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Abstract:

Goldreich (1967) showed that a lunar core of low viscosity would not precess with the mantle.

We show that this is also the case for much of lunar history. But when the Moon was close

to the Earth the Moon’s core was forced to follow closely the precessing mantle, in that the

rotation axis of the core remained nearly aligned with the symmetry axis of the mantle. The

transition from locked to unlocked core precession occurred between 26.0 and 29.0 Earth

radii, thus it is likely that the lunar core did not follow the mantle during the Cassini

transition. Dwyer and Stevenson (2005) suggested that the lunar dynamo needs mechanical

stirring to power it. The stirring is caused by the lack of locked precession of the lunar core.

So, we do not expect a lunar dynamo powered by mechanical stirring when the Moon was

closer to the Earth than 26.0 to 29.0 Earth radii. A lunar dynamo powered by mechanical

stirring might have been strongest near the Cassini transition.

Key words: Moon; Interiors; Rotational dynamics; Satellites, dynamics
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1. Introduction

Paleomagnetic measurements of lunar rocks show magnetic remanence most easily ex-

plained by a long-lived early lunar dynamo (Garrick-Bethell et al. 2009). Dwyer and Steven-

son (2005) argued that the only plausible driving force for an early lunar dynamo is mechan-

ical stirring of the liquid core due to the relative motion between the core and mantle. This

driving mechanism is only an option if the core of the Moon does not precess along with the

mantle.

The orbit of the Moon is inclined by about 5 degrees to the ecliptic and regresses with

an 18.6 year period. The rotation of the Moon is synchronous with the orbital motion. The

spin axis of the solid Moon is tilted with respect to the ecliptic and its precession is locked

to the precession of the orbit: the Moon is in a Cassini state (Peale 1968). Goldreich (1967)

showed that a liquid lunar core of low viscosity would not precess with the mantle; the spin

axis of the lunar core is nearly normal to the ecliptic. For the Earth, the core precesses

with the mantle because of the inertial coupling mechanism (Poincaré 1910; Toomre 1966).

That is, the spin axis of the Earth’s fluid core is nearly parallel to the spin axis of the

mantle, and both regress with a period of roughly 26,000 years. Goldreich showed that the

inertial coupling mechanism fails for the Moon, arguing that the ellipticity of the core-mantle

boundary is smaller than required to cause the core to precess with the mantle. We address

here whether the lunar core precessed with the mantle at earlier epochs.

If the core is locked to the mantle (as for the Earth), then the spin axis of the core

is nearly aligned with the symmetry axis of the core-mantle boundary. If the spin axis of

the core is slightly displaced from this configuration then the spin axis precesses about the

symmetry axis with the core precession frequency ωc (Touma and Wisdom 2001)

ωc = ω fc (C/Cm), (1)

where ω is the rotation frequency of the Moon, fc is the core flattening, and C/Cm, the ratio

of the polar moment of inertia of the Moon to that of the mantle (the Moon excluding the

core), is approximately 1 for the Moon. The core flattening is given by fc = (Cc − Ac)/Cc

where Ac and Cc are the smallest and largest moments of inertia of the core. If the core is

not locked to the mantle, then the spin axis is no longer closely aligned with the core-mantle

boundary symmetry axis.
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Whether the core is locked to the mantle depends on the relative frequencies of the

precession of the core and the mantle (Poincaré 1910). If the mantle precesses faster than

the core ωm > ωc, as is the case today, the core will not follow the mantle. However, if

the precession frequency of the core is larger than that of the mantle ωc > ωm, the core

and mantle will precess together, with the core oscillating around the symmetry axis of

the mantle with the frequency ωc. Since C/Cm is approximately unity, we may restate the

condition for locking in terms of the flattening. Locking occurs for core flattening larger than

ωm/ω. In the limit of very small flattening, the rotation axis of the core is perpendicular to

the ecliptic plane.

Goldreich argued that the lunar core flattening is too small today for the inertial coupling

mechanism to lock the core to the mantle. But earlier in the lunar history, the Moon was

closer to the Earth, and rotated more rapidly, so the Moon was subject to greater tidal and

centrifugal forces. Thus the lunar core flattening was larger in the past.

