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Abstract

Current housing price prediction usually employs hedonic or repeat-sales models. The
objective is to build a statistical model which is more focused on statistic methods.
Neither ordinary nor regularized regression model haven been applied to the field of
real estate, even though they are rather well-known statistical procedures. This thesis
concludes lots of ordinary and regularized regression models. A theoretical review
was performed for these models, and Boston Housing data was used to evaluate their
performance. The results were found to be reasonable, from a statistical perspective.
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Chapter 1

Introduction

The major focus of this chapter is on explaining the motivation to model real estate

price, providing a comprehensive review of previous work and providing a big picture

about how the thesis is organized. Specifically, the necessity and advantages of real

estate price modeling is clarified in section 1.1; statistical thought and methodology

review are elucidated in section 1.2; finally, section 1.3 is the outline of the whole

thesis.

1.1 Significance of price modeling in real estate

Accurate real estate pricing is one of the key issues for countries all over the world.

Firstly, at the microeconomic level, real estate, no matter it is a house or an

apartment, is the most expensive expenditure that the majority of people will make

during their lifetime. Current market housing prices may cause people to be misled

by actions of sellers and other bidders, such as price manipulation and shill bidding.

What's more, accurate price models are also desired by real estate agents, whose

objective is to sell houses both profitably and quickly. As it is unrealistic to achieve

both goals to a high degree, they want to find a balance between profit and speed.

A real estate pricing tool is of great help. The value of information in real estate

transaction to agents is analytically explained in Levitt and Syverson (2008) [33].

Secondly, at the macroeconomic level, real estate is closely related to the national
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economic trends and stability of the financial market. In the first place, as argued by

Fama and Schwert (1977) [17], Wang and He (2005) [58], inflation has something to

do with real estate prices. Real estate price has an effect not only on price level of

the whole market but also on people's savings behavior. And we all know that prices

and savings effect each other heavily. Generally, saving level becomes less with the

increase of retail price and people tend to have more savings if prices are lower. And

when saving proportion becomes too small and prices go up dramatically, gradually

inflation occurs. As a result, even though the influence that real estate price has on

inflation is not substantial in a short term of time, the effect is substantial in the

long run. In the meanwhile, Miller et al. (1988) [39] claims that real estate prices

have a certain effect on the monetary' exchange rate, taking the Japanese yen as an

illustration. They conclude that upvaluation of money and high real estate price move

hand in hand. So a comprehensive understanding of real estate prices is beneficial to

government, by allowing them to supervise and control the whole market effectively.

Finally, the real estate pricing issue also interests academic researchers, as real

estate data modeling is challenging and motivates new methodology which makes rel-

evant theory more complete and solid. Here is a list of famous literature regarding real

estate pricing index: textbooks by Brueggeman and Fishers (1993) [7], DiPasquale

and Wheaton (1996) [15] and Miles et al. (2000) [38] provide comprehensive topics in

real estate finance; Castle and Hoch (1982) [10] focus on farm real estate price, while

Geltner et al. (2013) [24] concerns commercial real estate; index-based futures and

option markets concepts is introduced to real estate by Case Jr et al. (1993) [9] and

studied further by Grenadier (1996) [29]; Hong Kong is taken as an example in Chau

et al. (2005) [11], while Geneva, Switzerland is analyzed by Hoesil et al. [31]; spatial

analysis is applied to real estate analysis by Pace et al. (1998) [44]; dynamics of real

estate is discussed in Case and Quigley (1991) [8]; the role of speculation in real estate

field can be found be Malpezzi and Wachter (2005) [36]; Yavas and Yang (2005) [60]

studies the strategic role of listing price in marketing; thin market real estate price

index is presented in Schwann (1998) [51]; Gilberto (1980) [26] investigates real estate

returns and equity; Geltner et al. (2003) [23] proposed appraisal smoothing to price
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discovery; Barlowe (1978) [4] investigate the economics in real estate; alternative real

estate building techniques are mentioned in Palmquist (1980) [45].

1.2 A Brief Literature Review of Real Estate Pricing

Methods

Since residential properties occupy a large proportion of single-family's wealth, accu-

rate measurement of real estate price indices attracts great attention to real estate re-

searchers and practitioners. Besides that, real estate properties frequently are treated

as investment portfolios candidates. Therefore, the prices indices of real estate are es-

sential for investors' decisions in risk hedging, performance evaluation and investment

strategy. However, infrequent transactions in real estate market make the predicting

of housing price much more complex compared with financial stock market.

The most popular methods to construct real estate assets price indices are divided

into two categories: a hedonic regression model (an adjusted-quality index) and a

repeat-sales model (a constant-quality index).

With the availability of housing transactions data, hedonic regression method

could be applied into real estate market, which first is used in automobiles industry.

Then due to the pioneering work done by Rosen (1974), the hedonic pricing method

starts to be widely adopted in real estate market.

Hedonic pricing model is an implicit pricing method, which evaluates and forecasts

the value of real estate assets by the implicit price of the key underlying characteris-

tics. Most researchers define the key characteristics as 'Structural characteristics', 'Lo-

cational characteristics' and 'Environmental characteristics'. Then lots of researchers

conjecture their own type hedonic pricing functions; nevertheless, all these functions

have a common pattern-that is-they all weight the set of key characteristics in some

function forms. And the assumption of key characteristics is of great importance,

which would determine the accuracy of price indices (Beamonte and Gargallo 2013).

During the past several decades, it has been widely acknowledged that hedonic re-
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gression modelling is appropriate to account for the important determinants of price

variation (Kain and Quigley 1970). The usual process of this method is by consid-

ering the changed characteristics and temporal variation to disaggregate the hedonic

pricing function components. A standard or quality-adjusted real estate price index

would then be constructed from the statistical results (Bryan and Colwell1982).

Groundbreaking paper written by Bailey, Muth and Nourse (1963) issues an al-

ternative method called as a repeat-sales method to estimate a constant quality real

estate price index. Since quality differences make prediction of price indices of real es-

tate market difficult, the repeat-sales method could avoid these difficulties to eliminate

quality differences by using prices at different points in time for the same property,

provided that property characteristics are unchanged between two sales. Therefore,

those properties that have changed substantially between two sales must be excluded

from data samples. The repeat-sales method has already become the most popular

approach to construct real estate price indices for its advantages. The power of this

method is that it could compare constant quality properties across different periods

and avoid characteristics selection and function form selection versus hedonic model

(Dombrow, Knight and Sirmans 1997).

1.3 The Problem of Existing Real Estate Price In-

dices Construction Methods and Present Status

of Related Research

Economists have long recognized that housing markets are geographically localized

(Case,Pollakowski and Wachter 1991). Therefore, real estate market price indices

are typically assumed to predict for certain geographic area within county area or

metropolitan area, which only valid for that particular area. Another crucial issue of

real estate market differing with financial market is assumption of imperfections in

real estate, (Geltner and Kluger 1998).

