

Predicting Controller Capacity in Supervisory Control of Multiple UAV's

16.899 Introduction to Systems Engineering, October 23rd 2009

Ben Corbin Fabrice Kunzi Howard Yue

Table of Contents

- Introduction
- Background
 - Wait Times
 - Levels of Automation
- Experimental Setup
- Results
- Discussion

Background

- Goals/Purpose
 - Determine max number of UAVs an operator can successfully control
 - Introduce notion of Wait Time
- Fan-out Equations (1), (2), (3)

$$FO = \frac{NT + IT}{IT} = \frac{NT}{IT} + 1$$

$$WT = \sum_{i=1}^{X} WTQ_i + \sum_{j=1}^{Y} WTSA_j$$

$$FO = \frac{NT}{IT(WTI) + WT} + 1$$
(2)
(3)

Wait Times

- Wait Time Interaction (WTI)
 - Time required to comprehend and solve problem, and implement solution
- Wait Time Queue (WTQ)
 - Time a UAV waits while operator deals with other UAVs
- Wait Time Situational Awareness (WTSA)
 Time for an operator to respond to new situations

Levels of Supervisory Control

- Manual
 - Table of text with low-level information
 - Step-by-step control
- Passive
 - Text information graphically represented
 - Timeline control
- Active
 - Passive control graphics
 - Bottleneck recommendations provided
- Super Active
 - Management-by-exception

More accurate description of mission

This cartoon has been removed due to copyright restrictions.

Experimental Setup – Navigation Panel

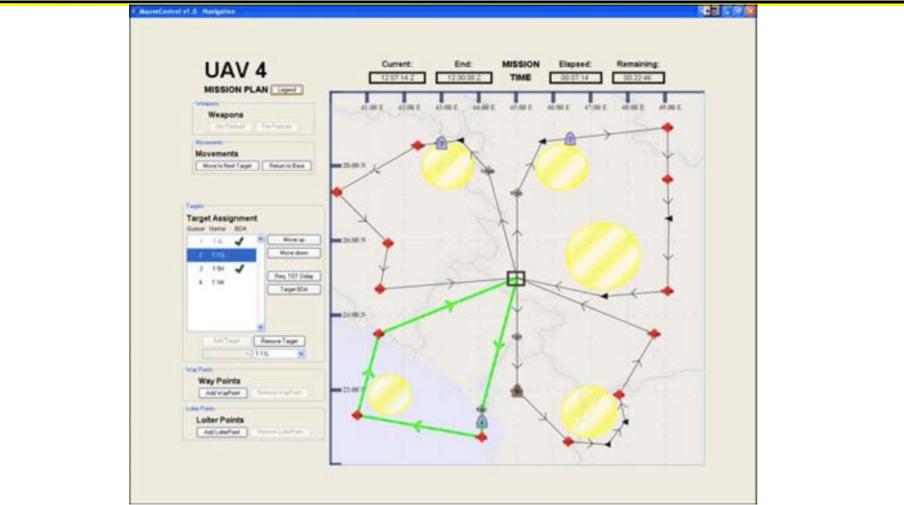
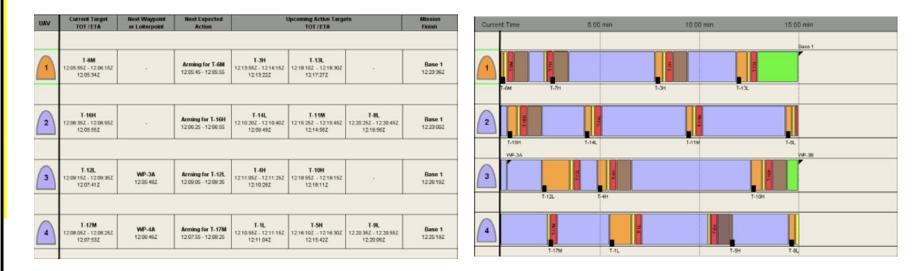
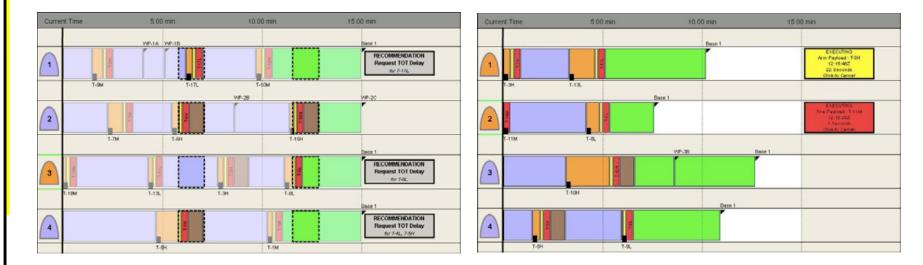



Figure 2 on p. 454 in Cummings, Mary L., and Paul J. Mitchell. "Predicting Controller Capacity in Supervisory Control of Multiple UAVs." *IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans* 38, no. 2 (March 2008): 451-460. © 2008 IEEE.

