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Abstract

The Karhunen-Lòeve (KL) decomposition provides a low-dimensional representation for random fields as it is optimal

in the mean square sense. Although for many stochastic systems of practical interest, described by stochastic partial

differential equations (SPDEs), solutions possess this low-dimensional character, they also have a strongly time-

dependent form and to this end a fixed-in-time basis may not describe the solution in an efficient way. Motivated

by this limitation of standard KL expansion, Sapsis and Lermusiaux, 2009 developed the Dynamically orthogonal

(DO) field equations which allow for the simultaneous evolution of both the spatial basis where uncertainty ‘lives’ but

also the stochastic characteristics of uncertainty. Recently, Cheng et al, 2013 introduced an alternative approach, the

bi-orthogonal (BO) method, which performs the exact same tasks, i.e. it evolves the spatial basis and the stochastic

characteristics of uncertainty. In the current work we examine the relation of the two approaches and we prove

theoretically and illustrate numerically their equivalence, in the sense that one method is an exact reformulation of

the other. We show this by deriving a linear and invertible transformation matrix described by a matrix differential

equation that connects the BO and the DO solutions. We also examine a pathology of the BO equations that occurs

when two eigenvalues of the solution cross, resulting in an instantaneous, infinite-speed, internal rotation of the

computed spatial basis. We demonstrate that despite the instantaneous duration of the singularity this has important

implications on the numerical performance of the BO approach. On the other hand, it is observed that the BO is more

stable in nonlinear problems involving a relatively large number of modes. Several examples, linear and nonlinear,

are presented to illustrate the DO and BO methods as well as their equivalence.

Keywords: stochastic partial differential equations; uncertainty quantification; high dimensions; stochastic

collocation; low-dimensionality; dynamical orthogonality; bi-orthogonality.

1. Introduction

Order-reduction schemes or reduced-order models (ROMs) have been a popular approach for the simplification

and analysis of high-dimensional complex systems across many scientific and engineering disciplines. For example

the stochastic framework in the analysis of fluid flows has been proven beneficial for the description of the dynamics,

energy interactions, and bifurcations in unstable fluid flows [1, 2, 3, 4], for the uncertainty quantification in CFD

computations [5, 6, 7, 8], as well as for the development of filtering methods for turbulent systems [9, 10, 11, 12].
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Schemes based on ROMs are essentially relying on the projection of the original system into a ‘suitable’ set of modes

representing important and essential components of the dynamics. This projection can be performed either with

respect to a spatially-dependent basis or with respect to a stochastically-dependent basis. For both cases, various

approaches and rules have been developed for the choice, computation, or improvement of these basis elements.

For the first family of methods (spatially-dependent basis) some of the most popular methods for the basis selection

include empirical criteria such as energy-based proper orthogonal decomposition (POD) (see for example [13, 14])

or more recently linear-operator-theoretic model reduction methods, such as the balanced POD [15, 16]. While these

have time-indepedent basis, a new reduced-order modeling based on approximated Lax pairs was proposed in [17] for

deterministic PDEs where the basis evolves in time with applications to progressive waves or front propagation. For

the second family of methods (projection to a stochastic basis) one of the most popular approaches is the Gaussian

closure (assumption that the solution has a Gaussian stochastic structure) which, however, has limited applicability

for problems where the non-Gaussian character is inevitable. For this case the employment of a polynomial chaos

basis and its variants may provide for many cases a reliable computational scheme [18, 19, 20, 21, 22, 23, 24].

Despite the success of these methods in many problems of practical interest there are important limitations asso-

ciated with them. On the one hand, methods relying on the selection of a spatial basis present important limitations in

problems with strongly time-dependent character where the basis employed may become irrelevant as time evolves.

Typical examples of problems belonging to this category are transient fluid flows even with a very small number of

instabilities (See Appendix in [25]). On the other hand, methods relying on a pre-selected stochastic structure suf-

fer from important limitations especially in problems with highly non-Gaussian structure or with strongly transient

stochastic characteristics.

Motivated by these limitations [26] followed an alternative approach for the solution of stochastic systems with

high dimensionality but whose response ‘lives’ in a low-dimensional, possibly time-dependent, stochastic attractor.

They adopt a redundant representation consisting of products of scalar, time-dependent, stochastic processes with

orthonormal, deterministic, spatiotemporally-dependent fields. For both the stochastic processes and the spatially-

dependent fields no particular structure is imposed and as it turns out such a representation has redundant character-

istics. Nevertheless, by carefully examining the geometric properties of this representation the authors were able to

illustrate the validity of a consistency condition, the dynamical orthogonality (DO) condition, which overcomes the

redundancy of the representation and leads to independent equations for all the quantities involved. These equations

(DO equations) consist of a deterministic PDE describing the evolution of the mean field, a set of deterministic PDEs

describing the evolution of the spatiotemporally-dependent deterministic basis, and a set of stochastic differential

equations describing the evolution of the statistical characteristics of the solution. The DO equations under appro-

priate constraints reproduce both the POD equations and the polynomial chaos equations. Adaptive strategies for the

addition and removal of basis elements were presented in [27].

Recently, [28, 29] adopted the same redundant representation used in [26] and by imposing an orthogonality

condition on both the spatiotemporal and the stochastic basis (Dynamical Bi-Orthogonality condition) derived an

independent set of equations describing the evolution of all the quantities involved (DyBO or BO equations). Although

in both works the same projections were employed (with respect to physical and stochastic space) the equations rely

on different conditions imposed to the representation. The aim of the current work is to examine the relationship

between the two sets of equations and compare their performance through systematic numerical tests.

More specifically, the main result of this paper is the derivation of a linear, time-dependent, invertible trans-

formation that (i) leaves the solution invariant, and (ii) transforms a BO solution to a DO solution and vice versa.
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Therefore, we prove that the BO set of equations is a reformulation of the DO equations. The second part of the paper

is the comparison of these two formulations at the numerical level and the discussion of their relative advantages and

disadvantages. The structure of the paper is as follows. In Section 2 we briefly review the DO and BO representa-

tions and their corresponding evolution equations. In Section 3, we prove the equivalence between the BO and DO

along with the matrix differential equation. In order to illustrate the BO and DO and their equivalence we consider

one-dimensional and two-dimensional problems: in Section 4, we consider two one-dimensional problems that are

the advection and the Burgers equation, and in Section 5, we consider two two-dimensional problems including the

Navier-Stokes equation. We conclude the paper with a brief summary in Section 6.