There are many other methodologies to construct real estate market price indices
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except for hedonic regressions and repeat-sales analysis (Englund, Quigley and Red-

feam 1998; Case and Quigley 1991). However, hedonic and repeat-sales models are

the fundamental of all other evolution models.

Unfortunately, Both of these two models have their own flaws.

Since the hedonic regression model uses data on a vector of key characteristics to

control property quality, this method needs large amounts of data across different pe-

riods. Then hedonic regression method would only be limited to construct real estate

price indices in some metropolitan areas. To obtain unbiased predictions of real estate

prices, it is critical to define both the set of key characteristics and hedonic functional

form correctly. Nevertheless, selecting the set of regression factors is subjective and

flexible because many attributes would have an influence on the transaction price of

housing (Clapp and Giaccotto 1992). Therefore, there are some criticisms of hedonic

pricing model, which mainly are referred to the estimation of hedonic pricing func-

tion. Halvorsen and Palmquist (1980) proposed that two aspects must be fulfilled to

guarantee the accuracy of price indices: 1) Inclusion of a correct set of property char-

acteristics in the regression; 2) Selection of appropriate functional form for estimating

equation. Lack of standard selection techniques may fail to include some influential

attributes in the function. Finally, large and costly data sets with actual sales prices

and property characteristics result in this method less appealing (Meese and Wallace

1991).

Due to the difficulty of accurately specifying the hedonic pricing model, some re-

searchers have issued the repeat-sales method to avoid the bias from an imperfect

assumed hedonic model, in the meanwhile, taken advantage of the constant-quality

controls by repeat transactions of the same property. The repeat-sales method could

avoid the differentiated characteristics of real estate properties by basing the price

index on sales price of the same property at different time, which means that real

estate properties of the selected sample would be transacted at least twice during the

supposed period. With the elimination of characteristics and pricing function selec-

tion, repeat-sales method has gradually dominated in establishing real estate price

indices. However the repeat-sales method also has some flaws. Since the selected
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properties must be transacted at least twice, those properties sold only once must be

discarded from the sample, which exclude the majority of transactions data. There-

fore, it fails to utilize the full information in real estate market, which may affect

the results. More importantly, even the remaining sample would be biased with the

fact that the attributes of the properties may change between two sale dates, such

as aging, replacement and rehabilitation. Although it may be able to eliminate those

physical characteristics that have changed between sales from statistical analysis, it

is difficult to identify properties whose locational attributes have changed (Case and

Quigley 1991).

1.4 Thinking Statistically

Statistics, as an important branch of Mathematical science, provides logical method-

ology to explore valuable information contained in data set, textbook Friedman et

al. (2001) [201 is a good resource to refer to. Even though there are numerous top-

ics being covered in the field of statistics, including survival data analysis (Cox and

Oakes (1984) [13]), time series analysis (Shumway and Stoffer (2008)[12]), regression

model (Neter et al. (1963) [42]; Myers (1990) [41]), functional data analysis (Ramsay

(2006) [49]), machine learning (Bishop (2006) [6]), Bayesian analysis (Berger (2013)

[5]) and so forth, they all follow the universal idea that the ultimate goal of statis-

tical procedures is to infer truth of the whole population from limited information

provided by a small proportion of all population, also called samples, with a certain

degree of confidence. Namely, statistical procedures trade in a little bit certainty of

results, seeking tremendous savings in time and energy to collect data, storage cost

and computation cost to analyze data.

Because of its tremendous power in delving into data deeply and dig valuable

information about the population out, statistics has been widely employed in numer-

ous fields, such as Finance, Biology information, Computer Science, Public Health,

Pharmaceutical industry, History analysis, Insurance science, Chemistry and so on.

Application to real estate is far away from mature enough, even though a certain
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amount of literature has taken efforts to combine statistics science and real estate

together: a five equation recursive methodology regarding prediction for US form

real estate is given in Tweeten and Martin (1966)[56]; time series method are utilized

to figure relationship between real estate and price out in Cheng et al. (2008) [121;

index created from sales prices of the same property at different times are considered

by regression model in Bailey et al. (1963) [3], and Quigley (1995) [48] investigate

the same topic by a simple hybrid model; econometric analysis in Straszheim (1975)

[53] provides a new prospective; statistical procedures in spatial analysis are applied

to real estate problem to recover spatial information by Roehner (1999) [50], Dubin

et al. (1999) [16]; outliers properties in terms of real estate prices are being detected

by Ashefelter and Genesove (1992) [1].

To the best of my knowledge, regression model, especially regularized regression

model has not been performed in real estate data analysis up to now, even though it

has been well developed by previous studies and been implemented in other scientific

and empirical fields: general aspects in regression model is stated by Mosteller and

Tukey (1977) [40]; model estimation and prediction in Fu (1998) [21]; variable selec-

tion techniques are given in Kuo and Mallick (1998) [32], Geveke et al. (1996) [25];

remedies for outliers are formalized in Lleti et al. (2005) [34]; regularized regression

models are argued by Tibshirani (2011) [55], Tibshirani (1996) [54], Zou and Hastie

(2005) [61], De Mol et al. (2009) [14], Owen (2007) [43], Wu et al. (2006) [59], Wang

et al. (2007) [57], Goodhill and Willshaw (1990) [27], Friedman et al. (2009) [19],

Polson and Scott (2012) [46] and so forth; overfitting issue and possible remedies are

discussed in Babyak (2004) [2] and Hawkins (2004) [30]; several literature including

Graham (2003) [28] and Farrar and Glauber (1967) [18] concern the illposed problem

called multicollinearity; Graham (2003) [28] applies regression methodology to eco-

logical problems; Mahon (1996) [35] utilizes regression techniques to geochemistry;

Price (1977) [47] solves an nonexperimental data problem by statistical regression

model.
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1.5 Motivation description

This thesis is motivated by a real estate data set in real practice, called Boston

Housing data, where 14 features, including median sell price of owner-occupied prop-

erties, crime rate by town, residential land zoned for lots over 25,000 sq.ft proportion,

non-retail acres proportion, whether or not bounds Charles River, nitric oxides con-

centration, average number of rooms, age index, distance to five Boston employment

centers, accessibility to radial highways index, tax rate index, pupil-teacher ratio,

black population index and lower status population proportion, are available for 506

US cencus tractors near Boston. One of the most straightforward information that we

what to extract from this data set is how property prices are affected by the other 13

features, i.e, how property prices can be predicted basing upon information contained

in the other 13 features.

Regression models, one of the most powerful tools in statistics, focus on learning

the relationship among multiple variables statistically by coming up a functional rela-

tionship between two or more features such that the feature that people care mostly

can be predicted from the other or the others. As mentioned above, the scientific

goal here is to achieve accurate enough predictions of median property price of tracts

basing upon all approachable features, so regression model in statistics science is one

of the most reasonable solvents for this problem.

