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Abstract

The nonlinear cross-polarization interaction among two intense counterpropagating beams in a span of lossless ran-
domly birefringent telecom optical fiber may lead to the attraction an initially polarization scrambled signal towards
wave with a well-defined state of polarization at the fiber output. By exploiting exact analytical solutions of the non-
linear polarization coupling process we carry out a linear stability study which reveals that temporally stable stationary
solutions are only obtained whenever the output signal polarization is nearly orthogonal to the input pump polariza-
tion. Moreover, we predict that polarization attraction is acting in full strength whenever equally intense signal and
pump waves are used.
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1. Introduction

The cross-interaction among intense counter-
propagating beams in a Kerr or cubic nonlinear medium
leads to a mutual rotation of their state of polarization
(SOP). This effect was extensively theoretically studied
since back in the 1980’s: for example, Kaplan and
Law [1] found exact analytical solutions which exhibit
polarization bistability and multistability, as later
experimentally confirmed by Gauthier et al [2]. The
same process is also responsible for leading to both
spatial [3]-[5] as well as temporal [6] polarization
instabilities and chaos. The general spatio-temporal
stability of the nonlinear polarization eigenarrange-
ments (or eigenpolarizations) which remain unchanged
upon propagation in the Kerr medium was analysed
by Zakharov and Mikhailov [7], who pointed out the
formal analogy between the equations describing the
Stokes vectors of the two beams and those associated
with the coupling of spin waves in ferromagnetic
materials or Landau-Lifshitz model. This led to the
prediction of the formation of stable domains of mutual
arrangements of SOPs which, depending upon the
boundary conditions, may also produce all-optical
polarization switching phenomena as experimentally
observed with optical fibers by Pitois et al.[8]-[9].
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The same nonlinear SOP interaction process also
leads to an intriguing phenomenon known as polariza-
tion attraction, which has not been unveiled until rel-
atively recently [10]-[13]. As a typical example of this
effect, let us consider the case of a backward pump wave
which is injected at one end of the Kerr medium with a
given SOP. Then one may observe that the forward or
signal beam, which is launched at the other end of the
medium, emerges with a well-defined SOP, irrespective
of its initial SOP. Thus we may say that the polariza-
tion interaction has led to the effective attraction of the
output signal SOP towards a particular value which is
determined by the SOP of the pump. The demonstra-
tion of such effect using CW beams in relatively long
telecommunication fiber spans [13] paves the way for
conceiving a new class of practical devices for the all-
optical control of the signal SOP in optical communica-
tion and laser systems.

In recent years, a relatively large number of theo-
retical studies have permitted to derive the equations
describing the SOP interactions of counter-propagating
waves in randomly birefringent telecom fibers [14]-
[16]. On the basis of these equations, it has been possi-
ble to reproduce the experimental findings with a good
quantitative accuracy [17]. From the analytical side, the
study of the stationary (or time-independent) solutions
has led to the interesting observation that polarization
attraction is closely linked with the existence of singu-
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lar tori or multi-dimensional separatrix solutions [18]-
[20]. Yet a rigorous analytical description of the pro-
cess of relaxation of the signal wave SOP towards the
attracting value remains largely elusive to date, with the
exception of some relatively simple limit cases such as
the wave reflection which occurs in a purely linear dis-
tributed feedback mirror [21]. Indeed, the main diffi-
culty in the analysis of the problem is associated with
the presence of boundary conditions in a medium of fi-
nite length.

In this work we present an advance in the under-
standing of the physical origin of polarization attraction,
by showing that this effect is associated with the pres-
ence of spatio-temporally stable stationary solutions,
whereas all other stationary solutions are unstable so
that their decay towards the stable or attracting polar-
ization arrangements is to be expected in the experi-
ments. We consider the conservative polarization inter-
action between intense signal and counterpropagating
pump beams in a randomly birefringent telecom opti-
cal fiber span. First we will derive a relatively simple
closed-form expression linking the degree of relative
polarization alignment between the pump and the sig-
nal at the output end of the fiber to their relative ori-
entation at the fiber input. Next we will carry out a
semi-analytical study of these solutions, showing that
the only stable branch of solutions corresponds to the
situation where the signal SOP is effectively orthogonal
to the pump SOP as the fiber length (or beams’ power)
grows larger.