2. An overview of the BO and DO equations

We consider the following SPDE:

∂u

∂t
= L[u(t, x;ω)], x ∈ D, ω ∈ Ω (1a)

u(t0, x;ω) = u0(x;ω), x ∈ D, ω ∈ Ω (1b)

B[u(t, x;ω)] = h(t, x;ω), x ∈ ∂D, ω ∈ Ω, (1c)

where L is a differential operator,B is a linear differential operator, and D is a bounded domain in Rd where d = 1, 2,

or 3.

2.1. Definitions

Let (Ω,F , P) be a probability space, where Ω is the sample space, F is the σ-algebra of subsets of Ω, and P is a

probability measure. For a random field u(x, t;ω), ω ∈ Ω, the expectation operator of u is defined as

ū(x, t) ≡ E[u(x, t;ω)] =

∫

Ω

u(x, t;ω)dP(ω).

The set of all continuous and square integrable random fields , i.e.,
∫

D
E[u(x, t;ω)T u(x, t;ω)]dx < ∞, where u(x, t;ω)T

is the transpose of u, for all t ∈ T and the bi-linear form of the covariance operator

Cu(·,t;ω)v(·,s;ω)(x, y) = E[(u(x, t;ω) − ū(x, t))T (v(x, s;ω) − v̄(x, s))], x, y ∈ D,

form a Hilbert space that will be denoted by H [30, 31]. For u(x, t;ω), v(x, t;ω) ∈ H , the spatial inner product is

defined as

< u(·, t;ω), v(·, t;ω) >=

∫

D

u(x, t;ω)T v(x, t;ω)dx.

We define the projection operator ΦS of a field u(x, t), x ∈ D to an m-dimensional linear subspace S spanned by the

orthogonal basis S = {wi(x, t;ω)}m
i=1
, x ∈ D as follows:

ΦS [u(x, t;ω)] =

m
∑

i=1

< wi(·, t;ω), u(·, t;ω) > wi(x, t;ω)

Next, we consider the covariance operator when it acts on an element u(x, t;ω), ω ∈ Ω for s = t:

Cu(·,t;ω)v(·,t;ω)(x, y) = E[(u(x, t;ω) − ū(x, t))T (v(x, t;ω) − v̄(x, t))], x, y ∈ D,
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and the integral operator, based on the covariance operator C at time t, defined by

KCφ =

∫

D

Cu(·,t)u(·,t)(x, y)φ(x, t)dx, φ ∈ L2 (2)

is a compact, self-adjoint, and positive operator in the Hilbert space of continuous and square integrable fields L2

equipped with inner product < ·, · >. Then the KL expansion [32] follows that every random field u(x, t;ω) ∈ H at a

given time t can be written in the form

u(x, t;ω) = ū(x, t) +

∞
∑

i=1

√

λiφi(x, t)ηi(t;ω), ω ∈ Ω (3)

where λi and φi(x, t) are the eigenvalues and eigenfunctions or the basis, respectively, of the following eigenvalue

problem
∫

D

Cu(·,t)u(·,t)(x, y)φi(x, t)dx = λiφi(y, t), y ∈ D, (4)

and φi are orthonormalized so that < φi, φ j >= δi j and η(t;ω) are zero mean, unit variance, and mutually uncorrelated,

i.e. E[ηiη j] = δi j. The eigenvalues λi are non-negative and can be arranged in decreasing order. Then, every random

field u(x, t;ω) ∈ H can be approximated by a finite series expansion with N terms

u(x, t;ω) = ū(x, t) +

N
∑

i=1

√

λi(t)φi(x, t)ηi(t;ω), ω ∈ Ω. (5)

Indeed, it is known that the KL decomposition is optimal in the mean square sense. In the context of numerical

method to SPDEs, constraints are required to derive how the components in the above KL decomposition evolve in

time; the components (λi, φi, ηi)
N
i=1

are time-dependent. In the next subsections we review the two methods which have

different assumptions on the constraints. For simplicity in the notation, we use the following representation in the KL

decomposition

u(x, t;ω) = ū(x, t) +

N
∑

i=1

Yi(t;ω)ui(x, t), (6)

where
√
λiφi(x, t)ηi(t;ω) = Yi(t;ω)ui(t;ω). Based on this representation we define the linear subspace VS = span{ui(x, t)}N

i=1

spanned by the basis.

2.2. Dynamically Orthogonal (DO) representation and field equations

In the DO representation, all quantities ui(x, t), Yi(t;ω), i = 1, ...,N are time-dependent and hence there exists some

redundancy in the representation. In order to overcome this redundancy, the DO imposes the dynamical constraint,

which dictates that the evolution of the basis {ui(x, t)}N
i=1

be normal to the space VS ; this can be expressed through the

following condition:
dVS

dt
⊥ VS ⇔

〈

∂ui(x, t)

∂t
, u j(x, t)

〉

= 0 i, j = 1, ...,N. (7)

This condition is referred to as the dynamically orthogonal (DO) condition. Note that the DO condition preserves

orthonormality of the basis {ui(x, t)}N
i=1

since

∂

∂t
< ui(·, t), u j(·, t) >=<

∂ui(·, t)
∂t
, u j(·, t) > + < ui(·, t),

∂u j(·, t)
∂t

>= 0, i, j = 1, ...,N.
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It is proven in [26] that the DO condition leads to a set of independent and explicit evolution equations for all the

unknown quantities. Next, we state the DO evolution equations without proof:

Theorem 1. [26] Under the assumptions of the DO representation, the original SPDE (1a)-(1c) is reduced to the

following system of equations

∂ū(t, x)

∂t
= E[L[u(·, t;ω)]], (8a)

dYi(t;ω)

dt
= < L[u(·, t;ω)] − E[L[u(·, t;ω)]], ui(·, t) >, i = 1, ...,N (8b)

N
∑

i=1

CYi(t)Y j(t)

∂ui(t, x)

∂t
=

∏

V⊥s

E[L[u(·, t;ω)]Y j], j = 1, ...,N, (8c)

where the projection in the orthogonal complement of the linear subspace is defined as
∏

V⊥
S

F(x) = F(x)−∏VS
F(x) =

F(x) −∑N
k=1 < F(·), uk(·, t) > uk(·, t) and the covariance of the stochastic coefficients is CYi(t)Y j(t) = E[Yi(t;ω)Y j(t;ω)].