Here, we model the past ellipticity of the lunar core-mantle boundary and compare the

estimated precession rate of the core to that of the mantle to determine when the lunar core

was locked to the mantle.

2. Model and Results

We assume that the Moon rotates synchronously with its orbital motion. We take

the orbit of the Moon to be circular, as the effect of eccentricity on the precession of the

Moon is small (Touma and Wisdom 1994). The Moon’s orbit is inclined and precessing.

For the history of the lunar orbit under these assumptions we use the model of Touma and

Wisdom (1994). They examined various tidal models and found that the basic evolution

did not depend on the tidal model. Here we use the Mignard model from that work. We

approximate the density in the Moon by a two layer model, with constant density in the

mantle and in the core. The core is presumed to be fluid.

The surface and core-mantle boundary are out of round: we describe these surfaces by

the shape functions

ri(θ, φ) = ai(1 + ǫi
20
P2(cos θ) + ǫi

22
P22(cos θ) cos(2φ)), (2)
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where P2(x) = (3x2−1)/2 and P22(x) = 3(1−x2), and θ is the colatitude, φ is the longitude

measured from the sub-Earth point, and ai is the mean radius. The shape function ri gives

the radius of the surface as a function of colatitude and longitude. The label i is either “c” for

core or “s” for surface. We can relate the flattening to the shape parameter fc = −(3/2)ǫc
20
.

This was derived by performing the integrals for the principal moments.

The origin of the low order shape and moments of the Moon is still discussed. The “fossil

bulge” hypothesis asserts that the shape was determined at an early epoch and has been

constant since that epoch. Explaining that shape has been difficult however; one possibility

is that the shape formed when the Moon was in a moderately eccentric orbit (Garrick-Bethell

et al. 2006), though Meyer and Wisdom (2010) argue against this scenario. We adopt the

fossil bulge hypothesis, though it is unclear at what time (what lunar semimajor axis) the

fossil bulge was established. At earlier epochs we presume the shape of the mantle of the

Moon was approximately hydrostatic.

We consider two simplified models. In one model, the “non-hydrostatic mantle” model,

we consider the shape of the mantle (its surface) to be responsible for the low order moments

of the Moon, and find the shape of the core-mantle boundary by assuming its shape is

hydrostatic, i.e. that the total potential is constant on that surface. In the other model, the

“hydrostatic mantle” model, we determine both the shape of the surface and the shape of

the core-mantle boundary by assuming they are both hydrostatic. We expect the hydrostatic

model to be applicable early in the lunar evolution, and the non-hydrostatic model to be

applicable later (presuming the fossil bulge hypothesis), though the point of transition is

unclear.

The potential acting on a particular mass element in the Moon with radius r, colatitude

θ, and longitude φ is given by

U = Urot + Utidal + Um, (3)

where the rotational (centrifugal) potential is

Urot =
1

3
ω2r2P2(cos θ), (4)

the tidal potential is

Utidal = −
GMr2

r3p
P2(cosα), (5)
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and Um is the potential due to the mass distribution in the Moon, and where α is the angle

of the mass element from the Earth-Moon line measured from the center of the Moon, ω is

the rotational/orbital frequency of the Moon, G is the gravitational constant, M is the mass

of the Earth, and rp = a is the semimajor axis of the Moon (not to be confused with ac and

as).

For a synchronous Moon with zero obliquity in a circular orbit, the angle α is given

by cosα = sin θ cosφ. But the Moon has a small non-zero inclination and obliquity. The

tidal potential thus has periodic variations, on an orbital period. The average tidal potential

governs the shape, because variations in hydrostatic shape occur on a timescale long com-

pared to the variations in the tidal potential. The average tidal potential differs from that

for zero obliquity by terms of second order in the small obliquity. For most of the history of

the lunar orbit, these periodic variations in the tidal potential are ignorable. An exception

occurs during the Cassini transition, which occurs near 33.4Re (Ward 1975; Wisdom 2006),

during which the Moon briefly develops large obliquity. Taking account of obliquity, the

average tidal potential is

Utidal = −
GMr2

r3p

[

P20(cos θ)

(

−
1

2
+

3

4
(sin ε)2

)

P22(cos θ) cos(2φ)

(

1

4
−

1

16
(sin(ε))2 −

1

4
(sin(ε/2))2

)]

, (6)

where ε is the obliquity of the spin axis to the orbit. This can be derived by first computing

cosα for an arbitrary point in the synchronously rotating but oblique Moon. Then form

the potential, average it over time, and reexpress the position in terms of the Legendre

polynomials. For the obliquity as a function of semimajor axis we use the results of Wisdom

(2006).