Note that recent experiments have also unexpectedly
revealed the effect of self-polarization, whereby a sin-
gle beam interacting with its replica back-reflected at
the fiber output end by a mirror also leads to the attrac-
tion towards circular polarization states, independently
of the input SOP orientation [22]. A numerical study of
the spatio-temporal stability of the stationary solutions
has also permitted to associate the presence of attracting
SOPs with the existence of stable branches [23].

2. Basic Equations

In this work we consider the polarization interaction
of two intense CW beams counter-propagating along
the z axis in a randomly birefringent fiber of length
L. The evolution equations for the Stokes vectors of
the forward (or signal) and backward (or pump) beams,
S+ = (S +

1 , S +
2 , S +

3 )T and S− = (S −1 , S −2 , S −3 )T read, in

dimensionless units, as [15]

∂ξS+ = S+ × ĴxS−

(1)
∂ηS− = S− × ĴxS+

with distance z = ξ − η, time t = ξ + η; moreover ×
denotes vector cross product, and the cross-polarization
tensor Ĵx = diag{−1, 1,−1}. In the problem described
by Eqs.(1), two important physical parameters are the
nonlinear length LNL ≡ 1/(γS +

0 ), where γ is the non-
linear fiber coefficient, and the diffusion length of the
polarization mode dispersion (PMD) L−1

d = 1
3 D2

p(ω+ −

ω−)2. Here the PMD coefficient reads as

Dp =
2
√

2π
√

Lc

LB(ω+)ω+

, (2)

where Lc is the correlation length of the random bire-
fringence process, ∆β(ω+) , and LB(ωs) = 2π/∆β(ωs)
are the linear birefringence and the beat length at the
signal frequency ω+. With the aid of these definitions,
it can be shown that Eqs.(1) are valid in the so-called
Manakov limit [16], namely whenever L, LNL � Ld.
Equations (1) can be turned to symmetric form after
switching to the new variables S = S+ and H = −ĴxS−
(or S− = −ĴxH). The additional factor Ĵx in the defini-
tion of H reflects the fact that the circular polarization
is flipped for beams propagating in opposite directions.

(∂t + ∂z)S = H × S (3)
(∂t − ∂z)H = H × S (4)

The case of counter-propagating beams corresponds to
the boundary conditions S(0) = S0 and H(L) = HL. In
the following we will refer to the S beam as the signal,
and H beam as the pump. We will assume that the input
signal can have arbitrary polarization S(0), that we will
later assume to be uniformly distributed on the Poincare
sphere. On the other hand the pump can have a con-
trollable polarization H(L). One of the primary goals
of our study is to characterize the effect of polarization
attraction, or in other words characterize the output po-
larization of the beam SL = S(L) and its relation to the
controllable pump polarization H(L). We will focus on
the analysis of stationary solutions of (3,4).

3. Exact Solution

The stationary solutions of (3,4) can be found by
noticing that whenever ∂tS = ∂tH = 0, the quantities
Ω = H + S, as well as H2 = H · H and S 2 = S · S
will remain invariant throughout the fiber, i.e. ∂zΩ =
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∂zS = ∂zH = 0. The full solution of equations (3,4)
corresponds to a simple precession of the signal and the
pump polarization vectors around the spatially constant
vector Ω, therefore it can be written as:

S(z) =

(
S(z′) −

Ω · S(z′)
Ω2 Ω

)
cos Ωl +

Ω · S(z′)
Ω2 Ω +

Ω × S(z′)
Ω

sin Ωl (5)