The associated boundary conditions have the form

B[ū(ξ, t;ω)]|ξ∈∂D = E[h(ξ, t;ω)],

B[ui(ξ, t)]|ξ∈∂D = E[Y j(t;ω)h(ξ, t;ω)]C−1
Yi(t)Y j(t)

,

and the initial conditions for the DO components are given by

ū(x, t0) = E[u0(x;ω)],

Yi(t0;ω) = < u0(·, ω) − ū(x, t0), vi(·) >,
ui(x, t0) = vi(x),

for all i = 1, ..., n, where vi(x) are the eigenfields of the covariance operator Cu(·,t0)u(·,t0) defined by the following

eigenvalue problem for t = t0 :

∫

D

Cu(·,t0)u(·,t0)(x, y)vi(x)dx = λi(t)vi(y), y ∈ D. (9)

2.3. Bi-Orthogonal (BO) representation and field equations

In the BO representation, the basis and stochastic coefficients are defined as follows:

ui(x, t) =
√

λi(t)φi(x, t), Yi(t;ω) = ηi(t;ω), (10)

where λi(t), φi(x, t) and ηi(t;ω) are the KL components in equation (5). In order to overcome the aforementioned

redundancy, the BO imposes the static constraint, which is the bi-orthogonality of the basis and stochastic coefficients

in time [28]. In other words, we have the following conditions:

< ui(·, t), u j(·, t) >= λi(t)δi j, E[YiY j](t) = δi j, i, j = 1, ...,N, (11)

This condition is referred to as the bi-orthogonal (BO) condition. Note the difference between the DO and BO

condition; the basis in the DO condition evolves normal to the space Vs, which maintains the basis to be orthogonal in
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time, while both the basis and the stochastic coefficients in the BO condition are orthogonal in time in the associated

space, respectively. There is also a slight difference between the DO and BO representation; the stochastic coefficients

carry the eigenvalues of the covariance operator in the DO representation while the basis carry the eigenvalues of the

covariance operator in the BO representation.

Remark 1. Both the basis and the stochastic coefficients change in time while maintaining the orthogonality. Define

the matrix S and M whose entries are

S i j = < ui,
∂u j

∂t
>, (12)

Mi j = E[Yi

dY j

dt
]. (13)

Then, by taking the derivative of the first term in equation (11) with respect to time, we have < ∂ui

∂t
, u j > + < ui,

∂u j

∂t
>=

0 for i , j and <
∂ui

∂t
, ui >=

1
2

dλi(t)

dt
for i = j or S i j = −S ji for i , j and S ii =

1
2

dλi(t)

dt
. Similarly, we have Mi j = −M ji

for i , j and Mii = 0. Note that M is skew-symmetric. It will be shown later that the matrices S and M, i.e. the rate

of how the basis and the stochastic coefficients change in time, have explicit form.

Next, we present the BO evolution equations; see the appendix for the proof and also [28].

Theorem 2. We assume that the basis and stochastic coefficients satisfy the BO condition and there is no eigenvalue

crossing. Then the original SPDE (1a)-(1c) is reduced to the following system of equations

∂ū(t, x)

∂t
= E[L[u]], (14a)

λ j

dY j(t;ω)

dt
= −

N
∑

i=1

S jiYi + h j, j = 1, ...,N, (14b)

∂u j(t, x)

∂t
= −

N
∑

i=1

M jiui + p j, j = 1, ...,N, (14c)

where the entries for the matrix G,M and S and the vectors h and p are given as follows:

Gi j = < E[L[u]Y j], ui > (15a)

Mi j =



















Gi j+G ji

−λi+λ j
, if i , j

0, if i = j
(15b)

S i j =



















Gi j + λiMi j, if i , j

Gii, if i = j
(15c)

h j = < L[u] − E[L[u]], u j(·, t) > (15d)

p j = E[L[u]Y j]. (15e)

Remark 2. The evolution equations (14a) − (14c) can be recasted into matrix form with u = (u1, ..., uN),Y =
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(Y1, ..., YN) and Λ = diag(λ1, ..., λN) as follows:

∂ū(t, x)

∂t
= E[L[u]], (16a)

dY(t;ω)

dt
Λ = −YS T + h, (16b)

∂u(t, x)

∂t
= uM + p, (16c)

where S T is the transpose of the matrix S .

We note that the rate of change of the basis and stochastic coefficients is associated with the matrix G whose

entries are Gi j =< E[L[u]Y j], ui >, and the matrix S and M have closed form. If two eigenvalues are identical,

the denominator in the non-diagonal entries of the matrix M in Equation (15b) is singular and thus can lead to the

numerical instability for the BO when two eigenvalues are getting close to each other.

The diagonal entries for S account for how the eigenvalues change in time S ii =
1
2

dλi(t)

dt
as discussed in Remark 1,

which can be computed exactly by equation (15c). This can be used as a useful adaptive criterion in the computation to

decide when to add or remove modes; if the lowest eigenvalue grows quickly and is larger than a certain value, a new

mode needs to be added. Another possible adaptive strategy proposed in [27] is to use as a criterion the instantneous

energy of the existing DO modes.

Remark 3. Both DO and BO representations can be viewed as an extension of KL representation in time under

different assumptions. It is shown in Section 3 that they are equivalent through the invertible matrix differential

equation; in other words, there is an one-to-one mapping between the BO components and DO components. However,

we have observed that the BO is numerically more stable than the DO, in particular for high modes in non-linear

problems. On the other hand the BO suffers from the numerical instability due to the aforementioned singularity

when the eigenvalues cross while the DO does not. Examples will be presented in section 4 and 5 to document these

statements.

3. Equivalence of BO and DO

We now prove the equivalence between the BO and DO solutions. In particular, we will prove that there is a

linear transformation for the coefficients and the basis that (i) leaves the total solution invariant, and (ii) transforms the

stochastic coefficients and the basis elements of the BO solution to a set of stochastic coefficients and basis elements

that satisfy the DO equations. We will also show that this transformation is invertible, and thus it can be applied to

transform the DO components to the corresponding BO components.

Based on this fact we will conclude that the two sets of equations are just a reformulation of each other since they

describe the same approximate (in the sense of finite-dimensionality) solution.