Even though the most simplest version of regression model works pretty well in

most circumstance, it suffers from several severe drawbacks, such as a certain amount

number of samples are required, multicollinearity, over-fitting and other illposed prob-

lems may occur and make regression model almost useless, in terms of prediction

power, and so forth. Under circumstance like these, a more advanced version of re-

gression model, regularized regression, is sometimes a better choice. As it overcomes

these challenges by trading in accuracy of estimation and yields a effective solution,

when one or more of these problems occurs. When analyzing the Boston Housing

data, regularization regressions are proposed to be candidate models that should be

considered, as multicollinearity, i.e, overlapped information may provided by the 13
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features with a high probability, for example, nitric oxides concentration and age in-

dex are probably positively correlated, as old houses are built with materials made

by old technology, such that they are more likely to contain more harmful chemicals

then newer properties.

1.6 Outline of my thesis

In this section, a big picture of the whole thesis is listed. The following chapters will

be presented in the following order:

Chapter 2 is the theory part, it introduces regression model and lists all rele-

vant topics that we may meet with during our implementing process: how regression

model can be formally built by mathematical formula, stimation methodology for

unknown values in our model, how the estimated should be utilized to provide useful

information, how to select variables among all provided variables, especially when

the number of variables are extremely large and potential challenges in regression

model are discussed in section 2.1; regularization techniques, namely, Ridge regres-

sion, LASSO regression and Elastic net, are also introduced with detailed argument

about how each of them can be implemented in section 2.2; finally, model diagnosis

for assumptions of regression model, which plays a key role in validating our model,

is also discussed thoroughly in section 2.3.

Chapter 3 is the data modeling part, where the whole statistical modeling pro-

cess is recorded with great details: data analysis procedure starts with numerical

and graphical exploratory analysis, following the tradition in statistics; next variable

selection process and estimating results for linear regression model are offered; in the

meantime, diagnosis plots and interpretation of fitted regression model come after

that; finally, prediction performance for ordinary regression and regularized regres-

sion are compared, regarding to estimation power and prediction power defined in

Chapter 3.

Chapter 4 is the summary part, where conclusions are made to summarize ma-

jor results achieved in this project and several future work are suggested based on
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comprehension of this problem.
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Chapter 2

Methodology

As the scientific goal of our project is to help people in real estate market, both sellers

and buyers, to achieve statistically accurate predictions of trading prices basing upon

all approachable features, regression model in statistics science is one of the most

reasonable solvents for this problem. The underlying idea of regression model is

to come up a functional relationship between two or more features such that the

feature that people care mostly can be predicted from the other or the others. The

whole chapter here presents theory of regression formally by introducing traditional

regression in section 2.1 and arguing several regularization techniques in section 2.2.

2.1 Traditional regression model

It's well-known that the concept of regression was initially introduced by Galton,

when he focused on analyzing the inherit behavior of sweet peas in the year of 1894

[22]. Since then, a vast of literature pointing at investigating different aspects of

regression model has been providing by researchers and practitioners. The review

papers by Stanton et al. (2001) [521 and Barnes (1998) [3] go through the historical

development of regression briefly and textbook by Neter et al. (1996) [42] offer an

comprehensive prospective of regression model in detail.

Even though there are different kinds of regression model, including linear re-

gression, non-linear regression and generalized regression family composing of logistic
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regression and Poisson regression, we will discuss linear regression model merely in

this the several following sections, not only because that linear regression is the most

basic and popular one, but also it is the most convenient model among those who can

handle continuous quantitative variable 'price'.

2.1.1 Formal model description

First of all, we introduces some notations and statistical terms: the feature that we

want to predict is called response variable, denoted as Y, while all other features are

predictive variables, denoted as X1, ... , X,, i.e., we believe p features X1, ... , Xp are

mainly responsible for determination of Y. However, it's apparent that X1 , ... ,Xp

cannot explain changes of response variable Y thoroughly, so a random error term

E should be added to the model to represent all the other features that may affect

values of Y. Then theoretical linear regression model is

Y = N + -1X1 + ... + OPX, +

where Y and X1, ... , X, are given constants in the problem; 0o, ... , #3 are unknown

parameters that we want to estimate, and they play an essential role in regression,

as we will be able to make predictions by our model, once we have their estimates; E

are usually assumed to be Gaussian(O, a'), the most common statistical distribution

that is able to model real data with a high degree of accuracy and is easy to perform

statistical inference with.

For the linear regression model formalized above, we should interpret mean-

ings of parameters po, ... , /, as follows: #j, j = 1, ... , p quantifies the expected in-

creases of Y when Xj increases by one measurement unit, given all the other fea-

tures X1, ..., Xj_ 1 , X I, ... Xp stay the unchanged; /0 equals the expected value of Y

when all predict variables are zero. Based on this knowledge, the following facts are

straightforward: feature Xj doesn't have any influence on the response variable Y,

if and only if #j = 0; positive #% reflects positive relationship, i.e., value of Y will

be higher if the corresponding value of Xj is larger; similarly negative #j indicates
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negative relationship between Y and Xj.

2.1.2 Estimation of parameters

All relevant unknown parameters in linear regression model are coefficients #0, ... , f3
and a, variance of random error. And they are required to be estimated in order

to implement our model meaningfully. Following the rule of thumb in statistics, we

use lower-case letters to represent sample. Let's assume we totally have n identically

independently distributed samples, (yi, x 1 , ... , xpi) for i = 1, ... , n, i.e.

wherepY= (y=, ...,()T,3= ( 0,f31,...,/3,)T,g= (i, ... ,En)Tand matrix x (x, .... ,)

with xi = (X1i, ... , x)T.

According to common sense, we hope that our estimated response vector y = X0

as close as to the true response vector y as possible, i.e., # minimizes

|Y-Xf112 ('- T(V -O)

Matrix and vector differentiation yield the result = (xTx)-xTY instantly. This

algorithm is called Lease Square Estimate (LSE; Mardquardt (1963) [37]).

As for an estimate of a, a measure of inconsistency between observation ' and

estimation y, is found to be

&2 ._ ' __________0_a -=
n - (p+ 1)

Once appropriate estimates for all parameters in our regression models are allowed,

we can next utilize it to make prediction for any new subjects.
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2.1.3 Prediction schema

In order to make predict yPred for a new subject, our model requires (xye", ... , x"ew)T

are all given constants, then the naive predictor

pred =xe,.. nw

has been proven to be the best linear unbiased predictor (BLUP) of y given the fact

that (x1 , ..., x,) = (Xnew , Xfnew)T. Note that the statistical term 'unbiase' means

that expectation of yPred equals to its true value, i.e., the predictor is rather precise.