For a homogeneous body (uniform density ρm) with surface shape function rs, mean

radius as, and parameters ǫs
20

and ǫs
22
, the exterior potential is (Jefferys, 1976)

Us
ext(r, θ, φ) = −

4

3
πGρa3s

(

1

r
+

3

5

a2s
r3
ǫs
20
P2(cos θ) +

3

5

a2s
r3
ǫs
22
P22(cos θ) cos(2φ)

)

, (7)

and the interior potential is

Us
int(r, θ, φ) = −

4

3
πGρa3s

(

3a2s − r2

2a3
+

3

5

r2

a3s
ǫs
20
P2(cos θ) +

3

5

r2

a3s
ǫs
22
P22(cos θ) cos(2φ)

)

, (8)
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These expressions are correct to first order in the shape parameters. Note that at the radius

r = as the exterior potential and the interior potential agree to first order in the shape

parameters, so at this order we can use the two potentials interchangably.

For a body that has, in addition, an out-of-round core, we add to this potential the

potential due to a core of additional density ∆ρ = ρc−ρm. The additional potential exterior

to the core-mantle boundary is

U c
ext(r, θ, φ) = −

4

3
πG∆ρ a3c

(

1

r
+

3

5

a2c
r3
ǫc
20
P2(cos θ) +

3

5

a2c
r3
ǫc
22
P22(cos θ) cos(2φ)

)

, (9)

and the additional potential interior to the core-mantle boundary is

U c
int(r, θ, φ) = −

4

3
πG∆ρ a3c

(

3a2c − r2

2a3
+

3

5

r2

a3c
ǫc
20
P2(cos θ) +

3

5

r2

a3c
ǫc
22
P22(cos θ) cos(2φ)

)

.

(10)

The potential Um at the core-mantle boundary is

U cmb
m (θ, φ) = Us

int(rc(θ, φ), θ, φ) + U c
ext(rc(θ, φ), θ, φ), (11)

and the potential Um at the surface is

Usurf
m (θ, φ) = Us

ext(rs(θ, φ), θ, φ) + U c
ext(rs(θ, φ), θ, φ). (12)

The total potential on these surfaces in addition includes the rotational and tidal contribu-

tions.

We solve two problems: (1) given the shape parameters for the mantle determined by

matching the observed gravitational moments, find the hydrostatic shape of the core-mantle

boundary (we call this the “non-hydrostatic mantle” case), and (2) find the hydrostatic shape

of both the mantle and the core (we call this the “hydrostatic mantle” case). We solve both

models as a function of the Earth-Moon distance (semimajor axis of the assumed circular

orbit).

We use two methods of solution. In one method we define a function that is nonzero

and positive if the surfaces that should be hydrostatic are non-hydrostatic. This function

takes a number of differences of the potential at different colatitudes and longitudes, squares

them, and sums over all differences taken. We then find the shape parameters by minimizing
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this function over the shape parameters, using the Nelder-Mead downhill simplex method.

In the second method, we truncate the potentials at first order in the shape parameters. We

then project the potentials (which are functions of colatitude and longitude) onto the second

degree spherical harmonics, P2(cos θ) and P22(cos θ) cos(2φ), by performing the integrals of

the products of these functions, the total potential on each surface, and the surface area

element. The result is a set of linear equations in the shape parameters that we solved

analytically, but are too complicated to display. The shape parameters determined by the

two methods agree to first order in the shape parameters, about four or five digits.