Let U = (u1, u2, ..., uN)T , Û = (û1, û2, ..., ûN)T , Y = (Y1, Y2, ..., YN)T and Ŷ = (Ŷ1, Ŷ2, ..., ŶN)T be the BO and the

DO components, respectively. Note that U = U(x, t) and Y = Y(t;ω) and the arguments x, t and ω are omitted for

simplicity. We consider the linear transformation from the DO to the BO components:

Y = Λ−
1
2 PŶ , (17a)

U = Λ
1
2 PÛ, (17b)
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where Λ = diag(λ1, ..., λN) with λi, i = 1, ...,N being the positive eigenvalues of the covariance operator in equa-

tion (11), and P satisfies the matrix differential equation

dP

dt
= −Λ− 1

2ΣΛ−
1
2 P, (18)

P(0) = IN ,

where IN is the N×N identity matrix, and Σ is the skew-symmetric part of the matrix S in equation (15c), i.e. Σi j = S i j

for i , j and Σii = 0 for i = 1, ...,N.

We first prove the invertibility of the linear transformation through the following:

Lemma 3. The solution P(t) to the matrix differential equation (18) remains orthogonal for every time t ≥ 0 given

that the initial condition P(0) is an orthogonal matrix. Indeed, the coefficient F(t) ≡ −Λ− 1
2ΣΛ−

1
2 of P in equation (18)

is skew-symmetric because Σ is skew-symmetric, and thus we have

d

dt

(

PT (t)P(t)
)

= ṖT (t)P(t) + PT (t)Ṗ(t)

= (FP)T P + PT FP

= PT (FT + F)P

= ON , t ≥ 0,

where ON is N × N zero matrix and the overdots denote differentiation with respect to t. Thus Ṗ ≡ dP
dt

. Therefore

PT (t)P(t) = PT (0)P(0) = IN , t ≥ 0.

We are now ready to establish the connection between the BO and the DO components.

Theorem 4. Suppose that UandY satisfy the BO equations. Assume that the eigenvalues λi, i = 1, ...,N of the

covariance operator in equation (11) are discrete at any time. Then the linear transformation (17a)-(17b) defines

a new set of stochastic coefficients and basis elements for which (i) YT U = ŶT Û the total solution remains invariant,

and (ii) Û satisfies the DO condition. Hence, (Û, Ŷ) is a solution of the DO equations. The invertibility of the

transformation allows for the application of the Theorem in the inverse direction.

Proof. Assume that Y and U are the solutions to the BO evolution equations (14a)-(14c). Then we will prove that Ŷ

and Û are the solutions to the DO evolution equations (8a)-(8c) by showing the following three properties: (i) Û is an

orthonormal basis, (ii) YT U = ŶT Û, and (iii) Û satisfy the DO condition and (Û, Ŷ) are DO components.

First, we define the inner product of matrix UUT in the physical space by < UUT > whose (i, j)-th entry is

< ui, u j >. According to the BO assumption on the basis U, we have

Λ = < UUT >

= < Λ
1
2 PÛ(Λ

1
2 PÛ)T

= Λ
1
2 P < ÛÛT > PTΛ

1
2 .
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Multiplying PTΛ−
1
2 and Λ−

1
2 P to the left and right, respectively, on the both sides yields

< ÛÛT > = PTΛ−
1
2ΛΛ−

1
2 P

= PT P

= I

where we used the property of orthogonal matrix P. Hence Û is an orthonormal basis.

Second, the BO and DO representations to the solution u(x, t;ω) have the same form:

u(x, t;ω) = ū(x, t) +

N
∑

i=1

ui(x, t)Yi(t;ω)

= ū(x, t) +

N
∑

i=1

ûi(x, t)Ŷi(t;ω),

where (ui, Yi)
N
i=1

and (ûi, Ŷi)
N
i=1

are the BO and DO components, respectively. Indeed, we obtain this directly using

equations (17a)-(17b)

UT Y = (Λ
1
2 PÛ)TΛ−

1
2 PŶ = ÛT PTΛ

1
2Λ−

1
2 PŶ = ÛT PT PŶ = ÛT Ŷ.

Finally, we have by the definition of the transformation

U = Λ
1
2 PÛ

from which we have

U̇ =
1

2
Λ̇Λ−

1
2 PÛ + Λ

1
2 ṖÛ + Λ

1
2 P ˙̂U

= (S − 2Σ)Λ−
1
2 PÛ + Λ

1
2 P ˙̂U,

where the second equality comes from the equation (18) and S = Σ + 1
2
Λ̇. We have by the definition of the matrix S

as in equation (12)

S =< UU̇T >

and putting the above two equations for U and U̇ all together yields

S = < Λ
1
2 PÛ

(

(S − 2Σ)Λ−
1
2 PÛ + Λ

1
2 P ˙̂U

)T

= < Λ
1
2 PÛÛT PTΛ−

1
2 (S − 2Σ)T > + < Λ

1
2 PÛ ˙̂UT PTΛ

1
2 >

= (S − 2Σ)T + Λ
1
2 P < Û ˙̂UT > PTΛ

1
2

where we employed PPT = I, < ÛÛT >= I to get the third equality. Hence, we have

1

2
Λ

1
2 P < Û ˙̂UT > PTΛ

1
2 =

S − S T

2
− Σ

= ON

9



DO BO

mean ∂ūDO

∂t
= E[L(u)] ∂ūBO

∂t
= E[L(u)]

basis ∂uDO

∂t
= (p − uDOG)C−1 ∂uBO

∂t
= uBOM + p

stochastic coefficients dYDO

dt
= h dYBO

dt
= (−YBOS T + h)Λ−1

Table 1: The DO and BO evolution equations. uDO and YDO are the DO components of the basis and stochastic coefficients and uBO and YBO are

the BO components.

because Σ is the skew-symmetric part of the matrix S that is exactly the first term on the right hand side and we obtain

< Û ˙̂UT >= ON that is precisely the DO condition in vector notation. This completes the proof that Ŷ and Û are the

solutions to the DO evolution equations.

The same procedure can be used to prove that if Ŷ and Û are the solutions to the DO evolution equations, then Y

and U are the solutions to the BO evolution equations.