2.1.4 Selection of variables

In subsection 2.1.1-2.1.3, we develop our analysis basing on fact that we have get a

good knowledge of which predictor variables should be included in our linear regression

model. However, in real practice, such as our data analysis in section 3, we usually

have no idea about which features should be taken into account, even though relevant

background may provide us some useful points. Consequently, statistically reasonable

procedures should be employed to perform selection of variables before fitting the

model.

First of all, criteria should be chosen to quantify the quality of different models.

MSE, AIC and R2 are three of the most commonly used statistical rule, where

MSE = SSE _ (g-xf)T(Y-x4)
n-(p+l) n-(p+l)

AIC = nlnSSE-nlnn+2p

SSE
(*- Y)T( y)

As smaller SSE value indicates better models, we can easily find that we should

choose model with small MSE, small AIC and large R2 respectively.

Next, we can start to conduct variable selection. The most self-evident and ac-

curate method is that we fit regression model on all possible subsets of predictor

variables and choose the one that yield smallest AIC value, if we use AIC criteria as
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an example. This is often referred as 'Best' subsets algorithm. However, this method

will be rather time-wasting, when number of predictor variables are extremely large.

Under this circumstance, we could get a balance between accuracy and efficiency by

adopting one of the following three procedures: forward stepwise algorithm, backward

stepwise algorithm and hybrid selection algorithm.

To be more specific, for forward stepwise algorithm:

1. For each of the potential predictor variables Xi j = 1, ... , W, a linear regression

model containing only intercept and Xj is fitted, then the predictor variables

with the largest t* - (this is a statistic for testing whether or not #3 = 0)

value is retained in the model. Let's denote it as Xri.

2. Next, the routine now fits linear regression model with intercept, X,, and one

of the remaining W - 1 variable. Similarly, we choose the candidate who has

the largest t*, for j = 1,.., r1 - 1, r1 + 1, ..., W. Suppose Xr2 is added into our

model.

3. After step 2, we want to check if any of the other variables that have already

been in the model should be deleted by calculating P-value of statistic and

compare it with nominal significance level a (often assumed to be 0.05). If

the P-value is larger than a, this variable is retained and we move forward;

otherwise, it is deleted and we keep going.

4. We now examine which variable is the next candidate to put it, then examine

whether the candidate to remove should be taken out, and so on until no further

variables can either be added or removed.

When it comes to backward stepwise algorithm, the fundamental intuition is the

same as forward stepwise algorithm, except that we start with the largest model:

after fitting regression model with all potential predictor variables Xj, j = 1, ... W, we

identify the predictor variables with the largest P-value for testing the null hypothesis

that #3 = 0 against the alternative #3 # 0, then if this P-value is larger than pre-

specified level a, we remove it; otherwise, selection is stopped and we should use
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current model. This process continues until no further predictor variables can be

deleted.

These two traditional variable selection procedure has the advantage of quick

implement, however, they have been shown to have some drawbacks: firstly, it's

possible for them to miss the 'optimal' model, as they only add or deleting one

variable at a time; secondly, they tend to select models that are smaller than ones

that are desirable for prediction purposes; finally, there is no way that we could

control which variables can certainly been selected, so they may not capture features

of interests appropriately and are not really helpful investigate the problem of interest.

To overcome these disadvantages, a hybrid selection algorithm, named Bidirectional

elimination, offers another option. It tests variables of included and excluded at every

single step.

2.1.5 Potential problem

Even though all assumptions for linear regression model, including linearity relation-

ship, identically independently distributed Gaussian random errors, are satisfied, we

may still be faced with some technical difficulty, when one or more of the following

situations occur.

1. Multicollinearity, namely two or more predictor variables are highly linearly

correlated (correlation coefficient levels are greater than 0.7), is widely believed

to make estimation of coefficients 3 change erratically to small changes in data

used to perform estimation, which is caused by the fact that highly correlated

variables contribute duplicate information.

2. Small number of observations, n < p, also rises challenges to regression model.

Using a smaller observations to estimate a larger number of unknown parameters

is unapproachable not only mathematically but also commonsensibly. Under

this circumstance, traditional regression model cannot be fitted appropriately.

3. Overfitting is another severe problem when it occurs, as the model fits the
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provided observations perfectly and predictions for new subjects are not reliable.

And then the fitted regression model is almost useless for prediction purposes.

Among all the possible remedy for these problems, the most regular one is regu-

larized regression, which will be discussed in detail in section 2.2.

2.2 Regularized regression

Regularized regression model is motivated by the phenomenon that some elements

of the estimated coefficients are extremely large, when one or more ill-posed prob-

lems, including multicollinearity, small sample size n and overfitting, arises. The

core intuition behind regularized regression is control the magnitude of coefficients

3 in addition to minimization of SSE = - xf)T(i - x/) by introducing certain

mathematical formula to penalize size of 3, i.e., we want to minimize

SSE + APenalty() = )- - x) + APeal()

where A is a positive parameter to quantify the size of penalty and Penalty() is an

function of 0. And various choice of function Penalty() results in different regularized

regression model.

2.2.1 Ridge regression

Ridge regression is proposed by various researchers in different contexts and became

well-known after Andrey Tikhonov published his paper in 1977 and David L. Phillips's

paper came out. So the penalty term is also referred as Tikhonov Phillips regulariza-

tion.

In Ridge regression, L2 norm of in R2 vector space is employed in the penalty

term,

APenalty(3) = AH|13 =112 J=
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and instead of minimizing SSE,

SSE+A||/||1 =SSE+A 13

is our target function to minimize.

Mathematical computation similar to the differentiation of vector and matrix tech-

nique used for ordinary least square estimation, we have

fridge = (xx + AI)-xTy

where A, estimate of the biasing constant A, plays an important role in balancing the

size of SSE and magnitude of 3. It can be usually obtained by one the the following

two procedures:

1. k-fold cross-validation: firstly, the whole sample should be divided into k groups

with equal size randomly; we next specify a sequence of candidate A; then for

any given A0 in the sequence, we use all samples except ones in the first group

to fit ridge regression model with parameter A0 , then we predict response values

of using data in the first group, obtaining a error measure SSE 0 ,l; we follow

the same process and go through all groups, achieving SSE)-,1, ... , SSE,- and

their mean value MSSEO is a measurement of error for A0 . After calculating

the error term for all A in the sequence, we determine A equals to the one with

smallest error values.

2. The second method is based on the ridge trace and the variance inflation factors,

which is a judgmental procedure. The rule is that one should choose the smallest

value of A, where regression coefficients / first become stables in the ridge trace

and the variance inflation factors have become sufficiently small.

2.2.2 LASSO regression

LASSO regression comes after ridge regression and is proposed by Tibshirani (1996).

He argued that L' norm of 3 provides an alternative solvent. Then the penalty
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function is now

APenalty() = AH,6 |1 = AZE _ 3jI

and our goal is to find 3 such that

SSE + All3I = SSE + AZE>I I

is minimized.

