (Wilks’s theorem). Assume (AC-1) through (AC-5) in Section 3.7 and 
(EML-1) through (EML-5) in Section 3.8 for Θ where in (EML-3), Tn are maximum 
likelihood estimators of θ ∈ Θ. Let H0 be a k-dimensional C2 imbedded submanifold of 
Θ containing θ0 for some k <  d. Let  H0 be parametrized in a neighborhood of θ0 by 
η := {ηi}k in the open set W ⊂ R

k in the given definition of imbedded submanifold. i=1 
Let Un be maximum likelihood estimators of η in W, assumed to exist and be unique with 
probability converging to 1 as n → ∞. Assume also that Un → η0 = 0 in probability as 
n → ∞. 

Then as n → ∞, the distribution of W converges to a χ2 distribution.d−k 

Proof. By the way, (EML-1) implies (AC-1), and (AC-2) and (AC-3) imply (EML-2). 
(AC-6) follows from (EML-1) through (EML-5) by way of Theorem 3.8.1. As in the 

definition of submanifold, we can assume by translation and rotation of coordinates that 
θ0 = 0  and  H0 has the tangent hyperplane K0 at 0. Then 

θ �→ θ1, . . .  , θk , θj − fj {θi}k 
��d 

i=1 j=1 
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is a C2 map of the open neighborhood V of 0 in Rd onto another such neighborhood U , 
with a C2 inverse given by 

→ φ1, . . .  , φk , φj + fj {φi}k 
��d 

.φ � i=1 j=1 

Thus the map is what is called a C2 diffeomorphism. It takes H0 ∩ V  onto K0 ∩ U . Thus  
we can assume that H0 is the flat hyperplane K0, replacing V by U . 

Now, make another rotation of coordinates so that the Fisher information matrix 
I(θ0) =  I(0) is diagonalized. Let its diagonal entries be a1, . . .  , ad, all  > 0. Then by 
a linear change of parameters, replacing θj by 

√ 
aj θj , I(0) becomes the identity matrix. 

Since K0 is still a k-dimensional linear subspace after these transformations, by another 
rotation we can assume H0 = K0 is (as before) the hyperplane θk+1 = · · ·  = θd = 0.  All  
the transformations made, and their inverses, have been C2 with bounded first and second 
partial derivatives for their coordinates on a neighborhood of 0. Thus, by the chain rule, 
all the assumptions still hold in the new coordinates. 

Now, it’s easily verified that since θ0 ∈ H0, all the assumptions (AC-1) through (AC-
5) and (EML-1) through (EML-5) imply their counterparts for K0 ∩U  in place of Θ except 
that for (EML-3), consistency of the MLEs Un ∈ K0 ∩ U  has been separately assumed. √ √

Let Vn := nTn and Wn := nUn ∈ K0. Then by Theorem 3.8.1, as n → ∞  we 
have convergence in distribution 

(3.9.2) L(Vn) → Nd(0, I), L(Wn) → Nk (0, I) 

on Rd and K0 respectively, where Nr (0, I) is the  r-dimensional standard normal distribu-
tion for r = k, d. 

A multivariate Taylor expansion of L(θ, x) around θ0 = 0  is  given  by  

1
(3.9.3) L(θ, x) =  L(0, x) +  �L(0, x) · θ + θ′Hd(0, x)θ + R(θ, x)

2 

where Hd(0, x) is the  matrix  ∂2L(0, x)/∂θr ∂θs|d and for each x, the remainder R(θ, x) =r,s=1 
n 

o(|θ|2) as  θ → 0. Let Sn := 
�

�θ (0,Xj ). We have E0�L(0, x) = 0 by assumption j=1 
(AC-3). Thus by the central limit theorem (RAP, 9.5.6) and assumption (EML-2), the √
distribution of Sn/ n converges as n → ∞  to Nd(0, I). 