Williams et al. (2009) found that the ratio of the core moment to the total moment of

inertia of the Moon Cc/C was 1.2 ± 0.4 × 10−3. In Figure 1, we show the core flattening

calculated for the hydrostatic and non-hydrostatic mantle models as a function of the core

density, for three values of Cc/C. We vary the core density from 4700 kg/m3 (Fe-FeS eutectic)

to 8100 kg/m3 (pure Fe) (Kuskov and Kronrod 1998). The flattening is not sensitive to the

assumed Cc/C as demonstrated in the figure (though the radius of the core does depend on

the assumed Cc/C).

For the non-hydrostatic mantle model we use

C20 =
(B + A)/2− C

ma2e
= −2.04× 10−4 (13)

and

C22 =
B − A

4ma2e
= 2.24× 10−5, (14)

determined from the libration parameters (Dickey et al. 1994). These correspond to mantle

shape parameters of ǫs
20

= −3.40× 10−4 and ǫs
22

= 3.74× 10−5, ignoring small contributions

from the core. Here m is the mass of the Moon, and ae is the mean equatorial radius. The

principal moments of the Moon are A < B < C.

There is marginal detection of the ellipticity of the lunar core-mantle boundary from

laser ranging analysis (Williams et al. 2009). They find the flattening of the core-mantle

boundary to be fc = 2.0± 2.3× 10−4. The large error bar is argued to be more a reflection

of a correlation in the result with other uncertain parameters rather than uncertainty in

the flattening. Williams et al. (2009) notes that the core flattening is not hydrostatic (by

comparing the result to the expected hydrostatic core-mantle boundary with a hydrostatic
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mantle). Of course, the fact that the mantle is currently non-hydrostatic is well known. We

can see from Figure 1 that the observed flattening agrees well with the hydrostatic flattening

expected of the core-mantle boundary inside a non-hydrostatic mantle (the non-hydrostatic

mantle model).

Emboldened by this success, we now calculate the hydrostatic flattening of the core-

mantle boundary as the lunar orbit evolves. Figure 2 shows the results. The parameters we

adopt are: ac = 350km, as = 1738km, ∆ρ = 4400kg/m3, ρ = 3300kg/m3. For the present

lunar orbit we find, in the hydrostatic mantle case, ǫc
20

= −1.01 × 10−5; and, for the non-

hydrostatic mantle case, we find ǫc
20

= −1.39 × 10−4. These correspond to core flattening

parameters of fc = 1.52× 10−5 and fc = 2.09 × 10−4. We see that at large semimajor axes

the precession of the fluid core is not coupled to the precession of the mantle, but at small

semimajor axes the two precess together. The point of transition is uncertain (26.0Re -

29.0Re, where Re is the radius of the Earth), because the semimajor axis at which the Moon

developed its nonhydrostatic shape is uncertain. The time is much more uncertain, as the

timescale for tidal evolution early in the lunar history is unknown. But assuming average

tidal parameters such that the orbit of the Moon reaches the Earth 4.5 Gyr ago, these lunar

semimajor axes are reached in less than 40 Myr. By comparison, the lunar sample 76535

shows evidence of a lunar magnetic field 4.2-4.3 Gyr ago (Garrick-Bethell et al. 2009).

Requiring the core to be decoupled from the mantle at that time allows us to place

a lower limit on the average rate of tidal evolution during this epoch. The rate of tidal

evolution is no slower than a factor of about 6 compared to the average tidal evolution rate.

For the constant ∆t Mignard model this implies ∆t > 0.44 minutes, compared to today’s

value of about 10 minutes.

The Cassini transition occurs at around 33.4Re. We see that it is likely that the core

did not follow the mantle during the Cassini transition. Since the obliquity of the Moon

is large during the Cassini transition, we may speculate that there was a large magnetic

field during the transition because of the large stirring (presuming the hypothesis of Dwyer

and Stevenson, 2005). So we might expect nonzero lunar paleomagnetic measurements to

cluster near the time of the Cassini transition, perhaps allowing us to constrain that time.

At present there are not enough paleomagnetic data to assess this hypothesis.
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3. Conclusion

The fluid core of the Moon does not precess with the mantle of the Moon. We have

shown that this is also the case for much of lunar history. But when the Moon was close to

the Earth the core followed the mantle. The transition occurred at 26.0Re - 29.0Re.

