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CHAPTER 4. ASYMPTOTICS OF POSTERIORS AND MODEL SELECTION 

4.1 Consistency of posteriors. Given a measurable family {Pθ , θ  ∈ Θ}, dominated 
by a σ-finite measure v, for a measurable space (Θ,T ), a prior π on Θ, and observa-
tions X1, X2, . . .  i.i.d. (Pθ0) for  some  θ0 ∈ Θ, we have posteriors πx,n on Θ where 
x = (X1, . . .  ,Xn) for  each  n. Recall that we have defined the posteriors by multiplying the 
prior by the likelihood function Πn

j=1f(θ,Xj ) and normalizing the result, if possible, to be 
a probability measure (Proposition 1.3.5). (For Theorem 4.1.4 below, where {Pθ , θ  ∈ Θ}
is not necessarily dominated, a more general definition of posteriors will be used.) The 
posteriors will be called consistent if for every neighborhood U of θ0, πx,n(U) → 1 almost  
surely as n → ∞. This form of consistency is not for estimators Tn, but is just a property 
of the prior and the likelihood function. 

In some situations, consistency of posteriors can lead to consistency of estimators. 
For example, if Θ is an interval in R, and  Tn is a median of the posterior law πx,n, then  
consistency of posteriors will imply that Tn are consistent. If the interval is bounded, Tn 

could also be taken as the mean of πx,n. 
If the prior π has π(U) = 0 for some neighborhood U of the true parameter θ0, then  

πx,n(U) = 0 for all x and n, so the posteriors can’t be consistent. On the other hand, if 
π(U) > 0 for every neighborhood U of θ0, then under some conditions as in Section 3.3, it 
will be shown that the posteriors are consistent. It can happen in pathological cases that 
the posteriors are not consistent, for example if as the neighborhoods U shrink to {θ0}, 
π(U) → 0 very fast, and if the likelihood function doesn’t behave well. Such an example 
will be given in Proposition 4.1.2 and after it. 

4.1.1 Theorem. Assume that: 
(i) {Pθ , θ  ∈ Θ} is a measurable family, dominated by a σ-finite measure v, and identifiable, 

so that Pθ = Pφ for θ = φ; 
(ii) Θ is a locally compact separable metric space, with Borel σ-algebra T , 
(iii) (dPθ /dv)(x) ≡ f(θ, x) where  f(·, ·) is jointly measurable, 
(iv) P = Pθ0 for some θ0 ∈ Θ, and X1,X2, . . .  ,  are i.i.d. (P ); 
(v) h(·, x) := log  f(θ0, x) − log f(·, x) is continuous on Θ, 
(vi) For some positive, continuous function b(·) on Θ and integrable function u(·) on  X for 

Pθ0 , h(θ, x)| ≤  b(θ)u(x) for all θ and almost all x,|
(vii) (3.3.6) and (3.3.7) hold for the given h and b(·), that is, limθ→∞ b(θ) > γ(θ0) = 0  and  

E[lim infθ→∞ h(θ, x)/b(θ)] ≥ 1. 
Then for any prior π such that π(U) > 0 for every neighborhood U of θ0, the  posteriors  

are consistent. 

Notes. In  (v),  h(·, ·) has been chosen to incorporate an adjustment function so that, in 
the notation of Section 3.3, a(x) ≡ 0. Here continuity of h in θ is assumed in (v), rather 
than the lower semicontinuity assumed in Section 3.3, (A-2). This is needed in order to 
allow general priors. Suppose that f(θ0, x) were the lim sup, not the limit, of f(θ, x) as  
θ θ0 and that for some ε >  0 and sequence θk → θ0, f(θk , x) < f(θ0, x) − ε for x in→
a set  A with P (A) > 0 and  all  k. Then if the prior π is concentrated on points θ where 
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f(θ, x) < f(θ0, x) − ε for x ∈ A, we  can  have  π(U) > 0 for every neighborhood U of θ0, 
but the posteriors might not be consistent. 