Similarly, parameter A controls strength of penalty: if A = 0, it returns back to

linear regression model; if A = oc, all coefficients are zero.

The explicit formula for the estimate of 3is found to be

,3(LASSO) = (0j - -)+sgn[oj]

where /3 comes from ordinary least square estimate and sgn(x) = 1 if x > 0; sgn(x)

0 if x = 0; sgn(x) = -1 otherwise. To implement this estimate, A is required to be

specified ahead and the k-fold cross validation approach discussed in Ridge regression

section is also applicable here.

There is an alternative method to get 0. for LASSO. A so-called Orthogonal Match-

ing Pursuit (OMP) method provides the estimate algorithm:

1. Set r= 'and, =0 forallj= 1,...,p

2. For i = 1, ... ,n: set xi = argmaxx,/xI < r, xj > 1; set #3 = argminrt ,Ir -

Xfy11 2 + Al7I; set r = r - xji3

3. Return 3

As for penalty A, it can be estimated by the k-fold cross validation approach

discussed in Ridge regression section.

31



2.2.3 Elastic net regression

Elastic net regression is a hybrid of Ridge regression and LASSO regression. Being

firstly investigated by Zou and Hastie (2005), Elastic net regression assumes the

regularization term equals

APenalty() A'11 --'11+ Aa 1|11, = A' -P 10? + AaZ1E |

and function

2 E a e
SSE + A 2 |#| 2+ AaH/j|fl =SSE A2z = 3+ AaZ 3#

with parameters 3, A and a is our target function to minimize. And a has the value

between 0 and 1 and it quantifies the proportion L' norm regularization; the function

of A is the same as those in Ridge regression and LASSO regression.

The explicit formula for the estimate of 0 is found to be

Oj (Elastic) = 21 + Aa

where ,3 comes from ordinary least square estimate and sgn(x) = 1 if x > 0; sgn(x) =

0 if x = 0; sgn(x) = -1 otherwise. To implement this estimate, A and a should be

estimated by k-fold cross validation approach discussed in Ridge regression section is

also applicable here.

2.2.4 Comparison argument

Ridge regression is regularized by L 2, which controls the magnitude of parameters 0,

efficiently. In real practice, as Ridge regression shrinks the coefficients towards zero,

it performs rather well when there is a subset of true coefficients that are small or

even zero, while it does not as well when all of the true coefficients are moderately

large.

As the nature of the L1-typed penalty, some coefficients in LASSO regression
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are shrunken to zero exactly, which makes LASSO substantially different from Ridge

regression, as it is capable of performing variable selection and regularization at the

same time. This feature becomes extremely helpful to introduce sparsity in regression

model.

Elastic net combines superiority of Ridge regression and LASSO regression. But

it introduces two tuning parameters, which not only makes the model more complex,

but may also make the computation more expansive.

When solving real world problems, we cannot say which one is the best all the

time. It depends on the question of interest and property of data.

2.3 Model diagnosis

After variable selection procedure and fitting either linear regression model or one of

the regularized regression model with selected variables, certain examination should

be executed to confirm the validity of our model, both numerically and graphically.

Basically, there are five assumptions in both ordinary linear regression model and

regularized linear regression model: regression function, the functional relationship

between response variable and predictor variables, is linear; all random errors Ej,

i = 1, .., n are normally distributed; variance of random errors are the same; random

errors, consequently, response variables yi, are statistically independent, namely, the

value of yjl has no effect on value of Yj 2 , as long as j, 1 j2. In this section, we will

discuss relevant examination techniques for these assumptions one by one.

Before talking about the techniques formally, we firstly introduce an essential

statistical concept. As all the model assumptions are related to random errors in a

certain degree, so the sample version of random errors, residuals

ri = yi - 9i = yi - Xi3

undoubtedly serve a key part in model diagnosis.
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2.3.1 Linearity of regression function

For the linearity assumption, a scatter plot with fitted response Qi represented in

x-axis and corresponding residuals in y-axis, called residual plot, is the most regular

graphic diagnostic method. If the points scattered randomly around the horizontal

line y = 0 without any systematic pattern showing up, linear regression function is

then an reasonable assumption; otherwise, the fitted linear function might provide

misleading predicted information. The Prototypes of linear and nonlinear residual

plots are provided in Figure B-1.

2.3.2 Normality assumption

Normality assumption in regression model can be justified by two methods, one graph-

ical method and one formal statistical testing method.

The graphical technique is Q - Q plot, where Q is short for quantile. In statistics,

for any constant a between 0 and 1, a-quantile is the number so that the probabil-

ity that the variable greater than this number equals to a. When checking if two

variables have the same distribution, we can confirm this argument by examining if

the quantiles for a E [0, 1] are all the same. So in Q - Q plot, where x-axis present

all quantiles for Gaussian distribution and y-axis present all quantiles of our residu-

als, if we scatters form a straight line, then normality assumption is satisfied. The

Prototypes of Gaussian and non-Gaussian Q - Q plots are provided in Figure B-2.

The graphic technique is very convenient to implement and provide a relatively

correct general idea, however, sometimes, practitioners also take efforts to pursue an

non-subjective answer. Several famous normality test, such as Kolmogorov-Simirnov

test and Shapiro-Wilk test and so forth, are suitable choices. More details of these

tests can be found in any regression textbook.

2.3.3 Homogeneity of variance

We will focus on the graphical method in checking the homogeneity assumption, even

though several formal hypothesis testing procedures (such as Brown-Forsythe test,
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Breusch-Pagan test and so on) are available.

We again use exactly the same residual plot mentioned in section 2.3.1. And if the

residuals distributed randomly within a horizontal band around the linear y = 0, we

claim that the variances of random errors are constant; otherwise, homogeneous vari-

ance is violated. Again Figure B-3 provide prototypes of constant and non-constant

residual plots.

2.3.4 Independence among samples

Independence among subjects are generally related temporally and (or) geographi-

cally. Let's use time dependence detection as an example for illustration purpose. A

scatter plot with 'time' being x-axis and 'residual' being y-axis is the major tool here.

If there is an apparent systematic pattern in the scatter plot, then the samples are not

independent; otherwise, we have confidence to claim that samples are independent.

2.3.5 Outliers detection

A slight different version of residual plot works well in terms of detecting possible

outliers. The y-axis is now the normalized residual, i.e., ri;normalized = ar(r)7

instead of the original residuals. And we outliers are those subjects with absolute

normalized residual greater than 4.

In chapter 3, we will apply all statistical theory presented here to our 'Boston

Housing' data set.
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Chapter 3

Analysis of Boston Housing Data

After stating relevant theory about regression, all these data modeling techniques are

now applied to our Boston Housing data set, seeking statistically reasonable solution

to the fundamental questions in real estate market: 'What factors should be taken

into consideration when predicting the price of houses?' and more importantly, 'How

could rational prediction be predicted basing upon these factors?'