Dwyer and Stevenson (2005) suggested that the lunar dynamo needs mechanical stirring

to power it. The stirring is caused by the lack of locked precession of the lunar core. So, we

do not expect a lunar dynamo powered by mechanical stirring when the Moon was close to

the Earth.

4. Appendix

We consider here a simple model that illustrates and illuminates the transition from

locked to unlocked core. Our model system is a core-mantle system perturbed by a third

body. We assume the orbital period is short enough compared to the natural periods of the

core-mantle system that the potential interaction can be averaged over the orbit. We assume

the orbit is fixed and circular, with zero inclination to the ecliptic. For the real Moon the

orbit is slightly inclined and regresses with an 18.6 year period, and the regression of the

mantle of the Moon is locked to the regression of the orbit. In this simple model the mantle

regresses uniformly at a rate determined by its obliquity and moments.

Following Touma and Wisdom (2001), we describe the core-mantle system, with zero

amplitude wobble, by the Hamiltonian

HCM(t, θ,Θ) = ωcΘ+
1

2
kΘ2, (15)

where, as before,

ωc = fcω
C

Cm

(16)

is the precession frequency of the core tilt mode, fc is the core flattening, ω is the rotational

angular frequency, C is the principal moment of the body, and Cm is the principal moment

of the mantle. The nonlinearity parameter is

k = −
fc
δC

[

1− 2δ2 + δ3

(1− δ)3

]

, (17)
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where δ = Cc/C, where Cc is the principal moment of the core. Note that the nonlinearity

parameter is large for both small and large core. Let g′ be the angle that measures the

direction of the tilted core in inertial space. The canonical coordinate θ = −g′. The canonical

momentum Θ is a measure of the tilt J of the symmetry axis of the core-mantle boundary

from the angular momentum of the body. We have

sin2 J =
2G′

Cω
, (18)

with

G′ = (c2/D)Θ, (19)

where c = −
√
δ and D = 1− c2. The tilt K of the core rotation axis from the symmetry axis

of the body is approximately K = J/δ. See Touma and Wisdom (2001) for more details.

Again following Touma and Wisdom (2001), the potential energy is

n2(C −A)P2(cos θs), (20)

where n is the mean orbital motion, C and A are the largest and smallest principal moments

of the core-mantle body, and θs is the angle from the symmetry axis of the mantle to the

perturbing body. The complete expression for the potential can be found in Touma and

Wisdom (2001). Averaging over the orbital period is straightforward and simpler than the

analysis in Touma and Wisdom (2001) because we are taking the orbit to be circular. The

resulting averaged potential energy is

n2(C −A)

[

−
1

2
+

3

8
cos2 I sin2 J +

3

4
cos2 J sin2 I +

3

8
sin2 J

+
3

2
cos I cos J sin I sin J cos(f ′ − g′)−

3

8
sin2 I sin2 J cos(2f ′ − 2g′)

]

, (21)

where I is the obliquity of the symmetry axis of the body to inertial z-axis (which is per-

pendicular to the fixed orbit plane), and f ′ is the angle of the ascending node of the equator

on the orbit plane. The precession of the body is largely independent of the core mode

dynamics, so we take the obliquity to be fixed, and f ′ = −ωf t, where the rate of regression

of the equator is

ωf =
3

2

n2(C − A)

Cω
cos I. (22)
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The fact that the angles only appear in the combination f ′ − g′ and that f ′ is uniformly

regressing suggests a transformation to a rotating frame. We choose a new coordinate θ′ =

f ′ − g′ = θ − ωf t with canonical momentum Θ′ = Θ. Finally, we use the non-singular

canonical variables

y =
√
2Θ′ sin θ′ (23)

x =
√
2Θ′ cos θ′. (24)

The Hamiltonian is

H(t, y, x) = (ωc − ωf)
x2 + y2

2
+

1

2
k

(

x2 + y2

2

)2

+

+ n2(C − A)

[

3

2
(cos I sin I)αx+

+

(

3

4
−

9

8
cos2 I

)

α2(x2 + y2)−
3

8
(sin2 I)α2(x2 − y2)

−
3

4
(cos I sin I)α3x(x2 + y2)

]

(25)

where α =
√

δ/((1− δ)Cω), and we have left out some constant terms. Note that we used

the approximation cos J = 1− (sin2 J)/2, as J is small. Note that though J remains small,

K can be large.