Experimental Setup – Control Panel


Manual

Passive

Figure 3 on p. 455 in Cummings, Mary L., and Paul J. Mitchell. "Predicting Controller Capacity in Supervisory Control of Multiple UAVs." *IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans* 38, no. 2 (March 2008): 451-460. © 2008 IEEE.

Experimental Setup – Control Panel

Active

Super Active

Figure 3 on p. 455 in Cummings, Mary L., and Paul J. Mitchell. "Predicting Controller Capacity in Supervisory Control of Multiple UAVs." *IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans* 38, no. 2 (March 2008): 451-460. © 2008 IEEE.

Experimental Setup – Design

- 12 test subjects
 - -9 were pilots
 - 2 were women
 - Average age: 26.3
 - Divided into 4 groups of 3

	Manual	Passive	Active	Super Active
Low Workload	Group 1	Group 2	Group 3	Group 4
High Workload	Group 1	Group 2	Group 3	Group 4

• \$10/hour, \$50 incentive for best performance

Results - WTI

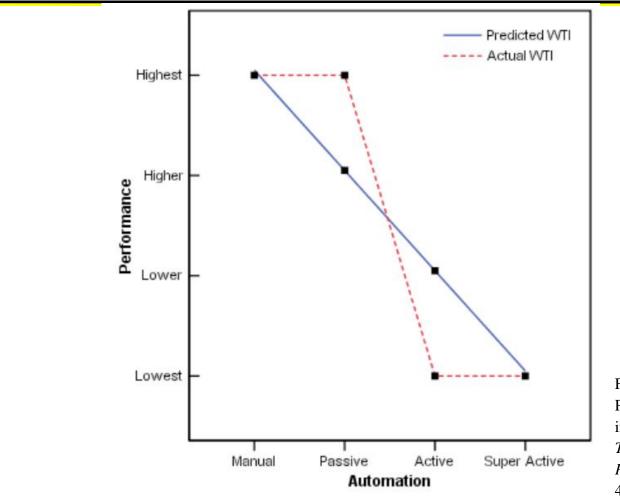
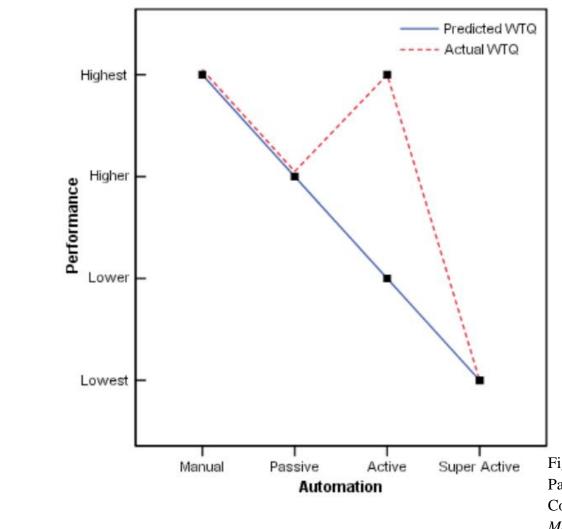



Figure 5 on p. 458 in Cummings, Mary L., and Paul J. Mitchell. "Predicting Controller Capacity in Supervisory Control of Multiple UAVs." *IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans* 38, no. 2 (March 2008): 451-460. © 2008 IEEE.

Results - WTQ

WTQ = Wait Time in the human decision-making queue

Figure 6 on p. 458 in Cummings, Mary L., and Paul J. Mitchell. "Predicting Controller Capacity in Supervisory Control of Multiple UAVs." *IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans* 38, no. 2 (March 2008): 451-460. © 2008 IEEE.