The same kind of relation also holds for the pump vector
H(z). In order to find the actual stationary solutions one
needs to satisfy the boundary conditions, S(0) = S0 and
H(L) = HL. We will do so by introducing two quanti-
ties that characterize the strength of polarization attrac-
tion in the fiber. First, we define the output signal-pump
alignment factor

η =
(HL · SL)

HS
(6)

which measures the relative orientation of the signal and
pump beams at the z = L end of the fiber. The alignment
factor (6) is the quantity that characterizes the strength
of the polarization attraction effect: η = 1 corresponds
to the situation where the signal SOP is the same as the
pump SOP; whereas η = −1 corresponds to the situation
where the signal and pump SOPs are orthogonal.

However, given that the boundary conditions fix the
polarization of the signal S(0) = S0 at the left or z = 0
boundary of the fiber, in order to find the value of η we
have to solve Eq.(5) by assuming that the input signal-
pump polarization alignment parameter

µ =
(HL · S0)

HS
(7)

is given. Note that a uniform initial distribution of the
signal polarization on the Poincaré sphere (such as it is
obtained from a SOP scrambler) corresponds to a uni-
form distribution of the scalar value µ on the interval
µ ∈ [−1, 1].

The relation between the output signal-pump polar-
ization alignment η and the corresponding intial align-
ment parameter µ can be found by using expression (5)
with z = 0 and z′ = L. By assuming that the value of η is
given, so that the signal SOP the z = L end of the fiber is
fixed, we may find the initial signal-pump polarization
alignment µ at the z = 0 end of the fiber by taking the
dot product of both sides of Eq.(5) with HL. This yields
the following relation

µ = F(η) =
(Hη + S )(H + S η)
H2 + S 2 + 2HS η

(1 − cos ΩL) +

η cos ΩL (8)

where we have used the condition Ω2 = (H + S) · (H +

S) = H2 + S 2 + 2HS η. The desired relation between
the output η and initial µ polarization alignment param-
eters can be found by inverting the function F(η), i.e.,
by solving the equation µ = F(η) for η.
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Figure 1: Relation between output η and input µ polarization align-
ment parameters, showing multiple branches of stationary solutions
which are observed for high enough signal and pump powers S L and
HL.
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Figure 2: Multiple branches of stationary solutions for non-matched
values of S and H.

Significant insight into the origin of the polarization
attraction effect can be gained via a simple analysis of
the algebraic curves which are defined by the relation
(8). As one can see from figure (1), in general there are
multiple branches of stationary solutions, that is there
are potentially many stationary solutions corresponding
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to one and the same given value of the initial signal-
pump polarization alignment µ. In order to understand
what kind of solution will be observed in practice, one
needs to analyze the temporal stability of all of these so-
lutions. As will be shown in the next section, a numer-
ical stability analysis shows that only the lowest branch
of the solutions shown in Fig.(1), corresponding to the
smallest value of η, is stable. In other words, the output
signal beam tends to get attracted to an SOP which is or-
thogonal to the pump. This observation is fully consis-
tent with the results of the numerical analysis performed
in ref. [15]. Moreover, direct numerical simulations of
the stationary solutions as those reported in Fig.(1 have
confirmed that, in the case of multiple solutions, only
the lowest branch is temporally stable [24].
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Figure 3: Diagram of different polarization attraction regimes. The
white region corresponds to the regime of a single branch of stationary
solutions: all of these solutions are temporally stable, but the degree
of attraction (or output signal-pump alignment) remains relatively low.
The shaded region corresponds to the multi-branch regime, where no
stationary solutions exist for some values of the input signal-pump
relative SOPs. Finally, the dashed red curve shows the most important
regime where a stable branch exists for any input signal SOP, and the
polarization attraction strength is the highest.