The whole chapter will be organized as follows: in section 3.1, preliminary anal-

ysis is performed by offering a detailed description of our data set and conducting

numerical and graphical exploration in section 3.1; then ordinary linear regression

model fits our data in section 3.2; the effectiveness of general linear regression model

is examined in the next section; finally, regularization discussed in section 2.2 is added

to general regression on section 3.4.

3.1 Preliminary Analysis

3.1.1 Data set description

This data set is consisted of housing data for 506 US census tracts in Boston area, with

14 features provided for each tract: variable 'crim' is per capita crime by town; 'zn'

means proportion of residential land zoned for lots over 25,000 square foot; 'INDUS'

is proportion of non-retail business acres per town; 'CHAS' is an indicator variable

37



about whether the tract bounds Charles River; 'nox' gives nitric oxides concentration

measured in parts per 10 million; 'rooms' equals average number of rooms per house;

'age' represents how many of non-rental unites were built before the year of 1940;

'distance' is a weighted distances to five Boston employment centers; the next feature

is index of accessibility to radial highway and named as 'RAD'; 'TAX' gives full-value

property-tax rate every $ 10,000; 'PTRATIO'is ratio of pupil and teacher in town;

'B' is related to proportion of blacks (denoted by BK) by B = 1000(Bk - 0.63)2;

next, 'LSTAT' announce percentage of lower status people per town; finally 'MEDV'

shows median value of owner-occupied houses in unit of $1,000.

3.1.2 Numerical and graphical exploration

Exploring the data set in advance before acting data modeling provides more insights

and is definitely beneficial for analysis afterwards.

Firstly, numerical summaries in statistics, including mean, standard deviation and

five number summary (minimum, Q1, medium, Q3, maximum) are helpful to provide

distribution feature of each of the 14 variables respectively. Table A-1 report these

summary statistics: 'CRIM' is highly skewed to the right, i.e., crime rates of most

tracts are rather small (75% of them are between 0.00632 % and 3.677083 %), while

there are several extremely high values (maximum is as high as 88.9762 %); 'ZN'

also skews to the right with a high degree; distributions of 'INDUS', 'CHAS', 'NOX',

'RM' and 'AGE' are relatively symmetric; 'DIS' skewed to the right a little bit; 'RAD'

skewed to the right moderately; 'TAX' is symmetrically distributed; distribution of

'PTRARIO' is rather symmetric; 'B' skewed to left heavily, namely most tracts have

Black race percentage well different from 0.63, while a few tracts have approximate

63 % black people; 'LSTAT' is skewed to the right; 'MEDV' is skewed to the right a

little bit but it is rather close to a symmetric distribution.

After exploring each variables separately, investigation of their pairwise relation-

ship is conducted by calculating correlation coefficients, a numerical constant that

quantifies strength of linearity between two random variables, with larger absolute

value indicating higher level of positive or negative linear relationship. Table A-2
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presents correlation coefficients with high values and it can be found that 'INDUS',

'NOX', 'RM', 'AGE', 'DIS', 'RAD' and 'TAX' are linearly correlated heavily. So

multicollinearity is an important point that we need to keep in mind when fitting

regression models. Scatter plot matrix in Table B-3 also justifies this argument from

an more straightforward perspective, as it can be seen clearly that there are strong

pairwise linear relationship among those variables.

3.2 Fit general linear regression model

In order to check the effectiveness of our fitted model, we divide our total 506 sam-

ple into two groups: the first group contains 337 randomly selected tracts (takes up

roughly 2/3 percent of 506) and called training data, on which estimation of parame-

ters in proposed model is based; the remaining subjects in the second group and they

are testing data, with which the predict power of the fitted model can be evaluated.

Note that this partition methodology and the number 2/3 are almost rule of thumb

in statistics and machine learning field.

This project aiming at building a statistically significant model to predict median

price level of any new census tracts basing upon one or more factors among the 13

features mentioned in our data set. As a result, regression model seems to be a perfect

scientific tool to meet our need. It can be noted immediately that 'MEDV', median

value of owner-occupied houses in unit of $1,000, is the response variable and all the

other 13 variables are candidate predictor variables.

Detailed model building process and prediction results are demonstrated in this

section as follows.

3.2.1 Relationship exploratory

Figure B-4 is a collection of scatter plots of 'MEDV' and each of the 13 candidate

predictor variables basing on our training data ('CHAS' is omitted as it is a categorical

variable which only have values 0 and 1, i.e., scatter plot will be of little help for

analyzing and a side-by-side histogram is plotted to explore the effect of 'CHAS'
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on 'MEDV' in Figure B-5) and it can be found: 'INDUS', 'NOX', 'RM', 'TAX',

'PTRATIO' and 'LSTAT' have a clear linear type relationship with 'MEDV'; even

though the linear relationship between 'MEDV' and 'CRIM', 'ZN', 'AGE', 'DIS',

'RAD' and 'B' correspondingly are not as strong as those argued above, they are still

strong enough to justify that linear terms are reasonable choices in the regression

function. What's more, Figure B-5 illustrates that shape of distributions of price for

tracts bound Charles River and those do not bound are rather close and the group

with 'CHAS'=1 shifts to higher value direction by about $5, 000. As a result, linear

'CHAS' term is also reasonable.

Based on all argument above, it can be confidently claimed that linear regression

model is a rational start for the modeling process.

3.2.2 Variable selection

As noted in section 3.1.2, several variables are highly linearly correlated and may

contribute duplicated information to regression model, variable selection is a required

step that we need to take.

Implementing forward stepwise, backward stepwise and hybrid selection proce-

dures presented in section 2.1.4 on the training data set results in following final

linear regression models:

1. Forward stepwise selection: all 13 predictor variables should be in final linear

regression model.

2. Backward stepwise selection: 'CRIM', 'ZN', 'CHAS', 'NOX', 'RM', 'DIS', 'RAD',

'TAX', 'PTRATIO', 'B' and 'LSTAT' are included.

3. Hybrid selection: 'CRIM', 'ZN', 'CHAS', 'NOX', 'RM', 'DIS', 'RAD', 'TAX',

'PTRATIO', 'B' and 'LSTAT' are included.

Note that backward selection and hybrid selection point at the same final model,

where 'INDUS' and 'AGE' being excluded, while forward selection includes all the

predictor variables. Both of them will be regarded as candidate final models.
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The 'Best' subsets algorithm in section 2.1.4 is also acted and corresponding out-

comes are summarized in Figure B-6. x-axis in the figure lists names of all the 13

predictor variables, y-axis provides R2 (a popular measurement for quality of regres-

sion models mentioned in section 2.1.4) for the best models with number of predictor

variables equals to 1, 2, ..., 13, white blocks mean that the corresponding variables are

not in the model. It is not hard to noticed that full model, model that omits 'AGE'

and model that excludes both 'INDUS' and 'AGE' are the best models in terms of R 2

(they all reach the largest 0.79 value). Then the model that excludes both 'INDUS'

and 'AGE', coinciding with results from backward selection and hybrid selection, is

preferred, as simpler models tend to be better in statistics and they tend to do better

jobs when being generalized to new data.