Results - WTSA

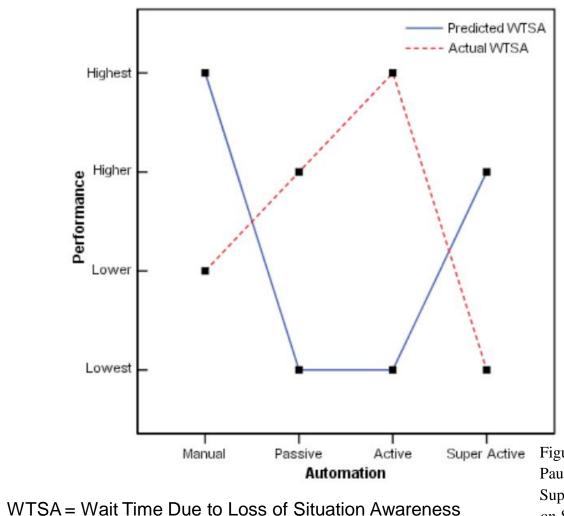
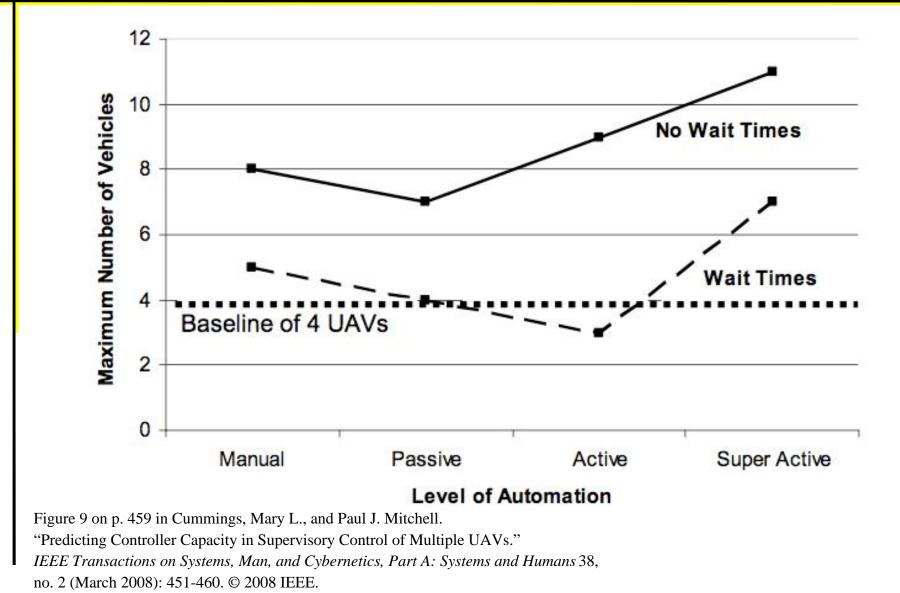
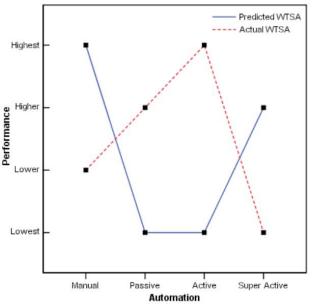



Figure 7 on p. 458 in Cummings, Mary L., and Paul J. Mitchell. "Predicting Controller Capacity in Supervisory Control of Multiple UAVs." *IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans* 38, no. 2 (March 2008): 451-460. © 2008 IEEE.

Results – Fanout



Discussion

- Are there any analogs to other areas? Example: Personnel Management
- How do you account for the Wait Time phenomenon in a human-in-the-loop design?
- How valid is this experiment given the small sample size?
- How does complacency (WTSA) vary with training/total operating time/familiarity?
- Should a system architect specify a system that has an operator at 100% capacity? If not, why not and what level?
- Do you think the author confused WTSA with WTCR when the hypothesis for Manual Control was formed?

Figure 7 on p. 458 in Cummings, Mary L., and Paul J. Mitchell. "Predicting Controller Capacity in Supervisory Control of Multiple UAVs." *IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans* 38, no. 2 (March 2008): 451-460. © 2008 IEEE.

Discussion

- What is your opinion of the Request TOT function? Is it something that is useful and something you would use? How does the time dilation affect the results of the
- experiment?
- Do you feel there can be modifications to Figure 1?

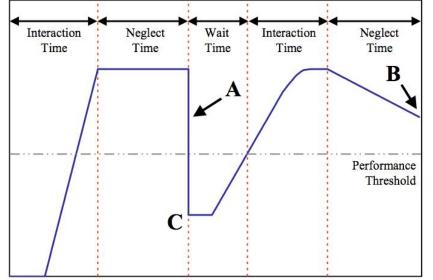


Figure 1 on p. 452 in Cummings, Mary L., and Paul J. Mitchell. "Predicting Controller Capacity in Supervisory Control of Multiple UAVs." IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans 38, no. 2 (March 2008): 451-460. © 2008 IEEE.

- ow would one measure WTCR and differentiate it from
- How does this paper compare to what is taught in the Human Factors course?

Reference

• Predicting Controller Capacity in Supervisory Control of Multiple UAVs, M.L. Cummings, *Member, IEEE, and P.J. Mitchell* 16.842 Fundamentals of Systems Engineering Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.