Proof. Continuity of h(·, x) implies assumptions (A-1) and (A-2) of Section 3.3, where S 
is any countable dense set in Θ and A = . Assumption (vi) implies that Eθ0 |h(θ, x) < ∞∅ |
for all θ, which is stronger than (A-3). In Theorem 3.3.16, using identifiability, (A-4) is 
shown to hold in this case. Condition (vi) is stronger than (3.3.5), and the other parts of 
(A-5) are assumed, so all of (A-1) through (A-5) hold. Lemma 3.3.9 doesn’t involve any 
estimators Tn, so it still holds. Also, now that continuity of h(·, x) and (vi) are assumed, 
the Lemma also holds with sup instead of inf, so γ(·) is continuous. Note that γ(θ0) = 0  
in the present case. 

For any neighborhood U of θ0, there  is  an  ε >  0 such that almost surely for n large 
enough, 

Πi
n 
=1f(θ,Xi)/f(θ0,Xi) ≤ exp(−nε) 

for all θ /∈ U : this follows from the proof of (3.3.14) for θ in some compact set C and from 
(3.3.12) for θ /∈ C. These proofs do not involve Tn. On the other hand, for a small enough 
neighborhood V ⊂ U , by Lemma 3.3.9, almost surely for n large enough, by the strong 
law of large numbers, for each θ ∈ V , 

Πn
i=1f(θ,Xi)/f(θ0,Xi) ≥ exp(−nε/2). 

Then for each φ /∈ U and θ ∈ V , the likelihood ratio for n observations satisfies 

n) ≥ enε/2Rθ,φ(X1, . . .  ,X . 

Since π(V ) > 0, the ratio of posteriors πx,n(V )/πx,n(Θ \ U) → ∞, which implies that 
πx,n(U) → 1. � 

The following will give examples where posteriors are not consistent: 

4.1.2 Proposition. Suppose {Pθ , θ  ∈ Θ} is a family with densities f(θ, x) such that for 
a metric  d on Θ, some θ0 ∈ Θ, P = Pθ0 , and a sequence θm converging to θ0 for d, we  have  

0 < am := I(Pθ0 , Pθm 
) =  −E log(f(θ )/f(θ0, ·)) ↑ Cm, ·

strictly as m → ∞ where 0 < C  ≤ +∞. Then there is a prior π on the sequence {θm}
with π(θm) > 0 for all m ≥ 1, and so with π(U) > 0 for every neighborhood U of θ0, such  
that for X1,X2, . . .  i.i.d. P , the posteriors are not consistent. 

Proof. Let Ym(x) := log(f(θm, x)/f(θ0, x)). Since am = EYm ≥ 0 by Lemma −
3.3.15 and am < C  ≤ +∞, it follows that Ym > −∞ a.s., so f(θm, ·) > 0 a.s.  Let  �n
Y mn := j=1 Ym(Xj )/n. Then  Y mn am a.s. as n → ∞ by the strong law of large → −
numbers, so for each m = 1, 2, . . .  ,  there is an n0 := n0(m) such that 

Pr{for some n ≥ n0 : Y mn am − (am+1 − am)/3 or  ≤ −
(4.1.3) 

Y m+1,n ≥ −am+1 + (am+1 − am)/3} < 1/2m . 
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Also choose n0(m) large enough so that exp (−n0(m)(am+1 − am)/3) < 1/2. Let Lnm := 
Πj

n 
=1f(θm,Xj ). Since f(θm,Xj ) > 0 a.s. for  each  j, there is always an anm > 0 such that 

Pr(Lnm < anm) < 1/(2m n0(m)). 

Also, there are always bnm < ∞ large enough so that 

Pr(Lnm ≥ bnm) < 1/(2m n0(m)). 