Given all these analysis, the final regression model can be announced:

for i = 1, ... , 337, where x1i are 'CRIM' values within training data; x 2i are 'ZN'; X&s

mean 'CHAS'; x 4 i represent 'NOX' values; X5 i denote 'RM'; X6 i are values of 'DIS';

X7 are 'RAD'; 'TAX' is denoted by Xsi; x9i provide 'PTRATIO'; x10i are 'B'; 'LSTAT'

is featured by x11 i.

3.2.3 Model fitting, diagnosis and remedy

Ordinary lease square estimation method is adopted to fit the training data, summary

of fitted results is offered in Table A-3. Indicated by the fitted results, it can be found

that: median value of owner-occupied homes in $1000 increases with the increase of

proportion of residential land zoned for lots over 25,000 sq.ft, the fact that it bounds

Charles River, number of rooms, accessibility to radial highways, dispersion between

black population ratio to 63%, while median price will decrease, when crime rate is

higher, nitric oxides concentration is denser, distance to employment centers is longer,

tax rate is higher, pupil and teacher rate is higher, lower status population ratio is

higher. As all these results are consistent with common sense, the model fitting are
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quite reasonable from this point of view.

Next, the relative importance for each Predictor is investigated, with results be-

ing reported in Table A-4: the proportion of variance of response variable explained

by the final linear model with 11 selected predictor variable is 78.57%; using rela-

tive importance calculated by the first method '1mg' as an example, 'LSTAT', 'RM'

and 'PTRATIO' are of the greatest significance to the real estate price, and 29.18%,

26.62% and 10.92% are their index of importance respectively; the remaining 8 pre-

dictor variables affects variation of median housing price at similar level of degree,

around 3 - 5%.

Another substantial fact is that the so-called residual standard error is 4.44, which

indicates that the difference between estimated median value xi/3 and its true value is

$4, 440 on average. Note that residual standard error can be treated as a estimation

error measurement for regression models.

After interpreting the statistical output of our final regression model, appropri-

ateness of our final model for training data sets is now being checked. All graphical

diagnosis can be found in Figure B-7. Given these plots, it can be seen that: lin-

ear regression function, constant variance and normality assumptions are met by our

training data set at high level, as residual plots are relatively random scattered within

a horizontal band around 0 and Q - Q plot has the shape of a straight line; however,

an outlier, the 3 6 9th observation in original data set, is detected. After taking a close

look at this observation, I decide not to delete this subject, as there is not apparent

evidence to suggest that this subjects is not recorded correctly and deleting it may

lose some important point.

3.2.4 Prediction result

Now let's apply the estimated final model to the testing data set to evaluate the

prediction power of the final linear regression model. Visualization of prediction

results can be found in Figure B-8. The predicted price line and true price line are

close to each other, even though they do not coincide perfectly. Numerically, the
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mean predictive error (MPE) should be calculated by the following formula

MPE -"Znt*(y- - Dred) 2

MPE = ~1 *
ntest

which serves as a numerical measurement of model's prediction power. The MPE

here has the value of 29.06.

3.2.5 Regularized regression

In this part, regularized regression explained in section 2.2, including Ridge regression,

LASSO regression and Elastic net, are conducted to see if the final linear regression

model can be improved by introducing regularization term.

First of all, for Ridge regression, cross-validation technique is employed to find the

optimal regularization parameter A among sequence 0 to 10 with increment 0.001, re-

sulting in A = 3.149. This result is also demonstrated by Figure B-9, the functional

relationship between A and cross-validation error term GCV, with x-axis denoting

value of A and y-axis representing cross-validation error term GCV. Using this regu-

larization value, we fit our final regression again. Visualization of prediction results

can be found in Figure B-10. The mean predictive error (MPE) is 28.92, which is

improved a little bit than regular linear regression model and the residual standard er-

ror found to be is 3.89, which indicates that the difference between estimated median

value xi# and its true value is now $3, 890 on average.

Secondly, cross-validation result (recorded as Figure B-11) for A sequence 0 to 10

with increment 0.001 suggests that no L1 type regularization is the best, i.e., A = 0

yields smallest cross-validation error. However, for illustration purpose, we set A

equals to 0.01 and use it to fit LASSO regression model. Prediction curve and true

curves are given in Figure B-12. MPE for LASSO regression is 29.00 and the residual

standard error is 4.41. Even though, there is a little bit improvement for regression

model, by using LASSO regularization term, the improvement is smaller than Ridge

regression. This outcome makes a lot of sense, as LASSO is mainly good at modeling

regression model with sparsity in coefficients and our problem doesn't have sparse
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features.

Finally, in order to fit Elastic net model, similarly, regularization parameters A and

a are required to be approximated in advance. However, instead of one dimensional

cross-validation utilized in Ridge regression and LASSO regression, two dimensional

cross-validation gets involved for Elastic net model. In order to search for optimal

values of A and a simultaneously, for each a value in sequence {0.01, 0.02, ... , 0.99},

cross-validation error term cmv for each A in sequence {0, 0.001, 0.002, 0.003, ... , 10}

should be calculated , then among the 99001 combinations of different a and A, the

one with smallest mean error measurement is chosen, i.e., a = 0.42 and A = 0.004.

Visualization of this result is Figure B-13, a three dimensional plots displaying mean

errors for each combination of a and A in two corresponding pre-specified sequences,

where a is denoted by x-axis, A is in y-axis and cross-validation error term CMV is

represented in z-axis. And it can be seen that (X, y) = (0.42, 0.004) minimizes value

of z approximately. Once these regularization parameters are determined, Elastic

model can then be fitted and corresponding prediction results can be achieved. True

curves and estimated curves are in Figure B-14 and the MPE for Elastic net model is

26.85 and the residual standard error found to be is 3.44, both of which are the best

among all models.

Given all argument above, it is clear that linear regression of 11 selected predictor

variables has the ability of providing statistical reasonable model fitting results that

are also sensible in terms of common sense: firstly, remember that in the fitted model,

median value of owner-occupied homes in $1000 are positively related with good fea-

tures, including proportion of residential land zoned for lots over 25,000 sq.ft, the

fact that it bounds Charles River, number of rooms, accessibility to radial highways,

dispersion between black population ratio to 63%, while median price is negatively

related with the remaining bad features; secondly, estimation power of the final re-

gression model, i.e., the residual standard error is rather small; finally, prediction

power of the final model, measured in terms of the mean predictive error (MPE) is

also within the reasonable range. As for regularized regression, they do introduce

smaller residual standard errors and MPE's, even though the improvements are not
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extremely big. And among the three regularization term, Elastic Net performs best,

with Ridge regressing being the next and LASSO being the last one. More discussion

about this results will be presented in the following chapter.
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Chapter 4

Discussion

In this final chapter, the whole thesis is summarized by the proceeding two parts:

remarks concerning the result of real data analysis conducted in chapter 3 serves as

conclusions in section 4.1 ; several possible future works regarding this project are

listed in section 4.2.