In summary, the BO and DO representation come from the KL decomposition and require that both basis and

stochastic coefficients are time-dependent. Hence, there exists some redundancy in the representation. In order to

remove this redundancy different constraints are imposed; the DO imposes the dynamic constraints on the basis (called

DO condition) from which the static connection for the basis as well as the evolution equations for the components are

derived. In constrast, the BO imposes the static constraints on the basis and coefficients (called BO condition) from

which the dynamic connection for the basis and coefficients as well as the evolution equations for the components

are derived. However, Theorem 4 implies that both methods are equivalent in the sense that one can be derived from

the other, and vice versa through the orthogonal matrix as in equations (17a)-(17b). Indeed, if equations (17a)-(17b)

are plugged into the BO evolution equations (14a)-(14c), then the DO evolution equations (8a)-(8c) are obtained, and

vice versa.

Both the evolution equations for the DO and BO are shown in Table 1, where the vector notation for the basis and

stochastic coefficients are used for simplicity and coefficients in the evolution equations are defined in the previous

section.

4. Numerical example: one-dimensional problems

In this section, we consider two one-dimensional problems: stochastic advection with random advection velocity

and Burgers equation with random forcing.

4.1. Advection equation

Consider the following stochastic advection equation [33]

∂u

∂t
+ V(t;ω)

∂u

∂x
= 0, ∀(t, x) ∈ [0, T ] × D = [0, 2π] (19a)

u(0, x) = g(x) = sin(x), ∀x ∈ D (19b)

10



The randomness comes from the advection velocity V(t;ω) whose covariance kernel is given as CV (t1, t2) = σ exp
(

− |t1−t2 |
L

)

,

with L being the correlation length. It was shown in [33] that the stochastic advection equation (19) has exact solutions

for the mean and variance.

The random transport velocity is decomposed through the truncated KL representation

V(t, ω) = E[V](t) +

M
∑

i=1

√

λiφi(t)Zi, (20)

where {Zi}Mi=1
are uncorrelated random variables with zero mean and unit variance, and {φi(t), λi}Mi=1

is the eigenpair

corresponding to the covariance kernel CV (t1, t2), i.e. satisfying

∫

D

CV (t1, t2)φi(t2)dt2 = λiφi(t1), (21)

where the exponential covariance kernel has a closed form for the eigenfunctions [33]:

φi(t) =
w cos(wt)/c + sin(wt)

√

(1 + w2/c2)T/2 + (w2/c2 − 1) sin(2wT )/(4w) + (1 − cos(2wT ))/(2c)
, (22)

where c = 1/L and w =
√

2c/λi − c2. The theorem of Cameron and Martin [34] guarantees that the truncated

decomposition converges to V as M goes to infinity; further, we assume that E[V](t) = 0.

Using the DO representation, we obtain the form of the evolution operatorL

L(u) = −V(t;ω)















∂ū

∂x
(x, t) +

N
∑

i=1

Yi(t;ω)
∂ui

∂x
(x, t)















.

4.1.1. Numerical results for time-dependent V(t, ω)

We consider the case where V(t;ω) is described by the exponential covariance in time, i.e. CV (t1, t2) = σ exp(− |t1−t2 |
L

)

and L is the correlation length that characterizes the stochastic process. The exact solution is u(x, t;ω) = sin
(

x −
∫ t

0
V(s;ω)ds

)

and its mean and variance are as follows:

E[u](x, t) = sin(x − V̄t) exp(−a2σ2/2) (23)

V[u](x, t) =
1 − cos(2(x − V̄t)) exp(−2σ2a2)

2
− E[u]2, (24)

where V̄ = E[V] and a = a(t) depends on the type of the process V(t;ω), i.e.,

a2 =



































t2, if fully correlated,

2L(t − L(1 − exp(−t/L))), partially correlated,

t∆t, mutually independent

The parameters are

∆t = 10−3, L = 5, σ = 0.1, t f = 5,Ns = 128.

We use the third-order Adams-Bashforth (AB3) as a time-integrator to minimize the error due to the time discretiza-

tion. We use KL decomposition to discretize V(t;ω) and the dimension of random space is determined by how many

11



Energy Dimension (M)

95% 5

99% 18

99.9% 68

Table 2: Dimension (or number of terms in the KL decomposition) of the parametric space with respect to energy.

terms in the KL decomposition we keep. Table 2 shows the dimension of the parametric space with respect to the

percentage of energy above which we keep the terms. We solve the stochastic advection equation using three meth-

ods; the first two are the hybrid DO and BO methods and the other one is the probabilistic collocation method (PCM)

which is one of the stochastic spectral methods along with the generalized Polynomial Chaos (gPC) [21, 23, 35]. As

we increase the dimensionality of the parametric space by adding more terms in the KL decomposition of V(t;ω), the

error of the mean and variance decreases as shown in Figure 1. Note that, like the time-independent case, DO and

PCM has the same order of magnitude of the error when they use the same parameters for numerical discretization.

However, DO is much faster than PCM, especially for high-dimensional parametric space as shown in Figure 2.

Figure 1: Relative L2 error for the mean (left) and variance (right). The reference solution for the mean and variance is from the exact formula. As

we increase the dimension of the random space i.e. we approximate V(t;ω) better with more terms, the relative L2 error decreases. Note that BO

results do not appear in these plots but they have exactly the same accuracy as DO. (AB3 refers to the third-order Adams-Bashforth integration,

and ”level” refers to the level of the sparse grid.)

4.2. Burgers equation

In this subsection, we consider the following stochastic Burgers equation with random forcing

∂u

∂t
+ u
∂u

∂x
= ν

∂2u

∂x2
+

1 + ξ

2
sin(2πt), ∀(t, x) ∈ [0, T ] × D = [0, 2π] (25)

u(0, x) = g(x), ∀x ∈ D,

where ξ(ω) ∈ [−1, 1] is a uniformly distributed random variable and the initial condition g(x) is given as

g(x) = 0.5
(

exp(cos(x)) − 1.5
)

sin(x + 2π · 0.37). (26)

12



Figure 2: Computational time on Intel Xeon X5550 2.67GHz to solve the advection problem up to time t = 5 using DO, BO and PCM. DO is much

faster than PCM, especially in high dimensions, and BO is slightly faster than DO for low dimensions.