By a Taylor expansion of �θ L(θ, x) around θ = 0 we get for each x and for θ close 
enough to 0 

�θ L(θ, x) =  �θ (0, x) +  Hd(0, x) · θ + r(θ, x) 

where the remainder term r(θ, x) =  o(|θ|) as  θ → 0 for  x fixed. Thus 

n n n 

�θ L(θ,Xj ) =  Sn + Hd(0,Xj ) · θ + r(θ,Xj ). 
j=1 j=1 j=1 

√
Substituting θ = Tn, where the left side is 0, and dividing by n gives 

Sn 1 
n � √ 

(3.9.4) √ = − Hd (0,Xj ) · Vn + nop(Tn), 
n n 

j=1 
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nif j=1 r(Tn,Xj ) =  noP (Tn), as will be shown after the main proof is completed. By 

(AC-4), E0Hd(0, x) =  −I(0) = −I in Rd2 
. Thus by the law of large numbers (for each 

nof the d2 matrix entries), we have (−1/n) 
�

j=1 Hd(0,Xj ) =  I + op(1). Since Vn = Op(1)√
and nop(Tn) =  op(1) by (3.9.2), we get by (3.9.4) 

√ 
(3.9.5) Vn = Sn/ n + op(1). 

n

n
Analogously, define S(k) := j=1 �θ(k)L(0,Xj ) where  �θ(k) := (∂/∂θ1, . . .  , ∂/∂θk ). 

Then S(k) consists of just the first k coordinates of Sn. In the same way as in (3.9.5) we n 

then get 
√ 

(3.9.6) Wn = S(k)/ n + op(1).n 

nBy the definitions of MLLd and Tn and (3.9.3), if j=1 R(Tn,Xj ) =  nop(|Tn|2) as will be 
shown in (3.9.14) below, it follows that 
(3.9.7) 

n n � � 1 
n 

MLLd = L(Tn,Xj ) =  L(0,Xj ) +  Sn · Tn + T ′ Hd(0,Xj )Tn + nop(|Tn|2).n2 
j=1 j=1 j=1 

We have nop(|Tn|2) =  op(1) by (3.9.2). By (3.9.5), we have Sn · Tn = |Vn|2 + op(1). In the 
term of (3.9.7) with Hd , we can replace Tn by Vn twice, dividing the sum by n, and  then  
as in the proof of (3.9.5) we see that the term is −(1/2)|Vn|2 + op(1). Thus (3.9.7) yields 

n � 1 
MLLd = L(0,Xj ) +  |Vn|2 + op(1).

2 
j=1 

Proceeding in the same way for MLLk we get 

n � 1 
MLLk = L(0,Xj ) +  |Wn|2 + op(1).

2 
j=1 

For the Wilks statistic W , applying (3.9.5) and (3.9.6), we get 

2W = 2(MLLd − MLLk ) =  (|Sn| − |S(k)|2)/n + op(1) = |Y (d−k)|2/n + op(1)n 

√
where Y (d−k) is the projection of Sn onto the d√−k coordinates θk+1, . . .  , θd. Since  Sn/ n 
converges in distribution to Nd(0, I), Y (d−k)/ n converges in distribution to Nd−k (0, I). 
It follows that the distribution of W converges to χ2 

d−k . 
nProof of (3.9.4) and (3.9.14). For (3.9.4) we need to show that j=1 r(Tn,Xj ) =  noP (Tn). 

For each r = 1, . . .  , d,  we have 

∂L(θ, x) ∂L(0, x)
= 

� 1 d ∂L(tθ, x)− dt 
∂θr ∂θr dt ∂θr0 
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d � � 1 ∂2L(tθ, x)
(3.9.8)	 = θs dt. 