Let rm := 2 + 2 max{bn,m+1/anm : n < n0(m)}. Then the prior π will be defined so ·
that π(θm+1)/π(θm) = 1/rm. In other words, for the suitable normalizing constant c, let  
π(θ1) :=  c and π(θm) :=  c/Πm−1 rj for m ≥ 2. Then for each n < n0(m), the posterior j=1 

probability πx,n(θm+1) can be larger than πx,n(θm)/2 only if  Ln,m+1/Lnm > rm/2, which 
requires either Ln,m+1 > bn,m+1 or Lnm < anm. For  a  given  m, the probability that any 
of these events occur for n < n0(m)  is  at most 2/2m . Also, except on the event in (4.1.3), 
we have for n ≥ n0(m) that  Y m+1,n < Y mn and so Ln,m+1/Lnm < 1. So, for each m, 
except on an event of probability at most 3/2m, we  have  πx,n(θm+1) ≤ πx,n(θm)/2 for  
all n. Since  

�
m 3/2m < ∞, by the Borel-Cantelli lemma (RAP, Theorem 8.3.4), almost 

surely there is an m0 such that for all m ≥ m0 and all n, πx,n(θm+1) ≤ πx,n(θm)/2. Then �
m>m0 

πx,n(θm) ≤ πx,n(θm0), so the left side of the latter inequality can’t converge to 
1, and the posteriors can’t be consistent. � 

For a specific example where the last proposition applies, let the sample space be the 
open interval 0 < x <  1 with  v = Lebesgue measure. For m ≥ 2 let  fm be continuous, 

−mfm(x) :=  e−m for 0 < x  ≤ 1/m, let  fm be linear on the interval 1/m ≤ x ≤ 1/m+ e
and let fm be constant for 1/m + e−m ≤ x ≤ 1. The constant is 1 + 1/m + o(1/m). (A 
simpler example could be defined, constant on (0, 1/m) and  on  [1/m, 1).) Let θm := 1/m 
and f(θm, x) :=  fm(x). Let θ0 := 0 and f(0, x) ≡ 1, giving the uniform distribution. 
Then fm(x) → 1 as  m → ∞ for 0 < x  <  1, so f(·, x) is continuous in θ on the sequence 
where it is defined. We have E(log fm) =  −1 + 1/m + o(1/m) as  m → ∞ and, taking a 
subsequence, we can assume that the convergence of these integrals is strictly monotone. 
Then Proposition 4.1.2 applies with C = 1.  

In another example, if Pθ is uniform on [θ, 1], where 0 ≤ θ <  1, we will have consistency 
if the true θ0 = 0, for any prior π with π(U) > 0 for every neighborhood U of 0, even 
though am = +∞ for all m. 

The non-consistency at one point θ0 in Proposition 4.1.2 and the example after it result 
from (a) peculiar behavior of the likelihood function as θ θ0, so that although f(·, x)→
is continuous, Pθm 

moves further away from Pθ0 in terms of Kullback-Leibler divergence 
as m → ∞, and (b) very fast decrease of the prior probabilities of neighborhoods of θ0 as 
they shrink to θ0. It may not be surprising, then, that such behavior is exceptional and 
can only happen on a set of prior probability 0, under quite general conditions, as follows. 

Suppose given a parameter space Θ with a σ-algebra B of subsets and a prior prob-
ability distribution π on B. Let  (X,A) be a sample space and let X∞ be the set of all 
sequences {X ∞ with Xn ∈ X for all n. On  X∞ we have the product σ-algebra, the n=1n}
smallest σ-algebra making each Xn measurable. Suppose that for each θ ∈ Θ, a probability 
measure Prθ is given on X∞ and that the family Prθ , θ  ∈ Θ, is measurable. We get by 
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Proposition 1.3.5 with X∞ in place of X a joint distribution Pr on Θ × X∞ where θ has 
marginal distribution π and, for each θ ∈ Θ, {Xn}n≥1 have conditional distribution Prθ . 