We take ν = 0.05. Note that the period of the forcing is one. Using the DO representation, we obtain the form of the

evolution operator L and some necessary forms:

L[u(x, t;ω)] = −uux + νuxx +
1 + ξ

2
sin(2πt)

= −ūūx − Yi

∂

∂x
(uiū) − YiY jui

∂u j

∂x
+ ν

(

ūxx + Yi

∂2ui

∂x2

)

+
1 + ξ

2
sin(2πt)

E[L(u)] = −ūūx −Ci jui

∂u j

∂x
+ νūxx + 0.5 sin(2πt)

E[L(u)Y j] = −
(

Ci juiūx + Ck j

∂uk

∂x
ū +Cik jui

∂uk

∂x

)

+νCi j

∂2ui

∂x2
+ E[

ξ

2
Y j] sin(2πt),

where Ci jk = E[YiY jYk]. Note that E[LY j] involves the third moment of the stochastic coefficients and hence the PDE

for ui is complicated. Since the initial condition is deterministic, the Yi, i = 1, ...,N at the initial time become zero,

which makes the covariance matrix for Yi singular. We use the hybrid method proposed in [8] to avoid the singularity

due to the deterministic initial condition, where it starts with PCM at the beginning and switches over to DO after the

stochasticity of the solution develops.

4.2.1. Computational results: hybrid DO and BO methods

We need to march for many time steps to allow the stochasticity of the system to develop fully. We have performed

sensitivity studies to investigate how to choose the switching time from PC to DO but a more systematic future study

is required. We can choose the number of modes at the switching time based on the eigenvalues of Cu(·,ts)(x, y).

The parameters are as follows:

∆t = 0.001, ts = 1, t f = 5,Ns = 128,Nr = 64,N = 6.

We choose N = 6 because, at the switching time ts = 1, the sixth mode is the largest eigenmode whose eigenvalue

13



is larger than a pre-specified threshold value. Fourier collocation in the physical space and Legendre-Gauss colloca-

tion in the parametric space are used for discretization, and third-order Adams-Bashforth (AB3) is used for a time

integration. The mean and variance from the probabilistic collocation method with Nr = 512 using the fourth-order

Runge-Kutta method are considered to be the reference solution.

The L2 error for the mean and variance are shown in Figure 3; BO has better accuracy in variance than DO by one

order of magnitude. DO and BO are tested with different number of modes up to 6. They have the same accuracy for

the first four modes but BO is better than DO for higher modes. While they are equivalent as shown in section 3 this

suggests that BO gives numerically more stable scheme than DO as shown in Figure 4; the DO evolution equation

for the basis needs an inverse of matrix whose condition number for higher number is large that may affect numerical

accuracy; further research is required in order to document this point. Figure 4 shows the exponential convergence

obtained with respect to the number of modes at time t = 5. As mentioned above both DO and BO have the same

accuracy with lower modes but BO is more accurate than DO with higher modes 5 and 6. This example is the first

demonstration of the fast convergence of the DO or BO method for a nonlinear SPDE.
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Figure 3: Relative L2 error for the mean (left) and variance (right) of the solution for the Burgers equation with random forcing using DO and

BO with N = 6. Both methods have the same accuracy for the mean while BO is an order of magnitude more accurate compared to DO for the

variance. BO is numerically more stable than DO for high modes while they have the same accuracy for low modes. Note that the switching time

is 1 and the error before the switching time is the same as collocation method is used in the hybrid method.

We now test the equivalence of DO and BO as in the section 3. From the BO evolution equations we have the BO

components at every time step. Then we derive the DO components not from the DO evolution equations but from

equations (17a)-(17b) with P obtained from the matrix differential equation (18). The numerical integration method

that preserves the orthogonality of the matrix P is employed. We compute the variance for the DO components derived

from the BO components and compare this with the variances from the BO and DO. Figure 5 shows the error in the

variances of these three methods. The variance from the DO via the matrix differential equation from the BO is in

between that of the BO and DO. It is worse than the BO because a first-order time integration method for the matrix

differential equation is employed while a third-order time integration method is employed for the BO and DO. This

verifies numerically the equivalence of the BO and DO in the sense that one can be obtained from the other through

the matrix differential equations and vice versa.
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Figure 4: Relative L2 error for the mean and variance at t = 5. Exponential convergence is observed as the number of modes increases. They have

the same accuracy through N = 4 but BO is better than DO for high modes.

Figure 5: Relative L2 error for the variance at t = 5 with N = 6. The top one is the variance from the DO evolution equations; the bottom from the

BO evolution equations; the middle one from the DO components via the dynamical transformation from the BO.
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4.2.2. Eigenvalue crossing

When the eigenvalues of the system cross each other in time, the BO evolution equations become singular because

the matrix M and S in the Equations (15b) and (15c) are singular. In this subsection we consider the Burgers’ equation

where eigenvalues cross in time. For this we assume that the solution has an explicit form

u∞(x, t;ω) = ξ1(ω)a1(t) cos(x − t) + ξ2(ω)a2(t) cos(2x − 3t). (27)

The forcing term is chosen accordingly. We assume

a1(t) = sin(t), a2(t) = cos(3t), (28)

and ξ1 and ξ2 follow the uniform distribution on [0, 1]. Then the exact solution for the mean and variance has an

explicit form by taking the expectation on u∞. The eigenvalues of the system are

λ1(t) =
π

12
a2

1(t), λ2(t) =
π

12
a2

2(t). (29)

We assume that the boundary condition is periodic and the initial condition is given as

g(x) = 0.5
(

exp(cos(x)) − 1.5
)

sin(x + 2π · 0.37). (30)

The BO and DO methods are tested with the following parameters:

δt = 10−4, ν = 0.1, t f = 3.14, ts = 0.01,N = 2,Ns = 128,Nr = 256. (31)

where ts is the switching time from polynomial chaos to DO or BO and the number of collocation points in each

parametric space is 16, hence the total number comes to 256 as we have two random variables.

The eigenvalues cross each other for this example as shown in Figure 6 and correspondingly M12 in Equation

(15b) jumps sharply whenever the eigenvalues cross, and this causes the numerical instability for BO.

Figure 6: Left: eigenvalues, right: M12 . The eigenvalues cross out at the six locations at which M12 peaks as shown in the right figure.
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Figure 7 shows the L2 error of the mean and variance for BO and DO and the numerical instability for BO arising

when there is eigenvalue crossing. In order to avoid the singularity in the BO, it is proposed in [28] to freeze the

stochastic coefficients temporarily and evolve only the basis when facing the eigenvalue crossing. The DO evolution

equations does not suffer from the eigenvalue crossing.