∂θr∂θs s=1 0 

Now, for each r, s = 1, . . .  , d, 
� 1 

0 

∂2L(tθ, x) 
∂θr∂θs 

dt = 
∂2L(0, x) 
∂θr∂θs 

+ ζrs(θ, x) 

where 

(3.9.9) |ζrs(θ, x)| ≤ εrs(θ, x) :=  sup  
|φ|≤|θ| 

� � � � ∂
2L(φ, x) 
∂θr∂θs 

− 
∂2L(0, x) 
∂θr∂θs 

� � � � . 

It follows by (3.9.8) that the remainder 

d 

(3.9.10)	 |r(Tn,Xj )| ≤  εrs(Tn,Xj ). 
r,s=1 

By (AC-5), we have εrs(θ, x) ≤ 2M(x) for all x and all θ in a small enough neighborhood 
U1 of 0. We can assume that M(x) ≥ 1 for all x. Also,  by  the  C2 property of f in θ (AC-2) 
and (AC-1), L(θ, x) is  C2 in θ, so  εrs(θ, x) → 0 as  θ → 0. So, for any given ε >  0 and  for  
all x, there is a positive integer k = k(x, ε) such that if |θ| < 1/k then 

d 

(3.9.11)	 ε(θ, x) :=  εrs(θ, x) < ε.  
r,s=1 

Since E0M <  ∞, by dominated convergence there is a γ >  0 small enough so that if 
P0(A) < γ, then  

A d
2MdP0 < ε/2. For k ≥ k(ε) large enough, the set A of x such that 

(3.9.11) fails has P0(A) < γ  and so 
A MdP0 < ε/2. Thus P0(A) < ε/2 since  M ≥ 1. 

For |θ| < 1/k(ε) we have  ε(θ, x) < ε  for x /∈ A and ≤ 2d2(M1A)(x) otherwise.  By  the  
strong law of large numbers, we have almost surely for n large enough, by choice of A, 

n 
n−1 2d2(M1A)(Xj ) < ε  and then j=1 

1 
n � ε 2 

n 

(3.9.12)	 ε(θ, Xj ) ≤ n + (M1A)(Xj ) ≤ 2ε. 
n	 n n 

j=1	 j=1 

As n → ∞, since  Tn → 0 in probability by (3.9.2), we have 

(3.9.13)	 P (|Tn| < 1/k(ε)) → 1. 

nIt follows by (3.9.10) that 
�

j=1 r(Tn,Xj ) =  nop(Tn) as desired, so (3.9.4) is proved. 
It remains to prove 

n 

(3.9.14)	 R(Tn,Xj ) =  nop(|Tn|2). 
j=1 
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By a form of Taylor’s theorem with integral remainder we have


� 1 

R(θ, x) =  θ′ (1 − u)[Hd(uθ, x) −Hd(0, x)]du · θ. 
0 

Thus for εrs(θ, x) as defined in (3.9.10) and ε(θ, x) in (3.9.12), 

d 

|R(θ, x)| ≤  |θr ||θs|εrs(θ, x) ≤ |θ|2ε(θ, x). 
r,s=1 

Then by (3.9.12) and (3.9.13), (3.9.14) follows, completing the proof of the theorem. � 

PROBLEM 

1. Let Θ = Rd, let  Pθ := N(µ, I) for  µ ∈ Rd and for some k <  d  let H0 := K0 := 
{µ : µk+1 = · · · = µd = 0. Show that in this case the Wilks statistic W := 2(MLLd − 
MLLk) has exactly a χ2 distribution for all n, not only asymptotically as n → ∞.d−k 

NOTES 

Wilks first published his theorem in a paper, Wilks (1938), then gave an exposition 
of it in his book, Wilks (1962, §13.8). Chernoff (1954) gave another proof. Van der Vaart 
(1998, Chapter 16) gives a more recent exposition. The Notes by van der Vaart (1998, 
p. 240) suggest that Wilks’s original proof was not rigorous. The bibliography in van der 
Vaart’s book includes Wilks’s 1938 paper but not the 1962 book. The proof in the 1962 
book seems rather long. 
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