Posterior probabilities can be defined for families that are not necessarily dominated by 
a σ-finite measure, as follows. Let Pr be a probability on the product σ-algebra in Θ×X∞ . 
Let X(n) := (X1, ...,Xn ). A function (A,X(n)) → Pr(A X(n)) from  B×Xn into [0, 1] is a |
regular conditional probability for Pr of A given X

�
(n) if, for each A ∈ B, Pr(A, ·) equals  the  

conditional probability of A given X(n), and  for  each  X(n) ∈ Xn, Pr(·,X(n)) is a countably 
additive probability measure on B. Then a general definition of the posterior probability 
πx,n on Θ is that it is a regular conditional probability Pr(·,X(n)) if  one  exists,  for  Pr  
defined as above via Proposition 1.3.5. For dominated families {Pθ , θ  ∈ Θ}, posteriors as 
defined via likelihood functions were shown in Theorem 1.3.7 to exist almost surely, and 
the two definitions of posteriors will agree. 

Let’s say that the family Prθ , θ  ∈ Θ, is empirically identifiable if for some measurable 
function T from X∞ into Θ, for each θ ∈ Θ, T (x) =  θ for Prθ -almost all x ∈ X∞. This  
occurs, for example, if there are estimators Tn(X1, . . .  ,Xn) converging to  θ Prθ -a.s. as 
n → ∞ for each θ. 

4.1.4 Theorem (Doob). Let Prθ , θ ∈ Θ, be a measurable, empirically identifiable family. 
Suppose that Θ is a Borel subset of a complete separable metric space with Borel σ-algebra. 
Let π be a prior probability on Θ with π(U) > 0 for every non-empty open set U . Then  
the posteriors πx,n exist almost surely and are consistent for π-almost all θ. 

Proof. There is a Borel isomorphism of Θ onto a complete separable metric space (RAP, 
Theorem 13.1.1). Then the posteriors exist in the sense of regular conditional probabilities 
of θ given X1, . . .  ,Xn by RAP, Theorem 10.2.2. 

Let U be a non-empty open subset of Θ (for the original topology, not another metric 
obtained via Borel isomorphism). Then 1θ∈U is an integrable function. Its conditional 
expectation 

E(1θ∈U X1, . . .  ,Xn) = Pr(θ ∈ U X1, . . .  ,Xn ) =  πx,n(U).| |

Let Fn be the smallest σ-algebra with respect to which X1, . . .  ,Xn are measurable. The 
conditional expectations of a fixed integrable function with respect to an increasing se-
quence of σ-algebras Fn form a martingale (RAP, Sec. 10.3), which converges almost 
surely, in this case to 1θ∈U (RAP, Theorem 10.5.1), since by empirical identifiability, this 
function is measurable with respect to the σ-algebra generated by the union of the Fn. 

∞Since the topology of Θ has a countable base (RAP, Proposition 2.1.4), let {Uk }k=1 

be such a base. Let the convergence of the martingale for U = Uk hold for Prθ -almost all 
∈ Ak where π(Ak ) = 0.  Let  A := Ak . Then  π(A) =  0.  Let  θ /x for all θ /

�∞ ∈ A. Then  k=1 

θ has a neighborhood-base consisting of a subsequence {Uk(j)}j≥1. By convergence of the 
martingales we have a.s. Prθ , πx,n(Uk(j)) → 1 as  n → ∞  for all j, so  the  posteriors  are  
consistent at θ. This completes the proof. � 

Thus, if a prior π has an atom with π(φ) > 0 for some singleton {φ}, φ ∈ Θ, then the 
posteriors will be consistent for such a φ under very general conditions. The above proof 
can be applied without the assumption that Θ is a separable metric space, and even if φ 
is an isolated point, because the posterior probability of {φ} will converge to 1 a.s. Prφ. 
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NOTES


At this writing I do not have a reference for Theorem 4.1.1 but it is presumably 
known. Schwartz (1965) gave sufficient conditions for consistency of posteriors at particular 
θ0’s. Freedman (1963) and Schwartz (1965) gave examples of non-consistent posteriors. 
Proposition 4.1.2 and the example after it are related to their examples. Theorem 4.1.4 is 
attributed to Doob (1949). I learned it from Le Cam (1986), p. 616, Prop. 2 and Corollary. 
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