In order to quantify the strength of the polarization
attraction effect, it is useful to analyze the structure
of the branches of stationary solutions as in Fig.(1)
and Fig.(2), and their dependence on the powers of
the signal and pump beams S and H. We have ob-
served that three different regimes exist. First, when-
ever the power of either the signal or the pump is rel-
atively small, only one branch of the stationary solu-
tion exists which is always stable (e.g., the case with

HL = S L = 1 in Fig.(1)). The corresponding region is
shown in white color in figure 3. Whenever both the sig-
nal and the pump powers are large enough, multiple so-
lution branches appear. For example, consider the case
with HL = 5,S L = 3 in Fig.(2): as can be seen, for some
values of the initial signal-pump polarization alignment
µ, it turns out that there are no stable stationary solu-
tions at all. A more detailed numerical analysis of these
regimes is necessary in order to understand the structure
of the non-stationary solutions. However, from a practi-
cal perspective this is not a very interesting situation, as
one cannot ensure an efficient polarization attraction in
this case. The corresponding region is shaded in grey in
figure (3).

Finally, there is a third regime which corresponds to
the line H = S with values H, S > Hcrit = π/2L (red
dashed curve in figure (3)). In this regime, the low-
est branch (e.g., see the red dashed curve with HL =

S L = 2 in Fig.(1)) covers the whole range of initial po-
larization alignments −1 ≤ µ ≤ 1: correspondingly, the
strength of polarization attraction is very high. Clearly
this is the most interesting regime from the practical
viewpoint, although it might be challenging to achieve
since the power of the pump beam needs to be locked to
the power of the signal.
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Figure 4: Output signal-pump average polarization alignment param-
eter vs. signal beam power, for different values of pump power. Op-
timal polarization attraction is observed for relatively high power val-
ues, with matched values of signal and beam powers S = H.

As a matter of fact, it is possible to quantitatively
characterize the average strength of the polarization at-
traction process in the situation where the initial signal
beam has a random SOP. In this case, the average output
signal-pump alignment is simply given by the follow-
ing expression (we assume that we are operating in the
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regime where the lowest branch covers the whole region
of initial polarization alignments µ):

〈η〉 =
1
2

∫ 1

−1
η(µ)dµ = −

1
2

∫ 1

−1
F(η)dη (9)

The resulting dependence of the average output signal-
pump alignment parameter on the input power of the
signal beam is shown in figure (4). Here we compare the
case of equal signal and pump powers or H = S (solid
curve) with different situations where their power is un-
equal (dashed and dotted curves). As it can be seen in
Fig.(4), with matched signal and pump powers there is
a monotonic decrease of the average pump-signal align-
ment parameter 〈η〉 from zero towards 〈η〉 = −1 for high
beam powers. On the other hand, with unequal signal
and pump powers the average alignment 〈η〉 exhibits an
oscillating behavior as a function of the signal power,
without reaching a significant degree of orthogonality
(i.e., 〈η〉 � −1) even for relatively high signal powers.
Thus the results of Fig.(4) confirm the previous state-
ment that effective polarization attraction only occurs
whenever the pump and signal beam power values are
located on the red dashed curve in Fig.(3).

4. Stability Analysis

Reλ

Imλ

Figure 5: Schematic representation of the Nyquist contour used for
stability analysis (red dashed curve) and possible locations of eigen-
values of stable dynamic system (blue dots).

The stability of the stationary solutions can be studied
with the help of the linearized equations of motion (3):

(∂t + ∂z) s = H × s − S × h
(10)

(∂t − ∂z) h = H × s − S × h

Both H and S depend on the position z according to
the expression (5) for the solution found above. How-
ever, it is possible to simplify the equations by turning
into a reference frame rotating with Ω = H + S, where
both H and S become constant vectors. Formally this
corresponds to the transformation a(z) → exp(Ω̂z)a(z),
applied to every vector a = h, s,H,S. The operator
Ω̂ represents the vector cross product operation: Ω̂a =

Ω × a. This yields the following equations:

(∂t + ∂z) s = −S × (h + s) ,
(11)

(∂t − ∂z) h = H × (h + s) .