Figure 7: Left: mean, right: variance. Both the error of the mean and variance in BO jumps when the eigenvalues cross while the error in DO does

not.

5. Numerical example II: two-dimensional problems

In this section we present two-dimensional problems including Navier-Stokes problems, where the random terms

come from different sources, and study the schemes described above and the equivalence of BO and DO. In the

following subsections, we first study the advection-diffusion equation with random advection velocity. Then, we

study Navier-Stokes equation, in particular Kovasznay flow with random velocity for a modest number of dimensions

of the parametric space. The spectral/hp element method is employed in physical space [36], and PCM in parametric

space. When there is a deterministic initial condition, we use the hybrid DO and BO method to avoid the singularity.

5.1. Advection-diffusion equation

We consider the two-dimensional advection-diffusion equation with random advection velocity [37],

∂φ

∂t
(x, t;ω) + u(x;ω) · ∇φ = ν∇2φ (x, t;ω) ∈ D × [0, T ] ×Ω, (32)

where D is a bounded domain in R2, Ω is the sample space in the probability space, and ν is the viscosity. For this

problem, we will assume deterministic boundary and initial conditions and that the advection velocity corresponds to

a circular motion plus a constant random perturbation, i.e.,

u(x;ω) = (y + a(ω),−x − b(ω)), (33)

where a(ω) and b(ω) are random variables. The initial condition is given as

φ(x, 0;ω) = e
− (x−x0 )2+(y−y0 )2

2λ2 , (34)
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and the corresponding exact stochastic solution is

φe(x, t;ω) =
λ2

λ2 + 2νt
e
− x̂2+ŷ2

2(λ2+2νt) , (35)

where

x̂ = x + b(ω) − (x0 + b(ω)) cos(t) − (y0 + a(ω)) sin(t),

ŷ = y + a(ω) + (x0 + b(ω)) sin(t) − (y0 + a(ω)) cos(t).

Here we set ν = 10−5, λ = 1/8 and T = 1.

Since the initial condition is deterministic, we use the hybrid method [8] for the DO and BO, i.e. start with PCM

initially up to t = ts and then switch over to the DO or BO performing the KL decomposition of the solution at t = ts.

First, we consider one-dimensional parametric space assuming ξ1 = ξ2 = σξ with ξ being uniform distribution on

[−1, 1] and σ = 0.1. We test the BO and DO with three different number of modes. The BO and DO agree well with

each other for all modes as shown in Figure 8 and the error decreases as the modes are increased.

Figure 8: Advection-diffusion: one-dimensional parametric space with ξ1 = ξ2 = 0.1ξ. The error of the mean (left) and variance (right) versus time

with respect to different number of modes.

Next, we consider two-dimensional parametric space assuming a(ω) = σ1ξ1 and b(ω) = σ2ξ2 where ξ1 and ξ2

are two independent random variables following uniform distribution on [−1, 1]. We test two different sets of the

variance: (σ1, σ2) = (0.1, 0.01), (0.2, 0.1). We expect that the latter requires higher modes than the former to capture

the stochastic behavior.

Case I: (σ1, σ2) = (0.1, 0.01)

The switching time is set to be ts = 0.01 and two different number of modes with N = 2, 3 are tested. As shown in

Figure 9, the DO and BO agree well for N = 2 but not for N = 3 where the error in the BO increases suddenly around

t = 0.4 because eigenvalue crossing occurs as shown in Figure 10.

Case II: (σ1, σ2) = (0.2, 0.1)

We consider two different switching times: ts = 0.01 and ts = 0.2. When the switching time is small, then the

stochasticity of the system does not evolve sufficiently so we would need a small number of modes: modes up to six
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Figure 9: Case I. The DO and BO are tested with different number of modes. As we increase the number of modes, the convergence improves. For

N = 3, the error in the BO increases suddenly around t = 0.4 because of the eigenvalue crossing.

Figure 10: Case I. The eigenvalue crossing occurs around t = 0.4.
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are tested and as shown in Figure 11, the DO and BO methods agree well with each other for all number of modes.

Figure 11: Case II with ts = 0.01. L2 error of the mean and variance.

If we switch over to BO and DO at later time ts = 0.2, we need more modes to capture the stochasticity. We test

up to eight modes and the DO and BO methods agree well except for N = 8 in Figure 12 when the BO error increases

suddenly at later time around t = 0.95 because of the eigenvalue crossing as shown in Figure 13.

Figure 12: Case II with ts = 0.2. L2 error of the mean and variance.

This example illustrates the equivalence of the BO and DO in Theorem4 provided that any two eigenvalues are not

the same. If the two eigenvalues are the same, then the BO becomes numerically unstable because of the singularity

while the DO does not suffer from the singularity. This also shows that more modes are needed to have better accuracy

as time goes on.

5.2. Kovasznay flow
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Figure 13: Case II with ts = 0.2. The eigenvalue crossing occurs around t = 0.95.

We consider a Kovasznay flow that is a steady, laminar incompressible flow behind a two-dimensional grid

∂V

∂t
+ (V · ∇)V = −∇p + ν△V + F (36)

∇ · V = 0 (37)

where V = (u, v), p is the pressure for a fluid with kinematic viscosity ν and F is the forcing term. The deterministic

exact solution to the Navier-Stokes equations is given by

u = 1 − eλx cos(2πy)

v =
λ

2π
eλx sin(2πy)

p =
1

2
(1 − e2λx)

λ =
1

2ν
−

(

1

4ν2
+ 4π2

)
1
2

,

in a rectangular domain (x, y) ∈ [−0.5, 1] × [−0.5, 1.5]. Now we have randomness to the steady velocities that satisfy

the divergence-free condition:

u = 1 − eλx cos(2πy) +

N
∑

m=1

σmξm cos(mπy) sin(mπx) (38)

v =
λ

2π
eλx sin(2πy) −

N
∑

m=1

σmξm sin(mπy) cos(mπx), (39)

where ξm ∈ [−1, 1] and σm are independent uniformly distributed random variables and the magnitude of the ran-

domness, respectively. Then, the forcing term F(x, y;ω) is provided accordingly so that it satisfies the Navier-Stokes

equation (36).