4.1 Conclusion

Based on the arguments in all previous three chapters, the following conclusions are

identical:

Firstly, model fitting result from linear regression method makes sense: after pre-

liminary statistical analysis by numerical and graphical examination, linear regression

model was proven to be logical methodology for analysis Boston Housing data; Next,

linear regression fitting results were reasonable enough, as interpretation of both the

estimated model and influence index are rational in terms of common sense; what's

more, different variable selection procedures were compared to ensure that our final

model was appropriate; finally, detailed model diagnosis, regarding all five assump-

tions, which are linearity, normality, independent observations, constant variance, no

outliers, was performed to validate our model.

Secondly, effects of adding regularization on the linear regression model varies:

Ridge regression and Elastic net both improve the original linear regression model
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in terms of average estimation error, i.e., residual standard error, and prediction

power, mean prediction error (MPE), while the improvement from Elastic net, the

hybrid of Ridge and LASSO regularization, was larger than Ridge regression. These

result make sense, as the Boston Housing data is of good statistical property: sample

size is 506, large enough for estimating 13 unknown parameters in the final model;

multicollinearity problem is not severe at all after 'INDUS' and 'AGE' being removed

from the linear regression model; over-fitting is not a problem for the Boston Housing

data. As a result, regularized regression, which is to fix these issues, will improve the

model by a rather limited level. Even though these improvements are kind of small,

the proposed regularized regression model is still meaningful: it did provide better

modeling results; it may yield significant improved results for other problem in the

field of real estate.

4.2 Future work

Some possible future works that are relevant to this project are listed below:

1. Extending linear regression model by other modern regularization term, such

as the new hybrid term offered in Owen (2007) [43j, could be implemented to

see if it provides better model fitting results.

2. The effect of partition into training data and testing data could be studied by

repeat the random partition process for a large number of times, for each parti-

tion, regression model should be fitted. Then examination about the variation

of fitted models should be able to answer this question appropriately.

3. Applying our methodology to other real estate data will be helpful to confirm

its effectiveness and generality.

4. The effect of partition into training data and testing data could be studied by

repeat the random partition process for a large number of times, for each parti-

tion, regression model should be fitted. Then examination about the variation

of fitted models should be able to answer this question appropriately.
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Tables
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Table A.1: Numerical description of 14 variables in the data set

variable mean standard deviation min Q1 medium Q3 maximum
CRIM 3.6135 8.6015 0.00632 0.082045 0.25651 3.677083 88.9762
ZN 11.3636 23.3225 0 0 0 12.5 100
INDUS 11.1368 6.8604 0.46 5.19 9.69 18.10 27.74
CHAS 0.0692 0.2540 0 0 0 0 1
NOX 0.5547 0.1159 0.385 0.449 0.538 0.624 0.871
RM 6.2846 0.7026 3.561 5.8855 6.2085 6.6235 8.7800
AGE 68.5749 28.1489 2.9 45.025 77.5 94.075 100
DIS 3.7950 2.1057 1.1296 2.100175 3.20745 5.188425 12.1265
RAD 9.5494 8.7073 1 4 5 24 24
TAX 408.2372 168.5371 187 279 330 666 711
PTRATIO 18.4555 2.1649 12.6 17.40 19.05 20.20 22.00
B 356.6740 91.2949 0.32 375.3775 391.44 396.2250 396.9000
LSTAT 12.6531 7.1411 1.73 6.950 11.36 16.955 37.970
MEDV 22.5328 9.1971 5 17.025 21.2 25 50
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Table A.2: Correlation matrix for high correlated pairs

INDUS NOX RM AGE DIS RAD TAX
INDUS 1 0.76365 -0.39168 0.64478 -0.70803 0.59513 0.72076
NOX 0.76365 1 -0.30219 0.73147 -0.76923 0.61144 0.66802
RM -0.39168 -0.30219 1 -0.24026 0.20525 -0.20985 -0.29205
AGE 0.64478 0.73147 -0.24026 1 -0.74788 0.45602 0.50646
DIS -0.70803 -0.76923 0.20525 -0.74788 1 -0.49459 -0.53443
RAD 0.59513 0.61144 -0.20985 0.45602 -0.49459 1 0.91023
TAX 0.72076 0.66802 -0.29205 0.50646 77.5 0.91023 1
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Table A.3: Summary table of fitted linear regression model

Estimate Std.Error t value p-value
Intercept 30.820901 6.138125 5.021 8.48e-07
CRIM -0.141173 0.037075 -3.808 0.000168
ZN 0.041071 0.014961 2.745 0.006385
CHAS 2.721785 1.002930 2.714 0.007006
NOX -13.623913 4.193561 -3.249 0.001280
RM 4.195958 0.463339 9.056 < 2e-16
DIS -1.510601 0.217961 -6.931 2.26e-11
RAD 0.328993 0.074892 4.393 1.52e-05
TAX -0.011903 0.003990 -2.983 0.003072
PTR.ATIO -0.963671 0.148467 -6.491 3.19e-10
B 0.013874 0.003193 4.345 1.87e-05
LSTAT -0.554977 0.054009 -10.276 < 2e-16
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Table A.4: Relative importance of each predictor variable in linear regression model

lmg last first pratt

CRIM 0.04247827 0.03974715 0.06303720 0.06472124
ZN 0.04237676 0.02065840 0.06071442 0.04983951
CHAS 0.02126913 0.02018964 0.01632610 0.01831275
NOX 0.05348607 0.02893342 0.08023018 0.09587225
RM 0.26619849 0.22481586 0.20552169 0.28811442
DIS 0.03729336 0.13167489 0.02593350 -0.10399738
RAD 0.03775266 0.05290042 0.06403365 -0.15652559
TAX 0.05751941 0.02439086 0.09394073 0.13291788
PTRATIO 0.10919639 0.11549472 0.11045553 0.14960897
B 0.04059905 0.05174211 0.04669215 0.05501827
LSTAT 0.29183040 0.28945253 0.23311484 0.40611769
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Figure B-1: Prototype of linear and nonlinear regression function residual plots
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Figure B-2: Prototype of normal and non-normal regression function residual plots
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Figure B-8: Prediction result from linear regression model
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67



0 0.2 0.4 0.6 0.8 1

80 -

60

40

I IX

4

1/

Y1 2

0
x1

Figure B-13: 2-D Cross-validation for Elastic net
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