We carried out a numerical experiment to track the fixed points of the system as we

varied the core flattening. We used parameters for the Moon, as given in the body of the text.

We integrated the equations of motion with the Bulirsch-Stoer algorithm. We added a small

dissipation so that the system would settle on the fixed points. We started the integrations

with initial conditions for x and y very close to zero. Figure 3 shows the magnitude of K for

the resulting fixed points as a function of the core flattening. We see that for large flattening

the offset of the core to the mantle symmetry axis goes to zero. For ωc near ωf the system

passes though a resonance and there is large offset of the core to the mantle. Then for small

core flattening the core is offset from the mantle by the obliquity K = I.

The pattern of bifurcations and fixed points on the phase portraits (the trajectories in

the x − y plane) are those of a first order resonance. We can obtain the standard approx-

imate Hamiltonian for a first order resonance by keeping only the first three terms in the
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Hamiltonian. The resonance is between the precession of the core and the precession of the

equator. We obtain

H(t, y, x) = (ωc − ωf)

(

x2 + y2

2

)

+
1

2
k

(

x2 + y2

2

)2

+ n2(C − A)
3

2
(cos I sin I)αx (26)

Using this approximate Hamiltonian we can derive the limiting values of the fixed points for

small and large core flattening. The fixed points are on the y = 0 axis, and satisfy

0 =
∂H

∂x
= (ωc − ωf)x+

1

2
kx3 + n2(C − A)

3

2
(cos I sin I)α. (27)

Away from resonance we can ignore the nonlinearity term (i.e. set k = 0), and find the fixed

points to be

x = −
n2(C −A)3

2
(cos I sin I)α

ωc − ωf

. (28)

For small flattening, ωc << ωf and we find

sinK = sin I, (29)

exactly. So the core spin axis is offset from the mantle symmetry axis by the obliquity, and

thus is normal to the orbit plane. In the other limit of large flattening, ωc >> ωf , and

therefore the fixed point approaches zero.
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Fig. 1.— The flattening of the lunar core plotted versus the assumed density of the core, for

fixed core moment of inertia. For the non-hydrostatic mantle model, three curves are plotted.

These three curves are the upper three on the plot and indistinguishable from each other.

These three curves correspond to different core moments: Cf/C = 0.8 × 10−3, 1.2 × 10−3

and 1.6 × 10−3. Similarly, the lower curves (also indistinguishable) show the results for the

hydrostatic mantle model and the same core moment values.



– 18 –

CB

A

a/Re

T
[y
ea
rs
]

6040200

150

100

50

0

Fig. 2.— The period of precession of the lunar orbit and lunar mantle (line A), of the

lunar core in the “hydrostatic mantle” model (lines B), and of the lunar core in the “non-

hydrostatic mantle” model (lines C), plotted as a function of lunar semimajor axis in Earth

radii. For lines B and C the solid line takes into account the forced obliquity of the Moon,

whereas the dashed line assumes zero obliquity. The gap in the non-hydrostatic mantle

model occurs at the Cassini transition. The core precesses with the mantle when the Moon

is close to the Earth; and the lunar core decouples from the mantle at large semimajor axis.

The point of transition depends on the model.
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Fig. 3.— The offset of the core spin axis from the mantle symmetry axis is plotted versus the

core flattening for the equilibrium points of the system. The equilibrium points are found

by adding a small dissipation and integrating the equations of motion. Two broken curves

are shown. For the solid curve the full resonance Hamiltonian was used; for the dotted curve

the nonlinearity parameter k was set to zero. For small flattening the offset of the core

is approximately the obliquity; the core spin axis is perpendicular to the orbit. For large

flattening, the offset tends to zero; the core spin axis is locked to the mantle.