Since this is a KL-type solution, the number of random terms N determines the number of modes in the DO and
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BO representation as well as the dimension of the parametric space.

Here the Reynolds number is set to Re = 1/ν = 40, and 16 elements in a quadrilateral mesh are used in the

prescribed domain. The polynomial order for the spectral element method in physical space is set to 10 and first-order

time integration method is used. The initial conditions for the mean are assumed to be zero and those for the DO

and BO components are assumed to be the exact ones to avoid the singularity. First, we consider one-dimensional

parametric space, i.e. N = 1 to illustrate how the DO and BO works for the two-dimensional Naiver-Stokes equation.

Four different values of σ are used as shown in Table 3. We solve the problem using DO and BO evolution equations.

Table 3: The magnitude σ of the random variable ξ.

ξ ∼ U[−σ, σ]

σ 0.5 0.1 0.01 0.001

Figure 14 shows the L2 error for the mean in time for the two values of σ. Figure 15 shows the L2 error for the

mean and variance versus the magnitudeσ. The L2 error increases as the magnitude of the randomness increases. The

DO and BO shows exact agreement for the mean and variance.

Figure 14: L2 error for the mean of the solution in time: σ = 0.01 (left) and σ = 0.1 (right). It converges to the steady solution after time t = 8

(σ = 0.01) and t = 6 (σ = 0.1).

Next, we increase the dimension of the random space to six, i.e. Equations (38) and (39) have six random terms,

N = 6. The magnitudes of the randomness are given as following: (σ1, σ2, σ3, σ4, σ5, σ6) = (0.1, 0.03, 0.01, 0.003,

0.001, 0.0003). Similar to the one-dimensional case, the BO and DO agree well with each other as shown in Figure

16. We have also tested ten random terms or ten dimension in the parametric space but the BO diverges due to the

eigenvalue crossing while the DO converges in a similar way as in the six-dimensional case. This example shows

the equivalence of the BO and DO in the Navier-Stoke problem provided that any eigenvalues are not equal to one

another. If the eigenvalue crossing happens, then the BO suffers from the singularity while the DO does not.

6. Summary

In this paper, we have explored the relationship of the BO and DO method for a class of SPDEs. Both of them have

time-dependent spatial and stochastic basis based on KL expansions and hence are able to track the low-dimensional
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Figure 15: L2 error for the mean (left) and variance (right) of the steady state solution for the Kovasznay flow versus the magnitude using DO and

BO.

Figure 16: L2 error for the mean and variance in time with six dimensional parametric space.
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structure. The difference is on the assumption on how the spatial and stochastic basis evolves in time. The DO method

imposes a dynamical constraint in which the evolution of the spatial basis is normal to the space spanned by the spatial

basis while the BO imposes a static constraint in which the spatial and stochastic basis remain orthogonal. We have

shown that the BO and DO are equivalent in the sense that the BO can be obtained dynamically through the invertible

matrix differential equation and vice-versa provided that the eigenvalues are not the same.

We have applied the BO and DO for various problems including the one-dimensional advection and Burgers and

two-dimensional advection-diffusion and Navier-Stokes problems. They showed that the BO and DO agree well with

each other except few cases; (i) when the eigenvalue cross, then BO suffers from the singularity while DO does not,

and (ii) for the Burgers problem, the DO suffers from the numerical instability when higher modes are involved. This

suggests that the combination of the BO and DO might be a good idea to avoid the weak aspects of each method,

which will be one of further investigations. Another future investigation will include adaptive strategies of adding and

removing modes and a multiscale approach to account for some of the energy of high modes that is neglected. These

issues are currently investigated and results will be reported in future publication.
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7. Appendix: derivation of the BO evolution equations

In this section, we prove the Theorem 2. The proof is similar to the one for the DO evolution equations in [26].

First we insert the BO representation to the SPDE(1a) to obtain

∂ū

∂t
+

N
∑

i=1

dYi

dt
ui +

N
∑

i=1

Yi

∂ui

∂t
= L[u]. (40)

By applying the mean value operator we obtain the first equation of the theorem (14a). By taking the inner product of

the evolution equation (40) with each of the fields {u j(x, t)}N
j=1

we have

<
∂ū

∂t
, u j > +

N
∑

i=1

< ui, u j >
dYi

dt
+

N
∑

i=1

Yi <
∂ui

∂t
, u j >=< L[u], u j > .

Now, we define the matrix S that has the entries S i j =< ui,
∂u j

∂t
> and employ one of the BO conditions< ui, u j >= λ jδi j

and the evolution equation for ū to obtain

λ j

dY j(t;ω)

dt
= −

N
∑

i=1

S jiYi+ < L[u] − E[L[u]], u j > .

Hence, the equation for Y will take the final form (14b). The fact that S is equivalent to (15c) will be proved later.

We multiply equation (40) with Y j and apply the mean value operator to get

∂ū

∂t
E[Y j] +

N
∑

i=1

E[
dYi

dt
Y j]ui +

N
∑

i=1

E[YiY j]
∂ui

∂t
= E[L[u]Y j]
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By defining the matrix M whose entries are Mi j = E[Yi
dY j

dt
] and using the BO condition we have

∂u j

∂t
= −

N
∑

i=1

M jiui + p j

which is exactly the evolution equation (14c).

Now we prove that the two matrices S and M defined as the above are the same as those given in equations (15c)

and (15b), respectively. Indeed, by multiplying Yk on the both sides in equation (14b) and then taking the expectation

we get

λ jMk j = −
N

∑

i=1

S jiE[YiYk]+ < E[L[u]Yk], u j > (41)

where we use E[(L[u] − E[L[u]])Yk] = E[L[u]Yk] because of the linearity of the expectation and E[Yk] = 0. By

applying the BO condition we have

λ jMk j = −S jk +G jk. (42)

Interchanging the indices k and j yields

λk M jk = −S k j +Gk j. (43)

This holds for k , j. For j = k, we have S j j = G j j since the diagonal entries of M are zero. Summing up the last two

equations and using skew-symmetric properties for S for non-diagnoal elements and M yield

M jk =



















G jk+Gk j

−λ j+λk
, if j , k

0, if j = k
(44)

and substituting it back into equation (42) we get the explicit form for S

S jk =



















λk

−λ j+λk
G jk +

λ j

−λ j+λk
Gk j, if j , k

G j j, if j = k.
(45)

This completes the derivation.
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