These equations have to be complemented with the
appropriate boundary conditions: s(z = 0, t) = 0 and
h(z = L, t) = 0. In order to analyze the stability of
small deviations on top of the stationary solutions, we
turn to the Laplace transform of s,h. Assuming that
s = sλeλt and h = hλeλt, we obtain the following system
of ordinary differential equations:

∂zsλ = −λs − S × (h + s) ,
(12)

∂zhλ = λh −H × (h + s) .

This system of equations can be written in the matrix
form after introduction of the vector ψT = [sT hT ] and
of the matrix form of the cross product operation Ŝ x =

S × x and Ĥx = H × x. The resulting equation has the
form

∂zψ = Âψ =

[
−λ1̂ − Ŝ −Ŝ
−Ĥ λ1̂ − Ĥ

]
ψ, (13)

where 1̂ is 3 × 3 identity matrix. The equation (13) is a
linear ODE with constant coefficients. The spectrum of
the linear normal modes that exist on top of stationary
nonlinear solutions can be found by using the bound-
ary condition equations. The solution of the Cauchy
problem associated with (13) can be formally written
as ψ(L) = exp(LÂ)ψ(0). The solution satisfying the
boundary conditions exists whenever the solution cor-
responding to initial conditions ψ(0) = [0 hT

0 ]T that sat-
isfy s(z = 0, t) = 0 also satisfies the boundary condition
h(z = L, t) = 0. In other words there exists a solution of
the following system of equation: P̂ exp(LÂ)P̂T h0 = 0,
where the projection operator P̂ is given by P̂ = [0̂ 1̂]
with 0̂ being 3 × 3 zero matrix. The Wronskian corre-
sponding to this boundary value problem is thus given
by

W(λ) = det
(
P̂ exp

[
LÂ(λ)

]
P̂T

)
. (14)
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The eigenmodes of the system correspond to the roots
of the Wronskian: W(λ) = 0 and therefore the stability
of the system can be assessed by finding the number of
roots in the right side of the complex plane Reλ > 0.
As the only singularity of the Wronskian function is at
λ = ∞, the number of roots n+ in the right side of the
complex plane can be expressed via an integral over the
contour surrounding the complex plane according to the
classical Cauchy argument principle:

n+ =
1

2πi

∮
Γ

W ′(λ)dλ
W(λ)

(15)

The traditional choice of the contour Γ attributed to
Nyquist is composed of the imaginary axis λ = iy with
y ∈ [−L, L] and a half circle L exp(iφ), φ ∈ [−π/2, π, 2]
with L→ ∞.

After the implementation of this procedure with the
Mathematica software and its extensive testing in a wide
range of parameters, we have found that only the low-
est branch of the nonlinear stationary solutions is stable.
We are not aware of any analytical proof of this state-
ment, although it should be possible to derive it with an
accurate analysis of the algebraic structure of the prob-
lem.

5. Discussion and Conclusions

The availability of the analytical expression (8) for
the relationship between initial µ and final η polariza-
tion alignment between the SOP of the signal and the
input pump SOP has permitted us to obtain a relatively
simple, and yet general description of the origin of the
polarization attraction effect in randomly birefringent
telecom optical fibers. In fact, for observing any polar-
ization attraction it is necessary that the powers of both
the signal and the pump are larger than a certain thresh-
old value, so that multiple values of the output align-
ment η result for a given value of the input alignment
µ. Moreover, our analysis predicts that the strength of
polarization attraction is substantially enhanced when-
ever the signal and pump beam powers are kept equal.
A numerical yet rigorous temporal stability analysis has
confirmed numerical simulation results showing that the
temporally stable stationary solutions are only those sit-
uated on the lower branch of the optical polarization
multistability curves such as those reported in Fig.(1)
[24].

These results provide an interesting insight into the
optimal conditions for experimentally observing polar-
ization attraction in long spans of randomly birefrin-
gent telecom optical fibers. Therefore we expect that

they will find an useful application in fiber-based de-
vices for the all-optical and potentially ultrafast control
of the light SOP in optical communication systems as
well as in fiber lasers.
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